WO2018155833A1 - 엑스선 유도 초음파를 이용한 물 선량 측정 장치 - Google Patents

엑스선 유도 초음파를 이용한 물 선량 측정 장치 Download PDF

Info

Publication number
WO2018155833A1
WO2018155833A1 PCT/KR2018/001471 KR2018001471W WO2018155833A1 WO 2018155833 A1 WO2018155833 A1 WO 2018155833A1 KR 2018001471 W KR2018001471 W KR 2018001471W WO 2018155833 A1 WO2018155833 A1 WO 2018155833A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
dose
ray
ray guided
ultrasonic transducer
Prior art date
Application number
PCT/KR2018/001471
Other languages
English (en)
French (fr)
Inventor
김철홍
김인중
김병철
박은영
이철영
김지수
정유한
김중현
Original Assignee
한국표준과학연구원
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원, 포항공과대학교 산학협력단 filed Critical 한국표준과학연구원
Priority to US16/488,236 priority Critical patent/US20190383952A1/en
Publication of WO2018155833A1 publication Critical patent/WO2018155833A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/204Measuring radiation intensity with scintillation detectors the detector being a liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/1611Applications in the field of nuclear medicine, e.g. in vivo counting using both transmission and emission sources sequentially
    • G01T1/1612Applications in the field of nuclear medicine, e.g. in vivo counting using both transmission and emission sources sequentially with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/169Exploration, location of contaminated surface areas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters

Definitions

  • the present invention relates to a water dose measuring apparatus using X-ray guided ultrasound, and more specifically, to obtain an X-ray guided ultrasound signal using water, which is an environment similar to the body of the human body, and to analyze the amount of X-ray absorption X-
  • the present invention relates to an apparatus for measuring water dose using X-ray guided ultrasonic waves, which can measure absorbed dose in water when a line is irradiated with water.
  • the radiation medical device treats the disease by intensively irradiating the affected part of the human body.
  • the radiation dose absorbed by the affected area is prescribed in consideration of the patient's condition and the size and characteristics of the affected part.
  • the appropriate dose of radiation for the treatment is investigated under the establishment of a radiotherapy plan. Since radiation itself has a bad effect on the human body, the radiation is irradiated so that only the dose necessary for treating the patient may be absorbed, thereby preventing the radiation from being excessively absorbed by the human body and being overexposed.
  • the hospital determines the output of radiation for the patient based on the data of the device information provided by the seller. This means that even if the precision of the device is high in the early stages of the installation of the radiation medical device, as the accuracy of the radiation device decreases with time, a difference in output quantity may occur, thus causing overcoat during radiation treatment. there was. Since X-rays have been discovered and used for treatment, many efforts have been made to know whether X-rays are being properly irradiated to the target site during X-ray treatment, but the technique of measuring the distribution of dose in real time Has not been commercialized.
  • the present invention has been proposed to solve the above problems of the conventionally proposed methods, by constructing a therapeutic X-ray linear accelerator-based ultrasound imaging apparatus combining a therapeutic X-ray linear accelerator and an ultrasonic transducer, It is an object of the present invention to provide an apparatus for measuring water dose using X-ray guided ultrasound, which enables measurement of absorbed dose of radiation in water in real time when water is irradiated with X-rays.
  • another object of the present invention is to provide an apparatus for measuring water dose using X-ray guided ultrasound, which minimizes radiation exposure and increases treatment effect during radiation treatment of a patient.
  • the present invention by obtaining a real-time X-ray dose measurement and distribution in water, which is a similar environment in the body, suggests the possibility of real-time dose measurement in the body, as well as proton, neutron, etc. It is another object of the present invention to provide a water dose measuring apparatus using X-ray guided ultrasound, which can be used as a technology for developing a new concept of radiation dose measuring equipment capable of monitoring the treatment status in real time in radiation therapy.
  • a water dose measuring device using X-ray guided ultrasound A water dose measuring device using X-ray guided ultrasound
  • a therapeutic X-ray linear accelerator for generating pulsed X-rays and irradiating toward the target of the water phantom
  • Ultrasonic transducer for detecting the X-ray guided ultrasonic signal generated by the instantaneous thermal expansion as the pulse X-rays irradiated from the therapeutic X-ray linear accelerator is irradiated and absorbed in water;
  • a data acquisition device unit for converting and outputting an X-ray guided ultrasound signal amplified from the amplifier into a digital signal
  • PC data processing unit
  • the X-ray guided ultrasound signal Preferably, the X-ray guided ultrasound signal
  • the dose of X-rays depends on the depth of water to be irradiated, the magnitude of the X-ray guided ultrasound signal is proportional to the magnitude of the absorbed radiation dose, and the X-ray guided ultrasound has little attenuation in water, thus absorbed radiation. Allow volume measurement.
  • the water phantom portion Preferably, the water phantom portion,
  • It may be configured in the form of an open water tank filled with water.
  • the water phantom portion Preferably, the water phantom portion,
  • It can be configured to further include a three-axis motor stage capable of three-axis movement of the ultrasonic transducer.
  • the ultrasonic transducer More preferably, the ultrasonic transducer
  • the ultrasonic transducer Even more preferably, the ultrasonic transducer,
  • It can be configured as a focused single-element ultrasonic transducer.
  • the ultrasonic transducer Even more preferably, the ultrasonic transducer,
  • Any one of a linear array transducer, an arced array transducer, and a circular array transducer can be configured.
  • the data processing device unit Still more preferably, the data processing device unit,
  • Radiation absorbed dose is measured in real time using an X-ray guided ultrasonic signal sensed in real time by the ultrasonic transducer, but for each angle at the target position of the probe sample based on three-dimensional scanning of the ultrasonic transducer.
  • the cross-sectional radiation absorbed dose can be measured.
  • the data processing unit Still more preferably, the data processing unit,
  • the measured values of the cross-sectional radiation absorbed doses for each angle may be collected to obtain a 3D image radiation dose distribution and displayed and output for monitoring.
  • a water dose measuring device using X-ray guided ultrasound A water dose measuring device using X-ray guided ultrasound
  • a water device component disposed of an animal inside a water tube filled with water, and provided with a rotary stage for rotating the water tube under the water tube;
  • a therapeutic X-ray linear accelerator for generating pulsed X-rays and irradiating the animals disposed in the water tube;
  • Ultrasonic transducer for detecting the X-ray guided ultrasonic signal generated by the instantaneous thermal expansion as the pulse X-rays irradiated from the therapeutic X-ray linear accelerator is irradiated and absorbed in water;
  • a data acquisition device unit for converting and outputting an X-ray guided ultrasound signal amplified from the amplifier into a digital signal
  • PC data processing unit
  • the X-ray guided ultrasound signal Preferably, the X-ray guided ultrasound signal
  • the dose of X-rays depends on the water depth to be irradiated, and the magnitude of the X-ray guided ultrasound signal is proportional to the magnitude of the absorbed radiation dose.
  • the ultrasonic transducer Preferably, the ultrasonic transducer,
  • It may be arranged inside the water tube rotated by the rotary stage.
  • the ultrasonic transducer More preferably, the ultrasonic transducer
  • An arc array transducer may be used to perform circular scanning of the water tube rotated by the rotary stage and to detect and acquire an X-ray guided ultrasonic signal according to the circular scanning.
  • the data processing device unit Still more preferably, the data processing device unit,
  • Radiation absorbed dose is measured in real time using an X-ray guided ultrasonic signal detected in real time by the ultrasonic transducer, but based on circular scanning of the ultrasonic transducer, the cross-sectional radiation absorbed dose for each circular angle at the animal position.
  • the measured values of the cross-sectional radiation absorbed doses for each circular angle are collected and processed to obtain a radiation dose distribution in the form of a 3D image and display and output the radiation dose distribution.
  • a water dose measuring device using X-ray guided ultrasound A water dose measuring device using X-ray guided ultrasound
  • a therapeutic X-ray linear accelerator for generating pulsed X-rays and irradiating toward the affected part of the patient to be treated with a gel pad filled with water;
  • Ultrasonic transducer for detecting the X-ray guided ultrasonic signal generated by the pulse X-rays irradiated from the therapeutic X-ray linear accelerator absorbs the X-rays in the affected area through the role of the medium of the gel pad;
  • a data acquisition device unit for converting and outputting an X-ray guided ultrasound signal amplified from the amplification unit into a digital signal
  • PC data processing unit
  • the ultrasonic transducer Preferably, the ultrasonic transducer,
  • It may be composed of an arc-shaped array transducer that is moved along the longitudinal direction of the bed for scanning of the patient to be treated lying on the bed.
  • the ultrasonic transducer Even more preferably, the ultrasonic transducer,
  • arc array transducer In addition to the arc array transducer, it can be used as a circular or linear array transducer.
  • the data processing device unit Still more preferably, the data processing device unit,
  • the treatment target lying on the bed based on the scanning in accordance with the longitudinal direction of the ultrasound transducer to measure the radiation absorbed dose in real time using an X-ray guided ultrasonic signal detected in real time through the ultrasonic transducer
  • the water dose measuring apparatus using the X-ray guided ultrasound proposed in the present invention by forming a therapeutic X-ray linear accelerator-based ultrasonic imaging device combined with a therapeutic X-ray linear accelerator and an ultrasonic transducer, It is possible to measure the absorbed dose of radiation in water when the line is irradiated in real time.
  • the present invention it is possible to obtain a wide range of radiation dose distribution in real time through three-dimensional scanning of the linear, arc-shaped, circular array type ultrasonic transducer, and monitor the treatment status in real time during clinical radiation treatment By doing so, it is possible to minimize the radiation exposure during the radiation treatment of the patient, and to increase the therapeutic effect.
  • the present invention by obtaining a real-time X-ray dose measurement and distribution in water, which is a similar environment in the body, suggests the possibility of real-time dose measurement in the body, as well as proton, neutron, etc.
  • it can be used as a technology for developing a new concept of radiation dose measuring equipment that can monitor the status of treatment in real time.
  • FIG. 1 is a block diagram showing the configuration of a water dose measuring apparatus using X-ray guided ultrasound according to an embodiment of the present invention as a functional block.
  • FIG. 2 is a diagram illustrating a structure of an example of an embodiment of an apparatus for measuring water dose using X-ray guided ultrasound according to an embodiment of the present invention.
  • FIG 3 is a view showing a comparison between a dose measurement result and an ion chamber measurement for a sample in water using a water dose measuring apparatus using X-ray guided ultrasound according to an embodiment of the present invention.
  • Figure 4 is a view showing the configuration of an example of the animal application of the water dose measurement apparatus using X-ray guided ultrasound in accordance with an embodiment of the present invention as a functional block.
  • FIG. 5 is a diagram illustrating a structural example of an animal application of the apparatus for measuring water dose using X-ray guided ultrasound according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a configuration of an example of application of radiation therapy to a water dose measuring apparatus using X-ray guided ultrasound according to an embodiment of the present invention as a functional block;
  • FIG. 7 is a view showing a structural diagram of an example of radiation treatment application of the water dose measuring apparatus using X-ray guided ultrasound in accordance with an embodiment of the present invention.
  • DAQ data acquisition unit
  • FIGS. 1 and 2 are views showing the configuration of a water dose measurement apparatus using X-ray guided ultrasound according to an embodiment of the present invention as a functional block
  • Figure 2 is a water dose measurement using X-ray guided ultrasound according to an embodiment of the present invention
  • the water dose measuring apparatus 100 using X-ray guided ultrasound according to an embodiment of the present invention includes a water phantom unit 110 and a therapeutic X-ray linear accelerator 120. ), The ultrasonic transducer 130, the amplifier 140, the data acquisition device 150, and the data processing device 160.
  • the water phantom part 110 is a structure in which water is filled and a target of a probe sample is disposed inside the water. As shown in FIG. 2, the water phantom 110 may be configured in the form of an open tank filled with water.
  • the water phantom unit 110 may further include a three-axis motor stage 111 capable of three-axis movement of the ultrasonic transducer 130 to be described later. That is, the three-axis motor stage 111 may move the scanning stages 1, 2, and 3 axes.
  • the water phantom 110 may include a linear or rotary scanning stage.
  • the therapeutic X-ray linear accelerator 120 is a configuration of a medical linear accelerator for generating pulse X-rays and irradiating pulse X-rays toward a target of the water phantom unit 110. Since the therapeutic X-ray linear accelerator 120 corresponds to a conventional configuration, unnecessary description of specific configurations and operating principles will be omitted.
  • the ultrasonic transducer 130 detects an X-ray guided ultrasonic signal generated by instantaneous thermal expansion as pulse X-rays radiated from the therapeutic X-ray linear accelerator 120 are irradiated and absorbed by water.
  • the X-ray guided ultrasonic signal is an acoustic pressure generated by instantaneous thermal expansion as pulse X-rays are irradiated and absorbed by water, radiated from the source in all directions, and include information on absorbed dose of X-rays. Doing. In this case, the dose of X-rays depends on the depth of water irradiated, and the magnitude of the X-ray guided ultrasound signal is proportional to the magnitude of the absorbed radiation dose.
  • the ultrasonic transducer 130 is fastened to the three-axis motor stage 111, performs three-dimensional scanning by using the three-axis movement of the XYZ axis, and obtains by sensing the X-ray guided ultrasonic signal according to the three-dimensional scanning can do.
  • the ultrasonic transducer 130 may be configured as a focus type single element ultrasonic transducer.
  • the ultrasonic transducer 130 may be configured as any one of a linear array transducer, an arc-type array transducer, and a circular array transducer in the form of a specific configuration.
  • the amplifier 140 is a configuration of an amplifier for amplifying and outputting the X-ray guided ultrasonic signal detected by the ultrasonic transducer 130.
  • the amplification unit 140 amplifies the X-ray guided ultrasonic signal, which is a detected weak signal.
  • the data acquisition device unit 150 is configured to convert an X-ray guided ultrasound signal amplified and output from the amplifier 140 into a digital signal and output the digital signal.
  • the data acquisition device unit (DAQ) 150 serves to process data that can be recognized by the data processing device unit 160 to be described later.
  • the data processing unit 160 is a configuration in the form of a personal computer (PC) that analyzes and processes the digitized data output from the data acquisition device unit 150 to measure radiation absorbed dose.
  • the data processing unit (PC) 160 measures the radiation absorbed dose in real time using an X-ray guided ultrasonic signal detected in real time through the ultrasonic transducer 130, but the 3 of the ultrasonic transducer 130
  • the cross-sectional radiation absorbed dose for each angle at the target position of the probe sample can be measured based on the dimensional scanning.
  • the data processing unit may collect and process the measured values of the cross-sectional radiation absorbed doses for each angle to obtain a radiation dose distribution in the form of a 3D image and display and output the radiation dose distribution.
  • FIG. 3 is a diagram illustrating a comparison between a dose measurement result and an ion chamber measurement of a sample in water using a water dose measuring apparatus using X-ray guided ultrasound according to an embodiment of the present invention. That is, FIG. 3 shows a comparison between the tendency of the radiation accumulation dose measured by the water dose measuring apparatus 100 of the present invention and the tendency of the dose measured by the ion chamber.
  • the radiation accumulation dose signal is expressed by adding a radiation-induced ultrasonic signal for a predetermined time (the time when the dose becomes 1 Gy when water is irradiated with X-rays). It can be seen that the trend of each graph is relatively consistent.
  • FIG. 4 is a view illustrating a configuration of an example of an animal application of a water dose measuring apparatus using X-ray guided ultrasound according to an embodiment of the present invention as a functional block
  • FIG. 5 illustrates X-ray guided ultrasound according to an embodiment of the present invention. It is a figure which shows the structural diagram of an example of an animal application implementation of the water dosimetry apparatus used.
  • the water dose measuring apparatus 100 using the X-ray guided ultrasound according to the embodiment of the present invention includes a water device component 170 and a therapeutic X-ray linear accelerator ( 120, an ultrasonic transducer 130, an amplifier 140, a data acquisition device 150, and a data processing device 160.
  • a therapeutic X-ray linear accelerator 120, an ultrasonic transducer 130, an amplifier 140, a data acquisition device 150, and a data processing device 160.
  • the water device configuration unit 170 is a rotary stage 172 for rotating the water tube 171 to the bottom of the water tube 171, the animal is placed inside the water tube (171) filled with water (water tube) ) Is the configuration of the installed water device.
  • the water device configuration unit 170 is a configuration that is implemented as an example for the measurement of the dose distribution in the body during animal irradiation.
  • the therapeutic X-ray linear accelerator 120 is a configuration of a medical linear accelerator for generating a pulse X-ray and irradiating toward an animal disposed in the water tube 171. Since the therapeutic X-ray linear accelerator 120 corresponds to a conventional configuration, unnecessary description of specific configurations and operating principles will be omitted.
  • the ultrasonic transducer 130 detects an X-ray guided ultrasonic signal generated by instantaneous thermal expansion as pulse X-rays radiated from the therapeutic X-ray linear accelerator 120 are irradiated and absorbed by water.
  • the X-ray guided ultrasonic signal is an acoustic pressure generated by instantaneous thermal expansion as pulse X-rays are irradiated and absorbed by water, radiated from the source in all directions, and include information on absorbed dose of X-rays. do.
  • the dose of X-rays depends on the water depth to be irradiated, and the magnitude of the X-ray guided ultrasound signal has a property proportional to the magnitude of the absorbed radiation dose.
  • the ultrasonic transducer 130 may be arranged inside the water tube 171 rotated by the rotary stage 172, as shown in FIG. That is, the ultrasonic transducer 130 is composed of an arc array transducer to perform circular scanning of the water tube 171 rotated by the rotary stage 172, and to perform the X-ray guided ultrasonic signal according to the circular scanning. It can be detected and obtained.
  • the ultrasonic transducer 130 may be configured as another type of transducer, such as linear, circular.
  • the amplifier 140 is a configuration of an amplifier for amplifying and outputting the X-ray guided ultrasonic signal detected by the ultrasonic transducer 130.
  • the amplifier 140 amplifies the X-ray guided ultrasonic signal, which is a detected weak signal, to be processed.
  • the data acquisition device unit 150 is configured to convert an X-ray guided ultrasound signal amplified and output from the amplifier 140 into a digital signal and output the digital signal.
  • the data acquiring device unit 150 converts the data into a data form that can be recognized by the data processing device unit 160 to be described later.
  • the data processing device unit 160 is configured to analyze the digitized data output from the data acquisition device unit 150 to measure radiation absorbed dose.
  • the data processing unit 160 may be configured in the form of a personal computer (PC), and measure the radiation absorbed dose in real time using an X-ray guided ultrasonic signal detected in real time through the ultrasonic transducer 130. Based on the circular scanning of the ultrasonic transducer 130, the cross-sectional radiation absorbed dose for each circular angle at the animal position is measured, and the measured value of the cross-sectional radiation absorbed dose for each circular angle is collected and processed to collect radiation dose in the form of a 3D image. The distribution chart can be obtained and displayed for monitoring.
  • PC personal computer
  • FIG. 6 is a view illustrating a configuration of an example of application of radiation treatment of a water dose measuring apparatus using X-ray guided ultrasound according to an embodiment of the present invention as a functional block
  • FIG. 7 is X-ray guided ultrasound according to an embodiment of the present invention. It is a figure which shows the structural diagram of an example of the radiation treatment application of the water dose measuring apparatus using the above.
  • the water dose measuring apparatus 100 using X-ray guided ultrasound according to an embodiment of the present invention includes a gel pad 180 and a therapeutic X-ray linear accelerator 120. , An ultrasonic transducer 130, an amplifier 140, a data acquisition device 150, and a data processing device 160.
  • Gel pad 180 is a configuration of a pad filled with water disposed on the affected area of the patient to be treated lying on the bed (101).
  • the gel pad (Gel Pad) 180 is widely disposed on the affected part of the patient to be treated, and is used as an example of a configuration for measuring the body dose during radiation treatment. That is, since X-rays are irradiated through the water of the gel pad 180, the exposure amount of normal cells can be reduced.
  • the therapeutic X-ray linear accelerator 120 is a configuration of a medical linear accelerator for generating pulse X-rays and irradiating toward the affected part of a patient to be treated with a gel pad 180 filled with water. Since the therapeutic X-ray linear accelerator 120 corresponds to a conventional configuration, unnecessary description of specific configurations and operating principles will be omitted.
  • Ultrasound transducer 130 the X-ray generated by the pulse X-rays irradiated from the therapeutic X-ray linear accelerator 120 absorbs the X-rays in the affected area through the role of the medium of the gel pad 180 It is the configuration to detect the guided ultrasonic signal.
  • the ultrasonic transducer 130 may be configured as an arc-type array transducer that is moved along the length direction of the bed 101 for scanning of the patient to be treated lying on the bed 101, as shown in FIG. Can be. In addition to the arc array transducer, the ultrasonic transducer 130 may be replaced with a circular or linear array transducer.
  • the gel pad 180 serves as a medium so that the induced ultrasound signal generated by absorbing the X-rays from the affected part when the therapeutic X-rays are irradiated to the affected part may be well transmitted to the transducer.
  • the amplifier 140 is a configuration of an amplifier for amplifying and outputting the X-ray guided ultrasonic signal detected by the ultrasonic transducer 130.
  • the amplification unit 140 amplifies the X-ray guided ultrasound, which is a weak signal detected, into a signal capable of signal processing.
  • the data acquisition device unit 150 is configured to convert an X-ray guided ultrasound signal amplified and output from the amplifier 140 into a digital signal and output the digital signal.
  • the data acquisition device unit (DAQ) 150 serves to process data that can be recognized by the data processing device unit 160 to be described later.
  • the data processing device unit 160 is configured to analyze the digitized data output from the data acquisition device unit 150 to measure radiation absorbed dose.
  • the data processing unit 160 is configured in the form of a personal computer (PC), and measures the absorbed radiation dose in real time using an X-ray guided ultrasonic signal detected in real time through the ultrasonic transducer 130, Based on the scanning along the longitudinal direction of the bed 101 of the transducer 130, the radiation absorbed dose of the affected area is controlled by the gel pad 180 disposed on the affected area of the patient to be treated lying on the bed 101. By measuring and monitoring, the damage caused by the exposure-based exposure to radiation therapy can be minimized.
  • PC personal computer
  • the water dose measuring apparatus using the X-ray guided ultrasound there is no commercialized linear imaging accelerator-based ultrasound imaging device, and real-time dose evaluation for safe treatment is required.
  • the possibility of real-time dosimetry can be presented when the body is irradiated with radiation, thereby increasing the effectiveness and stability of the radiation treatment, and also using the therapeutic radiation accelerator and ultrasound system used in existing hospitals. It is very advantageous to enter the market because it can be implemented in the market.
  • the water dosimetry apparatus using the X-ray guided ultrasound of the present invention is not difficult to use conditions compared to other dosimeters, such as a conventional fluorescent dosimeter, glass dosimeter, chemical dosimeter, it is possible to measure the dose in real time in the water.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Radiation-Therapy Devices (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

본 발명에서 제안하고 있는 엑스선 유도 초음파를 이용한 물 선량 측정 장치에 따르면, 치료용 X-선 선형가속기와 초음파트랜스듀서를 결합한 치료용 X-선 선형가속기 기반의 초음파 영상장치를 구성함으로써, 물에 X-선이 조사되었을 때의 물에서의 방사선의 흡수선량을 실시간으로 측정이 가능하도록 할 수 있다.

Description

엑스선 유도 초음파를 이용한 물 선량 측정 장치
본 발명은 엑스선 유도 초음파를 이용한 물 선량 측정 장치에 관한 것으로서, 보다 구체적으로는 인체의 체내와 유사한 환경인 물을 이용하여 X-선 유도 초음파 신호를 획득하고, X-선의 흡수량을 분석함으로써 X-선이 물에 조사되었을 때의 물에서의 흡수선량을 측정할 수 있도록 하는 엑스선 유도 초음파를 이용한 물 선량 측정 장치에 관한 것이다.
일반적으로 방사선 치료는 기존의 수술방법에 비하여 환자의 육체적 정신적 부담이 적고, 합병증 등의 부작용이 적으며, 곧바로 일상생활이 가능하다는 장점이 있어 고가의 시술임에도 불구하고 선호되고 있다. 즉 방사선 의료기기는 인체의 환부에 방사선을 집중적으로 조사하여 질병을 치료하는 것으로, 방사선을 조사함에 있어서는 환자의 상태, 환부의 크기 및 특성 등을 종합적으로 고려하여 환부에 흡수되는 방사선량을 처방하고, 이에 맞도록 방사선 치료계획의 수립 하에 치료에 적절한 방사선량이 조사된다. 이는 방사선 자체가 인체에는 좋지 않은 영향을 미치기 때문에 환자의 환부 치료에 필요한 선량만 흡수될 수 있도록 방사선이 조사됨으로써, 방사선이 인체에 지나치게 흡수되어 과피폭되는 것을 방지하게 된다.
그러나 종래의 일반적인 방사선 의료기기의 경우, 판매자 측이 제공하는 기기 정보의 데이터에 근거하여 병원에서 환자에게 맞는 방사선의 출력을 결정하고 있는 실정이다. 이는 방사선 의료기기의 설치 초기에 기기의 정밀도가 높더라도, 시간이 지날수록 방사선 기기의 정밀도가 저하되면서 출력량에 차이가 발생될 수 있게 되므로, 방사선의 치료 과정 중에 과피복이 발생될 수 있는 문제가 있었다. 이에 X-선이 발견되고 치료에 사용된 이후로 X-선 치료 도중 X-선이 제대로 목표한 부위에 조사되어지고 있는지를 알기 위한 많은 노력이 있었으나, 아직까지 실시간으로 선량의 분포를 측정하는 기술은 상용화된 바가 없었다.
본 발명은 기존에 제안된 방법들의 상기와 같은 문제점들을 해결하기 위해 제안된 것으로서, 치료용 X-선 선형가속기와 초음파트랜스듀서를 결합한 치료용 X-선 선형가속기 기반의 초음파 영상장치를 구성함으로써, 물에 X-선이 조사되었을 때의 물에서의 방사선의 흡수선량을 실시간으로 측정이 가능하도록 하는, 엑스선 유도 초음파를 이용한 물 선량 측정 장치를 제공하는 것을 그 목적으로 한다.
또한, 본 발명은, 선형, 아크형, 원형 어레이 형태의 초음파트랜스듀서의 3차원 스캐닝을 통해 넓은 영역의 방사선 선량 분포를 실시간으로 획득하는 것이 가능하고, 임상 방사선 치료 시 치료 현황을 실시간으로 모니터링하게 됨으로써, 환자의 방사선 치료도중 방사선 노출을 최소화하고, 치료 효과를 증대시킬 수 있도록 하는, 엑스선 유도 초음파를 이용한 물 선량 측정 장치를 제공하는 것을 또 다른 목적으로 한다.
뿐만 아니라, 본 발명은, 체내와 유사한 환경인 물에서의 실시간 X-선 선량 측정 및 분포도를 획득함으로써, 체내에서의 실시간 선량 측정의 가능성을 제시하고, X-선 치료뿐만 아니라 양성자, 중성자 등의 방사선 치료에 있어서 치료 현황을 실시간으로 모니터링 할 수 있는 신개념의 방사선량 측정 장비의 개발 기술로 활용될 수 있도록 하는, 엑스선 유도 초음파를 이용한 물 선량 측정 장치를 제공하는 것을 또 다른 목적으로 한다.
상기한 목적을 달성하기 위한 본 발명의 특징에 따른 엑스선 유도 초음파를 이용한 물 선량 측정 장치는,
엑스선 유도 초음파를 이용한 물 선량 측정 장치로서,
물이 채워지고, 그 물이 채워진 내부에 탐촉 샘플의 타겟(target)이 배치되는 물 팬텀부;
펄스 X-선을 생성하여 상기 물 팬텀부의 타겟을 향해 조사하는 치료용 X-선 선형가속기;
상기 치료용 X-선 선형가속기로부터 조사된 펄스 X-선이 물에 조사되어 흡수됨에 따라 순간적으로 열팽창이 일어나면서 발생되는 X-선 유도 초음파 신호를 감지하는 초음파트랜스듀서;
상기 초음파트랜스듀서로부터 감지된 X-선 유도 초음파 신호를 증폭 처리하여 출력하는 증폭부;
상기 증폭부로부터 증폭되어 출력되는 X-선 유도 초음파 신호를 디지털 신호로 변환하여 출력하는 데이터 획득 장치부(DAQ); 및
상기 데이터 획득 장치부로부터 출력되는 디지털화된 데이터를 분석 처리하여 방사선 흡수선량을 측정하는 데이터 처리 장치부(PC)를 포함하는 것을 그 구성상의 특징으로 한다.
바람직하게는, 상기 X-선 유도 초음파 신호는,
상기 펄스 X-선이 물에 조사되어 흡수됨에 따라 순간적으로 열팽창이 일어나면서 발생하는 음향 압력으로, 발생원으로부터 전 방위로 방사되고, X-선의 흡수선량의 정보를 포함한다.
더욱 바람직하게는,
X-선의 선량은 조사되는 물 깊이에 따라 달라지고, 상기 X-선 유도 초음파 신호의 크기는 흡수된 방사선량의 크기에 비례하며, 상기 X-선 유도 초음파는 물속에서 감쇄가 거의 없으므로 흡수된 방사선량 측정이 가능하도록 한다.
바람직하게는, 상기 물 팬텀부는,
물이 채워진 상부가 개방된 수조 형태로 구성될 수 있다.
바람직하게는, 상기 물 팬텀부는,
상기 초음파트랜스듀서의 3축 이동이 가능한 3축 모터 스테이지를 더 포함하여 구성할 수 있다.
더욱 바람직하게는, 상기 초음파트랜스듀서는,
상기 3축 모터 스테이지에 체결되어, X-Y-Z축의 3축 이동을 이용하여 3차원 스캐닝을 수행하고, 3차원 스캐닝에 따른 X-선 유도 초음파 신호를 감지하여 획득할 수 있다.
더욱 더 바람직하게는, 상기 초음파트랜스듀서는,
초점형 단일소자 초음파트랜스듀서로 구성할 수 있다.
더욱 더 바람직하게는, 상기 초음파트랜스듀서는,
선형 어레이 트랜스듀서, 아크형 어레이 트랜스듀서, 및 원형의 어레이 트랜스듀서 중 어느 하나로 구성할 수 있다.
더욱 더 바람직하게는, 상기 데이터 처리 장치부는,
상기 초음파트랜스듀서를 통해 실시간으로 감지되는 X-선 유도 초음파 신호를 이용하여 실시간으로 방사선 흡수선량을 측정하되, 상기 초음파트랜스듀서의 3차원 스캐닝에 기초하여 상기 탐촉 샘플의 타겟 위치에서의 각 각도별 단면 방사선 흡수선량을 측정할 수 있다.
더더욱 바람직하게는, 상기 데이터 처리 장치부는,
상기 각 각도별 단면 방사선 흡수선량의 측정값을 취합 처리하여 3D 이미지 형태의 방사선량 분포도를 획득하여 모니터링이 가능하도록 표시하여 출력할 수 있다.
상기한 목적을 달성하기 위한 본 발명의 다른 특징에 따른 엑스선 유도 초음파를 이용한 물 선량 측정 장치는,
엑스선 유도 초음파를 이용한 물 선량 측정 장치로서,
물이 채워진 워터 튜브(water tube)의 내부에 동물이 배치되고, 상기 워터 튜브의 하부로 워터 튜브를 회전시키기 위한 로터리 스테이지가 설치된 워터 장치 구성부;
펄스 X-선을 생성하여 상기 워터 튜브 내에 배치된 동물을 향해 조사하는 치료용 X-선 선형가속기;
상기 치료용 X-선 선형가속기로부터 조사된 펄스 X-선이 물에 조사되어 흡수됨에 따라 순간적으로 열팽창이 일어나면서 발생되는 X-선 유도 초음파 신호를 감지하는 초음파트랜스듀서;
상기 초음파트랜스듀서로부터 감지된 X-선 유도 초음파 신호를 증폭 처리하여 출력하는 증폭부;
상기 증폭부로부터 증폭되어 출력되는 X-선 유도 초음파 신호를 디지털 신호로 변환하여 출력하는 데이터 획득 장치부(DAQ); 및
상기 데이터 획득 장치부로부터 출력되는 디지털화된 데이터를 분석 처리하여 방사선 흡수선량을 측정하는 데이터 처리 장치부(PC)를 포함하는 것을 그 구성상의 특징으로 한다.
바람직하게는, 상기 X-선 유도 초음파 신호는,
상기 펄스 X-선이 물에 조사되어 흡수됨에 따라 순간적으로 열팽창이 일어나면서 발생하는 음향 압력으로, 발생원으로부터 전 방위로 방사되고, X-선의 흡수선량의 정보를 포함한다.
더욱 바람직하게는,
X-선의 선량은 조사되는 물 깊이에 따라 달라지고, 상기 X-선 유도 초음파 신호의 크기는 흡수된 방사선량의 크기에 비례한다.
바람직하게는, 상기 초음파트랜스듀서는,
상기 로터리 스테이지에 의해 회전되는 상기 워터 튜브의 내측에 배치 구성될 수 있다.
더욱 바람직하게는, 상기 초음파트랜스듀서는,
아크형 어레이 트랜스듀서로 구성되어, 상기 로터리 스테이지에 의해 회전되는 상기 워터 튜브의 원형 스캐닝을 수행하고, 원형 스캐닝에 따른 X-선 유도 초음파 신호를 감지하여 획득할 수 있다.
더욱 더 바람직하게는, 상기 데이터 처리 장치부는,
상기 초음파트랜스듀서를 통해 실시간으로 감지되는 X-선 유도 초음파 신호를 이용하여 실시간으로 방사선 흡수선량을 측정하되, 상기 초음파트랜스듀서의 원형 스캐닝에 기초하여 상기 동물 위치에서의 원형 각도별 단면 방사선 흡수선량을 측정하고, 그에 따른 원형 각도별 단면 방사선 흡수선량의 측정값을 취합 처리하여 3D 이미지 형태의 방사선량 분포도를 획득하여 모니터링이 가능하도록 표시하여 출력할 수 있다.
상기한 목적을 달성하기 위한 본 발명의 다른 특징에 따른 엑스선 유도 초음파를 이용한 물 선량 측정 장치는,
엑스선 유도 초음파를 이용한 물 선량 측정 장치로서,
베드 상에 누워 있는 치료 대상 환자의 환부 부위에 배치되는 물이 채워진 젤 패드(Gel Pad);
펄스 X-선을 생성하여 물이 채워진 젤 패드가 배치된 치료 대상 환자의 환부를 향해 조사하는 치료용 X-선 선형가속기;
상기 치료용 X-선 선형가속기로부터 조사된 펄스 X-선이 상기 젤 패드의 매질 역할을 통해 환부에서 X-선을 흡수함에 따라 발생되는 X-선 유도 초음파 신호를 감지하는 초음파트랜스듀서;
상기 초음파트랜스듀서로부터 감지된 X-선 유도 초음파 신호를 증폭 처리하여 출력하는 증폭부;
상기 증폭부로부터 증폭되어 출력되는 X-선 유도 초음파 신호를 디지털 신호로 변환하여 출력하는 데이터 획득 장치부(DAQ); 및
상기 데이터 획득 장치부로부터 출력되는 디지털화된 데이터를 분석 처리하여 방사선 흡수선량을 측정하는 데이터 처리 장치부(PC)를 포함하는 것을 그 구성상의 특징으로 한다.
바람직하게는, 상기 초음파트랜스듀서는,
상기 베드 상에 누워 있는 치료 대상 환자의 스캐닝을 위해 상기 베드의 길이 방향을 따라 이동되는 아크형 어레이 트랜스듀서로 구성될 수 있다.
더욱 더 바람직하게는, 상기 초음파트랜스듀서는,
상기 아크형 어레이 트랜스듀서 이외에도, 원형 또는 선형의 어레이 트랜스듀서로 교체 사용될 수 있다.
더욱 더 바람직하게는, 상기 데이터 처리 장치부는,
상기 초음파트랜스듀서를 통해 실시간으로 감지되는 X-선 유도 초음파 신호를 이용하여 실시간으로 방사선 흡수선량을 측정하되, 상기 초음파트랜스듀서의 베드 길이 방향에 따른 스캐닝에 기초하여 상기 베드 상에 누워 있는 치료 대상 환자의 환부 부위에 배치된 상기 젤 패드를 매개로 환부 부위의 방사선 흡수선량을 측정하여 모니터링 함으로써, 방사선 치료와 동시에 모니터링에 기초한 오피폭으로 인한 피해가 최소화될 수 있도록 할 수 있다.
본 발명에서 제안하고 있는 엑스선 유도 초음파를 이용한 물 선량 측정 장치에 따르면, 치료용 X-선 선형가속기와 초음파트랜스듀서를 결합한 치료용 X-선 선형가속기 기반의 초음파 영상장치를 구성함으로써, 물에 X-선이 조사되었을 때의 물에서의 방사선의 흡수선량을 실시간으로 측정이 가능하도록 할 수 있다.
또한, 본 발명에 따르면, 선형, 아크형, 원형 어레이 형태의 초음파트랜스듀서의 3차원 스캐닝을 통해 넓은 영역의 방사선 선량 분포를 실시간으로 획득하는 것이 가능하고, 임상 방사선 치료 시 치료 현황을 실시간으로 모니터링하게 됨으로써, 환자의 방사선 치료도중 방사선 노출을 최소화하고, 치료 효과를 증대시킬 수 있도록 할 수 있다.
뿐만 아니라, 본 발명은, 체내와 유사한 환경인 물에서의 실시간 X-선 선량 측정 및 분포도를 획득함으로써, 체내에서의 실시간 선량 측정의 가능성을 제시하고, X-선 치료뿐만 아니라 양성자, 중성자 등의 방사선 치료에 있어서 치료 현황을 실시간으로 모니터링 할 수 있는 신개념의 방사선량 측정 장비의 개발 기술로 활용될 수 있도록 할 수 있다.
도 1은 본 발명의 일실시예에 따른 엑스선 유도 초음파를 이용한 물 선량 측정 장치의 구성을 기능블록으로 도시한 도면.
도 2는 본 발명의 일실시예에 따른 엑스선 유도 초음파를 이용한 물 선량 측정 장치의 구현 일례의 구조도를 도시한 도면.
도 3은 본 발명의 일실시예에 따른 엑스선 유도 초음파를 이용한 물 선량 측정 장치를 이용한 물에서의 샘플에 대한 선량 측정 결과와 이온 챔버 측정 간의 비교를 참고로 도시한 도면.
도 4는 본 발명의 일실시예에 따른 엑스선 유도 초음파를 이용한 물 선량 측정 장치의 동물 적용 일례의 구성을 기능블록으로 도시한 도면.
도 5는 본 발명의 일실시예에 따른 엑스선 유도 초음파를 이용한 물 선량 측정 장치의 동물 적용 구현 일례의 구조도를 도시한 도면.
도 6은 본 발명의 일실시예에 따른 엑스선 유도 초음파를 이용한 물 선량 측정 장치의 방사선 치료 적용 일례의 구성을 기능블록으로 도시한 도면.
도 7은 본 발명의 일실시예에 따른 엑스선 유도 초음파를 이용한 물 선량 측정 장치의 방사선 치료 적용 일례의 구조도를 도시한 도면.
<부호의 설명>
100: 본 발명의 일실시예에 따른 물 선량 측정 장치
110: 물 팬텀부
111: 3축 모터 스테이지
120: 치료용 X-선 선형가속기
130: 초음파트랜스듀서
140: 증폭부
150: 데이터 획득 장치부(DAQ)
160: 데이터 처리 장치부(PC)
170: 워터 장치 구성부
171: 워터 튜브
172: 로터리 스테이지
180: 젤 패드
이하, 첨부된 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 바람직한 실시예를 상세히 설명한다. 다만, 본 발명의 바람직한 실시예를 상세하게 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. 또한, 유사한 기능 및 작용을 하는 부분에 대해서는 도면 전체에 걸쳐 동일한 부호를 사용한다.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 ‘연결’ 되어 있다고 할 때, 이는 ‘직접적으로 연결’ 되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 ‘간접적으로 연결’ 되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 ‘포함’ 한다는 것은, 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
도 1은 본 발명의 일실시예에 따른 엑스선 유도 초음파를 이용한 물 선량 측정 장치의 구성을 기능블록으로 도시한 도면이고, 도 2는 본 발명의 일실시예에 따른 엑스선 유도 초음파를 이용한 물 선량 측정 장치의 구현 일례의 구조도를 도시한 도면이다. 도 1 및 도 2에 각각 도시된 바와 같이, 본 발명의 일실시예에 따른 엑스선 유도 초음파를 이용한 물 선량 측정 장치(100)는, 물 팬텀부(110), 치료용 X-선 선형가속기(120), 초음파트랜스듀서(130), 증폭부(140), 데이터 획득 장치부(150), 및 데이터 처리 장치부(160)를 포함하여 구성될 수 있다.
물 팬텀부(110)는, 물이 채워지고, 그 물이 채워진 내부에 탐촉 샘플의 타겟(target)이 배치되는 구성이다. 이러한 물 팬텀부(110)는 도 2에 도시된 바와 같이, 물이 채워진 상부가 개방된 수조 형태로 구성될 수 있다. 여기서, 물 팬텀부(110)는 후술하게 될 초음파트랜스듀서(130)의 3축 이동이 가능한 3축 모터 스테이지(111)를 더 포함하여 구성할 수 있다. 즉, 3축 모터 스테이지(111)는 스캐닝 스테이지 1, 2, 3 축 이동이 가능하다. 또한, 물 팬텀부(110)는 리니어 또는 로터리 스캐닝 스테이지를 포함할 수도 있다.
치료용 X-선 선형가속기(120)는, 펄스 X-선을 생성하여 물 팬텀부(110)의 타겟을 향해 펄스 X-선을 조사하는 의료용의 선형가속기의 구성이다. 이러한 치료용 X-선 선형가속기(120)는 통상의 구성에 해당하므로 구체적인 구성 및 작동원리에 대한 불필요한 설명은 생략하기로 한다.
초음파트랜스듀서(130)는, 치료용 X-선 선형가속기(120)로부터 조사된 펄스 X-선이 물에 조사되어 흡수됨에 따라 순간적으로 열팽창이 일어나면서 발생되는 X-선 유도 초음파 신호를 감지하는 구성이다. 여기서, X-선 유도 초음파 신호는 펄스 X-선이 물에 조사되어 흡수됨에 따라 순간적으로 열팽창이 일어나면서 발생하는 음향 압력으로, 발생원으로부터 전 방위로 방사되고, X-선의 흡수선량의 정보를 포함하고 있다. 이때, X-선의 선량은 조사되는 물 깊이에 따라 달라지고, X-선 유도 초음파 신호의 크기는 흡수된 방사선량의 크기에 비례하게 된다.
또한, 초음파트랜스듀서(130)는 3축 모터 스테이지(111)에 체결되어, X-Y-Z축의 3축 이동을 이용하여 3차원 스캐닝을 수행하고, 3차원 스캐닝에 따른 X-선 유도 초음파 신호를 감지하여 획득할 수 있다. 이러한 초음파트랜스듀서(130)는 초점형 단일소자 초음파트랜스듀서로 구성할 수 있다. 또한, 초음파트랜스듀서(130)는 구체적인 구성의 형태로서, 선형 어레이 트랜스듀서, 아크형 어레이 트랜스듀서, 및 원형의 어레이 트랜스듀서 중 어느 하나로 구성될 수 있다.
증폭부(140)는, 초음파트랜스듀서(130)로부터 감지된 X-선 유도 초음파 신호를 증폭 처리하여 출력하는 앰프의 구성이다. 이러한 증폭부(140)는 감지된 미약한 신호인 X-선 유도 초음파 신호를 증폭 처리하게 된다.
데이터 획득 장치부(150)는, 증폭부(140)로부터 증폭되어 출력되는 X-선 유도 초음파 신호를 디지털 신호로 변환하여 출력하는 구성이다. 이러한 데이터 획득 장치부(DAQ)(150)는 후술하게 될 데이터 처리 장치부(160)에서 인식할 수 있는 데이터로 처리하는 역할을 한다.
데이터 처리 장치부(160)는, 데이터 획득 장치부(150)로부터 출력되는 디지털화된 데이터를 분석 처리하여 방사선 흡수선량을 측정하는 퍼스널 컴퓨터(PC) 형태의 구성이다. 이러한 데이터 처리 장치부(PC)(160)는 초음파트랜스듀서(130)를 통해 실시간으로 감지되는 X-선 유도 초음파 신호를 이용하여 실시간으로 방사선 흡수선량을 측정하되, 초음파트랜스듀서(130)의 3차원 스캐닝에 기초하여 탐촉 샘플의 타겟 위치에서의 각 각도별 단면 방사선 흡수선량을 측정할 수 있다. 또한, 데이터 처리 장치부는 각 각도별 단면 방사선 흡수선량의 측정값을 취합 처리하여 3D 이미지 형태의 방사선량 분포도를 획득하여 모니터링이 가능하도록 표시하여 출력할 수도 있다.
도 3은 본 발명의 일실시예에 따른 엑스선 유도 초음파를 이용한 물 선량 측정 장치를 이용한 물에서의 샘플에 대한 선량 측정 결과와 이온 챔버 측정 간의 비교를 참고로 도시한 도면이다. 즉, 도 3은 본 발명의 물 선량 측정 장치(100)로 측정한 방사선 축적 선량의 경향성과 이온 챔버로 측정한 선량의 경향성의 비교를 나타낸다. 방사선 축적선량 신호는 일정시간(물에 X-선을 조사했을 때 그 선량이 1Gy가 되는 시간) 동안의 방사선 유도 초음파 신호를 더하여 나타낸 것이다. 각각의 그래프의 경향성이 비교적 일치됨을 알 수 있다.
도 4는 본 발명의 일실시예에 따른 엑스선 유도 초음파를 이용한 물 선량 측정 장치의 동물 적용 일례의 구성을 기능블록으로 도시한 도면이고, 도 5는 본 발명의 일실시예에 따른 엑스선 유도 초음파를 이용한 물 선량 측정 장치의 동물 적용 구현 일례의 구조도를 도시한 도면이다. 도 4 및 도 5에 각각 도시된 바와 같이, 본 발명의 일실시예에 따른 엑스선 유도 초음파를 이용한 물 선량 측정 장치(100)는, 워터 장치 구성부(170), 치료용 X-선 선형가속기(120), 초음파트랜스듀서(130), 증폭부(140), 데이터 획득 장치부(150), 및 데이터 처리 장치부(160)를 포함하여 구성될 수 있다.
워터 장치 구성부(170)는, 물이 채워진 워터 튜브(water tube)(171)의 내부에 동물이 배치되고, 워터 튜브(171)의 하부로 워터 튜브(171)를 회전시키기 위한 로터리 스테이지(172)가 설치된 워터 장치의 구성이다. 이러한 워터 장치 구성부(170)는 동물 방사선 조사 시 체내 선량 분포도 측정을 위한 구성 일례로 구현되는 구성이다.
치료용 X-선 선형가속기(120)는, 펄스 X-선을 생성하여 상기 워터 튜브(171) 내에 배치된 동물을 향해 조사하는 의료용의 선형가속기의 구성이다. 이러한 치료용 X-선 선형가속기(120)는 통상의 구성에 해당하므로 구체적인 구성 및 작동원리에 대한 불필요한 설명은 생략하기로 한다.
초음파트랜스듀서(130)는, 치료용 X-선 선형가속기(120)로부터 조사된 펄스 X-선이 물에 조사되어 흡수됨에 따라 순간적으로 열팽창이 일어나면서 발생되는 X-선 유도 초음파 신호를 감지하는 구성이다. 여기서, X-선 유도 초음파 신호는 펄스 X-선이 물에 조사되어 흡수됨에 따라 순간적으로 열팽창이 일어나면서 발생하는 음향 압력으로, 발생원으로부터 전 방위로 방사되고, X-선의 흡수선량의 정보를 포함한다. 또한, X-선의 선량은 조사되는 물 깊이에 따라 달라지고, X-선 유도 초음파 신호의 크기는 흡수된 방사선량의 크기에 비례하는 특성을 갖는다.
또한, 초음파트랜스듀서(130)는 도 5에 도시된 바와 같이, 로터리 스테이지(172)에 의해 회전되는 워터 튜브(171)의 내측에 배치 구성될 수 있다. 즉, 초음파트랜스듀서(130)는 아크형 어레이 트랜스듀서로 구성되어, 로터리 스테이지(172)에 의해 회전되는 워터 튜브(171)의 원형 스캐닝을 수행하고, 원형 스캐닝에 따른 X-선 유도 초음파 신호를 감지하여 획득할 수 있게 된다. 또한, 초음파트랜스듀서(130)는 선형, 원형 등 다른 형태의 트랜스듀서로도 구성이 가능하다.
증폭부(140)는, 상기 초음파트랜스듀서(130)로부터 감지된 X-선 유도 초음파 신호를 증폭 처리하여 출력하는 앰프의 구성이다. 이러한 증폭부(140)는 감지된 미약한 신호인 X-선 유도 초음파 신호를 처리가 가능하도록 증폭하는 역할을 한다.
데이터 획득 장치부(150)는, 증폭부(140)로부터 증폭되어 출력되는 X-선 유도 초음파 신호를 디지털 신호로 변환하여 출력하는 구성이다. 이러한 데이터 획득 장치부(150)는 후술하게 될 데이터 처리 장치부(160)에서 인식할 수 있는 데이터 형태로 변환 처리하는 역할을 한다.
데이터 처리 장치부(160)는, 데이터 획득 장치부(150)로부터 출력되는 디지털화된 데이터를 분석 처리하여 방사선 흡수선량을 측정하는 구성이다. 이러한 데이터 처리 장치부(160)는 퍼스널 컴퓨터(PC) 형태로 구성될 수 있으며, 초음파트랜스듀서(130)를 통해 실시간으로 감지되는 X-선 유도 초음파 신호를 이용하여 실시간으로 방사선 흡수선량을 측정하되, 초음파트랜스듀서(130)의 원형 스캐닝에 기초하여 동물 위치에서의 원형 각도별 단면 방사선 흡수선량을 측정하고, 그에 따른 원형 각도별 단면 방사선 흡수선량의 측정값을 취합 처리하여 3D 이미지 형태의 방사선량 분포도를 획득하여 모니터링이 가능하도록 표시하여 출력할 수 있게 된다.
도 6은 본 발명의 일실시예에 따른 엑스선 유도 초음파를 이용한 물 선량 측정 장치의 방사선 치료 적용 일례의 구성을 기능블록으로 도시한 도면이고, 도 7은 본 발명의 일실시예에 따른 엑스선 유도 초음파를 이용한 물 선량 측정 장치의 방사선 치료 적용 일례의 구조도를 도시한 도면이다. 도 6 및 도 7에 각각 도시된 바와 같이, 본 발명의 일실시예에 따른 엑스선 유도 초음파를 이용한 물 선량 측정 장치(100)는, 젤 패드(180), 치료용 X-선 선형가속기(120), 초음파트랜스듀서(130), 증폭부(140), 데이터 획득 장치부(150), 및 데이터 처리 장치부(160)를 포함하여 구성될 수 있다.
젤 패드(180)는, 베드(101) 상에 누워 있는 치료 대상 환자의 환부 부위에 배치되는 물이 채워진 패드의 구성이다. 이러한 젤 패드(Gel Pad)(180)는 치료 대상 환자의 환부 부위에 넓게 배치되며, 방사선 치료 시 체내 선량 측정을 위한 구성의 일례로 사용되는 구성이다. 즉, X-선이 젤 패드(180)의 물을 통과하여 조사되므로 정상 세포의 피폭량을 줄일 수 있게 된다.
치료용 X-선 선형가속기(120)는, 펄스 X-선을 생성하여 물이 채워진 젤 패드(180)가 배치된 치료 대상 환자의 환부를 향해 조사하는 의료용 선형가속기의 구성이다. 이러한 치료용 X-선 선형가속기(120)는 통상의 구성에 해당하므로 구체적인 구성 및 작동원리에 대한 불필요한 설명은 생략하기로 한다.
초음파트랜스듀서(130)는, 치료용 X-선 선형가속기(120)로부터 조사된 펄스 X-선이 젤 패드(180)의 매질 역할을 통해 환부에서 X-선을 흡수함에 따라 발생되는 X-선 유도 초음파 신호를 감지하는 구성이다. 이러한 초음파트랜스듀서(130)는 도 7에 도시된 바와 같이, 베드(101) 상에 누워 있는 치료 대상 환자의 스캐닝을 위해 베드(101)의 길이 방향을 따라 이동되는 아크형 어레이 트랜스듀서로 구성될 수 있다. 또한, 초음파트랜스듀서(130)는 아크형 어레이 트랜스듀서 이외에도, 원형 또는 선형의 어레이 트랜스듀서로 교체 사용될 수도 있다. 또한, 아크형, 원형, 또는 선형의 어레이 트랜스듀서의 초음파트랜스듀서(130)의 사용을 통해 다양한 형태의 이미지의 획득이 가능하도록 한다. 여기서, 젤 패드(180)는 환부에 치료용 X-선이 조사됐을 때 환부에서 X-선을 흡수하여 발생하는 유도 초음파 신호가 트랜스듀서로 잘 전달될 수 있도록 매질 역할을 하게 된다.
증폭부(140)는, 초음파트랜스듀서(130)로부터 감지된 X-선 유도 초음파 신호를 증폭 처리하여 출력하는 앰프의 구성이다. 이러한 증폭부(140)는 감지되는 미약한 신호인 X-선 유도 초음파를 신호 처리가 가능한 신호로 증폭하는 역할을 한다.
데이터 획득 장치부(150)는, 증폭부(140)로부터 증폭되어 출력되는 X-선 유도 초음파 신호를 디지털 신호로 변환하여 출력하는 구성이다. 이러한 데이터 획득 장치부(DAQ)(150)는 후술하게 될 데이터 처리 장치부(160)에서 인식할 수 있는 데이터로 처리하는 역할을 한다.
데이터 처리 장치부(160)는, 데이터 획득 장치부(150)로부터 출력되는 디지털화된 데이터를 분석 처리하여 방사선 흡수선량을 측정하는 구성이다. 이러한 데이터 처리 장치부(160)는 퍼스널 컴퓨터(PC) 형태로 구성되며, 초음파트랜스듀서(130)를 통해 실시간으로 감지되는 X-선 유도 초음파 신호를 이용하여 실시간으로 방사선 흡수선량을 측정하되, 초음파트랜스듀서(130)의 베드(101) 길이 방향에 따른 스캐닝에 기초하여 베드(101) 상에 누워 있는 치료 대상 환자의 환부 부위에 배치된 젤 패드(180)를 매개로 환부 부위의 방사선 흡수선량을 측정하여 모니터링 함으로써, 방사선 치료와 동시에 모니터링에 기초한 오피폭으로 인한 피해가 최소화될 수 있도록 한다. 즉, 젤 패드(180)의 물을 통과한 X-선으로 치료 대상 환자의 환부에 X-선이 조사되므로, 정상 세포의 피폭량을 줄여줄 수 있으며, 치료와 동시에 선량의 모니터링으로 X-선의 조사량을 조절하고, 그에 따른 오피폭으로 인한 피해가 최소화될 수 있도록 하게 된다.
상술한 바와 같이, 본 발명의 일실시예에 따른 엑스선 유도 초음파를 이용한 물 선량 측정 장치는, 현재 치료용 선형가속기 기반의 초음파 영상장치가 상용화 된 것은 전무하고, 안전한 치료를 위한 실시간 선량 평가가 필요한 상황에서, 체내에 방사선을 조사했을 때 실시간 선량 측정의 가능성을 제시할 수 있으므로, 방사선 치료의 효과와 안정성을 증대시킬 수 있으며, 또한, 기존 병원에서 사용하고 있는 치료용 방사선 가속기와 초음파 시스템을 이용하여 구현이 가능하므로 시장 진입에 매우 유리하며, X-선과 초음파를 기반으로 한 의료 측정 장비의 개발로 물리, 화학, 전자공학, 생물학 및 의학 등 다양한 학문 간의 이해가 필요한 연구 분야에서 융합연구개발 및 의료 영상기기 분야의 발전에 크게 기여할 수 있으며, 주변 학문 및 산업에 미치는 영향도 지대할 것으로 기대되고 있다. 특히, 본 발명의 엑스선 유도 초음파를 이용한 물 선량 측정 장치는 기존의 형광 선량계나 유리 선량계, 화학 선량계 등의 타 선량계에 비하여 사용 조건이 까다롭지 않고, 물속에서 실시간으로 선량측정이 가능하게 된다.
이상 설명한 본 발명은 본 발명이 속한 기술분야에서 통상의 지식을 가진 자에 의하여 다양한 변형이나 응용이 가능하며, 본 발명에 따른 기술적 사상의 범위는 아래의 특허청구범위에 의하여 정해져야 할 것이다.

Claims (20)

  1. 엑스선 유도 초음파를 이용한 물 선량 측정 장치(100)로서,
    물이 채워지고, 그 물이 채워진 내부에 탐촉 샘플의 타겟(target)이 배치되는 물 팬텀부(110);
    펄스 X-선을 생성하여 상기 물 팬텀부(110)의 타겟을 향해 조사하는 치료용 X-선 선형가속기(120);
    상기 치료용 X-선 선형가속기(120)로부터 조사된 펄스 X-선이 물에 조사되어 흡수됨에 따라 순간적으로 열팽창이 일어나면서 발생되는 X-선 유도 초음파 신호를 감지하는 초음파트랜스듀서(130);
    상기 초음파트랜스듀서(130)로부터 감지된 X-선 유도 초음파 신호를 증폭 처리하여 출력하는 증폭부(140);
    상기 증폭부(140)로부터 증폭되어 출력되는 X-선 유도 초음파 신호를 디지털 신호로 변환하여 출력하는 데이터 획득 장치부(DAQ)(150); 및
    상기 데이터 획득 장치부(150)로부터 출력되는 디지털화된 데이터를 분석 처리하여 방사선 흡수선량을 측정하는 데이터 처리 장치부(PC)(160)를 포함하는 것을 특징으로 하는, 엑스선 유도 초음파를 이용한 물 선량 측정 장치.
  2. 제1항에 있어서, 상기 X-선 유도 초음파 신호는,
    상기 펄스 X-선이 물에 조사되어 흡수됨에 따라 순간적으로 열팽창이 일어나면서 발생하는 음향 압력으로, 발생원으로부터 전 방위로 방사되고, X-선의 흡수선량의 정보를 포함하는 것을 특징으로 하는, 엑스선 유도 초음파를 이용한 물 선량 측정 장치.
  3. 제2항에 있어서,
    X-선의 선량은 조사되는 물 깊이에 따라 달라지고, 상기 X-선 유도 초음파 신호의 크기는 흡수된 방사선량의 크기에 비례하는 것을 특징으로 하는, 엑스선 유도 초음파를 이용한 물 선량 측정 장치.
  4. 제1항에 있어서, 상기 물 팬텀부(110)는,
    물이 채워진 상부가 개방된 수조 형태로 구성되는 것을 특징으로 하는, 엑스선 유도 초음파를 이용한 물 선량 측정 장치.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 물 팬텀부(110)는,
    상기 초음파트랜스듀서(130)의 3축 이동이 가능한 3축 모터 스테이지(111)를 더 포함하여 구성하는 것을 특징으로 하는, 엑스선 유도 초음파를 이용한 물 선량 측정 장치.(참고로, 청구항 5는 도 2의 도면 구성에 기초하여 구성을 설명하고 있는 것으로, 수정 요청하신 메모 내용의 보정은 부적절합니다. 이에 요청하신 메모 내용은 상세한 설명에 추가될 수 있는 구성으로 추가 보정 하였습니다.)
  6. 제5항에 있어서, 상기 초음파트랜스듀서(130)는,
    상기 3축 모터 스테이지(111)에 체결되어, X-Y-Z축의 3축 이동을 이용하여 3차원 스캐닝을 수행하고, 3차원 스캐닝에 따른 X-선 유도 초음파 신호를 감지하여 획득하는 것을 특징으로 하는, 엑스선 유도 초음파를 이용한 물 선량 측정 장치.
  7. 제6항에 있어서, 상기 초음파트랜스듀서(130)는,
    초점형 단일소자 초음파트랜스듀서로 구성하는 것을 특징으로 하는, 엑스선 유도 초음파를 이용한 물 선량 측정 장치.
  8. 제6항에 있어서, 상기 초음파트랜스듀서(130)는,
    선형 어레이 트랜스듀서, 아크형 어레이 트랜스듀서, 및 원형의 어레이 트랜스듀서 중 어느 하나로 구성하는 것을 특징으로 하는, 엑스선 유도 초음파를 이용한 물 선량 측정 장치.
  9. 제1항에 있어서, 상기 데이터 처리 장치부(160)는,
    상기 초음파트랜스듀서(130)를 통해 실시간으로 감지되는 X-선 유도 초음파 신호를 이용하여 실시간으로 방사선 흡수선량을 측정하되, 상기 초음파트랜스듀서(130)의 3차원 스캐닝에 기초하여 상기 탐촉 샘플의 타겟 위치에서의 각 각도별 단면 방사선 흡수선량을 측정하는 것을 특징으로 하는, 엑스선 유도 초음파를 이용한 물 선량 측정 장치.
  10. 제9항에 있어서, 상기 데이터 처리 장치부는,
    상기 각 각도별 단면 방사선 흡수선량의 측정값을 취합 처리하여 3D 이미지 형태의 방사선량 분포도를 획득하여 모니터링이 가능하도록 표시하여 출력하는 것을 특징으로 하는, 엑스선 유도 초음파를 이용한 물 선량 측정 장치.
  11. 엑스선 유도 초음파를 이용한 물 선량 측정 장치(100)로서,
    물이 채워진 워터 튜브(water tube)(171)의 내부에 동물이 배치되고, 상기 워터 튜브(171)의 하부로 워터 튜브(171)를 회전시키기 위한 로터리 스테이지(172)가 설치된 워터 장치 구성부(170);
    펄스 X-선을 생성하여 상기 워터 튜브(171) 내에 배치된 동물을 향해 조사하는 치료용 X-선 선형가속기(120);
    상기 치료용 X-선 선형가속기(120)로부터 조사된 펄스 X-선이 물에 조사되어 흡수됨에 따라 순간적으로 열팽창이 일어나면서 발생되는 X-선 유도 초음파 신호를 감지하는 초음파트랜스듀서(130);
    상기 초음파트랜스듀서(130)로부터 감지된 X-선 유도 초음파 신호를 증폭 처리하여 출력하는 증폭부(140);
    상기 증폭부(140)로부터 증폭되어 출력되는 X-선 유도 초음파 신호를 디지털 신호로 변환하여 출력하는 데이터 획득 장치부(DAQ)(150); 및
    상기 데이터 획득 장치부(150)로부터 출력되는 디지털화된 데이터를 분석 처리하여 방사선 흡수선량을 측정하는 데이터 처리 장치부(PC)(160)를 포함하는 것을 특징으로 하는, 엑스선 유도 초음파를 이용한 물 선량 측정 장치.
  12. 제11항에 있어서, 상기 X-선 유도 초음파 신호는,
    상기 펄스 X-선이 물에 조사되어 흡수됨에 따라 순간적으로 열팽창이 일어나면서 발생하는 음향 압력으로, 발생원으로부터 전 방위로 방사되고, X-선의 흡수선량의 정보를 포함하는 것을 특징으로 하는, 엑스선 유도 초음파를 이용한 물 선량 측정 장치.
  13. 제12항에 있어서,
    X-선의 선량은 조사되는 물 깊이에 따라 달라지고, 상기 X-선 유도 초음파 신호의 크기는 흡수된 방사선량의 크기에 비례하는 것을 특징으로 하는, 엑스선 유도 초음파를 이용한 물 선량 측정 장치.
  14. 제11항 내지 제13항 중 어느 한 항에 있어서, 상기 초음파트랜스듀서(130)는,
    상기 로터리 스테이지(172)에 의해 회전되는 상기 워터 튜브(171)의 내측에 배치 구성되는 것을 특징으로 하는, 엑스선 유도 초음파를 이용한 물 선량 측정 장치.
  15. 제14항에 있어서, 상기 초음파트랜스듀서(130)는,
    아크형 어레이 트랜스듀서로 구성되어, 상기 로터리 스테이지(172)에 의해 회전되는 상기 워터 튜브(171)의 원형 스캐닝을 수행하고, 원형 스캐닝에 따른 X-선 유도 초음파 신호를 감지하여 획득하는 것을 특징으로 하는, 엑스선 유도 초음파를 이용한 물 선량 측정 장치.
  16. 제15항에 있어서, 상기 데이터 처리 장치부(160)는,
    상기 초음파트랜스듀서(130)를 통해 실시간으로 감지되는 X-선 유도 초음파 신호를 이용하여 실시간으로 방사선 흡수선량을 측정하되, 상기 초음파트랜스듀서(130)의 원형 스캐닝에 기초하여 상기 동물 위치에서의 원형 각도별 단면 방사선 흡수선량을 측정하고, 그에 따른 원형 각도별 단면 방사선 흡수선량의 측정값을 취합 처리하여 3D 이미지 형태의 방사선량 분포도를 획득하여 모니터링이 가능하도록 표시하여 출력하는 것을 특징으로 하는, 엑스선 유도 초음파를 이용한 물 선량 측정 장치.
  17. 엑스선 유도 초음파를 이용한 물 선량 측정 장치(100)로서,
    베드(101) 상에 누워 있는 치료 대상 환자의 환부 부위에 배치되는 물이 채워진 젤 패드(Gel Pad)(180);
    펄스 X-선을 생성하여 물이 채워진 젤 패드(180)가 배치된 치료 대상 환자의 환부를 향해 조사하는 치료용 X-선 선형가속기(120);
    상기 치료용 X-선 선형가속기(120)로부터 조사된 펄스 X-선이 상기 젤 패드(180)의 매질 역할을 통해 환부에서 X-선을 흡수함에 따라 발생되는 X-선 유도 초음파 신호를 감지하는 초음파트랜스듀서(130);
    상기 초음파트랜스듀서(130)로부터 감지된 X-선 유도 초음파 신호를 증폭 처리하여 출력하는 증폭부(140);
    상기 증폭부(140)로부터 증폭되어 출력되는 X-선 유도 초음파 신호를 디지털 신호로 변환하여 출력하는 데이터 획득 장치부(DAQ)(150); 및
    상기 데이터 획득 장치부(150)로부터 출력되는 디지털화된 데이터를 분석 처리하여 방사선 흡수선량을 측정하는 데이터 처리 장치부(PC)(160)를 포함하는 것을 특징으로 하는, 엑스선 유도 초음파를 이용한 물 선량 측정 장치.
  18. 제17항에 있어서, 상기 초음파트랜스듀서(130)는,
    상기 베드(101) 상에 누워 있는 치료 대상 환자의 스캐닝을 위해 상기 베드(101)의 길이 방향을 따라 이동되는 아크형 어레이 트랜스듀서로 구성되는 것을 특징으로 하는, 엑스선 유도 초음파를 이용한 물 선량 측정 장치.
  19. 제18항에 있어서, 상기 초음파트랜스듀서(130)는,
    상기 아크형 어레이 트랜스듀서 이외에도, 원형 또는 선형의 어레이 트랜스듀서로 교체 사용될 수 있는 것을 특징으로 하는, 엑스선 유도 초음파를 이용한 물 선량 측정 장치.
  20. 제18항에 있어서, 상기 데이터 처리 장치부(160)는,
    상기 초음파트랜스듀서(130)를 통해 실시간으로 감지되는 X-선 유도 초음파 신호를 이용하여 실시간으로 방사선 흡수선량을 측정하되, 상기 초음파트랜스듀서(130)의 베드(101) 길이 방향에 따른 스캐닝에 기초하여 상기 베드(101) 상에 누워 있는 치료 대상 환자의 환부 부위에 배치된 상기 젤 패드(180)를 매개로 환부 부위의 방사선 흡수선량을 측정하여 모니터링 함으로써, 방사선 치료와 동시에 모니터링에 기초한 오피폭으로 인한 피해가 최소화될 수 있도록 하는 것을 특징으로 하는, 엑스선 유도 초음파를 이용한 물 선량 측정 장치.
PCT/KR2018/001471 2017-02-24 2018-02-02 엑스선 유도 초음파를 이용한 물 선량 측정 장치 WO2018155833A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/488,236 US20190383952A1 (en) 2017-02-24 2018-02-02 Water dosimetry device using x-ray induced ultrasonic waves

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0025105 2017-02-24
KR1020170025105A KR101900463B1 (ko) 2017-02-24 2017-02-24 엑스선 유도 초음파를 이용한 물 선량 측정 장치

Publications (1)

Publication Number Publication Date
WO2018155833A1 true WO2018155833A1 (ko) 2018-08-30

Family

ID=63254467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001471 WO2018155833A1 (ko) 2017-02-24 2018-02-02 엑스선 유도 초음파를 이용한 물 선량 측정 장치

Country Status (3)

Country Link
US (1) US20190383952A1 (ko)
KR (1) KR101900463B1 (ko)
WO (1) WO2018155833A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE48913E1 (en) 2015-02-27 2022-02-01 Becton, Dickinson And Company Spatially addressable molecular barcoding

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102403386B1 (ko) 2019-12-23 2022-06-02 연세대학교 산학협력단 휴대용 방사선 모니터링 시스템 및 이를 이용한 방사선 모니터링 방법
KR102343789B1 (ko) 2019-12-23 2021-12-28 연세대학교 산학협력단 실시간 방사선 계측 시스템 및 이를 이용한 실시간 방사선 계측 방법
KR20240071073A (ko) 2022-11-15 2024-05-22 한국원자력연구원 수하물 검색 방법, 수하물 검색을 위한 학습 모델을 학습시키는 학습 장치 및 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047666A (ja) * 2001-08-07 2003-02-18 Mitsubishi Electric Corp 水ファントム型線量分布測定装置
JP2006158678A (ja) * 2004-12-08 2006-06-22 Univ Of Tsukuba 放射線治療時における標的臓器と線量分布の同時測定方法及びその測定装置
JP2009279111A (ja) * 2008-05-21 2009-12-03 Fujifilm Corp 医用撮像装置
KR101036610B1 (ko) * 2010-11-19 2011-05-24 나우기연주식회사 초음파 빔폭 측정 장치
KR101500522B1 (ko) * 2013-09-16 2015-03-12 고려대학교 산학협력단 방사선의 흡수선량 측정용 영상 스캐너 및 스캔 방법
KR20160142019A (ko) * 2015-06-02 2016-12-12 순천향대학교 산학협력단 맞춤형 접촉패드의 제조 방법 및 접촉패드

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047666A (ja) * 2001-08-07 2003-02-18 Mitsubishi Electric Corp 水ファントム型線量分布測定装置
JP2006158678A (ja) * 2004-12-08 2006-06-22 Univ Of Tsukuba 放射線治療時における標的臓器と線量分布の同時測定方法及びその測定装置
JP2009279111A (ja) * 2008-05-21 2009-12-03 Fujifilm Corp 医用撮像装置
KR101036610B1 (ko) * 2010-11-19 2011-05-24 나우기연주식회사 초음파 빔폭 측정 장치
KR101500522B1 (ko) * 2013-09-16 2015-03-12 고려대학교 산학협력단 방사선의 흡수선량 측정용 영상 스캐너 및 스캔 방법
KR20160142019A (ko) * 2015-06-02 2016-12-12 순천향대학교 산학협력단 맞춤형 접촉패드의 제조 방법 및 접촉패드

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE48913E1 (en) 2015-02-27 2022-02-01 Becton, Dickinson And Company Spatially addressable molecular barcoding

Also Published As

Publication number Publication date
KR101900463B1 (ko) 2018-10-10
KR20180098090A (ko) 2018-09-03
US20190383952A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
WO2018155833A1 (ko) 엑스선 유도 초음파를 이용한 물 선량 측정 장치
WO2014098363A1 (ko) 스마트폰용 피부 상태 측정장치
ATE281115T1 (de) Vorrichtung undverfahren zum bestimmen der raumkoordinaten von radiomarkiertem gewebe
US5855551A (en) Integral sheathing apparatus for tissue recognition probes
ATE148324T1 (de) Verfahren und vorrichtung zur abnahme- und konstanzprüfung filmloser dental-röntgengeräte
CN112146766B (zh) 一种无接触式测温安检装置的体温计算方法
KR101215917B1 (ko) X선 피폭을 감소시킨 복합디지털x선 촬영장치
EP2046448A2 (en) Brachytherapy system &amp; in vivo dose detector therefor
WO2012099314A1 (ko) 병변 진단 장치 및 방법
JPH0558151B2 (ko)
WO2019117395A1 (ko) 초음파 진단 장치 및 그 제어 방법
JP2003000578A (ja) ディジタルx線透視法による画像形成システムにおける自動オフセット補正方法と装置
JPH01184447A (ja) 対象物測定装置
WO2020246728A2 (ko) 근접 치료를 위한 선량 측정 장치
DE69122506D1 (de) Nichtinvasiver medizinischer sensor
WO2022065583A1 (ko) 유방암 진단 시스템
JP2773357B2 (ja) 血管造影撮影装置
RU2112993C1 (ru) Способ контроля радиоактивного облучения человека и устройство для его осуществления
JP2558999Y2 (ja) X線診断装置
WO2014185619A1 (ko) 광 간섭 단층촬영기 및 이미징 카테터를 이용한 혈관 내 단면 영상 획득 시스템 및 방법
WO2022163944A1 (ko) 투명 초음파 센서가 결합된 광음향 검출 시스템
WO2017105024A1 (ko) 3차원 산란 방사선 영상장치와 이를 갖는 방사선 의료장비 및 3차원 산란 방사선 영상장치의 배치 방법
WO2024075907A1 (ko) 호흡 트리거 기능이 적용된 충격파 쇄석 장치
CN117122345B (zh) 一种基于γ射线的甲状腺功能评估智能检测系统
JPH0866388A (ja) 放射線撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18756823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18756823

Country of ref document: EP

Kind code of ref document: A1