WO2018155735A1 - Composite low-nox burner - Google Patents

Composite low-nox burner Download PDF

Info

Publication number
WO2018155735A1
WO2018155735A1 PCT/KR2017/001989 KR2017001989W WO2018155735A1 WO 2018155735 A1 WO2018155735 A1 WO 2018155735A1 KR 2017001989 W KR2017001989 W KR 2017001989W WO 2018155735 A1 WO2018155735 A1 WO 2018155735A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
fuel
spud
burner
combustion
Prior art date
Application number
PCT/KR2017/001989
Other languages
French (fr)
Korean (ko)
Inventor
이종태
박재언
Original Assignee
주식회사 수국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 수국 filed Critical 주식회사 수국
Priority to CN201780002341.4A priority Critical patent/CN108738333B/en
Priority to KR1020197018657A priority patent/KR102230908B1/en
Priority to PCT/KR2017/001989 priority patent/WO2018155735A1/en
Priority to JP2018502153A priority patent/JP6595089B2/en
Publication of WO2018155735A1 publication Critical patent/WO2018155735A1/en
Priority to HK18115515.4A priority patent/HK1256477A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/34Burners specially adapted for use with means for pressurising the gaseous fuel or the combustion air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/48Nozzles
    • F23D14/58Nozzles characterised by the shape or arrangement of the outlet or outlets from the nozzle, e.g. of annular configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/62Mixing devices; Mixing tubes

Definitions

  • the present invention relates to a low-nox burner, and more particularly, a hybrid type for reducing NOx generation by implementing a gas staging combustion technology and an internal fluorine gas recirculation (IFGR) combustion technology in one burner. It is about low knox burner.
  • IFGR internal fluorine gas recirculation
  • NOx is fuel NOx produced by oxidizing a nitrogen component chemically bonded to a fuel during combustion, and thermal knox generated by liberation of nitrogen contained in combustion air at a high temperature.
  • Thermal NOx and prompt NOx, which is rapidly generated when hydrocarbon-based fossil fuels are exposed to high temperatures in high concentrations.
  • the first generation low knox technology is the air staging technology, which supplies air to the combustion stage by stage to prevent rapid oxidation reaction by fuel in the combustion furnace to lower the temperature of flame and thereby Reduce Thermal Knox
  • the 2nd generation low-nox technology is a gas staging technology, which is divided into a center part (about 5% to 25%) and an outer part (75% to 95%) to eject gas, and the center part has excess air.
  • the outer part forms an air shortage state, thereby suppressing the oxidation reaction of the outer part occupying most of the flame so that the flame temperature is not increased, thereby reducing the occurrence of thermal rust.
  • Prompt rust may occur due to an air shortage of the outer flame, but prompt knox generation may be suppressed by ejecting gas into a space having a temperature of 1000 ° C. or less while assisting the flame function from the central flame.
  • 3rd generation In 3rd generation low-nox technology, IFGR (Internal Flue Gas Recirculation) is typically used as the combustion gas is mixed with flames by allowing the primary combustion combustion gas in the combustion chamber to self-recirculate in the combustion chamber. Drop to reduce thermal rust.
  • IFGR Internal Flue Gas Recirculation
  • Korean Patent No. 10-1466809 has caused a vortex in the combustion head to improve the mixing characteristics of fuel and air to combust fuel and allow the combustion gas to self-recycle, thereby greatly reducing the generation of rust.
  • An object of the present invention is to improve a conventional low knox burner and to provide a low knox burner which further reduces the amount of rust generated by applying a gas staging combustion technology to the improved IFGR technology.
  • the hybrid low knox burner according to the present invention for achieving the problem to be solved by the present invention is a hybrid low knox burner installed in the burner mounting hole of the combustion chamber, inserted into the burner mounting hole, the tip is exposed to the combustion chamber, A tube for guiding air into the; At least one end of the tube is formed in a pipe shape for forming a split flame by injecting fuel into the combustion chamber, the outer peripheral region of the fuel spud is formed a first gas inlet for the combustion gas inlet; At the first gas inlet, a second gas inlet for inlet of the combustion gas mixed with the air inside the tube is formed at the outer periphery of the tube at the rear side of the combustion chamber.
  • a combustion gas guide is formed obliquely in the flow direction of air.
  • the fuel spud branches from the fuel supply line and is spaced apart from the first spud tube and is spaced apart from the first spud tube to form a first gas inlet and inserted into the tube and inserted into the split flame. Forming a second spud tube.
  • the fuel spud is spaced apart from the first supply pipe and branched from the fuel supply pipe, and spaced apart from the first spud pipe to form a first gas inlet, and arranged outside the tube to form a split flame. It may also include a second spud tube.
  • An end of the first spud tube is provided with a reduced diameter injection connection for injecting fuel towards the second spud tube.
  • the end portion of the first gas inlet side has a diameter extension portion extending in diameter toward the first spud tube.
  • the present invention it is possible to fuse the gas staging technology to the burner according to the improved IFGR technology in which the self-recirculation of the combustion gas is effectively performed, thereby further reducing the amount of rust generated than the low knox burner to which the conventional IFGR technology is applied.
  • FIG. 1 is a side cross-sectional view showing a state where a hybrid low knox burner according to a first embodiment of the present invention is installed in a combustion chamber.
  • FIG. 2 is a perspective view of a portion of the end of the tube cut in FIG. 1.
  • FIG 3 is an operational state diagram showing the flow of air, fuel gas and combustion gas in the hybrid low-nox burner according to the first embodiment of the present invention.
  • FIG. 4A is a diagram illustrating a gas flow between a fuel nozzle and a diffuser in FIG. 1.
  • 4B is a view illustrating a gas flow when there is a step between the fuel nozzle and the diffuser in FIG. 1.
  • FIG. 5 is a flow conceptual diagram of a hybrid low knox burner according to a first embodiment of the present invention.
  • FIG. 6 is a side cross-sectional view showing a state in which a hybrid low knox burner according to a second embodiment of the present invention is installed in a combustion chamber.
  • FIG. 7 is a perspective view of the end portion of the tube in FIG. 6;
  • FIG. 8 is a flow conceptual diagram for a hybrid low knox burner according to a second embodiment of the present invention.
  • a tube is inserted into one side of the combustion chamber referred to herein to receive fuel and air, and an exhaust pipe is formed on the other side of the combustion chamber to discharge the burned combustion gas.
  • an exhaust pipe is formed on the other side of the combustion chamber to discharge the burned combustion gas.
  • Tubes and burners referred to in this specification may be represented in a conceptual cross-sectional view without omission or description of the components to be added. However, this is omitted for the convenience of explanation and understanding of the present invention, the structure and connection of the tube and the burner according to the embodiment should not be limited by the illustrated drawings and description.
  • FIG. 1 is a side cross-sectional view illustrating a state in which a hybrid low knox burner is installed in a combustion chamber according to a first embodiment of the present invention, and FIG. As shown, the hybrid low-nox burner 100 according to the first embodiment of the present invention is inserted into the burner mounting hole HL of the combustion chamber FR and fixedly installed by the mounting plate MP, and the wall WL.
  • At least one end of the tube 110 is provided with a pipe shape for forming a split flame by injecting fuel into the combustion chamber, the outer periphery of the first gas inlet 151 for the combustion gas inlet is formed in the fuel
  • the spud 150 is provided.
  • the second gas inlet 112 for inlet of the combustion gas mixed with the air inside the tube 110 is formed at the outer periphery of the tube at the rear of the combustion chamber outside.
  • a blower 115 coupled to the tube 110 to forcibly supply external air to the inside of the tube 110.
  • the side diameter portion 111 is formed to be curved while having a gentle slope toward the protrusion 124 of the fuel supply pipe 120 protruding from the diffuser 130. Through this, the air passage toward the diffuser 130 is narrowed in the air supply passage 161 formed at the interval d1 between the outer circumferential edge of the diffuser 130 and the side diameter portion 111, thereby increasing the flow rate of the air. . Air is supplied to the diffuser 130 through the air supply passage 161, and at this time, fuel is injected through the fuel injection pipe 140 to form a flame.
  • the end of the tube 110 forms a diameter extension 116 that is larger in diameter than the middle portion 114 where the first spud tube, which will be described later, of the fuel spud 150 is disposed.
  • a combustion gas guide 113 is formed obliquely in a flow direction of air, and the combustion gas of the combustion chamber is recirculated into the middle part 114 of the tube 110.
  • the combustion gas guide unit 113 is preferably formed in the shape of a nozzle having a smaller diameter at the outlet side than the diameter at the inlet side, so that the combustion gas is introduced into the tube 110.
  • a central air injection pipe 121 for injecting external air from the tip of the fuel supply pipe 120 in the axial direction S of the fuel supply pipe 120 is disposed inside the fuel supply pipe 120.
  • the central air injection pipe 121 By this central air injection pipe 121, the diameter of the flame is increased by the air to be sprayed to prevent the concentration of the flame in the center of the flame. As a result, the temperature of the flame center is prevented from rising excessively, and the amount of thermal knox produced is reduced.
  • Air through the central air injection pipe 121 is injected into the combustion chamber FR through the air injection hole formed in the center of the diffuser 130, the air injection hole is formed smaller than the inner diameter of the central air injection pipe 121 desirable. As shown in the flow analysis diagram of FIG. 5, the central air injection pipe 121 may be removed.
  • the diffuser 130 has a disc shape (disc type) and includes a plurality of air holes 131 for injecting air supplied through the air supply passage 161 to the combustion chamber FR.
  • the air hole 131 supplies an air to the center of the flame, or when the diameter of the diffuser 130 increases in accordance with the increase in the burner capacity, to form an auxiliary flame to improve the flame resistance of the flame formed in the diffuser 130 Is prepared to.
  • the nozzles of the air holes 131 and the fuel injection pipe 140 are arranged at a predetermined angle, the amount and pressure of air discharged from the air holes 131 may have uniformity with respect to the front end of the plate of the diffuser 130. And when mixed with fuel injected from the nozzle, the mixing ratio of fuel and air can also be expected to be uniform.
  • the fuel injection pipe 140 is disposed radially at the end of the fuel supply pipe 120 and includes a fuel nozzle 141 for ejecting fuel in a direction orthogonal to air supplied through the air supply passage 161.
  • the fuel injected from the fuel nozzle 141 intersects the air discharged through the air supply passage 161 at an angle close to 90 degrees. Accordingly, the fuel is injected and rapidly mixed with the air supplied through the air supply passage 161 to form a flame, and the center is formed by the air guided to the radial center of the combustion chamber FR through the side portion 111. It can form a concentrated flame.
  • the flame is concentrated to the center, and dispersed to form a long-necked region, the width of the region is narrow, as the pressure is lowered, the combustion gas is guided to the long-necked region, the combustion gas to achieve a self-recirculation.
  • the radial end of the fuel injection pipe 140 and the outer periphery of the diffuser 130 are at the same position as shown in FIG. 4A, but as shown in FIG. 4B, the fuel injection pipe 140 is disposed in the fuel injection pipe 140.
  • a gap d2 may be formed between the end of the fuel injection pipe 140 and the edge of the diffuser 130 plate. have.
  • the gap gap d2 may be set to 0.1% to 50% of the diameter of the nozzle of the fuel injection pipe 140.
  • FIG. 4A illustrates a case where the length of the fuel injection tube 140 is the same as the outer peripheral end of the diffuser 130
  • FIG. 4B illustrates a case where the length of the fuel injection tube 140 does not reach the outer peripheral end of the diffuser 130.
  • the outer circumferential end of the diffuser 130 and the end of the fuel injection pipe 140 forms a step d2, the air from the air supply passage 161 to the combustion chamber is diffused to the area where the step is generated vortex Can be formed. Accordingly, the fuel injected from the fuel injection pipe 140 may be rapidly mixed with the air supplied through the air supply passage 161.
  • the diffuser 130 structure of FIG. 4B improves the combustibility of fuel by rapidly mixing fuel and air using vortex.
  • the fuel and air are rapidly mixed and combusted to form a long-necked flame
  • the combustion gas S3 is introduced into the long-necked region S1
  • the combustion gas S3 is the first gas inlet.
  • P1, P2 the temperature of the combustion gas is lowered and supplied to the region S2 in the excess fuel state to control the thermal and prompt knox (FIG. 5). Reference).
  • the fuel spud 150 branches from the fuel supply pipe 120 and extends outwardly from the middle portion 112 of the tube 110 and the first spud pipe 152 and the first spud pipe 152. And a second spud pipe 153 which is disposed at intervals to form a first gas inlet 151 and is inserted and inserted through the inside of the tube 110 in the diameter expansion part 116 to form a split flame. Include. An end portion of the first spud tube 152 is provided with an injection connection 154 having a reduced diameter to inject fuel toward the second spud tube 153. In the second spud pipe 153, an end portion of the first gas inlet 151 side is formed with a diameter extension part 153a having a diameter extended toward the first spud pipe 152.
  • the main flame Thermal knox can be controlled by lowering the temperature of the over split flame, i.e. the temperature of the entire "flame group.”
  • the following describes the contents of lowering the temperature of the flame group by incorporating the gas staging method into the IFGR.
  • FIG 3 is a functional state diagram showing the flow of air, fuel gas and combustion gas in the hybrid low-nox burner according to the first embodiment of the present invention
  • Figure 5 is a hybrid low-nox burner according to the first embodiment of the present invention
  • a flow conceptual diagram for a longitudinal flow conceptual diagram at a portion where a fuel spud is located in the diffuser is shown.
  • the air flow A1 is formed through the central air injection pipe 121 to the center of the combustion chamber FR, and the fuel gas flow B1 is formed through the fuel supply pipe 120. While the fuel injection pipe 140 is injected to form a main flame, the fuel gas flow (B2) is formed auxiliary through the fuel spud 150 branched from the fuel supply pipe 120, the fuel is injected to form a split flame Form.
  • the air flow (C1) through the tube 110 in accordance with the operation of the blower 115 is a combustion gas flow (P2) through which the combustion gas of the combustion chamber (FR) through the second gas inlet 112 ( 110 is introduced into the air and gas flow (C1 + P2) to generate a main flame
  • the air flow B2 through the first spud pipe 152 of the fuel spud 150 is the first gas inlet
  • the fuel gas flow B2 + P1 is introduced into the second spud pipe 153 of the fuel spud 150 into the combustion gas flow P1 through which the combustion gas of the combustion chamber FR is circulated through the 151. To create a split flame.
  • the main flame formed through the diffuser 130 and the split flame generated by the fuel spud 150 may form one "flame group.”
  • the flame group formed by the diffuser 130 and the fuel spud 150 increases the surface area of the flame inside the combustion chamber FR, thereby lowering the temperature of the flame group by promoting the absorption of radiant heat in the heat transfer surface of the combustion chamber FR. have.
  • the pressure around the split flame may be lowered by the fuel injected at high speed in the fuel spud 150. Accordingly, the combustion gas S3 primary combusted in the combustion chamber FR is attracted around the diffuser 130 and the fuel spud 150 having a low pressure, which causes the magnetization of the combustion gas S3 inside the combustion chamber FR. Recycling can be induced.
  • the fuel spud 150 injects a portion of the combustion gas S3 into the fuel spud 150 to supply fuel.
  • the calorific value of the fuel injected from the spud 150 may be lowered. This can be expected to lower the temperature of the entire flame group.
  • the fuel spud 150 is divided into a first spud tube 152 and a second spud tube 153, and the fuel is injected from the first spud tube 152 to the second spud 153.
  • the injection pressure at the time lowers the pressure around the first gas inlet 151, and the combustion gas S3 is attracted and introduced to the first gas inlet 151 having a low pressure. That is, when high-pressure fuel is injected from the fuel injection hole of the second spud pipe, the vicinity of the fuel injection hole, for example, the first gas inlet 151 or the surrounding area may have a lower pressure than the injection pressure of the fuel injection hole.
  • the combustion gas S3 is moved toward the first gas inlet 151 in the combustion chamber FR by the pressure difference, and the combustion gas S3 is self-recirculated inside the combustion chamber FR according to the movement of the combustion gas S3. Self-Recirculation can be achieved.
  • the fuel injected at the fuel inlet of the second spud pipe 153 becomes a mixture of "fuel + combustion gas S3", instead of air
  • the combustibility of the fuel is lower than that of the contact between air and the fuel, and this has the effect of lowering the temperature of the split flame generated in the fuel spud 150.
  • the temperature of the split flame is lowered, the temperature of the flame group injected from the diffuser 130 and the fuel spud 150 is lowered, which may reduce the thermal knox generated in the flame group.
  • the fuel and air injected through the diffuser 130 increases the surface area of the flame inside the combustion chamber FR by the combustion gas introduced through the second gas inlet 112, thereby increasing the surface area of the flame on the heat transfer surface of the combustion chamber FR.
  • the temperature of the flame group can be lowered. That is, after the combustion gas S3 primary combustion in the combustion chamber FR is drawn around the low pressure diffuser 130 and the fuel spud 150, the inside of the tube 110 through the second gas inlet 112. It may be introduced into the to induce a magnetic recycle of the combustion gas (S3).
  • the combustion gas (S3) When the air supplied from the blower 115 flows to the combustion gas guide portion 113 of the tube 110, the pressure around the second gas inlet 112 decreases due to the flow air pressure, and the combustion gas S3 has a low pressure. Induced and introduced into the second gas inlet 112, the combustion gas (S3) to increase the self-recirculation force in the combustion chamber (FR) in accordance with the movement of the combustion gas (S3).
  • the air in the tube 110 becomes a mixture of "air + combustion gas S3", and the amount of air decreases, which lowers the combustibility of the fuel.
  • the temperature of the flame group injected from the diffuser 130 and the fuel spud 150 is lowered, which may further reduce the thermal knox generated in the flame group.
  • FIG. 6 is a side cross-sectional view illustrating a state in which a hybrid low knox burner 200 according to a second embodiment of the present invention is installed in a combustion chamber
  • FIG. 7 is a perspective view of the end portion of the tube cut in FIG. 6, and
  • FIG. 8. Is a flow diagram for a hybrid low knox burner according to a second embodiment of the present invention.
  • the fuel spud 250 is branched from the fuel supply pipe 220 and the first spud pipe 252 extending out of the tube 210 and the first A second spud which forms the first gas inlet 251 which is spaced apart from the spud tube 252 to form a recirculated combustion gas stream P1 and is arranged outside the tube 210 to form a split flame Tube 253.
  • a second gas inlet 212 forming a combustion gas flow P2 that is recirculated for inlet of the combustion gas mixed with the air inside the tube 210 is located at the rear of the combustion chamber outside in the outer direction of the tube. Is formed.

Abstract

The present invention relates to a composite low-NOx burner for reducing the generation amount of NOx, by implementing a gas staging combustion technique and an internal flue gas recirculation (IFGR) combustion technique in a single burner. According to the present invention, the composite low-NOx burner provided in a burner mounting hole of a combustion chamber comprises: a tube inserted into the burner mounting hole such that the front end thereof is exposed to the combustion chamber, and guiding air to the combustion chamber; and at least one fuel spud provided at the end portion of the tube, having a pipe shape for forming split flames by means of injection of fuel into the combustion chamber, and having a first gas inlet, formed in a partial region of the outer periphery thereof, for allowing combustion gas to flow therethrough, wherein a second gas inlet for allowing the combustion gas mixed in the air inside the tube to flow therethrough is formed on the outer periphery of the tube at the rear of the first gas inlet in the outward direction of the combustion chamber. According to the present invention, the burner according to an improved IFGR technique which enables effective self-recirculation of the combustion gas is merged with a gas staging technique so as to enable the generation amount of NOx to be further lowered than that of a low-NOx burner to which an existing IFGR technique is applied.

Description

복합형 저녹스 버너Hybrid Low Knox Burner
본 발명은 저녹스 버너에 관한 것으로, 더욱 상세하게는 가스 스테이징(Gas staging) 연소 기술과 IFGR(Internal Flue Gas Recirculation) 연소 기술을 하나의 버너에 구현 함으로써, 녹스(NOx) 발생량을 저감하는 복합형 저녹스 버너에 관한 것이다.The present invention relates to a low-nox burner, and more particularly, a hybrid type for reducing NOx generation by implementing a gas staging combustion technology and an internal fluorine gas recirculation (IFGR) combustion technology in one burner. It is about low knox burner.
일반적으로 질소산화물(NOx)은 연료에 화학적으로 결합된 형태의 질소 성분이 연소 과정에서 산화되어 생성되는 퓨얼 녹스(Fuel NOx), 연소용 공기중에 포함되는 질소가 고온에서 유리되어 생성되는 써멀 녹스(Thermal NOx), 그리고, 탄화수소 계열의 화석연료가 고농도 상태로 고온에 노출되었을 때 급속히 생성되는 프롬프트 녹스(Prompt NOx)로 구분된다.In general, NOx is fuel NOx produced by oxidizing a nitrogen component chemically bonded to a fuel during combustion, and thermal knox generated by liberation of nitrogen contained in combustion air at a high temperature. Thermal NOx) and prompt NOx, which is rapidly generated when hydrocarbon-based fossil fuels are exposed to high temperatures in high concentrations.
질소산화물(NOx)은 대기환경 및 인간의 삶에 좋지 않은 영향을 주기 때문에 오래 전부터 저녹스 버너 기술이 개발되어 왔다. 이를 세대별로 나누면 아래와 같다.Since NOx has an adverse effect on the atmosphere and human life, low-nox burner technology has been developed for a long time. Divided by generation is as follows.
- 아래 -- under -
1세대 : 1세대 저녹스 기술은 에어 스테이징(Air staging) 기술이 대표적으로, 연소로 내에 공급하는 공기를 단계적으로 공급하여 연소로 내의 연료에 의한 급속한 산화반응을 방지하여 화염의 온도를 낮추고 이를 통해 써멀 녹스를 저감한다.First generation: The first generation low knox technology is the air staging technology, which supplies air to the combustion stage by stage to prevent rapid oxidation reaction by fuel in the combustion furnace to lower the temperature of flame and thereby Reduce Thermal Knox
2세대 : 2세대 저녹스 기술은 가스 스테이징(Gas staging) 기술이 대표적으로서, 중심부(약 5% 내지 25%)와 외곽부(75% 내지 95%)로 나누어서 가스를 분출하고, 중심부는 공기 과잉, 외곽부는 공기부족 상태를 조성함으로써, 화염의 대부분을 차지하는 외곽부의 산화반응을 억제하여 화염온도가 높아지지 않도록 함으로써, 써멀 녹스의 발생이 감소하는데 그 특징이 있다. 외곽 화염의 공기부족 상태로 인하여 프롬프트 녹스가 발생할 우려가 있으나, 중심부 화염으로부터 보염 기능을 도움 받으면서도 온도가 1000℃ 이하인 공간으로 가스를 분출함으로써 프롬프트 녹스 발생이 억제될 수 있다.2nd generation: The 2nd generation low-nox technology is a gas staging technology, which is divided into a center part (about 5% to 25%) and an outer part (75% to 95%) to eject gas, and the center part has excess air. In addition, the outer part forms an air shortage state, thereby suppressing the oxidation reaction of the outer part occupying most of the flame so that the flame temperature is not increased, thereby reducing the occurrence of thermal rust. Prompt rust may occur due to an air shortage of the outer flame, but prompt knox generation may be suppressed by ejecting gas into a space having a temperature of 1000 ° C. or less while assisting the flame function from the central flame.
3세대 : 3세대 저녹스 기술은 IFGR(Internal Flue Gas Recirculation)이 대표적으로, 연소실 내에서 1차 연소된 연소 가스가 연소실 내에서 자기 재순환(Recirculation) 하도록 함으로써 연소 가스가 화염에 혼합되면서 화염의 온도를 떨어뜨려 써멀 녹스를 줄일 수 있도록 한다.3rd generation: In 3rd generation low-nox technology, IFGR (Internal Flue Gas Recirculation) is typically used as the combustion gas is mixed with flames by allowing the primary combustion combustion gas in the combustion chamber to self-recirculate in the combustion chamber. Drop to reduce thermal rust.
이러한 3세대 저녹스 기술로서 본 출원인은 한국등록특허 제10-1466809호의 고효율 저녹스형 연소 헤드 및 그를 이용한 버너를 제안한 바 있다. 한국등록특허 제10-1466809호는 연소 헤드에서 와류를 유발하여 연료와 공기의 혼합 특성을 향상시켜 연료를 연소하고, 연소 가스가 자기 재순환을 하도록 함으로써, 녹스 발생을 대폭 감소시켰다. As the third generation low-nox technology, the present applicant has proposed a high-efficiency low-nox type combustion head and a burner using the same as Korean Patent No. 10-1466809. Korean Patent No. 10-1466809 has caused a vortex in the combustion head to improve the mixing characteristics of fuel and air to combust fuel and allow the combustion gas to self-recycle, thereby greatly reducing the generation of rust.
또한, 가스 스테이징(Gas staging) 연소 기술을 IFGR 기술에 적용함으로써 세대별로 구분되는 저녹스 기술을 연계하여 녹스 발생량을 더욱 저감하는 복합형 저녹스 버너를 한국등록특허 제10-1569455호로 제안한 바 있다.In addition, by applying a gas staging combustion technology to IFGR technology, a low knox burner in combination with generation-specific low knox burners has been proposed as Korean Patent No. 10-1569455.
본 발명의 목적은 종래 복합형 저녹스 버너를 개량한 것으로서, 가스 스테이징(Gas staging) 연소 기술을 개량된 IFGR 기술에 적용함으로써 녹스 발생량을 더욱 더 저감하는 복합형 저녹스 버너를 제공함에 있다.SUMMARY OF THE INVENTION An object of the present invention is to improve a conventional low knox burner and to provide a low knox burner which further reduces the amount of rust generated by applying a gas staging combustion technology to the improved IFGR technology.
본 발명이 해결하고자 하는 과제를 달성하기 위한 본 발명에 따른 복합형 저녹스 버너는 연소실의 버너 장착공에 설치되는 복합형 저녹스 버너로서, 버너 장착공에 삽입되어 선단이 연소실에 노출되며, 연소실로 공기를 안내하는 튜브; 튜브의 단부에 적어도 하나 마련되고, 연소실로 연료를 분사하여 분할 화염을 형성하는 파이프 형상이며, 외주연 일 영역에는 연소 가스 유입을 위한 제1가스 유입구가 형성되는 연료 스퍼드;를 포함하고, 제1가스 유입구에서 연소실 외측방향 후방에는 튜브 내부의 공기에 혼합되는 연소 가스 유입을 위한 제2가스 유입구가 튜브의 외주연에 형성된다.The hybrid low knox burner according to the present invention for achieving the problem to be solved by the present invention is a hybrid low knox burner installed in the burner mounting hole of the combustion chamber, inserted into the burner mounting hole, the tip is exposed to the combustion chamber, A tube for guiding air into the; At least one end of the tube is formed in a pipe shape for forming a split flame by injecting fuel into the combustion chamber, the outer peripheral region of the fuel spud is formed a first gas inlet for the combustion gas inlet; At the first gas inlet, a second gas inlet for inlet of the combustion gas mixed with the air inside the tube is formed at the outer periphery of the tube at the rear side of the combustion chamber.
제2가스 유입구에는 공기의 흐름방향으로 비스듬하게 연소가스 안내부가 형성된다.At the second gas inlet, a combustion gas guide is formed obliquely in the flow direction of air.
연료 스퍼드는 연료 공급관에서 분기되며 튜브의 외측으로 연장된 제1스퍼드 관과, 제1스퍼드 관과 간격을 두고 배치되어 제1가스 유입구를 형성하며 튜브의 내측으로 삽입되어 배치되어 분할 화염을 형성하는 제2스퍼드 관을 포함한다. The fuel spud branches from the fuel supply line and is spaced apart from the first spud tube and is spaced apart from the first spud tube to form a first gas inlet and inserted into the tube and inserted into the split flame. Forming a second spud tube.
연료 스퍼드는 연료 공급관에서 분기되어 튜브의 외측으로 연장된 제1스퍼드 관과, 제1스퍼드 관과 간격으로 두고 배치되어 제1가스유입구를 형성하며 튜브의 외측에 배치되어 분할 화염을 형성하는 제2스퍼드 관을 포함할 수도 있다.The fuel spud is spaced apart from the first supply pipe and branched from the fuel supply pipe, and spaced apart from the first spud pipe to form a first gas inlet, and arranged outside the tube to form a split flame. It may also include a second spud tube.
제1스퍼드 관의 단부에는 제2스퍼드 관을 향하여 연료를 분사하기 위해 직경이 축소된 분사 연결부가 구비된다. 제2스퍼드 관에서 제1가스 유입구 측 단부는 제1스퍼드 관을 향하여 직경이 확장된 직경확장부가 형성된다.An end of the first spud tube is provided with a reduced diameter injection connection for injecting fuel towards the second spud tube. In the second spud tube, the end portion of the first gas inlet side has a diameter extension portion extending in diameter toward the first spud tube.
본 발명에 따르면, 연소가스의 자기 재순환이 효과적으로 이루어지는 개량된 IFGR 기술에 따른 버너에 가스 스테이징 기술을 융합하여 기존의 IFGR 기술이 적용된 저녹스 버너보다 녹스 발생량을 더욱 더 낮출 수 있다는 효과가 있다.According to the present invention, it is possible to fuse the gas staging technology to the burner according to the improved IFGR technology in which the self-recirculation of the combustion gas is effectively performed, thereby further reducing the amount of rust generated than the low knox burner to which the conventional IFGR technology is applied.
도 1은 본 발명의 제1실시예에 따른 복합형 저녹스 버너가 연소실에 설치된 상태를 나타내는 측단면도이다.1 is a side cross-sectional view showing a state where a hybrid low knox burner according to a first embodiment of the present invention is installed in a combustion chamber.
도 2는 도 1에서 튜브의 단부 일부를 절단하여 나타내는 사시도이다.FIG. 2 is a perspective view of a portion of the end of the tube cut in FIG. 1. FIG.
도 3은 본 발명의 제1실시예에 따른 복합형 저녹스 버너에서 공기와 연료가스 및 연소가스의 흐름을 나타내는 작용 상태도이다.3 is an operational state diagram showing the flow of air, fuel gas and combustion gas in the hybrid low-nox burner according to the first embodiment of the present invention.
도 4a는 도 1에서 연료 노즐과 디퓨저 사이의 가스 흐름을 나타내는 도면이다.4A is a diagram illustrating a gas flow between a fuel nozzle and a diffuser in FIG. 1.
도 4b는 도 1에서 연료 노즐과 디퓨저 사이에 단차가 있을 경우의 가스 흐름을 나타내는 도면이다.4B is a view illustrating a gas flow when there is a step between the fuel nozzle and the diffuser in FIG. 1.
도 5는 본 발명의 제1실시예에 의한 복합형 저녹스 버너에 대한 유동 개념도이다.5 is a flow conceptual diagram of a hybrid low knox burner according to a first embodiment of the present invention.
도 6은 본 발명의 제2실시예에 따른 복합형 저녹스 버너가 연소실에 설치된 상태를 나타내는 측단면도이다.6 is a side cross-sectional view showing a state in which a hybrid low knox burner according to a second embodiment of the present invention is installed in a combustion chamber.
도 7는 도 6에서 튜브의 단부 일부를 절단하여 나타내는 사시도이다.FIG. 7 is a perspective view of the end portion of the tube in FIG. 6;
도 8는 본 발명의 제2실시예에 의한 복합형 저녹스 버너에 대한 유동 개념도이다.8 is a flow conceptual diagram for a hybrid low knox burner according to a second embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. 이 때, 첨부된 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타내고 있음에 유의한다. 또한, 본 발명의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략할 것이다. 마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In this case, the same components in the accompanying drawings are to be noted that the same reference numerals as possible. In addition, detailed descriptions of well-known functions and configurations that may blur the gist of the present invention will be omitted. For the same reason, in the accompanying drawings, some components are exaggerated, omitted or schematically illustrated.
본 명세서에서 언급되는 연소실의 일 측에는 튜브가 삽입되어 연료와 공기를 공급받고, 연소실의 타 측에는 배기관이 형성되어 연소된 연소 가스가 배출되도록 할 수 있다. 그러나, 배기관 및 그 주변구조물은 본 발명의 주요 핵심에 해당하지 않으므로 이에 대해 도면으로 도시하거나 설명하지는 않는다.A tube is inserted into one side of the combustion chamber referred to herein to receive fuel and air, and an exhaust pipe is formed on the other side of the combustion chamber to discharge the burned combustion gas. However, since the exhaust pipe and its surrounding structure do not correspond to the main core of the present invention, it is not shown or described in the drawings.
본 명세서에서 언급되는 튜브 및 버너는 부가되는 구성요소의 도시나 설명이 생략되고 개념적인 단면도로 표현될 수 있다. 그러나, 이는 본 발명에 대한 설명과 이해의 편의를 위해 생략된 것이며, 실시예에 따른 튜브, 및 버너의 구조나 연결관계가 도시된 도면과 설명에 의해 한정되어서는 안된다.Tubes and burners referred to in this specification may be represented in a conceptual cross-sectional view without omission or description of the components to be added. However, this is omitted for the convenience of explanation and understanding of the present invention, the structure and connection of the tube and the burner according to the embodiment should not be limited by the illustrated drawings and description.
도 1은 본 발명의 제1실시예에 따른 복합형 저녹스 버너가 연소실에 설치된 상태를 나타내는 측단면도이고, 도 2는 도 1에서 튜브의 단부 일부를 절단하여 나타내는 사시도이다. 도시한 바와 같이 본 발명의 제1실시예에 따른 복합형 저녹스 버너(100)는 연소실(FR)의 버너 장착공(HL)에 삽입되어 마운팅 플레이트(MP)에 의해 고정 설치되며, 벽(WL)에 의해 둘러싸인 연소실(FR)로 공기를 안내하는 튜브(110), 튜브(110)의 직경보다 작은 직경을 가지며 튜브(110)의 선단(先端)에 형성된 측경부(111), 튜브(110)의 내부에 배치되어 연료를 공급하는 연료 공급관(120), 외주(外周)가 튜브(110)의 내벽으로부터 떨어져 배치되도록 연료 공급관(120)의 선단(先端)에 결합되고, 튜브(110)에 의해 안내되는 공기를 확산하는 디퓨저(130) 및 연료 공급관(120)의 선단에 방사상으로 결합되어, 연료 공급관(120)에 의해 공급되는 연료를 튜브(110) 내벽과 디퓨저(130) 외주의 사이를 통과하는 공기를 향하여 분사하는 복수의 연료 분사관(140)을 포함한다.1 is a side cross-sectional view illustrating a state in which a hybrid low knox burner is installed in a combustion chamber according to a first embodiment of the present invention, and FIG. As shown, the hybrid low-nox burner 100 according to the first embodiment of the present invention is inserted into the burner mounting hole HL of the combustion chamber FR and fixedly installed by the mounting plate MP, and the wall WL. Tube 110 for guiding air to the combustion chamber (FR) enclosed by the (), side diameter portion 111, tube 110 having a diameter smaller than the diameter of the tube 110 and formed at the tip of the tube 110 A fuel supply pipe 120 disposed inside the fuel supply pipe 120 for supplying fuel, and an outer periphery of the fuel supply pipe 120 coupled to the tip of the fuel supply pipe 120 so that the outer periphery is disposed away from the inner wall of the tube 110. Radially coupled to the distal end of the diffuser 130 and the fuel supply pipe 120 to diffuse the guided air, the fuel supplied by the fuel supply pipe 120 passes between the inner wall of the tube 110 and the outer periphery of the diffuser 130 It includes a plurality of fuel injection pipe 140 for injecting toward the air.
또한, 튜브(110)의 단부에 적어도 하나 마련되고, 연소실로 연료를 분사하여 분할 화염을 형성하는 파이프 형상이며, 외주연 일 영역에는 연소 가스 유입을 위한 제1가스 유입구(151)가 형성되는 연료 스퍼드(150)가 구비된다. 제1가스 유입구(151)에서 연소실 외측방향 후방에는 튜브(110) 내부의 공기에 혼합되는 연소 가스 유입을 위한 제2가스 유입구(112)가 튜브의 외주연에 형성된다. 그리고 튜브(110)에 결합되어 외부 공기를 튜브(110)의 내부에 강제로 공급하는 송풍기(115)를 더 포함한다.In addition, at least one end of the tube 110 is provided with a pipe shape for forming a split flame by injecting fuel into the combustion chamber, the outer periphery of the first gas inlet 151 for the combustion gas inlet is formed in the fuel The spud 150 is provided. At the first gas inlet 151, the second gas inlet 112 for inlet of the combustion gas mixed with the air inside the tube 110 is formed at the outer periphery of the tube at the rear of the combustion chamber outside. And a blower 115 coupled to the tube 110 to forcibly supply external air to the inside of the tube 110.
측경부(111)는 디퓨저(130)에서 돌출한 연료 공급관(120)의 돌출부(124)를 향해 완만한 기울기를 가지면서 굴곡지게 형성된다. 이를 통해 디퓨저(130)의 외주연과 측경부(111) 사이의 간격(d1)에 형성된 급기 통로(161)에서 디퓨저(130)로 향하는 공기의 통로가 좁아지면서 공기의 유동 속도를 증가시킬 수 있다. 급기 통로(161)를 디퓨저(130)에 공기가 급기되고, 이때, 연료 분사관(140)을 통해 연료가 분사되면서 화염을 형성한다.The side diameter portion 111 is formed to be curved while having a gentle slope toward the protrusion 124 of the fuel supply pipe 120 protruding from the diffuser 130. Through this, the air passage toward the diffuser 130 is narrowed in the air supply passage 161 formed at the interval d1 between the outer circumferential edge of the diffuser 130 and the side diameter portion 111, thereby increasing the flow rate of the air. . Air is supplied to the diffuser 130 through the air supply passage 161, and at this time, fuel is injected through the fuel injection pipe 140 to form a flame.
튜브(110)의 단부는 연료 스퍼드(150)의 후술하는 제1스퍼드 관이 배치되는 중간 부분(114)보다 직경이 확장된 직경 확장부(116)를 이루고 있다. 제2가스 유입구(112)에는 공기의 흐름방향으로 비스듬하게 연소가스 안내부(113)가 형성되어, 연소실의 연소가스가 튜브(110)의 중간 부분(114) 내측으로 재순환하게 된다. 연소가스 안내부(113)는 입구 쪽의 직경보다 출구 쪽의 직경이 작은 노즐 형태로 형성되어 튜브(110)의 내부로 연소가스가 유입되는 것이 바람직하다.The end of the tube 110 forms a diameter extension 116 that is larger in diameter than the middle portion 114 where the first spud tube, which will be described later, of the fuel spud 150 is disposed. In the second gas inlet 112, a combustion gas guide 113 is formed obliquely in a flow direction of air, and the combustion gas of the combustion chamber is recirculated into the middle part 114 of the tube 110. The combustion gas guide unit 113 is preferably formed in the shape of a nozzle having a smaller diameter at the outlet side than the diameter at the inlet side, so that the combustion gas is introduced into the tube 110.
연료 공급관(120)의 내부에는 외부 공기를 연료 공급관(120)의 선단(先端)에서 연료 공급관(120)의 축 방향(S)으로 분사하는 중앙 공기 분사관(121)이 배치된다. 이러한 중앙 공기 분사관(121)에 의해, 분사되는 공기에 의해 화염의 직경이 커지게 되어 화염 중심부에 화염이 집중되는 것이 방지된다. 이에 따라, 화염 중심부의 온도가 과도하게 상승하는 것이 방지되어 써멀 녹스의 생성량이 감소하게 된다. 중앙 공기 분사관(121)을 통한 공기는 디퓨져(130)의 중앙에 형성된 공기 분사구를 통해 연소실(FR)의 내부로 분사되는데, 공기 분사구는 중앙 공기 분사관(121)의 내경보다 작게 형성되는 것이 바람직하다. 도 5의 유동 해석도에 나타난 바와 같이 중앙 공기 분사관(121)은 제거되어 있을 수도 있다.Inside the fuel supply pipe 120, a central air injection pipe 121 for injecting external air from the tip of the fuel supply pipe 120 in the axial direction S of the fuel supply pipe 120 is disposed. By this central air injection pipe 121, the diameter of the flame is increased by the air to be sprayed to prevent the concentration of the flame in the center of the flame. As a result, the temperature of the flame center is prevented from rising excessively, and the amount of thermal knox produced is reduced. Air through the central air injection pipe 121 is injected into the combustion chamber FR through the air injection hole formed in the center of the diffuser 130, the air injection hole is formed smaller than the inner diameter of the central air injection pipe 121 desirable. As shown in the flow analysis diagram of FIG. 5, the central air injection pipe 121 may be removed.
디퓨저(130)는 원판 형상(디스크 타입)으로서, 급기 통로(161)를 통해 급기되는 공기를 연소실(FR)로 분사하는 복수의 공기홀(131)을 포함한다. 공기홀(131)는 화염의 중심부로 공기를 공급하거나, 버너 용량의 증가에 맞추어 디퓨저(130)의 직경이 증가할 때, 디퓨저(130)에서 형성되는 화염의 보염성 향상을 위해 보조 화염을 형성하기 위해 마련된다. 공기홀(131)과 연료분사관(140)의 노즐이 일정한 각도를 가지고 배열됨에 따라 공기홀(131)에서 토출되는 공기의 량과 압력이 디퓨저(130)의 판 전단에 대해 균일성을 가질 수 있고, 노즐에서 분사되는 연료와 혼합될 때, 연료와 공기의 혼합비 또한 균일할 것이 기대될 수 있다.The diffuser 130 has a disc shape (disc type) and includes a plurality of air holes 131 for injecting air supplied through the air supply passage 161 to the combustion chamber FR. The air hole 131 supplies an air to the center of the flame, or when the diameter of the diffuser 130 increases in accordance with the increase in the burner capacity, to form an auxiliary flame to improve the flame resistance of the flame formed in the diffuser 130 Is prepared to. As the nozzles of the air holes 131 and the fuel injection pipe 140 are arranged at a predetermined angle, the amount and pressure of air discharged from the air holes 131 may have uniformity with respect to the front end of the plate of the diffuser 130. And when mixed with fuel injected from the nozzle, the mixing ratio of fuel and air can also be expected to be uniform.
연료 분사관(140)은 연료 공급관(120)의 종단에서 방사상으로 배치되며, 급기 통로(161)를 통해 공급되는 공기과 직교하는 방향으로 연료를 분출하기 위한 연료 노즐(141)을 구비한다. 연료 노즐(141)에서 분사되는 연료는 급기통로(161)를 통해 토출되는 공기와 거의 90도에 가까운 각도로 교차된다. 이에 따라, 연료는 분사되면서 급기통로(161)를 통해 공급되는 공기와 급속 혼합을 이룬 후 화염을 형성하며, 측경부(111)를 통해 연소실(FR)의 반경방향 중심부로 유도되는 공기에 의해 중심부로 집중되는 화염을 형성할 수 있다. 이때, 화염은 중심부로 집중된 후, 분산되어 장구목 형상의 영역을 형성하게 되고, 영역의 폭이 좁아 압력이 낮아짐에 따라 연소 가스가 장구목 형상의 영역으로 유도되어 연소 가스가 자기 재순환을 이루게 된다.The fuel injection pipe 140 is disposed radially at the end of the fuel supply pipe 120 and includes a fuel nozzle 141 for ejecting fuel in a direction orthogonal to air supplied through the air supply passage 161. The fuel injected from the fuel nozzle 141 intersects the air discharged through the air supply passage 161 at an angle close to 90 degrees. Accordingly, the fuel is injected and rapidly mixed with the air supplied through the air supply passage 161 to form a flame, and the center is formed by the air guided to the radial center of the combustion chamber FR through the side portion 111. It can form a concentrated flame. At this time, the flame is concentrated to the center, and dispersed to form a long-necked region, the width of the region is narrow, as the pressure is lowered, the combustion gas is guided to the long-necked region, the combustion gas to achieve a self-recirculation.
제1실시예에서 연료 분사관(140)의 반경방향 끝단과 디퓨저(130)의 외주연은 도 4a에 도시한 바와 같이 동일한 위치에 있으나, 도 4b에 도시한 바와 같이 연료 분사관(140)에서 분사되는 연료가 급기통로(161)를 통해 공급되는 공기와 급속 혼합을 이루도록 하기 위해, 연료 분사관(140)의 종단과 디퓨저(130) 판의 테두리 사이에는 갭(gap, d2)이 형성될 수 있다. 갭(gap, d2)의 길이는 연료분사관(140)의 노즐의 지름 대비 0.1% 내지 50%로 설정될 수 있다.In the first embodiment, the radial end of the fuel injection pipe 140 and the outer periphery of the diffuser 130 are at the same position as shown in FIG. 4A, but as shown in FIG. 4B, the fuel injection pipe 140 is disposed in the fuel injection pipe 140. In order for the injected fuel to rapidly mix with the air supplied through the air supply passage 161, a gap d2 may be formed between the end of the fuel injection pipe 140 and the edge of the diffuser 130 plate. have. The gap gap d2 may be set to 0.1% to 50% of the diameter of the nozzle of the fuel injection pipe 140.
연료 분사관(140)의 종단이 디퓨저(130)의 외주단보다 작게 형성되면, 급기통로(161)를 통해 토출되는 공기가 디퓨저(130)의 외주단에서 와류를 일으킬 수 있으며, 와류에 의해 공기와 연료가 더욱 급속하게 혼합될 수 있다. 이를 도 4a 및 도 4b를 참조하여 더욱 자세히 설명하도록 한다.When the end of the fuel injection pipe 140 is formed smaller than the outer peripheral end of the diffuser 130, air discharged through the air supply passage 161 may cause vortex at the outer peripheral end of the diffuser 130, the air by the vortex And fuel can be mixed more rapidly. This will be described in more detail with reference to FIGS. 4A and 4B.
도 4a는 연료 분사관(140)의 길이가 디퓨저(130)의 외주단과 동일한 경우를 나타내고, 도 4b는 연료 분사관(140)의 길이가 디퓨저(130)의 외주단에 이르지 못한 경우를 나타낸다. 도 4a에서, 급기통로(161)에서 연소실로 토출되는 공기는 직진성을 가지므로 연료 분사관(140)의 종단에는 와류가 형성되지 않고 직진성 기류가 흐른다. 반면, 도 4b를 살펴보면, 디퓨저(130)의 외주단과 연료 분사관(140)의 끝단이 단차(d2)를 이루며, 급기 통로(161)에서 연소실로 향하던 공기는 단차가 발생하는 영역으로 확산되면서 와류를 형성할 수 있다. 이에 따라, 연료 분사관(140)에서 분사되는 연료는 급기 통로(161)를 통해 공급되는 공기와 급속 혼합을 이룰 수 있다. 도 4b의 디퓨저(130) 구조는 와류를 이용하여 연료와 공기를 급속 혼합함으로써, 연료의 연소성을 향상시키고 있다. 4A illustrates a case where the length of the fuel injection tube 140 is the same as the outer peripheral end of the diffuser 130, and FIG. 4B illustrates a case where the length of the fuel injection tube 140 does not reach the outer peripheral end of the diffuser 130. In FIG. 4A, since the air discharged from the air supply passage 161 to the combustion chamber has a straightness, no vortex is formed at the end of the fuel injection pipe 140 and a straight airflow flows. On the other hand, referring to Figure 4b, the outer circumferential end of the diffuser 130 and the end of the fuel injection pipe 140 forms a step d2, the air from the air supply passage 161 to the combustion chamber is diffused to the area where the step is generated vortex Can be formed. Accordingly, the fuel injected from the fuel injection pipe 140 may be rapidly mixed with the air supplied through the air supply passage 161. The diffuser 130 structure of FIG. 4B improves the combustibility of fuel by rapidly mixing fuel and air using vortex.
상기한 과정에 따라 연료와 공기가 급속 혼합되어 연소되고, 장구목 형상의 화염을 형성하고, 장구목 형상의 영역(S1)으로 연소 가스(S3)가 유도되고, 연소 가스(S3)가 제1가스 유입구(151) 및 제2가스 유입구(112)를 통해 재순환(P1, P2)되므로써 연소 가스의 온도를 낮춤과 동시에 연료 과잉 상태인 영역(S2)으로 공급되어 써멀 녹스 및 프롬프트 녹스를 제어한다(도 5 참조).According to the above process, the fuel and air are rapidly mixed and combusted to form a long-necked flame, the combustion gas S3 is introduced into the long-necked region S1, and the combustion gas S3 is the first gas inlet. By recycling (P1, P2) through the 151 and the second gas inlet 112, the temperature of the combustion gas is lowered and supplied to the region S2 in the excess fuel state to control the thermal and prompt knox (FIG. 5). Reference).
연료 스퍼드(150)는 연료 공급관(120)에서 분기되며 튜브(110)의 중간부분(112)에서 외측으로 관통하여 연장된 제1스퍼드 관(152)과, 제1스퍼드 관(152)과 간격을 두고 배치되어 제1가스 유입구(151)를 형성하며 직경 확장부(116)에서 튜브(110)의 내측으로 관통하여 삽입되어 배치되어 분할 화염을 형성하는 제2스퍼드 관(153)을 포함한다. 제1스퍼드 관(152)의 단부에는 제2스퍼드 관(153)을 향하여 연료를 분사하기 위해 직경이 축소된 분사 연결부(154)가 구비된다. 제2스퍼드 관(153)에서 제1가스 유입구(151) 측 단부는 제1스퍼드 관(152)를 향하여 직경이 확장된 직경확장부(153a)가 형성된다.The fuel spud 150 branches from the fuel supply pipe 120 and extends outwardly from the middle portion 112 of the tube 110 and the first spud pipe 152 and the first spud pipe 152. And a second spud pipe 153 which is disposed at intervals to form a first gas inlet 151 and is inserted and inserted through the inside of the tube 110 in the diameter expansion part 116 to form a split flame. Include. An end portion of the first spud tube 152 is provided with an injection connection 154 having a reduced diameter to inject fuel toward the second spud tube 153. In the second spud pipe 153, an end portion of the first gas inlet 151 side is formed with a diameter extension part 153a having a diameter extended toward the first spud pipe 152.
본 발명의 제1실시예에서는 제1가스 유입구(151)과 제2가스 유입구(112)를 통해 가스 스테이징 방식을 적용하여 연소 헤드(5)에서 생성되는 주 화염의 온도가 낮아지도록 함으로써, 주 화염과 분할 화염의 온도, 즉 전체 "화염 군(Flame group)"의 온도를 낮추어 써멀 녹스를 제어할 수 있다. 이하, 가스 스테이징 방식을 IFGR에 접목하여 화염 군의 온도를 낮추는 내용에 대해 서술하도록 한다.In the first embodiment of the present invention by applying a gas staging method through the first gas inlet 151 and the second gas inlet 112 to lower the temperature of the main flame generated in the combustion head 5, the main flame Thermal knox can be controlled by lowering the temperature of the over split flame, i.e. the temperature of the entire "flame group." The following describes the contents of lowering the temperature of the flame group by incorporating the gas staging method into the IFGR.
도 3은 본 발명의 제1실시예에 따른 복합형 저녹스 버너에서 공기와 연료가스 및 연소가스의 흐름을 나타내는 작용 상태도이고, 도 5는 본 발명의 제1실시예에 의한 복합형 저녹스 버너에 대한 유동 개념도로서, 디퓨저에서 연료 스퍼드가 위치한 부분에서 길이방향의 유동 개념도를 나타낸다.3 is a functional state diagram showing the flow of air, fuel gas and combustion gas in the hybrid low-nox burner according to the first embodiment of the present invention, Figure 5 is a hybrid low-nox burner according to the first embodiment of the present invention As a flow conceptual diagram for, a longitudinal flow conceptual diagram at a portion where a fuel spud is located in the diffuser is shown.
도 3에 도시한 바와 같이, 중앙공기 분사관(121)을 통해 공기 흐름(A1)이 형성되어 연소실(FR)의 중심부로 향하고, 연료 공급관(120)를 통해 연료 가스 흐름(B1)이 형성되어 연료 분사관(140)에서 분사되어 주 화염을 형성하는 한편, 연료 공급관(120)에서 분기된 연료 스퍼드(150)을 통해 보조적으로 연료 가스 흐름(B2)이 형성되어 연료가 분사되어 분할화염을 형성한다. 이때, 송풍기(115)의 작동에 따라 튜브(110)을 통한 공기 흐름(C1)은 제2가스 유입구(112)를 통해 연소실(FR)의 연소가스가 순환되는 연소가스 흐름(P2)으로 튜브(110)로 유입되어 공기 및 가스흐름(C1+P2)이 이루어져 주화염을 생성하게 되고, 연료 스퍼드(150)의 제1스퍼드 관(152)을 통한 공기 흐름(B2)은 제1가스 유입구(151)을 통해 연소실(FR)의 연소가스가 순환되는 연소가스 흐름(P1)으로 연료 스퍼드(150)의 제2스퍼드 관(153)으로 유입되어 연료 및 가스 흐름(B2+P1)이 이루어져 분할화염을 생성한다.As shown in FIG. 3, the air flow A1 is formed through the central air injection pipe 121 to the center of the combustion chamber FR, and the fuel gas flow B1 is formed through the fuel supply pipe 120. While the fuel injection pipe 140 is injected to form a main flame, the fuel gas flow (B2) is formed auxiliary through the fuel spud 150 branched from the fuel supply pipe 120, the fuel is injected to form a split flame Form. At this time, the air flow (C1) through the tube 110 in accordance with the operation of the blower 115 is a combustion gas flow (P2) through which the combustion gas of the combustion chamber (FR) through the second gas inlet 112 ( 110 is introduced into the air and gas flow (C1 + P2) to generate a main flame, the air flow B2 through the first spud pipe 152 of the fuel spud 150 is the first gas inlet The fuel gas flow B2 + P1 is introduced into the second spud pipe 153 of the fuel spud 150 into the combustion gas flow P1 through which the combustion gas of the combustion chamber FR is circulated through the 151. To create a split flame.
디퓨저(130)를 통해 형성되는 주 화염과, 연료 스퍼드(150)에서 생성되는 분할 화염은 하나의 "화염 군"을 형성할 수 있다. 디퓨저(130)와 연료 스퍼드(150)가 형성하는 화염 군은 연소실(FR) 내부에서의 화염의 표면적을 증가시켜, 연소실(FR) 전열면에 복사열 흡수를 촉진함으로써 화염 군의 온도를 낮출 수 있다. 또한, 연료 스퍼드(150)에서 고속으로 분사되는 연료에 의해 분할 화염 주변의 압력은 낮아질 수 있다. 이에 따라, 연소실(FR)에서 1차 연소된 연소 가스(S3)가 압력이 낮은 디퓨저(130) 및 연료 스퍼드(150) 주변으로 유인되고 이는 연소실(FR) 내부에서 연소 가스(S3)의 자기 재순환을 유도할 수 있다. 연소 가스(S3)가 연소실(FR) 내에서 연료 스퍼드(150) 방향으로 자기 재순환 시, 연료 스퍼드(150)는 연소 가스(S3)의 일부를 연료 스퍼드(150) 내부로 유입하여 연료 스퍼드(150)에서 분사되는 연료의 발열량을 낮출 수 있다. 이는 화염 군 전체의 온도를 낮추는 효과를 기대할 수 있다. The main flame formed through the diffuser 130 and the split flame generated by the fuel spud 150 may form one "flame group." The flame group formed by the diffuser 130 and the fuel spud 150 increases the surface area of the flame inside the combustion chamber FR, thereby lowering the temperature of the flame group by promoting the absorption of radiant heat in the heat transfer surface of the combustion chamber FR. have. In addition, the pressure around the split flame may be lowered by the fuel injected at high speed in the fuel spud 150. Accordingly, the combustion gas S3 primary combusted in the combustion chamber FR is attracted around the diffuser 130 and the fuel spud 150 having a low pressure, which causes the magnetization of the combustion gas S3 inside the combustion chamber FR. Recycling can be induced. When the combustion gas S3 is self-recirculated in the combustion chamber FR toward the fuel spud 150, the fuel spud 150 injects a portion of the combustion gas S3 into the fuel spud 150 to supply fuel. The calorific value of the fuel injected from the spud 150 may be lowered. This can be expected to lower the temperature of the entire flame group.
연료 스퍼드(150)는 제1스퍼드 관(152)과 제2스퍼드 관(153)으로 나누어져 있는데, 제1스퍼드 관(152)에서 제2스퍼드(153)로 연료가 분사될 때의 분사 압력으로 제1가스 유입구(151) 주변의 압력은 낮아지며, 연소 가스(S3)는 낮은 압력을 갖는 제1가스 유입구(151)로 유인되어 유입된다. 즉, 제2스퍼드 관의 연료 분사구에서 고압의 연료가 분사될 때, 연료 분사구 주변, 예컨대, 제1가스 유입구(151)나 그 주변은 연료 분사구의 분사 압력 대비 낮은 압력을 가질 수 있으며, 이러한 압력 차에 의해 연소실(FR) 내부에서 연소 가스(S3)가 제1가스 유입구(151)를 향해 이동하고, 연소 가스(S3) 이동에 따라 연소 가스(S3)는 연소실(FR) 내부에서 자기 재순환(Self-Recirculation)을 이룰 수 있다.The fuel spud 150 is divided into a first spud tube 152 and a second spud tube 153, and the fuel is injected from the first spud tube 152 to the second spud 153. The injection pressure at the time lowers the pressure around the first gas inlet 151, and the combustion gas S3 is attracted and introduced to the first gas inlet 151 having a low pressure. That is, when high-pressure fuel is injected from the fuel injection hole of the second spud pipe, the vicinity of the fuel injection hole, for example, the first gas inlet 151 or the surrounding area may have a lower pressure than the injection pressure of the fuel injection hole. The combustion gas S3 is moved toward the first gas inlet 151 in the combustion chamber FR by the pressure difference, and the combustion gas S3 is self-recirculated inside the combustion chamber FR according to the movement of the combustion gas S3. Self-Recirculation can be achieved.
연소 가스(S3)가 제1가스 유입구(151)로 유인됨에 따라, 제2스퍼드 관(153)의 연료 분사구에서 분사되는 연료는 "연료 + 연소 가스(S3)"의 혼합물이 되고, 공기 대신 연소 가스가 제2스퍼드 관(153)에 유입됨에 따라 공기와 연료가 접촉할 때에 비해 연료의 연소성이 저하되고, 이는 연료 스퍼드(150)에서 생성되는 분할 화염의 온도를 낮추는 효과가 있다. 분할 화염의 온도가 낮아지면 디퓨저(130)와 연료 스퍼드(150)에서 분사되는 화염 군의 온도가 낮아지며, 이는 화염 군에서 생성되는 써멀 녹스를 저감시킬 수 있다.As the combustion gas S3 is attracted to the first gas inlet 151, the fuel injected at the fuel inlet of the second spud pipe 153 becomes a mixture of "fuel + combustion gas S3", instead of air As the combustion gas flows into the second spud pipe 153, the combustibility of the fuel is lower than that of the contact between air and the fuel, and this has the effect of lowering the temperature of the split flame generated in the fuel spud 150. When the temperature of the split flame is lowered, the temperature of the flame group injected from the diffuser 130 and the fuel spud 150 is lowered, which may reduce the thermal knox generated in the flame group.
또한, 디퓨저(130)를 통해 분사되는 연료 및 공기는 제2가스 유입구(112)을 통해 유입되는 연소가스에 의해서도 연소실(FR) 내부에서의 화염의 표면적을 증가시켜, 연소실(FR) 전열면에 복사열 흡수를 촉진함으로써 화염 군의 온도를 낮출 수 있다. 즉, 연소실(FR)에서 1차 연소된 연소 가스(S3)가 압력이 낮은 디퓨저(130) 및 연료 스퍼드(150) 주변으로 유인된 후 제2가스 유입구(112)를 통해 튜브(110) 내부로 유입되어 연소 가스(S3)의 자기 재순환을 유도할 수 있다. 연소 가스(S3)가 연소실(FR) 내에서 연료 스퍼드(150) 방향으로 자기 재순환 시, 연소 가스(S3)의 일부가 제2가스 유입구(112)를 통해 튜브(110) 내부로 유입하여 공기량을 상대적으로 낮춤으로써 화염 군 전체의 온도를 낮추는 효과를 기대할 수 있다. In addition, the fuel and air injected through the diffuser 130 increases the surface area of the flame inside the combustion chamber FR by the combustion gas introduced through the second gas inlet 112, thereby increasing the surface area of the flame on the heat transfer surface of the combustion chamber FR. By facilitating absorption of radiant heat, the temperature of the flame group can be lowered. That is, after the combustion gas S3 primary combustion in the combustion chamber FR is drawn around the low pressure diffuser 130 and the fuel spud 150, the inside of the tube 110 through the second gas inlet 112. It may be introduced into the to induce a magnetic recycle of the combustion gas (S3). When the combustion gas S3 is self-recirculated in the combustion chamber FR toward the fuel spud 150, a portion of the combustion gas S3 flows into the tube 110 through the second gas inlet 112 and the amount of air is increased. By relatively lowering the effect of lowering the temperature of the entire flame group can be expected.
송풍기(115)에서 공급되는 공기가 튜브(110)의 연소가스 안내부(113)로 유동할 때 유동 공기압으로 제2가스 유입구(112) 주변의 압력은 낮아지며, 연소 가스(S3)는 낮은 압력을 갖는 제2가스 유입구(112)로 유인되어 유입되며, 연소 가스(S3) 이동에 따라 연소 가스(S3)는 연소실(FR) 내부에서 자기 재순환(Self-Recirculation)력을 높이게 된다.When the air supplied from the blower 115 flows to the combustion gas guide portion 113 of the tube 110, the pressure around the second gas inlet 112 decreases due to the flow air pressure, and the combustion gas S3 has a low pressure. Induced and introduced into the second gas inlet 112, the combustion gas (S3) to increase the self-recirculation force in the combustion chamber (FR) in accordance with the movement of the combustion gas (S3).
연소 가스(S3)가 제2가스 유입구(112)로 유인됨에 따라, 튜브(110) 내의 공기는 "공기 + 연소 가스(S3)"의 혼합물이 되고, 공기량이 줄어들어 연료의 연소성이 저하되고, 이는 연료 스퍼드(150)에서 생성되는 주 화염의 온도를 낮추는 효과가 있다. 주 화염의 온도가 낮아지면 디퓨저(130)와 연료 스퍼드(150)에서 분사되는 화염 군의 온도가 낮아지며, 이는 화염 군에서 생성되는 써멀 녹스를 더욱 저감시킬 수 있다.As the combustion gas S3 is attracted to the second gas inlet 112, the air in the tube 110 becomes a mixture of "air + combustion gas S3", and the amount of air decreases, which lowers the combustibility of the fuel. There is an effect of lowering the temperature of the main flame generated in the fuel spud 150. When the temperature of the main flame is lowered, the temperature of the flame group injected from the diffuser 130 and the fuel spud 150 is lowered, which may further reduce the thermal knox generated in the flame group.
도 6은 본 발명의 제2실시예에 따른 복합형 저녹스 버너(200)가 연소실에 설치된 상태를 나타내는 측단면도이고, 도 7는 도 6에서 튜브의 단부 일부를 절단하여 나타내는 사시도이며, 도 8는 본 발명의 제2실시예에 의한 복합형 저녹스 버너에 대한 유동 개념도이다. FIG. 6 is a side cross-sectional view illustrating a state in which a hybrid low knox burner 200 according to a second embodiment of the present invention is installed in a combustion chamber, and FIG. 7 is a perspective view of the end portion of the tube cut in FIG. 6, and FIG. 8. Is a flow diagram for a hybrid low knox burner according to a second embodiment of the present invention.
제2실시예의 복합형 저녹스 버너(200)에서, 연료 스퍼드(250)는 연료 공급관(220)에서 분기되어 튜브(210)의 외측으로 연장된 제1스퍼드 관(252)과, 제1스퍼드 관(252)과 간격으로 두고 배치되어 재순환되는 연소가스 흐름(P1)을 이루는 제1가스 유입구(251)를 형성하며 튜브(210)의 외측에 배치되어 분할 화염을 형성하는 제2스퍼드 관(253)을 포함한다.In the hybrid low knox burner 200 of the second embodiment, the fuel spud 250 is branched from the fuel supply pipe 220 and the first spud pipe 252 extending out of the tube 210 and the first A second spud which forms the first gas inlet 251 which is spaced apart from the spud tube 252 to form a recirculated combustion gas stream P1 and is arranged outside the tube 210 to form a split flame Tube 253.
제1가스 유입구(251)에서 연소실 외측방향 후방에는 튜브(210) 내부의 공기에 혼합되는 연소 가스 유입을 위해 재순환되는 연소가스 흐름(P2)을 이루는 제2가스 유입구(212)가 튜브의 외주연에 형성된다. At the first gas inlet 251, a second gas inlet 212 forming a combustion gas flow P2 that is recirculated for inlet of the combustion gas mixed with the air inside the tube 210 is located at the rear of the combustion chamber outside in the outer direction of the tube. Is formed.
제2실시예의 튜브(210), 송풍기(215), 연료 공급관(220), 중앙 공기 분사관(221), 디퓨저(230), 연료 분사관(240) 등의 나머지 구성과 그 작용 및 효과는 제1실시예와 유사 또는 동일하므로 자세한 설명은 생략한다.The remaining configurations, operations and effects of the tube 210, the blower 215, the fuel supply pipe 220, the central air injection pipe 221, the diffuser 230, the fuel injection pipe 240 of the second embodiment, etc. Since it is similar or identical to the one embodiment, a detailed description thereof will be omitted.
한편, 본 명세서와 도면에 개시된 본 발명의 실시예들은 본 발명의 기술 내용을 쉽게 설명하고 본 발명의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.On the other hand, the embodiments of the present invention disclosed in the specification and drawings are merely presented specific examples to easily explain the technical contents of the present invention and help the understanding of the present invention, and are not intended to limit the scope of the present invention. It will be apparent to those skilled in the art that other modifications based on the technical idea of the present invention can be carried out in addition to the embodiments disclosed herein.
[부호의 설명][Description of the code]
100, 200 : 복합형 저녹스 버너100, 200: Combination Low Knox Burner
110 : 튜브 111 : 측경부110 tube 111 side diameter portion
112 : 제2가스 유입구 113 : 연소가스 안내부112: second gas inlet 113: combustion gas guide
120 : 연료 공급관 121 : 중앙 공기 분사관120: fuel supply pipe 121: central air injection pipe
140 : 연료 분사관 141 : 연료 노즐140: fuel injection pipe 141: fuel nozzle
150 : 연료 스퍼드 151 : 제1가스 유입구150: fuel spud 151: first gas inlet
152 : 제1스퍼드 관 153 : 제2스퍼드 관152: first spud pipe 153: second spud pipe
161 ; 급기 통로161; Air supply passage
FR : 연소실 HL : 버너 장착공FR: Combustion chamber HL: Burner mounting hole
MP : 마운팅 플레이트MP: mounting plate

Claims (6)

  1. 연소실의 버너 장착공에 설치되는 복합형 저녹스 버너로서, Combination low-nox burner installed in the burner mounting hole of the combustion chamber,
    상기 버너 장착공에 삽입되어 선단이 연소실에 노출되며, 상기 연소실로 공기를 안내하는 튜브; A tube inserted into the burner mounting hole, the tip of which is exposed to the combustion chamber, and guides air to the combustion chamber;
    상기 튜브의 단부에 적어도 하나 마련되고, 상기 연소실로 연료를 분사하여 분할 화염을 형성하는 파이프 형상이며, 외주연 일 영역에는 연소 가스 유입을 위한 제1가스 유입구가 형성되는 연료 스퍼드;를 포함하고, At least one end of the tube, having a pipe shape for forming a split flame by injecting fuel into the combustion chamber, and a fuel spud having a first gas inlet for inlet of combustion gas in an outer peripheral region; ,
    상기 제1가스 유입구에서 상기 연소실 외측방향 후방에는 상기 튜브 내부의 공기에 혼합되는 연소 가스 유입을 위한 제2가스 유입구가 상기 튜브의 외주연에 형성되는 것을 특징으로 하는 복합형 저녹스 버너.Combination low-nox burner, characterized in that the second gas inlet for the combustion gas inlet to be mixed with the air in the tube in the outer side of the combustion chamber in the rear in the first gas inlet is formed on the outer periphery of the tube.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 제2가스 유입구에는 공기의 흐름방향으로 비스듬하게 연소가스 안내부가 형성되는 것을 특징으로 하는 복합형 저녹스 버너.Combination low-nox burner, characterized in that the combustion gas guide is formed obliquely in the flow direction of the air in the second gas inlet.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 연료 스퍼드는 The fuel spud
    연료 공급관에서 분기되며 상기 튜브의 외측으로 연장된 제1스퍼드 관과, A first spud tube branched from a fuel supply tube and extending out of the tube,
    상기 제1스퍼드 관과 간격을 두고 배치되어 상기 제1가스 유입구를 형성하며 상기 튜브의 내측으로 삽입되어 배치되어 분할 화염을 형성하는 제2스퍼드 관을 포함하는 것을 특징으로 하는 복합형 저녹스 버너.A composite low knox, characterized in that it comprises a second spud tube disposed to be spaced apart from the first spud tube to form the first gas inlet and inserted into the tube to form a split flame. burner.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 연료 스퍼드는 The fuel spud
    연료 공급관에서 분기되어 상기 튜브의 외측으로 연장된 제1스퍼드 관과, A first spud tube branched from a fuel supply tube and extending out of the tube,
    상기 제1스퍼드 관과 간격으로 두고 배치되어 상기 제1가스 유입구를 형성하며 상기 튜브의 외측에 배치되어 분할 화염을 형성하는 제2스퍼드 관을 포함하는 것을 특징으로 하는 복합형 저녹스 버너.And a second spud tube disposed to be spaced apart from the first spud tube to form the first gas inlet and arranged outside the tube to form a split flame.
  5. 청구항 3 또는 청구항 4에 있어서,The method according to claim 3 or 4,
    상기 제1스퍼드 관의 단부에는 상기 제2스퍼드 관을 향하여 연료를 분사하기 위해 직경이 축소된 분사 연결부가 구비되는 것을 특징으로 하는 복합형 저녹스 버너.Combination low knox burner, characterized in that the end of the first spud tube is provided with a reduced diameter injection connection for injecting fuel toward the second spur tube.
  6. 청구항 3 또는 청구항 4에 있어서,The method according to claim 3 or 4,
    상기 제2스퍼드 관에서 상기 제1가스 유입구 측 단부는 상기 제1스퍼드 관을 향하여 직경이 확장된 직경확장부가 형성되는 것을 특징으로 하는 복합형 저녹스 버너.The first gas inlet side end portion of the second spud tube is a composite low-nox burner, characterized in that the diameter extension portion is formed extending toward the first spud tube.
PCT/KR2017/001989 2017-02-23 2017-02-23 Composite low-nox burner WO2018155735A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780002341.4A CN108738333B (en) 2017-02-23 2017-02-23 Composite low nitrogen oxide burner
KR1020197018657A KR102230908B1 (en) 2017-02-23 2017-02-23 Combined low-nox burner
PCT/KR2017/001989 WO2018155735A1 (en) 2017-02-23 2017-02-23 Composite low-nox burner
JP2018502153A JP6595089B2 (en) 2017-02-23 2017-02-23 burner
HK18115515.4A HK1256477A1 (en) 2017-02-23 2018-12-04 Composite low-nox burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/001989 WO2018155735A1 (en) 2017-02-23 2017-02-23 Composite low-nox burner

Publications (1)

Publication Number Publication Date
WO2018155735A1 true WO2018155735A1 (en) 2018-08-30

Family

ID=63252921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001989 WO2018155735A1 (en) 2017-02-23 2017-02-23 Composite low-nox burner

Country Status (5)

Country Link
JP (1) JP6595089B2 (en)
KR (1) KR102230908B1 (en)
CN (1) CN108738333B (en)
HK (1) HK1256477A1 (en)
WO (1) WO2018155735A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2743686C1 (en) * 2019-05-08 2021-02-24 Сукук Корпоратион Nox low-ejection burner with perforated plate-type flame head
RU216775U1 (en) * 2022-12-23 2023-02-28 Дмитрий Рюрикович Григорьев Modernized direct-flow swirl burner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7287811B2 (en) * 2019-03-25 2023-06-06 三菱重工業株式会社 Combustor and gas turbine
KR102217216B1 (en) * 2019-05-08 2021-02-18 주식회사 수국 Low NOx Burner Having Combustion Head of Perforated Plate Type

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001116212A (en) * 1999-10-22 2001-04-27 Hirakawa Guidom:Kk Premixing low-nox gas burner
JP2004333067A (en) * 2003-05-09 2004-11-25 Takuma Co Ltd LIQUID FUEL LOW NOx COMBUSTION DEVICE
KR100676868B1 (en) * 2004-10-13 2007-02-02 한국생산기술연구원 COMBUSTION SYSTEM USING A BURNER GENERATING AN ULTRA LOW NOx EMISSIONS
JP4264004B2 (en) * 2002-03-16 2009-05-13 エクソンモービル・ケミカル・パテンツ・インク Improved burner system with low NOx emission
KR101556586B1 (en) * 2015-08-11 2015-10-01 주식회사 수국 Complex burner for Low nitrogen oxid
KR101569455B1 (en) * 2015-07-14 2015-11-16 주식회사 수국 Complex burner for Low nitrogen oxide

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04161708A (en) * 1990-10-25 1992-06-05 Babcock Hitachi Kk Gas burner
EP2326878A2 (en) * 2008-09-26 2011-06-01 Air Products and Chemicals, Inc. Combustion system with precombustor for recycled flue gas
KR20120082649A (en) * 2011-01-14 2012-07-24 주식회사 수국 Low nitrogen oxide burner for oil
CN103471101B (en) * 2013-09-26 2017-01-18 长沙理工大学 Multi-spray-nozzle bulky combustion low-NOx gas combustor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001116212A (en) * 1999-10-22 2001-04-27 Hirakawa Guidom:Kk Premixing low-nox gas burner
JP4264004B2 (en) * 2002-03-16 2009-05-13 エクソンモービル・ケミカル・パテンツ・インク Improved burner system with low NOx emission
JP2004333067A (en) * 2003-05-09 2004-11-25 Takuma Co Ltd LIQUID FUEL LOW NOx COMBUSTION DEVICE
KR100676868B1 (en) * 2004-10-13 2007-02-02 한국생산기술연구원 COMBUSTION SYSTEM USING A BURNER GENERATING AN ULTRA LOW NOx EMISSIONS
KR101569455B1 (en) * 2015-07-14 2015-11-16 주식회사 수국 Complex burner for Low nitrogen oxide
KR101556586B1 (en) * 2015-08-11 2015-10-01 주식회사 수국 Complex burner for Low nitrogen oxid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2743686C1 (en) * 2019-05-08 2021-02-24 Сукук Корпоратион Nox low-ejection burner with perforated plate-type flame head
RU2797080C1 (en) * 2022-09-14 2023-05-31 Дмитрий Рюрикович Григорьев Method for reducing nitrogen oxide emissions and a dual-flow burner for its implementation
RU216775U1 (en) * 2022-12-23 2023-02-28 Дмитрий Рюрикович Григорьев Modernized direct-flow swirl burner
RU218594U1 (en) * 2023-04-14 2023-06-01 Дмитрий Рюрикович Григорьев Upgraded single flow burner
RU222725U1 (en) * 2023-11-22 2024-01-17 Дмитрий Рюрикович Григорьев Boiler burner
RU222802U1 (en) * 2023-11-22 2024-01-18 Дмитрий Рюрикович Григорьев Burner with two-channel gas manifold
RU222726U1 (en) * 2023-11-27 2024-01-17 Дмитрий Рюрикович Григорьев Gas burner modernization device

Also Published As

Publication number Publication date
CN108738333B (en) 2019-12-13
JP2019509451A (en) 2019-04-04
JP6595089B2 (en) 2019-10-23
KR102230908B1 (en) 2021-03-24
HK1256477A1 (en) 2019-09-27
KR102230908B9 (en) 2022-09-30
KR20190087592A (en) 2019-07-24
CN108738333A (en) 2018-11-02

Similar Documents

Publication Publication Date Title
KR101569455B1 (en) Complex burner for Low nitrogen oxide
JP6466142B2 (en) Ultra-low nitrogen oxide combustion apparatus by internal recirculation of combustion gas and operation method thereof
JPS60132035A (en) Method and apparatus for reducing dischage of nitrogen oxidefrom gaseous fuel burner
WO2018155735A1 (en) Composite low-nox burner
KR101278280B1 (en) Low nitrogen oxide burner
KR101254928B1 (en) Low nitrogen oxide burner
WO2017175918A1 (en) Ultra-low emission combustor
KR101255698B1 (en) Low nitrogen oxide burner
WO2017209503A1 (en) Ultra-low nitrogen oxide combustion apparatus
WO2011010867A2 (en) Lean-rich burner
WO2020226206A1 (en) Low-nox burner having perforated plate-type combustion head
WO2023121107A1 (en) Internal exhaust gas recirculation pre-mixed industrial gas combustor and operating method therefor
WO2023121108A1 (en) Industrial gas combustor using fuel concentration gradient and operation method thereof
WO2017007068A1 (en) Combustor
EP0774621B1 (en) Method and apparatus for achieving combustion with a low production of nitrogen oxides
WO2021006678A1 (en) Heat generator having heat amplification function
JPS59157407A (en) Composite double-stage low nox burner with gas mixing combustion
KR20120082647A (en) Low nitrogen oxide burner
KR20130061167A (en) Low nitrogen oxide burner
JPH0452414A (en) Air supplier for combustion
KR101236689B1 (en) Low nitrogen oxide burner
JPH10213308A (en) Hydrogen/oxygen burner
WO2020105811A1 (en) Burner with plate having cooling and steam generating function
JPH11350973A (en) Additional combustion method using gas turbine exhaust gas and additional combustion burner which uses said additional combustion method
KR20010065375A (en) Three step combustion type burner of an oxide rare combustion type

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018502153

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197018657

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17898130

Country of ref document: EP

Kind code of ref document: A1