WO2018155473A1 - 触媒液の製造方法 - Google Patents

触媒液の製造方法 Download PDF

Info

Publication number
WO2018155473A1
WO2018155473A1 PCT/JP2018/006132 JP2018006132W WO2018155473A1 WO 2018155473 A1 WO2018155473 A1 WO 2018155473A1 JP 2018006132 W JP2018006132 W JP 2018006132W WO 2018155473 A1 WO2018155473 A1 WO 2018155473A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
transition metal
production method
catalyst
metal catalyst
Prior art date
Application number
PCT/JP2018/006132
Other languages
English (en)
French (fr)
Inventor
祐作 ▲穂▼坂
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to CN201880009989.9A priority Critical patent/CN110290872B/zh
Priority to KR1020197021016A priority patent/KR102435598B1/ko
Priority to EP18757923.0A priority patent/EP3586961B1/en
Priority to JP2019501365A priority patent/JP6997754B2/ja
Priority to US16/480,082 priority patent/US11628430B2/en
Publication of WO2018155473A1 publication Critical patent/WO2018155473A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/38Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of dienes or alkynes
    • C07C2/40Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of dienes or alkynes of conjugated dienes
    • C07C2/403Catalytic processes
    • C07C2/406Catalytic processes with hydrides or organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C27/00Processes involving the simultaneous production of more than one class of oxygen-containing compounds
    • C07C27/10Processes involving the simultaneous production of more than one class of oxygen-containing compounds by oxidation of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5022Aromatic phosphines (P-C aromatic linkage)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/20Olefin oligomerisation or telomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • B01J2531/64Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • B01J2531/66Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/828Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel

Definitions

  • the present invention relates to a method for producing a catalyst solution.
  • a transition metal complex catalyst used in a liquid phase homogeneous system has high reaction selectivity, but is difficult to industrially use. The reason is, for example, the low thermal and chemical stability of the transition metal catalyst. In order to compensate for them, in industrial processes, it is necessary to devise not only the reaction conditions but also the mode of introduction of the catalyst into the reaction system.
  • the transition metal catalyst in the telomerization reaction between a conjugated diene and an active hydrogen compound, the transition metal catalyst is not added directly to the reaction system, but the transition metal catalyst, the ligand, and the solvent are mixed in advance. The prepared catalyst solution is prepared and supplied to the reaction system.
  • Patent Document 1 in order to solve the problem that a phosphorus ligand such as a trisubstituted phosphine used to stabilize a palladium catalyst that is a transition metal catalyst reduces the reaction activity, a phosphorus ligand is used. It is described that it is prepared in advance as a phosphonium salt and fed to the reaction system.
  • a phosphorus ligand such as a trisubstituted phosphine used to stabilize a palladium catalyst that is a transition metal catalyst reduces the reaction activity
  • the present inventor prepared a large amount of the catalyst solution described in Patent Documents 1 and 2 at a time, and used a part of the catalyst solution for the continuous reaction and preserved the rest while elution or the like during the continuous reaction.
  • the transition metal catalyst was blackened over time in the stored catalyst solution (the transition metal catalyst was reduced and deposited as metal). Phenomenon).
  • the preparation may take two days or more depending on the solubility of the transition metal catalyst and the ligand.
  • an object of the present invention is to provide a method for producing a catalyst solution that can suppress the blackening of the transition metal catalyst during storage of the catalyst solution.
  • the present inventors have added a alkenyl compound and a phosphorus ligand during the production of the catalyst solution, and then added a Group 6-11 transition metal catalyst to blacken the transition metal catalyst during storage of the catalyst solution. As a result, the present invention was completed.
  • the present invention relates to the following [1] to [12].
  • [1] A method for producing a catalyst solution, wherein a group 6-11 transition metal catalyst is added after adding an alkenyl compound and a phosphorus ligand.
  • [2] The production method of [1], wherein an alkenyl compound, a phosphorus ligand, and a Group 6-11 transition metal catalyst are added in this order.
  • [3] The production method of [1] or [2], wherein the alkenyl compound is allyl alcohol.
  • [4] The production method of [3], wherein the allyl alcohol is an alkadienol having 8 to 12 carbon atoms.
  • the tertiary phosphorus compound is a hydrophobic aromatic phosphine or a hydrophilic aromatic phosphine.
  • the present invention relates to a method for producing a catalyst solution containing a Group 6-11 transition metal catalyst (hereinafter also simply referred to as “the production method of the present invention”).
  • the production method of the present invention the alkenyl compound and the phosphorus ligand are added, and then the Group 6-11 transition metal catalyst is added.
  • blackening of the transition metal catalyst during storage can be suppressed in the catalyst solution containing the Group 6-11 transition metal catalyst.
  • the alkenyl compound and the phosphorus ligand may be added simultaneously or sequentially.
  • the alkenyl compound, the phosphorus ligand from the viewpoint of increasing the solubility of the phosphorus ligand and the Group 6-11 transition metal catalyst and reducing the preparation time of the catalyst solution, the alkenyl compound, the phosphorus ligand, It is preferable to add the Group 11 transition metal catalyst in this order.
  • alkenyl compound refers to a compound having at least one unsaturated bond between carbon and carbon in the molecule.
  • the “Group 6 to 11 transition metal” in the “Group 6 to 11 transition metal catalyst” refers to a Group 6 to 11 transition metal in the long periodic table.
  • alkenyl compound used in the present invention a stable complex can be formed by acting with a phosphorus ligand and a Group 6-11 transition metal catalyst, and a phosphonium salt can be formed by reaction with a phosphorus ligand.
  • a compound can be preferably used.
  • the alkenyl compound used in the present invention is preferably allyl alcohol or a derivative thereof, more preferably allyl alcohol. “Allyl alcohol” refers to allyl alcohol or an alcohol in which at least one hydrogen atom of the allyl group portion of allyl alcohol is substituted.
  • the “derivative of allyl alcohol” is an alcohol derivative in which the hydrogen atom of the hydroxy group in the allyl alcohol is substituted, and examples thereof include esterified products and etherified products of allyl alcohols.
  • the derivative is preferably an esterified product.
  • the allyl alcohols or derivatives thereof suitably used as the alkenyl compound in the present invention are more preferably compounds represented by the following general formula (I).
  • R 1 to R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms.
  • R 5 represents a hydrogen atom, a hydrocarbon group having 1 to 12 carbon atoms, a group represented by —CO—R 6 or —SO 2 —R 6 (R 6 represents a hydrocarbon group having 1 to 12 carbon atoms) It is.
  • the hydrocarbon group in R 1 to R 4 is preferably a chain aliphatic group.
  • the chain aliphatic group may be linear or branched, and is preferably a linear aliphatic group.
  • the aliphatic group may be a saturated aliphatic group or an unsaturated aliphatic group.
  • the hydrocarbon group in R 1 to R 4 preferably has 1 to 8 carbon atoms, more preferably 1 to 6 carbon atoms.
  • the hydrocarbon group for R 5 is preferably a chain aliphatic group.
  • the chain aliphatic group may be linear or branched, and is preferably a linear aliphatic group.
  • the aliphatic group may be a saturated aliphatic group or an unsaturated aliphatic group, and is preferably a saturated aliphatic group.
  • the hydrocarbon group for R 5 preferably has 1 to 8 carbon atoms, more preferably 1 to 5 carbon atoms, and still more preferably 1 to 3 carbon atoms.
  • R 5 is preferably a hydrogen atom or a group represented by —CO—R 6 , and more preferably a hydrogen atom.
  • R 6 is a hydrocarbon group having 1 to 12 carbon atoms, preferably a chain aliphatic group.
  • the chain aliphatic group may be linear or branched, and is preferably a linear aliphatic group.
  • the aliphatic group may be a saturated aliphatic group or an unsaturated aliphatic group, and is preferably a saturated aliphatic group.
  • the hydrocarbon group for R 6 preferably has 1 to 8 carbon atoms, more preferably 1 to 5 carbon atoms, and still more preferably 1 to 3 carbon atoms.
  • the number of carbon atoms of the alkenyl compound used in the present invention is preferably from 3 to 24, more preferably from 6 to 18, and still more preferably from the viewpoints of the ability to form a complex, the ability to form a phosphonium salt, and the solubility in a solvent described later. Is 8-12.
  • alkenyl compound used in the present invention include allyl alcohol (2-propen-1-ol), 2-methyl-2-propen-1-ol, 2-buten-1-ol, 2, Allyl alcohols such as 5-hexadien-1-ol, 2,7-octadien-1-ol, 1,4-pentadien-3-ol, 1,7-octadien-3-ol, 2-octen-1-ol Allyl acetate, 2-methyl-2-propenyl acetate, 2,5-hexadienyl acetate, 2,7-octadienyl acetate, 1-vinyl-5-hexenyl acetate, 1-vinyl-2-propenyl propionate, 2-propionic acid 2- Examples include esterified products of allyl alcohols such as octenyl.
  • allyl alcohols are preferable.
  • alkadienols having 8 to 12 carbon atoms such as 2,7-octadien-1-ol and 1,7-octadien-3-ol are preferable, and 2,7-octadien-1- All is more preferred. These may be used alone or in combination of two or more.
  • phosphorus ligand used in the present invention a compound containing a phosphorus atom and capable of forming a complex by coordination with a Group 6-11 transition metal can be preferably used.
  • phosphorus ligand tertiary phosphorus compounds such as phosphine, phosphite and phosphonite are preferable.
  • tertiary phosphorus compounds include aliphatic phosphines such as triisopropylphosphine, tri-n-butylphosphine, and tri-n-octylphosphine; alicyclic phosphines such as tricyclohexylphosphine; triphenylphosphine, tolylphosphine, Hydrophobic aromatic phosphines such as diphenyl-p-chlorophenylphosphine and trimesitylphosphine; lithium 3- (diphenylphosphino) benzenesulfonate, sodium 3- (diphenylphosphino) benzenesulfonate, triethylamine 3- (diphenylphosphino) Hydrophilic aromatic phosphines such as benzene sulfonate and tris (sodium 3-sulfophenyl) phosphine; triethyl phos
  • aromatic phosphines that is, hydrophobic aromatic phosphines or hydrophilic aromatic phosphines are preferred, hydrophilic aromatic phosphines are more preferred, and lithium 3- (diphenylphosphino) benzenesulfonate or triethylamine 3- (diphenylphosphine) is preferred. Fino) benzenesulfonate is particularly preferred. These may be used alone or in combination of two or more.
  • the hydrophilic aromatic phosphine means —SO 3 M, —COOM (M represents an alkali metal ion, or —H + N (R 11 ) (R 12 ) (R 13 )), or —N (R 14 )
  • R 11 , R 12 and R 13 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R 14 and R 15 each independently represent an alkyl group having 1 to 3 carbon atoms.
  • Hydrophobic aromatic phosphine means an aromatic phosphine having no hydrophilic group.
  • Group 6-11 transition metal catalyst As the Group 6-11 transition metal catalyst used in the present invention, a compound containing a Group 6-11 transition metal in the long periodic table can be used.
  • the transition metal in the Group 6-11 transition metal catalyst is preferably at least one selected from the group consisting of Group 6 transition metals and Group 10 transition metals, more preferably Group 10 transition metals, and even more preferably palladium. . More specific examples of the Group 6-11 transition metal catalyst include a molybdenum compound, a tungsten compound, a nickel compound, a palladium compound, and a platinum compound. Among these, a palladium compound is preferable.
  • the palladium compound examples include divalent palladium complexes such as palladium acetate, palladium acetylacetonate, palladium chloride, and palladium nitrate; tris (dibenzylideneacetone) dipalladium, tetrakis (triphenylphosphine) palladium, bis (1,5- And zero-valent palladium complexes such as cyclooctadiene) palladium.
  • at least one selected from the group consisting of palladium acetate, palladium chloride, and tris (dibenzylideneacetone) dipalladium is preferable, and palladium acetate is more preferable. These may be used alone or in combination of two or more.
  • solvent in the present invention, it is preferable to use a solvent in order to produce the catalyst solution more smoothly.
  • the solvent is not particularly limited, but a solvent capable of at least partially dissolving the alkenyl compound, the phosphorus ligand, and the Group 6-11 transition metal catalyst is preferable.
  • solvents examples include ethers such as diethyl ether, tetrahydrofuran and 1,4-dioxane; ketones such as acetone and methyl ethyl ketone; nitriles such as acetonitrile and benzonitrile; sulfones such as sulfolane and methyl sulfolane; Examples thereof include esters such as methyl and ethyl acetate; aromatic hydrocarbons such as benzene, toluene and xylene; and aliphatic hydrocarbons such as butane, hexane and cyclohexane.
  • ethers such as diethyl ether, tetrahydrofuran and 1,4-dioxane
  • ketones such as acetone and methyl ethyl ketone
  • nitriles such as acetonitrile and benzonitrile
  • sulfones such as sulf
  • tetrahydrofuran, 1,4-dioxane or sulfolane is preferable, and sulfolane is more preferable.
  • sulfolane is more preferable.
  • the amount of the alkenyl compound, the phosphorus ligand, the Group 6-11 transition metal catalyst, and the solvent used as necessary is not particularly limited, and may be appropriately adjusted according to the application of the catalyst solution.
  • the amount of the alkenyl compound used in the production method of the present invention is preferably 0.1 to 100 mol, more preferably 1 to 50 mol, relative to 1 mol of the transition metal in the group 6-11 transition metal catalyst.
  • the amount of the phosphorus ligand used is preferably 0.1 to 100 mol, more preferably 1 to 50 mol, per 1 mol of the transition metal in the Group 6-11 transition metal catalyst.
  • the amount used is usually in the range of 1 to 99.5% by mass with respect to the total amount of the catalyst solution.
  • the concentration of the resulting catalyst solution is usually 0.1 to 10,000 ppm, preferably 50 to 5,000 ppm, more preferably 100 to 3,000 ppm as the concentration of the transition metal in the Group 6-11 transition metal catalyst. Range.
  • the method for producing the catalyst solution of the present invention can be performed, for example, by the following procedure.
  • an alkenyl compound, a phosphorus ligand, and, if necessary, a solvent are added to the reactor and stirred and mixed.
  • the alkenyl compound and the phosphorus ligand may be added simultaneously or sequentially. From the viewpoint of increasing the solubility of the phosphorus ligand and the Group 6-11 transition metal catalyst and shortening the preparation time of the catalyst solution, it is preferable to add the alkenyl compound and the phosphorus ligand in this order.
  • an alkenyl compound and a solvent can be added and mixed first, and after dissolving an alkenyl compound, a phosphorus ligand can be added and mixed.
  • a Group 6-11 transition metal catalyst is added to the mixture obtained by adding an alkenyl compound, a phosphorus ligand, and, if necessary, a solvent, and the mixture is stirred and mixed until no turbidity is obtained to obtain a catalyst solution.
  • the above operation is preferably performed in an inert gas atmosphere such as nitrogen.
  • the temperature at which each component is added and mixed is not particularly limited, but it can usually be carried out at a temperature of 5 to 50 ° C.
  • the use of the catalyst solution produced by the production method of the present invention is not particularly limited, and for example, it can be used as a catalyst solution for telomerization reaction or a catalyst solution for soot / trost reaction.
  • the production method of the present invention can be suitably used when the target catalyst solution is a telomerization reaction catalyst solution, and the target catalyst solution is butadiene or isoprene (particularly 1,3-butadiene or 2). It can be more suitably used in the case of a catalyst solution for telomerization reaction using (methyl-1,3-butadiene) as a raw material.
  • the obtained catalyst solution was transferred to a hyper glass cylinder (manufactured by Pressure Glass Industrial Co., Ltd., material: Hiper glass) and stored at room temperature in a carbon dioxide 0.5 MPa atmosphere. Sampling was performed appropriately during storage, and the concentration of palladium in the catalyst solution (converted to palladium acetate) was measured using an atomic absorption spectrophotometer (“Z-5010” manufactured by Hitachi High-Tech Science Co., Ltd.). Changes in palladium concentration (ppm) with respect to the number of days elapsed are shown in Table 1.
  • the production method of the present invention is useful in that an industrial-scale amount of catalyst solution can be prepared with good storage stability when producing a catalyst solution containing a Group 6-11 transition metal catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

第6~11族遷移金属触媒を含有する触媒液の、保存中における遷移金属触媒のブラック化を抑制することのできる触媒液の製造方法であり、アルケニル化合物およびリン配位子を添加した後、第6~11族遷移金属触媒を添加する、触媒液の製造方法。

Description

触媒液の製造方法
 本発明は、触媒液の製造方法に関する。
 非特許文献1~2に記載されている様に、液相均一系で使用される遷移金属の錯体触媒は、高い反応選択性を有する一方で、工業的に利用することは難しい。その理由として、例えば遷移金属触媒の熱的・化学的安定性の低さ等が挙げられる。それらを補うため、工業プロセスにおいては、反応条件だけでなく反応系への触媒の導入形態についても工夫を行う必要がある。
 例えば特許文献1~2では、共役ジエンと活性水素化合物とのテロメリゼーション反応において、遷移金属触媒を反応系に直接添加するのではなく、事前に遷移金属触媒や配位子と溶媒等を混合した触媒液を調製し、それを反応系に供給している。これは反応性の低下や目的外不純物の発生を防ぐための処置である。具体的に、特許文献1では、遷移金属触媒であるパラジウム触媒を安定化させるために用いる三置換ホスフィンなどのリン配位子が反応活性を低下させるという問題を解決するため、リン配位子を事前にホスホニウム塩として調製し、それを反応系に供給することが記載されている。
特開昭64-085988号公報 特開2002-371088号公報
触媒学会「触媒講座第4巻(基礎編4)反応機構決定法・錯体触媒(第1版)」、講談社、1986年6月、162-172頁 Chemical Reviews(Chem. Rev.)、2015年、115巻、127-150頁
 しかしながら、本発明者が特許文献1~2に記載の触媒液を一度に多量に調製し、その一部を連続反応のために使用し、残りを保存しつつ、連続反応の過程で溶出等により失われる触媒を補填するために適宜必要量を反応系に投入していたところ、保存していた触媒液中において経時的な遷移金属触媒のブラック化(遷移金属触媒が還元され、金属として析出する現象)が発生することが分かった。また、触媒液を一度に多量に調製した場合、遷移金属触媒や配位子の溶解性によっては、調製に2日以上を要する場合があるなど生産性に課題があった。
 すなわち本発明の課題は、触媒液の保存中における遷移金属触媒のブラック化を抑制することのできる、触媒液の製造方法を提供することにある。
 本発明者は鋭意検討した結果、触媒液の製造時にアルケニル化合物およびリン配位子を添加した後、第6~11族遷移金属触媒を添加することにより、触媒液保存時に遷移金属触媒のブラック化が抑制されることを見出し、当該知見に基づいてさらに検討を重ねて本発明を完成した。
 本発明は、下記[1]~[12]に関する。
[1]アルケニル化合物およびリン配位子を添加した後、第6~11族遷移金属触媒を添加する、触媒液の製造方法。
[2]アルケニル化合物、リン配位子、第6~11族遷移金属触媒をこの順で添加する、[1]の製造方法。
[3]アルケニル化合物がアリルアルコール類である、[1]または[2]の製造方法。
[4]アリルアルコール類が炭素数8~12のアルカジエノール類である、[3]の製造方法。
[5]炭素数8~12のアルカジエノール類が2,7-オクタジエン-1-オールである、[4]の製造方法。
[6]リン配位子が第三級リン化合物である、[1]~[5]のいずれかの製造方法。
[7]第三級リン化合物が疎水性芳香族ホスフィンまたは親水性芳香族ホスフィンである、[6]の製造方法。
[8]第三級リン化合物が親水性芳香族ホスフィンである、[6]の製造方法。
[9]第三級リン化合物がリチウム 3-(ジフェニルホスフィノ)ベンゼンスルホナートまたはトリエチルアミン 3-(ジフェニルホスフィノ)ベンゼンスルホナートである、[6]の製造方法。
[10]第6~11族遷移金属触媒がパラジウム化合物である、[1]~[9]のいずれかの製造方法。
[11]触媒液がテロメリゼーション反応用触媒液である、[1]~[10]のいずれかの製造方法。
[12]テロメリゼーション反応がブタジエンまたはイソプレンを原料としたテロメリゼーション反応である、[11]の製造方法。
 本発明の製造方法により、第6~11族遷移金属触媒を含有する触媒液の保存中における遷移金属触媒のブラック化を抑制することができる。
実施例および比較例で製造した触媒液における、経過日数に対するパラジウム濃度(酢酸パラジウム換算)の変化を示すプロットである。
 以下、本発明を詳細に説明する。
 本発明は、第6~11族遷移金属触媒を含有する触媒液の製造方法(以下、単に「本発明の製造方法」ともいう)に関する。本発明の触媒液の製造方法では、アルケニル化合物およびリン配位子を添加した後、第6~11族遷移金属触媒を添加する。当該製造方法により、第6~11族遷移金属触媒を含有する触媒液において、保存中における遷移金属触媒のブラック化を抑制することができる。上記の順で各成分を添加することにより該遷移金属触媒のブラック化を抑制できる理由は必ずしも明らかではないが、上記の順で添加することで、第6~11族遷移金属触媒およびリン配位子のみからなる不安定な錯体の形成が抑制され、アルケニル化合物、リン配位子および第6~11族遷移金属触媒からなる安定なπアリル錯体や、アルケニル化合物およびリン配位子からなるホスホニウム塩の形成が早期に完了するためと考えている。
 アルケニル化合物とリン配位子は同時に添加してもよく、順次添加してもよい。本発明の触媒液の製造方法では、リン配位子および第6~11族遷移金属触媒の溶解度を高め、触媒液の調製時間を短縮できる観点から、アルケニル化合物、リン配位子、第6~11族遷移金属触媒をこの順で添加することが好ましい。
 本明細書において「アルケニル化合物」とは、分子内に炭素-炭素間の不飽和二重結合を少なくとも1つ有する化合物をいう。また「第6~11族遷移金属触媒」における「第6~11族遷移金属」とは、長周期表における第6~11族の遷移金属をいう。
<アルケニル化合物>
 本発明に用いるアルケニル化合物としては、リン配位子および第6~11族遷移金属触媒と作用して安定な錯体を形成し得、かつ、リン配位子との反応によりホスホニウム塩を形成し得る化合物を好ましく用いることができる。
 上記観点、及び、後述する溶媒への溶解性等の観点から、本発明に用いるアルケニル化合物としてはアリルアルコール類又はその誘導体が好ましく、アリルアルコール類がより好ましい。「アリルアルコール類」とは、アリルアルコール、又は、アリルアルコールのアリル基部分の水素原子のうち少なくとも1つが置換されたアルコールをいう。また、「アリルアルコール類の誘導体」とは、上記アリルアルコール類におけるヒドロキシ基の水素原子が置換されたアルコール誘導体であり、アリルアルコール類のエステル化物、エーテル化物などが挙げられる。当該誘導体としてはエステル化物が好ましい。
 本発明においてアルケニル化合物として好適に用いられるアリルアルコール類又はその誘導体は、より好ましくは下記一般式(I)で表される化合物である。
Figure JPOXMLDOC01-appb-C000001

 上記一般式(I)において、R~Rはそれぞれ独立に、水素原子、又は炭素数1~12の炭化水素基である。Rは水素原子、炭素数1~12の炭化水素基、-CO-R、又は-SO-Rで表される基(Rは炭素数1~12の炭化水素基を示す)である。
 R~Rにおける炭化水素基としては鎖状脂肪族基が好ましい。鎖状脂肪族基は直鎖状でも分岐鎖状でもよく、直鎖状脂肪族基が好ましい。当該脂肪族基は飽和脂肪族基でも不飽和脂肪族基でもよい。R~Rにおける炭化水素基は、好ましくは炭素数1~8、より好ましくは炭素数1~6である。
 Rにおける炭化水素基としては鎖状脂肪族基が好ましい。鎖状脂肪族基は直鎖状でも分岐鎖状でもよく、直鎖状脂肪族基が好ましい。当該脂肪族基は飽和脂肪族基でも不飽和脂肪族基でもよく、飽和脂肪族基が好ましい。Rにおける炭化水素基は、好ましくは炭素数1~8、より好ましくは炭素数1~5、さらに好ましくは炭素数1~3である。
 Rは水素原子又は-CO-Rで表される基であることが好ましく、水素原子であることがより好ましい。
 Rは炭素数1~12の炭化水素基であり、鎖状脂肪族基が好ましい。鎖状脂肪族基は直鎖状でも分岐鎖状でもよく、直鎖状脂肪族基が好ましい。当該脂肪族基は飽和脂肪族基でも不飽和脂肪族基でもよく、飽和脂肪族基が好ましい。Rにおける炭化水素基は、好ましくは炭素数1~8、より好ましくは炭素数1~5、さらに好ましくは炭素数1~3である。
 本発明に用いるアルケニル化合物の炭素数は、錯体形成能、ホスホニウム塩の形成能、並びに、後述する溶媒への溶解性等の観点から、好ましくは3~24、より好ましくは6~18、さらに好ましくは8~12である。
 本発明に用いる好ましいアルケニル化合物としては、より具体的には例えばアリルアルコール(2-プロペン-1-オール)、2-メチル-2-プロペン-1-オール、2-ブテン-1-オール、2,5-ヘキサジエン-1-オール、2,7-オクタジエン-1-オール、1,4-ペンタジエン-3-オール、1,7-オクタジエン-3-オール、2-オクテン-1-オール等のアリルアルコール類;酢酸アリル、酢酸2-メチル-2-プロペニル、酢酸2,5-ヘキサジエニル、酢酸2,7-オクタジエニル、酢酸1-ビニル-5-ヘキセニル、プロピオン酸1-ビニル-2-プロペニル、プロピオン酸2-オクテニル等のアリルアルコール類のエステル化物などが挙げられる。
 これらの中でも、アリルアルコール類が好ましい。
 また、アリルアルコール類の中でも、2,7-オクタジエン-1-オール、1,7-オクタジエン-3-オール等の炭素数8~12のアルカジエノール類が好ましく、2,7-オクタジエン-1-オールがより好ましい。
 これらは1種を単独で用いてもよく、2種以上を併用してもよい。
<リン配位子>
 本発明に用いるリン配位子としては、リン原子を含有し、第6~11族遷移金属に配位して錯体を形成し得る化合物を好ましく用いることができる。当該リン配位子としては、ホスフィン、ホスファイト、ホスホナイト等の第三級リン化合物が好ましい。
 第三級リン化合物としては、例えばトリイソプロピルホスフィン、トリ-n-ブチルホスフィン、トリ-n-オクチルホスフィン等の脂肪族ホスフィン;トリシクロヘキシルホスフィン等の脂環式ホスフィン;トリフェニルホスフィン、トリトリルホスフィン、ジフェニル-p-クロロフェニルホスフィン、トリメシチルホスフィン等の疎水性芳香族ホスフィン;リチウム 3-(ジフェニルホスフィノ)ベンゼンスルホナート、ナトリウム 3-(ジフェニルホスフィノ)ベンゼンスルホナート、トリエチルアミン 3-(ジフェニルホスフィノ)ベンゼンスルホナート、トリス(ナトリウム 3-スルホフェニル)ホスフィン等の親水性芳香族ホスフィン;トリエチルホスファイト、トリブチルホスファイト、トリイソプロピルホスファイト等のホスファイト;オクチルジオクトキシホスフィン、ブチルジブトキシホスフィン等のホスホナイトなどが挙げられる。
 これらの中でも、芳香族ホスフィン、すなわち疎水性芳香族ホスフィンまたは親水性芳香族ホスフィンが好ましく、親水性芳香族ホスフィンがより好ましく、リチウム 3-(ジフェニルホスフィノ)ベンゼンスルホナートまたはトリエチルアミン 3-(ジフェニルホスフィノ)ベンゼンスルホナートが特に好ましい。
 これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 なお親水性芳香族ホスフィンとは、―SOM、-COOM(Mはアルカリ金属イオン、または-HN(R11)(R12)(R13)を示す)、または-N(R14)(R15)で表される基等の、親水性基を有する芳香族ホスフィンをいう。R11、R12、R13はそれぞれ独立に水素原子または炭素数1~3のアルキル基を示し、R14およびR15は、それぞれ独立に炭素数1~3のアルキル基を示す。
 疎水性芳香族ホスフィンとは、上記親水性基を有さない芳香族ホスフィンをいう。
<第6~11族遷移金属触媒>
 本発明に用いる第6~11族遷移金属触媒としては、長周期表における第6~11族遷移金属を含有する化合物を用いることができる。
 第6~11族遷移金属触媒における遷移金属としては、第6族遷移金属及び第10族遷移金属からなる群から選ばれる1種以上が好ましく、第10族遷移金属がより好ましく、パラジウムがさらに好ましい。
 第6~11族遷移金属触媒としては、より具体的には例えばモリブデン化合物、タングステン化合物、ニッケル化合物、パラジウム化合物、プラチナ化合物などが挙げられる。これらの中でも、パラジウム化合物が好ましい。
 パラジウム化合物としては、例えば酢酸パラジウム、パラジウムアセチルアセトナート、塩化パラジウム、硝酸パラジウム等の2価のパラジウム錯体;トリス(ジベンジリデンアセトン)ジパラジウム、テトラキス(トリフェニルホスフィン)パラジウム、ビス(1,5-シクロオクタジエン)パラジウム等の0価のパラジウム錯体などが挙げられる。
 これらの中でも、酢酸パラジウム、塩化パラジウム、およびトリス(ジベンジリデンアセトン)ジパラジウムからなる群から選ばれる1種以上が好ましく、酢酸パラジウムがより好ましい。
 これらは1種を単独で用いてもよく、2種以上を併用してもよい。
(溶媒)
 本発明においては、触媒液の製造をより円滑に行うため、溶媒を使用することが好ましい。
 溶媒は特に限定されないが、アルケニル化合物、リン配位子および第6~11族遷移金属触媒を少なくとも部分的に溶解し得るものが好ましい。
 そのような溶媒としては、例えばジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル類;アセトン、メチルエチルケトン等のケトン類;アセトニトリル、ベンゾニトリル等のニトリル類;スルホラン、メチルスルホラン等のスルホン類;酢酸メチル、酢酸エチル等のエステル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素;ブタン、ヘキサン、シクロヘキサン等の脂肪族炭化水素などが挙げられる。
 これらの中でも、テトラヒドロフラン、1,4-ジオキサンまたはスルホランが好ましく、スルホランがより好ましい。
 これらは1種を単独で用いてもよく、2種以上を併用してもよい。また、溶媒として水を併用してもよい。
 本発明において、アルケニル化合物、リン配位子、第6~11族遷移金属触媒および必要に応じて用いる溶媒の使用量は特に限定されず、触媒液の用途に応じて適宜調整すればよい。
 例えば、本発明の製造方法におけるアルケニル化合物の使用量は、第6~11族遷移金属触媒中の遷移金属1モルに対し、好ましくは0.1~100モル、より好ましくは1~50モルであり、リン配位子の使用量は、第6~11族遷移金属触媒中の遷移金属1モルに対し、好ましくは0.1~100モル、より好ましくは1~50モルである。
 溶媒を用いる場合、その使用量は、触媒液の全量に対し通常1~99.5質量%の範囲である。
 また得られる触媒液の濃度は、第6~11族遷移金属触媒中の遷移金属の濃度として、通常0.1~10,000ppm、好ましくは50~5,000ppm、より好ましくは100~3,000ppmの範囲である。
 本発明の触媒液の製造方法は、例えば以下の手順で行うことができる。
 まず、反応器にアルケニル化合物、リン配位子、および必要に応じ溶媒を添加して攪拌、混合する。前述の通り、アルケニル化合物とリン配位子は同時に添加してもよく、順次添加してもよい。リン配位子および第6~11族遷移金属触媒の溶解度を高め、触媒液の調製時間を短縮できる観点から、アルケニル化合物、リン配位子をこの順で添加することが好ましい。例えば溶媒を用いる場合は、最初にアルケニル化合物および溶媒を添加して混合し、アルケニル化合物を溶解させた後にリン配位子を添加して混合することができる。
 次いで、アルケニル化合物、リン配位子、および必要に応じ溶媒を添加して得られた混合物に第6~11族遷移金属触媒を添加し、濁りがなくなるまで攪拌、混合して触媒液を得ることができる。
 以上の操作は、窒素等の不活性ガス雰囲気下で行うことが好ましい。また各成分を添加、混合する際の温度は特に制限されないが、通常、5~50℃の温度下で行うことができる。
 本発明の製造方法により製造される触媒液の用途は特に限定されず、例えばテロメリゼーション反応用触媒液や辻・トロスト反応用触媒液等として用いることができる。
 中でも、本発明の製造方法は目的とする触媒液がテロメリゼーション反応用触媒液である場合に好適に用いることができ、目的とする触媒液がブタジエンまたはイソプレン(特に1,3-ブタジエンまたは2-メチル-1,3-ブタジエン)を原料としたテロメリゼーション反応用触媒液である場合により好適に用いることができる。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はかかる実施例により何ら限定されない。なお、特に断りがない限り、操作は窒素雰囲気下で行った。
(実施例)
 磁気攪拌子を備えたガラス製3つ口フラスコに蒸留水27.29g(27.29mL)、スルホラン28.69g(22.77mL)を入れた後、2,7-オクタジエン-1-オール0.676g(0.777mL)を加え溶解させた。次いで、トリエチルアミン 3-(ジフェニルホスフィノ)ベンゼンスルホナート1.0819g(2.44mmol)を加え、最後に酢酸パラジウム0.1354g(0.603mmol)を添加し、室温で10分攪拌した。取得した触媒液をハイパーグラスシリンダー(耐圧硝子工業株式会社製、材質:Hiperグラス)に移し、二酸化炭素0.5MPa雰囲気下、室温で保存した。
 保存中に適宜サンプリングを行い、原子吸光分光光度計(株式会社日立ハイテクサイエンス製「Z-5010」)を用いて触媒液中のパラジウムの濃度(酢酸パラジウム換算)を測定した。経過日数に対するパラジウムの濃度(ppm)の変化を表1に示す。
(比較例)
 磁気攪拌子を備えたガラス製3つ口フラスコに蒸留水27.30g(27.30mL)、スルホラン28.76g(22.82mL)を入れた後、トリエチルアミン 3-(ジフェニルホスフィノ)ベンゼンスルホナート1.0715g(2.42mmol)を溶解させた。この無色溶液をハイパーグラスシリンダーに移し、二酸化炭素0.5MPa雰囲気下、室温で1時間静置した。静置後脱圧し、一部をシリンジで抜き出し、フラスコに移した。そこへ酢酸パラジウム0.1387g(0.618mmol)を加え、よく攪拌して均一にした後、ハイパーグラスシリンダーへ戻し、シリンジによる抜き入れおよび容器の揺動によって内容物をよく攪拌した。その後、再び二酸化炭素0.5MPa雰囲気として16時間静置した。濁りがなくなったのを確認後、脱圧し、2,7-オクタジエン-1-オール0.634g(0.728mL)を加えた。取得した触媒液を二酸化炭素0.5MPa雰囲気下、室温で保存した。
 保存中に適宜サンプリングを行い、原子吸光分光光度計(株式会社日立ハイテクサイエンス製「Z-5010」)を用いて触媒液中のパラジウムの濃度(酢酸パラジウム換算)を測定した。経過日数に対するパラジウムの濃度(ppm)の変化を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 まず第6~11族遷移金属触媒の不存在下においてアルケニル化合物およびリン配位子を添加し、その後に第6~11族遷移金属触媒である酢酸パラジウムを添加した実施例においては、経過日数に応じたパラジウム濃度の有意な変化がみられず、ブラック化が抑制されたことが示唆された。一方、リン配位子、第6~11族遷移金属触媒、アルケニル化合物をこの順で添加した比較例においては、経過日数に応じて触媒液中のパラジウム濃度が減少し、ブラック化の発生が示唆された。
 また、実施例においては短時間で触媒液の調製が完了したのに対し、比較例においてはそれぞれの成分の溶解に時間がかかり、調製時間が長期化した。
 本発明の製造方法は、第6~11族遷移金属触媒を含有する触媒液の製造に際し、工業規模量の触媒液を保存性良く調製できる点で有用である。

Claims (12)

  1.  アルケニル化合物およびリン配位子を添加した後、第6~11族遷移金属触媒を添加する、触媒液の製造方法。
  2.  アルケニル化合物、リン配位子、第6~11族遷移金属触媒をこの順で添加する、請求項1に記載の製造方法。
  3.  アルケニル化合物がアリルアルコール類である、請求項1または2に記載の製造方法。
  4.  アリルアルコール類が炭素数8~12のアルカジエノール類である、請求項3に記載の製造方法。
  5.  炭素数8~12のアルカジエノール類が2,7-オクタジエン-1-オールである、請求項4に記載の製造方法。
  6.  リン配位子が第三級リン化合物である、請求項1~5のいずれかに記載の製造方法。
  7.  第三級リン化合物が疎水性芳香族ホスフィンまたは親水性芳香族ホスフィンである、請求項6に記載の製造方法。
  8.  第三級リン化合物が親水性芳香族ホスフィンである、請求項6に記載の製造方法。
  9.  第三級リン化合物がリチウム 3-(ジフェニルホスフィノ)ベンゼンスルホナートまたはトリエチルアミン 3-(ジフェニルホスフィノ)ベンゼンスルホナートである、請求項6に記載の製造方法。
  10.  第6~11族遷移金属触媒がパラジウム化合物である、請求項1~9のいずれかに記載の製造方法。
  11.  触媒液がテロメリゼーション反応用触媒液である、請求項1~10のいずれかに記載の製造方法。
  12.  テロメリゼーション反応がブタジエンまたはイソプレンを原料としたテロメリゼーション反応である、請求項11に記載の製造方法。
PCT/JP2018/006132 2017-02-27 2018-02-21 触媒液の製造方法 WO2018155473A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880009989.9A CN110290872B (zh) 2017-02-27 2018-02-21 催化剂液的制造方法
KR1020197021016A KR102435598B1 (ko) 2017-02-27 2018-02-21 촉매액의 제조 방법
EP18757923.0A EP3586961B1 (en) 2017-02-27 2018-02-21 Method for manufacturing catalyst liquid
JP2019501365A JP6997754B2 (ja) 2017-02-27 2018-02-21 触媒液の製造方法
US16/480,082 US11628430B2 (en) 2017-02-27 2018-02-21 Method for manufacturing catalyst liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-034584 2017-02-27
JP2017034584 2017-02-27

Publications (1)

Publication Number Publication Date
WO2018155473A1 true WO2018155473A1 (ja) 2018-08-30

Family

ID=63254412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006132 WO2018155473A1 (ja) 2017-02-27 2018-02-21 触媒液の製造方法

Country Status (6)

Country Link
US (1) US11628430B2 (ja)
EP (1) EP3586961B1 (ja)
JP (1) JP6997754B2 (ja)
KR (1) KR102435598B1 (ja)
CN (1) CN110290872B (ja)
WO (1) WO2018155473A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022116956A (ja) * 2021-01-29 2022-08-10 株式会社豊田中央研究所 還元反応用電極

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI791369B (zh) * 2021-12-30 2023-02-01 財團法人工業技術研究院 親水性磷配位體以及觸媒分離回收的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4642392A (en) * 1985-09-30 1987-02-10 National Distillers And Chemical Corporation Conjugated alkadiene telomerization to organo-oxyalkadienes
JPS6485988A (en) 1987-06-24 1989-03-30 Kuraray Co Phosphonium salt, production and use thereof
JP2002371088A (ja) 2001-04-13 2002-12-26 Kuraray Co Ltd スルホン酸アミン塩およびその製造方法
JP2005536482A (ja) * 2002-06-29 2005-12-02 オクセノ オレフィンヒェミー ゲゼルシャフト ミット ベシュレンクテル ハフツング 非環状オレフィンのテロメリゼーションのための方法
JP2006327960A (ja) * 2005-05-24 2006-12-07 Kuraray Co Ltd ポリエンの製造方法
JP2010215604A (ja) * 2009-02-23 2010-09-30 Mitsubishi Chemicals Corp アルコールの製造方法
JP2010248099A (ja) * 2009-04-13 2010-11-04 Fujifilm Corp トリアリールアミン化合物の製造方法
JP2012526780A (ja) * 2009-05-14 2012-11-01 ダウ グローバル テクノロジーズ エルエルシー ブタジエンのテロメリゼーションのためのパラジウムホスフィン錯体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0296550B1 (en) 1987-06-24 1993-12-29 Kuraray Co., Ltd. Phosphonium salts and processes for production of and uses for the same
DE10105751B4 (de) * 2001-02-08 2005-09-29 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von 1-Octen
JP4053325B2 (ja) 2001-04-13 2008-02-27 株式会社クラレ ホスホニウム塩、その製造方法およびその用途
SG93931A1 (en) 2001-04-13 2003-01-21 Kuraray Co Phosphonium salts and processes for production of and uses for the same, and phosphines deriving the same and processes for production of the phosphines
KR20100084519A (ko) 2007-11-06 2010-07-26 미쓰비시 가가꾸 가부시키가이샤 천이 금속 착물로부터 금속 석출을 억제하는 방법
WO2016164258A1 (en) 2015-04-10 2016-10-13 Dow Global Technologies Llc Butadiene telomerization catalyst and preparation thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4642392A (en) * 1985-09-30 1987-02-10 National Distillers And Chemical Corporation Conjugated alkadiene telomerization to organo-oxyalkadienes
JPS6485988A (en) 1987-06-24 1989-03-30 Kuraray Co Phosphonium salt, production and use thereof
JP2002371088A (ja) 2001-04-13 2002-12-26 Kuraray Co Ltd スルホン酸アミン塩およびその製造方法
JP2005536482A (ja) * 2002-06-29 2005-12-02 オクセノ オレフィンヒェミー ゲゼルシャフト ミット ベシュレンクテル ハフツング 非環状オレフィンのテロメリゼーションのための方法
JP2006327960A (ja) * 2005-05-24 2006-12-07 Kuraray Co Ltd ポリエンの製造方法
JP2010215604A (ja) * 2009-02-23 2010-09-30 Mitsubishi Chemicals Corp アルコールの製造方法
JP2010248099A (ja) * 2009-04-13 2010-11-04 Fujifilm Corp トリアリールアミン化合物の製造方法
JP2012526780A (ja) * 2009-05-14 2012-11-01 ダウ グローバル テクノロジーズ エルエルシー ブタジエンのテロメリゼーションのためのパラジウムホスフィン錯体

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Reaction Mechanism Determination Methods for Complex Catalysts", vol. 4, June 1986, KODANSHA LTD., article "Catalysts Lecture", pages: 162 - 172
CHEMICAL REVIEWS (CHEM. REV., vol. 115, 2015, pages 127 - 150
See also references of EP3586961A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022116956A (ja) * 2021-01-29 2022-08-10 株式会社豊田中央研究所 還元反応用電極
JP7327422B2 (ja) 2021-01-29 2023-08-16 株式会社豊田中央研究所 還元反応用電極

Also Published As

Publication number Publication date
US20190381489A1 (en) 2019-12-19
CN110290872B (zh) 2022-10-18
JPWO2018155473A1 (ja) 2019-12-19
US11628430B2 (en) 2023-04-18
EP3586961A1 (en) 2020-01-01
EP3586961B1 (en) 2023-06-07
EP3586961A4 (en) 2021-01-27
KR20190125289A (ko) 2019-11-06
CN110290872A (zh) 2019-09-27
KR102435598B1 (ko) 2022-08-23
JP6997754B2 (ja) 2022-02-04

Similar Documents

Publication Publication Date Title
Weicker et al. Main group Lewis acids in frustrated Lewis pair chemistry: beyond electrophilic boranes
Yamamoto et al. Mechanistic understanding of alkyne cyclotrimerization on mononuclear and dinuclear scaffolds:[4+ 2] cycloaddition of the third alkyne onto metallacyclopentadienes and dimetallacyclopentadienes
Gieshoff et al. Iron-catalyzed olefin hydrogenation at 1 bar H 2 with a FeCl 3–LiAlH 4 catalyst
Lu et al. Copper (I)-catalyzed diastereoselective hydroxytrifluoromethylation of dienes accelerated by phosphine ligands
Wakatsuki et al. Regio-and stereocontrolled dimerization of tert-butylacetylene to (Z)-1, 4-di-tert-butylbutatriene by ruthenium catalysis. Reaction mechanism involving alkynyl-vinylidene coupling and rearrangement of the metal-bound C4 unit
KR20130140045A (ko) (아미드아미노알칸) 금속 화합물, 및 당해 금속 화합물을 사용한 금속 함유 박막의 제조 방법
JP6101636B2 (ja) バナジウム錯体を用いたファルネサールの製造方法
Tshabalala et al. Palladium complexes of (benzoimidazol-2-ylmethyl) amine ligands as catalysts for methoxycarbonylation of olefins
WO2018155473A1 (ja) 触媒液の製造方法
Scalambra et al. Water and catalytic isomerization of linear allylic alcohols by [RuCp (H 2 O-κ O)(PTA) 2]+(PTA= 1, 3, 5-triaza-7-phosphaadamantane)
EP2980055B1 (en) Method for producing 2,7-octadien-1-ol
BRPI0714196A2 (pt) processo para a produÇço de 1,7-diolefinas substituÍdas ou nço-substituÍdas atravÉs da hidrodimerizaÇço
JP2024045516A (ja) トリアゼニド配位子を有する金属錯体及び気相から金属を堆積させるためのその使用
Chai et al. Dicarbanion compounds: The bridge between organometallic reagents and mononuclear heterocycles
CA2981600C (en) Butadiene telomerization catalyst and preparation thereof
Acosta-Ramírez et al. Study of the reactivity of 2-methyl-3-butenenitrile with Ni (0)-N-heterocyclic carbene complexes
Urbina‐Blanco et al. Ruthenium‐Indenylidene and Other Alkylidene Containing Olefin Metathesis Catalysts
Dai et al. Transformations of aryl isothiocyanates on tetraphosphine tungsten complexes and reactivity of the resulting dithiocarbonimidate ligand
Chen et al. Palladium-Catalyzed Homo-Dimerization of Terminal Alkynes
JP2009235032A (ja) ルテニウム錯体化合物の製造方法
JP2002284774A (ja) カルボニル化合物の製造方法
Sowa et al. Unusual ionization of phosphine-boranes under RP-HPLC-HRMS conditions disclose a potential system for reduction of C= O bond
JP2009023925A (ja) アミド化合物を製造する方法及びその方法に使用される触媒
WO2023162973A1 (ja) 2,7-オクタジエン-1-オールの製造方法
Hiltunen N-heterocyclic Carbene Copper-Catalyzed Carboxylation of Alkynes with Carbon Dioxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757923

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501365

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197021016

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018757923

Country of ref document: EP