WO2018155254A1 - 高炭素熱延鋼板およびその製造方法 - Google Patents

高炭素熱延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2018155254A1
WO2018155254A1 PCT/JP2018/004864 JP2018004864W WO2018155254A1 WO 2018155254 A1 WO2018155254 A1 WO 2018155254A1 JP 2018004864 W JP2018004864 W JP 2018004864W WO 2018155254 A1 WO2018155254 A1 WO 2018155254A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
transformation point
hot
temperature
Prior art date
Application number
PCT/JP2018/004864
Other languages
English (en)
French (fr)
Inventor
友佳 宮本
櫻井 康広
崇 小林
俊介 豊田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2018528083A priority Critical patent/JP6402842B1/ja
Priority to US16/486,908 priority patent/US11359267B2/en
Priority to KR1020197024056A priority patent/KR102288156B1/ko
Priority to CN202410302161.XA priority patent/CN118147535A/zh
Priority to CN201880012964.4A priority patent/CN110325657A/zh
Publication of WO2018155254A1 publication Critical patent/WO2018155254A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a high carbon hot rolled steel sheet excellent in workability and hardenability and a method for producing the same.
  • a hot-rolled steel sheet which is a carbon steel material for machine structure and alloy steel material for machine structure specified in JIS G4051, In many cases, it is manufactured by quenching in order to ensure the desired hardness. For this reason, the hot-rolled steel sheet used as a raw material is required to have excellent cold workability and hardenability, and various steel sheets have been proposed so far.
  • Patent Document 1 in mass%, C: 0.1 to 0.7%, Si: 0.01 to 1.0%, Mn: 0.1 to 3.0%, P: 0.001 -0.025%, S: 0.0001-0.01%, T.I. Al: 0.001 to 0.10%, N: 0.001 to 0.010%, Ti: 0.01 to 0.20%, Cr: 0.01 to 1.50%, Mo: 0.01-0.50%, B: 0.0001-0.010%, Nb: 0.001-0.10%, V: 0.001-0.2%, Cu: 0.001-0.
  • Patent Document 2 by weight, C: 0.15 to 0.75%, Si: 0.3% or less, Mn: 0.2 to 1.60%, Sol.Al: 0.05% N: 0.0060% or less, Cr: 0.2 to 1.2%, Mo: 0.05 to 1.0%, Ni: 0.05 to 1.2%, V: 0.05 to Spinning, rolling, etc. characterized by containing one or more of 0.50%, Ti: 0.005-0.05%, and B: 0.0005-0.0050% There has been proposed a high carbon steel strip capable of satisfying both the formability in cold working and the quenchability in quenching, and a method for producing the same.
  • Patent Document 3 by mass%, C: 0.10 to 0.60%, Si: 0.4% or less, Mn: 1.0% or less, Cr: 1.6% or less, Mo: 0 0.3% or less, Cu: 0.3% or less, Ni: 2.0% or less, N: 0.01% or less, P: 0.03% or less, S: 0.01% or less, T.
  • the rough bar when hot rolling is performed, the rough bar is heated after the completion of the rough hot rolling to raise the temperature to 20 to 150 ° C. and finished in a temperature range of 600 ° C. or more and less than Ae 3-20 ° C. It is necessary to complete the rolling. Finish rolling in the temperature range below Ae3 is an effective means for softening by coarsening the ferrite grains, but it becomes a non-uniform structure and the elongation decreases, or stable operation in actual operation There is a problem that is difficult. Further, the ferrite grain size is 10 ⁇ m or more and 50 ⁇ m or less, and the ferrite grains are relatively coarse.
  • box annealing is performed in a temperature range of Ac1-50 ° C. to Ac1 + 40 ° C. after hot rolling, or cold rolling after annealing and annealing in a temperature range of 650 ° C. to Ac1 are performed 1
  • the process is softened by repeating the process once or twice or more, and there is a problem that the number of processes is large.
  • Patent Document 3 is a technique for obtaining a steel sheet having excellent local ductility by holding at a temperature range of Ac1 or higher and then cooling at 50 ° C./h or lower after hot rolling.
  • the annealed steel sheet is softened to increase the elongation and hole expansion rate.
  • hardenability It is thought that it has softened by having many coarse carbides, and there is a concern that the hardenability cannot be ensured because the carbides are not sufficiently dissolved in the austenite region during quenching heating.
  • the present invention solves the above-mentioned problems, and even when annealing is performed in a nitrogen atmosphere, stable and excellent hardenability can be obtained, and before quenching, the hardness is 110 to 160 at HV and the total elongation is
  • An object of the present invention is to provide a high carbon hot-rolled steel sheet having an El of 40% or more and excellent cold workability and hardenability, and a method for producing the same.
  • the inventors of the present invention have provided a manufacturing condition and cold for a high carbon hot rolled steel sheet containing at least one of Cr, more preferably at least one of Ni and Mo and at least one of Sb, Sn, Bi, Ge, Te and Se.
  • the hardness and total elongation (hereinafter, also simply referred to as elongation) of the high carbon hot-rolled steel sheet before quenching are greatly influenced by the microstructure having ferrite and cementite, and the cementite density.
  • a predetermined amount of at least one of Sb, Sn, Bi, Ge, Te, Se is contained in the steel to prevent such nitriding, High hardenability can be ensured by suppressing a decrease in the amount of dissolved Cr and the amount of solid solution Mo.
  • [2] The high carbon hot rolled steel sheet according to the above [1], further containing 0.5% or less in total of at least one of Ni and Mo as a component composition.
  • [3] The above-mentioned [1] or [3], further comprising, as a component composition, 0.002 to 0.03% in total of at least one of Sb, Sn, Bi, Ge, Te, and Se in mass% 2]
  • [4] The high carbon hot-rolled steel sheet according to any one of [1] to [3], wherein the ferrite has an average crystal grain size of 5 ⁇ m or more and 15 ⁇ m or less.
  • [5] A method for producing a high carbon hot-rolled steel sheet according to any one of the above [1] to [4], wherein after hot rough rolling of the steel, finish rolling is performed at a finishing temperature: Ar3 transformation point or higher, Winding temperature: After winding at 500 to 700 ° C., annealing temperature: Heated to Ac1 transformation point or higher and 800 ° C or lower and held for 1 hr or more, and below Ar1 transformation point, average cooling rate: 1 to 20 ° C / hr A method for producing a high carbon hot-rolled steel sheet that is cooled and maintained for 20 hours or more in a temperature range below the Ar1 transformation point.
  • a high carbon hot-rolled steel sheet excellent in cold workability and hardenability can be obtained.
  • the high carbon hot-rolled steel sheet of the present invention is excellent in cold workability and hardenability, and is therefore suitable for automotive parts such as gears, missions, and seat recliners that require cold workability on the raw steel sheet.
  • % which is a unit of content of the component composition, means “mass%” unless otherwise specified.
  • Component composition C 0.10 to 0.33%
  • C is an important element for obtaining strength after quenching. If the C content is less than 0.10%, the desired hardness cannot be obtained by heat treatment after forming the part, so the C content needs to be 0.10% or more. However, when the amount of C exceeds 0.33%, it hardens and toughness and cold workability deteriorate. Therefore, the C content is 0.10 to 0.33%. In order to obtain excellent quenching hardness, the C content is preferably 0.15% or more. Furthermore, in order to stably obtain 430 or more in Vickers hardness (HV) after oil quenching, the content is preferably 0.18% or more. When used for cold working of parts with severe workability, the content is preferably 0.28% or less.
  • HV Vickers hardness
  • Si 0.15-0.35%
  • Si is an element that increases the strength by solid solution strengthening.
  • the amount of Si is set to 0.35% or less because it hardens as the amount of Si increases and cold workability deteriorates. Preferably it is 0.33% or less.
  • Si has an effect of increasing the temper softening resistance. When the Si amount is less than 0.15%, it becomes difficult to obtain the effect of the temper softening resistance, so the Si amount is set to 0.15% or more. Preferably it is 0.18% or more.
  • Mn 0.5 to 0.9%
  • Mn is an element that improves hardenability and increases strength by solid solution strengthening.
  • the Mn content is 0.9% or less.
  • the content is less than 0.5%, the hardenability starts to decrease, so the Mn content is 0.5% or more.
  • it is 0.55% or more, more preferably 0.60% or more.
  • P 0.03% or less
  • P is an element that increases the strength by solid solution strengthening. However, if the P content exceeds 0.03%, grain boundary embrittlement is caused and the toughness after quenching deteriorates. Therefore, the P content is 0.03% or less. In order to obtain excellent toughness after quenching, the P content is preferably 0.02% or less. P decreases the cold workability and toughness after quenching, so the smaller the amount of P, the better. However, excessively reducing the amount of P increases the refining cost, so the amount of P is preferably 0.005% or more.
  • S 0.010% or less
  • S is an element that has to be reduced in order to form sulfides and to reduce the cold workability of the high carbon hot-rolled steel sheet and the toughness after quenching.
  • the S amount is 0.010% or less.
  • the S content is preferably 0.005% or less. Since S decreases cold workability and toughness after quenching, the smaller the amount of S, the better. However, since the refining cost increases if S is excessively reduced, the amount of S is preferably 0.0005% or more.
  • sol. Al 0.10% or less sol. If the Al content exceeds 0.10%, AlN is generated during heating in the quenching process, the austenite grains are excessively refined, the generation of ferrite phase is promoted during cooling, the structure becomes ferrite and martensite, and hardened after quenching. Decrease. Therefore, the amount of sol.Al is 0.10% or less, preferably 0.06% or less. On the other hand, sol. Al has a deoxidizing effect, and in order to sufficiently deoxidize, Al is preferably 0.005% or more.
  • N 0.0065% or less
  • the N content is 0.0065% or less.
  • the lower limit is not particularly specified, as described above, N forms AlN, Cr-based nitride, and Mo-based nitride, thereby moderately suppressing the growth of austenite grains during heating in the quenching treatment, and after quenching Since the element improves the toughness of the steel, the N content is preferably 0.0005% or more.
  • Cr 0.90 to 1.5% Cr is an important element for improving the hardenability, and if it is less than 0.90%, a sufficient effect is not observed, so Cr needs to be 0.90% or more. On the other hand, if Cr exceeds 1.5%, the steel plate before quenching becomes hard and cold workability is impaired, so the content is made 1.5% or less. It should be noted that 1.2% or less is preferable in order to process parts that require high workability, which is difficult to perform press molding, and requires even better workability.
  • Ni and Mo 0.5% or less in total Ni and Mo are important elements that enhance the hardenability, and improving the hardenability when the hardenability is insufficient only by containing Cr. Moreover, it has the effect of suppressing temper softening resistance. In order to obtain such an effect, it is preferable to contain 0.01% or more of one or more of Ni and Mo in total. On the other hand, if one or more of Ni and Mo are contained in excess of 0.5% in total, the steel sheet before quenching is hardened and the cold workability is impaired, so the total is 0.5% or less. . It should be noted that 0.3% or less is preferable because when machining a part that requires high machining and is difficult to press-mold, further excellent workability is required.
  • Sb, Sn, Bi, Ge, Te, Se are important elements for suppressing nitriding from the surface layer.
  • Sb, Sn, Bi, Ge, Te, Se are important elements for suppressing nitriding from the surface layer.
  • the total amount of one or more of these elements is less than 0.002%, a sufficient effect is not recognized.
  • these elements exceed 0.03% in total, the nitriding prevention effect is saturated.
  • these elements tend to segregate at the grain boundaries. If the content of these elements exceeds 0.03% in total, the content becomes too high, and grain boundary embrittlement may occur. Therefore, the total content of at least one of Sb, Sn, Bi, Ge, Te, and Se is set to 0.03% or less.
  • the preferable total content is 0.005% at the lower limit and 0.020% at the upper limit.
  • one or more of Sb, Sn, Bi, Ge, Te, and Se are added in a total amount of 0.002 to 0.03%, so that the steel sheet surface layer even when annealed in a nitrogen atmosphere Nitrogen is suppressed, and an increase in nitrogen concentration in the steel sheet surface layer is suppressed.
  • the difference between the nitrogen content contained in the range of 150 ⁇ m depth in the thickness direction from the steel sheet surface and the average nitrogen content contained in the entire steel sheet can be made 30 mass ppm or less.
  • the balance other than the above components basically consists of Fe and inevitable impurities.
  • unavoidable impurities O: 0.005% or less and Mg: 0.003% or less are acceptable.
  • Ti: 0.005% or less, Nb: 0.005% or less, Cu: 0.04% or less can be contained.
  • the high carbon hot-rolled steel sheet of the present invention has ferrite and cementite.
  • Ferrite is preferably 90% or more in area ratio for securing high workability.
  • cementite is preferably 10% or less in terms of area ratio for securing high workability.
  • the effect of the present invention is not impaired as long as the total area ratio of the residual structure is about 5% or less. .
  • Cementite density 0.25 piece / ⁇ m 2 or less
  • the cementite diameter obtained by the high carbon hot rolled steel sheet of the present invention is about 0.1 to 3.0 ⁇ m in major axis, and is not an effective size for precipitation strengthening of the steel sheet.
  • the ferrite grains can be coarsened and the strength can be reduced by reducing the cementite density.
  • a cementite density shall be 0.25 piece / micrometer ⁇ 2 > or less.
  • the cementite density is preferably 0.15 pieces / ⁇ m 2 or less, more preferably 0.1 pieces / ⁇ m 2 or less.
  • Ferrite average crystal grain size 5 ⁇ m to 15 ⁇ m (preferred condition)
  • it exceeds 15 ⁇ m the strength of the steel sheet may be greatly reduced. In the region to be used without quenching, a certain level of strength of the steel plate is required, so 15 ⁇ m or less is preferable. More preferably, it is 12 ⁇ m or less.
  • the microstructure, the cementite density in the ferrite grains, and the ferrite average crystal grain size can be measured by the methods of Examples described later.
  • the high-carbon hot-rolled steel sheet of the present invention is made of steel having the above-described composition, and after hot rough rolling, finish rolling is performed at a finishing temperature: Ar3 transformation point or higher, and a winding temperature: 500 to 700. After winding at °C, annealing temperature: Heated from Ac1 transformation point to 800 °C and held for 1 hr or more, cooled to less than Ar1 transformation point, average cooling rate: 1-20 °C / hr, less than Ar1 transformation point It is manufactured by holding for 20 hours or more in the temperature range.
  • finish rolling is performed at an Ar3 transformation point or higher
  • winding is performed at a winding temperature of 500 to 700 ° C., and then held at a temperature range of 680 to 720 ° C. for 1 to 35 hours.
  • Annealing temperature Heated from Ac1 transformation point to 800 ° C. and held for 1 hr or more
  • Cooling stop temperature Ar1 transformation point or less (Ar1 transformation point ⁇ 110 ° C.) or more
  • average cooling rate 1-20 ° C./hr Manufactured by cooling.
  • Finishing temperature Ar3 transformation point or higher If the finishing temperature is less than the Ar3 transformation point, coarse ferrite grains are formed after hot rolling and after annealing, and the elongation is significantly reduced. For this reason, finishing temperature shall be more than Ar3 transformation point.
  • the upper limit of the finishing temperature is not particularly required, and is preferably 1000 ° C. or lower in order to smoothly perform cooling after finishing rolling.
  • Winding temperature 500-700 ° C
  • the hot-rolled steel sheet after finish rolling is wound into a coil shape. If the coiling temperature is too high, the strength of the hot-rolled steel sheet becomes too low, and when it is wound into a coil shape, it may be deformed by its own weight. Therefore, the upper limit of the coiling temperature is set to 700 ° C. On the other hand, when the coiling temperature is too low, the hot-rolled steel sheet is hardened, which is not preferable. Therefore, the lower limit is set to 500 ° C. Preferably it is 550 degreeC or more.
  • the winding temperature is the surface temperature of the steel plate.
  • Annealing temperature Heated from Ac1 transformation point to 800 ° C or lower and held for 1 hr or longer (first stage annealing), cooled to an average cooling rate of 1-20 ° C / hr until Ar1 transformation point, Ar1 transformation point
  • the hot-rolled steel sheet is heated to the Ac1 transformation point or higher and 800 ° C or lower and held for 1 hour or longer, and is precipitated in the hot-rolled steel sheet.
  • the relatively fine carbide that had been dissolved is dissolved and dissolved in the ⁇ phase, then cooled to below the Ar1 transformation point at an average cooling rate of 1 to 20 ° C./hr, and kept for 20 hours or more in the temperature range below the Ar1 transformation point.
  • the high-carbon hot-rolled steel sheet is heated to the Ac1 transformation point or higher and held (first-stage annealing), thereby dissolving fine carbides and dissolving C in ⁇ (austenite).
  • first-stage annealing the subsequent cooling stage and holding stage below the Ar1 transformation point
  • second stage annealing the subsequent cooling stage and holding stage below the Ar1 transformation point
  • the ⁇ / ⁇ interface and undissolved carbide existing in the temperature range above the Ac1 point become nucleation sites, and relatively coarse carbide is formed.
  • the atmospheric gas for annealing any of nitrogen, hydrogen, and a mixed gas of nitrogen and hydrogen can be used.
  • Annealing temperature Heated from Ac1 transformation point to 800 ° C. and held for 1 hr or longer (first stage annealing)
  • first stage annealing By heating the hot-rolled steel sheet to an annealing temperature of Ac1 or higher, a part of the ferrite of the steel sheet structure is transformed into austenite, fine carbides precipitated in the ferrite are dissolved, and C is dissolved in the austenite.
  • the ferrite ( ⁇ ) remaining without being transformed into austenite is annealed at a high temperature, the dislocation density decreases and softens.
  • relatively coarse carbides (undissolved carbides) that did not dissolve in the ferrite remain, but become coarser due to Ostwald growth.
  • the annealing temperature is less than the Ac1 transformation point, the austenite transformation does not occur, so the carbide cannot be dissolved in the austenite.
  • the holding time at the Ac1 transformation point or higher is less than 1 hr, fine carbides cannot be sufficiently dissolved, and therefore, the heating is performed at the Ac1 transformation point or higher for 1 hr or longer.
  • the annealing temperature exceeds 800 ° C., the ⁇ fraction becomes too high, and in the subsequent cooling process, the austenite region does not completely spheroidize and rod-like cementite is formed, and the workability Therefore, the annealing temperature is set to 800 ° C. or lower.
  • maintenance in the above includes the passage time of the steel plate of the temperature range more than Ac1 transformation point and 800 degrees C or less besides holding
  • the cooling temperature is below 1 to 20 ° C./hr below the Ar1 transformation point that is the temperature range of the second stage annealing. Cool with.
  • C discharged from the austenite with the transformation of austenite ⁇ ferrite precipitates as relatively coarse spherical carbides with the ⁇ / ⁇ interface and undissolved carbides as nucleation sites. In this cooling, it is necessary to adjust the cooling rate so that pearlite is not generated.
  • the average cooling rate from the first stage annealing to the second stage annealing is less than 1 ° C./hr, the production efficiency is poor, so the average cooling rate is 1 ° C./hr or more.
  • the temperature is set to 20 ° C./hr or less. Therefore, after the first stage annealing, cooling is performed at an average cooling rate of 1 to 20 ° C./hr to below the Ar1 transformation point that is the temperature range of the second stage annealing.
  • the second stage annealing temperature is preferably set to 660 ° C. or higher in order to sufficiently grow carbide.
  • maintenance in the above includes the passage time of the steel plate of the temperature range less than Ar1 transformation point other than holding
  • first stage annealing After winding, hold for 1 to 35 hours (first stage annealing) in a temperature range of 680 to 720 ° C., and then heat to an annealing temperature: Ac1 transformation point to 800 ° C. and hold for 1 hour or more (second stage) Annealing), cooling stop temperature: cooling to an Ar1 transformation point or lower (Ar1 transformation point ⁇ 110 ° C.) or higher and cooling at an average cooling rate of 1 to 20 ° C./hr can also be used.
  • first stage annealing Ac1 transformation point to 800 ° C. and hold for 1 hour or more (second stage) Annealing
  • cooling stop temperature cooling to an Ar1 transformation point or lower (Ar1 transformation point ⁇ 110 ° C.) or higher and cooling at an average cooling rate of 1 to 20 ° C./hr can also be used.
  • the reason for the above conditions is shown below.
  • the holding in the above includes holding at a constant temperature in the temperature range of 680 to 720 ° C., as well as the passage time of the steel plate in the temperature range of 680 to 720 ° C.
  • Annealing temperature Heated from Ac1 transformation point to 800 ° C and held for 1 hr or longer (second stage annealing)
  • second stage annealing By heating the hot-rolled steel sheet to an annealing temperature not lower than the Ac1 transformation point, a part of the ferrite in the steel sheet structure is transformed into austenite, fine carbides precipitated in the ferrite are dissolved, and C is fixed in the austenite. Dissolve.
  • the ferrite remaining without transforming to austenite is annealed at a high temperature, the dislocation density decreases and softens.
  • relatively coarse carbides (undissolved carbides) that did not dissolve in the ferrite remain, but become coarse due to Ostwald growth.
  • the annealing temperature is less than the Ac1 transformation point, the austenite transformation does not occur, so the carbide cannot be dissolved in the austenite.
  • the holding time at the Ac1 transformation point or higher is less than 1 hr, fine carbides cannot be sufficiently dissolved, and therefore the heating is performed at the Ac1 transformation point or higher for 1 hr or longer.
  • the annealing temperature exceeds 800 ° C., the ⁇ fraction becomes too high, and in the subsequent cooling process, the austenite region does not completely spheroidize and rod-like cementite is formed, and the workability Is 800 ° C. or lower.
  • the second stage annealing is not particularly limited, but the upper limit of the holding time is preferably 10 hr or less.
  • maintenance in the above includes the passage time in the temperature range more than Ac1 transformation point and 800 degrees C or less besides the holding
  • Cooling stop temperature Cooling below the Ar1 transformation point (Ar1 transformation point -110 ° C) and above, cooling at an average cooling rate: 1-20 ° C / hr After the second stage annealing, cool at 1-20 ° C / hr .
  • C discharged from the austenite with the transformation of austenite ⁇ ferrite precipitates as relatively coarse spherical carbides with the ⁇ / ⁇ interface and undissolved carbides as nucleation sites. In this cooling, it is necessary to adjust the cooling rate so that pearlite is not generated. If the average cooling rate is less than 1 ° C./hr, the production efficiency is poor, so the average cooling rate is 1 ° C./hr or more.
  • the temperature is set to 20 ° C./hr or less.
  • cooling is performed at an average cooling rate of 1 to 20 ° C./hr to a cooling stop temperature of not higher than the Ar1 transformation point (Ar1 transformation point ⁇ 110 ° C.) or higher.
  • the cooling stop temperature exceeds the Ar1 transformation point, ferrite transformation is not completed and pearlite is partially precipitated, so the cooling stop temperature is set to the Ar1 transformation point or lower.
  • the cooling stop temperature is set to (Ar1 transformation point ⁇ 110 ° C.) or higher.
  • both a converter and an electric furnace can be used.
  • the high carbon steel thus melted is made into a slab by ingot-bundling rolling or continuous casting.
  • the slab is usually heated and then hot rolled.
  • slab heating temperature 1280 degrees C or less in order to avoid the deterioration of the surface state by a scale.
  • the material to be rolled may be heated by a heating means such as a sheet bar heater during hot rolling.
  • the linear expansion curve at the time of heating was measured using a cylindrical test piece (diameter 3 mm ⁇ height 10 mm) with a Formaster tester, and the temperature (Ac1 point) at which transformation from ferrite to austenite starts was obtained. .
  • the temperature to start transformation from austenite to ferrite was determined.
  • Microstructure of the hot-rolled annealed sheet is obtained by cutting and polishing a sample collected from the center part of the sheet width, applying nital corrosion, and using a scanning electron microscope at a magnification of 3000 times at five points in the center part of the sheet thickness.
  • the number of cementite having a major axis of 0.1 ⁇ m or more was measured for the tissue photograph taken in step 1, and the number was divided by the area of the field of view of the photograph to obtain the cementite density.
  • the ferrite average crystal grain size was determined using the grain size evaluation method (cutting method) defined in JISG0551.
  • Hardness of steel plate after hot annealing (hot rolled annealed plate) A sample was taken from the center of the plate width of the steel plate after annealing, and measured at five points using a Vickers hardness meter (0.3 kgf) at a 1/4 thickness of the cross-sectional structure parallel to the rolling direction. Asked.
  • Elongation of steel plate (hot-rolled annealed plate) after annealing (In the table, it is referred to as original plate elongation.)
  • original plate elongation Elongation of steel plate (hot-rolled annealed plate) after annealing (In the table, it is referred to as original plate elongation.)
  • a tensile test piece cut from the annealed steel sheet in a direction of 0 ° (L direction) with respect to the rolling direction a tensile test was performed at 10 mm / min with a Shimadzu AG10TB AG / XR tensile tester. And the fractured samples were butted together to determine the elongation.
  • quenching hardness is used.
  • a flat plate test piece (width 15 mm x length 40 mm x plate thickness 3 mm) is sampled from the center of the width of the steel plate after hot annealing (hot rolled annealed plate), and water-cooled and 70 ° C oil-cooled as follows. Quenching treatment was performed, and the steel plate hardness (quenching hardness) after quenching was determined by each method. That is, the quenching treatment is a method in which the above flat plate test piece is used and held at 900 ° C. for 600 s and immediately cooled with water (water cooling), or held at 900 ° C. for 600 s and immediately cooled with 70 ° C.
  • the hot-rolled steel sheet of the example of the present invention has a microstructure composed of ferrite and cementite with a cementite density of 0.25 pieces / ⁇ m 2 or less, the hardness is 110 to 160 and the total elongation is HV. Is 40% or more, and it is understood that the cold workability is excellent and the hardenability is also excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

加工性および焼入れ性に優れる高炭素熱延鋼板およびその製造方法を提供する。 質量%で、C:0.10~0.33%、Si:0.15~0.35%、Mn:0.5~0.9%、P:0.03%以下、S:0.010%以下、sol.Al:0.10%以下、N:0.0065%以下、Cr:0.90%~1.5%含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、フェライトとセメンタイトを有するミクロ組織を有し、さらにセメンタイト密度が0.25個/μm2以下であり、硬さがHVで110~160、全伸びが40%以上である。

Description

高炭素熱延鋼板およびその製造方法
 本発明は、加工性および焼入れ性に優れる高炭素熱延鋼板およびその製造方法に関する。
 現在、トランスミッション、シートリクライナーなどの自動車用部品は、JISG4051に規定された機械構造用炭素鋼鋼材および機械構造用合金鋼鋼材である熱延鋼板を、冷間加工によって所望の形状に加工した後、所望の硬さを確保するために焼入れ処理を施して製造されることが多い。このため、素材となる熱延鋼板には優れた冷間加工性や焼入れ性が必要とされ、これまでに種々の鋼板が提案されている。
 例えば、特許文献1には、質量%で、C:0.1~0.7%、Si:0.01~1.0%、Mn:0.1~3.0%、P:0.001~0.025%、S:0.0001~0.01%、T.Al:0.001~0.10%、N:0.001~0.010%を含有し、さらにTi:0.01~0.20%、Cr:0.01~1.50%、Mo:0.01~0.50%、B:0.0001~0.010%、Nb:0.001~0.10%、V:0.001~0.2%、Cu:0.001~0.4%、W:0.001~0.5%、Ta:0.001~0.5%、Ni:0.001~0.5%、Mg:0.001~0.03%、Ca:0.001~0.03%、Y:0.001~0.03%、Zr:0.001~0.03%、La:0.001~0.03%、Ce:0.001~0.030%のうちの1種または2種以上を含有し、ビッカース硬さがHV100以上160以下であることを特徴とする打抜き性に優れる高炭素熱延鋼板が提案されている。特許文献1に記載の発明は、中・高炭素鋼の熱延鋼板を、その焼入れ性を維持しながら、優れた打抜き性を十分供し得るように軟質化することを目的とするものである。
 また、特許文献2には、重量%で、C:0.15~0.75%、Si:0.3%以下、Mn:0.2~1.60%、Sol.Al:0.05%未満、N:0.0060%以下、さらにCr:0.2~1.2%、Mo:0.05~1.0%、Ni:0.05~1.2%、V:0.05~0.50%、Ti:0.005~0.05%、およびB:0.0005~0.0050%のうちの1種または2種以上含有することを特徴とするスピニング加工、転造加工等の冷間加工における成形性と焼入れ処理における焼入れ性の双方を両立しうる高炭素鋼帯およびその製造方法が提案されている。
 また、特許文献3には、質量%で、C:0.10~0.60%、Si:0.4%以下、Mn:1.0%以下、Cr:1.6%以下、Mo:0.3%以下、Cu:0.3%以下、Ni:2.0%以下、N:0.01%以下、P:0.03%以下、S:0.01%以下、T.Al:0.1%以下、残部がFeおよび不可避的不純物からなる鋼を用いた局所延性に優れた中・高炭素鋼板の製造方法が提案されている。部品の製造コストを低減するべく、部品の一体成形や部品加工の工程簡略化の中で打抜き加工や曲げ加工に加えて伸びフランジ成形加工といった局所的な延性が要求される、高度な加工にも耐え得る鋼板を得ることを目的とするものである。
特開2015-117406号公報 特開2001-81528号公報 特開2001-73033号公報
 特許文献1に記載される技術では、熱間圧延する際に、粗熱延終了後粗バーを加熱して20~150℃に昇温させ、600℃以上Ae3-20℃未満の温度域で仕上圧延を完了することが必要とされている。Ae3点未満の温度域での仕上圧延はフェライト粒を粗大化させることで軟質化することに有効な手段であるが、不均一な組織となり伸びが低下する、あるいは、実操業では安定的な操業が困難であるといった問題がある。さらに、フェライト粒径が10μm以上50μm以下であり、比較的粗大なフェライト粒を有する。
 特許文献2に記載される技術では、熱間圧延後Ac1-50℃~Ac1+40℃の温度域で箱焼鈍を行う、もしくは上記焼鈍後冷間圧延と650℃~Ac1の温度域での焼鈍を1回もしくは2回以上繰り返すことで軟質化を図っており、工程数が多いという問題がある。
 特許文献3は、熱間圧延後、Ac1以上の温度域で保持後50℃/h以下で冷却することで、局部延性の優れた鋼板を得る技術である。Ac1点以上でのγ単位面積あたりのα/γ界面量やAc1点以上での100μmあたりの炭化物数を調整して、焼鈍後の鋼板を軟質化し、伸びや穴広げ率を高めている。しかし、焼入れ性に関して記載されていない。粗大な炭化物を多く有することで軟質化していると考えられ、焼入れ加熱時においてオーステナイト域で炭化物が十分に固溶せずに焼入れ性を確保できないことが懸念される。
 本発明は、上記課題を解決し、窒素雰囲気中で焼鈍をおこなった場合でも、安定して優れた焼入れ性が得られ、かつ、焼入れ処理前に、硬さがHVで110~160、全伸びElが40%以上である冷間加工性および焼入れ性に優れる高炭素熱延鋼板およびその製造方法を提供することを目的とする。
 本発明者らは、Cr、さらに好ましくはNi、Moの1種以上とSb、Sn、Bi、Ge、Te、Seのうちの1種以上を含有した高炭素熱延鋼板の製造条件と冷間加工性、焼入れ性との関係について鋭意検討した。その結果、以下の知見を得た。
i)焼入れ前の高炭素熱延鋼板の硬度、全伸び(以下、単に伸びともいう)には、フェライトとセメンタイトを有するミクロ組織、およびセメンタイト密度が大きく影響し、セメンタイト密度を0.25個/μm以下とすることで、硬さがHVで110~160、全伸び(El)が40%以上を得られる。
ii)窒素雰囲気で焼鈍を施す場合、雰囲気中の窒素が浸窒して鋼板中に濃化し、鋼板中のCrと結合してCr窒化物、あるいはMoと結合してMo窒化物を生成し、鋼板中の固溶Cr量および固溶Mo量が若干低下する場合がある。これに対して、本発明では、好ましくは、Sb、Sn、Bi、Ge、Te、Seのうちの少なくとも1種を鋼中に所定量含有することで、このような浸窒を防止し、固溶Cr量および固溶Mo量の低下を抑制して高い焼入れ性を確保することができる。
 本発明はこのような知見に基づいてなされたものであり、以下を要旨とする。
[1]質量%で、C:0.10~0.33%、Si:0.15~0.35%、Mn:0.5~0.9%、P:0.03%以下、S:0.010%以下、sol.Al:0.10%以下、N:0.0065%以下、Cr:0.90~1.5%含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、フェライトとセメンタイトを有するミクロ組織を有し、さらに前記セメンタイト密度が0.25個/μm2以下であり、硬さがHVで110~160、全伸びが40%以上である高炭素熱延鋼板。
[2]成分組成として、さらに、質量%で、Ni、Moのうちの1種以上を合計で0.5%以下を含有する上記[1]に記載の高炭素熱延鋼板。
[3]成分組成として、さらに、質量%で、Sb、Sn、Bi、Ge、Te、Seのうちの1種以上を合計で0.002~0.03%を含有する上記[1]または[2]に記載の高炭素熱延鋼板。
[4]前記フェライトの平均結晶粒径が5μm以上15μm以下である上記[1]~[3]のいずれかに記載の高炭素熱延鋼板。
[5]上記[1]~[4]のいずれかに記載の高炭素熱延鋼板の製造方法であって、鋼を熱間粗圧延後、仕上温度:Ar3変態点以上で仕上圧延を行い、巻取温度:500~700℃で巻き取った後、焼鈍温度:Ac1変態点以上800℃以下に加熱して1hr以上保持し、Ar1変態点未満まで、平均冷却速度:1~20℃/hrで冷却し、Ar1変態点未満の温度域で20hr以上保持する高炭素熱延鋼板の製造方法。
[6]上記[1]~[4]のいずれかに記載の高炭素熱延鋼板の製造方法であって、鋼を熱間粗圧延後、仕上温度:Ar3変態点以上で仕上圧延を行い、巻取温度:500~700℃で巻き取った後、680~720℃の温度域で1~35hr保持し、その後、焼鈍温度:Ac1変態点以上800℃以下に加熱して1hr以上保持し、冷却停止温度:Ar1変態点以下(Ar1変態点-110℃)以上まで、平均冷却速度:1~20℃/hrで冷却する高炭素熱延鋼板の製造方法。
 本発明によれば、冷間加工性および焼入れ性に優れる高炭素熱延鋼板が得られる。
本発明の高炭素熱延鋼板は、冷間加工性および焼入れ性に優れるため、素材鋼板に冷間加工性が必要とされる、ギア、ミッション、シートリクライナーなどの自動車用部品に好適である。
 以下に、本発明の高炭素熱延鋼板およびその製造方法について詳細に説明する。なお、成分組成の含有量の単位である「%」は特に断らない限り「質量%」を意味するものとする。
 1)成分組成
 C:0.10~0.33%
 Cは、焼入れ後の強度を得るために重要な元素である。C量が0.10%未満の場合、部品に成形した後の熱処理によって所望の硬さが得られないため、C量は0.10%以上にする必要がある。しかし、C量が0.33%を超えると硬質化し、靭性や冷間加工性が劣化する。したがって、C量は0.10~0.33%とする。優れた焼入れ硬さを得るには、C量は0.15%以上とすることが好ましい。さらには安定して油焼入れ後のビッカース硬さ(HV)で430以上を得るためには0.18%以上とすることが好ましい。加工性の厳しい部品の冷間加工に用いられる場合には、0.28%以下とすることが好ましい。
 Si:0.15~0.35%
 Siは固溶強化により強度を上昇させる元素である。Si量の増加とともに硬質化し、冷間加工性が劣化するため、Si量は0.35%以下とする。好ましくは0.33%以下である。一方、Siは焼戻し軟化抵抗を増加させる効果があり、Si量が0.15%未満になると、焼き戻し軟化抵抗の効果が得にくくなるため、Si量は0.15%以上とする。好ましくは0.18%以上である。
 Mn:0.5~0.9%
 Mnは焼入れ性を向上させるとともに、固溶強化により強度を上昇させる元素である。Mn量が0.9%を超えると、Mnの偏析に起因したバンド組織が発達し、組織が不均一になるため、冷間加工性が低下する。したがって、Mn量は0.9%以下とする。一方、0.5%未満になると焼入れ性が低下し始めるため、Mn量は0.5%以上とする。好ましくは0.55%以上、より好ましくは0.60%以上である。
 P:0.03%以下
 Pは固溶強化により強度を上昇させる元素である。しかし、P量が0.03%を超えて増加すると粒界脆化を招き、焼入れ後の靭性が劣化する。したがって、P量は0.03%以下とする。優れた焼入れ後の靭性を得るには、P量は0.02%以下が好ましい。Pは冷間加工性および焼入れ後の靭性を低下させるため、P量は少ないほど好ましいが、過度にP量を低減すると精錬コストが増大するため、P量は0.005%以上が好ましい。
 S:0.010%以下
 Sは硫化物を形成し、高炭素熱延鋼板の冷間加工性および焼入れ後の靭性を低下させるため、低減しなければならない元素である。S量が0.010%を超えると、高炭素熱延鋼板の冷間加工性および焼入れ後の靭性が著しく劣化する。したがって、S量は0.010%以下とする。優れた冷間加工性および焼入れ後の靭性を得るには、S量は0.005%以下が好ましい。Sは冷間加工性および焼入れ後の靭性を低下させるため、S量は少ないほど好ましい。しかしながら、過度にSを低減すると精錬コストが増大するため、S量は0.0005%以上が好ましい。
 sol.Al:0.10%以下
 sol.Al量が0.10%を超えると、焼入れ処理の加熱時にAlNが生成してオーステナイト粒が微細化し過ぎ、冷却時にフェライト相の生成が促進され、組織がフェライトとマルテンサイトとなり、焼入れ後の硬さが低下する。したがって、sol.Al量は0.10%以下とし、好ましくは0.06%以下とする。一方、sol.Alは脱酸の効果を有しており、十分に脱酸するためには、0.005%以上とすることが好ましい。
 N:0.0065%以下
 N量が0.0065%を超えると、AlNの形成により焼入れ処理の加熱時にオーステナイト粒が微細化し過ぎ、冷却時にフェライト相の生成が促進され、焼入れ後の硬さが低下する。したがって、N量は0.0065%以下とする。なお、下限はとくに規定しないが、上記したように、NはAlN、Cr系窒化物およびMo系窒化物を形成し、これにより焼入れ処理の加熱時にオーステナイト粒の成長を適度に抑制し、焼入れ後の靭性を向上させる元素であるため、N量は0.0005%以上が好ましい。
 Cr:0.90~1.5%
 Crは焼入れ性を高める重要な元素であり、0.90%未満の場合、十分な効果が認められないため、Crを0.90%以上とする必要がある。一方、Crが1.5%を超えると、焼入れ前の鋼板が硬質化して冷間加工性が損なわれるため、1.5%以下とする。なお、プレス成形の難しい高加工を必要とする部品を加工する際にはより一層優れた加工性を必要とするため、1.2%以下が好ましい。
 Ni、Moのうちの1種以上:合計で0.5%以下
 Ni、Moは焼入れ性を高める重要な元素であり、Cr含有のみでは焼入れ性が不十分な場合に焼入れ性を向上させる。また、焼戻し軟化抵抗を抑制する効果を有する。このような効果を得るためには、Ni、Moのうちの1種以上を合計で0.01%以上を含有することが好ましい。一方、Ni、Moのうちの1種以上を合計で0.5%を超えて含有すると、焼入れ前の鋼板が硬質化して冷間加工性が損なわれるため、合計で0.5%以下とする。なお、プレス成形の難しい高加工を必要とする部品を加工する際にはより一層優れた加工性を必要とするため、0.3%以下が好ましい。
 Sb、Sn、Bi、Ge、Te、Seのうちの1種以上:合計で0.002~0.03%
 Sb、Sn、Bi、Ge、Te、Seは表層からの浸窒抑制に重要な元素である。これら元素の1種以上の合計の量が0.002%未満の場合、十分な効果が認められないため、含有する場合は0.002%以上とする。一方、これらの元素を合計で0.03%を超えて含有しても、浸窒防止効果は飽和する。また、これらの元素は粒界に偏析する傾向があり、これらの元素の含有量を合計で0.03%超えとすると、含有量が高くなりすぎ、粒界脆化を引き起こす可能性がある。したがって、Sb、Sn、Bi、Ge、Te、Seののうちの1種以上の合計の含有量は0.03%以下とする。Sb、Sn、Bi、Ge、Te、Seを含有する場合の好ましい合計含有量は、下限は0.005%であり、上限は0.020%である。
 本発明では、上記のようにSb、Sn、Bi、Ge、Te、Seのうちの1種以上を合計で0.002~0.03%とすることで、窒素雰囲気で焼鈍した場合でも鋼板表層からの浸窒を抑制し、鋼板表層における窒素濃度の増加を抑制する。その結果、鋼板表面から板厚方向に150μm深さの範囲に含有される窒素量と、鋼板全体に含有される平均窒素量の差を30質量ppm以下とすることが可能となる。また、このように浸窒を抑制できるため、窒素雰囲気で焼鈍した場合であっても、焼鈍後の鋼板中に固溶Cr量、固溶Mo量を確保することができ、より一層高い焼入れ性を得ることができる。
 上記した成分以外の残部は、基本的にFeおよび不可避的不純物からなる。不可避的不純物としては、O:0.005%以下、Mg:0.003%以下、が許容できる。また、本発明の効果を損なわない成分として、Ti:0.005%以下、Nb:0.005%以下、Cu:0.04%以下を含有することができる。
 2)ミクロ組織
 本発明の高炭素熱延鋼板は、フェライトとセメンタイトを有する。フェライトは高加工性の確保の理由から面積率で90%以上が好ましい。セメンタイトは高加工性の確保の理由から面積率で10%以下が好ましい。フェライトとセメンタイト以外に、パーライトなどの残部組織が生成しても、残部組織の合計の面積率が5%程度以下であれば、本発明の効果を損ねるものではないため、含有してもかまわない。
 セメンタイト密度:0.25個/μm以下
本発明の高炭素熱延鋼板で得られるセメンタイト径は長径で0.1~3.0μm程度であり、鋼板の析出強化としては有効なサイズではない。本発明では、セメンタイト密度を低下させることでフェライト粒を粗大化し、強度低下を図ることができる。本発明では、フェライトを有し、セメンタイト密度を0.25個/μm以下とすることで、硬さがHVで110~160、全伸びが40%以上を達成することができる。このため、セメンタイト密度は0.25個/μm以下とする。セメンタイト密度は、好ましくは0.15個/μm以下であり、さらに好ましくは0.1個/μm以下である。
 フェライト平均結晶粒径5μm以上15μm以下(好適条件)
フェライト平均結晶粒径が5μm未満では冷間加工前の強度が増加し、プレス性が劣化する場合があるため、5μm以上が好ましい。より好ましくは7μm以上である。一方、15μmを超えると鋼板の強度が大きく低下する場合がある。焼入れせずに使用する領域ではある程度鋼板の強度が必要であるため、15μm以下が好ましい。より好ましくは12μm以下である。
なお、ミクロ組織、フェライト粒内のセメンタイト密度、フェライト平均結晶粒径は、後述する実施例の方法にて測定することができる。
 3)機械特性:硬さがHVで110~160、全伸びが40%以上
 本発明では、ギア、トランスミッション、シートリクライナーなどの自動車用部品を冷間プレスで成形するため優れた冷間加工性が必要である。また、焼入れ処理により硬さを大きくして耐磨耗性を付与する必要がある。そのため、本発明の高炭素熱延鋼板は、鋼板の硬さを低減してHVで110以上160以下とし、伸びを高めて全伸び(El)を40%以上として優れた冷間加工性を有するとともに、焼入れ性を向上させる必要がある。
 4)製造条件
 本発明の高炭素熱延鋼板は、上記の成分組成の鋼を素材とし、熱間粗圧延後、仕上温度:Ar3変態点以上で仕上圧延を行い、巻取温度:500~700℃で巻き取った後、焼鈍温度:Ac1変態点以上800℃以下に加熱して1hr以上保持し、Ar1変態点未満まで、平均冷却速度:1~20℃/hrで冷却し、Ar1変態点未満の温度域で20hr以上保持することにより製造される。または、熱間粗圧延後、仕上温度:Ar3変態点以上で仕上圧延を行い、巻取温度:500~700℃で巻き取った後、680~720℃の温度域で1~35hr保持し、その後、焼鈍温度:Ac1変態点以上800℃以下に加熱して1hr以上保持し、冷却停止温度:Ar1変態点以下(Ar1変態点-110℃)以上まで、平均冷却速度:1~20℃/hrで冷却することにより製造される。
以下、本発明の高炭素熱延鋼板の製造方法における限定理由について説明する。
 仕上温度:Ar3変態点以上
 仕上温度がAr3変態点未満では、熱間圧延後および焼鈍後に粗大なフェライト粒が形成され、伸びが著しく低下する。このため、仕上温度はAr3変態点以上とする。なお、仕上温度の上限は、特に規定する必要はなく、仕上圧延後の冷却を円滑に行うためには、1000℃以下とすることが好ましい。
 巻取温度:500~700℃
 仕上圧延後の熱延鋼板は、コイル形状に巻き取られる。巻取温度が高すぎると熱延鋼板の強度が低くなり過ぎて、コイル形状に巻き取られた際、コイルの自重で変形する場合があるため、操業上好ましくない。したがって巻取温度の上限を700℃とする。一方、巻取温度が低すぎると熱延鋼板が硬質化するため好ましくない。したがって下限を500℃とする。好ましくは550℃以上である。なお、巻取温度は鋼板の表面温度である。
 焼鈍温度:Ac1変態点以上800℃以下に加熱して1hr以上保持(1段目の焼鈍)し、Ar1変態点未満まで、平均冷却速度:1~20℃/hrで冷却して、Ar1変態点未満の温度域で20hr以上保持(2段目の焼鈍)する2段焼鈍
 本発明では、熱延鋼板をAc1変態点以上800℃以下に加熱して1hr以上保持し、熱延鋼板中に析出していた比較的微細な炭化物を溶解してγ相中に固溶させ、その後1~20℃/hrの平均冷却速度でAr1変態点未満まで冷却し、Ar1変態点未満の温度域で20hr以上保持することにより、オーステナイトが形成されていたC濃度の高い箇所を核としてフェライト粒内の未溶解Cを析出させて、セメンタイト密度を0.25個/μm以下とし、炭化物(セメンタイト)の分散を制御した状態とする。すなわち、本発明では、所定の条件で2段焼鈍を施すことで、炭化物の分散形態を制御し、鋼板を軟質化させ伸びを増加させる。本発明で対象とする高炭素鋼板では、軟質化する上で焼鈍後における炭化物の分散形態を制御することが重要となる。本発明では、高炭素熱延鋼板をAc1変態点以上に加熱して保持する(1段目の焼鈍)ことで、微細な炭化物を溶解するとともに、Cをγ(オーステナイト)中に固溶する。その後のAr1変態点未満の冷却段階や保持段階(2段目の焼鈍)において、Ac1点以上の温度域で存在するα/γ界面や未溶解炭化物が核生成サイトとなり、比較的粗大な炭化物が析出する。以下、このような2段焼鈍の条件について説明する。なお、焼鈍の際の雰囲気ガスは、窒素、水素、窒素と水素の混合ガスのいずれも使用できる。
 焼鈍温度:Ac1変態点以上800℃以下に加熱して1hr以上保持(1段目の焼鈍)
 熱延鋼板をAc1点以上の焼鈍温度に加熱することにより、鋼板組織のフェライトの一部をオーステナイトに変態させ、フェライト中に析出していた微細な炭化物を溶解させ、Cをオーステナイト中に固溶させる。一方、オーステナイトに変態せずに残ったフェライト(α)は高温で焼鈍されるため、転位密度が減少して軟化する。また、フェライト中には溶解しなかった比較的粗大な炭化物(未溶解炭化物)が残存するが、オストワルド成長により、より粗大になる。焼鈍温度がAc1変態点未満では、オーステナイト変態が生じないため、炭化物をオーステナイト中に固溶させることができない。また、本発明では、Ac1変態点以上での保持時間が1hr未満では微細な炭化物を十分に溶解することができないため、Ac1変態点以上に加熱し1hr以上保持することとする。また、焼鈍温度が800℃を超えるとγ分率が高くなりすぎて、この後の冷却過程においてオーステナイト域が一部球状化が完了せずに棒状のセメンタイトが形成されるようになり、加工性が低下するため、焼鈍温度は800℃以下とする。なお、1段目の焼鈍として、保持時間の上限は特に限定するものではないが、20hr以下とすることが好ましい。
なお、上記における保持とは、Ac1変態点以上800℃以下の一定温度における保持の他、Ac1変態点以上800℃以下の温度域の鋼板の通過時間も含むものである。
 Ar1変態点未満まで、平均冷却速度:1~20℃/hrで冷却
 上記した1段目の焼鈍の後、2段目の焼鈍の温度域であるAr1変態点未満に、1~20℃/hrで冷却する。冷却途中に、オーステナイト→フェライト変態に伴いオーステナイトから吐き出されるCが、α/γ界面や未溶解炭化物を核生成サイトとして、比較的粗大な球状炭化物として析出する。この冷却においては、パーライトが生成しないように冷却速度を調整する必要がある。1段目の焼鈍後、2段目の焼鈍までの平均冷却速度が、1℃/hr未満では生産効率が悪いため、平均冷却速度は1℃/hr以上とする。一方、20℃/hrを超えて大きくなると、パーライトが析出し、硬度が高くなるため、20℃/hr以下とする。このため、1段目の焼鈍後、2段目の焼鈍の温度域であるAr1変態点未満まで、平均冷却速度1~20℃/hrで冷却する。
 Ar1変態点未満の温度域(焼鈍温度)で20hr以上保持(2段目の焼鈍)
 上記した1段目の焼鈍後、所定の冷却速度で冷却してAr1変態点未満で保持することで、オストワルド成長により、粗大な球状炭化物をさらに成長させ、微細な炭化物を消失させる。Ar1変態点未満での保持時間が20hr未満では、炭化物を十分に成長させることができず、焼鈍後の硬度が大きくなりすぎる。このため、2段目の焼鈍はAr1変態点未満で20hr以上保持とする。なお、特に限定するものではないが、2段目の焼鈍温度は炭化物を十分成長させるため660℃以上とすることが好ましい。また、保持時間の上限は生産効率の観点から、30hr以下とすることが好ましい。
なお、上記における保持とは、Ar1変態点未満の一定温度における保持の他、Ar1変態点未満の温度域の鋼板の通過時間も含むものである。
 また、巻取後、680~720℃の温度域で1~35hr保持(1段目焼鈍)し、その後、焼鈍温度:Ac1変態点以上800℃以下に加熱して1hr以上保持し(2段目焼鈍)、冷却停止温度:Ar1変態点以下(Ar1変態点-110℃)以上まで、平均冷却速度:1~20℃/hrで冷却して製造することも可能である。上記条件とする理由は下記に示す。
 680~720℃の温度域(焼鈍温度)で1~35hr保持(1段目焼鈍)
 Ac1変態点以上に温度を上昇させた際、γ域で未固溶の炭化物を残存させた鋼とするほうがAr1変態点以下で保持した後、よりフェライト粒界で炭化物が粗大化し、フェライト粒内の炭化物が低減し、軟質化する。Ac1変態点以上まで温度を上げる前に組織を球状化させる方が上記の効果が発揮できるため、680~720℃で1~35hr保持する必要がある。保持時間が1hr未満では、球状化が進まないため、保持時間は1hr以上とする。好ましくは5hr以上である。一方、保持時間が35hr超えになると長時間となり、生産コストが高くなるため保持時間は35hr以下とする。好ましくは25hr以下である。
なお、上記における保持とは、680~720℃の温度域における一定温度における保持の他、680~720℃の温度域の鋼板の通過時間も含むものである。
 焼鈍温度:Ac1変態点以上800℃以下に加熱して1hr以上保持(2段目焼鈍)
 熱延鋼板をAc1変態点以上の焼鈍温度に加熱することにより、鋼板組織のフェライトの一部をオーステナイトに変態させ、フェライト中に析出していた微細な炭化物を溶解させ、Cをオーステナイト中に固溶させる。一方、オーステナイトに変態せずに残ったフェライトは高温で焼鈍されるため、転位密度が減少して軟化する。また、フェライト中には溶解しなかった比較的粗大な炭化物(未溶解炭化物)が残存するが、オストワルド成長により粗大になる。焼鈍温度がAc1変態点未満では、オーステナイト変態が生じないため、炭化物をオーステナイト中に固溶させることができない。また、本発明では、Ac1変態点以上での保持時間が1hr未満では微細な炭化物を十分に溶解することができないため、Ac1変態点以上に加熱して1hr以上保持することとする。また、焼鈍温度が800℃を超えるとγ分率が高くなりすぎて、この後の冷却過程においてオーステナイト域が一部球状化が完了せずに棒状のセメンタイトが形成されるようになり、加工性が低下するため800℃以下とする。2段目の焼鈍として、特に限定するものではないが、保持時間の上限は10hr以下とすることが好ましい。
 なお、上記における保持とは、Ac1変態点以上800℃以下の温度域における一定温度における保持の他、Ac1変態点以上800℃以下の温度域での通過時間も含むものである。
 冷却停止温度:Ar1変態点以下(Ar1変態点-110℃)以上まで、平均冷却速度:1~20℃/hrで冷却
 上記した2段目の焼鈍の後、1~20℃/hrで冷却する。冷却途中に、オーステナイト→フェライト変態に伴いオーステナイトから吐き出されるCが、α/γ界面や未溶解炭化物を核生成サイトとして、比較的粗大な球状炭化物として析出する。この冷却においては、パーライトが生成しないように冷却速度を調整する必要がある。平均冷却速度が、1℃/hr未満では生産効率が悪いため、平均冷却速度は1℃/hr以上とする。一方、20℃/hrを超えて大きくなると、パーライトが析出し、硬度が高くなるため、20℃/hr以下とする。このため、2段目の焼鈍後、冷却停止温度:Ar1変態点以下(Ar1変態点-110℃)以上まで、平均冷却速度:1~20℃/hrで冷却する。
冷却停止温度がAr1変態点超えになるとフェライト変態が完了せずパーライトが部分的に析出するため、冷却停止温度はAr1変態点以下にする。一方、冷却停止温度が(Ar1変態点-110)℃未満になると低温すぎて炭化物が成長し難くなるため、冷却停止温度は(Ar1変態点-110℃)以上とする。
 なお、本発明の高炭素鋼を溶製するには、転炉、電気炉どちらも使用可能である。また、こうして溶製された高炭素鋼は、造塊-分塊圧延または連続鋳造によりスラブとされる。スラブは、通常、加熱された後、熱間圧延される。なお、連続鋳造で製造されたスラブの場合は、そのままあるいは温度低下を抑制する目的で保熱して、圧延する直送圧延を適用してもよい。また、スラブを加熱して熱間圧延する場合は、スケールによる表面状態の劣化を避けるためにスラブ加熱温度を1280℃以下とすることが好ましい。熱間圧延では、仕上温度を確保するため、熱間圧延中にシートバーヒータ等の加熱手段により被圧延材の加熱を行ってもよい。
 表1に示す鋼番AからKの化学成分組成を有する鋼を溶製し、次いで表2および表3に示す製造条件に従って、仕上温度をAr3変態点以上とする熱間圧延を行い酸洗し、窒素雰囲気中(雰囲気ガス:窒素)で2段焼鈍にて球状化焼鈍を施して、板厚3.0mmの熱延焼鈍板(高炭素熱延鋼板)を製造した。このようにして製造した熱延焼鈍板について、下記のように、ミクロ組織、硬さ、伸びおよび焼入れ硬さを求めた。
なお、表1に示すAr1変態点、Ac1変態点およびAr3変態点は、次のようにして求めた。フォーマスター試験機にて、円柱状の試験片(直径3mm×高さ10mm)を用いて、加熱時の線膨張曲線を測定し、フェライトからオーステナイトに変態を開始する温度(Ac1点)を求めた。また、同様の試験片を用いて、オーステナイト単相域に加熱したのち、オーステナイト単相域から室温まで冷却したときの線膨張曲線を測定し、オーステナイトからフェライトに変態を開始する温度(Ar3点)、フェライトへの変態を終了する温度(Ar1点)を求めた。
 ミクロ組織
 熱延焼鈍板のミクロ組織は、板幅中央部から採取した試料を切断、研磨後、ナイタール腐食を施し、走査型電子顕微鏡を用いて、板厚中央部の5箇所で3000倍の倍率で撮影した組織写真について、長径が0.1μm以上のセメンタイトの個数を測定し、この個数を写真の視野の面積で除して、セメンタイト密度を求めた。
また、同上箇所で撮影した組織写真について、JISG0551に定めた結晶粒度の評価方法(切断法)を用いてフェライト平均結晶粒径を求めた。
 焼鈍後の鋼板(熱延焼鈍板)の硬さ(表中、原板硬さとする。)
 焼鈍後の鋼板の板幅中央部から試料を採取し、圧延方向に平行な断面組織の1/4板厚の位置でビッカース硬度計(0.3kgf)を用いて5点測定し、平均値を求めた。
 焼鈍後の鋼板(熱延焼鈍板)の伸び(表中、原板伸びとする。)
 焼鈍後の鋼板から、圧延方向に対して0°の方向(L方向)に切り出したJIS5号引張試験片を用いて、島津製作所AG10TB AG/XRの引張試験機にて10mm/分で引張試験を行い、破断したサンプルを突き合わせて伸びを求めた。
 焼入れ後の鋼板硬さ(表中、焼入れ硬さとする。)
 焼鈍後の鋼板(熱延焼鈍板)の板幅中央から平板試験片(幅15mm×長さ40mm×板厚3mm)を採取し、以下のように水冷、70℃油冷の2通りの方法により焼入れ処理を施して、各々の方法で焼入れ後の鋼板硬さ(焼入れ硬さ)を求めた。すなわち、焼入れ処理は、上記平板試験片を用いて、900℃で600s保持して直ちに水冷する方法(水冷)、900℃で600s保持して直ちに70℃油で冷却する方法(70℃油冷)で実施した。焼入れ特性は焼入れ処理後の試験片の切断面について、ビッカース硬さ試験機で荷重1kgfの条件下で硬さを5点測定し平均硬さを求め、これを焼入れ硬さとした。焼入れ硬さは、表4の条件を水冷後硬さ、70℃油冷後硬さともに満足した場合、合格(○)と判定し焼入れ性に優れると評価した。また、水冷後硬さ、70℃油冷後硬さのいずれかが表4に示す条件を満足しない場合、不合格(×)とし、焼入れ性に劣ると評価した。なお、表4は、経験上、焼入れ性が十分であると評価できる、C含有量に応じた焼入れ硬さを表したものである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 以上の結果から、本発明例の熱延鋼板は、セメンタイト密度を0.25個/μm以下としたフェライトとセメンタイトからなるミクロ組織を有し、硬さがHVで110以上160以下、全伸びが40%以上であり、冷間加工性に優れるとともに、焼入れ性にも優れていることがわかる。

Claims (6)

  1.  質量%で、C:0.10~0.33%、
    Si:0.15~0.35%、
    Mn:0.5~0.9%、
    P:0.03%以下、
    S:0.010%以下、
    sol.Al:0.10%以下、
    N:0.0065%以下、
    Cr:0.90~1.5%含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
    フェライトとセメンタイトを有するミクロ組織を有し、さらに前記セメンタイト密度が0.25個/μm2以下であり、
    硬さがHVで110~160、全伸びが40%以上である高炭素熱延鋼板。
  2.  成分組成として、さらに、質量%で、Ni、Moのうちの1種以上を合計で0.5%以下を含有する請求項1に記載の高炭素熱延鋼板。
  3.  成分組成として、さらに、質量%で、Sb、Sn、Bi、Ge、Te、Seのうちの1種以上を合計で0.002~0.03%を含有する請求項1または2に記載の高炭素熱延鋼板。
  4.  前記フェライトの平均結晶粒径が5μm以上15μm以下である請求項1~3のいずれかに記載の高炭素熱延鋼板。
  5.  請求項1~4のいずれかに記載の高炭素熱延鋼板の製造方法であって、鋼を
    熱間粗圧延後、仕上温度:Ar3変態点以上で仕上圧延を行い、巻取温度:500~700℃で巻き取った後、
    焼鈍温度:Ac1変態点以上800℃以下に加熱して1hr以上保持し、
    Ar1変態点未満まで、平均冷却速度:1~20℃/hrで冷却し、
    Ar1変態点未満の温度域で20hr以上保持する高炭素熱延鋼板の製造方法。
  6.  請求項1~4のいずれかに記載の高炭素熱延鋼板の製造方法であって、鋼を
    熱間粗圧延後、仕上温度:Ar3変態点以上で仕上圧延を行い、巻取温度:500~700℃で巻き取った後、
    680~720℃の温度域で1~35hr保持し、
    その後、焼鈍温度:Ac1変態点以上800℃以下に加熱して1hr以上保持し、
    冷却停止温度:Ar1変態点以下(Ar1変態点-110℃)以上まで、平均冷却速度:1~20℃/hrで冷却する高炭素熱延鋼板の製造方法。
PCT/JP2018/004864 2017-02-21 2018-02-13 高炭素熱延鋼板およびその製造方法 WO2018155254A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018528083A JP6402842B1 (ja) 2017-02-21 2018-02-13 高炭素熱延鋼板およびその製造方法
US16/486,908 US11359267B2 (en) 2017-02-21 2018-02-13 High-carbon hot-rolled steel sheet and method for manufacturing the same
KR1020197024056A KR102288156B1 (ko) 2017-02-21 2018-02-13 고탄소 열연 강판 및 그 제조 방법
CN202410302161.XA CN118147535A (zh) 2017-02-21 2018-02-13 高碳热轧钢板及其制造方法
CN201880012964.4A CN110325657A (zh) 2017-02-21 2018-02-13 高碳热轧钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017029632 2017-02-21
JP2017-029632 2017-02-21

Publications (1)

Publication Number Publication Date
WO2018155254A1 true WO2018155254A1 (ja) 2018-08-30

Family

ID=63253591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004864 WO2018155254A1 (ja) 2017-02-21 2018-02-13 高炭素熱延鋼板およびその製造方法

Country Status (5)

Country Link
US (1) US11359267B2 (ja)
JP (1) JP6402842B1 (ja)
KR (1) KR102288156B1 (ja)
CN (2) CN110325657A (ja)
WO (1) WO2018155254A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020143367A (ja) * 2019-02-28 2020-09-10 Jfeスチール株式会社 鋼板、部材及びそれらの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114086073A (zh) * 2021-11-19 2022-02-25 安徽工业大学 一种热轧高强结构钢的生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585626A (en) * 1978-11-14 1980-06-27 Nisshin Steel Co Ltd Manufacture of low alloy steel sheet or hoop for precise punching
JP2010255066A (ja) * 2009-04-28 2010-11-11 Jfe Steel Corp 高炭素熱延鋼板およびその製造方法
WO2012157267A1 (ja) * 2011-05-18 2012-11-22 Jfeスチール株式会社 高炭素薄鋼板およびその製造方法
JP2015117406A (ja) * 2013-12-18 2015-06-25 新日鐵住金株式会社 打ち抜き性に優れる中・高炭素鋼板およびその製造方法
WO2016190370A1 (ja) * 2015-05-26 2016-12-01 新日鐵住金株式会社 鋼板及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3909939B2 (ja) * 1997-09-08 2007-04-25 日新製鋼株式会社 伸びフランジ性に優れた中・高炭素鋼板の製造方法
AU764371B2 (en) 1998-08-28 2003-08-14 Eli Lilly And Company Method for administering insulinotropic peptides
JP2001073033A (ja) 1999-09-03 2001-03-21 Nisshin Steel Co Ltd 局部延性に優れた中・高炭素鋼板の製造方法
JP3468172B2 (ja) 1999-09-10 2003-11-17 住友金属工業株式会社 冷間加工性と焼入れ性に優れた高炭素鋼帯およびその製造方法
JP5076347B2 (ja) * 2006-03-31 2012-11-21 Jfeスチール株式会社 ファインブランキング加工性に優れた鋼板およびその製造方法
JP4963918B2 (ja) * 2006-09-29 2012-06-27 山陽特殊製鋼株式会社 Crを含有する低炭素鋼の焼鈍方法
JP5860343B2 (ja) * 2012-05-29 2016-02-16 株式会社神戸製鋼所 強度および延性のばらつきの小さい高強度冷延鋼板およびその製造方法
JP5812048B2 (ja) * 2013-07-09 2015-11-11 Jfeスチール株式会社 焼入れ性および加工性に優れる高炭素熱延鋼板およびその製造方法
EP3091098B1 (en) 2014-03-28 2018-07-11 JFE Steel Corporation High-carbon hot-rolled steel sheet and method for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585626A (en) * 1978-11-14 1980-06-27 Nisshin Steel Co Ltd Manufacture of low alloy steel sheet or hoop for precise punching
JP2010255066A (ja) * 2009-04-28 2010-11-11 Jfe Steel Corp 高炭素熱延鋼板およびその製造方法
WO2012157267A1 (ja) * 2011-05-18 2012-11-22 Jfeスチール株式会社 高炭素薄鋼板およびその製造方法
JP2015117406A (ja) * 2013-12-18 2015-06-25 新日鐵住金株式会社 打ち抜き性に優れる中・高炭素鋼板およびその製造方法
WO2016190370A1 (ja) * 2015-05-26 2016-12-01 新日鐵住金株式会社 鋼板及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020143367A (ja) * 2019-02-28 2020-09-10 Jfeスチール株式会社 鋼板、部材及びそれらの製造方法
JP7067578B2 (ja) 2019-02-28 2022-05-16 Jfeスチール株式会社 鋼板、及び鋼板と部材の製造方法

Also Published As

Publication number Publication date
CN110325657A (zh) 2019-10-11
JP6402842B1 (ja) 2018-10-10
JPWO2018155254A1 (ja) 2019-02-28
US20200232074A1 (en) 2020-07-23
CN118147535A (zh) 2024-06-07
KR20190109463A (ko) 2019-09-25
KR102288156B1 (ko) 2021-08-11
US11359267B2 (en) 2022-06-14

Similar Documents

Publication Publication Date Title
JP5050433B2 (ja) 極軟質高炭素熱延鋼板の製造方法
JP5812048B2 (ja) 焼入れ性および加工性に優れる高炭素熱延鋼板およびその製造方法
JP4650006B2 (ja) 延性および伸びフランジ性に優れた高炭素熱延鋼板およびその製造方法
KR102570145B1 (ko) 고탄소 열연 강판 및 그 제조 방법
JP6244701B2 (ja) 焼入れ性および加工性に優れる高炭素熱延鋼板およびその製造方法
JP6065121B2 (ja) 高炭素熱延鋼板およびその製造方法
WO2015004902A1 (ja) 高炭素熱延鋼板およびその製造方法
JP2017179596A (ja) 高炭素鋼板およびその製造方法
JP6569845B1 (ja) 高炭素熱延鋼板およびその製造方法
JP6402842B1 (ja) 高炭素熱延鋼板およびその製造方法
KR102569074B1 (ko) 고탄소 열연 강판 및 그 제조 방법
WO2019131099A1 (ja) 熱延鋼板およびその製造方法
JP5884781B2 (ja) 焼入れ性および加工性に優れる高炭素熱延鋼板およびその製造方法
CN113490756B (zh) 钢板、构件和它们的制造方法
JP2022122483A (ja) 熱延鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018528083

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18758044

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197024056

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18758044

Country of ref document: EP

Kind code of ref document: A1