WO2018155171A1 - 非晶性ポリアミド樹脂および成形品 - Google Patents

非晶性ポリアミド樹脂および成形品 Download PDF

Info

Publication number
WO2018155171A1
WO2018155171A1 PCT/JP2018/004030 JP2018004030W WO2018155171A1 WO 2018155171 A1 WO2018155171 A1 WO 2018155171A1 JP 2018004030 W JP2018004030 W JP 2018004030W WO 2018155171 A1 WO2018155171 A1 WO 2018155171A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural unit
unit derived
dicarboxylic acid
polyamide resin
amorphous polyamide
Prior art date
Application number
PCT/JP2018/004030
Other languages
English (en)
French (fr)
Inventor
政貴 山中
加藤 智則
葉月 小黒
伸幸 津中
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2019501195A priority Critical patent/JP7147740B2/ja
Priority to CN201880012830.2A priority patent/CN110312753A/zh
Priority to US16/487,373 priority patent/US11292877B2/en
Priority to EP18757796.0A priority patent/EP3587472A4/en
Priority to KR1020197027720A priority patent/KR102447869B1/ko
Publication of WO2018155171A1 publication Critical patent/WO2018155171A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a novel amorphous polyamide resin and a molded product.
  • the present invention relates to an amorphous polyamide resin that has a small weight change rate during wet heat, can be a molded product and can maintain a good appearance even under wet heat, and a molded product using the amorphous polyamide resin.
  • Patent Document 1 discloses a heat-resistant polyamide resin comprising a diamine component containing 40 mol% or more of bis (aminomethyl) cyclohexane and a dicarboxylic acid component containing 50 mol% or more of isophthalic acid and / or terephthalic acid. .
  • Amorphous polyamide resin is a resin having transparency and high chemical resistance, and thus has been used for films, sunglasses and the like.
  • the crystalline polyamide resin tends to generate burrs when molded, whereas the amorphous polyamide resin has the advantage that burrs are hardly generated even when molded.
  • amorphous polyamide resin In order to expand the use of amorphous polyamide resin, in recent years, amorphous polyamide resin also has a low rate of weight change when wet and has a molded product, and when it is placed under wet heat, cracks and deformation occur. Therefore, it is required to maintain a good appearance.
  • An object of the present invention is to solve such a problem, and is an amorphous polyamide resin having a small weight change rate at the time of wet heat, and a molded product that can be used under wet heat.
  • a polyamide resin capable of maintaining a good appearance and a molded article containing the amorphous polyamide resin.
  • a constituent unit derived from a diamine and a constituent unit derived from a dicarboxylic acid, 70 mol% or more of the constituent unit derived from the diamine is an isophoronediamine-derived constituent unit, and the constituent unit derived from the dicarboxylic acid is An amorphous polyamide resin comprising a structural unit derived from an ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 8 to 14 carbon atoms and a structural unit derived from an aromatic dicarboxylic acid.
  • the structural unit derived from the dicarboxylic acid is a structural unit derived from 30 to 80 mol% of an ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 8 to 14 carbon atoms and 70 to 20 mol% of an aromatic dicarboxylic acid.
  • the amorphous polyamide resin according to ⁇ 1> which contains a derived structural unit.
  • the structural unit derived from an ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 8 to 14 carbon atoms includes at least one of a structural unit derived from sebacic acid and a structural unit derived from dodecanedioic acid, ⁇ 1> or The amorphous polyamide resin according to ⁇ 2>.
  • ⁇ 5> 90 mol% or more of the structural unit derived from the diamine is a structural unit derived from isophorone diamine, and the structural unit derived from the dicarboxylic acid is 30 to 80 mol% of ⁇ , ⁇ having 8 to 14 carbon atoms.
  • a structural unit derived from a linear aliphatic dicarboxylic acid, and a structural unit derived from an ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 8 to 14 carbon atoms, including a structural unit derived from 70 to 20 mol% of an aromatic dicarboxylic acid Includes at least one of a structural unit derived from sebacic acid and a structural unit derived from dodecanedioic acid, and the structural unit derived from the aromatic dicarboxylic acid is a structural unit derived from 2,6-naphthalenedicarboxylic acid and a structural unit derived from isophthalic acid.
  • the structural unit derived from ⁇ , ⁇ -linear aliphatic dicarboxylic acid / the structural unit derived from aromatic dicarboxylic acid) is 0.5 to 3.5, and any one of ⁇ 1> to ⁇ 5>
  • ⁇ 7> The amorphous polyamide resin according to any one of ⁇ 1> to ⁇ 6>, wherein the amorphous polyamide resin has a glass transition temperature of 130 to 220 ° C.
  • ⁇ 8> The amorphous polyamide resin according to any one of ⁇ 1> to ⁇ 7>, wherein a notched Charpy impact strength in accordance with JIS K7111-1 is 2.5 kJ / m 2 or more.
  • ⁇ 9> The amorphous polyamide resin according to any one of ⁇ 1> to ⁇ 8>, wherein the melt viscosity measured at a shear rate of 122 sec ⁇ 1 and a measurement temperature of 280 ° C. is 200 to 2300 Pa ⁇ s.
  • an amorphous polyamide resin having a small weight change rate during wet heat a molded product that can maintain a good appearance even under wet heat, and the amorphous polyamide resin. It is now possible to provide molded products that contain.
  • the amorphous polyamide resin of the present invention is composed of a structural unit derived from diamine and a structural unit derived from dicarboxylic acid, and 70 mol% or more of the structural unit derived from diamine is a structural unit derived from isophoronediamine,
  • the structural unit derived from a dicarboxylic acid includes a structural unit derived from an ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 8 to 14 carbon atoms and a structural unit derived from an aromatic dicarboxylic acid.
  • an amorphous polyamide resin can be obtained that has a small weight change rate under wet heat, is a molded product, and does not undergo deformation or cracking even under wet heat and can maintain a good appearance.
  • This mechanism is made amorphous by using isophorone diamine, and by increasing the chain length of ⁇ , ⁇ -linear aliphatic dicarboxylic acid, it makes it difficult for water to be absorbed, and the weight during wet heat It is presumed that the change was suppressed and low water absorption was achieved.
  • an amorphous polyamide resin having a low melt viscosity, particularly a melt viscosity at 280 ° C. of 200 Pa ⁇ s or more can be obtained.
  • an amorphous polyamide resin having a high glass transition temperature particularly a glass transition temperature of 130 ° C. or higher, can be obtained.
  • the glass transition temperature tends to decrease.
  • the molded product formed from the amorphous polyamide resin of the present invention can be excellent in mechanical strength such as bending strength and Charpy impact strength while achieving the above performance.
  • the amorphous polyamide resin generally has a high viscosity and tends to have low fluidity, but the amorphous polyamide resin of the present invention can lower the melt viscosity, that is, can increase the fluidity. It becomes possible to make it excellent in moldability and extrudability.
  • amorphous polyamide resin of the present invention 70 mol% or more, preferably 80 mol% or more, more preferably 90 mol% or more, still more preferably 95 mol% or more, of the structural unit derived from diamine is even more.
  • 99 mol% or more is a structural unit derived from isophoronediamine.
  • diamines other than isophorone diamine include 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, tetramethylene diamine, pentamethylene diamine, hexamethylene diamine, octamethylene diamine, and nonamethylene diamine.
  • aromatic diamines such as aliphatic diamine, paraphenylenediamine, metaxylylenediamine, and paraxylylenediamine. These other diamines may be one type or two or more types.
  • the structural unit derived from a dicarboxylic acid includes a structural unit derived from an ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 8 to 14 carbon atoms and a structural unit derived from an aromatic dicarboxylic acid.
  • the structural unit derived from the dicarboxylic acid is preferably 30 to 80 mol%, more preferably 45 to 80 mol%, still more preferably 60 to 80 mol%, and still more preferably 65 to 80 mol%, having 8 to 14 carbon atoms. It is a structural unit derived from ⁇ , ⁇ -linear aliphatic dicarboxylic acid.
  • the structural unit derived from the dicarboxylic acid is preferably 70 to 20 mol%, more preferably 55 to 20 mol%, still more preferably 40 to 20 mol%, and still more preferably 35 to 20 mol%, aromatic dicarboxylic acid.
  • the ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 8 to 14 carbon atoms and the aromatic dicarboxylic acid may be used alone or in combination of two or more. Good. When using 2 or more types, it is preferable that a total amount becomes the said range.
  • the total amount of the structural unit derived from ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 8 to 14 carbon atoms and the structural unit derived from aromatic dicarboxylic acid is 90 mol% or more. It is preferable to occupy 95 mol% or more, and more preferably 99 mol% or more.
  • the ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 8 to 14 carbon atoms is preferably an ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 8 to 12 carbon atoms.
  • Examples of the ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 8 to 14 carbon atoms include suberic acid, azelaic acid, sebacic acid, 1,9-nonanedicarboxylic acid and dodecanedioic acid.
  • sebacic acid and dodecanedioic acid include At least one is preferred.
  • aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, and 2,6-naphthalenedicarboxylic acid, and isophthalic acid 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid and 2,6-naphthalenedicarboxylic acid are preferred, and at least 2,6-naphthalenedicarboxylic acid and isophthalic acid are preferred One is more preferred.
  • the form which does not contain the structural unit derived from a terephthalic acid substantially as an example of embodiment of the amorphous polyamide resin of this invention is illustrated.
  • substantially free means that the proportion of structural units derived from terephthalic acid in the structural units derived from dicarboxylic acid constituting the amorphous polyamide resin of the present invention is 5 mol% or less, preferably 3 mol% or less. Preferably, it means 1 mol% or less.
  • dicarboxylic acids other than ⁇ , ⁇ -linear aliphatic dicarboxylic acids having 8 to 14 carbon atoms and aromatic dicarboxylic acids include ⁇ , ⁇ -linear aliphatic dicarboxylic acids having 8 or less carbon atoms ( Examples thereof include adipic acid and pimelic acid) and alicyclic dicarboxylic acids (for example, 1,3-cyclohexanedicarboxylic acid).
  • One type of other dicarboxylic acid may be used, or two or more types may be used.
  • the amorphous polyamide resin of the present invention is a ratio of a structural unit derived from an ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 8 to 14 carbon atoms to a structural unit derived from an aromatic dicarboxylic acid in the structural unit derived from dicarboxylic acid.
  • the structural unit derived from ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 8 to 14 carbon atoms / structural unit derived from aromatic dicarboxylic acid is preferably 0.5 to 3.5, preferably 0.8 to 3.2 is more preferable, and 2.0 to 3.1 is even more preferable. By setting it as such a range, the amorphous polyamide resin excellent in various performance is obtained.
  • the present invention is not limited to these embodiments.
  • 90 mol% or more of the structural unit derived from diamine is a structural unit derived from isophorone diamine, and the structural unit derived from dicarboxylic acid is 30 to 80 mol%.
  • the structural unit derived from a linear aliphatic dicarboxylic acid includes at least one of a structural unit derived from sebacic acid and a structural unit derived from dodecanedioic acid, and the structural unit derived from an aromatic dicarboxylic acid is derived from 2,6-naphthalenedicarboxylic acid.
  • the structural unit derived from an ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 8 to 14 carbon atoms includes any one of a structural unit derived from sebacic acid and a structural unit derived from dodecanedioic acid.
  • the structural unit derived from dicarboxylic acid in the first embodiment, is 30 to 80 mol% of the structural unit derived from dodecanedioic acid and 70 to 20 mol. % Of an aromatic dicarboxylic acid-derived structural unit.
  • (structural unit derived from dodecanedioic acid / structural unit derived from aromatic dicarboxylic acid) is preferably 2.8 to 3.2.
  • the structural unit derived from dicarboxylic acid is 30 to 80 mol% of sebacic acid derived structural unit and 70 to 20 mol%.
  • a fourth embodiment of the amorphous polyamide resin of the present invention is the ⁇ , ⁇ -linear fatty acid having a structural unit derived from dicarboxylic acid of 30 to 80 mol% and having 8 to 14 carbon atoms in the first embodiment. And a structural unit derived from 2,6-naphthalenedicarboxylic acid of 70 to 20 mol%.
  • the fourth embodiment (structural unit derived from dodecanedioic acid / structural unit derived from aromatic dicarboxylic acid) is preferably 2.8 to 3.2.
  • the fifth embodiment of the amorphous polyamide resin of the present invention is the ⁇ , ⁇ -linear fatty acid having 8 to 14 carbon atoms in which the structural unit derived from dicarboxylic acid is 30 to 80 mol% in the first embodiment. And a structural unit derived from 70 to 20 mol% of isophthalic acid.
  • the structural unit derived from an ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 8 to 14 carbon atoms / the structural unit derived from an aromatic dicarboxylic acid is 0.8 to 3.2. preferable.
  • the amorphous polyamide resin of the present invention is composed of a structural unit derived from a dicarboxylic acid and a structural unit derived from a diamine, but a structural unit other than a structural unit derived from a dicarboxylic acid and a structural unit derived from a diamine, or a terminal group. Other sites may be included. Examples of other structural units include structural units derived from lactams such as ⁇ -caprolactam, valerolactam, laurolactam, undecalactam, and aminocarboxylic acids such as 11-aminoundecanoic acid and 12-aminododecanoic acid. It is not limited to these.
  • the amorphous polyamide resin of the present invention may contain trace components such as additives used in the synthesis.
  • the polyamide resin used in the present invention is usually 95% by weight or more, preferably 98% by weight or more, and more preferably 99% by weight or more is a structural unit derived from dicarboxylic acid or a structural unit derived from diamine.
  • the amorphous polyamide resin of the present invention is produced by a melt polycondensation (melt polymerization) method with a phosphorus atom-containing compound added.
  • melt polycondensation method the raw material diamine is added dropwise to the molten raw material dicarboxylic acid, the temperature is increased under pressure, and polymerization is performed while removing condensed water, or a salt composed of the raw material diamine and the raw material dicarboxylic acid is used.
  • a method of raising the temperature under pressure and polymerizing in a molten state while removing added water and condensed water is preferred.
  • the phosphorus atom-containing compound added to the polycondensation system of the amorphous polyamide resin of the present invention includes dimethylphosphinic acid, phenylmethylphosphinic acid, hypophosphorous acid, sodium hypophosphite, potassium hypophosphite, Lithium hypophosphite, calcium hypophosphite, ethyl hypophosphite, phenylphosphonic acid, sodium phenylphosphonite, potassium phenylphosphonite, lithium phenylphosphonite, ethyl phenylphosphonite, phenylphosphonic acid, ethyl Phosphonic acid, sodium phenylphosphonate, potassium phenylphosphonate, lithium phenylphosphonate, diethyl phenylphosphonate, sodium ethylphosphonate, potassium ethylphosphonate, phosphorous acid, sodium hydrogen phosphite, sodium phosphite, phosphorus phosphit
  • metal hypophosphite such as sodium hypophosphite, potassium hypophosphite, lithium hypophosphite, calcium hypophosphite and the like are amides. It is preferably used because it has a high effect of promoting the phosphating reaction and is excellent in anti-coloring effect, and calcium hypophosphite is particularly preferred.
  • the phosphorus atom-containing compounds that can be used in the present invention are not limited to these compounds.
  • the amorphous polyamide resin of the present invention obtained by melt polycondensation is once taken out, pelletized, and dried before use.
  • the amorphous polyamide resin of the present invention has a melt viscosity at a shear rate of 122 sec ⁇ 1 and 280 ° C. of preferably 200 Pa ⁇ s or more, and more preferably 250 Pa ⁇ s or more.
  • the upper limit of the melt viscosity is preferably 2300 Pa ⁇ s or less, more preferably 1000 Pa ⁇ s or less, further preferably 600 Pa ⁇ s or less, and further preferably 550 Pa ⁇ s or less. More preferably, it is 490 Pa ⁇ s or less.
  • the measuring method of melt viscosity follows the method described in the Example mentioned later. In the case where it is difficult to obtain the equipment used in the embodiment due to the out-of-print version or the like, other equipment having equivalent performance can be used. Hereinafter, the same applies to other measurement methods.
  • the lower limit of the number average molecular weight of the amorphous polyamide resin of the present invention is preferably 8,000 or more, more preferably 10,000 or more.
  • the upper limit of the number average molecular weight is preferably 25,000 or less, and more preferably 20,000 or less.
  • the method for measuring the number average molecular weight follows the method described in the examples described later.
  • the amorphous polyamide resin of the present invention preferably has a glass transition temperature of 130 ° C. or higher, more preferably 140 ° C. or higher, and even more preferably 145 ° C. or higher.
  • the upper limit of the glass transition temperature is not particularly defined, but is preferably, for example, 220 ° C. or lower, 200 ° C. or 170 ° C. or lower, which is sufficiently practical.
  • the method for measuring the glass transition temperature follows the method described in the examples described later.
  • the polyamide resin of the present invention preferably has a weight change rate of 7.0% or less after standing for 200 hours in an environment of 85 ° C. and 85% relative humidity (RH), and is 6.0% or less. More preferably, it may be 5.0% or less, 4.6% or less, 4.5% or less, and 4.2% or less.
  • the lower limit of the weight change rate is preferably 0%, but 2.0% or more, and even 3.0% or more is a practical level.
  • the amorphous polyamide resin in the present invention is a resin having no clear melting point. Specifically, it means that the crystal melting enthalpy ⁇ Hm is less than 5 J / g, preferably 3 J / g or less. / G or less is more preferable.
  • the crystal melting enthalpy is measured according to the method described in Examples described later.
  • the amorphous polyamide resin of the present invention can be a polyamide resin excellent in mechanical strength.
  • the amorphous polyamide resin of the present invention preferably has a flexural modulus of 2.10 GPa or more, more preferably 2.20 GPa or more according to JIS K7171.
  • the upper limit is not particularly defined, but for example, it is sufficiently practical even if it is 4.00 GPa or less, and even 3.50 GPa or less.
  • the amorphous polyamide resin of the present invention preferably has a bending strength according to JIS K7171 of 100 MPa or more, more preferably 110 MPa or more, and further preferably 115 MPa or more.
  • the upper limit is not particularly defined, but for example, it is sufficiently practical even if it is 170 MPa or less, and further 150 MPa or less.
  • the amorphous polyamide resin of the present invention preferably has a notched Charpy impact strength according to JIS K7111-1 of 2.5 kJ / m 2 or more, more preferably 3.0 kJ / m 2 or more. More preferably, it is 4.0 kJ / m 2 or more.
  • the upper limit is not specifically defined, for example, 8.0kJ / m 2 or less, even at sufficiently practical level even less 7.0kJ / m 2.
  • the amorphous polyamide resin of the present invention can be used as a molded product formed by molding a composition containing the amorphous polyamide resin of the present invention.
  • the composition may consist of only one or two or more of the amorphous polyamide resins of the present invention, and may contain other components.
  • other polyamide resins other than the amorphous polyamide resin of the present invention thermoplastic resins other than polyamide resins, fillers, matting agents, heat stabilizers, weathering stabilizers, ultraviolet absorbers, plasticizers
  • Additives such as flame retardants, antistatic agents, anti-coloring agents, anti-gelling agents, impact resistance improvers, lubricants, coloring agents, and conductive additives can be added as necessary. Each of these additives may be one kind or two or more kinds.
  • polyamide resins include polyamide 6, polyamide 66, polyamide 46, polyamide 6/66 (a copolymer comprising a polyamide 6 component and a polyamide 66 component), polyamide 610, polyamide 612, polyamide 11, and polyamide. 12, MXD6 (polymetaxylylene adipamide), MPXD6 (polymumbleraxylylene adipamide), MXD10 (polymetaxylylene sebasamide), MPXD10 (polymetaxylylene sebamide) and PXD10 (polypara Xylylene sebasamide). Each of these other polyamide resins may be one kind or two or more kinds.
  • the amount of the crystalline polyamide resin is preferably 5% by weight or less of the amorphous polyamide resin of the present invention, and preferably 3% by weight or less. More preferably, it is more preferably 1% by weight or less.
  • the amount of the amorphous polyamide resin other than the amorphous polyamide resin of the present invention is 5% by weight or less of the amorphous polyamide resin of the present invention. Is preferably 3% by weight or less, more preferably 1% by weight or less.
  • thermoplastic resin other than the polyamide resin examples include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polybutylene naphthalate.
  • polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polybutylene naphthalate.
  • One type of thermoplastic resin other than these polyamide resins may be used, or two or more types may be used.
  • the amount of the thermoplastic resin other than the polyamide resin is preferably 5% by weight or less of the amorphous polyamide resin of the present invention, and preferably 3% by weight or less. More preferably, it is more preferably 1% by weight or less.
  • the composition containing the amorphous polyamide resin of the present invention can be made into a fiber-reinforced resin composition by blending reinforcing fibers.
  • reinforcing fibers include carbon fibers and glass fibers.
  • the fiber reinforced resin composition include pellets obtained by melt-kneading the composition containing the amorphous polyamide resin of the present invention and the reinforced fiber, and a prepreg in which the amorphous polyamide resin of the present invention is impregnated or made close to the reinforced fiber. Is exemplified.
  • composition containing the amorphous polyamide resin of the present invention can be molded by known molding methods such as injection molding, blow molding, extrusion molding, compression molding, stretching, and vacuum molding.
  • a molded product formed by molding the composition containing the amorphous polyamide resin of the present invention it can be used for various molded products including films, sheets, thin molded products, hollow molded products, fibers, hoses, tubes and the like.
  • the composition containing the amorphous polyamide resin of the present invention is preferably used for engineering plastic applications.
  • the fields of use of such molded products include automobile parts such as automobiles, general machine parts, precision machine parts, electronic / electric equipment parts, OA equipment parts, building materials / residential equipment parts, medical equipment, leisure sports equipment, playground equipment, Medical products, daily necessities such as food packaging films, defense and aerospace products.
  • a housing for electronic / electrical equipment parts, sunglasses, and the like are exemplified.
  • it is preferably used for applications requiring low water absorption and dimensional stability under high temperature and high humidity.
  • a single layer or multilayer container including a layer formed from a composition containing the amorphous polyamide resin of the present invention can be mentioned.
  • the multilayer container a layer formed from a composition containing a polyolefin resin, a layer formed from a composition containing an amorphous polyamide resin of the present invention, and a layer formed from a composition containing a polyolefin resin, The multilayer container which has in the said order is illustrated.
  • the polyolefin resin include polypropylene (PP), cycloolefin polymer (COP), and cycloolefin copolymer (COC).
  • Such a multilayer container can be preferably used as a container for foods and pharmaceuticals.
  • the pharmaceutical container include an ampoule, a vial, a vacuum blood collection tube, and a prefilled syringe.
  • IPDA is isophoronediamine
  • 1,4-BAC is 1,4-bis (aminomethyl) cyclohexane
  • DDA is dodecanedioic acid
  • SA is sebacic acid
  • AdA is adipic acid
  • 2,6-NDCA represents 2,6-naphthalenedicarboxylic acid
  • PIA represents isophthalic acid.
  • Example 1 Synthesis of Resin IPD12N-1> We stir into a pressure-resistant reaction vessel with an internal volume of 50 L equipped with a stirrer, a partial condenser, a full condenser, a pressure regulator, a thermometer, a dropping tank and a pump, an aspirator, a nitrogen introduction pipe, a bottom exhaust valve, and a strand die.
  • DDA (manufactured by Rayan High-Mount Bio-Products Technology) 8000 g (34.74 mol), 2,6-NDCA (manufactured by BP) 2503 g (11.58 mol), calcium hypophosphite (manufactured by Kanto Chemical Co.) 1.37 g (0 .0081 mol), 0.6 g (0.0073 mol) of sodium acetate (manufactured by Kanto Chemical Co., Inc.) and after sufficiently purging with nitrogen, the inside of the reaction vessel was sealed, and the vessel was kept at 0.4 MPa while stirring at 180 ° C. The temperature was raised to.
  • the melt viscosity of the polyamide resin is a capillograph, a die having a diameter of 1 mm ⁇ 10 mm, an apparent shear rate of 122 sec ⁇ 1 , a measurement temperature of 280 ° C., a holding time of 6 minutes, and a moisture content of the polyamide resin of 1000 ppm by weight. Measurement was performed under the following conditions. In this example, Capillograph D-1 manufactured by Toyo Seiki Seisakusho Co., Ltd. was used as the capillograph.
  • Tg glass transition temperature
  • DSC differential scanning calorimeter
  • Weight change rate [(weight of test piece after placing under wet heat ⁇ weight of test piece before placing under wet heat) / weight of test piece before placing under wet heat] ⁇ 100 (unit:%) ⁇ Appearance >> A test piece similar to the 60 mm ⁇ 60 mm ⁇ 2 mm test piece produced under the conditions and conditions of the injection molding machine used in the bending test was placed in an environment of 85 ° C. and relative humidity (RH) of 85% (under moist heat) for 200 hours. I put it. Subsequent test pieces were visually evaluated as follows. A is the best, and inferior in the order of B and C. A: Deformation and cracks were not recognized. B: Cracks were observed. C: Deformation was observed.
  • Example 2 the diamine and dicarboxylic acid that are raw materials of the polyamide resin were changed as shown in Table 1, and each polyamide resin was synthesized. Evaluation was performed in the same manner as in Example 1. However, the melt viscosity of Comparative Example 1 was measured by changing 280 ° C. to 285 ° C. The results are shown in Table 1 below.
  • the amorphous polyamide resin of the present invention has a small weight change rate even after being placed under conditions of 85 ° C. and a relative humidity of 85% (under wet heat), in particular, 5% by weight or less. It became possible to do. Furthermore, the molded product formed from the amorphous polyamide resin maintained a good appearance without being deformed even after being placed under wet heat. In addition, the amorphous polyamide resin of the present invention has a low melt viscosity, and in particular, the melt viscosity at 280 ° C. can be 200 Pa ⁇ s or more.
  • the amorphous polyamide resin of the present invention has a high glass transition temperature, and in particular, it is possible to set it to 130 ° C. or higher. Furthermore, the molded product formed from the amorphous polyamide resin of the present invention was excellent in mechanical strength such as bending strength and Charpy impact strength.
  • the resulting polyamide resin has a large weight change rate after being placed under wet heat.
  • the weight change rate of the test piece has a correlation with the dimensional change rate, and the test piece swells by absorbing water. Therefore, when the weight change rate is large, the dimensional change rate of the test piece also increases. Therefore, it was found that a molded article formed from such a polyamide resin is inferior in dimensional stability.
  • the polyamide resins described in Examples 1 to 6 and Comparative Examples 1 to 4 were amorphous polyamide resins having a crystal melting enthalpy ⁇ Hm of approximately 0 J / g in the temperature rising process.
  • ⁇ Chemical resistance test (bending test strength retention)> About the polyamide resin obtained in Example 3, the test piece was manufactured as described in the column of the said bending test. The obtained test piece was immersed in a chemical at 23 ° C. As chemicals, toluene, xylene, sulfuric acid aqueous solution (10% by weight), sodium hydroxide aqueous solution (10% by weight), and calcium chloride aqueous solution (10% by weight) were used. After the immersion, on the first day, the seventh day, the 30th day, the 60th day, the 90th day, and the 180th day, strength measurement by a bending test was performed. The strength retention was calculated as follows.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyamides (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

湿熱時の重量変化率が小さく、かつ、成形品とし、湿熱下においても良好な外観を維持できる非晶性ポリアミド樹脂、ならびに、前記非晶性ポリアミド樹脂を含む成形品の提供。 ジアミン由来の構成単位と、ジカルボン酸由来の構成単位から構成され、前記ジアミン由来の構成単位の70モル%以上が、イソホロンジアミン由来の構成単位であり、前記ジカルボン酸由来の構成単位が、炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸由来の構成単位と芳香族ジカルボン酸由来の構成単位を含む、非晶性ポリアミド樹脂。

Description

非晶性ポリアミド樹脂および成形品
 本発明は、新規な非晶性ポリアミド樹脂および成形品に関する。特に、湿熱時の重量変化率が小さく、かつ、成形品とし、湿熱下においても、良好な外観を維持できる非晶性ポリアミド樹脂および前記非晶性ポリアミド樹脂を用いた成形品に関する。
 近年、ジアミンとジカルボン酸を重縮合させてなる非晶性ポリアミド樹脂が検討されている。
 例えば、特許文献1には、ビス(アミノメチル)シクロヘキサンを40モル%以上含むジアミン成分とイソフタル酸および/またはテレフタル酸を50モル%以上含むジカルボン酸成分からなる耐熱性ポリアミド樹脂が開示されている。
特開2010-285553号公報
 非晶性ポリアミド樹脂は透明性を有する樹脂であり、かつ耐薬品性が高いことから、これまで、フィルムやサングラスなどに用いられていた。このような特徴に加えて、結晶性ポリアミド樹脂は成形品としたときにバリが出やすいのに対し、非晶性ポリアミド樹脂は成形品にしてもバリが出にくいというメリットがある。非晶性ポリアミド樹脂の用途を広げるため、近年、非晶性ポリアミド樹脂にも、湿熱時の重量変化率が小さく、かつ、成形品とし、湿熱下においたときにも、クラックや変形などを生じず、良好な外観を維持できることが求められている。
 本発明は、かかる課題を解決することを目的とするものであって、非晶性ポリアミド樹脂であって、湿熱時の重量変化率が小さく、かつ、成形品とし、湿熱下で使用しても良好な外観を維持できるポリアミド樹脂、ならびに、前記非晶性ポリアミド樹脂を含む成形品を提供する。
 上記課題のもと、下記手段<1>により、好ましくは<2>~<10>により、上記課題は解決された。
<1>ジアミン由来の構成単位と、ジカルボン酸由来の構成単位から構成され、前記ジアミン由来の構成単位の70モル%以上が、イソホロンジアミン由来の構成単位であり、前記ジカルボン酸由来の構成単位が、炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸由来の構成単位と芳香族ジカルボン酸由来の構成単位を含む、非晶性ポリアミド樹脂。
<2>前記ジカルボン酸由来の構成単位が、30~80モル%の炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸由来の構成単位と、70~20モル%の芳香族ジカルボン酸由来の構成単位を含む、<1>に記載の非晶性ポリアミド樹脂。
<3>前記炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸由来の構成単位が、セバシン酸由来の構成単位およびドデカン二酸由来の構成単位の少なくとも一方を含む、<1>または<2>に記載の非晶性ポリアミド樹脂。
<4>前記芳香族ジカルボン酸由来の構成単位が、2,6-ナフタレンジカルボン酸由来の構成単位およびイソフタル酸由来の構成単位の少なくとも一方を含む、<1>~<3>のいずれか1つに記載の非晶性ポリアミド樹脂。
<5>前記ジアミン由来の構成単位の90モル%以上が、イソホロンジアミン由来の構成単位であり、前記ジカルボン酸由来の構成単位が、30~80モル%の炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸由来の構成単位と、70~20モル%の芳香族ジカルボン酸由来の構成単位を含み、前記炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸由来の構成単位が、セバシン酸由来の構成単位およびドデカン二酸由来の構成単位の少なくとも一方を含み、前記芳香族ジカルボン酸由来の構成単位が、2,6-ナフタレンジカルボン酸由来の構成単位およびイソフタル酸由来の構成単位の少なくとも一方を含む、<1>に記載の非晶性ポリアミド樹脂。
<6>前記ジカルボン酸由来の構成単位における、炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸由来の構成単位と、芳香族ジカルボン酸由来の構成単位の比率(炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸由来の構成単位/芳香族ジカルボン酸由来の構成単位)が、0.5~3.5である、<1>~<5>のいずれか1つに記載の非晶性ポリアミド樹脂。
<7>前記非晶性ポリアミド樹脂のガラス転移温度が130~220℃である、<1>~<6>のいずれか1つに記載の非晶性ポリアミド樹脂。
<8>JIS K7111-1に従ったノッチつきシャルピー衝撃強さが2.5kJ/m2以上である、<1>~<7>のいずれか1つに記載の非晶性ポリアミド樹脂。
<9>せん断速度122sec-1および測定温度280℃で測定した溶融粘度が、200~2300Pa・sである、<1>~<8>のいずれか1つに記載の非晶性ポリアミド樹脂。
<10><1>~<9>のいずれか1つに記載の非晶性ポリアミド樹脂を含む組成物を成形してなる成形品。
 本発明により、非晶性ポリアミド樹脂であって、湿熱時の重量変化率が小さく、かつ、成形品とし、湿熱下においても良好な外観を維持できるポリアミド樹脂、ならびに、前記非晶性ポリアミド樹脂を含む成形品を提供可能になった。
トルエンに対する耐薬品性を示す図である。 キシレンおよび硫酸水溶液に対する耐薬品性を示す図である。 水酸化ナトリウム水溶液および塩化カルシウム水溶液に対する耐薬品性を示す図である。
 以下において、本発明の内容について詳細に説明する。尚、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本発明の非晶性ポリアミド樹脂は、ジアミン由来の構成単位と、ジカルボン酸由来の構成単位から構成され、前記ジアミン由来の構成単位の70モル%以上が、イソホロンジアミン由来の構成単位であり、前記ジカルボン酸由来の構成単位が、炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸由来の構成単位と芳香族ジカルボン酸由来の構成単位を含むことを特徴とする。このような構成とすることにより、湿熱時の重量変化率が小さく、かつ、成形品とし、湿熱下においても変形やクラックなどが生じず良好な外観を維持できる非晶性ポリアミド樹脂が得られる。
 このメカニズムは、イソホロンジアミンを用いることによって非晶性とし、かつ、α,ω-直鎖脂肪族ジカルボン酸の鎖の長さを長くすることによって、水を吸水しにくくして、湿熱時の重量変化を抑え、低吸水性を達成していることによると推測される。
 さらに、溶融粘度が低く、特に、280℃における溶融粘度が200Pa・s以上である非晶性ポリアミド樹脂とすることも可能になる。加えて、ガラス転移温度が高く、特に、ガラス転移温度が130℃以上である非晶性ポリアミド樹脂とすることも可能になる。一般的に、α,ω-直鎖脂肪族ジカルボン酸の鎖の長さが長くなると、ガラス転移温度は低くなる傾向にあるが、本発明では、イソホロンジアミンを用いることにより、α,ω-直鎖脂肪族ジカルボン酸の鎖の長さを長くしても、高いガラス転移温度を達成可能であると推測される。
 さらに、本発明の非晶性ポリアミド樹脂から形成される成形品は、上記性能を達成しつつ、曲げ強さおよびシャルピー衝撃強さ等の機械的強度にも優れるものとすることも可能になる。
 このため、成形品としたときにバリが出にくい等の非晶性ポリアミド樹脂のメリットを生かしつつ、高温高湿下で求められる用途、例えば、低吸水性や寸法安定性が求められる用途でも使用可能になる。また、非晶性ポリアミド樹脂は一般的に高粘度であり、流動性が低い傾向にあるが、本発明の非晶性ポリアミド樹脂は、溶融粘度を低くでき、すなわち、流動性を高くできるため、成形性や押出加工性に優れるものとすることが可能になる。
 本発明の非晶性ポリアミド樹脂は、ジアミン由来の構成単位の70モル%以上が、好ましくは80モル%以上が、より好ましくは90モル%以上が、一層好ましくは95モル%以上が、より一層好ましくは99モル%以上がイソホロンジアミン由来の構成単位である。
 イソホロンジアミン以外のジアミンとしては、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン等の脂肪族ジアミン、パラフェニレンジアミン、メタキシリレンジアミン、パラキシリレンジアミン等の芳香族ジアミン等が例示される。これらの他のジアミンは、1種類のみでも2種類以上であってもよい。
 本発明の非晶性ポリアミド樹脂は、ジカルボン酸由来の構成単位が、炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸由来の構成単位と芳香族ジカルボン酸由来の構成単位を含む。
 前記ジカルボン酸由来の構成単位は、好ましくは30~80モル%、より好ましくは45~80モル%、さらに好ましくは60~80モル%、一層好ましくは65~80モル%が炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸由来の構成単位である。
 また、前記ジカルボン酸由来の構成単位は、好ましくは70~20モル%、より好ましくは55~20モル%、さらに好ましくは40~20モル%、一層好ましくは35~20モル%が芳香族ジカルボン酸由来の構成単位である。
 本発明の非晶性ポリアミド樹脂において、炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸および芳香族ジカルボン酸は、それぞれ、1種類のみ用いてもよいし、2種類以上用いてもよい。2種類以上用いる場合、合計量が上記範囲となることが好ましい。
 本発明では、ジカルボン酸由来の構成単位のうち、炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸由来の構成単位と芳香族ジカルボン酸由来の構成単位の合計量が90モル%以上を占めることが好ましく、95モル%以上を占めることがより好ましく、99モル%以上を占めることがさらに好ましい。
 炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸は、炭素数8~12のα,ω-直鎖脂肪族ジカルボン酸が好ましい。炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸としては、スベリン酸、アゼライン酸、セバシン酸、1,9-ノナンジカルボン酸およびドデカン二酸が例示され、セバシン酸およびドデカン二酸の少なくとも一方が好ましい。
 芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸および2,6-ナフタレンジカルボン酸が例示され、イソフタル酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸および2,6-ナフタレンジカルボン酸の少なくとも1種が好ましく、2,6-ナフタレンジカルボン酸およびイソフタル酸少なくとも一方がより好ましい。また、本発明の非晶性ポリアミド樹脂の実施形態の一例として、テレフタル酸由来の構成単位を実質的に含まない形態が例示される。実質的に含まないとは、本発明の非晶性ポリアミド樹脂を構成するジカルボン酸由来の構成単位のうち、テレフタル酸由来の構成単位の割合が5モル%以下、好ましくは3モル%以下、より好ましくは1モル%以下であることをいう。
 炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸および芳香族ジカルボン酸以外のジカルボン酸(他のジカルボン酸)としては、炭素数8以下のα,ω-直鎖脂肪族ジカルボン酸(例えば、アジピン酸、ピメリン酸)や脂環式ジカルボン酸(例えば、1,3-シクロヘキサンジカルボン酸)が例示される。他のジカルボン酸は、1種類のみ用いてもよいし、2種類以上用いてもよい。
 本発明の非晶性ポリアミド樹脂は、ジカルボン酸由来の構成単位における、炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸由来の構成単位と、芳香族ジカルボン酸由来の構成単位の比率(炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸由来の構成単位/芳香族ジカルボン酸由来の構成単位)が、0.5~3.5であることが好ましく、0.8~3.2であることがより好ましく、2.0~3.1であることがさらに好ましい。このような範囲とすることにより、各種性能により優れた非晶性ポリアミド樹脂が得られる。
 以下に、本発明の好ましい非晶性ポリアミド樹脂の実施形態を述べる。本発明がこれらの実施形態に限定されるものではないことは言うまでもない。
 本発明の非晶性ポリアミド樹脂の第一の実施形態は、ジアミン由来の構成単位の90モル%以上が、イソホロンジアミン由来の構成単位であり、ジカルボン酸由来の構成単位が、30~80モル%の炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸由来の構成単位と、70~20モル%の芳香族ジカルボン酸由来の構成単位を含み、炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸由来の構成単位が、セバシン酸由来の構成単位およびドデカン二酸由来の構成単位の少なくとも一方を含み、芳香族ジカルボン酸由来の構成単位が、2,6-ナフタレンジカルボン酸由来の構成単位およびイソフタル酸由来の構成単位の少なくとも一方を含む非晶性ポリアミド樹脂である。第一の実施形態では、炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸由来の構成単位が、セバシン酸由来の構成単位およびドデカン二酸由来の構成単位のいずれか一方を含む態様および両方を含む態様が例示される。また、第一の実施形態では、2,6-ナフタレンジカルボン酸由来の構成単位およびイソフタル酸由来の構成単位のいずれか一方を含む態様および両方を含む態様が例示される。
 本発明の非晶性ポリアミド樹脂の第二の実施形態は、第一の実施形態において、ジカルボン酸由来の構成単位が、30~80モル%のドデカン二酸由来の構成単位と、70~20モル%の芳香族ジカルボン酸由来の構成単位を含む態様である。第二の実施形態では、(ドデカン二酸由来の構成単位/芳香族ジカルボン酸由来の構成単位)が2.8~3.2であることが好ましい。
 本発明の非晶性ポリアミド樹脂の第三の実施形態は、第一の実施形態において、ジカルボン酸由来の構成単位が、30~80モル%のセバシン酸由来の構成単位と、70~20モル%の芳香族ジカルボン酸由来の構成単位を含む態様である。第三の実施形態では、(炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸由来の構成単位/芳香族ジカルボン酸由来の構成単位)が0.8~2.5であることが好ましい。
 本発明の非晶性ポリアミド樹脂の第四の実施形態は、第一の実施形態において、ジカルボン酸由来の構成単位が、30~80モル%の炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸由来の構成単位と、70~20モル%の2,6-ナフタレンジカルボン酸由来の構成単位を含む態様である。第四の実施形態では、(ドデカン二酸由来の構成単位/芳香族ジカルボン酸由来の構成単位)が2.8~3.2であることが好ましい。
 本発明の非晶性ポリアミド樹脂の第五の実施形態は、第一の実施形態において、ジカルボン酸由来の構成単位が、30~80モル%の炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸由来の構成単位と、70~20モル%のイソフタル酸由来の構成単位を含む態様である。第五の実施形態では、(炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸由来の構成単位/芳香族ジカルボン酸由来の構成単位)が0.8~3.2であることが好ましい。
 尚、本発明の非晶性ポリアミド樹脂は、ジカルボン酸由来の構成単位とジアミン由来の構成単位から構成されるが、ジカルボン酸由来の構成単位およびジアミン由来の構成単位以外の構成単位や、末端基等の他の部位を含みうる。他の構成単位としては、ε-カプロラクタム、バレロラクタム、ラウロラクタム、ウンデカラクタム等のラクタム、11-アミノウンデカン酸、12-アミノドデカン酸等のアミノカルボン酸等由来の構成単位が例示できるが、これらに限定されるものではない。さらに、本発明の非晶性ポリアミド樹脂は、合成に用いた添加剤等の微量成分が含まれる場合もあるであろう。
 本発明で用いるポリアミド樹脂は、通常95重量%以上、好ましくは98重量%以上が、より好ましくは99重量%以上がジカルボン酸由来の構成単位またはジアミン由来の構成単位である。
 本発明の非晶性ポリアミド樹脂は、リン原子含有化合物を添加して溶融重縮合(溶融重合)法により製造される。溶融重縮合法としては、溶融させた原料ジカルボン酸に原料ジアミンを滴下しつつ加圧下で昇温し、縮合水を除きながら重合させる方法、もしくは、原料ジアミンと原料ジカルボン酸から構成される塩を水の存在下で、加圧下で昇温し、加えた水および縮合水を除きながら溶融状態で重合させる方法が好ましい。
 本発明の非晶性ポリアミド樹脂の重縮合系内に添加されるリン原子含有化合物としては、ジメチルホスフィン酸、フェニルメチルホスフィン酸、次亜リン酸、次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸リチウム、次亜リン酸カルシウム、次亜リン酸エチル、フェニル亜ホスホン酸、フェニル亜ホスホン酸ナトリウム、フェニル亜ホスホン酸カリウム、フェニル亜ホスホン酸リチウム、フェニル亜ホスホン酸エチル、フェニルホスホン酸、エチルホスホン酸、フェニルホスホン酸ナトリウム、フェニルホスホン酸カリウム、フェニルホスホン酸リチウム、フェニルホスホン酸ジエチル、エチルホスホン酸ナトリウム、エチルホスホン酸カリウム、亜リン酸、亜リン酸水素ナトリウム、亜リン酸ナトリウム、亜リン酸トリエチル、亜リン酸トリフェニル、ピロ亜リン酸等が挙げられ、これらの中でも特に次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸リチウム、次亜リン酸カルシウム等の次亜リン酸金属塩がアミド化反応を促進する効果が高く、かつ着色防止効果にも優れるため好ましく用いられ、特に次亜リン酸カルシウムが好ましい。本発明で使用できるリン原子含有化合物はこれらの化合物に限定されない。
 溶融重縮合で得られた本発明の非晶性ポリアミド樹脂は一旦取り出され、ペレット化された後、乾燥して使用されることが好ましい。
 本発明の非晶性ポリアミド樹脂は、せん断速度122sec-1、280℃における溶融粘度が、200Pa・s以上であることが好ましく、250Pa・s以上であることがより好ましい。前記溶融粘度の上限値は、2300Pa・s以下であることが好ましく、1000Pa・s以下であることがより好ましく、600Pa・s以下であることがさらに好ましく、550Pa・s以下であることが一層好ましく、490Pa・s以下であることがより一層好ましい。
 溶融粘度の測定方法は、後述する実施例で記載する方法に従う。実施例で採用する機器が、廃版等により入手困難な場合は、他の同等の性能を有する機器を用いることができる。以下、他の測定方法についても、同様である。
 本発明の非晶性ポリアミド樹脂は、数平均分子量の下限値が8,000以上であることが好ましく、10,000以上であることがより好ましい。前記数平均分子量の上限値は25,000以下であることが好ましく、20,000以下であることがより好ましい。数平均分子量の測定方法は、後述する実施例で記載する方法に従う。
 本発明の非晶性ポリアミド樹脂は、ガラス転移温度が130℃以上であることが好ましく、140℃以上であることがより好ましく、145℃以上であることがさらに好ましい。本発明ではこのような高いTgとすることができるため、高温条件下でも物性低下しにくいというメリットがある。ガラス転移温度の上限値は特に定めるものではないが、例えば、220℃以下であることが好ましく、200℃であってもよく、170℃以下でも十分実用レベルである。
 ガラス転移温度の測定方法は、後述する実施例で記載する方法に従う。
 本発明のポリアミド樹脂は、85℃、相対湿度(RH)85%の環境下に200時間静置した後の重量変化率が、7.0%以下であることが好ましく、6.0%以下であることがより好ましく、さらには、5.0%以下、4.6%以下、4.5%以下、4.2%以下であってもよい。前記重量変化率の下限値は、0%が望ましいが、2.0%以上、さらには3.0%以上でも実用レベルである。
 本発明における非晶性のポリアミド樹脂とは、明確な融点を持たない樹脂であり、具体的には、結晶融解エンタルピーΔHmが5J/g未満であることをいい、3J/g以下が好ましく、1J/g以下がさらに好ましい。結晶融解エンタルピーは、後述する実施例で記載する方法に従って測定される。
 本発明の非晶性ポリアミド樹脂は、機械的強度に優れたポリアミド樹脂とすることができる。
 本発明の非晶性ポリアミド樹脂は、JIS K7171に従った曲げ弾性率が2.10GPa以上であることが好ましく、2.20GPa以上であることがより好ましい。上限値は特に定めるものではないが、例えば、4.00GPa以下、さらには3.50GPa以下であっても十分実用レベルである。
 本発明の非晶性ポリアミド樹脂は、JIS K7171に従った曲げ強さが100MPa以上であることが好ましく、110MPa以上であることがより好ましく、115MPa以上であることがさらに好ましい。上限値は特に定めるものではないが、例えば、170MPa以下、さらには150MPa以下であっても十分実用レベルである。
 本発明の非晶性ポリアミド樹脂は、JIS K7111-1に従ったノッチつきシャルピー衝撃強さが2.5kJ/m2以上であることが好ましく、3.0kJ/m2以上であることがより好ましく、4.0kJ/m2以上であることがさらに好ましい。上限値は特に定めるものではないが、例えば、8.0kJ/m2以下、さらには7.0kJ/m2以下であっても十分実用レベルである。
 本発明の非晶性ポリアミド樹脂は、本発明の非晶性ポリアミド樹脂を含む組成物を成形してなる成形品として用いることができる。前記組成物は、本発明の非晶性ポリアミド樹脂1種類または2種類以上のみからなってもよいし、他の成分を含んでいてもよい。
 他の成分としては、本発明の非晶性ポリアミド樹脂以外の他のポリアミド樹脂、ポリアミド樹脂以外の熱可塑性樹脂、充填剤、艶消剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、可塑剤、難燃剤、帯電防止剤、着色防止剤、ゲル化防止剤、耐衝撃改良剤、滑剤、着色剤、導電性添加剤等の添加剤を必要に応じて添加することができる。これらの添加剤は、それぞれ、1種類であってもよいし、2種類以上であってもよい。
 他のポリアミド樹脂としては、具体的には、ポリアミド6、ポリアミド66、ポリアミド46、ポリアミド6/66(ポリアミド6成分およびポリアミド66成分からなる共重合体)、ポリアミド610、ポリアミド612、ポリアミド11、ポリアミド12、MXD6(ポリメタキシリレンアジパミド)、MPXD6(ポリメタパラキシリレンアジパミド)、MXD10(ポリメタキシリレンセバサミド)、MPXD10(ポリメタパラキシリレンセバサミド)およびPXD10(ポリパラキシリレンセバサミド)が例示される。これらの他のポリアミド樹脂は、それぞれ、1種類であってもよいし、2種類以上であってもよい。
 本発明の非晶性ポリアミド樹脂を含む組成物は、結晶性ポリアミド樹脂の配合量が、本発明の非晶性ポリアミド樹脂の5重量%以下であることが好ましく、3重量%以下であることがより好ましく、1重量%以下であることがさらに好ましい。
 本発明の非晶性ポリアミド樹脂を含む組成物は、本発明の非晶性ポリアミド樹脂以外の非晶性ポリアミド樹脂の配合量が、本発明の非晶性ポリアミド樹脂の5重量%以下であることが好ましく、3重量%以下であることがより好ましく、1重量%以下であることがさらに好ましい。
 ポリアミド樹脂以外の熱可塑性樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等のポリエステル樹脂を例示できる。これらのポリアミド樹脂以外の熱可塑性樹脂は、それぞれ、1種類であってもよいし、2種類以上であってもよい。
 本発明の非晶性ポリアミド樹脂を含む組成物は、ポリアミド樹脂以外の熱可塑性樹脂の配合量が、本発明の非晶性ポリアミド樹脂の5重量%以下であることが好ましく、3重量%以下であることがより好ましく、1重量%以下であることがさらに好ましい。
 本発明の非晶性ポリアミド樹脂を含む組成物は、強化繊維を配合して繊維強化樹脂組成物とすることができる。強化繊維としては、炭素繊維およびガラス繊維が例示される。繊維強化樹脂組成物としては、本発明の非晶性ポリアミド樹脂と強化繊維を含む組成物を溶融混練してなるペレット、本発明の非晶性ポリアミド樹脂を強化繊維に含浸または近接させたプリプレグなどが例示される。
 本発明の非晶性ポリアミド樹脂を含む組成物は、射出成形、ブロー成形、押出成形、圧縮成形、延伸、真空成形などの公知の成形方法によって、成形することができる。
 本発明の非晶性ポリアミド樹脂を含む組成物を成形してなる成形品としては、フィルム、シート、薄肉成形品、中空成形品、繊維、ホース、チューブ等を含む各種成形品に用いることができる。
 本発明の非晶性ポリアミド樹脂を含む組成物は、エンジニアリングプラスチック用途に好ましく用いられる。かかる成形品の利用分野としては、自動車等輸送機部品、一般機械部品、精密機械部品、電子・電気機器部品、OA機器部品、建材・住設関連部品、医療装置、レジャースポーツ用品、遊戯具、医療品、食品包装用フィルム等の日用品、防衛および航空宇宙製品等が挙げられる。 本発明の成形品の実施形態の一例として、電子・電気機器部品の筐体、サングラス等が例示される。
 特に、高温高湿下での低吸水性および寸法安定性が求められる用途に好ましく用いられる。
 また、本発明の成形品の実施形態の他の一例として、本発明の非晶性ポリアミド樹脂を含む組成物から形成される層を含む単層または多層容器が挙げられる。前記多層容器としては、ポリオレフィン樹脂を含む組成物から形成される層、本発明の非晶性ポリアミド樹脂を含む組成物から形成される層、およびポリオレフィン樹脂を含む組成物から形成される層を、前記順に有する多層容器が例示される。ポリオレフィン樹脂としては、ポリプロピレン(PP)、シクロオレフィンポリマー(COP)およびシクロオレフィンコポリマー(COC)が例示される。さらに、前記ポリオレフィン樹脂を含む組成物から形成される層と本発明の非晶性ポリアミド樹脂を含む組成物から形成される層の間に接着層を有していてもよい。このような多層容器は、食品や医薬品の容器として好ましく用いることができる。医薬品の容器としては、例えば、アンプル、バイアル、真空採血管、プレフィルドシリンジが例示される。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
 尚、本実施例において、IPDAはイソホロンジアミンを、1,4-BACは1,4-ビス(アミノメチル)シクロヘキサンを、DDAはドデカン二酸を、SAはセバシン酸を、AdAはアジピン酸を、2,6-NDCAは2,6-ナフタレンジカルボン酸を、PIAはイソフタル酸をそれぞれ示している。
実施例1
<樹脂IPD12N-1の合成>
 撹拌機、分縮器、全縮器、圧力調整器、温度計、滴下槽およびポンプ、アスピレーター、窒素導入管、底排弁、ストランドダイを備えた内容積50Lの耐圧反応容器に、精怦したDDA(ライヤンハイマウントバイオプロダクツテクノロジー社製)8000g(34.74mol)、2,6-NDCA(ビーピー社製)2503g(11.58mol)、次亜リン酸カルシウム(関東化学社製)1.37g(0.0081mol)、酢酸ナトリウム(関東化学社製)0.6g(0.0073mol)を入れ、十分に窒素置換した後、反応容器内を密閉し、容器内を0.4MPaに保ちながら撹拌下180℃まで昇温した。180℃に到達後、反応容器内の原料へ滴下槽に貯めたIPDA(ダイセル・エボニック社製)7785g(45.71mol)の滴下を開始し、容器内を0.4MPaに保ちながら生成する縮合水を系外へ除きながら反応槽内を260℃まで昇温した。IPDAの滴下終了後、徐々に280℃まで昇温しつつ、反応容器内を徐々に常圧に戻し、次いでアスピレーターを用いて反応槽内を80kPaに減圧して縮合水を除いた。減圧中に撹拌機の撹拌トルクを観察し、所定のトルクに達した時点で撹拌を止め、反応槽内を窒素で加圧し、底排弁を開け、ストランドダイからポリマーを抜き出してストランド化したのち、冷却してペレタイザーによりペレット化することにより、ポリアミド樹脂を得た。得られたポリアミド樹脂について、以下の評価を行った。結果を表1に示す。
<溶融粘度の測定>
 ポリアミド樹脂の溶融粘度は、キャピログラフを用い、ダイとして直径1mm×10mm長さのものを用い、見かけのせん断速度122sec-1、測定温度280℃、保持時間6分、ポリアミド樹脂の水分量1000重量ppm以下の条件で測定した。本実施例では、キャピログラフとして、(株)東洋精機製作所製のキャピログラフD-1を用いた。
<ガラス転移温度(Tg)の測定>
 ガラス転移温度は、示差走査熱量計(DSC)を用いて、窒素気流中、室温から250℃まで昇温速度10℃/分で加熱したのち、ただちに室温以下まで冷却し、再び室温から250℃まで昇温速度10℃/分で加熱した際のガラス転移温度を測定した。本実施例では、示差走査熱量計として、(株)島津製作所製のDSC-60を用いた。
 また、JIS K7121およびK7122に準じて、昇温過程におけるポリアミド樹脂の結晶融解エンタルピーΔHmを測定した。
<数平均分子量(Mn)の測定>
 ポリアミド樹脂0.3gを、フェノール/エタノール=4/1(体積比)の混合溶剤に投入して、25℃で撹拌し、完全に溶解させた後、撹拌しつつ、メタノール5mLで容器内壁を洗い流し、0.01mol/L塩酸水溶液で中和滴定して末端アミノ基濃度[NH2]を求めた。また、ポリアミド樹脂0.3gを、ベンジルアルコールに、窒素気流下170℃で撹拌し、完全に溶解させた後、窒素気流下80℃以下まで冷却し、撹拌しつつメタノール10mLで容器内壁を洗い流し、0.01mol/L水酸化ナトリウム水溶液で中和滴定して末端カルボキシル基濃度[COOH]を求めた。測定した末端アミノ基濃度[NH2](単位:μ当量/g)および末端カルボキシル基濃度[COOH](単位:μ当量/g)から、次式によって数平均分子量を求めた。
数平均分子量(Mn)=2,000,000/([COOH]+[NH2])
<曲げ試験>
 得られたポリアミド樹脂ペレットを、120℃(露点-40℃)で24時間真空乾燥したのち、射出成形機(住友重機械工業(株)製、SE130DU-HP)にて、金型温度100℃、シリンダー温度を280℃の条件で、4mm×10mm×80mmの試験片を作製した。作製した試験片をJIS K7171に従った方法により、曲げ弾性率および曲げ強さを測定した。本実施例では、曲げ試験機として、(株)東洋精機製作所製のベンドグラフIIを用いた。
<湿熱試験>
<<重量変化率>>
 上記曲げ試験で用いた試験片と同様の射出成形機および条件にて作製した60mm×60mm×2mmの試験片を85℃、相対湿度(RH)85%の環境下(湿熱下)に200時間静置した。重量変化率を以下の通り測定した。
重量変化率=[(湿熱下に置いた後の試験片の重量-湿熱下に置く前の試験片の重量)/湿熱下に置く前の試験片の重量]×100(単位:%)
<<外観>>
 上記曲げ試験で用いた射出成形機および条件にて作製した60mm×60mm×2mmの試験片と同様の試験片を85℃、相対湿度(RH)85%の環境下(湿熱下)に200時間静置した。その後の試験片を目視により以下の通り評価した。Aが最もよく、B、Cの順に劣る。
A:変形およびクラックが認められなかった。
B:クラックが認められた。
C:変形が認められた。
<シャルピー衝撃強さ>
 上記曲げ試験で用いた試験片と同様の試験片を、JIS K7144に従ってノッチつき試験片に加工した。得られた試験片について、JIS K7111-1に従って、ノッチつきシャルピー衝撃強さを測定した。
実施例2~6および比較例1~4
 実施例1において、ポリアミド樹脂の原料であるジアミンおよびジカルボン酸を表1に示す通り変更し、各ポリアミド樹脂を合成した。
 実施例1と同様に評価した。但し、比較例1の溶融粘度は、280℃を285℃に変更して測定した。結果を下記表1に示す。
 上記結果から明らかなとおり、本発明の非晶性ポリアミド樹脂は、85℃、相対湿度85%の条件下(湿熱下)に置いた後も、重量変化率が小さく、特に、5重量%以下とすることも可能になった。さらに、非晶性ポリアミド樹脂から形成される成形品は、湿熱下に置いた後も、成形品に変形が生じることなく、良好な外観を維持していた。
 また、本発明の非晶性ポリアミド樹脂は、溶融粘度が低く、特に、280℃における溶融粘度を200Pa・s以上とすることも可能になった。加えて、本発明の非晶性ポリアミド樹脂は、ガラス転移温度が高く、特に、130℃以上とすることも可能になった。
 さらに、本発明の非晶性ポリアミド樹脂から形成される成形品は、曲げ強さおよびシャルピー衝撃強さ等の機械的強度にも優れるものであった。
 これに対し、α,ω-直鎖脂肪族ジカルボン酸由来の構成単位の脂肪族鎖が短い場合(比較例1)、得られるポリアミド樹脂は、湿熱下に置いた後の重量変化率が大きかった。当該試験において、試験片の重量変化率は寸法変化率との相関があり、吸水することにより試験片が膨潤する為、重量変化率が大きい場合、試験片の寸法変化率も大きくなる。したがって、かかるポリアミド樹脂から形成される成形品は、寸法安定性に劣ることが分かった。さらに、ジカルボン酸由来の構成単位が75モル%のアジピン酸と、25モル%のイソフタル酸から構成される場合(比較例4)、耐衝撃性に著しく乏しく、射出成形が困難であった。
 また、芳香族ジカルボン酸由来の構成単位を含まない場合(比較例2)、得られるポリアミド樹脂から形成される成形品の曲げ強さが劣るとともに、湿熱下に置いた後の外観にも劣ることが分かった。
 さらに、ジアミン由来の構成単位として、イソホロンジアミン由来の構成単位以外の構成単位の割合が30モル%を超える場合(比較例3)、湿熱下に置いた後の重量変化率が大きく、かかるポリアミド樹脂から形成される成形品は、外観にも劣ることが分かった。
 また、実施例1~6および比較例1~4に記載のポリアミド樹脂は、昇温過程における結晶融解エンタルピーΔHmがほぼ0J/gであり、非晶性ポリアミド樹脂であることが分かった。
<耐薬品性試験(曲げ試験強度保持率)>
 実施例3で得られたポリアミド樹脂について、上記曲げ試験の欄で述べたとおり試験片を製造した。得られた試験片を23℃の薬品に浸漬した。薬品として、トルエン、キシレン、硫酸水溶液(10重量%)、水酸化ナトリウム水溶液(10重量%)、塩化カルシウム水溶液(10重量%)をそれぞれ用いた。
 浸漬後、1日目、7日目、30日目、60日目、90日目、180日目について、それぞれ、曲げ試験による強度測定を実施した。強度保持率を以下の通り算出した。
強度保持率=[(薬品に浸漬した試験片の曲げ試験)/薬品溶剤に浸漬する前の試験片の曲げ試験]×100(単位:%)
 また、ポリアミド樹脂を、グリルアミドTR55(エムス社製)またはグリルアミドTR90(エムス社製)に変え、他は同様に行った結果と比較した。
 グリルアミドTR55は、イソフタル酸/ビス(3-メチル-4-アミノシクロヘキシル)メタン/ω-ラウロラクタムの重縮合体(エムス社製)であり、グリルアミドTR90は、ドデカン二酸/ビス(3-メチル-4-アミノシクロヘキシル)メタンの重縮合体である。
 上記耐薬品性の結果を図1~図3に示す。いずれの薬品についても、グリルアミドTR55およびグリルアミドTR90と同等以上の性能を達成した。

Claims (10)

  1. ジアミン由来の構成単位と、ジカルボン酸由来の構成単位から構成され、
    前記ジアミン由来の構成単位の70モル%以上が、イソホロンジアミン由来の構成単位であり、
    前記ジカルボン酸由来の構成単位が、炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸由来の構成単位と芳香族ジカルボン酸由来の構成単位を含む、非晶性ポリアミド樹脂。
  2. 前記ジカルボン酸由来の構成単位が、30~80モル%の炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸由来の構成単位と、70~20モル%の芳香族ジカルボン酸由来の構成単位を含む、請求項1に記載の非晶性ポリアミド樹脂。
  3. 前記炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸由来の構成単位が、セバシン酸由来の構成単位およびドデカン二酸由来の構成単位の少なくとも一方を含む、請求項1または2に記載の非晶性ポリアミド樹脂。
  4. 前記芳香族ジカルボン酸由来の構成単位が、2,6-ナフタレンジカルボン酸由来の構成単位およびイソフタル酸由来の構成単位の少なくとも一方を含む、請求項1~3のいずれか1項に記載の非晶性ポリアミド樹脂。
  5. 前記ジアミン由来の構成単位の90モル%以上が、イソホロンジアミン由来の構成単位であり、
    前記ジカルボン酸由来の構成単位が、30~80モル%の炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸由来の構成単位と、70~20モル%の芳香族ジカルボン酸由来の構成単位を含み、
    前記炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸由来の構成単位が、セバシン酸由来の構成単位およびドデカン二酸由来の構成単位の少なくとも一方を含み、
    前記芳香族ジカルボン酸由来の構成単位が、2,6-ナフタレンジカルボン酸由来の構成単位およびイソフタル酸由来の構成単位の少なくとも一方を含む、請求項1に記載の非晶性ポリアミド樹脂。
  6. 前記ジカルボン酸由来の構成単位における、炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸由来の構成単位と芳香族ジカルボン酸由来の構成単位の比率(炭素数8~14のα,ω-直鎖脂肪族ジカルボン酸由来の構成単位/芳香族ジカルボン酸由来の構成単位)が、0.5~3.5である、請求項1~5のいずれか1項に記載の非晶性ポリアミド樹脂。
  7. 前記非晶性ポリアミド樹脂のガラス転移温度が130~220℃である、請求項1~6のいずれか1項に記載の非晶性ポリアミド樹脂。
  8. JIS K7111-1に従ったノッチつきシャルピー衝撃強さが2.5kJ/m2以上である、請求項1~7のいずれか1項に記載の非晶性ポリアミド樹脂。
  9. せん断速度122sec-1および測定温度280℃で測定した溶融粘度が、200~2300Pa・sである、請求項1~8のいずれか1項に記載の非晶性ポリアミド樹脂。
  10. 請求項1~9のいずれか1項に記載の非晶性ポリアミド樹脂を含む組成物を成形してなる成形品。
PCT/JP2018/004030 2017-02-21 2018-02-06 非晶性ポリアミド樹脂および成形品 WO2018155171A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019501195A JP7147740B2 (ja) 2017-02-21 2018-02-06 非晶性ポリアミド樹脂および成形品
CN201880012830.2A CN110312753A (zh) 2017-02-21 2018-02-06 非晶性聚酰胺树脂和成型品
US16/487,373 US11292877B2 (en) 2017-02-21 2018-02-06 Amorphous polyamide resin and molded article
EP18757796.0A EP3587472A4 (en) 2017-02-21 2018-02-06 AMORPHOUS POLYAMIDE RESIN AND MOLDED ARTICLE
KR1020197027720A KR102447869B1 (ko) 2017-02-21 2018-02-06 비정성 폴리아미드 수지 및 성형품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017029943 2017-02-21
JP2017-029943 2017-02-21

Publications (1)

Publication Number Publication Date
WO2018155171A1 true WO2018155171A1 (ja) 2018-08-30

Family

ID=63254240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004030 WO2018155171A1 (ja) 2017-02-21 2018-02-06 非晶性ポリアミド樹脂および成形品

Country Status (7)

Country Link
US (1) US11292877B2 (ja)
EP (1) EP3587472A4 (ja)
JP (1) JP7147740B2 (ja)
KR (1) KR102447869B1 (ja)
CN (1) CN110312753A (ja)
TW (1) TWI757426B (ja)
WO (1) WO2018155171A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004096A1 (ja) * 2018-06-27 2020-01-02 三菱瓦斯化学株式会社 樹脂組成物および成形品
JPWO2020040009A1 (ja) * 2018-08-21 2020-08-27 三菱瓦斯化学株式会社 非晶性ポリアミド樹脂の製造方法
WO2021070629A1 (ja) 2019-10-08 2021-04-15 三菱瓦斯化学株式会社 多層容器の製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3882085A (en) * 1969-04-03 1975-05-06 Veba Chemie Ag Polyamide polymers from amino polyamide reactants
JPS5730725A (en) * 1980-06-23 1982-02-19 Ciba Geigy Ag Transparent copolyamides and application to molded products
JPH05125276A (ja) * 1991-11-01 1993-05-21 Day Glo Color Corp ポリアミド蛍光顔料
JPH05320416A (ja) * 1991-11-04 1993-12-03 Ciba Geigy Ag 顔料、特に蛍光顔料の製造方法
JP2002501963A (ja) * 1998-01-28 2002-01-22 デイ−グロ カラー コーポレイション 蛍光高分子顔料
JP2010285553A (ja) 2009-06-12 2010-12-24 Mitsubishi Gas Chemical Co Inc 耐熱性ポリアミド樹脂
JP5071828B2 (ja) * 2008-12-16 2012-11-14 富士電機株式会社 電子写真感光体、その製造方法および電子写真装置
JP2014523942A (ja) * 2011-06-30 2014-09-18 ディーエスエム アイピー アセッツ ビー.ブイ. 二軸延伸物
JP2015528521A (ja) * 2012-09-04 2015-09-28 アルケマ フランス コポリアミド、該コポリアミドを含む組成物およびその使用
JP2016528312A (ja) * 2013-06-12 2016-09-15 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 脂肪族又は部分芳香族ポリアミドを連続的に製造する方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3294759A (en) * 1963-08-26 1966-12-27 Grace W R & Co Linear copolyamides resistant to boiling water
US5094777A (en) * 1989-09-19 1992-03-10 Day Glo Color Corporation Polyamide fluorescent pigments
US6277911B1 (en) * 1995-02-01 2001-08-21 Ems Inventa Ag Transparent, colorless, amorphous copolyamides and molded articles made therefrom
US6008288A (en) * 1995-02-01 1999-12-28 Ems-Inventa Ag Transparent, colorless, amorphous polyamides and molded articles
CH688624A5 (de) * 1995-02-01 1997-12-15 Inventa Ag Amorphe Polyamid-Formmassen und -Formteile.
JP2005071828A (ja) * 2003-08-26 2005-03-17 Matsushita Electric Works Ltd 無電極放電灯点灯装置、照明装置
JP4547675B2 (ja) * 2005-12-27 2010-09-22 富士電機システムズ株式会社 電子写真感光体
EP2022810B1 (de) 2007-07-25 2012-04-04 Ems-Patent Ag Transparente Polyamid-Elastomere
EP2767555A1 (en) * 2013-02-15 2014-08-20 Solvay Specialty Polymers USA, LLC. Mobile electronic devices made of amorphous polyamides
EP2727951A1 (en) * 2012-11-06 2014-05-07 Solvay Specialty Polymers USA, LLC. Mobile electronic devices made of amorphous polyamides
JP6071828B2 (ja) 2013-09-24 2017-02-01 三菱日立パワーシステムズ株式会社 バーナチップ及び燃焼バーナ並びにボイラ
JP6554792B2 (ja) 2013-10-11 2019-08-07 東レ株式会社 炭素繊維強化樹脂組成物、ペレット、成形品および電子機器筐体
CN104211953A (zh) * 2014-08-05 2014-12-17 金发科技股份有限公司 一种聚酰胺树脂和由其组成的聚酰胺组合物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3882085A (en) * 1969-04-03 1975-05-06 Veba Chemie Ag Polyamide polymers from amino polyamide reactants
JPS5730725A (en) * 1980-06-23 1982-02-19 Ciba Geigy Ag Transparent copolyamides and application to molded products
JPH05125276A (ja) * 1991-11-01 1993-05-21 Day Glo Color Corp ポリアミド蛍光顔料
JPH05320416A (ja) * 1991-11-04 1993-12-03 Ciba Geigy Ag 顔料、特に蛍光顔料の製造方法
JP2002501963A (ja) * 1998-01-28 2002-01-22 デイ−グロ カラー コーポレイション 蛍光高分子顔料
JP5071828B2 (ja) * 2008-12-16 2012-11-14 富士電機株式会社 電子写真感光体、その製造方法および電子写真装置
JP2010285553A (ja) 2009-06-12 2010-12-24 Mitsubishi Gas Chemical Co Inc 耐熱性ポリアミド樹脂
JP2014523942A (ja) * 2011-06-30 2014-09-18 ディーエスエム アイピー アセッツ ビー.ブイ. 二軸延伸物
JP2015528521A (ja) * 2012-09-04 2015-09-28 アルケマ フランス コポリアミド、該コポリアミドを含む組成物およびその使用
JP2016528312A (ja) * 2013-06-12 2016-09-15 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 脂肪族又は部分芳香族ポリアミドを連続的に製造する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3587472A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004096A1 (ja) * 2018-06-27 2020-01-02 三菱瓦斯化学株式会社 樹脂組成物および成形品
CN112313288A (zh) * 2018-06-27 2021-02-02 三菱瓦斯化学株式会社 树脂组合物和成型品
CN112313288B (zh) * 2018-06-27 2021-04-27 三菱瓦斯化学株式会社 树脂组合物和成型品
US11279826B2 (en) 2018-06-27 2022-03-22 Mitsubishi Gas Chemical Company, Inc. Resin composition and molded article
JPWO2020040009A1 (ja) * 2018-08-21 2020-08-27 三菱瓦斯化学株式会社 非晶性ポリアミド樹脂の製造方法
WO2021070629A1 (ja) 2019-10-08 2021-04-15 三菱瓦斯化学株式会社 多層容器の製造方法

Also Published As

Publication number Publication date
US20200062901A1 (en) 2020-02-27
EP3587472A1 (en) 2020-01-01
US11292877B2 (en) 2022-04-05
JP7147740B2 (ja) 2022-10-05
KR102447869B1 (ko) 2022-09-27
TW201839033A (zh) 2018-11-01
KR20190117021A (ko) 2019-10-15
CN110312753A (zh) 2019-10-08
JPWO2018155171A1 (ja) 2019-12-12
EP3587472A4 (en) 2020-04-01
TWI757426B (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
JP6825562B2 (ja) ポリアミド樹脂および成形品
JP5867419B2 (ja) ポリエーテルポリアミドエラストマー
AU2011283795B2 (en) Polyamide resin
JP5867418B2 (ja) ポリエーテルポリアミドエラストマー
JP6024671B2 (ja) ポリエーテルポリアミドエラストマー
JP2010285553A (ja) 耐熱性ポリアミド樹脂
WO2018155171A1 (ja) 非晶性ポリアミド樹脂および成形品
WO2017033746A1 (ja) 長繊維強化複合材料および成形品
JP6708313B2 (ja) 樹脂組成物および成形品
US20210087391A1 (en) Easily tearable film, multilayer film, packaging material, and container
KR20150140291A (ko) 폴리아미드 수지 조성물 및 이를 이용한 성형품
JP7120020B2 (ja) ポリアミド樹脂および成形品
JP6225693B2 (ja) ポリアミド樹脂組成物
JP2014218550A (ja) ポリアミド樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757796

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501195

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197027720

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018757796

Country of ref document: EP

Effective date: 20190923