WO2018153335A1 - 一种单芯片双轴磁电阻角度传感器 - Google Patents

一种单芯片双轴磁电阻角度传感器 Download PDF

Info

Publication number
WO2018153335A1
WO2018153335A1 PCT/CN2018/076783 CN2018076783W WO2018153335A1 WO 2018153335 A1 WO2018153335 A1 WO 2018153335A1 CN 2018076783 W CN2018076783 W CN 2018076783W WO 2018153335 A1 WO2018153335 A1 WO 2018153335A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetoresistive angle
sensing unit
layer
angle sensor
magnetoresistive
Prior art date
Application number
PCT/CN2018/076783
Other languages
English (en)
French (fr)
Inventor
迪克詹姆斯·G
周志敏
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Priority to US16/488,549 priority Critical patent/US11512939B2/en
Priority to EP18757297.9A priority patent/EP3588118A4/en
Priority to JP2019546016A priority patent/JP7188775B2/ja
Publication of WO2018153335A1 publication Critical patent/WO2018153335A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0052Manufacturing aspects; Manufacturing of single devices, i.e. of semiconductor magnetic sensor chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0094Sensor arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/091Constructional adaptation of the sensor to specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/096Magnetoresistive devices anisotropic magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors

Definitions

  • the present invention relates to the field of magnetic sensors, and in particular to a single-chip dual-axis magnetoresistive angle sensor.
  • the dual-axis angle sensor is used to measure the external magnetic field angle information in two orthogonal directions, such as X and Y directions. It can be used for magnetic wheel speed measurement or for encoder angle measurement. It is widely used in the field of magnetic sensor design.
  • the two-axis magnetoresistive angle sensor includes two single-axis magnetoresistive angle sensors of X and Y.
  • Each single-axis X or Y magnetoresistive angle sensor usually adopts a push-pull bridge structure to enhance the signal output of the magnetoresistive angle sensor, and pushes
  • the pull bridge comprises a push magnet resistance angle sensing unit and a magnetizing resistance angle sensing unit, and respectively have opposite magnetic field sensitive directions.
  • a magnetoresistive sensing unit with a single magnetic field sensitive direction such as the X-axis, and flip 90, 180 and 270 degrees, respectively, to obtain the Y-axis push.
  • the magnetoresistive sensing unit is sliced, the magnetoresistive resistance sensing unit is sliced, and the X-axis push magnetoresistive sensor unit slice and the magnetoresistive resistance sensing unit are sliced.
  • the method of flipping the slice by the dual-axis magnetoresistive sensor will require at least 4
  • the slice slice has the advantages that the preparation method is simple, only one slice is needed, and corresponds to a ferromagnetic reference layer structure, and the disadvantage is that four slices need to be operated in the same plane for positioning, thereby increasing the sensor due to the operation error. The possibility of measuring the loss of accuracy.
  • the design of the ferromagnetic reference layer of the multilayer thin film structure can realize the magnetoresistance of the opposite ferromagnetic reference layer by changing the number of layers of the multilayer thin film composed of the ferromagnetic layer and the metal spacer layer which are mutually coupled with the antiferromagnetic layer.
  • the fabrication of the sensing unit and the magnetizing resistance sensing unit; the orientation of the orthogonal ferromagnetic reference layer can be achieved by two different magnetic field thermal annealings by two different antiferromagnetic layers AF1 and AF2, the disadvantage of which is that The complexity of the micromachining process is increased due to the need to introduce at least four multilayer film structures and two magnetic field anneals when depositing a multilayer film.
  • the patent of CN201610821610.7 discloses a method of laser-programmed heating magnetic field annealing to realize scanning of the magnetoresistive sensing unit and rapid heating of the antiferromagnetic layer to above the blocking temperature, and at the same time during the cooling process.
  • a magnetic field in any direction By applying a magnetic field in any direction, the orientation of the magnetic resistance sensing unit in the direction sensitive to the magnetic field in either direction can be realized one by one or even one by one.
  • This method can realize the four-axis magnetoresistive sensing unit on a single slice.
  • the manufacture of an orthogonally oriented magnetoresistive sensing unit and its array overcomes the problem of precise positioning of flipped slices and the complexity of micromachining processes for depositing a variety of magnetic multilayer film structures, and enables single-chip dual-axis Mass production of magnetoresistive angle sensors.
  • the Chinese Patent Publication No. CN104776794A discloses a single-package high-strength magnetic field magnetoresistance angle sensor which increases the magnetoresistance angle sensing by adding a magnetic field attenuating layer on the surface of the magnetoresistive angle sensing unit.
  • the magnetic field measurement range of the unit, the magnetoresistive angle sensor still uses the method of slice flipping to change the magnetic field sensitive direction of the magnetoresistive sensing unit. Therefore, if the laser assisted heating magnetic field annealing method is used to realize the magnetic field sensitivity to the magnetoresistive sensing unit In the direction of writing operation, a single-chip biaxial high magnetic field strength magnetoresistance angle sensor can be obtained.
  • the actual pinning layer magnetization may be caused by the deviation of the magnetoresistive angle sensing unit during processing, such as deviation from circular, anisotropic dispersion, and stress.
  • the direction deviates from the set +X, -X, +Y and -Y directions, so it is also required to set the +X, -X axis magnetoresistive angle sensing unit and the +Y, -Y axis magnetoresistive angle sensing unit nail
  • the angle between the magnetization directions of the tie layer ensures the efficient operation of the magnetoresistive angle sensing unit.
  • a single-chip magnetoresistive angle sensor includes a substrate on an XY plane, a push-pull X-axis magnetoresistive angle sensor on the substrate, and a push-pull Y-axis.
  • the push-pull X-axis magnetoresistive angle sensor comprising an X push arm and an X pull arm
  • the push pull Y axis magneto resistance angle sensor comprising a Y push arm and a Y pull arm
  • the X push arm The X arm, the Y push arm and the Y arm each comprise at least one magnetoresistive angle sensing unit array, and the X push arm, the X pull arm, the Y push arm, and the Y pull arm magnetoresistive angle sensing unit array
  • the magnetic field sensitive directions are respectively along the +X direction, the -X direction, the +Y direction, and the -Y direction
  • the X-axis magnetoresistive angle sensor and the Y-axis magnetoresistive angle sensor have a common geometric center, and each of the magnetoresistors
  • the angle sensing unit arrays each include a plurality of the magnetoresistive angle sensing units, the magnetoresistive angle sensing units are TMR or GMR spin valve units, and the magnet
  • the magnetization direction of the antiferromagnetic layer is obtained by laser programmable heating magnetic annealing, and the magnetoresistive bridge arms having the same magnetization direction are located at adjacent positions, and the adjacent magnetoresistive angle sensing unit arrays having different magnetic field sensitive directions are insulated between gap.
  • the push-pull X-axis magnetoresistive angle sensor and the push-pull Y-axis magnetoresistive angle sensor are a half bridge, a full bridge or a quasi-bridge structure.
  • the arrangement of the magnetoresistive angle sensing unit arrays is:
  • a magnetic field attenuating layer is formed on the surface of the magnetoresistive angle sensing unit to form a high magnetic field angle sensor, and the material of the magnetic field attenuating layer is a high magnetic permeability soft magnetic alloy, and the high magnetic permeability soft magnetic alloy contains Fe, One or more of Co and Ni elements, between the magnetoresistive angle sensing unit and the magnetic field attenuating layer is an insulating material layer, the magnetic field attenuating layer is a circular structure, and the magnetoresistive angle sensing The unit is an elliptical structure, and the diameter of the magnetic field attenuation layer is larger than the long wheelbase of the magnetoresistive angle sensing unit.
  • a magnetic field attenuation layer is formed on the surface of the magnetoresistive angle sensing unit to form a high magnetic field angle sensor; the magnetic field attenuation layer has a circular structure, and the magnetoresistive angle sensing unit has a circular structure, and the magnetic resistance
  • the angle sensing unit has a diameter greater than 10 Micrometers, and the diameter of the magnetic field attenuating layer is larger than the diameter of the magnetoresistive angle sensing unit.
  • the X push arm, the X pull arm, the Y push arm and the Y pull arm comprise the same number and the same resistance of the magnetoresistive angle sensing unit, and the magnetoresistive angle sensing unit passes Series, parallel or mixed series and parallel to form a two-port structure.
  • the magnetoresistive angle sensing unit arrays are connected by interconnecting wires, and the interconnecting wires comprise a straight line segment and a meandering segment, and one end of the straight line segment is connected to the magnetoresistive sensing unit, the straight line The other end of the segment is coupled to the meandering segment, the meandering segment being at a distance greater than 15 microns from the array of magnetoresistive angle sensing elements.
  • interconnecting wires connecting the common ends of the power source have the same interconnecting resistance as the interconnecting wires connecting the common ends of the power source, and the interconnecting wires connecting the common ends of the power source have the same interconnecting resistance as the interconnecting wires connecting the common ends of the signal output, and the interconnecting wires pass the The straight line segments and the meandering segments get the same interconnect resistance.
  • an angle between a magnetic field sensitive direction of the magnetoresistive angle sensing unit and a magnetization direction between the pinning layers is between 85° and 95°.
  • the passivation layer is an ultraviolet laser transparent material
  • the ultraviolet laser transparent material is BCB, Si 3 N 4 , Al 2 O 3 , HfO 2 , AlF 3 , GdF 3 , LaF 3 , MgF 2 , Sc 2 O 3 , HfO 2 or SiO 2 .
  • the passivation layer is an infrared laser transparent material
  • the infrared laser transparent material is a diamond-like carbon film, MgO, SiN, SiC, AlF 3 , MgF 2 , SiO 2 , Al 2 O 3 , ThF 4 , ZnS , ZnSe, ZrO 2 , HfO 2 , TiO 2 , Ta 2 O 7 , Si or Ge.
  • the magnetic multilayer film structure further includes an anti-reflective coating covering the surface of the passivation layer.
  • the power, ground, and output pins of the X-axis magnetoresistive angle sensor and the Y-axis magnetoresistive angle sensor are arranged along an edge of the sensor chip.
  • the present invention has the following technical effects: the invention adopts a single-chip structure, and integrates two angle sensors on the same chip; and the magnetoresistive angle sensing units of the two angle sensors have the same magnetic multi-function
  • the invention has the advantages of compact structure, high precision, small size, and can realize a large magnetic field working range.
  • FIG. 1 is a schematic diagram of a single-chip dual-axis magnetoresistive angle sensor of the present invention
  • 2(a) is a magnetic multilayer film structure of a magnetoresistive angle sensing unit
  • Figure 2 (b) is an enlarged view of the structure of Figure 100 (a);
  • Figure 2 (c) is another magnetic multilayer film structure of the magnetoresistive angle sensing unit
  • Figure 2 (d) is an enlarged view of the structure of 200 in Figure 2 (c);
  • 3(a) is a top plan view of the magnetoresistive angle sensing unit along the X direction of the magnetization direction of the antiferromagnetic layer of the present invention
  • 3(b) is a top plan view of the magnetoresistive angle sensing unit in the Y direction of the antiferromagnetic layer magnetization direction of the present invention
  • FIG. 4(a) is a top plan view of a high field strength magnetoresistance angle sensing unit in the X direction of the pinning layer magnetization direction of the present invention
  • 4(b) is a top plan view of the high field strength magnetoresistance angle sensing unit in the Y direction of the pinning layer magnetization direction of the present invention
  • Figure 5 (a) is a side view of the high field strength magnetoresistance angle sensing unit in the X direction of the pinning layer magnetization direction of the present invention
  • Figure 5 (b) is a side view of the high field strength magnetoresistance angle sensing unit in the Y direction of the pinning layer magnetization direction of the present invention
  • FIG. 6(a) is a structural view of a push-pull X-axis magnetoresistive angle sensor of the present invention
  • 6(b) is a structural view of a push-pull Y-axis magnetoresistive angle sensor of the present invention.
  • FIG. 7 is a distribution diagram of interconnect resistance of a push-pull magnetoresistive angle sensor of the present invention.
  • Figure 8 (a) is a distribution structure diagram of a magnetoresistive angle sensing unit array of the present invention.
  • Figure 8 (b) is another distribution structure diagram of the magnetoresistive angle sensing unit array of the present invention.
  • Figure 8 (c) is another distribution structure diagram of the magnetoresistive angle sensing unit array of the present invention.
  • Fig. 8 (d) is another distribution structure diagram of the magnetoresistive angle sensing unit array of the present invention.
  • FIG. 1 is a schematic diagram of a single-chip biaxial magnetoresistive angle sensor, including a substrate 1 on an XY plane, a push-pull X-axis magnetoresistive angle sensor 2 on a substrate 1, and a push-pull Y-axis magnetoresistive angle sensor. 3, wherein the X-axis magnetoresistive angle sensor 2 and the Y-axis magnetoresistive angle sensor 3 have a common geometric center, such that the X-axis magnetoresistive sensor and the Y-axis magnetoresistive sensor have the same magnetic field area measured on the substrate 1.
  • the average value of the push-pull X-axis magnetoresistive angle sensor includes an X push arm and an X pull arm.
  • the push pull Y axis magneto resistance angle sensor includes a Y push arm and a Y pull arm, and the X push arm includes at least one magnetic field sensitive direction.
  • +X-direction magnetoresistive angle sensing cell arrays 4 and 5 X-arm arm comprising at least one magnetoresistive angle sensing cell array 6 and 7 in a magnetic field-sensitive direction along the -X direction
  • the Y-pushing arm comprising at least one magnetic field sensitive direction
  • the Y arm includes at least one magnetoresistive angle sensing cell array 10 and 11 in the -Y direction of the magnetic field sensitive direction.
  • two adjacent magnetoresistive sensing cell arrays having different magnetic field sensitive directions are between 4, 5 and 8, 9 and between 8, 9, and 10, 11, 10, 11 and 6, 7 is separated by insulation spacing 12-1, 12-2, 12-3.
  • the magnetoresistive angle sensing unit array in the +X direction and the magnetoresistive angle sensing unit array in the +Y direction have an insulation pitch 12-1, that is, in the magnetoresistive angle sensing unit array 4 and Between the magnetoresistive angle sensing unit arrays 8, and between the magnetoresistive angle sensing unit array 5 and the magnetoresistive angle sensing unit array 8, there is an insulation pitch 12-1.
  • the magnetoresistive angle sensing unit array in the +Y direction and the magnetoresistive angle sensing unit array in the -Y direction have an insulation pitch 12-2, that is, in the magnetoresistive angle sensing unit array 8 and
  • the magnetoresistive angle sensing unit array 10 and the magnetoresistive angle sensing unit array 9 and the magnetoresistive angle sensing unit array 11 have an insulation pitch 12-2.
  • the magnetoresistive angle sensing unit array in the -Y direction and the magnetoresistive angle sensing unit array in the -X direction have an insulation pitch 12-3, that is, the magnetoresistive angle sensing unit array 10 and the magnetic Between the resistance angle sensing unit arrays 6, and between the magnetoresistive angle sensing unit array 11 and the magnetoresistive angle sensing unit array 7, there is an insulation pitch 12-3.
  • the purpose of the thermal insulation spacing 12 is to isolate the effects of the laser heating on the magnetoresistive sensing element arrays having different magnetic field sensitive directions.
  • the +X, -X, +Y, and -Y magnetic field oriented magnetoresistive angle sensing unit arrays are all composed of the same magnetoresistive angle sensing unit 15, X push arm, X arm, Y push arm and Y
  • the arm includes the same number of +X, -X, +Y, and -Y magnetically sensitive directional magnetoresistive angle sensing units, and each is connected in a two-port configuration by series, parallel, or hybrid series-parallel, and has the same resistance.
  • the magnetoresistive angle sensing unit arrays are connected in the form of interconnecting wires 13 and are located at distance magnetoresistance sensing for interconnecting wires 13 that are not connected to the magnetoresistive angle sensing unit in the magnetoresistive angle sensing cell array.
  • the distance between the cell arrays is greater than 15 um; in particular, the interconnecting wires comprise a straight segment and a meandering segment, one end of the straight segment is connected to the magnetoresistive sensing unit, and the other end of the straight segment is The meandering segments are connected, and the distance of the meandering segments from the magnetoresistive angle sensing unit array is greater than 15 microns.
  • 16 is a meandering section of the interconnecting wires, the purpose of which is to increase the interconnecting wire resistance by increasing the total length of the interconnecting wires.
  • FIG. 2 is a structural diagram of a magnetic multilayer film of a magnetoresistive angle sensing unit.
  • the magnetoresistive angle sensing unit 20 is a magnetic tunnel junction MTJ or a GMR spin valve, wherein the magnetoresistive angle sensing unit of the two angle sensors has The same magnetic multilayer film structure
  • FIG. 2(a) is a magnetic multilayer film unit of a magnetoresistive angle sensing unit
  • FIG. 2(b) is an enlarged view of the structure of 100 in FIG. 2(a).
  • the layer film structure includes a seed layer 23, an antiferromagnetic layer 24, a pinning layer 25, a Ru26, a reference layer 27, a non-magnetic intermediate layer 28, a free layer 29, a passivation layer 30 from top to bottom; or FIG.
  • FIG. 2(d) is an enlarged view of the structure of 200 in FIG. 2(c), the magnetic multilayer film structure including a seed layer 23 from top to bottom.
  • the non-magnetic intermediate layer is a metal conductive layer such as Cu and Au film, in both cases, the antiferromagnetic layer magnetization direction 24 is in the +X and -X directions 31 Or 32 for the + Y and -Y directions.
  • FIG. 3 is a shape view of the magnetoresistive angle sensing unit 20
  • FIG. 3(a) is a top view of the antiferromagnetic layer along the X-direction magnetoresistive angle sensing unit
  • FIG. 3(b) is an antiferromagnetic layer along the Y-direction magnetoresistance.
  • the top view of the angle sensing unit, as seen from Fig. 3(a) and Fig. 3(b), both are circular structures, and the magnetization directions of the antiferromagnetic layer are along the +X, -X directions and the +Y, -Y directions, respectively. .
  • the actual pinning layer magnetization direction deviates from +X due to the possible deviation of the circular resistance, thermal stress and anisotropy due to the magnetoresistive angle sensing unit.
  • the -X, +Y, and -Y directions also require that the sensitive orientation be between the pinned layers of the X-axis and Y-axis magnetoresistive sensing elements with an angular orientation between 85° and 95°.
  • FIG. 4 is a top view of a high field magnetoresistance angle sensing unit, specifically, FIG. 4(a) is a top view of a high field strength magnetoresistance angle sensing unit along the X direction of the pinning layer magnetization direction, and FIG. 4(b) is a nail.
  • FIG. 5 corresponds to FIG. 4, FIG. 5 is a side view of the high field strength magnetoresistance angle sensing unit, specifically, FIG. 5 (a) A side view of the high field strength magnetoresistance angle sensing unit in the X direction for the pinning layer magnetization direction, and FIG. 5(b) is a side view of the high field strength magnetoresistance angle sensing unit in the Y direction of the pinning layer magnetization direction.
  • FIG. 5 corresponds to FIG. 4
  • FIG. 5 is a side view of the high field strength magnetoresistance angle sensing unit
  • FIG. 5 (a) A side view of the high field strength magnetoresistance angle sensing unit in the X direction for the
  • the high field magnetoresistance angle sensing unit includes a magnetoresistive angle sensing unit 20 and a magnetic attenuation layer 33 on the upper or lower surface of the magnetoresistive angle sensing unit, wherein the magnetic attenuation Between the layer 33 and the magnetoresistive angle sensing unit 20 is an insulating layer 34.
  • the magnetic attenuating layer 33 is a high magnetic permeability soft magnetic alloy material, including one or more of Fe, Co, and Ni elements, and only after laser-programmed heating magnetic annealing of all the magnetoresistive angle sensing units 20 is completed.
  • the magnetic field attenuating material layer 33 can be plated on the surface of the magnetoresistive angle sensing unit to obtain a high field strength magnetoresistive angle sensor.
  • a magnetic field attenuating layer 33 is formed on the surface of the magnetoresistive angle sensing unit 20 to form a high magnetic field angle sensor; the magnetic field attenuating layer 33 has a circular structure, and the magnetoresistive angle sensing unit 20 is elliptical or round. If the magnetoresistive angle sensing unit 20 is elliptical, the diameter of the magnetic field attenuating layer 33 is larger than the long wheelbase of the magnetoresistive angle sensing unit 20; if the magnetoresistive angle sensing unit 20 is a circle The diameter of the magnetic field attenuation layer 33 is larger than the diameter of the magnetoresistive angle sensing unit 20, and at this time, the diameter of the magnetoresistive angle sensing unit 20 is greater than 10 Micron.
  • the passivation layer is an ultraviolet laser transparent material, including BCB, Si 3 N 4 , Al 2 O 3 , HfO 2 , AlF 3 , GdF 3 , LaF 3 , MgF 2 , Sc 2 O 3 , HfO 2 or SiO 2 .
  • the passivation layer is an infrared laser transparent material, including a diamond-like carbon film, MgO, SiN, SiC, AlF 3 , MgF 2 , SiO 2 , Al 2 O 3 , ThF 4 , ZnS , ZnSe , ZrO 2 , HfO 2 , TiO 2 , Ta 2 O 7 , Si or Ge.
  • a diamond-like carbon film MgO, SiN, SiC, AlF 3 , MgF 2 , SiO 2 , Al 2 O 3 , ThF 4 , ZnS , ZnSe , ZrO 2 , HfO 2 , TiO 2 , Ta 2 O 7 , Si or Ge.
  • An anti-reflective coating is added to the surface of the passivation layer.
  • the power, ground, and output pins of the X-axis magnetoresistive angle sensor and the Y-axis magnetoresistive angle sensor are arranged along one side of the rectangular chip.
  • Figure 6 is a structural diagram of a push-pull dual-axis magnetoresistive angle sensor, which can be a half-bridge, full-bridge or quasi-bridge structure.
  • Figure 6 (a) is a full-bridge structure diagram of a push-pull X-axis magnetoresistive angle sensor
  • Figure 6 ( b) is a full-bridge structure diagram of the push-pull Y-axis magnetoresistive angle sensor.
  • Figure 7 is a push-pull magnetoresistive angle sensor interconnect resistance distribution diagram for a push-pull X-axis magnetoresistive angle sensor or a push-pull Y-axis magnetoresistive angle sensor, whether in a push-pull full-bridge or half-bridge circuit
  • the power common terminal Vs and the connecting wires of the push arm and the pull arm, and the interconnecting common wire GND and the connecting wires of the push arm and the pull arm have the same interconnect resistance Rc1, and connect the signal output common terminals V+, V-
  • the interconnection wires of the push arm and the pull arm have the same interconnection resistance Rc2, and at the same time, all the push arms and the pull arms have the same resistance, so that the push-pull X-axis magnetoresistance angle sensor or the push-pull type Y can be ensured.
  • the shaft magnetoresistance angle sensor can output a zero voltage signal when the magnetic field is zero.
  • the interconnecting wires are realized by a straight line segment or a meandering segment, as shown by the meandering segment shown in FIG. 1 to increase the resistance, thereby obtaining the same interconnection. resistance.
  • Figure 8 is a distribution diagram of the two-axis magnetoresistive angle sensor +X, -X, +Y, -Y magnetoresistive angle sensing unit array shown in Figure 1, in order to ensure the X push-pull magnetoresistive angle sensor and Y push-pull type
  • the +X, -X, +Y, and -Y magnetoresistive sensing element arrays of the magnetoresistive angle sensor have the same geometric center, and the distribution structure of Fig. 8(a) is +Y, +X, -X, -Y.
  • the distribution structure diagram of the resistance angle sensing unit array, FIG. 8(b) shows the distribution structure of the magnetoresistive angle sensing unit array of -Y, +X, -X, +Y, and the distribution structure of FIG.
  • FIG. 8(c) is + Y, -X, +X, -Y magnetoresistive angle sensing unit array distribution structure diagram
  • Fig. 8 (d) distribution structure of -Y, -X, +X, +Y magnetoresistance angle sensing unit array distribution A structural diagram in which magnetoresistive bridge arms having the same magnetization direction are arranged adjacent to each other for laser program operation.
  • the magnetoresistive angle sensor of the present invention comprises a push-pull X-axis magnetoresistive angle sensor and a push-pull Y-axis magnetoresistive angle sensor.
  • the two angle sensors are integrated on the same chip, so that the overall size is small and the structure is Compact;
  • the X-axis magnetoresistive angle sensor and the Y-axis magnetoresistive angle sensor have a common geometric center, and the magnetoresistive angle sensing units of the two angle sensors have the same magnetic multilayer film structure, such that the two angle sensors
  • the magnetic field regions measured on the substrate have the same average value, so that the sensor as a whole has lower power consumption; and the magnetic field attenuation layer can also be deposited on the surface of the magnetoresistive angle sensing unit to increase the working magnetic field range;
  • the phase The adjacent two magnetic resistance sensing unit arrays having different magnetic field sensitive directions have an insulation gap, and the insulation spacing can isolate the influence between the magnetoresistive sensing unit arrays with different magnetic field sensitive directions; in

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

一种单芯片双轴磁电阻角度传感器,包括位于X-Y平面上的衬底(1)、位于衬底上的推挽式X轴磁电阻角度传感器(2)和推挽式Y轴磁电阻角度传感器(3),前者包含X推臂和X挽臂,后者包括Y推臂和Y挽臂,所述X推臂、X挽臂、Y推臂和Y挽臂均包括至少一个磁电阻角度传感单元阵列,所述X推臂、X挽臂、Y推臂、Y挽臂的磁电阻角度传感单元阵列的磁场敏感方向分别沿+X方向、-X方向、+Y方向、-Y方向,磁电阻角度传感单元(20)均具有相同磁多层薄膜结构的TMR或者GMR自旋阀,其反铁磁层磁化方向均通过激光程控加热磁退火获得,之后还可在磁电阻角度传感单元(20)表面沉积磁场衰减层。

Description

一种单芯片双轴磁电阻角度传感器
技术领域
本发明涉及磁性传感器领域,特别涉及一种单芯片双轴磁电阻角度传感器。
背景技术
双轴角度传感器,用于测量两个正交方向如X和Y方向的外磁场角度信息,可以用于磁轮速度测量,或者用于编码器角度测量,在磁传感器设计领域得到广泛的应用。
双轴磁电阻角度传感器包括X和Y两个单轴磁电阻角度传感器,每一单轴X或Y磁电阻角度传感器通常采用推挽式电桥结构以增强磁电阻角度传感器的信号输出,而推挽式电桥包括推磁电阻角度传感单元和挽磁电阻角度传感单元组成,且分别具有相反的磁场敏感方向。
对于TMR或者GMR类型的双轴磁电阻角度传感器,通常采用将一个具有单一磁场敏感方向如X轴的磁电阻传感单元切片,分别翻转90,180和270度,以此来获得Y轴的推磁电阻传感单元切片,挽磁电阻传感单元切片,以及X轴的推磁电阻传感器单元切片和挽磁电阻传感单元切片,因此,双轴磁电阻传感器采用翻转切片的方法将至少需要4片切片,其优点在于,制备方法简单,只需要一个切片,而且对应一个铁磁参考层结构,其缺点在于,需要操作4个切片在同一平面内进行定位,增加了由于操作失误导致的传感器的测量精度损失的可能性。
采用多层薄膜结构的铁磁参考层的设计,通过改变与反铁磁层交互耦合的铁磁层和金属间隔层构成的多层薄膜的层数,可以实现相反铁磁参考层的推磁电阻传感单元和挽磁电阻传感单元的制造;对于正交的铁磁参考层的取向,可以通过两种不同反铁磁层AF1以及AF2,通过两次磁场热退火来实现,其缺点在于,由于在沉积多层薄膜时需要引入至少四种多层薄膜结构和两次磁场退火,增加了微加工工艺的复杂性。
中国专利申请号为CN201610821610.7的专利公开了一种采用激光程控加热磁场退火的方法以实现对磁电阻传感单元进行扫描、快速加热反铁磁层到阻塞温度以上,同时在冷却过程中可以沿任意方向施加磁场,可以逐个扫描、甚至逐片扫描实现磁电阻传感单元沿任一方向的磁场敏感方向的定向,采用该方法可以实现在单一切片上的双轴磁电阻传感单元的四种具有正交取向的磁电阻传感单元及其阵列的制造,从而克服了翻转切片的精确定位和沉积多种磁多层薄膜结构的微加工工艺复杂性的难题,并可实现单芯片双轴磁电阻角度传感器的批量制造。另一方面,中国专利公开号为CN104776794A的专利公开了一种单封装的高强度磁场磁电阻角度传感器,通过在磁电阻角度传感单元的表面增加磁场衰减层的方法来增加磁电阻角度传感单元的磁场测量范围,该磁电阻角度传感器依旧采用切片翻转的方法来改变磁电阻传感单元的磁场敏感方向,因此,如果采用激光辅助加热磁场退火的方法来实现对磁电阻传感单元磁场敏感方向的写入操作,可以得到单芯片的双轴高磁场强度磁电阻角度传感器。
此外,在实际激光程控加热磁退火过程中,由于磁电阻角度传感单元在加工过程中可能存在的偏离圆形、各向异性分散,以及应力等因素,这都可能使得实际的钉扎层磁化方向偏离所设定的+X,-X,+Y和-Y方向,因此还要求设定+X、-X轴磁电阻角度传感单元和+Y、-Y轴磁电阻角度传感单元钉扎层磁化方向之间夹角范围,来保证磁电阻角度传感单元的高效工作。
发明内容
为了解决上述问题,本发明所提出的一种单芯片磁电阻角度传感器,包括位于X-Y平面上的衬底、位于所述衬底上的推挽式X轴磁电阻角度传感器和推挽式Y轴磁电阻角度传感器,所述推挽式X轴磁电阻角度传感器包含X推臂和X挽臂,所述推挽式Y轴磁电阻角度传感器包含Y推臂和Y挽臂,所述X推臂、X挽臂、Y推臂和Y挽臂均包括至少一个磁电阻角度传感单元阵列,所述X推臂、X挽臂、Y推臂、Y挽臂的磁电阻角度传感单元阵列的磁场敏感方向分别沿+X方向、-X方向、+Y方向、-Y方向,所述X轴磁电阻角度传感器和所述Y轴磁电阻角度传感器具有共同的几何中心,每个所述磁电阻角度传感单元阵列均包括多个所述磁电阻角度传感单元,所述磁电阻角度传感单元为TMR或者GMR自旋阀单元,所述磁电阻角度传感单元均具有相同的磁多层薄膜结构,所述磁多层薄膜结构自上而下包括种子层、反铁磁层、钉扎层、Ru层、参考层、非磁中间层、自由层和钝化层,或者自上而下包括种子层、反铁磁层、参考层、非磁中间层、自由层和钝化层,所述磁电阻角度传感单元为TMR时, 所述非磁中间层为 Al2O3 或者 MgO ,所述磁电阻角度传感单元为GMR自旋阀时,所述非磁中间层为Au或者为Cu。
所述反铁磁层磁化方向通过激光程控加热磁退火获得,具有相同磁化方向的磁电阻桥臂位于相邻位置,具有不同磁场敏感方向的相邻磁电阻角度传感单元阵列之间具有隔热间隙。
进一步地,所述推挽式X轴磁电阻角度传感器和所述推挽式Y轴磁电阻角度传感器为半桥、全桥或者准桥结构。
进一步地,所述磁电阻角度传感单元阵列之间排列方式:
+X、-Y、+Y、-X;
或者+X、+Y、-Y、-X;
或者-X、-Y、+Y、+X;
或者+X、-Y、+Y、-X。
进一步地,在所述磁电阻角度传感单元表面电镀磁场衰减层形成高磁场角度传感器,所述磁场衰减层的材料为高磁导率软磁合金,该高磁导率软磁合金包含Fe、Co、Ni元素中的一种或多种,所述磁电阻角度传感单元和所述磁场衰减层之间为绝缘材料层,所述磁场衰减层为圆形结构,所述磁电阻角度传感单元为椭圆形结构,所述磁场衰减层的直径大于所述磁电阻角度传感单元的长轴距。
进一步地,在所述磁电阻角度传感单元表面电镀磁场衰减层形成高磁场角度传感器;所述磁场衰减层为圆形结构,所述磁电阻角度传感单元为圆形结构,所述磁电阻角度传感单元的直径大于10 微米,且所述磁场衰减层的直径大于所述磁电阻角度传感单元的直径。。
进一步地,所述X推臂、所述X挽臂、所述Y推臂和所述Y挽臂包含相同数量和相同电阻的磁电阻角度传感单元,且所述磁电阻角度传感单元通过串联、并联或者混合串并联形成两端口结构。
进一步地,所述磁电阻角度传感单元阵列之间通过互联导线进行连接,所述互联导线包括直线段和曲折段,所述直线段的一端与所述磁电阻传感单元相连,所述直线段的另一端与所述曲折段相连,所述曲折段距离所述磁电阻角度传感单元阵列的距离大于15微米。
进一步地,连接电源公共端的互联导线与连接地公共端的互联导线具有相同的互联电阻,连接电源公共端的互联导线与连接信号输出公共端的互联导线具有相同的互联电阻,且所述互联导线通过所述直线段和曲折段得到相同的互联电阻。
进一步地,所述磁电阻角度传感单元的磁场敏感方向与所述钉扎层之间磁化方向的夹角范围在85°和95°之间。
进一步地,所述钝化层为紫外激光透明材料, 所述紫外激光透明材料为 BCB 、 Si3N4 、 Al2O3 、 HfO2 、 AlF3 、 GdF3 、 LaF3 、 MgF2 、 Sc2O3 、 HfO2 或 SiO2
进一步地,所述钝化层为红外激光透明材料,所述红外激光透明材料为类金刚石碳膜 、 MgO 、 SiN 、 SiC 、 AlF3 、 MgF2 、 SiO2 、 Al2O3 、 ThF4 、 ZnS 、 ZnSe 、 ZrO2 、 HfO2 、 TiO2 、 Ta2O7 、 Si 或 Ge 。
进一步地,所述磁多层薄膜结构还包括抗反射涂层,所述抗反射涂层覆盖在所述钝化层的表面。
进一步地,所述X轴磁电阻角度传感器和所述Y轴磁电阻角度传感器的电源、地、输出引脚沿着传感器芯片的边缘排列。
本发明与现有技术相比,具有以下技术效果:本发明采用单芯片结构,将两个角度传感器集成在同一个芯片上;并且两个角度传感器的磁电阻角度传感单元具有相同的磁多层薄膜结构,本发明具有结构紧凑、高精度、小尺寸,并可实现大幅度磁场工作范围的优点。
附图说明
图1 为本发明的单芯片双轴磁电阻角度传感器示意图;
图2(a)为一种磁电阻角度传感单元磁多层薄膜结构;
图2(b)为图2(a)中100的结构放大图;
图2(c)为另一种磁电阻角度传感单元磁多层薄膜结构;
图2(d)为图2(c)中200的结构放大图;
图3(a)为本发明的反铁磁层磁化方向沿X方向磁电阻角度传感单元俯视图;
图3(b)为本发明的反铁磁层磁化方向沿Y方向磁电阻角度传感单元俯视图;
图4(a)为本发明的钉扎层磁化方向沿X方向的高场强磁电阻角度传感单元俯视图;
图4(b)为本发明的钉扎层磁化方向沿Y方向的高场强磁电阻角度传感单元俯视图;
图5(a)为本发明的钉扎层磁化方向沿X方向的高场强磁电阻角度传感单元侧视图;
图5(b)为本发明的钉扎层磁化方向沿Y方向的高场强磁电阻角度传感单元侧视图;
图6(a)为本发明的推挽式X轴磁电阻角度传感器结构图;
图6(b)为本发明的推挽式Y轴磁电阻角度传感器结构图;
图7为本发明的推挽式磁电阻角度传感器互联电阻分布图;
图8(a)为本发明的磁电阻角度传感单元阵列一种分布结构图;
图8(b)为本发明的磁电阻角度传感单元阵列另一种分布结构图;
图8(c)为本发明的磁电阻角度传感单元阵列另一种分布结构图;
图8(d)为本发明的磁电阻角度传感单元阵列另一种分布结构图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。
下面将参考附图并结合实施例,来详细说明本发明。
实施例一
图1为单芯片双轴磁电阻角度传感器示意图,包括,位于X-Y平面上的衬底1,位于衬底1上的推挽式X轴磁电阻角度传感器2和推挽式Y轴磁电阻角度传感器3,其中,X轴磁电阻角度传感器2和Y轴磁电阻角度传感器3具有共同的几何中心,这样,X轴磁电阻传感器和Y轴磁电阻传感器在衬底1上所测量的磁场区域具有相同的平均值,推挽式X轴磁电阻角度传感器包括X推臂和X挽臂,推挽式Y轴磁电阻角度传感器包括Y推臂和Y挽臂,X推臂包括至少一个磁场敏感方向沿+X方向的磁电阻角度传感单元阵列4和5,X挽臂包括至少一个磁场敏感方向沿-X方向的磁电阻角度传感单元阵列6和7,Y推臂包括至少一个磁场敏感方向沿+Y方向的磁电阻角度传感单元阵列8和9,Y挽臂包括至少一个磁场敏感方向沿-Y方向的磁电阻角度传感单元阵列10和11。
从图1中看出,相邻的两个磁场敏感方向不同的磁电阻传感单元阵列如4、5和8、9之间,8、9和10、11之间,10、11和6、7之间分别由隔热间距12-1,12-2,12-3分隔开来。具体地,+X方向的磁电阻角度传感单元阵列与+Y方向的磁电阻角度传感单元阵列之间具有隔热间距12-1,也就是说,在磁电阻角度传感单元阵列4与磁电阻角度传感单元阵列8之间,以及磁电阻角度传感单元阵列5与磁电阻角度传感单元阵列8之间具有隔热间距12-1。相应地,+Y方向的磁电阻角度传感单元阵列与-Y方向的磁电阻角度传感单元阵列之间具有隔热间距12-2,也就是说,在磁电阻角度传感单元阵列8与磁电阻角度传感单元阵列10之间,以及磁电阻角度传感单元阵列9与磁电阻角度传感单元阵列11之间具有隔热间距12-2。并且,-Y方向的磁电阻角度传感单元阵列与-X方向的磁电阻角度传感单元阵列之间具有隔热间距12-3,也就是说,在磁电阻角度传感单元阵列10与磁电阻角度传感单元阵列6之间,以及磁电阻角度传感单元阵列11与磁电阻角度传感单元阵列7之间具有隔热间距12-3。其中,隔热间距12的目的在于使得激光加热对相邻磁场敏感方向不同的磁电阻传感单元阵列的影响进行隔离。
进一步地,+X、-X、+Y和-Y磁场取向的磁电阻角度传感单元阵列均由相同的磁电阻角度传感单元15组成,X推臂、X挽臂、Y推臂和Y挽臂均包含相同数量的+X、-X、+Y和-Y磁敏感方向磁电阻角度传感单元,并且各自通过串联、并联或者混合串并联的形式连接成两端口结构,并具有相同的电阻。
磁电阻角度传感单元阵列之间通过互联导线13的形式进行连接,且对于没有与磁电阻角度传感单元阵列中的磁电阻角度传感单元相连的互联导线13,则位于距离磁电阻传感单元阵列之间距离14大于15um的范围内;具体地,所述互联导线包括直线段和曲折段,所述直线段的一端与所述磁电阻传感单元相连,所述直线段的另一端与所述曲折段相连,所述曲折段距离所述磁电阻角度传感单元阵列的距离大于15微米。此外,16为互联导线的曲折段,其目的在于通过增加互联导线总长度的方法来增加互联导线电阻。
图2为磁电阻角度传感单元的磁多层薄膜结构图,磁电阻角度传感单元20为磁隧道结MTJ或者为GMR自旋阀,其中,两个角度传感器的磁电阻角度传感单元具有相同的磁多层薄膜结构,图2(a)为一种磁电阻角度传感单元磁多层薄膜结构,图2(b)为图2(a)中100的结构放大图,所述磁多层薄膜结构自上而下包括种子层23、反铁磁层24、钉扎层25、Ru26、参考层27、非磁中间层28、自由层29、钝化层30;或者图2(c)为另一种磁电阻角度传感单元磁多层薄膜结构,图2(d)为图2(c)中200的结构放大图,所述磁多层薄膜结构自上而下包括种子层23、反铁磁层24、参考层27、非磁中间层28、自由层29、钝化层30;其中,对于磁隧道结MTJ, 非磁中间层为 Al2O3 或者 MgO 薄膜 ,对于GMR自旋阀,非磁中间层为金属导电层如Cu和Au薄膜,在两种情况下,反铁磁层磁化方向24为沿+X和-X方向31,或者为+Y和-Y方向32。
图3为磁电阻角度传感单元20的形状图,图3(a)为反铁磁层沿X方向磁电阻角度传感单元俯视图,图3(b)为反铁磁层沿Y方向磁电阻角度传感单元俯视图,从图3(a)和图3(b)看出,两者均为圆形结构,反铁磁层磁化方向分别沿+X,-X方向和+Y,-Y方向。为了保证双轴磁电阻角度传感器能够正常的工作,考虑到由于磁电阻角度传感单元可能存在的偏离圆形、热应力以及各向异性的分散性而导致的实际钉扎层磁化方向偏离+X、-X、+Y和-Y方向,还要求敏感方向为X轴和Y轴磁电阻传感单元的钉扎层之间角度取向范围在85°和95°之间。
图4为高场强磁电阻角度传感单元俯视图,具体地,图4(a)为钉扎层磁化方向沿X方向的高场强磁电阻角度传感单元俯视图,图4(b)为钉扎层磁化方向沿Y和方向的高场强磁电阻角度传感单元俯视图;图5与图4相对应,图5为高场强磁电阻角度传感单元侧视图,具体地,图5(a)为钉扎层磁化方向沿X方向的高场强磁电阻角度传感单元侧视图,图5(b)为钉扎层磁化方向沿Y方向的高场强磁电阻角度传感单元侧视图。从图4和图5看出,所述高场强磁电阻角度传感单元包含磁电阻角度传感单元20以及位于磁电阻角度传感单元上表面或者下表面的磁衰减层33,其中磁衰减层33和磁电阻角度传感单元20之间为绝缘层34。其中,磁衰减层33为高磁导率软磁合金材料,包括Fe、Co、Ni元素中的一种或者几种,且只有在所有磁电阻角度传感单元20的激光程控加热磁退火完成之后,才能通过在磁电阻角度传感单元表面电镀磁衰减材料层33,从而得到高场强磁电阻角度传感器。
具体地,在所述磁电阻角度传感单元20表面电镀磁场衰减层33形成高磁场角度传感器;所述磁场衰减层33为圆形结构,所述磁电阻角度传感单元20为椭圆形或圆形结构;若磁电阻角度传感单元20为椭圆形,所述磁场衰减层33的直径大于所述磁电阻角度传感单元20的长轴距;若所述磁电阻角度传感单元20为圆形结构,所述磁场衰减层33的直径大于所述磁电阻角度传感单元20的直径,并且,此时所述磁电阻角度传感单元20的直径大于10 微米。
所述钝化层为紫外激光透明材料,包括 BCB 、 Si3N4 、 Al2O3 、 HfO2 、 AlF3 、 GdF3 、 LaF3 、 MgF2 、 Sc2O3 、 HfO2 或 SiO2
所述钝化层为红外激光透明材料,包括类金刚石碳膜 、MgO 、 SiN 、 SiC 、 AlF3 、 MgF2 、 SiO2 、 Al2O3 、 ThF4 、 ZnS 、 ZnSe 、 ZrO2 、 HfO2 、 TiO2 、 Ta2O7 、 Si 或 Ge 。
所述钝化层表面增加了抗反射涂层。
所述X轴磁电阻角度传感器和Y轴磁电阻角度传感器的电源、地、输出引脚沿着矩形芯片的一个边排列。
图6为推挽式双轴磁电阻角度传感器结构图,可以为半桥,全桥或者准桥结构,图6(a)为推挽式X轴磁电阻角度传感器全桥结构图,图6(b)为推挽式Y轴磁电阻角度传感器全桥结构图。
图7为推挽式磁电阻角度传感器互联电阻分布图,对于推挽式X轴磁电阻角度传感器或者推挽式Y轴磁电阻角度传感器,无论是推挽式全桥或者半桥电路中,连接电源公共端Vs和所述推臂和挽臂的互联导线,以及连接地公共端GND和所述推臂和挽臂的互联导线均具有相同的互联电阻Rc1,连接信号输出公共端V+、V-和所述推臂和挽臂的互联导线均具有相同的互联电阻Rc2,而同时所有推臂和挽臂具有相同的电阻,这样,可以保证推挽式X轴磁电阻角度传感器或者推挽式Y轴磁电阻角度传感器均能够在0磁场时输出为0电压信号,为了达到这个目的,互联导线通过直线段或者曲折段实现,如图1中16所示曲折段以增加电阻,从而得到相同的互联电阻。
图8为图1所示双轴磁电阻角度传感器+X,-X,+Y,-Y磁电阻角度传感单元阵列的分布图,为了保证X推挽式磁电阻角度传感器和Y推挽式磁电阻角度传感器的+X、-X、+Y、-Y磁电阻传感单元阵列分布具有相同的几何中心,图8(a)分布结构为+Y、+X、-X、-Y的磁电阻角度传感单元阵列分布结构图,图8(b)分布结构为-Y、+X、-X、+Y的磁电阻角度传感单元阵列分布结构图,图8(c)分布结构为+Y、-X、+X、-Y的磁电阻角度传感单元阵列分布结构图,图8(d)分布结构为-Y、-X、+X、+Y的磁电阻角度传感单元阵列分布结构图,其中具有相同磁化方向的磁电阻桥臂相邻排列,以便激光程控操作。
综上所述,本发明的磁电阻角度传感器包括推挽式X轴磁电阻角度传感器和推挽式Y轴磁电阻角度传感器,两个角度传感器集成在同一个芯片上,使得整体尺寸小、结构紧凑;所述X轴磁电阻角度传感器和Y轴磁电阻角度传感器具有共同的几何中心,并且,两个角度传感器的磁电阻角度传感单元具有相同的磁多层薄膜结构,这样两个角度传感器在衬底上所测量的磁场区域具有相同的平均值,从而使得传感器整体具有较低的功耗;还能够在磁电阻角度传感单元表面沉积磁场衰减层以提高工作磁场范围;进一步地,相邻的两个磁场敏感方向不同的磁电阻传感单元阵列之间具有隔热间距,所述隔热间距能够隔离相邻磁场敏感方向不同的磁电阻传感单元阵列之间的影响;总之,本发明具有结构紧凑、高精度,小尺寸,并可实现大幅度磁场工作范围的优点。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种单芯片双轴磁电阻角度传感器,
    包括位于 X-Y 平面上的衬底、位于所述衬底上的推挽式 X 轴磁电阻角度传感器和推挽式 Y 轴磁电阻角度传感器,
    所述推挽式 X 轴磁电阻角度传感器包含 X 推臂和 X 挽臂,
    所述推挽式 Y 轴磁电阻角度传感器包含 Y 推臂和 Y 挽臂,
    所述 X 推臂、 X 挽臂、 Y 推臂和 Y 挽臂均包括至少一个磁电阻角度传感单元阵列,所述 X 推臂、 X 挽臂、 Y 推臂、 Y 挽臂的磁电阻角度传感单元阵列的磁场敏感方向分别沿 +X 方向、 -X 方向、 +Y 方向、 -Y 方向,其特征在于,
    所述 X 轴磁电阻角度传感器和所述 Y 轴磁电阻角度传感器具有共同的几何中心,
    每个所述磁电阻角度传感单元阵列均包括多个所述磁电阻角度传感单元,所述磁电阻角度传感单元为 TMR 或者 GMR 自旋阀单元,所述磁电阻角度传感单元均具有相同的磁多层薄膜结构,所述磁多层薄膜结构自下而上包括种子层、反铁磁层、钉扎层、 Ru 层、参考层、非磁中间层、自由层和钝化层,或者自下而上包括种子层、反铁磁层、参考层、非磁中间层、自由层和钝化层,
    所述磁电阻角度传感单元为 TMR 时,所述非磁中间层为 Al2O3 或者 MgO ,所述磁电阻角度传感单元为 GMR 自旋阀时,所述非磁中间层为 Au 或者为 Cu ,
    所述反铁磁层磁化方向通过激光程控加热磁退火获得,具有相同磁化方向的磁电阻桥臂位于相邻位置,具有不同磁场敏感方向的相邻磁电阻角度传感单元阵列之间具有隔热间隙。
  2. 根据权利要求 1 所述的一种单芯片双轴磁电阻角度传感器,其特征在于,所述推挽式 X 轴磁电阻角度传感器和所述推挽式 Y 轴磁电阻角度传感器为半桥、全桥或者准桥结构。
  3. 根据权利要求 1 所述的一种单芯片双轴磁电阻角度传感器,其特征在于,所述磁电阻角度传感单元阵列之间排列方式:
    +X 、 -Y 、 +Y 、 -X ;
    或者 +X 、 +Y 、 -Y 、 -X ;
    或者 -X 、 -Y 、 +Y 、 +X ;
    或者 +X 、 -Y 、 +Y 、 -X 。
  4. 根据权利要求 1 所述的一种单芯片双轴磁电阻角度传感器,其特征在于,在所述磁电阻角度传感单元表面电镀磁场衰减层形成高磁场角度传感器,所述磁场衰减层的材料为高磁导率软磁合金,该高磁导率软磁合金包含 Fe 、 Co 、 Ni 元素中的一种或多种,所述磁电阻角度传感单元和所述磁场衰减层之间为绝缘材料层;
    所述磁场衰减层为圆形结构,所述磁电阻角度传感单元为椭圆形结构,所述磁场衰减层的直径大于所述磁电阻角度传感单元的长轴距。
  5. 根据权利要求 1 所述的一种单芯片双轴磁电阻角度传感器,其特征在于,在所述磁电阻角度传感单元表面电镀磁场衰减层形成高磁场角度传感器;
    所述磁场衰减层为圆形结构,所述磁电阻角度传感单元为圆形结构,所述磁电阻角度传感单元的直径大于 10 微米,且所述磁场衰减层的直径大于所述磁电阻角度传感单元的直径。
  6. 根据权利要求 1 所述的一种单芯片双轴磁电阻角度传感器,其特征在于,所述 X 推臂、所述 X 挽臂、所述 Y 推臂和所述 Y 挽臂包含相同数量和相同电阻的磁电阻角度传感单元,且所述磁电阻角度传感单元通过串联、并联或者混合串并联形成两端口结构。
  7. 根据权利要求 2 所述的一种单芯片双轴磁电阻角度传感器,其特征在于,所述磁电阻角度传感单元阵列之间通过互联导线进行连接,所述互联导线包括直线段和曲折段,所述直线段的一端与所述磁电阻传感单元相连,所述直线段的另一端与所述曲折段相连,所述曲折段距离所述磁电阻角度传感单元阵列的距离大于 15 微米。
  8. 根据权利要求 7 所述的一种单芯片双轴磁电阻角度传感器,其特征在于,连接电源公共端的互联导线与连接地公共端的互联导线具有相同的互联电阻,连接电源公共端的互联导线与连接信号输出公共端的互联导线具有相同的互联电阻,且所述互联导线通过所述直线段和曲折段得到相同的互联电阻。
  9. 根据权利要求 1 所述的一种单芯片双轴磁电阻角度传感器,其特征在于,所述磁电阻角度传感单元的磁场敏感方向与所述钉扎层之间磁化方向的夹角范围在 85 ° 和 95 ° 之间。
  10. 根据权利要求 1 所述的一种单芯片双轴磁电阻角度传感器,其特征在于,所述钝化层为紫外激光透明材料,所述紫外激光透明材料为 BCB 、 Si3N4 、 Al2O3 、 HfO2 、 AlF3 、 GdF3 、 LaF3 、 MgF2 、 Sc2O3 、 HfO2 或 SiO2
  11. 根据权利要求 1 所述的一种单芯片双轴磁电阻角度传感器,其特征在于,所述钝化层为红外激光透明材料,所述红外激光透明材料为类金刚石碳膜、 MgO 、 SiN 、 SiC 、 AlF3 、 MgF2 、 SiO2 、 Al2O3 、 ThF4 、 ZnS 、 ZnSe 、 ZrO2 、 HfO2 、 TiO2 、 Ta2O7 、 Si 或 Ge 。
  12. 根据权利要求 1 所述的一种单芯片双轴磁电阻角度传感器,其特征在于,所述磁多层薄膜结构还包括抗反射涂层,所述抗反射涂层覆盖在所述钝化层的表面。
  13. 根据权利要求 1 所述的一种单芯片双轴磁电阻角度传感器,其特征在于,所述 X 轴磁电阻角度传感器和所述 Y 轴磁电阻角度传感器的电源、地、输出引脚沿着传感器芯片的边缘排列。
PCT/CN2018/076783 2017-02-23 2018-02-14 一种单芯片双轴磁电阻角度传感器 WO2018153335A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/488,549 US11512939B2 (en) 2017-02-23 2018-02-14 Single-chip double-axis magnetoresistive angle sensor
EP18757297.9A EP3588118A4 (en) 2017-02-23 2018-02-14 SINGLE-CHIP DUAL-AXIS MAGNETIC ANGLE SENSOR
JP2019546016A JP7188775B2 (ja) 2017-02-23 2018-02-14 シングル・チップ二軸磁気抵抗角度センサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710099463.1 2017-02-23
CN201710099463.1A CN106871778B (zh) 2017-02-23 2017-02-23 一种单芯片双轴磁电阻角度传感器

Publications (1)

Publication Number Publication Date
WO2018153335A1 true WO2018153335A1 (zh) 2018-08-30

Family

ID=59167837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076783 WO2018153335A1 (zh) 2017-02-23 2018-02-14 一种单芯片双轴磁电阻角度传感器

Country Status (5)

Country Link
US (1) US11512939B2 (zh)
EP (1) EP3588118A4 (zh)
JP (1) JP7188775B2 (zh)
CN (1) CN106871778B (zh)
WO (1) WO2018153335A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11512939B2 (en) 2017-02-23 2022-11-29 MultiDimension Technology Co., Ltd. Single-chip double-axis magnetoresistive angle sensor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110573895B (zh) * 2017-04-25 2022-04-29 柯尼卡美能达株式会社 磁传感器
CN107064829B (zh) 2017-05-04 2023-02-21 江苏多维科技有限公司 一种单芯片高灵敏度磁电阻线性传感器
JP2021036199A (ja) * 2017-10-06 2021-03-04 株式会社村田製作所 磁気センサ及び電流センサ
US11170806B2 (en) 2019-12-27 2021-11-09 Western Digital Technologies, Inc. Magnetic sensor array with single TMR film plus laser annealing and characterization
US11719527B2 (en) * 2021-11-04 2023-08-08 Allegro Microsystems, Llc Angle sensor with a single die using a single target

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6129957A (en) * 1999-10-12 2000-10-10 Headway Technologies, Inc. Method of forming a second antiferromagnetic exchange-coupling layer for magnetoresistive (MR) and giant MR (GMR) applications
US20090260719A1 (en) * 2008-04-18 2009-10-22 Iben Icko E Tim In-situ annealing of a tmr sensor
CN101969098A (zh) * 2010-08-11 2011-02-09 上海腾怡半导体有限公司 一种磁阻传感器的制造方法
CN103954920A (zh) * 2014-04-17 2014-07-30 江苏多维科技有限公司 一种单芯片三轴线性磁传感器及其制备方法
CN104280700A (zh) * 2014-09-28 2015-01-14 江苏多维科技有限公司 一种单芯片差分自由层推挽式磁场传感器电桥及制备方法
CN204389663U (zh) * 2014-09-28 2015-06-10 江苏多维科技有限公司 一种单芯片差分自由层推挽式磁场传感器电桥
CN104776794A (zh) 2015-04-16 2015-07-15 江苏多维科技有限公司 一种单封装的高强度磁场磁电阻角度传感器
CN106871778A (zh) * 2017-02-23 2017-06-20 江苏多维科技有限公司 一种单芯片双轴磁电阻角度传感器
CN206627062U (zh) * 2017-02-23 2017-11-10 江苏多维科技有限公司 一种单芯片双轴磁电阻角度传感器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6300617B1 (en) * 1998-03-04 2001-10-09 Nonvolatile Electronics, Incorporated Magnetic digital signal coupler having selected/reversal directions of magnetization
JP3316447B2 (ja) * 1998-04-28 2002-08-19 三洋電機株式会社 集積回路
DE10117355A1 (de) 2001-04-07 2002-10-17 Bosch Gmbh Robert Verfahren zur Einstellung einer Magnetisierung in einer Schichtanordnung und dessen Verwendung
EP1527352A1 (de) * 2002-07-26 2005-05-04 Robert Bosch GmbH Gmr-sensorelement und dessen verwendung
JP2006073087A (ja) * 2004-09-01 2006-03-16 Ricoh Co Ltd 光情報記録媒体用成形基板と該製造方法、光情報記録媒体と該製造方法
US8715776B2 (en) * 2007-09-28 2014-05-06 Headway Technologies, Inc. Method for providing AFM exchange pinning fields in multiple directions on same substrate
JP5516584B2 (ja) * 2009-07-13 2014-06-11 日立金属株式会社 磁気抵抗効果素子の製造方法、磁気センサ、回転角度検出装置
JP5249150B2 (ja) * 2009-07-23 2013-07-31 株式会社東海理化電機製作所 磁気センサの製造方法及び磁気センサ
JP2012137312A (ja) * 2010-12-24 2012-07-19 Asahi Kasei Electronics Co Ltd 磁気センサ
CN202259452U (zh) * 2011-03-03 2012-05-30 江苏多维科技有限公司 单一芯片磁性传感器及其激光加热辅助退火装置
JP5902529B2 (ja) * 2012-03-28 2016-04-13 株式会社ディスコ レーザ加工方法
JP6322052B2 (ja) * 2013-10-28 2018-05-09 日本電産サンキョー株式会社 センサ装置
US9435662B2 (en) * 2014-04-08 2016-09-06 Infineon Technologies Ag Magneto-resistive angle sensor and sensor system using the same
CN106324534B (zh) * 2016-09-13 2023-10-31 江苏多维科技有限公司 用于激光写入系统的磁电阻传感器晶元版图及激光扫描方法
DE102017121467A1 (de) * 2017-09-15 2019-03-21 Infineon Technologies Ag Magnetsensorbauelement und verfahren zum bestimmen einer rotationsgeschwindigkeit, einer rotationsrichtung und/oder eines rotationswinkels einer magnetischen komponente um eine rotationsachse

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6129957A (en) * 1999-10-12 2000-10-10 Headway Technologies, Inc. Method of forming a second antiferromagnetic exchange-coupling layer for magnetoresistive (MR) and giant MR (GMR) applications
US20090260719A1 (en) * 2008-04-18 2009-10-22 Iben Icko E Tim In-situ annealing of a tmr sensor
CN101969098A (zh) * 2010-08-11 2011-02-09 上海腾怡半导体有限公司 一种磁阻传感器的制造方法
CN103954920A (zh) * 2014-04-17 2014-07-30 江苏多维科技有限公司 一种单芯片三轴线性磁传感器及其制备方法
CN104280700A (zh) * 2014-09-28 2015-01-14 江苏多维科技有限公司 一种单芯片差分自由层推挽式磁场传感器电桥及制备方法
CN204389663U (zh) * 2014-09-28 2015-06-10 江苏多维科技有限公司 一种单芯片差分自由层推挽式磁场传感器电桥
CN104776794A (zh) 2015-04-16 2015-07-15 江苏多维科技有限公司 一种单封装的高强度磁场磁电阻角度传感器
CN106871778A (zh) * 2017-02-23 2017-06-20 江苏多维科技有限公司 一种单芯片双轴磁电阻角度传感器
CN206627062U (zh) * 2017-02-23 2017-11-10 江苏多维科技有限公司 一种单芯片双轴磁电阻角度传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3588118A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11512939B2 (en) 2017-02-23 2022-11-29 MultiDimension Technology Co., Ltd. Single-chip double-axis magnetoresistive angle sensor

Also Published As

Publication number Publication date
JP2020510823A (ja) 2020-04-09
CN106871778A (zh) 2017-06-20
CN106871778B (zh) 2019-11-22
EP3588118A1 (en) 2020-01-01
US20190368858A1 (en) 2019-12-05
US11512939B2 (en) 2022-11-29
EP3588118A4 (en) 2020-12-16
JP7188775B2 (ja) 2022-12-13

Similar Documents

Publication Publication Date Title
WO2018153335A1 (zh) 一种单芯片双轴磁电阻角度传感器
JP6076345B2 (ja) 3軸磁場センサ
JP6474833B2 (ja) モノリシック三軸リニア磁気センサ及びその製造方法
US20230074404A1 (en) Magnetic sensor and camera module
JP6426178B2 (ja) シングルチップ・プッシュプルブリッジ型磁界センサ
US10107871B2 (en) Monolithic three-axis magnetic field sensor and its manufacturing method
US6946834B2 (en) Method of orienting an axis of magnetization of a first magnetic element with respect to a second magnetic element, semimanufacture for obtaining a sensor, sensor for measuring a magnetic field
US10066940B2 (en) Single-chip differential free layer push-pull magnetic field sensor bridge and preparation method
EP3223028B1 (en) Multiple axis magnetic sensor
WO2013123873A1 (zh) 用于测量磁场的磁电阻传感器
US20150137804A1 (en) Magnetic field sensing module, measurement method, and manufacturing method of a magnetic field sensing module
US9964601B2 (en) Magnetic sensor
TWI747285B (zh) 磁場感測裝置
WO2017036352A1 (zh) 一种半翻转两轴磁电阻传感器
JP2020520088A (ja) 単一チップ高感度磁気抵抗リニア・センサ
TW201520574A (zh) 磁場感測模組、量測方法及磁場感測模組的製作方法
TWI685667B (zh) 磁場感測裝置
CN203811787U (zh) 一种单芯片三轴线性磁传感器
CN115825826B (zh) 一种三轴全桥电路变换式线性磁场传感器
JP4900857B2 (ja) 回転角度センサー及び回転角度センサーユニット
JP2017191014A (ja) 磁気センサ
JP4900855B2 (ja) 絶対位置検出方法、回転角度検出方法、及び絶対位置検出構造
TW202008002A (zh) 磁場感測裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019546016

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018757297

Country of ref document: EP

Effective date: 20190923