WO2018153169A1 - 可调式隔热窗户 - Google Patents

可调式隔热窗户 Download PDF

Info

Publication number
WO2018153169A1
WO2018153169A1 PCT/CN2018/071327 CN2018071327W WO2018153169A1 WO 2018153169 A1 WO2018153169 A1 WO 2018153169A1 CN 2018071327 W CN2018071327 W CN 2018071327W WO 2018153169 A1 WO2018153169 A1 WO 2018153169A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
voltage
insulating layer
electrode
transparent substrate
Prior art date
Application number
PCT/CN2018/071327
Other languages
English (en)
French (fr)
Inventor
林宗贤
李承璋
赵宏昌
戴茂洲
Original Assignee
中山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/438,382 external-priority patent/US20180163460A1/en
Application filed by 中山大学 filed Critical 中山大学
Priority to JP2018565007A priority Critical patent/JP2019518244A/ja
Priority to EP18758162.4A priority patent/EP3588176A4/en
Priority to CN201880003119.0A priority patent/CN110431476A/zh
Publication of WO2018153169A1 publication Critical patent/WO2018153169A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Definitions

  • This invention relates to an adjustable insulated window, and more particularly to a window that is adjustable in transparency while having thermal insulation properties.
  • Twisted Nematic (TN) liquid crystals were used, the polarizing plates were usually used for liquid crystal alignment, which not only reduced the light transmittance required for windows, but also increased the transmittance of the windows.
  • the setup cost of the polarizer was usually used for liquid crystal alignment, which not only reduced the light transmittance required for windows, but also increased the transmittance of the windows.
  • the main object of the present invention is to provide an adjustable heat insulating window which can achieve three states of transparency, absorption, and shielding at different voltages by using a liquid crystal composition.
  • the liquid crystal composition comprises a negative liquid crystal, a dichroic dye and an ionic salt, which can be transparent when no voltage is applied, a low voltage range can exhibit an absorption state and have a certain heat insulation effect, and a higher voltage range It exhibits an atomized shaded state and also has a thermal insulation effect, which can be applied to automobiles or buildings.
  • the liquid crystal composition since the liquid crystal composition exhibits a maximum visible light transmittance of more than 65% when no voltage is supplied, it can automatically return to a transparent state when the power is unexpectedly turned off, thereby improving safety in driving use.
  • the adjustable heat-insulating window structure of the invention is simple, no need to additionally arrange a polarizing film, can improve the light transmittance in a transparent state, and save the cost and assembly steps of the polarizing film.
  • an adjustable heat insulating window includes: a first transparent substrate including a first electrode; a second transparent substrate including a second electrode; An insulating layer is disposed between the first transparent substrate and the second transparent substrate, the heat insulating layer comprises a liquid crystal composition; wherein the liquid crystal composition comprises a plurality of liquid crystal molecules, a dichroic dye And an ionic salt having a negative dielectric anisotropy, and the dichroic dye has a visible light absorption wavelength of from 400 nm to 780 nm.
  • the liquid crystal molecules are nematic liquid crystals.
  • the ionic salt is water soluble.
  • the ionic salt is sodium chloride, calcium sulfate, ammonium sulfate, sodium carbonate, sodium hydrogencarbonate, potassium nitrate or tetrabutylammonium tetrafluoroborate (TBATFB).
  • the first electrode and the second electrode provide a voltage to reduce the light transmittance of the heat insulating layer and absorb part of visible light.
  • the voltage is less than 10 volts, and the insulating layer has a visible light transmittance of between 30% and 65%.
  • the voltage is greater than 20 volts, and the insulating layer has a visible light transmittance of less than 5%.
  • the voltage is less than 10 volts, and the near-infrared light transmittance of the thermal insulation layer is greater than 85%.
  • the voltage is greater than 20 volts, and the near-infrared light transmittance of the thermal insulation layer is less than 25%.
  • the heat insulation layer when the first electrode and the second electrode are not provided with a voltage, the heat insulation layer exhibits a transparent state.
  • FIG. 1 is a schematic view showing an adjustable heat insulating window in a transparent state according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing an absorbing state of an adjustable heat insulating window according to an embodiment of the present invention.
  • FIG 3 is a schematic view showing an adjustable heat insulating window in a shaded state according to an embodiment of the present invention.
  • FIG. 4 is a graph showing changes in visible light transmittance and near-infrared light transmittance of an adjustable heat insulating window at different voltages according to an embodiment of the present invention.
  • Fig. 5 is a view showing the tendency of the transmittance of each wavelength to change in a transparent, absorbing and shielding state according to an embodiment of the present invention.
  • An embodiment of the present invention provides an adjustable heat insulating window, comprising: a first transparent substrate 10 including a first electrode (not shown); and a second transparent substrate 20 including a second electrode (not shown) And a heat insulating layer 30 disposed between the first transparent substrate 10 and the second transparent substrate 20.
  • the first transparent substrate 10 and the second transparent substrate 20 may be various types of glass substrates generally used.
  • the first electrode and the second electrode may be, for example, indium tin oxide (ITO) or the like for a transparent electrode of a general liquid crystal display.
  • the heat insulating layer 30 comprises a liquid crystal composition.
  • the liquid crystal composition contains a plurality of liquid crystal molecules 31, a dichroic dye 32, and an ionic salt 33.
  • the liquid crystal molecules 31 have a negative dielectric anisotropy.
  • the liquid crystal molecules 31 are nematic liquid crystals, and may be, for example, nematic liquid crystal MLC2081, MLC2078, ZLI-2806 or ZLI2293 available from Merck, but are not limited thereto.
  • the dichroic dye 32 has a visible light absorption wavelength of from 400 nm to 780 nm, and may be, for example, from 480 nm to 650 nm, but is not limited thereto.
  • the dichroic dye can be, for example, S428 (Mithui Corporation).
  • the ionic salt 33 is water-soluble and can dissociate an anion 33a and a positive ion 33b.
  • the ionic salt 33 is soluble in the liquid crystal molecules 31.
  • the ionic salt 33 may be sodium chloride (NaCl), calcium sulfate (CaSO 4 ), ammonium sulfate ((NH 4 ) 2 SO 4 ), sodium carbonate (Na 2 CO 3 ), sodium hydrogencarbonate ( NaHCO 3 ), potassium nitrate (KNO 3 ) or tetrabutylammonium tetrafluoroborate TBATFB, tetrabutylammonium tetrafluoroborate).
  • NaCl sodium chloride
  • CaSO 4 calcium sulfate
  • ammonium sulfate (NH 4 ) 2 SO 4 )
  • sodium carbonate Na 2 CO 3
  • sodium hydrogencarbonate NaHCO 3
  • KNO 3 potassium nitrate
  • TBATFB tetrabutylammonium tetrafluoroborate
  • the weight ratio of the liquid crystal molecules 31, the dichroic dye 32, and the ionic salt 33 may be, for example, (90 to 99): (0.5 to 5): (0.0002 to 5), preferably 98:1:1, but is not limited thereto.
  • the light transmittance of the heat insulating layer 30 is lowered and a part of visible light is absorbed.
  • the visible light transmittance of the heat insulation layer 30 is between 30 and 65%, and may be, for example, 35, 45, 50 or 60%, but Limited to this.
  • the heat-insulating layer 30 has a visible light transmittance of less than 5%, and may be, for example, 5, 4, 3, 2, 1, or 0.5%, but is not limited thereto.
  • the near-infrared light transmittance of the heat insulating layer 30 is greater than 85%, which may be, for example, 85, 86, 87 or 88%, but is not limited thereto. In an embodiment of the invention, when the voltage V is greater than 20 volts, the near-infrared light transmittance of the heat insulating layer 30 is less than 25%, and may be, for example, 23, 21, 19, 17, or 15%. It is not limited to this. In an embodiment of the invention, when the first electrode and the second electrode do not provide a voltage (ie, when the voltage is 0 volts), the thermal insulation layer 30 exhibits a visually transparent state with visible light. The penetration rate is approximately 65%. Therefore, the adjustable heat insulating window of the present invention is normally transparent when the voltage is not normally applied, and can ensure the return to the transparent state when the power is unexpectedly turned off, thereby improving the safety of use when used as an automobile glass.
  • FIG. 1 there is shown a schematic view of an adjustable insulated window in a transparent state in accordance with an embodiment of the present invention. Since the liquid crystal molecules 31 are negative liquid crystals, the liquid crystal molecules 31 naturally appear perpendicular to the first transparent substrate 10 and the second transparent substrate 20 when no voltage is applied, so that a light source L1 can pass through the Adjustable insulated windows allow the user to see the exterior from the inside out.
  • FIG. 2 there is shown a schematic view of an adjustable insulated window in an absorbing state in accordance with an embodiment of the present invention.
  • the low-frequency AC voltage is applied, since the liquid crystal molecules 31 are negative-type liquid crystals, the long axis of the liquid crystal molecules 31 is gradually controlled to be parallel to the first transparent substrate 10 and the second transparent substrate by the electric field control. 20.
  • the light source L1 is affected by the dichroic dye 32, and a part of the wavelength is absorbed by the dichroic dye 32, exhibiting a dark color, a low transparency state, and providing a heat insulating effect.
  • the voltage may be 10 volts or less, and may be, for example, 2, 3, 4, 5, 6, 7, or 8 volts, but is not limited thereto.
  • FIG. 3 there is shown a schematic view of an adjustable insulated window in a shaded state in accordance with an embodiment of the present invention.
  • the ions begin to generate a severe disturbance, causing the liquid crystal molecules 31 to be affected to exhibit a chaotic arrangement, causing the light source L1 to be scattered, and the dichroic dye 32 to absorb a portion of the light source L1.
  • the visible light wavelength is shaded by a dark atomization, which can shield the light source L1 and be applied to the automobile glass. It can have a very good privacy protection function and also has a heat insulation effect.
  • the voltage may be, for example, 10 volts or more, preferably 20 volts or more, but is not limited thereto.
  • FIG. 4 shows the variation of the visible light (480 to 650 nm) and near-infrared light (700 to 750 nm) transmittance of the adjustable heat insulating window at different voltages.
  • the visible light and the near-infrared light transmittance are relatively high in a state where no voltage is applied, and are approximately 65% and 80%, respectively.
  • B interval a small voltage is applied (B interval), between about 2 and 8 volts, it can be found that the visible light transmittance drops sharply, about 30%, while the near-infrared light transmittance remains at 80%.
  • the visible light is partially absorbed by the dichroic dye, but still maintains a certain degree of light transmittance, and also has a heat insulating effect due to absorption of visible light.
  • the voltage continues to rise (C interval) to 20 volts, the visible light and near-infrared light transmittance are greatly reduced, except that the light source is scattered due to the arrangement of the liquid crystal molecules, and the dichroic dye also absorbs part of the visible light. Achieve the effect of scattering and heat insulation.
  • the visible light transmittance of each wavelength measured in the transparent state (A curve), the absorption state (B curve), and the shielding state (C curve) is shown.
  • the A curve and the B curve exhibit relatively low light transmittance in a shorter wavelength interval (below about 650 nm), which means that the adjustable heat insulating window blocks part of the visible light energy, and indeed has a partition. Hot function.
  • the difference in transmittance between the A curve and the B curve may also represent that the absorption state is in a translucent state between the shielding state and the transparent state in visual effect.
  • the C curve exhibits a penetration rate close to 0%, so that a fairly good privacy masking effect can be achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种可调式隔热窗户,包括第一透明基板(10)和第二透明基板(20),隔热层(30)设置于第一透明基板(10)和第二透明基板(20)之间,隔热层(30)包括一液晶组合物,该液晶组合物包含多个液晶分子(31)、一种二色性染料(32)和一种离子盐类(33),液晶分子(31)具有负的介电导向性,二色性染料(32)的可见光吸收波长介于400纳米至780纳米。该可调式隔热窗户可在不同电压下调整透明度。

Description

可调式隔热窗户 技术领域
本发明是有关于一种可调式隔热窗户,特别是关于一种可调整透明度,同时具备隔热特性的窗户。
背景技术
智慧型窗户的应用中,除了一般玻璃的高穿透率外,若同时能具备隔热及隐私保护性也是相当重要的。
在较早期的智慧型窗户中,若使用扭转向列型(Twisted Nematic;TN)液晶,通常都会搭配偏振片来进行液晶配向,如此不仅降低了窗户所必须具备的光穿透率,也多了偏振片的设置成本。
而在近几年发展的光开关技术中,亦有相当多可以在高透明状态与吸收状态之间,或是高透明状态与散射状态之间切换的技术应用于智慧型窗户中,例如电致变色(Electrochromic)、光致变色(Photochromic)、电控悬浮粒子元件(Suspended Particle Device)与聚合物分散型液晶元件(Polymer Dispersed Liquid Crystal)等。然而,这些技术大多仅能在两个状态之间切换,因此无法同时具备可以切换高透明、高吸收与散射状态的多种功能切换特性。
故,有必要提供一种可以切换高透明、高吸收与散射状态的可调式隔热窗户,以解决现有技术中所存在的问题。
发明内容
本发明的主要目的在于提供一种可调式隔热窗户,可利用一液晶组合物在不同电压下达成透明、吸收、遮蔽等三种状态。所述液晶组合物中包含负型液晶、二色性染料及离子盐类,可在不加电压时呈现透明状态,低电压范围可呈现吸收状态并具有一定的隔热效果,较高电压范围则呈现雾化遮蔽状 态且亦具有隔热效果,可提供汽车或建筑上的应用。此外,由于所述液晶组合物在不供电压时呈现最大可见光穿透率可大于65%,因此在意外断电时,可以自动回到透明状态,提高行车使用上的安全性。本发明的所述可调式隔热窗户结构单纯,不须额外配置偏振膜,可提高透明状态的光穿透率,并省去偏振膜的成本及组装步骤。
为达上述的目的,本发明的一实施例提供一种可调式隔热窗户,其包含:一第一透明基板,包含一第一电极;一第二透明基板,包含一第二电极;以及一隔热层设置于所述第一透明基板和所述第二透明基板之间,所述隔热层包含一液晶组合物;其中所述液晶组合物包含多个液晶分子、一种二色性染料以及一种离子盐类,所述液晶分子具有负的介电异向性,且所述二色性染料的可见光吸收波长介于400纳米至780纳米。
在本发明的一实施例中,所述液晶分子为向列型液晶。
在本发明的一实施例中,所述离子盐类是水溶性的。
在本发明的一实施例中,所述离子盐类为氯化钠、硫酸钙、硫酸铵、碳酸钠、碳酸氢钠、硝酸钾或四氟硼酸四丁基铵(TBATFB)。
在本发明的一实施例中,所述第一电极和所述第二电极提供一电压,使所述隔热层的光穿透率下降且吸收部分可见光。
在本发明的一实施例中,所述电压小于10伏特,所述隔热层的可见光穿透率介于30%至65%。
在本发明的一实施例中,所述电压大于20伏特,所述隔热层的可见光穿透率小于5%。
在本发明的一实施例中,所述电压小于10伏特,所述隔热层的近红外光穿透率大于85%。
在本发明的一实施例中,所述电压大于20伏特,所述隔热层的近红外光穿透率小于25%。
在本发明的一实施例中,所述第一电极和所述第二电极未提供一电压时,所述隔热层呈现一透明状态。
附图说明
图1是本发明一实施例的可调式隔热窗户呈现透明状态的示意图。
图2是本发明一实施例的可调式隔热窗户呈现吸收状态的示意图。
图3是本发明一实施例的可调式隔热窗户呈现遮蔽状态的示意图。
图4是本发明一实施例的可调式隔热窗户在不同电压下的可见光穿透率及近红外光穿透率变化趋势。
图5是本发明一实施例的可调式隔热窗户,在透明、吸收及遮蔽状态时,各波长的穿透率变化趋势。
具体实施方式
为了让本发明的上述及其他目的、特征、优点能更明显易懂,下文将特举本发明较佳实施例,并配合所附图式,作详细说明如下。再者,本发明所提到的方向用语,例如上、下、顶、底、前、后、左、右、内、外、侧面、周围、中央、水平、横向、垂直、纵向、轴向、径向、最上层或最下层等,仅是参照附加图式的方向。此外,本发明所提到的单数形式“一”、“一个”和“所述”包括复数引用,除非上下文另有明确规定。数值范围(如10%至11%的A)若无特定说明皆包含上、下限值(即10%≦A≦11%);数值范围若未界定下限值(如低于0.2%的B,或0.2%以下的B),则皆指其下限值可能为0(即0%≦B≦0.2%)。上述用语是用以说明及理解本发明,而非用以限制本发明。
本发明一实施例提供一种可调式隔热窗户,其包含:一第一透明基板10,包含一第一电极(未绘示);一第二透明基板20,包含一第二电极(未绘示);以及一隔热层30,设置于所述第一透明基板10和所述第二透明基板20之间。所述第一透明基板10和所述第二透明基板20可为一般常用各种类型的玻璃基板。所述第一电极与所述第二电极可例如是氧化铟锡(ITO)等用于一般 液晶显示器的透明电极。
所述隔热层30包含一液晶组合物。所述液晶组合物包含多个液晶分子31、一种二色性染料32以及一种离子盐类33。优选的,所述液晶分子31具有负的介电异向性。在本发明的一实施例中,所述液晶分子31为向列型液晶,可例如是由Merck公司购得的向列型液晶MLC2081、MLC2078、ZLI-2806或ZLI2293,但不限于此。优选的,所述二色性染料32的可见光吸收波长介于400纳米至780纳米,可例如是480纳米至650纳米,然不限于此。所述二色性染料可例如是S428(Mithui公司)。所述离子盐类33是水溶性的,可解离一负离子33a与一正离子33b。优选的,所述离子盐类33是可溶于所述液晶分子31的。优选的,所述离子盐类33可为氯化钠(NaCl)、硫酸钙(CaSO 4)、硫酸铵((NH 4) 2SO 4)、碳酸钠(Na 2CO 3)、碳酸氢钠(NaHCO 3)、硝酸钾(KNO 3)或四氟硼酸四丁基铵
Figure PCTCN2018071327-appb-000001
TBATFB,tetrabutylammonium tetrafluoroborate)。在本发明的一实施例中,所述液晶分子31、所述二色性染料32以及所述离子盐类33的重量比可例如为(90至99):(0.5至5):(0.0002至5),优选是98:1:1,然不限于此。
当所述第一电极和所述第二电极提供一电压V,使所述隔热层30的光穿透率会下降且吸收部分可见光。在本发明的一实施例中,所述电压V小于10伏特时,所述隔热层30的可见光穿透率介于30至65%,可例如是35、45、50或60%,然不限于此。当所述电压大于20伏特时,所述隔热层30的可见光穿透率小于5%,可例如是5、4、3、2、1或0.5%,然不限于此。当所述电压V小于10伏特,所述隔热层30的近红外光穿透率大于85%,可例如是85、86、87或88%,然不限于此。在本发明的一实施例中,当所述电压V大于20伏特,则所述隔热层30的近红外光穿透率小于25%,可例如是23、21、19、17或15%,然不限于此。在本发明的一实施例中,所述第一电极和 所述第二电极不提供一电压时(即电压为0伏特时),所述隔热层30呈现视觉上的一透明状态,具有可见光穿透率大约65%。因此,本发明的所述可调式隔热窗户在一般未通电压时,是属于常态透明的,可确保意外断电时回复到透明状态,提高应用于做为汽车玻璃时的使用安全性。
请参照图1,其显示了根据本发明的一实施例的可调式隔热窗户在透明状态下的示意图。由于所述液晶分子31为负型液晶,不施加电压时,所述液晶分子31自然呈现垂直于所述第一透明基板10及所述第二透明基板20,因此可使一光源L1通过所述可调式隔热窗户,使用者可从内向外见到外部景色。
请参照图2,其显示了根据本发明的一实施例的可调式隔热窗户在吸收状态下的示意图。当施加低频交流电压时,由于所述液晶分子31为负型液晶,因此受到电场控制而调整所述液晶分子31的长轴逐渐转向平行于所述第一透明基板10及所述第二透明基板20,此时,光源L1受到所述二色性染料32的影响,部分波长被所述二色性染料32吸收,呈现暗色、低透明状态,且提供了隔热效果。实际应用上,使用者可从所述可调式隔热窗户的内部看见外部景色,且不会因为阳光或强光的照射而感到不适。所述电压可为10伏特以下,可例如是2、3、4、5、6、7或8伏特,然不限于此。
请参照图3,其显示了根据本发明的一实施例的可调式隔热窗户在遮蔽状态下的示意图。当电压继续增加时,离子开始产生剧烈扰动,使得所述液晶分子31受到影响而呈现混乱排列,使所述光源L1被散射,加上所述二色性染料32吸收了所述光源L1中部分的可见光波长,呈现暗色雾化的遮蔽状态,可遮蔽光源L1,应用在汽车玻璃上,可具有相当好的隐私保护功能,同时亦具有隔热效果。所述电压可例如是10伏特以上,优选可为20伏特以上,然不限于此。
请参照图4,其显示了在不同电压时,所述可调式隔热窗户的可见光(480 至650纳米)及近红外光(700至750纳米)穿透率的变化趋势。从图4可知,在A区间时,不施加电压的状态下,可见光及近红外光穿透率都在相对较高的状态,分别大约是65%及80%。当施加了较小电压时(B区间),约2至8伏特之间,可发现可见光穿透率大幅下降,约在30%左右,而近红外光穿透率则仍维持在80%,此时可见光已部分被所述二色性染料所吸收,但仍可维持一定程度的透光度,并且由于可见光被吸收也具有隔热效果。当电压继续提升(C区间),至20伏特时,可见光和近红外光穿透率均大幅下降,除了因为所述液晶分子的排列使光源被散射,所述二色性染料亦吸收部分可见光而达成散射且隔热的效果。
请继续参照图5,显示了在透明状态(A曲线)、吸收状态(B曲线)、遮蔽状态(C曲线)时所测量各波长的可见光穿透率。从图5可见,A曲线及B曲线在较短波长区间(约650纳米以下)呈现相对较低的光穿透率,代表了所述可调式隔热窗户阻挡了可见光的部分能量,确实具有隔热功能。而从A曲线与B曲线之间的穿透率差距,也可以代表吸收状态在视觉效果上确实界于遮蔽状态与透明状态之间,为半透明状态。C曲线相较于A、B曲线则呈现穿透率接近0%,故可达成相当好的隐私遮蔽效果。
本发明已由上述相关实施例加以描述,然而上述实施例仅为实施本发明的范例。必需指出的是,已公开的实施例并未限制本发明的范围。相反地,包含于权利要求书的精神及范围的修改及均等设置均包括于本发明的范围内。

Claims (8)

  1. 一种可调式隔热窗户,其包含:
    一第一透明基板,包含一第一电极;
    一第二透明基板,包含一第二电极;以及
    一隔热层设置于所述第一透明基板和所述第二透明基板之间,所述隔热层包含一液晶组合物;
    其中所述液晶组合物包含多个液晶分子、一种二色性染料以及一种离子盐类,所述液晶分子具有负的介电异向性,且所述二色性染料的可见光吸收波长介于400纳米至780纳米,以及其中所述第一电极和所述第二电极未提供一电压时,所述隔热层呈现一透明状态。
  2. 如权利要求1所述的可调式隔热窗户,其中所述液晶分子为向列型液晶。
    如权利要求1所述的薄膜晶体管阵列基板,其中所述薄膜晶体管层包含一栅极层和一漏极层。
  3. 如权利要求1所述的可调式隔热窗户,其中所述离子盐类是水溶性的。
  4. 如权利要求1所述的可调式隔热窗户,其中所述离子盐类为氯化钠、硫酸钙、硫酸铵、碳酸钠、碳酸氢钠、硝酸钾或四氟硼酸四丁基铵。
  5. 如权利要求1所述的可调式隔热窗户,其中所述第一电极和所述第二电极提供一电压,使所述隔热层的光穿透率下降且吸收部分可见光。
  6. 如权利要求5所述的可调式隔热窗户,其中所述电压小于10伏特,所述隔热层的可见光穿透率介于30%至65%。
  7. 如权利要求5所述的可调式隔热窗户,其中所述电压大于20伏特,该隔热层的可见光穿透率小于5%。
  8. 如权利要求5所述的可调式隔热窗户,其中所述电压大于20伏特,所述隔热层的近红外光穿透率小于25%。
PCT/CN2018/071327 2016-12-14 2018-01-04 可调式隔热窗户 WO2018153169A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018565007A JP2019518244A (ja) 2017-02-21 2018-01-04 調整可能型断熱窓
EP18758162.4A EP3588176A4 (en) 2016-12-14 2018-01-04 ADJUSTABLE THERMAL INSULATION WINDOW
CN201880003119.0A CN110431476A (zh) 2016-12-14 2018-01-04 可调式隔热窗户

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/438,382 US20180163460A1 (en) 2016-12-14 2017-02-21 Adjustable heat insulation windows
US15/438,382 2017-02-21

Publications (1)

Publication Number Publication Date
WO2018153169A1 true WO2018153169A1 (zh) 2018-08-30

Family

ID=63253811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071327 WO2018153169A1 (zh) 2016-12-14 2018-01-04 可调式隔热窗户

Country Status (2)

Country Link
JP (1) JP2019518244A (zh)
WO (1) WO2018153169A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5867238A (en) * 1991-01-11 1999-02-02 Minnesota Mining And Manufacturing Company Polymer-dispersed liquid crystal device having an ultraviolet-polymerizable matrix and a variable optical transmission and a method for preparing same
CN1672086A (zh) * 2001-11-19 2005-09-21 奥普蒂瓦有限公司 电光器件,电光薄晶体薄膜及其制造方法
CN201381564Y (zh) * 2008-12-30 2010-01-13 孙刚 可调光的玻璃幕墙

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5680027A (en) * 1979-12-05 1981-07-01 Casio Comput Co Ltd Color liquid crystal display device
JPWO2003057799A1 (ja) * 2001-12-28 2005-05-19 旭硝子株式会社 調光素子およびその製造方法
JP2009046525A (ja) * 2007-08-13 2009-03-05 Fujifilm Corp 液晶組成物及び調光材料
WO2016159671A1 (ko) * 2015-03-31 2016-10-06 주식회사 엘지화학 액정 소자

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5867238A (en) * 1991-01-11 1999-02-02 Minnesota Mining And Manufacturing Company Polymer-dispersed liquid crystal device having an ultraviolet-polymerizable matrix and a variable optical transmission and a method for preparing same
CN1672086A (zh) * 2001-11-19 2005-09-21 奥普蒂瓦有限公司 电光器件,电光薄晶体薄膜及其制造方法
CN201381564Y (zh) * 2008-12-30 2010-01-13 孙刚 可调光的玻璃幕墙

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3588176A4 *

Also Published As

Publication number Publication date
JP2019518244A (ja) 2019-06-27

Similar Documents

Publication Publication Date Title
TWI609213B (zh) 可調式隔熱窗戶
US9116370B2 (en) Liquid crystal light variable device
TWI737540B (zh) 智慧窗戶及其切換方法
TWI696864B (zh) 用於切換元件之切換層
TWI696865B (zh) 多功能調光玻璃
WO2011139319A1 (en) Smart photochromic chiral nematic liquid crystal window
TWI751784B (zh) 智慧窗戶
US20060274218A1 (en) Windows with electrically controllable transmission and reflection
US20210318563A1 (en) Light adjusting glass
JP2023039967A (ja) 調光フィルム、調光部材、車両
Marchwiński Architectural evaluation of switchable glazing technologies as sun protection measure
CN104880843A (zh) 一种基于电响应液晶材料的智能玻璃及其光调节方法
KR102019385B1 (ko) 스마트 글라스
Chang et al. Multifunctional liquid crystal smart glass with light field shaping, dimming, and scattering control
WO2018153169A1 (zh) 可调式隔热窗户
Zhang et al. Multispectral smart window: Dynamic light modulation and electromagnetic microwave shielding
JP2018508840A (ja) 3つの透過状態を有する電気光学シャッタ装置を作成するための材料、及びその装置と使用
CN205563023U (zh) 高分子分散液晶装置
Li et al. 43‐1: Tri‐stable Cholesteric Liquid Crystal Smart Window
JP7536417B2 (ja) 調光部材、構造体、調光部材の配置方法
Huh et al. Filtering of yellow light in a liquid-crystal light shutter for higher color contrast and reduced glare
CN210294736U (zh) 一种抗划伤节能防火玻璃
WO2023065289A1 (zh) 智能窗户
US20230273474A1 (en) Assembly and method for actively controlling radiation transmission
Li et al. 58‐4: Factors Affecting the Thermal Performance of Dye‐doped Liquid Crystal Smart Window

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18758162

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565007

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018758162

Country of ref document: EP

Effective date: 20190923