WO2018152899A1 - 一种安全可靠的实时测速和连续定位的方法、装置及系统 - Google Patents

一种安全可靠的实时测速和连续定位的方法、装置及系统 Download PDF

Info

Publication number
WO2018152899A1
WO2018152899A1 PCT/CN2017/076926 CN2017076926W WO2018152899A1 WO 2018152899 A1 WO2018152899 A1 WO 2018152899A1 CN 2017076926 W CN2017076926 W CN 2017076926W WO 2018152899 A1 WO2018152899 A1 WO 2018152899A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
satellite
inertial navigation
correction
speed
Prior art date
Application number
PCT/CN2017/076926
Other languages
English (en)
French (fr)
Inventor
陈高华
冯江华
成庶
丁荣军
向超群
许义景
韩亮
Original Assignee
中车株洲电力机车研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车株洲电力机车研究所有限公司 filed Critical 中车株洲电力机车研究所有限公司
Priority to RU2019129510A priority Critical patent/RU2730442C1/ru
Priority to US16/488,162 priority patent/US11654945B2/en
Publication of WO2018152899A1 publication Critical patent/WO2018152899A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or vehicle trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or vehicle trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or vehicle trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or vehicle trains
    • B61L25/021Measuring and recording of train speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • B60L13/06Means to sense or control vehicle position or attitude with respect to railway
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or vehicle trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or vehicle trains
    • B61L25/025Absolute localisation, e.g. providing geodetic coordinates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or vehicle trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or vehicle trains
    • B61L25/026Relative localisation, e.g. using odometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/183Compensation of inertial measurements, e.g. for temperature effects
    • G01C21/188Compensation of inertial measurements, e.g. for temperature effects for accumulated errors, e.g. by coupling inertial systems with absolute positioning systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P7/00Measuring speed by integrating acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2205/00Communication or navigation systems for railway traffic
    • B61L2205/04Satellite based navigation systems, e.g. GPS

Definitions

  • the invention relates to the technical field of rail transit, in particular to a safe, reliable method, device and system for real-time speed measurement and continuous positioning.
  • the specific implementation method of inductive electronic magnetic pole speed measurement is: installing a stator magnetic pole at a certain distance along the track along the track, using the sensed stator magnetic pole signal source to measure the speed, and measuring the speed through the rising and falling edges of the signal when the speed is low, the speed When the time is high, the receiving pulse is measured by counting; the specific implementation method is: installing an inductive encoder signal source at a certain distance along the track to achieve absolute positioning of the train, and relying on the cumulative induction long stator in the two inductive encoder sections The integration of the magnetic pole speed to achieve relative positioning.
  • the inventor believes that there is an interval between the speed and position information obtained by the above method, and the real-time speed measurement and continuous positioning cannot be achieved, which can not meet the real-time speed measurement and continuous positioning requirements of the ultra-high-speed maglev train. Moreover, once the stator magnetic pole fails, the speed measurement work will not be carried out. Similarly, once the induction encoder fails, the purpose of positioning cannot be achieved.
  • the object of the present invention is to provide a safe and reliable method for real-time speed measurement and continuous positioning.
  • the correction data is not lost, it can realize safe and reliable real-time speed measurement and continuous positioning through the correction data and the inertial navigation data; even if the correction data is lost, Safe and reliable real-time speed measurement and continuous positioning can be realized by inertial navigation data, and stability, safety and precision are high;
  • another object of the present invention is to provide a safe and reliable real-time speed measuring and continuous positioning device and the device comprising the same Safe and reliable system for real-time speed measurement and continuous positioning.
  • the present invention provides a safe and reliable method for real-time speed measurement and continuous positioning, including:
  • the method further comprises:
  • the correction data further includes speed data provided by a stator magnetic pole signal source disposed on a traveling track of the train, and/or position data provided by an inductive encoder disposed on a traveling track of the train;
  • the INS data is corrected using the correction data as follows:
  • the velocity data in the inertial navigation data is corrected using the satellite data and the velocity data provided by the stator magnetic pole signal source, including:
  • the correction speed value obtained from the satellite signal speed value and the magnetic pole signal speed value at the current time is used as a new starting point of the speed of the inertial velocity data calculation process to perform correction calculation.
  • using the satellite data and the location data provided by the inductive encoder to correct location data in the inertial navigation data including:
  • the correction calculation is performed as the new starting point of the position data solving process by using the corrected position value obtained from the satellite signal position point and the inductive encoder position point according to the current time every predetermined correction time interval.
  • the number of the stator magnetic pole signal sources is plural, and the plurality of the stator magnetic pole signal sources are two by two and two security structures; and/or
  • the number of the inductive encoders is multiple, and the plurality of inductive encoders are in the two-by-two-two security structure.
  • the number of the inertial navigation signal sources is plural, and the plurality of the inertial navigation signal sources are in a three-to-two security structure;
  • the number of the satellite signal sources is plural, and the plurality of satellite signal sources are in the three-two security structure.
  • the security algorithm used in the three-two security structure is a Kalman filter-based speed-measurement and positioning multi-source data fusion security algorithm, or an iterative correction rate-based speed measurement and positioning multi-source data fusion security algorithm.
  • the number of the inertial navigation signal sources is four, and the number of the satellite signal sources is four.
  • the four satellite signals are respectively a Beidou satellite chipset, a GPS satellite chipset, a GLONASS satellite chipset, and a Galileo satellite chipset.
  • the present invention provides a safe and reliable real-time speed measuring and continuous positioning device, including:
  • An inertial signal processor for detecting inertial navigation data provided by an inertial signal source disposed on the train;
  • correction signal processor for detecting correction data provided by the correction signal source, the correction signal source comprising a satellite signal source disposed on the train, the correction data comprising satellite data, the correction signal processor comprising a satellite signal processor;
  • a fusion processor configured to determine a current speed and a position of the train by using the inertial navigation data when the correction data is lost, and correct the inertial navigation by using the correction data when the correction data is not lost Data, and determining the current speed and position of the train based on the modified inertial navigation data.
  • the modified signal processor further includes: an external signal processor;
  • the fusion processor corrects the INS data using the correction data according to the following steps:
  • the method further comprises:
  • a communication processor for transmitting the current speed and position.
  • the present invention also provides a safe and reliable system for real-time speed measurement and continuous positioning, including an inertial navigation signal source and a modified signal source, and also includes safe and reliable real-time speed measurement and continuous positioning as described above.
  • a safe and reliable system for real-time speed measurement and continuous positioning including an inertial navigation signal source and a modified signal source, and also includes safe and reliable real-time speed measurement and continuous positioning as described above.
  • Device includes an inertial navigation signal source and a modified signal source, and also includes safe and reliable real-time speed measurement and continuous positioning as described above.
  • the number of the inertial navigation signal sources is plural, and the plurality of the inertial navigation signal sources are in a three-to-two security structure;
  • the number of the satellite signal sources is plural, and the plurality of satellite signal sources are in the three-two security structure.
  • the number of the inertial navigation signal sources is four, and the number of the satellite signal sources is four.
  • the four satellite signals are respectively a Beidou satellite chipset, a GPS satellite chipset, a GLONASS satellite chipset, and a Galileo satellite chipset.
  • the invention provides a safe and reliable method, device and system for real-time speed measurement and continuous positioning, comprising detecting inertial navigation data provided by an inertial navigation signal source disposed on a train, and detecting correction data provided by the correction signal source, and correcting
  • the signal source includes a satellite signal source disposed on the train, and the correction data includes satellite data; if the correction data is lost, the inertial navigation data is used to determine the current speed and position of the train; otherwise, the modified data is used to correct the inertial navigation data, and according to the corrected
  • the inertial navigation data determines the current speed and position of the train.
  • the present invention simultaneously considers the inertial navigation data and the correction data, and uses the INS data as a reference, and then combines the two different situations of whether the modified data is lost to determine how to obtain the current speed and position of the train.
  • Safe and reliable real-time speed measurement and continuous positioning can be realized by correcting data and inertial navigation data; even if the data is lost, the safe and reliable real-time speed measurement and continuous positioning can be realized through the inertial navigation data, and the stability, safety and precision are high.
  • FIG. 1 is a schematic diagram showing the definition of real-time speed measurement provided by the present invention.
  • FIG. 2 is a schematic diagram showing the definition of continuous positioning provided by the present invention.
  • FIG. 3 is a flow chart showing a process of a safe and reliable method for real-time speed measurement and continuous positioning according to the present invention
  • FIG. 4 is a schematic diagram of a Kalman filter based security algorithm for speed measurement and positioning multi-source data fusion according to the present invention
  • FIG. 5 is a schematic diagram of a security algorithm for speed measurement and positioning multi-source data fusion based on iterative correction rate according to the present invention
  • FIG. 6 is a schematic block diagram of a safe and reliable real-time speed measurement and continuous positioning according to the present invention.
  • FIG. 7 is a schematic diagram of a multi-source two-pass two-two security structure based on position, velocity, and acceleration information provided by the present invention
  • FIG. 8 is a schematic diagram of a multi-source three-take two security structure based on position, velocity, and acceleration information provided by the present invention
  • FIG. 9 is a schematic diagram of a multi-source multi-fetching two security structure based on position, velocity and acceleration information provided by the present invention.
  • FIG. 10 is a schematic diagram of a multi-source multi-access multi-security structure based on position, velocity and acceleration information provided by the present invention
  • FIG. 11 is a schematic structural diagram of a data fusion and processing unit supporting fast expansion according to the present invention.
  • FIG. 12 is a schematic diagram of a tightly coupled multi-source information integration mode based on an inertial signal source according to the present invention
  • FIG. 13 is a schematic diagram of a security algorithm framework provided by the present invention.
  • FIG. 14 is a schematic diagram of an integer-circumference ambiguity algorithm based on fast iterative convergence least squares according to the present invention.
  • 15 is a schematic diagram of a machine learning-based whole-circumference ambiguity algorithm provided by the present invention.
  • 16 is a schematic diagram of a full-circumference ambiguity algorithm based on adaptive ambiguity provided by the present invention.
  • FIG. 17 is a schematic diagram of parameter estimation based on an improved small environment genetic algorithm according to the present invention.
  • FIG. 19 is a schematic diagram of a parameter estimation method for a dual-tree composite wavelet transform according to the present invention.
  • 20 is a schematic diagram of a data monitoring and error analysis algorithm based on a fuzzy algorithm provided by the present invention.
  • 21 is a schematic diagram of a real-time prediction algorithm based on a neural network model provided by the present invention.
  • FIG. 22 is a schematic diagram of a real-time location information fusion algorithm based on improved Kalman filtering according to the present invention.
  • FIG. 23 is a schematic diagram of a fusion algorithm based on a particle filter algorithm according to the present invention.
  • FIG. 24 is a schematic diagram of a fusion quaternion location solving method based on the Driggs parameter method according to the present invention.
  • 25 is a schematic diagram of a modified speed information processing security structure provided by the present invention.
  • 26 is a schematic diagram of another improved speed information processing security structure provided by the present invention.
  • FIG. 27 is a schematic diagram of a modified location information processing security structure provided by the present invention.
  • 29 is a schematic diagram of an improved speed and acceleration information processing structure provided by the present invention.
  • FIG. 30 is a schematic diagram of an improved location information acquisition security structure based on a security algorithm according to the present invention.
  • FIG. 31 is a schematic structural diagram of a device for safe and reliable real-time speed measurement and continuous positioning according to the present invention.
  • 32 is a schematic diagram of a safe and reliable real-time speed measurement and continuous positioning based on a 12-channel signal source
  • 33 is a schematic diagram of a three-two security structure formed by a plurality of sets of satellite signal sources according to the present invention.
  • FIG. 34 is a schematic diagram of a three-two security structure formed by a plurality of sets of inertial navigation signal sources according to the present invention.
  • 35 is a schematic diagram of a two-by-two-two security structure formed by multiple sets of external signal sources according to the present invention.
  • 36 is a schematic diagram of a three-two security structure composed of a plurality of sets of satellite signal sources and a plurality of sets of external signal sources according to the present invention
  • FIG. 37 is a schematic diagram of a three-two security structure composed of a plurality of sets of inertial navigation signal sources and a plurality of sets of external signal sources according to the present invention
  • 38 is a schematic structural diagram of a system for safe and reliable real-time speed measurement and continuous positioning according to the present invention.
  • FIG. 39 is a schematic diagram of a reference heading iterative correction fusion algorithm provided by the present invention.
  • the core of the invention is to provide a safe and reliable method for real-time speed measurement and continuous positioning.
  • the correction data is not lost, it can realize safe and reliable real-time speed measurement and continuous positioning through the correction data and the inertial navigation data; even if the correction data is lost Safe and reliable real-time speed measurement and continuous positioning can be realized by inertial navigation data, and stability, safety and precision are high;
  • another core of the present invention is to provide a safe and reliable real-time speed measuring and continuous positioning device and the device comprising the same Safe and reliable system for real-time speed measurement and continuous positioning.
  • the train speed is obtained by counting the pulse of the speed sensor at the shaft end of the rotating wheel pair (or rotating electric machine).
  • the maglev train does not have a rotating wheel pair (or rotating motor), and there is no possibility of installing a speed sensor.
  • Query/responder positioning method The principle is to first install a query/transponder spaced a certain distance along the main line of the railway to identify the absolute position of the train. Each time the train passes through a query/responder, a new absolute position is obtained; between the two interrogators/transponders, the specific position of the train is calculated by the odometer, ie the relative distance of the train to the absolute position is obtained. It is necessary to install an interrogator/transponder at every 1m interval of the track, at each turnout and crossing; it is not conducive to the maintenance and maintenance of the equipment due to the large amount of ground equipment. In addition, there is currently no query/transponder that satisfies positioning above 400 km/h.
  • Track circuit positioning method The railway rail is divided into different sections, and a current transmitting/receiving device is applied to both ends of each section, and an information transmission loop is constructed by using the track.
  • the wheel When the train enters the section, the wheel shorts the two rails, and the information cannot reach the receiving end, thereby achieving the purpose of train detection and positioning.
  • the disadvantage of the track circuit method is that the positioning is based on the length of the track circuit. Small units of measurement cannot constitute a true moving occlusion and cannot detect speed.
  • Photoelectric speed sensor A light-emitting device is placed on the track, a receiving sensor is set on the train, and the speed is measured by counting the received pulses. This method requires the installation of redundant accessories and is susceptible to interference from the external environment, and is not suitable for ultra-high speed speed measurement positioning systems.
  • Induction stator magnetic pole speed measurement Using the sensed stator magnetic pole signal source, the speed is measured by the rising and falling edges of the signal when the speed is low, and the speed is measured by counting the received pulse when the speed is high.
  • FIG. 1 is a schematic diagram of a definition of real-time speed measurement according to the present invention.
  • FIG. 2 is a schematic diagram showing the definition of continuous positioning according to the present invention.
  • the position difference ⁇ S of any two adjacent time positions meets the requirements of the real-time control system ( ⁇ S ⁇ Smax), and the position deviation ⁇ S' between the position of each position and the actual position also satisfies the real-time control.
  • the system requires ( ⁇ S' ⁇ S'max).
  • FIG. 3 is a flowchart of a process for a secure and reliable method for real-time speed measurement and continuous positioning according to the present invention.
  • the method includes:
  • the correction signal source includes a satellite signal source
  • the correction data includes satellite data
  • the number of the correction signal source and the inertial navigation signal source may be one.
  • the number of correction signal sources and INS sources may be multiple.
  • the present invention does not particularly limit the number of correction signal sources and inertial navigation signal sources, and is determined according to actual conditions.
  • the correction signal source includes the satellite signal source, and the correction data includes the satellite data.
  • the satellite signal source is very sensitive to the satellite fault and the external environment, once the satellite fails or the train is in a special environment, the performance of the satellite signal source may deteriorate. For example, when the satellite signal source is GPS (Global Positioning System), when the train passes through the tunnel group, the satellite signal is lost, the GPS system cannot provide satellite data, and thus the speed measurement and positioning cannot be performed based on the satellite data.
  • GPS Global Positioning System
  • the inertial signal source is very stable and is not affected by the external environment. There is no loss of inertial navigation data due to changes in the environment of the train. Therefore, if the correction data is lost, the current speed and position of the train can be determined based on the inertial navigation data. If the correction data is not lost, the correction data is used to correct the inertial navigation data, thereby obtaining the current speed and position of the safe and reliable train.
  • the invention provides a safe and reliable method for real-time speed measurement and continuous positioning, comprising detecting inertial navigation data provided by an inertial navigation signal source disposed on a train, and detecting correction data provided by the correction signal source, and modifying the signal source including setting For the satellite signal source on the train, the correction data includes satellite data; if the correction data is lost, the inertial navigation data is used to determine the current speed and position of the train. Otherwise, the correction data is used to correct the inertial navigation data, and the current speed and position of the train are determined based on the corrected inertial navigation data.
  • the present invention simultaneously considers the inertial navigation data and the correction data, and uses the INS data as a reference, and then combines the two different situations of whether the modified data is lost to determine how to obtain the current speed and position of the train.
  • Safe and reliable real-time speed measurement and continuous positioning can be realized by correcting data and inertial navigation data; even if the data is lost, the safe and reliable real-time speed measurement and continuous positioning can be realized through the inertial navigation data, and the stability, safety and precision are high.
  • the method further comprises:
  • the current speed and position can be encoded according to the request of the external device, and sent to the corresponding communication interface circuit, thereby realizing data sharing.
  • the staff in order to facilitate the staff's viewing, it is convenient for the staff to know the current speed and position of the train in time. After obtaining the current speed and position of the train, the current speed and position are also sent out for display on the display or voice broadcast. .
  • the correction data further includes speed data provided by a stator magnetic pole signal source disposed on a traveling track of the train, and/or position data provided by an inductive encoder disposed on a traveling track of the train;
  • the velocity data provided by the stator magnetic pole signal source is used to correct the velocity data in the inertial navigation data, and/or the position data provided by the inductive encoder is used to correct the position data in the inertial navigation data; otherwise,
  • the velocity data provided by the satellite data and the stator pole signal source is used to correct the velocity data in the inertial navigation data, and/or the position data in the inertial navigation data is corrected using the satellite data and the position data provided by the inductive encoder.
  • stator magnetic pole and/or an inductive encoder signal source have been installed on many existing rails, and accordingly, a stator magnetic pole signal is arranged on the train.
  • Source and inductive encoders can take advantage of this
  • the inertial data is corrected by the velocity data acquired by the stator magnetic pole signal source and the position data acquired by the inductive encoder.
  • the velocity data in the satellite data and the velocity data provided by the stator magnetic pole source are used together to correct the velocity data in the inertial navigation data, and/or, using position data in the satellite data and an inductive encoder.
  • the position data collectively corrects the position data in the inertial navigation data, which can further improve the positioning accuracy, reliability and safety of the train speed and position.
  • the present invention collectively corrects velocity data in inertial navigation data using velocity data in satellite data and velocity data provided by a stator magnetic pole signal source, and/or uses position data in satellite data and position data provided by an inductive encoder. Correction of the position data in the inertial navigation data is not particularly limited.
  • the velocity data in the inertial navigation data is corrected using velocity data provided by the satellite data and the stator magnetic pole signal source, including:
  • the correction speed value obtained from the satellite signal speed value and the magnetic pole signal speed value at the current time is used as a new starting point of the speed of the inertial velocity data calculation process to perform correction calculation.
  • the satellite signal speed value and the magnetic pole signal speed value of the current time are acquired every preset correction time interval, and the corrected speed value is obtained according to the satellite signal speed value and the magnetic pole signal speed value.
  • the corrected speed value is also the speed value of the train at the current time.
  • the speed of the train is obtained by combining the acceleration and time provided by the inertial navigation data with the corrected speed value as a reference.
  • the method for obtaining the corrected speed value according to the satellite signal speed value and the magnetic pole signal speed value is not limited.
  • the arithmetic mean value of the satellite signal speed value and the magnetic pole signal speed value may be taken as the corrected speed value.
  • the weighted average value of the satellite signal speed value and the magnetic pole signal speed value is obtained to obtain the corrected speed value, or other methods are used, and the present invention is not particularly limited herein, and is determined according to actual conditions.
  • the preset correction time interval here is comprehensively determined according to the accuracy and continuity requirements of the speed or position, and also considers the number of satellites at that time, the state of the train, etc., therefore,
  • the interval time should be changed according to various factors at any time, because there is a refresh time interval for obtaining the speed and position of the train, and the setting of the preset correction time interval is required to satisfy a certain time point in any one of the preset correction time intervals.
  • the speed and position values obtained when refreshing are the speed and position of the refresh time within the allowable error range.
  • the starting point of the preset correction time interval is t1
  • the end point of the preset correction time interval that is, the starting point of the next preset correction time interval
  • the refresh time is at t1 or t2
  • the speed and position at this time are the most accurate, and the error is the smallest.
  • the refresh time is between t1 and t2
  • the obtained speed and position exist due to the characteristics of the inertial navigation system. There is a certain error, but these errors are required to be within the allowable range.
  • the preset correction time interval is actually very short and can be considered to be almost real-time.
  • the position data in the inertial navigation data is corrected using satellite data and position data provided by the inductive encoder, including:
  • the correction position value obtained from the satellite signal position point and the inductive encoder position point according to the current time is used as a new starting point of the position data solving process to perform correction calculation.
  • the principle of the above-mentioned speed correction method is the same.
  • the satellite signal position point and the inductive encoder position point of the current time are acquired every preset correction time interval, and according to the satellite signal position point and the sensing code.
  • the position point of the device is obtained by the correction position point, which is also the position point of the train at the current time.
  • the correction position point is used as a reference, and the acceleration and time provided by the inertial navigation data are used to obtain the train. s position.
  • the method for obtaining the corrected position point according to the satellite signal position point and the magnetic pole signal position point is not limited.
  • the average value of the satellite signal position point and the magnetic pole signal position point may be taken as the correction position point.
  • the satellite signal position point and the magnetic pole signal position point are weighted and averaged to obtain a corrected position point, or other methods are used, and the present invention is not particularly limited herein, and is determined according to actual conditions.
  • the preset correction time interval of the position of the train and the preset correction time interval of the speed may be the same or different, and may be determined according to actual conditions.
  • the number of stator magnetic pole signal sources is plural, and the plurality of stator magnetic pole signal sources are two by two and two security structures; and/or
  • the number of inductive encoders is multiple, and the plurality of inductive encoders have a two-by-two-two security structure.
  • stator magnetic pole signal source and the inductive encoder have been installed on many trains.
  • the number of stator magnetic pole signal sources and the inductive coding are here.
  • the number of devices can be multiple, and multiple stator magnetic pole signal sources are configured with a safety structure principle as a two-by-two-two safety structure, and two-two-two-two safety structures output the real-time speed value of the original quantity and real-time.
  • the decision value of the speed value, the plurality of inductive encoders are also configured as a two-by-two-two security structure, and the two-by-two-two-secure structure outputs the decision amount of the original quantity and the continuous position value of the continuous position value.
  • stator magnetic pole signal sources and the number of inductive encoders can be multiple, even if one or a few of them are broken, the inertial navigation data can be corrected according to the remaining ones.
  • stator magnetic pole signal source and the inductive encoder here can also be configured as other safety structures, for example, multiple (three or more) take two safety structures, or more (three or more) take more (three or more) and other safety structures.
  • the present invention is not particularly limited herein, and may be determined according to actual conditions.
  • the number of the INS signal sources is plural, and the plurality of INS signal sources are in a three-take two-safe structure;
  • the number of satellite signal sources is multiple, and multiple satellite signal sources have three security structures.
  • the number of inertial signal sources and satellite signal sources can be multiple, and multiple inertial signal sources are configured with safety structure principles.
  • the three-to-two safety structure will output the original quantity of the real-time speed value and the decision quantity of the real-time speed value.
  • the multiple satellite signal sources are configured with the safety structure principle as the three-two security structure, three take two The safety structure outputs the decision amount of the original quantity and the continuous position value of the continuous position value.
  • the speed and position of the train can be obtained according to the rest.
  • the satellite signal source and the INS signal source may be configured as other security structures, and the present invention is not limited thereto, and is determined according to actual conditions.
  • the security algorithm used in the three-two security structure is a Kalman filter based speed and positioning multi-source data fusion security algorithm, or an iterative correction rate based speed and positioning multi-source data fusion security algorithm.
  • FIG. 4 is a schematic diagram of a Kalman filter based security algorithm for speed measurement and positioning multi-source data fusion according to the present invention.
  • x(k/k) is the speed or position
  • P(k/k) is the reliability, that is, after the data output by the signal source is processed by the algorithm, the output corresponding to the current input and the output are output. Reliability, high reliability output has a large impact on the final output.
  • the Kalman filter-based multi-source data fusion security algorithm with speed measurement and positioning has the advantages of optimizing the accuracy distribution of estimated data and reducing the influence of system noise and external interference.
  • FIG. 5 is a schematic diagram of a security algorithm for speed measurement and positioning multi-source data fusion based on iterative correction rate according to the present invention.
  • x(k/k) is the velocity or position
  • e(k/k) is the observation error.
  • the speed-measurement and positioning multi-source data fusion security algorithm based on the iterative correction rate can continuously correct the system estimation error and improve the system accuracy. Eliminate the advantages of common mode interference.
  • the security algorithm herein can also be other types of algorithms, and the object of the present invention can be achieved.
  • the number of inertial signal sources is four, and the number of satellite signal sources is four.
  • the number of the inertial signal sources and the number of the satellite signal sources may be other values, and the present invention is not particularly limited herein.
  • the four INS signals may be different types of INS signals or the same type of INS signal source.
  • the four satellite signal sources may be different types of satellite signal sources or the same type.
  • the present invention is not particularly limited herein.
  • the four satellite signals are Beidou satellite chipset, GPS satellite chipset, GLONASS satellite chipset and Galileo satellite chipset.
  • the four satellite signals here can also be two sets of Beidou satellite chipset, GPS satellite chipset and GLONASS satellite chipset, and can also be the arrangement and combination of four satellite signal sources in the above preferred embodiment.
  • the invention is not particularly limited herein.
  • FIG. 6 is a schematic block diagram of a safe and reliable real-time speed measurement and continuous positioning according to the present invention.
  • the data can be pre-determined for reliability, thereby selecting a reliable signal source, and then selecting by the signal source.
  • the strategy determines the combination of signal sources and processes them through a security algorithm. The speed and position obtained by each security algorithm compete to obtain the final speed and position information.
  • the security and reliability in the present application means that in the case of losing part of the signal source, the real-time speed measurement and the continuous positioning method can realize safe and reliable speed and position information output, and the speed and position information can only be authorized by the device. Identify and utilize; when the lost source recovers, it can seamlessly return to normal speed and positioning. In theory, as long as one source is valid, the system can remain operational, and the operating level at this time is based on safety requirements.
  • FIG. 7 is a schematic diagram of a multi-source two-pass two-two security structure based on position, velocity, and acceleration information according to the present invention.
  • the position, velocity and acceleration information are used to form a multi-source two-by-two-two safety structure, which can meet the requirements of safe and reliable real-time speed measurement and continuous positioning in the absence of partial information sources.
  • both the satellite system and the inertial navigation system can obtain the position and velocity, and the acceleration information is unique to the inertial navigation system.
  • FIG. 8 is a schematic diagram of a multi-source three-take two security structure based on position, velocity and acceleration information provided by the present invention.
  • the position, velocity and acceleration information are used to form a multi-source three-two safety structure, which can achieve safe and reliable real-time speed measurement and continuous positioning requirements in the absence of any two information sources.
  • FIG. 9 is a schematic diagram of a multi-source multi-fetching two security structure based on position, velocity and acceleration information provided by the present invention.
  • the position, acceleration and other sources of information are used to form a multi-source multi-access security structure, which can achieve safe and reliable real-time speed measurement and continuous positioning requirements when only one information source is stored.
  • FIG. 10 is a schematic diagram of a multiple source multiple access multiple security structure based on location, velocity, and acceleration information according to the present invention.
  • FIG. 11 is a schematic structural diagram of a data fusion and processing unit supporting fast expansion according to the present invention.
  • Multi-source data is converted by level, communication protocol, etc. through the communication interface, and the heterogeneous isomorphic data with the same format and scale is obtained, and transmitted to the fusion processor through the high-speed bus to perform multi-source data fusion processing.
  • the data fusion and processing unit here can be implemented by a piece of code within the fusion processor.
  • FIG. 12 is a schematic diagram of a tightly coupled multi-source information integration mode based on an inertial signal source according to the present invention.
  • FIG. 13 is a schematic diagram of a security algorithm framework provided by the present invention.
  • the security algorithm refers to the selection and comprehensive calculation of the security rules according to the data of the real-time speed measurement signal source and the continuous positioning signal source from the security structure.
  • the mathematical methods include but are not limited to Kalman filter, iterative correction law, pseudorange, Pseudorange rate estimator.
  • the advanced algorithm is used to solve the ambiguity of the whole week, and the algorithm is used to correct the ill-conditioned equation to improve the accuracy of the whole-circumference ambiguity and further improve the equation solving speed. To achieve the purpose of improving the real-time output.
  • FIG. 14 is a schematic diagram of an entire-circumference ambiguity algorithm based on fast iterative convergence least squares according to the present invention.
  • D(t) is speed or position.
  • the present invention proposes a fast solution-calculated whole-circumference ambiguity algorithm which includes a fast iterative convergence least squares search method, which uses a strong iterative convergence least squares to strongly solve the process.
  • FIG. 15 is a machine learning-based whole-circumference ambiguity provided by the present invention.
  • D(t) is speed or position.
  • Aiming at real-time speed measurement a fast algorithm for solving the whole-circumference ambiguity is proposed, including a machine-based learning optimization fuzzy solution. Utilize the strong adaptive ability of machine learning to eliminate the impact of unknown interference on fast solution.
  • FIG. 16 is a schematic diagram of a full-circumference ambiguity algorithm based on adaptive ambiguity according to the present invention.
  • Aiming at real-time speed measurement a fast algorithm for solving the whole-circumference ambiguity is proposed, including an adaptive ambiguity least squares drop method.
  • FIG. 17 is a schematic diagram of parameter estimation based on an improved small environment genetic algorithm according to the present invention.
  • a fast algorithm for solving the whole-circumference ambiguity includes a parameter estimation based on the improved small-environment genetic algorithm for fast locating ill-conditioned equations.
  • the parameters of the ill-conditioned equations are reliably estimated.
  • FIG. 18 is a schematic diagram of parameter estimation based on an improved hybrid quantum genetic algorithm according to the present invention.
  • FIG. 19 is a schematic diagram of a parameter estimation method for a dual-tree composite wavelet transform according to the present invention.
  • FIG. 20 is a schematic diagram of a data monitoring and error analysis algorithm based on a fuzzy algorithm according to the present invention.
  • FIG. 21 is a schematic diagram of a real-time prediction algorithm based on a neural network model according to the present invention.
  • FIG. 22 is a schematic diagram of a real-time location information fusion algorithm based on improved Kalman filtering according to the present invention.
  • FIG. 23 is a schematic diagram of a fusion algorithm based on a particle filter algorithm according to the present invention.
  • FIG. 24 is a schematic diagram of a method for solving a quaternion location solution based on the Driggs parameter method according to the present invention.
  • FIG. 25 is a schematic diagram of a modified speed information processing security structure provided by the present invention.
  • the structure is composed of dual processing units, the signal processing unit is mainly used for radio frequency amplification and baseband processing, and the security algorithm processing unit is mainly used for speed calculation.
  • FIG. 26 is a schematic diagram of another improved speed information processing security structure provided by the present invention.
  • the structure is composed of a dedicated front-end signal processing module and a real-time communication module, and the real-time communication module is mainly used for transmitting the original location information to the cloud super-calculation center and receiving the cloud computing result.
  • FIG. 27 is a schematic diagram of an improved position information processing security structure provided by the present invention.
  • the structure is composed of a redundant data fusion processing unit, a multi-source data fusion unit and supporting software and hardware.
  • the redundant data fusion processing unit is used to process redundant location information, and obtain high refresh rate location information from redundant data;
  • the data fusion processing unit is configured to fuse other source data to correct the acquired location information.
  • FIG. 28 is a schematic diagram of another improved location information processing security structure provided by the present invention.
  • the structure consists of a security algorithm module, a data fusion unit and a network storage, the network stores the road network and the scheduling information, the security algorithm module is responsible for the location information solution, and the data fusion unit is responsible for verifying and correcting the location information by using other available information sources. .
  • FIG. 29 is a schematic diagram of a modified speed and acceleration information processing structure according to the present invention.
  • the structure takes into account information such as acceleration, angular velocity, electromagnetic force, and air pressure.
  • the sensor is used for data measurement
  • the interface module is used for data reading
  • the signal processing module is used for data processing and location settlement.
  • FIG. 30 is a schematic diagram of an improved location information acquisition security structure based on a security algorithm according to the present invention.
  • the module consists of a measurement sensor, a coprocessing unit, a storage unit, and a position information security algorithm unit.
  • the co-processing unit is responsible for acquiring multi-source information and writing it to the storage unit in real time.
  • the location information security algorithm unit reads data in parallel in real time and performs position calculation.
  • the present invention provides a safe and reliable real-time speed measuring and continuous positioning device.
  • FIG. 31 is a safe and reliable real-time speed measuring and continuous positioning device. Schematic diagram of the structure, the device includes:
  • the inertial navigation signal processor 1 is configured to detect inertial navigation data provided by an inertial navigation signal source disposed on the train;
  • the inertial signal processor 1 is stably mounted on a high-speed train, and the installation needs to be placed in strict axial direction. It is necessary to pay attention to moisture and dust prevention, and the inertial signal processor 1 receives the inertial navigation data from the inertial navigation signal source, where the inertial navigation data includes acceleration, angular velocity and the like. After receiving the inertial navigation data, the inertial navigation signal processor 1 can perform the first-level reliability judgment and the security fusion algorithm based on the modified data acquired by the modified signal processor 2, and obtain default output values and decision values of a plurality of speeds and positions. And sent to the fusion processor 3.
  • the correction signal processor 2 is configured to detect correction data provided by the correction signal source, the correction signal source comprises a satellite signal source disposed on the train, the correction data comprises satellite data, and the correction signal processor 2 comprises a satellite signal processor;
  • the modified signal processor 2 is placed on the high-speed train, and the train is equipped with an antenna for receiving the satellite signal, and at the same time, the received position information, the speed information and the time information are subjected to the first-level reliability judgment and the safety fusion algorithm. A number of default output values and decision values for speed and position are sent to the fusion processor 3.
  • the fusion processor 3 is configured to determine the current speed and position of the train by using the inertial navigation data when the data is corrected, and correct the inertial navigation data by using the correction data when the correction data is not lost, and determine according to the modified inertial navigation data. The current speed and location of the train.
  • the fusion processor 3 is mounted on a high-speed train, and receives data from the correction signal processor 2 and the inertial navigation signal processor 1 in real time, and processes the correction data and the inertial navigation data through a fusion algorithm to form a final accurate real-time speed measurement. With positioning results.
  • the invention provides a safe and reliable real-time speed measuring and continuous positioning device, comprising an inertial signal processor 1 for detecting inertial navigation data provided by an inertial signal source disposed on a train, and a modified signal processor 2 And for detecting the correction data provided by the correction signal source, the correction signal source comprises a satellite signal source disposed on the train, the correction data comprises satellite data, and the correction signal processor 2 comprises a satellite signal processor;
  • the fusion processor 3 is configured to determine the current speed and position of the train by using the inertial navigation data when the data is corrected, and correct the inertial navigation data by using the correction data when the correction data is not lost, and determine according to the modified inertial navigation data. The current speed and location of the train.
  • the present invention simultaneously considers the inertial navigation data and the correction data, and uses the INS data as a reference, and then combines the two different situations of whether the modified data is lost to determine how to obtain the current speed and position of the train.
  • Safe and reliable real-time speed measurement and continuous positioning can be realized by correcting data and inertial navigation data; even if the data is lost, the safe and reliable real-time speed measurement and continuous positioning can be realized through the inertial navigation data, and the stability, safety and precision are high.
  • the correction signal processor 2 further comprises: an external signal processor;
  • the fusion processor 3 corrects the inertial navigation data using the correction data as follows:
  • the velocity data provided by the stator magnetic pole signal source is used to correct the velocity data in the inertial navigation data, and/or the position data provided by the inductive encoder is used to correct the position data in the inertial navigation data; otherwise,
  • the velocity data provided by the satellite data and the stator pole signal source is used to correct the velocity data in the inertial navigation data, and/or the position data in the inertial navigation data is corrected using the satellite data and the position data provided by the inductive encoder.
  • the external signal processor connects with various existing speed and position signal sources of the train through the connector group, receives and analyzes and fuses the incoming speed and position information, and obtains default output of several speeds and positions.
  • the value and decision value are sent to the fusion processor 3.
  • the speed signal source here may be a stator magnetic pole signal source
  • the position signal source may be an induction encoder.
  • stator magnetic signal source and the inductive encoder herein may also be referred to as an external signal source.
  • the method further comprises:
  • a communications processor that transmits the current speed and position.
  • the communication processor receives the secure real-time speed and continuous speed information sent from the fusion processor 3, and encodes and transmits the data to the corresponding communication interface circuit according to the request of the external smart device, thereby realizing data sharing.
  • FIG. 32 is a schematic diagram of a secure and reliable real-time speed measurement and continuous positioning based on a 12-channel signal source.
  • Signal source X1 Beidou satellite navigation system, used for real-time speed measurement and continuous positioning;
  • Signal source X2 GPS satellite navigation system, used for real-time speed measurement and continuous positioning;
  • Signal source X3 GLONASS satellite navigation system, used for real-time speed measurement and continuous positioning;
  • Signal source X4 Galileo satellite navigation system, used for real-time speed measurement and continuous positioning;
  • Signal source X5 Inertial navigation system A, used for real-time speed measurement and continuous positioning;
  • Signal source X6 Inertial navigation system B, used for real-time speed measurement and continuous positioning;
  • Signal source X7 Inertial navigation system C, used for real-time speed measurement and continuous positioning;
  • Signal source X8 inertial navigation system D, used for real-time speed measurement and continuous positioning;
  • Signal source X9 stator magnetic pole signal source A, used only for real-time speed measurement
  • Signal source X10 stator magnetic pole signal source B, used only for real-time speed measurement
  • Signal source X11 Inductive encoder signal source A, used only for continuous positioning correction
  • Source X12 Inductive encoder source B, used only for continuous positioning correction.
  • the 12-way independent signal source for real-time speed measurement and continuous positioning is configured with multiple safety structures, multiple sets of three-two safety structures, multiple sets of two-by-two and two safety structures, and adaptive multi-source security.
  • the structural strategy is combined to obtain a reliable source.
  • the multi-source security algorithm the real-time speed value of the 16-way train and the original quantity of the continuous position value, the 16-channel real-time speed value and the decision value of the continuous position value are obtained.
  • FIG. 33 is a schematic diagram of a three-two security structure formed by multiple sets of satellite signal sources according to the present invention.
  • X1&X2&X3, X2&X3&X4, X3&X4&X1, X4&X1&X2 respectively form 4 groups of three-two security structures;
  • FIG. 34 is a schematic diagram of a three-two security structure formed by multiple sets of inertial navigation signal sources according to the present invention.
  • X5&X6&X7, X6&X7&X8, X7&X8&X5, X8&X5&X6 respectively form 4 sets of three-two security structures
  • FIG. 35 is a schematic diagram of a two-by-two-two security structure formed by multiple external signal sources according to the present invention.
  • X9&X11+X10&X12 respectively constitute a group of two by two and two security structures
  • FIG. 36 is a schematic diagram of a three-two security structure formed by a plurality of sets of satellite signal sources and a plurality of sets of external signal sources according to the present invention.
  • X1&X2&(X9&X11), X2&X3&(X9&X11), X3&X4&(X9&X11), X4&X1&(X9&X11) respectively constitute four sets of three-two security structures;
  • FIG. 37 is a schematic diagram of a three-two security structure formed by multiple sets of inertial navigation signal sources and multiple sets of external signal sources according to the present invention.
  • X1&X2&(X10&X12), X2&X3&(X10&X12), X3&X4&(X10&X12), X4&X1&(X10&X12) respectively constitute four sets of three-two safety structures.
  • the 16-way default output and 16-way decision output are combined with the default output of the external signal and the decision output, and the final output is obtained through the second decision and fusion algorithm.
  • the present invention also provides a safe and reliable system for real-time speed measurement and continuous positioning, the system comprising an inertial signal source and a correction signal source, and a safe and reliable real-time speed measurement as described above. And continuously positioned devices.
  • the number of the INS signal sources is plural, and the plurality of INS signal sources are in a three-take two-safe structure;
  • the number of satellite signal sources is multiple, and multiple satellite signal sources have three security structures.
  • the number of inertial signal sources is four, and the number of satellite signal sources is four.
  • the four satellite signals are Beidou satellite chipset, GPS satellite chipset, GLONASS satellite chipset and Galileo satellite chipset.
  • FIG. 38 is a schematic structural diagram of a system for safe and reliable real-time speed measurement and continuous positioning according to the present invention.
  • the invention provides a safe and reliable real-time speed measuring and continuous positioning system installed on a high-speed train.
  • the system starts up and completes the system initialization.
  • the satellite signal processor starts to search for stars, and the satellite is selected according to the strength of the signal.
  • the data is parsed and processed by the first stage and transmitted to the fusion processor through the interface.
  • the inertial navigation signal processor measures attitude information such as train position and acceleration, and transmits the first-level processed and solved information to the fusion processor through the interface.
  • the external signal processor will check and analyze the access speed and position information, and will identify the data transmission fusion processor as reliable.
  • the processor simultaneously receives the data of the satellite signal processor, the inertial signal processor and the external signal processor, and uses the reference heading intelligent iterative correction algorithm for algorithm decision and fusion calculation, and uses the satellite data for correction based on the inertial data.
  • the system cannot receive satellite signals, and can only rely on the inertial navigation signal processor for positioning and speed measurement. According to the timely correction, the inertial navigation signal processor will cause measurement inaccuracy due to the accumulation of errors. Therefore, the measurement error must be corrected in time using the existing conditions.
  • FIG. 39 is a schematic diagram of a reference heading iterative correction fusion algorithm provided by the present invention.
  • the hybrid coupling method combines the loose computing method with small computational complexity and simple structure. It also inherits the advantage that tight coupling can maintain navigation accuracy in the case of poor satellite signals.
  • the inertial navigation signal is normally solved, the position and velocity information is directly output, and the inertial navigation solution error is corrected by using the satellite signal.
  • the ephemeris parameters and the inertial navigation parameters are used to calculate the pseudorange and pseudorange rate of the train relative to the satellite, and the velocity and position information are calculated by Kalman filtering.
  • the satellite signal is lost.
  • the train heading is saved as the reference heading.
  • the navigation direction is collected at a certain frequency, and the heading is compared with the reference heading.
  • the error between the two is corrected by iterative law, and the correction is eliminated. error.

Abstract

一种安全可靠的实时测速和连续定位的方法、装置及系统,包括检测设置于列车上的惯导信号源提供的惯导数据;检测修正信号源提供的修正数据,修正信号源包括设置于列车上的卫星信号源,修正数据包括卫星数据;若修正数据丢失,利用惯导数据确定列车的当前速度及位置,否则,使用修正数据修正惯导数据,并依据修正后的惯导数据确定列车的当前速度及位置。同时考虑惯导数据及修正数据,当修正数据未丢失时,能够通过修正数据和惯导数据共同实现安全可靠的实时测速和连续定位;即使修正数据丢失也可以通过惯导数据来实现安全可靠的实时测速和连续定位,稳定性、安全性和精度高。

Description

一种安全可靠的实时测速和连续定位的方法、装置及系统
本申请要求于2017年02月22日提交中国专利局、申请号为201710096583.6、发明名称为“一种安全可靠的实时测速和连续定位的方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及轨道交通技术领域,特别是涉及一种安全可靠的实时测速和连续定位的方法、装置及系统。
背景技术
随着轨道交通技术的快速发展,高速列车在人们日常生活中得到了广泛的应用。现有的高铁、动车等轨道列车的运行时速已达到300+km/h,但受轮轨黏着等因素的制约,速度很难再提升,业内普遍认识是400km/h以上的超高速列车将依赖磁悬浮技术。
现有的磁悬浮列车通常采用感应定子磁极进行测速,采用感应编码器进行定位。其中,采用感应电子磁极测速的具体实现方式是:在轨道沿线每间隔一定距离安装一个定子磁极,利用感应到的定子磁极信号源来测速,速度低时通过信号上升沿和下降沿测算速度,速度高时通过计数接收脉冲测算速度;定位具体实现方式是:在轨道沿线每间隔一定距离安装一个感应编码器信号源,实现对列车的绝对定位,在两个感应编码器区间则依靠累积感应长定子磁极测速的积分来实现相对定位。
发明人经过研究后认为,采用上述方式得到的速度和位置信息都存在间隔,做不到实时测速和连续定位,不能满足超高速磁悬浮列车的实时测速和连续定位要求。并且,一旦定子磁极出现故障,测速的工作将无法进行,同理,一旦感应编码器出现故障,则无法实现定位的目的。
因此,如何提供一种安全可靠的实时测速和连续定位的方法、装置及系统是本领域技术人员目前需要解决的问题。
发明内容
本发明的目的是提供一种安全可靠的实时测速和连续定位的方法,当修正数据未丢失时,能够通过修正数据和惯导数据共同实现安全可靠的实时测速和连续定位;即使修正数据丢失也可以通过惯导数据来实现安全可靠的实时测速和连续定位,稳定性、安全性和精度高;本发明的另一目的是提供一种安全可靠的实时测速和连续定位的装置及包括上述装置的安全可靠的实时测速和连续定位的系统。
为解决上述技术问题,本发明提供了一种安全可靠的实时测速和连续定位的方法,包括:
检测设置于列车上的惯导信号源提供的惯导数据,以及,检测修正信号源提供的修正数据,所述修正信号源包括设置于所述列车上的卫星信号源,所述修正数据包括卫星数据;
若所述修正数据丢失,利用所述惯导数据确定所述列车的当前速度及位置,否则,使用所述修正数据修正所述惯导数据,并依据修正后的惯导数据确定所述列车的当前速度及位置。
优选地,还包括:
发送所述当前速度及位置。
优选地,所述修正数据还包括设置于所述列车的行驶轨道上的定子磁极信号源提供的速度数据,和/或,设置于所述列车的行驶轨道上的感应编码器提供的位置数据;
按照以下步骤使用所述修正数据修正所述惯导数据:
若所述卫星数据丢失,则利用所述定子磁极信号源提供的速度数据修正所述惯导数据中的速度数据,和/或,利用所述感应编码器提供的位置数据修正所述惯导数据中的位置数据;否则,
使用所述卫星数据和所述定子磁极信号源提供的速度数据,修正所述惯导数据中的速度数据,和/或,使用所述卫星数据和所述感应编码器提供的位置数据,修正所述惯导数据中的位置数据。
优选地,使用所述卫星数据和所述定子磁极信号源提供的速度数据,修正所述惯导数据中的速度数据,包括:
每隔预设修正时间间隔,利用依据当前时刻的卫星信号速度值和磁极信号速度值得到的修正速度值,作为所述惯导速度数据解算过程的速度新起点来进行修正计算。
优选地,使用所述卫星数据和所述感应编码器提供的位置数据,修正所述惯导数据中的位置数据,包括:
每隔所述预设修正时间间隔,利用依据当前时刻的卫星信号位置点和感应编码器位置点得到的修正位置值,作为所述位置数据解算过程的位置新起点来进行修正计算。
优选地,所述定子磁极信号源的个数为多个,多个所述定子磁极信号源呈二乘二取二安全结构;和/或,
所述感应编码器的个数为多个,多个所述感应编码器呈所述二乘二取二安全结构。
优选地,所述惯导信号源的个数为多个,多个所述惯导信号源呈三取二安全结构;
所述卫星信号源的个数为多个,多个所述卫星信号源呈所述三取二安全结构。
优选地,所述三取二安全结构中采用的安全算法为基于卡尔曼滤波的测速与定位多源数据融合安全算法,或者基于迭代修正率的测速与定位多源数据融合安全算法。
优选地,所述惯导信号源的个数为4个,所述卫星信号源的个数为4个。
优选地,4路所述卫星信号源分别为北斗卫星芯片组、GPS卫星芯片组、格洛纳斯卫星芯片组以及伽利略卫星芯片组。
为解决上述技术问题,本发明提供了一种安全可靠的实时测速和连续定位的装置,包括:
惯导信号处理器,用于检测设置于列车上的惯导信号源提供的惯导数据;
修正信号处理器,用于检测修正信号源提供的修正数据,所述修正信号源包括设置于所述列车上的卫星信号源,所述修正数据包括卫星数据,所述修正信号处理器包括卫星信号处理器;
融合处理器,用于在所述修正数据丢失时,利用所述惯导数据确定所述列车的当前速度及位置,以及在所述修正数据未丢失时,使用所述修正数据修正所述惯导数据,并依据修正后的惯导数据确定所述列车的当前速度及位置。
优选地,所述修正信号处理器还包括:外接信号处理器;
相应地,所述融合处理器按照以下步骤使用所述修正数据修正所述惯导数据:
若卫星数据丢失,则利用所述定子磁极信号源提供的速度数据修正所述惯导数据中的速度数据,和/或,利用所述感应编码器提供的位置数据修正所述惯导数据中的位置数据;否则,
使用所述卫星数据和所述定子磁极信号源提供的速度数据,修正所述惯导数据中的速度数据,和/或,使用所述卫星数据和所述感应编码器提供的位置数据,修正所述惯导数据中的位置数据。
优选地,还包括:
通信处理器,用于发送所述当前速度及位置。
为解决上述技术问题,本发明还提供了一种安全可靠的实时测速和连续定位的系统,包括惯导信号源和修正信号源,还包括如上述所述的安全可靠的实时测速和连续定位的装置。
优选地,所述惯导信号源的个数为多个,多个所述惯导信号源呈三取二安全结构;
所述卫星信号源的个数为多个,多个所述卫星信号源呈所述三取二安全结构。
优选地,所述惯导信号源的个数为4个,所述卫星信号源的个数为4个。
优选地,4路所述卫星信号源分别为北斗卫星芯片组、GPS卫星芯片组、格洛纳斯卫星芯片组以及伽利略卫星芯片组。
本发明提供了一种安全可靠的实时测速和连续定位的方法、装置及系统,包括检测设置于列车上的惯导信号源提供的惯导数据,以及,检测修正信号源提供的修正数据,修正信号源包括设置于列车上的卫星信号源,修正数据包括卫星数据;若修正数据丢失,利用惯导数据确定列车的当前速度及位置,否则,使用修正数据修正惯导数据,并依据修正后的惯导数据确定列车的当前速度及位置。
可见,本发明同时考虑惯导数据及修正数据,以惯导数据为基准,再结合修正数据是否丢失这两种不同情况来确定如何得到列车的当前速度及位置,当修正数据未丢失时,能够通过修正数据和惯导数据共同实现安全可靠的实时测速和连续定位;即使修正数据丢失也可以通过惯导数据来实现安全可靠的实时测速和连续定位,稳定性、安全性和精度高。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明提供的一种实时测速的定义原理图;
图2为本发明提供的一种连续定位的定义原理图;
图3为本发明提供的一种安全可靠的实时测速和连续定位的方法的过程的流程图;
图4为本发明提供的一种基于卡尔曼滤波的测速与定位多源数据融合安全算法的原理图;
图5为本发明提供的一种基于迭代修正率的测速与定位多源数据融合安全算法的原理图;
图6为本发明提供的一种安全可靠的实时测速和连续定位的原理框图;
图7为本发明提供的一种基于位置、速度、加速度信息的多源二乘二取二安全结构的原理示意图;
图8为本发明提供的一种基于位置、速度及加速度信息的多源三取二安全结构示意图;
图9为本发明提供的一种基于位置、速度及加速度信息的多源多取二安全结构示意图;
图10为本发明提供的一种基于位置、速度及加速度信息的多源多取多安全结构示意图;
图11为本发明提供的一种支持快速扩展的数据融合与处理单元的结构示意图;
图12为本发明提供的一种基于惯导信号源的紧耦合多源信息集成模式原理图;
图13为本发明提供的一种安全算法框架的原理图;
图14为本发明提供的一种基于快速迭代收敛最小二乘的整周模糊度算法的原理图;
图15为本发明提供的一种基于机器学习的整周模糊度算法的原理图;
图16为本发明提供的一种基于自适应模糊度的整周模糊度算法的原理图;
图17为本发明提供的一种基于改进小环境遗传算法的参数估计的原理图;
图18为本发明提供的一种基于改进混合量子遗传算法的参数估计的原理图;
图19为本发明提供的一种双树复合小波变换的参数估计方法的原理图;
图20为本发明提供的一种基于模糊算法的数据监测与误差分析算法的原理图;
图21为本发明提供的一种基于神经网络模型的实时预测算法的原理图;
图22为本发明提供的一种基于改进型卡尔曼滤波的实时位置信息融合算法的原理图;
图23为本发明提供的一种基于粒子滤波算法的融合算法的原理图;
图24为本发明提供的一种基于德里格斯参数法的融合四元数定位解算方法的原理图;
图25为本发明提供的一种改进型的速度信息处理安全结构的原理图;
图26为本发明提供的另一种改进型的速度信息处理安全结构的原理图;
图27为本发明提供的一种改进型的位置信息处理安全结构的原理图;
图28为本发明提供的另一种改进型的位置信息处理安全结构的原理图;
图29为本发明提供的一种改进型的速度、加速度信息处理结构的原理图;
图30为本发明提供的一种基于安全算法的改进型位置信息获取安全结构的原理图;
图31为本发明提供的一种安全可靠的实时测速和连续定位的装置的结构示意图;
图32为本发明提供一种基于12路信号源的安全可靠的实时测速和连续定位的原理图;
图33为本发明提供的一种多组卫星信号源构成的三取二安全结构示意图;
图34为本发明提供的一种多组惯导信号源构成的三取二安全结构示意图;
图35为本发明提供的一种多组外接信号源构成的二乘二取二安全结构示意图;
图36为本发明提供的一种多组卫星信号源和多组外接信号源构成的三取二安全结构示意图;
图37为本发明提供的一种多组惯导信号源和多组外接信号源构成的三取二安全结构示意图;
图38为本发明提供的一种安全可靠的实时测速和连续定位的系统的结构示意图;
图39为本发明提供的一种基准航向迭代修正融合算法的原理图。
具体实施方式
本发明的核心是提供一种安全可靠的实时测速和连续定位的方法,当修正数据未丢失时,能够通过修正数据和惯导数据共同实现安全可靠的实时测速和连续定位;即使修正数据丢失也可以通过惯导数据来实现安全可靠的实时测速和连续定位,稳定性、安全性和精度高;本发明的另一核心是提供一种安全可靠的实时测速和连续定位的装置及包括上述装置的安全可靠的实时测速和连续定位的系统。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在得到本发明最终的方案之前,发明人还考虑了如下几种方案:
1、速度传感器。利用旋转轮对(或旋转电机)轴端的速度传感器计数脉冲获取列车行驶速度。但磁浮列车没有旋转轮对(或旋转电机),也就没有安装速度传感器的可能。
2、查询/应答器定位方法。原理是首先在铁路干线的沿线上安装间隔一定距离的查询/应答器用来识别列车的绝对位置。列车每经过一个查询/应答器都会获得一个新的绝对位置;在两个查询/应答器之间,列车的具体位置通过里程计计算而得出,即得到列车对于绝对位置的相对距离。该需要在轨道每间隔1km处、每一个道岔及道口处安装查询/应答器;由于拥有大量的地面设备,所以不利于设备的维护和保养。另外,当前尚无满足400km/h以上定位的查询/应答器。
3、轨道电路定位方法。将铁路钢轨分割为不同的区段,在每个区段的两端加上电流的发送/接收器件,利用轨道构成一个信息传输回路。当列车驶入区段时,车轮将两根钢轨短路,信息不能到达接收端,从而达到列车检测、定位的目的。轨道电路法的缺点是:定位是以轨道电路长度作为最 小计量单位,无法构成真正意义上的移动闭塞,并且无法检知速度。
4、光电式测速传感器。在轨道上放置发光器件,在列车上设置接收传感器,通过计数接收脉冲测算速度。该方法需要安装多余附件,且易受外界环境干扰,不适用于超高速测速定位系统。
5、感应定子磁极测速。利用感应到的定子磁极信号源,速度低时通过信号上升沿和下降沿测算速度,速度高时通过计数接收脉冲测算速度。
6、感应编码器绝对定位。在轨道沿线间隔一定距离安装一个感应编码器信号源,实现对列车的绝对定位,在两个感应编码器区间则依靠累积感应长定子磁极测速的积分来实现相对定位。
对于上述感应定子磁极测速和感应编码器绝对定位的介绍请参照上述背景技术,本发明在此不再赘述。
发明人虽然考虑到上述各种方案,但因为各个方案均存在各种各样的缺点,因此均没有采纳。基于此,发明人提出了一种安全可靠的实时测速和连续定位的方法、装置及系统。
在对本发明提供的安全可靠的实时测速和连续定位的方法、装置及系统进行介绍之前,首先对这里的实时测速和连续定位作介绍:
请参照图1,图1为本发明提供的一种实时测速的定义原理图。
实时测速是指,从速度信号源输入到速度量结果输出的时间周期△t,满足实时控制系统△t≤△tmax的时间要求,在该时间周期△t内速度的最大变化量△Vmax满足实时控制系统△Vt≤△Vmax的要求。
请参照图2,图2为本发明提供的一种连续定位的定义原理图。
任何两个时间先后相邻的定位位置,其距离差△S满足实时控制系统要求的(△S≤△Smax),且每个位置的定位位置与实际位置的位置偏差△S’也满足实时控制系统要求的(△S’≤△S’max)。
请参照图3,图3为本发明提供的一种安全可靠的实时测速和连续定位的方法的过程的流程图,该方法包括:
S11:检测设置于列车上的惯导信号源提供的惯导数据,以及,检测修正信号源提供的修正数据,修正信号源包括设置于列车上的卫星信号源,修正数据包括卫星数据;
具体地,需要预先设置修正信号源及在列车上预先设置惯导信号源,其中,修正信号源包括卫星信号源,则相应地,修正数据包括卫星数据。
另外,从成本的角度考虑,这里的修正信号源和惯导信号源的个数可以分别为一个。从定位精度、安全性和可靠性角度考虑,这里的修正信号源和惯导信号源的个数可以分别为多个。本发明对于修正信号源和惯导信号源的个数不做特别的限定,根据实际情况来定。
在具体应用中,首先需要检测惯导信号源提供的惯导数据(包括加速度、角速度等信息)和修正信号源提供的修正数据。
S12:若修正数据丢失,利用惯导数据确定列车的当前速度及位置,否则,使用修正数据修正惯导数据,并依据修正后的惯导数据确定列车的当前速度及位置。
修正信号源包括卫星信号源,修正数据包括卫星数据,因为卫星信号源对卫星的故障及外界环境十分敏感,一旦卫星失效或者列车处于特殊环境中,就有可能出现卫星信号源性能恶化的情况,例如当卫星信号源为GPS(Global Positioning System,全球定位系统)时,则当列车通过隧道群时,卫星信号丢失,GPS系统无法提供卫星数据,进而也就无法依据卫星数据进行测速和定位。
比起修正信号源,惯导信号源则非常稳定,且不受外界环境的影响,不存在因为列车所处环境的变化而使惯导数据丢失的情况。因此,如果修正数据丢失,则依据惯导数据便可确定列车的当前速度及位置。如果修正数据未丢失,则使用修正数据来修正惯导数据,进而得到安全可靠的列车的当前速度和位置。
本发明提供了一种安全可靠的实时测速和连续定位的方法,包括检测设置于列车上的惯导信号源提供的惯导数据,以及,检测修正信号源提供的修正数据,修正信号源包括设置于列车上的卫星信号源,修正数据包括卫星数据;若修正数据丢失,利用惯导数据确定列车的当前速度及位置, 否则,使用修正数据修正惯导数据,并依据修正后的惯导数据确定列车的当前速度及位置。
可见,本发明同时考虑惯导数据及修正数据,以惯导数据为基准,再结合修正数据是否丢失这两种不同情况来确定如何得到列车的当前速度及位置,当修正数据未丢失时,能够通过修正数据和惯导数据共同实现安全可靠的实时测速和连续定位;即使修正数据丢失也可以通过惯导数据来实现安全可靠的实时测速和连续定位,稳定性、安全性和精度高。
作为优选地,还包括:
发送当前速度及位置。
在得到列车的当前速度及位置后,可以根据外部设备的请求,将当前速度及位置进行编码,并发送至相应的通信接口电路,从而实现数据的共享。
另外,为了方便工作人员的观看,方便工作人员及时了解列车当前的速度和位置,在得到列车的当前速度和位置后,还将当前的速度和位置发送出去,以便在显示屏上显示或者语音播报。
作为优选地,修正数据还包括设置于列车的行驶轨道上的定子磁极信号源提供的速度数据,和/或,设置于列车的行驶轨道上的感应编码器提供的位置数据;
按照以下步骤使用修正数据修正惯导数据:
若卫星数据丢失,则利用定子磁极信号源提供的速度数据修正惯导数据中的速度数据,和/或,利用感应编码器提供的位置数据修正惯导数据中的位置数据;否则,
使用卫星数据和定子磁极信号源提供的速度数据,修正惯导数据中的速度数据,和/或,使用卫星数据和感应编码器提供的位置数据,修正惯导数据中的位置数据。
为了进一步提高列车的速度及位置的定位精度、可靠性及安全性,考虑到现有很多轨道上已经安装有定子磁极和/或感应编码器信号源,且相应地,列车上设置有定子磁极信号源和感应编码器,则可以充分利用这一便 利,通过定子磁极信号源获取的速度数据和感应编码器获取的位置数据来对惯导数据进行修正。
具体地,考虑到卫星信号源对环境的敏感性,使用修正数据修正惯导数据时要考虑到卫星数据是否丢失的情况。在卫星数据未丢失时,则利用卫星数据中的速度数据和定子磁极信号源提供的速度数据共同修正惯导数据中的速度数据,和/或,利用卫星数据中的位置数据和感应编码器提供的位置数据共同修正惯导数据中的位置数据,可以进一步提高列车的速度及位置的定位精度、可靠性及安全性。
本发明对于如何利用卫星数据中的速度数据和定子磁极信号源提供的速度数据共同修正惯导数据中的速度数据,和/或,利用卫星数据中的位置数据和感应编码器提供的位置数据共同修正惯导数据中的位置数据不做特别的限定。
作为优选地,使用卫星数据和定子磁极信号源提供的速度数据,修正惯导数据中的速度数据,包括:
每隔预设修正时间间隔,利用依据当前时刻的卫星信号速度值和磁极信号速度值得到的修正速度值,作为惯导速度数据解算过程的速度新起点来进行修正计算。
具体地,在对列车的速度进行定位时,每隔预设修正时间间隔,就获取当前时刻的卫星信号速度值和磁极信号速度值,并依据卫星信号速度值和磁极信号速度值得到修正速度值,该修正速度值也为上述当前时刻的列车的速度值,在预设修正时间间隔中,以修正速度值为基准,再结合惯导数据提供的加速度和时间得到列车的速度。
需要说明的是,这里的依据卫星信号速度值和磁极信号速度值采用哪种方法得到修正速度值是不限定的,例如可以取卫星信号速度值和磁极信号速度值的算术平均值作为修正速度值,或者对卫星信号速度值和磁极信号速度值进行加权平均得到修正速度值,或者采用其他方法,本发明在此不做特别的限定,根据实际情况来定。
另外,这里的预设修正时间间隔是根据速度或者位置的精度和连续性要求综合确定的,同时还要考虑当时的卫星数量、列车状态等情况,因此, 间隔时间应该是根据各种因素随时变化的,因为获取列车的速度和位置是存在一个刷新时间间隔的,预设修正时间间隔的设置要求满足在任意一个预设修正时间间隔中的某个时间点刷新时其获取的速度和位置值即为刷新时刻的速度和位置均在允许的误差范围内。
为方便理解,下面列举一实例,例如本次预设修正时间间隔的起点为t1,本次预设修正时间间隔的终点也即下次预设修正时间间隔的起点为t2,则不难理解,当刷新时刻在t1点或者t2点时,此时的速度和位置最准,误差最小,当刷新时刻在t1点及t2点之间时,由于惯导系统的特性会使得得到的速度和位置存在一定误差,但要求这些误差在允许的范围内。且需要说明的是,预设修正时间间隔实际上是非常短的,几乎可以认为是实时的。
作为优选地,使用卫星数据和感应编码器提供的位置数据,修正惯导数据中的位置数据,包括:
每隔预设修正时间间隔,利用依据当前时刻的卫星信号位置点和感应编码器位置点得到的修正位置值,作为位置数据解算过程的位置新起点来进行修正计算。
与上述速度修正方法原理相同,在对列车的速度进行定位时,每隔预设修正时间间隔,就获取当前时刻的卫星信号位置点和感应编码器位置点,并依据卫星信号位置点和感应编码器位置点得到修正位置点,该修正位置点也为上述当前时刻的列车的位置点,在预设修正时间间隔中,以修正位置点为基准,再结合惯导数据提供的加速度和时间得到列车的位置。
需要说明的是,这里的依据卫星信号位置点和磁极信号位置点采用哪种方法得到修正位置点是不限定的,例如可以取卫星信号位置点和磁极信号位置点的平均值作为修正位置点,或者对卫星信号位置点和磁极信号位置点进行加权平均得到修正位置点,或者采用其他方法,本发明在此不做特别的限定,根据实际情况来定。
另外,还需要说明的是,上述列车的位置的预设修正时间间隔及速度的预设修正时间间隔可以一样,也可以不一样,根据实际情况来定。
作为优选地,定子磁极信号源的个数为多个,多个定子磁极信号源呈二乘二取二安全结构;和/或,
感应编码器的个数为多个,多个感应编码器呈二乘二取二安全结构。
上述提到,现有很多列车上已经设置了定子磁极信号源和感应编码器,为了提高列车的速度及位置的定位精度、安全性和可靠性,这里的定子磁极信号源的个数和感应编码器的个数均可以为多个,且多个定子磁极信号源用安全结构原理组态为二乘二取二安全结构,二乘二取二安全结构则会输出实时速度值的原始量和实时速度值的决策量,多个感应编码器也组态为二乘二取二安全结构,二乘二取二安全结构则会输出连续位置值的原始量和连续位置值的决策量。
因为定子磁极信号源的个数和感应编码器的个数均可以为多个,则即便其中一个或者某几个坏了,仍可以依据剩下的来对惯导数据进行修正。
当然,这里的定子磁极信号源和感应编码器还可以为组态为其他安全结构,例如多(三以上)取二安全结构,或多(三以上)取多(三或三以上)等安全结构,本发明在此不做特别的限定,根据实际情况来定。
作为优选地,惯导信号源的个数为多个,多个惯导信号源呈三取二安全结构;
卫星信号源的个数为多个,多个卫星信号源呈三取二安全结构。
为提高列车的速度及位置的定位精度、安全性和可靠性,这里的惯导信号源和卫星信号源的个数均可分别为多个,且多个惯导信号源用安全结构原理组态为三取二安全结构,三取二安全结构则会输出实时速度值的原始量和实时速度值的决策量,多个卫星信号源用安全结构原理组态为三取二安全结构,三取二安全结构则会输出连续位置值的原始量和连续位置值的决策量。
因为卫星信号源的个数和惯导信号源的个数均可以为多个,则即便其中一个或者某几个坏了,仍可以依据剩下的来得到列车的速度和位置。
当然,这里的卫星信号源和惯导信号源还可以为组态为其他安全结构,本发明在此不做特别的限定,根据实际情况来定。
作为优选地,三取二安全结构中采用的安全算法为基于卡尔曼滤波的测速与定位多源数据融合安全算法,或者基于迭代修正率的测速与定位多源数据融合安全算法。
具体地,请参照图4,图4为本发明提供的一种基于卡尔曼滤波的测速与定位多源数据融合安全算法的原理图。
图中,x(k/k)为速度或者位置,P(k/k)为可靠性,也即,信号源输出的数据通过该算法处理后,会输出与当前输入对应的输出及该输出的可靠性,可靠性高的输出对于最终的输出影响大。基于卡尔曼滤波的测速与定位多源数据融合安全算法具有可最优化估测数据准确性分布,降低系统噪声和外部干扰的影响等优点。
请参照图5,图5为本发明提供的一种基于迭代修正率的测速与定位多源数据融合安全算法的原理图。
图中,x(k/k)为速度或者位置,e(k/k)为观测误差,基于迭代修正率的测速与定位多源数据融合安全算法具有可不断修正系统估算误差,提高系统精度,消除共模干扰的优点。
当然,这里的安全算法还可以为其他类型的算法,能实现本发明的目的即可。
作为优选地,惯导信号源的个数为4个,卫星信号源的个数为4个。
当然,这里的惯导信号源的个数和卫星信号源的个数均还可以为其他数值,本发明在此不做特别的限定。且4个惯导信号源可以为不同类型的惯导信号源,也可以为相同类型的惯导信号源,同样地,4个卫星信号源可以为不同类型的卫星信号源,也可以为相同类型的信号源,本发明在此不做特别的限定。
作为优选地,4路卫星信号源分别为北斗卫星芯片组、GPS卫星芯片组、格洛纳斯卫星芯片组以及伽利略卫星芯片组。
当然,这里的4路卫星信号源还可以为两组北斗卫星芯片组、GPS卫星芯片组和格洛纳斯卫星芯片组,还可以为上述优选实施例中4路卫星信号源的排列组合,本发明在此不做特别的限定。
为方便对本发明提供的安全可靠的实时测速和连续定位的方法的介绍,请参照图6,图6为本发明提供的一种安全可靠的实时测速和连续定位的原理框图。
在实际应用中,为提高列车的速度和位置的定位精度,在获取到信号源提供的数据后,可以对该数据进行可靠性预判,从而选出可靠的信号源,然后再通过信号源选择策略确定信号源组合,并通过安全算法进行处理,各个安全算法得到的速度和位置经过竞争,得到最终的速度和位置信息。
另外,本申请中的安全可靠是指,在丢失部分信号源的情况下,实时测速和连续定位方法都能实现安全可靠的速度与位置信息输出,而且速度与位置信息只能被授权的设备所识别并利用;当丢失的信号源恢复时,能够无缝地恢复到正常测速与定位状态。理论上,只要有一路信号源有效,系统即可保持运行,此时的运行等级依据安全要求制定。
另外,关于上述提到的安全结构:
请参照图7,图7为本发明提供的一种基于位置、速度、加速度信息的多源二乘二取二安全结构的原理示意图。
利用位置、速度及加速度信息,形成多源二乘二取二安全结构,该结构可以实现在缺少部分信息源的情况下,仍满足安全可靠的实时测速与连续定位的要求。
需要说明的是,卫星系统和惯导系统均可得到位置和速度,加速度信息则是惯导系统所特有的。
请参照图8,图8为本发明提供的一种基于位置、速度及加速度信息的多源三取二安全结构示意图。
利用位置、速度及加速度信息,形成多源三取二安全结构,该结构可以实现在缺少任意两个信息源的情况下,仍满足安全可靠的实时测速与连续定位要求。
请参照图9,图9为本发明提供的一种基于位置、速度及加速度信息的多源多取二安全结构示意图。
利用位置、加速度及其他信息来源,形成多源多取二安全结构,该结构可以实现仅存一个信息源的情况下,仍满足安全可靠的实时测速与连续定位要求。
请参照图10,图10为本发明提供的一种基于位置、速度及加速度信息的多源多取多安全结构示意图。
利用位置、加速度及其他信息来源,形成多源多取多安全结构,该结构可以实现仅存一个定位或测速源的情况下,仍满足安全可靠的实时测速与连续定位要求。
请参照图11,图11为本发明提供的一种支持快速扩展的数据融合与处理单元的结构示意图。
多源数据通过通信接口进行电平、通信协议等转换,得到格式、标尺一致的异源同构数据,通过高速总线传输给融合处理器,进行多源数据的融合处理。这里的数据融合和处理单元可以通过在融合处理器内的一段代码实现。
请参照图12,图12为本发明提供的一种基于惯导信号源的紧耦合多源信息集成模式原理图。
请参照图13,图13为本发明提供的一种安全算法框架的原理图。
安全算法是指对来自安全结构的实时测速信号源和连续定位信号源的数据所进行的符合安全规则的甄选和综合计算,其数学方法包括但不限于卡尔曼滤波、迭代修正律、伪距、伪距率估计器。
另外,利用多源卫星和惯导系统的原始数据,通过先进算法进行整周模糊度的快速解算,并利用算法对病态方程进行修正,提高整周模糊度的精度,进一步提高方程解算速度,达到提高输出实时性的目的。
请参照图14,图14为本发明提供的一种基于快速迭代收敛最小二乘的整周模糊度算法的原理图。
需要说明的是,这里的D(t)为速度或者位置。
针对实时测速,本发明提出了一种快速解算整周模糊度算法其中包括一种快速迭代收敛最小二乘搜索法,利用快速迭代收敛最小二乘发的强循迹性快速完成解算过程。
请参照图15,图15为本发明提供的一种基于机器学习的整周模糊度 算法的原理图。
需要说明的是,这里的D(t)为速度或者位置。
针对实时测速,提出了一种快速解算整周模糊度算法,其中包括一种基于机器学习寻优模糊解法。利用机器学习的强自适应能力,消除未知干扰对快速解算的影响。
请参照图16,图16为本发明提供的一种基于自适应模糊度的整周模糊度算法的原理图。
针对实时测速,提出了一种快速解算整周模糊度算法,其中包括一种自适应模糊度最小二乘降方法。
请参照图17,图17为本发明提供的一种基于改进小环境遗传算法的参数估计的原理图。
针对实时测速,提出了一种快速解算整周模糊度算法,其中包括一种基于改进小环境遗传算法的快速定位病态方程的参数估计。利用改进型遗传算法的全局搜索能力,对定位病态方程的参数实现可靠估计。
请参照图18,图18为本发明提供的一种基于改进混合量子遗传算法的参数估计的原理图。
提出了一种基于改进混合量子遗传算法的快速定位病态方程的参数估计。利用量子遗传算法在搜索范围、种群数量上的优势,提供可靠的参数估计。
请参照图19,图19为本发明提供的一种双树复合小波变换的参数估计方法的原理图。
提出了一种基于双树复合小波变换的定位病态方程的参数估计方法。
请参照图20,图20为本发明提供的一种基于模糊算法的数据监测与误差分析算法的原理图。
针对连续定位,提出了一种基于神经网络模型的两次定位点间列车位置的实时预测算法。
请参照图21,图21为本发明提供的一种基于神经网络模型的实时预测算法的原理图。
针对连续定位,提出了一种基于改进型卡尔曼滤波的实时位置信息融合算法。
请参照图22,图22为本发明提供的一种基于改进型卡尔曼滤波的实时位置信息融合算法的原理图。
针对连续定位,提出了一种基于粒子滤波算法的实时位置信息据融合算法。
请参照图23,图23为本发明提供的一种基于粒子滤波算法的融合算法的原理图。
针对连续定位,提出了一种基于罗德里格斯参数法的融合四元数定位解算方法。
请参照图24,图24为本发明提供的一种基于德里格斯参数法的融合四元数定位解算方法的原理图。
针对实时测速,提出了一种改进型的速度信息处理安全结构。
请参照图25,图25为本发明提供的一种改进型的速度信息处理安全结构的原理图。
该结构由双处理单元构成,信号协处理单元主要用于射频放大和基带处理,安全算法处理单元主要用于测速解算。
针对实时测速,提出了一种改进型速度信息处理云安全结构,请参照图26,图26为本发明提供的另一种改进型的速度信息处理安全结构的原理图。
该结构由专用前端信号处理模块和实时通信模块构成,实时通信模块主要用于将原始位置信息发送至云端超算中心,并接收云端计算结果。
针对连续定位,提出了一种改进型的位置信息处理安全结构,请参照图27,图27为本发明提供的一种改进型的位置信息处理安全结构的原理图。
该结构由冗余数据融合处理单元、多源数据融合单元及配套软硬件组成,冗余数据融合处理单元用于处理冗余位置信息,从冗余数据中获取高刷新率的位置信息;多源数据融合处理单元用于融合其他来源数据对所获取的位置信息进行修正。
针对连续定位,提出了一种改进型的位置信息云获取安全结构,请参照图28,图28为本发明提供的另一种改进型的位置信息处理安全结构的原理图。
该结构由安全算法模块、数据融合单元与网络存储组成,网络存储保存路网及调度信息,安全算法模块负责位置信息解算,数据融合单元负责利用其他可用信息源对位置信息进行校验和修正。
针对连续定位,提出了一种改进型的角速度、加速度信息处理结构。请参照图29,图29为本发明提供的一种改进型的速度、加速度信息处理结构的原理图。
该结构综合考虑加速度、角速度、电磁力、气压等信息。传感器用于数据测量,接口模块用于数据读取,信号处理模块用于数据处理与位置结算。
针对连续定位,提出了一种改进型位置信息获取安全结构。请参照图30,图30为本发明提供的一种基于安全算法的改进型位置信息获取安全结构的原理图。
该模块由测量传感器、协处理单元、存储单元和位置信息安全算法单元组成。协处理单元负责获取多源信息并实时写入存储单元中。位置信息安全算法单元实时并行地读取数据,并进行位置计算。
与上述方法实施例相对应的,本发明提供了一种安全可靠的实时测速和连续定位的装置,请参照图31,图31为本发明提供的一种安全可靠的实时测速和连续定位的装置的结构示意图,该装置包括:
惯导信号处理器1,用于检测设置于列车上的惯导信号源提供的惯导数据;
可以理解的是,首先需要预先搭建多路用于实时测速和连续定位的独立的信号源,分别由专用芯片处理。
惯导信号处理器1稳定安装于高速列车上,安装需要严格按照规定轴向放置。需注意防潮防尘,惯导信号处理器1接收来自于惯导信号源的惯导数据,这里的惯导数据包括加速度、角速度等信息。惯导信号处理器1在接收到惯导数据后,可以基于修正信号处理器2获取的修正数据进行第一级的可靠性判断和安全融合算法,得到若干速度和位置的默认输出值和决策值,并送往融合处理器3。
修正信号处理器2,用于检测修正信号源提供的修正数据,修正信号源包括设置于列车上的卫星信号源,修正数据包括卫星数据,修正信号处理器2包括卫星信号处理器;
修正信号处理器2放置于高速列车上,同时列车装设天线,用于接收卫星信号,同时将接收到的位置信息、速度信息与时间信息进行第一级的可靠性判断和安全融合算法,得出若干速度与位置的默认输出值和决策值,并送往融合处理器3。
融合处理器3,用于在修正数据丢失时,利用惯导数据确定列车的当前速度及位置,以及在修正数据未丢失时,使用修正数据修正惯导数据,并依据修正后的惯导数据确定列车的当前速度及位置。
融合处理器3安装于高速列车上,它实时接收来自修正信号处理器2和惯导信号处理器1的数据,并通过融合算法对修正数据及惯导数据进行处理,来形成最终精确实时的测速与定位结果。本发明提供了一种安全可靠的实时测速和连续定位的装置,包括惯导信号处理器1,用于检测设置于列车上的惯导信号源提供的惯导数据,以及,修正信号处理器2,用于检测修正信号源提供的修正数据,修正信号源包括设置于列车上的卫星信号源,修正数据包括卫星数据,修正信号处理器2包括卫星信号处理器;
融合处理器3,用于在修正数据丢失时,利用惯导数据确定列车的当前速度及位置,以及在修正数据未丢失时,使用修正数据修正惯导数据,并依据修正后的惯导数据确定列车的当前速度及位置。
可见,本发明同时考虑惯导数据及修正数据,以惯导数据为基准,再结合修正数据是否丢失这两种不同情况来确定如何得到列车的当前速度及位置,当修正数据未丢失时,能够通过修正数据和惯导数据共同实现安全可靠的实时测速和连续定位;即使修正数据丢失也可以通过惯导数据来实现安全可靠的实时测速和连续定位,稳定性、安全性和精度高。
作为优选地,修正信号处理器2还包括:外接信号处理器;
相应地,融合处理器3按照以下步骤使用修正数据修正惯导数据:
若卫星数据丢失,则利用定子磁极信号源提供的速度数据修正惯导数据中的速度数据,和/或,利用感应编码器提供的位置数据修正惯导数据中的位置数据;否则,
使用卫星数据和定子磁极信号源提供的速度数据,修正惯导数据中的速度数据,和/或,使用卫星数据和感应编码器提供的位置数据,修正惯导数据中的位置数据。
外接信号处理器通过连接器组与列车已有的各种速度与位置信号源进行连接,接收并对传入的速度与位置信息进行可靠性分析和融合处理,得出若干速度与位置的默认输出值和决策值,送往融合处理器3。其中,这里的速度信号源可以为定子磁极信号源,位置信号源可以为感应编码器。
另外,还可将这里的定子磁极信号源和感应编码器称为外接信号源。
作为优选地,还包括:
通信处理器,用于发送当前速度及位置。
通信处理器接收来自融合处理器3发送的安全型实时速度与连续速度信息,并根据外部智能设备的请求,将其编码,发送至相应的通信接口电路,从而实现数据的共享。
下面结合一具体实例来对本发明提供的安全可靠的实时测速和连续定位的装置作介绍:
1、首先构建多达12路用于实时测速和连续定位的独立的信号源。请参照图32,图32为本发明提供一种基于12路信号源的安全可靠的实时测速和连续定位的原理图。
信号源X1:北斗卫星导航系统,同时用于实时测速和连续定位;
信号源X2:GPS卫星导航系统,同时用于实时测速和连续定位;
信号源X3:格洛纳斯卫星导航系统,同时用于实时测速和连续定位;
信号源X4:伽利略卫星导航系统,同时用于实时测速和连续定位;
信号源X5:惯性导航系统A,同时用于实时测速和连续定位;
信号源X6:惯性导航系统B,同时用于实时测速和连续定位;
信号源X7:惯性导航系统C,同时用于实时测速和连续定位;
信号源X8:惯性导航系统D,同时用于实时测速和连续定位;
信号源X9:定子磁极信号源A,仅用于实时测速;
信号源X10:定子磁极信号源B,仅用于实时测速;
信号源X11:感应编码器信号源A,仅用于连续定位校正;
信号源X12:感应编码器信号源B,仅用于连续定位校正。
2、将12路用于实时测速和连续定位的独立的信号源,用安全结构原理组态为多组三取二安全结构、多组二乘二取二安全结构,经过自适应的多源安全结构策略组合,得到可靠信源,经过多源安全算法,得到16路列车的实时速度值和连续位置值的原始量,16路实时速度值和连续位置值的决策量。
具体地,请参照图33,图33为本发明提供的一种多组卫星信号源构成的三取二安全结构示意图。
X1&X2&X3、X2&X3&X4、X3&X4&X1、X4&X1&X2分别组成4组三取二安全结构;
请参照图34,图34为本发明提供的一种多组惯导信号源构成的三取二安全结构示意图。
X5&X6&X7、X6&X7&X8、X7&X8&X5、X8&X5&X6分别组成4组三取二安全结构;
请参照图35,图35为本发明提供的一种多组外接信号源构成的二乘二取二安全结构示意图。
X9&X11+X10&X12分别组成1组二乘二取二安全结构;
请参照图36,图36为本发明提供的一种多组卫星信号源和多组外接信号源构成的三取二安全结构示意图。
X1&X2&(X9&X11)、X2&X3&(X9&X11)、X3&X4&(X9&X11)、X4&X1&(X9&X11)分别组成4组三取二安全结构;
请参照图37,图37为本发明提供的一种多组惯导信号源和多组外接信号源构成的三取二安全结构示意图。
X1&X2&(X10&X12)、X2&X3&(X10&X12)、X3&X4&(X10&X12)、X4&X1&(X10&X12)分别组成4组三取二安全结构。
3、在上述1和2的基础上,将所得到16路默认输出量和16路决策输出量,结合外接信号的默认输出量及决策输出量,经二次决策与融合算法得到最终输出一路具有安全特征的列车的实时速度值和连续位置值。
对于本发明提供的安全可靠的实时测速和连续定位的装置的介绍请参照上述方法实施例,本发明在此不再赘述。
与上述方法及装置相对应地,本发明还提供了一种安全可靠的实时测速和连续定位的系统,该系统包括惯导信号源和修正信号源,还包括如上所述的安全可靠的实时测速和连续定位的装置。
作为优选地,惯导信号源的个数为多个,多个惯导信号源呈三取二安全结构;
卫星信号源的个数为多个,多个卫星信号源呈三取二安全结构。
作为优选地,惯导信号源的个数为4个,卫星信号源的个数为4个。
作为优选地,4路卫星信号源分别为北斗卫星芯片组、GPS卫星芯片组、格洛纳斯卫星芯片组以及伽利略卫星芯片组。
请参照图38,图38为本发明提供的一种安全可靠的实时测速和连续定位的系统的结构示意图。
本发明提供的一种安全可靠的实时测速和连续定位的系统安装于高速列车上,当高速列车位于整备状态时,系统启动,完成系统初始化。此时如果卫星信号良好,卫星信号处理器开始搜星,根据信号强弱程度选择卫星,数据经第一级的解析和处理后通过接口传递至融合处理器。惯导信号处理器测量列车位置和加速度等姿态信息,并将第一级处理和解算后的信息通过接口传递至融合处理器。外接信号处理器将对接入的速度与位置信息进行校验和分析,并将判别为可靠的数据传输融合处理器。处理器同时接受卫星信号处理器、惯导信号处理器和外接信号处理器的数据,采用基准航向智能迭代修正算法进行算法决策和融合计算,以惯性数据为基准,利用卫星数据进行修正。
由于超高速列车线路的特殊性,隧道数量较多,在隧道中,系统无法接收卫星信号,只能依靠惯导信号处理器进行定位和测速,在没有卫星数 据进行及时修正的情况下,惯导信号处理器会因为误差累积导致测量不准确,因此必须利用已有的条件对测量误差进行及时修正。
这里举例说明本发明所采用的一种新型的基于混合耦合方式的基准航向迭代修正融合算法,请参照图39,图39为本发明提供的一种基准航向迭代修正融合算法的原理图。
混合耦合方式结合了松耦合方式的计算量小,结构简单的特点,也继承了紧耦合在卫星信号较差的情况下能维持导航精度的优点。正常情况下,惯导信号正常解算,直接输出位置和速度信息,利用卫星信号修正惯导解算误差。当列车进入山区或卫星信号较差区域,利用星历参数以及惯导参数计算列车相对于卫星的伪距与伪距率,并通过卡尔曼滤波计算速度及位置信息。进入隧道时,卫星信号丢失,将此刻列车航向作为基准航向保存,以一定频率采集惯导航向,并将航向与基准航向比较,通过迭代规律对两者之间的误差进行修正,不断修正消除积累误差。
对于本发明提供的安全可靠的实时测速和连续定位的系统的介绍请参照上述方法及装置实施例,本发明在此不再赘述。
需要说明的是,在本说明书中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其他实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (17)

  1. 一种安全可靠的实时测速和连续定位的方法,其特征在于,包括:
    检测设置于列车上的惯导信号源提供的惯导数据,以及,检测修正信号源提供的修正数据,所述修正信号源包括设置于所述列车上的卫星信号源,所述修正数据包括卫星数据;
    若所述修正数据丢失,利用所述惯导数据确定所述列车的当前速度及位置,否则,使用所述修正数据修正所述惯导数据,并依据修正后的惯导数据确定所述列车的当前速度及位置。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    发送所述当前速度及位置。
  3. 如权利要求1所述的方法,其特征在于,所述修正数据还包括设置于所述列车的行驶轨道上的定子磁极信号源提供的速度数据,和/或,设置于所述列车的行驶轨道上的感应编码器提供的位置数据;
    按照以下步骤使用所述修正数据修正所述惯导数据:
    若所述卫星数据丢失,则利用所述定子磁极信号源提供的速度数据修正所述惯导数据中的速度数据,和/或,利用所述感应编码器提供的位置数据修正所述惯导数据中的位置数据;否则,
    使用所述卫星数据和所述定子磁极信号源提供的速度数据,修正所述惯导数据中的速度数据,和/或,使用所述卫星数据和所述感应编码器提供的位置数据,修正所述惯导数据中的位置数据。
  4. 如权利要求3所述的方法,其特征在于,使用所述卫星数据和所述定子磁极信号源提供的速度数据,修正所述惯导数据中的速度数据,包括:
    每隔预设修正时间间隔,利用依据当前时刻的卫星信号速度值和磁极信号速度值得到的修正速度值,作为所述惯导速度数据解算过程的速度新起点来进行修正计算。
  5. 如权利要求3所述的方法,其特征在于,使用所述卫星数据和所述感应编码器提供的位置数据,修正所述惯导数据中的位置数据,包括:
    每隔所述预设修正时间间隔,利用依据当前时刻的卫星信号位置点和感应编码器位置点得到的修正位置值,作为所述位置数据解算过程的位置新起点来进行修正计算。
  6. 如权利要求3所述的方法,其特征在于:
    所述定子磁极信号源的个数为多个,多个所述定子磁极信号源呈二乘二取二安全结构;和/或,
    所述感应编码器的个数为多个,多个所述感应编码器呈所述二乘二取二安全结构。
  7. 如权利要求1-6任意一项所述的方法,其特征在于:
    所述惯导信号源的个数为多个,多个所述惯导信号源呈三取二安全结构;
    所述卫星信号源的个数为多个,多个所述卫星信号源呈所述三取二安全结构。
  8. 如权利要求7所述的方法,其特征在于,所述三取二安全结构中采用的安全算法为基于卡尔曼滤波的测速与定位多源数据融合安全算法,或者基于迭代修正率的测速与定位多源数据融合安全算法。
  9. 如权利要求7所述的方法,其特征在于,所述惯导信号源的个数为4个,所述卫星信号源的个数为4个。
  10. 如权利要求9所述的方法,其特征在于,4路所述卫星信号源分别为北斗卫星芯片组、GPS卫星芯片组、格洛纳斯卫星芯片组以及伽利略卫星芯片组。
  11. 一种安全可靠的实时测速和连续定位的装置,其特征在于,包括:
    惯导信号处理器,用于检测设置于列车上的惯导信号源提供的惯导数据;
    修正信号处理器,用于检测修正信号源提供的修正数据,所述修正信号源包括设置于所述列车上的卫星信号源,所述修正数据包括卫星数据,所述修正信号处理器包括卫星信号处理器;
    融合处理器,用于在所述修正数据丢失时,利用所述惯导数据确定所述列车的当前速度及位置,以及在所述修正数据未丢失时,使用所述修正 数据修正所述惯导数据,并依据修正后的惯导数据确定所述列车的当前速度及位置。
  12. 如权利要求11所述的装置,其特征在于,所述修正信号处理器还包括:外接信号处理器;
    相应地,所述融合处理器按照以下步骤使用所述修正数据修正所述惯导数据:
    若卫星数据丢失,则利用所述定子磁极信号源提供的速度数据修正所述惯导数据中的速度数据,和/或,利用所述感应编码器提供的位置数据修正所述惯导数据中的位置数据;否则,
    使用所述卫星数据和所述定子磁极信号源提供的速度数据,修正所述惯导数据中的速度数据,和/或,使用所述卫星数据和所述感应编码器提供的位置数据,修正所述惯导数据中的位置数据。
  13. 如权利要求11所述的装置,其特征在于,还包括:
    通信处理器,用于发送所述当前速度及位置。
  14. 一种安全可靠的实时测速和连续定位的系统,其特征在于,包括惯导信号源和修正信号源,还包括如权利要求11-13任一项所述的安全可靠的实时测速和连续定位的装置。
  15. 如权利要求14所述的系统,其特征在于:
    所述惯导信号源的个数为多个,多个所述惯导信号源呈三取二安全结构;
    所述卫星信号源的个数为多个,多个所述卫星信号源呈所述三取二安全结构。
  16. 如权利要求15所述的系统,其特征在于,所述惯导信号源的个数为4个,所述卫星信号源的个数为4个。
  17. 如权利要求16所述的系统,其特征在于,4路所述卫星信号源分别为北斗卫星芯片组、GPS卫星芯片组、格洛纳斯卫星芯片组以及伽利略卫星芯片组。
PCT/CN2017/076926 2017-02-22 2017-03-16 一种安全可靠的实时测速和连续定位的方法、装置及系统 WO2018152899A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2019129510A RU2730442C1 (ru) 2017-02-22 2017-03-16 Надежный и достоверный способ, устройство и система для измерения скорости в реальном времени и непрерывного определения положения
US16/488,162 US11654945B2 (en) 2017-02-22 2017-03-16 Safe and reliable method, device, and system for real-time speed measurement and continuous positioning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710096583.6 2017-02-22
CN201710096583.6A CN108454652B (zh) 2017-02-22 2017-02-22 一种安全可靠的实时测速和连续定位的方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2018152899A1 true WO2018152899A1 (zh) 2018-08-30

Family

ID=63220844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076926 WO2018152899A1 (zh) 2017-02-22 2017-03-16 一种安全可靠的实时测速和连续定位的方法、装置及系统

Country Status (4)

Country Link
US (1) US11654945B2 (zh)
CN (1) CN108454652B (zh)
RU (1) RU2730442C1 (zh)
WO (1) WO2018152899A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109522591A (zh) * 2018-10-10 2019-03-26 中南大学 一种应用于中高速磁浮列车的数据融合方法
CN111220176A (zh) * 2019-11-28 2020-06-02 中国铁道科学研究院集团有限公司 一种基于安全数据的铁路司机导航方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109490931A (zh) * 2018-09-03 2019-03-19 天津远度科技有限公司 飞行定位方法、装置及无人机
CN109212575A (zh) * 2018-10-10 2019-01-15 中南大学 一种基于北斗及惯性导航的组合测速定位技术
CN109471144B (zh) * 2018-12-13 2023-04-28 北京交通大学 基于伪距/伪距率的多传感器紧组合列车组合定位方法
CN110435721A (zh) * 2019-09-04 2019-11-12 大连科技学院 一种基于5g通信的铁路列车区间闭塞检测系统及方法
CN110758472A (zh) * 2019-10-08 2020-02-07 北京市地铁运营有限公司地铁运营技术研发中心 一种列车的定位方法、装置、系统和存储介质
JP7328905B2 (ja) * 2020-01-17 2023-08-17 株式会社日立製作所 センシングシステム及びセンシング制御方法
CN113525098B (zh) * 2020-04-20 2023-02-03 株洲中车时代电气股份有限公司 一种磁浮车辆的悬浮控制方法及其装置
CN111736194A (zh) * 2020-07-06 2020-10-02 广州导远电子科技有限公司 组合惯性导航系统及导航数据处理方法
CN112083465A (zh) * 2020-09-18 2020-12-15 德明通讯(上海)有限责任公司 位置信息获取系统及方法
CN112249089A (zh) * 2020-09-27 2021-01-22 卡斯柯信号有限公司 一种轨道交通应急定位系统及方法
CN112550377A (zh) * 2020-12-18 2021-03-26 卡斯柯信号有限公司 基于视频识别和imu设备的轨道交通应急定位方法和系统
CN113325447B (zh) * 2021-06-04 2023-07-28 华北电力大学 通过北斗gps信号测算时标的时间同一准对方法和装置
CN114407981A (zh) * 2022-01-13 2022-04-29 浙江众合科技股份有限公司 一种自适应调整的列车辅助定位方法及系统
CN115339488B (zh) * 2022-08-19 2023-08-22 中国人民解放军国防科技大学 基于ldv、uwb、mems组合的列车定位终端

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101476894A (zh) * 2009-02-01 2009-07-08 哈尔滨工业大学 车载sins/gps组合导航系统性能增强方法
CN102445176A (zh) * 2011-09-14 2012-05-09 中国科学院力学研究所 高速列车运行姿态参数测量系统
CN102607596A (zh) * 2012-03-07 2012-07-25 北京航空航天大学 基于差分gps观测的捷联挠性陀螺动态随机漂移误差测试方法
CN103017764A (zh) * 2012-12-07 2013-04-03 河北汉光重工有限责任公司 高速列车自主导航及姿态测量装置
CN103754235A (zh) * 2013-12-24 2014-04-30 湖北三江航天红峰控制有限公司 一种高铁测量用惯性定位定向装置及方法
KR20140137815A (ko) * 2013-05-24 2014-12-03 회명정보통신(주) 관성 센서를 이용한 실내 측위 시스템
CN104527451A (zh) * 2014-12-04 2015-04-22 中国人民解放军国防科学技术大学 用于中低速磁浮列车的悬浮控制器检测装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2242392C2 (ru) 2002-10-03 2004-12-20 Российский государственный открытый технический университет путей сообщения Способ коррекции погрешностей определения местоположения рельсового транспортного средства и устройство для его реализации
RU2288856C2 (ru) * 2004-11-10 2006-12-10 Общество с ограниченной ответственностью "АВП-Технология" (ООО "АВП-Технология") Система предотвращения столкновения подвижного состава или локомотива с прибывающим или отправляющимся со станции поездом
RU2280579C1 (ru) * 2005-02-21 2006-07-27 Дмитрий Владимирович Белотелов Навигационная система железнодорожных транспортных средств
CN1312457C (zh) * 2005-07-06 2007-04-25 北京交通大学 轨道线路绝对位置标记方法
WO2009021068A1 (en) * 2007-08-06 2009-02-12 Trx Systems, Inc. Locating, tracking, and/or monitoring personnel and/or assets both indoors and outdoors
CN101159091B (zh) * 2007-10-15 2010-06-02 北京交通大学 一种列车卫星定位与信息传输系统
RU2394716C1 (ru) * 2009-04-21 2010-07-20 Открытое акционерное общество "Научно-исследовательский и проектно-конструкторский институт информатизации, автоматизации и связи на железнодорожном транспорте" (ОАО "НИИАС") Навигационное контрольно-управляющее устройство для локомотивов-рельсосмазывателей
US8296065B2 (en) * 2009-06-08 2012-10-23 Ansaldo Sts Usa, Inc. System and method for vitally determining position and position uncertainty of a railroad vehicle employing diverse sensors including a global positioning system sensor
RU95850U1 (ru) * 2010-03-25 2010-07-10 Открытое акционерное общество "Российские железные дороги" (ОАО "РЖД") Система для определения ускорения и скорости движения, местоположения и пройденного пути подвижного состава
IL208684A (en) * 2010-10-13 2017-01-31 Elbit Systems Ltd Multi-source pedestrian navigation system
ITTO20110686A1 (it) * 2011-07-28 2013-01-29 Sisvel Technology Srl Metodo per garantire la continuità di servizio di un dispositivo di navigazione personale e relativo dispositivo
WO2013188579A1 (en) * 2012-06-12 2013-12-19 Trx Systems, Inc. Wi-fi enhanced tracking algorithms
RU2503567C1 (ru) * 2012-07-12 2014-01-10 Открытое Акционерное Общество "Российские Железные Дороги" Комплексная система позиционирования подвижных объектов на цифровой модели путевого развития станции
CN103487822A (zh) * 2013-09-27 2014-01-01 南京理工大学 北斗/多普勒雷达/惯性自主式组合导航系统及其方法
CN103770808B (zh) * 2014-01-26 2016-05-04 北京交通大学 基于北斗导航的辅助列车防护系统及方法
CN104063641B (zh) * 2014-06-23 2017-11-24 华为技术有限公司 硬盘安全访问控制方法和硬盘
US9434397B2 (en) * 2014-08-05 2016-09-06 Panasec Corporation Positive train control system and apparatus therefor
CN104724145B (zh) * 2015-02-26 2017-01-04 中国铁路总公司 一种列车测速测距系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101476894A (zh) * 2009-02-01 2009-07-08 哈尔滨工业大学 车载sins/gps组合导航系统性能增强方法
CN102445176A (zh) * 2011-09-14 2012-05-09 中国科学院力学研究所 高速列车运行姿态参数测量系统
CN102607596A (zh) * 2012-03-07 2012-07-25 北京航空航天大学 基于差分gps观测的捷联挠性陀螺动态随机漂移误差测试方法
CN103017764A (zh) * 2012-12-07 2013-04-03 河北汉光重工有限责任公司 高速列车自主导航及姿态测量装置
KR20140137815A (ko) * 2013-05-24 2014-12-03 회명정보통신(주) 관성 센서를 이용한 실내 측위 시스템
CN103754235A (zh) * 2013-12-24 2014-04-30 湖北三江航天红峰控制有限公司 一种高铁测量用惯性定位定向装置及方法
CN104527451A (zh) * 2014-12-04 2015-04-22 中国人民解放军国防科学技术大学 用于中低速磁浮列车的悬浮控制器检测装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109522591A (zh) * 2018-10-10 2019-03-26 中南大学 一种应用于中高速磁浮列车的数据融合方法
CN111220176A (zh) * 2019-11-28 2020-06-02 中国铁道科学研究院集团有限公司 一种基于安全数据的铁路司机导航方法
CN111220176B (zh) * 2019-11-28 2022-04-19 中国铁道科学研究院集团有限公司 一种基于安全数据的铁路司机导航方法

Also Published As

Publication number Publication date
RU2730442C1 (ru) 2020-08-21
CN108454652A (zh) 2018-08-28
US20210129880A1 (en) 2021-05-06
CN108454652B (zh) 2019-11-19
US11654945B2 (en) 2023-05-23

Similar Documents

Publication Publication Date Title
WO2018152899A1 (zh) 一种安全可靠的实时测速和连续定位的方法、装置及系统
CN107976697B (zh) 一种基于北斗/gps组合的列车安全定位方法及系统
CN110371164B (zh) 轨道列车在道岔行驶方向的检测系统及方法
US10094671B2 (en) Position measurement method, own position measurement device, and on-board unit
CN102069824B (zh) 轨道交通车辆的定位装置和方法
CN102139704A (zh) 一种基于射频技术的高精度列车定位系统及其定位方法
WO2020063979A1 (zh) 列车及其安全定位系统
CN1926020B (zh) 沿特定路线移动的物体的定位方法和系统
CN112009522B (zh) 一种用于山地轨道的列车控制系统及控制方法
CA2698053A1 (en) System and method for vitally determining position and position uncertainty of a railroad vehicle employing diverse sensors including a global positioning system sensor
JP3970473B2 (ja) 監視手段付きgps装置
CN102741108B (zh) 用于监测列车完整性的方法和设备
CN103842236B (zh) 列车控制系统
CN112748421B (zh) 一种基于直行路段自动驾驶的激光雷达校准方法
KR20130001652A (ko) 무선열차검지유닛을 이용한 열차위치 검지 시스템
CN110203253B (zh) 一种非固定式虚拟应答器实现方法
CN111267912B (zh) 基于多源信息融合的列车定位方法和系统
CN109975851A (zh) 一种列车线路故障点精确定位方法与系统
Durazo-Cardenas et al. Precise vehicle location as a fundamental parameter for intelligent self-aware rail-track maintenance systems
US10783785B2 (en) Train presence detection apparatus
US20190351923A1 (en) Rail breakage detection device and rail breakage detection system
CN112455506B (zh) 一种多维度自校准的列车运行位置精确定位的方法及系统
CN114537481B (zh) 基于光栅阵列的移动闭塞式列车运行控制方法
RU2409492C1 (ru) Система для управления рельсовым транспортным средством и определения его позиции на рельсовом пути
KR20210057282A (ko) 철도 선로상 차량의 위치 검지 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897609

Country of ref document: EP

Kind code of ref document: A1