WO2018151462A1 - Gas showerhead having gas flow channel with crackless coating film - Google Patents

Gas showerhead having gas flow channel with crackless coating film Download PDF

Info

Publication number
WO2018151462A1
WO2018151462A1 PCT/KR2018/001701 KR2018001701W WO2018151462A1 WO 2018151462 A1 WO2018151462 A1 WO 2018151462A1 KR 2018001701 W KR2018001701 W KR 2018001701W WO 2018151462 A1 WO2018151462 A1 WO 2018151462A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
coating film
gas flow
flow path
shower head
Prior art date
Application number
PCT/KR2018/001701
Other languages
French (fr)
Korean (ko)
Inventor
김옥민
김옥률
Original Assignee
주식회사 펨빅스
김옥민
김옥률
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 펨빅스, 김옥민, 김옥률 filed Critical 주식회사 펨빅스
Publication of WO2018151462A1 publication Critical patent/WO2018151462A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment

Definitions

  • the present invention relates to a gas showerhead for use in an etching process or a deposition process.
  • Gas showerheads have been adopted and used as a standard in the semiconductor manufacturing industry for the uniform supply and distribution of process gases in etching or deposition processes during semiconductor processing.
  • the gas showerhead used in the etching process or the deposition process is corroded due to the process gas and plasma, and particles are generated due to the process gas and plasma. There is a need to form a coating film.
  • the surface exposed to the process gas and the plasma in the gas showerhead is the bottom surface formed with the outlet of the gas flow path.
  • the outlet of the gas flow path is formed hundreds to thousands at the bottom surface of the gas shower head, and the outlet of the gas flow path is very small in diameter (for example, 1 mm or less in diameter)
  • the gas in the process of forming the coating film Since the exit of the flow path may be blocked, a way to solve this was needed.
  • the conventional method for solving the above problems and the gas supply member formed thereby can be largely divided into the following four types.
  • Type 1 Method of forming a plasma spray coating film on the downstream side of the gas distribution shower head and then forming a gas flow path and a gas supply member formed by the method
  • This type 1 technique prepares a gas distribution plate 200 in which a set of holes 210 are formed from the back side to the exposed surface, as shown in FIG. 13, and as shown in FIG. 14. After the coating film 220 is formed on the exposed surface of the gas distribution plate 200, as shown in FIG. 15, two sets of holes 240 extending from the coating film 220 to one set of holes 220. ) Is formed.
  • the coating film is not directly formed in the through-hole of the gas shower head, the through-hole is not blocked, while the gas distribution distributes hundreds to thousands of holes 240 (the second set of holes) through the coating film 220.
  • the gas distribution distributes hundreds to thousands of holes 240 (the second set of holes) through the coating film 220.
  • Type 2 The gas flow outlet portion of the gas flow path is formed by the curved surface, and the exposed surface (the gas shower head lower surface) and the curved surface on which the gas flow outlet is formed are stressed by not forming a coating film in the gas flow path inner diameter. And a gas supply member formed by the method so that there is no concentrated portion
  • Predecessor 4 Gas Section Section Prasma Rizo's Oyster Trial Formation Method
  • the type 2 technique has a problem that cracks are generated due to stress concentration at the boundary point between the gas flow path and the gaseous outlet and the boundary point between the gaseous outlet and the bottom surface of the gas shower head.
  • FIG. 16 illustrates a problem of the crack 56 as described above.
  • the type 2 technology forms a gaseous exit portion as a curved surface as shown in FIG. 17 to eliminate edges where stress is concentrated, and to remove the coating portion protruding from the gas flow passage or to coat the inside of the gas flow passage. This prevents cracks from occurring.
  • the type 2 technology is that if a coating film protruding in the gas flow path is formed, cracks are generated in the corresponding portion, and the penetration of gas and plasma becomes a problem. do.
  • the coating film of the type 2 technology has a thickness of 50 ⁇ m to 100 ⁇ m or about 10 ⁇ m to 100 ⁇ m, such as CVD (Chemical Vapor Deposition), Aerosol Deposition, Cold Spray, Gas Deposition, Electrostatic It is described that it is formed by a method such as a fine particle impact coating method, an impact sintering method, but the above CVD method, aerosol deposition method, electrostatic fine particle impact coating method, impact sintering method without cracks and peeling in the gas flow path with the thickness of several tens of micrometers to several hundred micrometers It is difficult to form a coating film itself.
  • CVD Chemical Vapor Deposition
  • Aerosol Deposition Aerosol Deposition
  • Cold Spray Gas Deposition
  • Electrostatic Electrostatic
  • the coating film formed by the spray method, the cold spray method, the gas deposition method has a problem that there is always a crack, CVD method, aerosol deposition method, electrostatic fine particle impact coating method, impact sintering method dozens of ⁇ m or more thickness It is difficult to form a coating film without peeling.
  • Type 3 A gas supply member in which an anodizing treatment is performed on a gas supply member to remove a shower head and an alumina oxide film formed on the gas supply member, and a yttrium film is formed on the removed region.
  • Prior art 6 is an anodizing technique for a gas shower head which is a CVD process component.
  • the surface of the anodized shower head has a disadvantage in that cracks are generated to generate particles and arcing due to etching.
  • Prior art 8 forms an alumina film 52 by anodizing in a gas flow path as shown in FIGS. 18 and 19, and an yttria film 51 on the bottom of the gas outlet and the shower head. It is formed.
  • the alumina film 52 was formed on the gas flow passage and the lower surface of the shower head by the anodization treatment, the alumina film on the gas outlet and the lower surface of the gas shower head was removed and the yttria film 51 was formed. Since cracks occur in the alumina film formed by the anodizing treatment, an yttria film having a high resistance to process gas and plasma is formed on the lower surface of the showerhead and the gaseous exit portion where contact with the plasma is problematic along with the process gas.
  • Type 4 Gas supply member formed by spraying powder directly on the lower surface of gas distribution shower head and gas flow path to form a coating film
  • Prior art 9 shows that the coating films 291 and 296 formed on the shower head as shown in FIG. 20 are formed by a thermal spraying method such as plasma spraying, and the showerhead extends from the main body and the main body.
  • the coating films formed on the showerhead of the prior art 9 are formed by a thermal spray method. That is, the thermal spraying method inevitably exhibits cracks in the coating film due to the coating method characteristic of dissolving and spraying powder, thereby expressing the coating film effect of the gas shower head of the present invention formed without cracks on the lower surface and the gas flow path. There is a problem that cannot be done.
  • aerosol deposition (aerosol deposition) method is known since 1997 as a representative method that can directly spray the powder in addition to the thermal quarter method, this method is aerosolization (aerosol generator; After aerosolization, the aerosol is spray coated.
  • aerosol deposition method the powder is essentially supplied to the aerosolization process of the aerosol generating device, at this time, the gas shower head because of the characteristic of the method that the powder supplied to the transport pipe in the aerosol generating device irregularly and quantitatively supplied Hundreds to thousands of fine gas flow paths have a problem that the coating film is not formed on the exit or inner wall of the hole without being coated without cracking and peeling.
  • the present invention is to provide a gas shower head to prevent corrosion or particles generated by the process gas and plasma, and more particularly, there is no crack containing a yttrium element in the lower surface and the gas flow path exposed to the process gas and plasma
  • the purpose is to provide a gas shower head with a coating film formed thereon.
  • the present invention provides that the gas flow path is formed to the bottom surface, and a coating film containing a yttrium element is formed on the bottom surface and the gas flow path without cracking, and the coating film is gray color. It provides a gas shower head 'characterized in that.
  • the main body excluding the coating layer may be made of one metal material of aluminum, stainless steel, inconel, and nickel.
  • the coating film may be formed by injecting powder containing yttrium element into the flowing transport gas and spraying the lower surface and the gas flow path.
  • the powder containing the yttrium element may be formed by spraying at the incident angle ( ⁇ , 0 ° ⁇ ⁇ 90 °) formed with the lower surface, and the powder is Y 2 O 3 , Y 2 O 3 / 2OZr 2 , Y 2 O 3 Any one of / ZrO 2 / Nb 2 O 5 , ZrO 2 / 3Y 2 O 3 , Y 2 O 3 / ZrO 2 / HfO 2 , YAG, Al 2 O 3 / YAG, YF 3 , and YOF may be applied.
  • the coating film thickness of the lower surface may be formed in the range of 1 ⁇ m ⁇ 10 ⁇ m
  • the coating thickness of the gas flow path may be formed in the range of 0.1 ⁇ m ⁇ 10 ⁇ m.
  • the present invention has the following effects by providing a gas shower head in which a crack-free gray coating film containing yttrium element is formed on a lower surface and a gas flow path.
  • the part which can be coated with the same material was limited to the lower surface and gaseous outlet of the gas shower head, whereas the present invention can form a coating film free of cracks on the lower surface and gas flow path of the gas shower head. Because of this, arcing is suppressed in the etching process and the deposition process.
  • the coating film thickness of the gaseous outlet was formed in the range of several tens of micrometers to several hundreds of micrometers, and the coating film was removed by polishing the coating film in the bent portion where the gas flow path and the gaseous outlet were connected to prevent the gas flow passage from being blocked.
  • the gas shower head according to the present invention has a thickness of 1 ⁇ m to 10 ⁇ m in the lower surface of the gas shower head and a thickness of the gas channel in the range of 0.1 ⁇ m to 10 ⁇ m without cracking, thereby preventing the gas channel from clogging or peeling off the coating layer. It is effective.
  • the coating film is formed on the lower surface of the gas shower head and the gas flow path by powder injection while the gas flow path is open, hundreds to thousands of gas flow paths are formed by using a tool such as a photoresist or a stopper. After the coating and coating with), no additional process such as removing the tool such as the stopper is needed again, thereby improving productivity.
  • the coating film of the gas shower head according to the present invention is embodied in gray color, so that the reflectivity is better controlled than that of the white color coating film implemented by the conventional spraying method. Is uniformly distributed.
  • the gas shower head according to the present invention has a coating film without cracks formed on the lower surface and the gas flow path, so that the temperature uniformity is improved and the reaction product is less attached to the shower head after deposition. When applied to, the variation in deposition thickness is reduced compared to the prior art, thereby improving the uniformity of the thickness of the deposited film.
  • FIG. 1 is a schematic cross-sectional view of an example of a gas shower head used in an etching process or a deposition process.
  • FIG. 2 is an example of a cross section of a gas shower head in which a gas flow path is formed to have a constant diameter.
  • 3 is an example of a cross section of a gas shower head formed such that a gas passage gradually expands downward.
  • FIG. 4 is an example of a cross section of a gas shower head in which an outlet at a gas flow path end is stepped.
  • FIG. 5 is an example of a cross section of a gas shower head formed such that a gas flow passage is formed to have a constant diameter and gradually expands downward.
  • FIG. 6 is a photograph of the lower surface side of the gas shower head according to the present invention.
  • FIG. 7 is an enlarged photograph of the bottom surface of the gas shower head according to the present invention.
  • FIG 8 to 12 are views of the shower head gas according to the present invention according to the diameter Di of the gas channel, the diameter Do of the outlet of the gas channel, and the powder spray angle ⁇ (angle formed with the lower surface of the gas shower head). It is an example of the cross section which shows the maximum coating film formation depth Max (Lc) of a flow path.
  • FIGS. 13 to 15 correspond to FIGS. 2A, 2B and 2C of the prior art 1, respectively.
  • FIG. 16 and FIG. 17 correspond to FIGS. 5 and 8 of the prior art 4, respectively.
  • FIG. 18 and FIG. 19 correspond to FIGS. 5 and 6 of the prior art 8.
  • FIG. 18 and FIG. 19 correspond to FIGS. 5 and 6 of the prior art 8.
  • FIG. 20 corresponds to FIG. 2 of the prior art 9.
  • FIG. 20 corresponds to FIG. 20 of the prior art 9.
  • FIG. 21 is a cross-sectional electron microscope (SEM) image of a crack-free coating film formed on a lower surface and a gas flow path of a gas shower head according to an embodiment of the present invention.
  • the best mode for carrying out the present invention is that the gas flow path is formed to the lower surface, and the lower surface and the outlet of the gas flow path are formed hundreds to thousands, and the yttrium element is formed on the lower surface and the gas flow path.
  • the coating film is formed without cracks, and the coating film is gray color, and the main body except the coating film is made of one metal material of aluminum, stainless steel, inconel, and nickel. Gas shower head, wherein the coating film thickness d2 of the gas flow path is 0.1 ⁇ m to 10 ⁇ m.
  • the gas flow path is formed to the lower surface, and a coating film containing a yttrium element is formed on the lower surface and the gas flow path without cracking, and the coating film is gray color.
  • shower head is formed to the lower surface, and a coating film containing a yttrium element is formed on the lower surface and the gas flow path without cracking, and the coating film is gray color.
  • the present invention relates to a gas showerhead and is used in an etching process or a deposition process.
  • the gas shower head provided by the present invention includes a coating film 20 and a main body 10 except for the coating film 20, wherein the main body 10 is made of aluminum, stainless steel, inconel, and nickel. It can be composed of one metal material, the present invention can be applied irrespective of the shape of the shower head body.
  • FIG. 1 shows an example of a gas shower head body 10 configured to discharge the process gas supplied to the gas supply port 11 at the upper end through the gas flow passage 13 facing the lower surface 12.
  • the present invention may be applied regardless of the shape features of the main body 10 in addition to the example shown in FIG.
  • the present invention is characterized in that the coating film containing the yttrium element is formed on the lower surface 12 and the gas flow passage 13 without cracking, and the coating film is gray color.
  • the diameter and shape of (13), the outlet shape of the gas flow path and the like can be configured in various ways, the present invention can be applied irrespective of their shape.
  • the gas passage is formed to have a constant diameter (hereinafter, Example 1), and as shown in FIG. 3, the gas passage gradually expands downward (hereinafter, Example 2), the gas flow path is gradually reduced in the downward direction (hereinafter, Example 3), the outlet of the gas flow path end is formed stepped as shown in Figure 4 (hereinafter, Example 4), As shown in FIG. 5, the gas flow passage may be formed to have a constant diameter and then gradually expand in the downward direction (hereinafter, Example 5).
  • the gas showerhead according to the present invention includes all the same types as in the first to fifth embodiments.
  • the coating film of the present invention may be formed by spraying a powder containing yttrium element at an incident angle ( ⁇ , 0 ° ⁇ ⁇ 90 °) formed with the lower surface, and the powder is Y 2 O 3 , Y 2 O 3 / 2OZr 2 , Y 2 O 3 / ZrO 2 / Nb 2 O 5 , ZrO 2 / 3Y 2 O 3 , Y 2 O 3 / ZrO 2 / HfO 2 , YAG, Al 2 O 3 / YAG, YF 3 , YOF Applicable Powder of the above components is a coating material having a high resistance to the process gas (F (fluorine) gas or Cl (chlorine) gas) and plasma used in the etching process and the deposition process.
  • F fluorine
  • Cl chlorine
  • the coating film of the present invention can be formed by injecting a powder containing yttrium element into the flowing transport gas to be injected into the lower surface and the gas flow path of the gas shower head.
  • the powder is introduced into the air stream of the transport gas in the state where the air flow of the transport gas is first formed through the transport pipe so as to be sprayed on the lower surface and the inner wall of the gas flow path.
  • the aerosol deposition method is previously aerosolized by dispersing the powder in a gas through an aerosol generator (aerosol generator) and then supplying the aerosol to the transport pipe.
  • aerosol generator aerosol generator
  • the method of forming a coating film according to the present invention in view of whether or not a coating film can be formed on the inner wall of the gas shower head without cracking and peeling with a very small diameter (for example, 1 mm or less in diameter) of the gas shower head. There is a significant difference between this method and the aerosol deposition method.
  • the aerosol-generating device which is an essential component, in that the aerosolized powder is irregularly and quantitatively supplied to the transport pipe. Is stacked without coating.
  • FIG. 21 illustrates a cross-sectional electron microscope (SEM) image of a crack-free coating film formed on a lower surface of a gas shower head and a gas flow path as an example of the present invention. It is well known in the art that the coating film is not formed on the inner wall of the gas shower head gas flow path as shown in FIG. 21 as the aerosol deposition method.
  • SEM cross-sectional electron microscope
  • the present invention unlike the conventional thermal spray (thermal spray) method and aerosol deposition (aerosol deposition) method and the like to implement a coating film of the gas shower head lower surface and the gas flow path of the present invention as described above Patent No. 1094725 "Yttrium oxide coating film And yttrium coating method ", Patent No. 1568287” Solid powder coating apparatus and coating method ", Patent No. 1447890” Solid powder coating apparatus and coating method ", Patent No. 0916944” Solid powder continuous deposition apparatus and solid powder continuous deposition method "And the like, and patent 1065271” solid powder coating apparatus “and the like can be used.
  • the coating film may be formed to express the characteristics of the patent "1500 structure".
  • the coating film thickness d1 of the lower surface may be formed in a range of 1 ⁇ m to 10 ⁇ m
  • the coating film thickness d2 of the gas flow path may be formed in a range of 0.1 ⁇ m to 10 ⁇ m. Due to the coating film thickness, the phenomenon that the gas flow path is not blocked in the coating process does not occur, and cracks and detachment do not occur even in the formed coating film.
  • the color of the coating layer is shown in gray color.
  • low gloss 10GU (less than 85 °)
  • semi gloss 10-70GU (60 °)
  • high gloss High
  • Gloss Adjust the gloss by polishing the surface of the gas showerhead body 10 and the surface of the coating film 20 so as to exhibit a gloss of one of 70GU or more (20 °). Can be.
  • the reflectivity is lower than that of the gas supply member in which the gray coating film according to the present invention is formed.
  • the process substrate temperature tends to drift as the reflectivity of the gas showerhead changes, and the change in reflectivity of the gas showerhead affects the temperature of the process region and the temperature of the substrate, which is formed on the substrate. Affects membrane and membrane properties.
  • the temperature may be uniformly distributed over the entire area of the substrate in the etching process or the deposition process.
  • the present invention is characterized in that the coating film is formed on the lower surface of the gas shower head as well as the gas flow path.
  • the incident angle ⁇ of the powder is the spray angle of the powder formed on the lower surface of the gas shower head, and the maximum coating film formation depth Max (Lc) in the gas passage is determined according to the incident angle and the diameter and shape of the gas passage. (See FIG. 8 to FIG. 12).
  • the coating film formation depth Lc of the gas flow path is expressed as a function of the powder injection angle ⁇ , the diameter of the gas flow path Di, and the outlet diameter Do of the gas flow path, which form the lower surface of the gas head.
  • FIG. 10 shows the third embodiment, wherein the maximum value ((Max (Lc)) of the formation depth of the coating film formed in the gas flow path is Appears.
  • a process of blocking the gas flow path by inserting a tool such as a photoresist or plug into the gas flow path is unnecessary.
  • a powder containing yttrium element is directly injected at an incident angle ( ⁇ , 0 ° ⁇ ⁇ 90 °) formed with the lower surface of the gas shower head to open the lower surface and the gas without clogging the gas channel. It is to form a coating film without cracks in the flow path.
  • uncoated residual powder may remain in the gas flow path, and the residual powder may become impurity particles in a deposition process or an etching process, and thus a work for removing them is necessary.
  • a pumping method of injecting a liquid into a gas flow path and discharging the residual powder to the outside may be applied.
  • the temperature uniformity is improved and the reaction product is less attached to the shower head after deposition.
  • the variation in deposition thickness is reduced compared to the prior art, thereby improving the uniformity of the thickness of the deposited film.
  • the present invention can be applied to a gas showerhead for uniform supply and distribution of process gases in an etching process or a deposition process during a semiconductor process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The present invention relates to a gas showerhead used for an etching process or a deposition process. Provided is a gas showerhead having a gas flow channel formed down to a lower surface, in which a coating film containing yttrium element is formed without cracks on the lower surface and the gas flow channel.

Description

가스유로에 균열이 없는 코팅막이 형성되어 있는 가스 샤워헤드Gas shower head with a coating film without cracks in the gas flow path
본 발명은 에칭(etching) 공정 또는 증착(deposition) 공정에 사용되는 가스 샤워헤드(gas showerhead)에 관한 것이다. The present invention relates to a gas showerhead for use in an etching process or a deposition process.
반도체 공정 중 에칭 공정 또는 증착 공정에서 공정 가스들의 균일한 공급 및 분배를 위해 가스 샤워헤드가 반도체 제조 산업에서 표준으로서 채택되어 사용되고 있다.Gas showerheads have been adopted and used as a standard in the semiconductor manufacturing industry for the uniform supply and distribution of process gases in etching or deposition processes during semiconductor processing.
다만, 상기 에칭 공정 또는 증착 공정에서 사용되는 가스 샤워헤드는 공정 가스 및 플라즈마로 인하여 부식(corrosion)이 되는 동시에 이로 인하여 파티클이 발생하는데, 이를 억제하기 위하여 가스 샤워헤드의 공정 가스 및 플라즈마 노출면에 코팅막을 형성해야 할 필요성이 있다.However, the gas showerhead used in the etching process or the deposition process is corroded due to the process gas and plasma, and particles are generated due to the process gas and plasma. There is a need to form a coating film.
가스 샤워헤드에서 공정 가스 및 플라즈마에 노출되는 면은 가스유로의 출구 가 형성된 하단면이다. 그러나, 상기 가스유로의 출구는 가스 샤워헤드의 하단면에 수백 내지 수천 개 형성되고, 상기 가스유로의 출구는 직경이 아주 작기 때문에(예를 들어, 직경이 1mm 이하), 코팅막 형성 과정에서 상기 가스유로의 출구가 막힐 수 있으므로 이를 해결할 수 있는 방법이 필요하였다.The surface exposed to the process gas and the plasma in the gas showerhead is the bottom surface formed with the outlet of the gas flow path. However, since the outlet of the gas flow path is formed hundreds to thousands at the bottom surface of the gas shower head, and the outlet of the gas flow path is very small in diameter (for example, 1 mm or less in diameter), the gas in the process of forming the coating film Since the exit of the flow path may be blocked, a way to solve this was needed.
위와 같은 문제점을 해결하기 위한 종래의 방법 및 이에 의하여 형성된 가스 공급 부재는 크게 다음 4가지 유형으로 정리할 수 있다.The conventional method for solving the above problems and the gas supply member formed thereby can be largely divided into the following four types.
1. 유형 1 : 가스 분배 샤워헤드 하류측 면에 플라즈마 분사 코팅막을 형성한 후 가스 유로를 뚫어 형성하는 방법 및 이 방법에 의해 형성된 가스 공급 부재1. Type 1: Method of forming a plasma spray coating film on the downstream side of the gas distribution shower head and then forming a gas flow path and a gas supply member formed by the method
(1) 관련 선행문헌(1) Related prior documents
- 대한민국 특허출원 10-2012-7019028 "반도체 프로세싱을 위한 코팅물질을 갖는 가스 분배 샤워헤드"(이하 '선행기술 1')-Republic of Korea Patent Application 10-2012-7019028 "Gas distribution shower head with coating material for semiconductor processing" (hereinafter 'prior art 1')
- PCT/US2001/022418; US 2011/0198034 "Gas Distribution Showerhead With Coating Material For Semiconductor Processing"(이하 '선행기술 2')PCT / US2001 / 022418; US 2011/0198034 "Gas Distribution Showerhead With Coating Material For Semiconductor Processing" (hereafter 'prior art 2')
(2) 내용 및 분석(2) content and analysis
본 유형 1 기술은 [도 13]에 도시된 바와 같이, 배면에서부터 노출면에 이르기 전까지 1세트의 구멍(210)이 형성된 가스 분배 플레이트(200)를 준비하고, [도 14]에 도시된 바와 같이 상기 가스 분배 플레이트(200)의 노출면에 코팅막(220)을 형성시킨 후, [도 15]에 도시된 바와 같이 상기 코팅막(220)에서 1세트의 구멍(220)까지 이어진 2세트의 구멍(240)을 형성시킨 것이다.This type 1 technique prepares a gas distribution plate 200 in which a set of holes 210 are formed from the back side to the exposed surface, as shown in FIG. 13, and as shown in FIG. 14. After the coating film 220 is formed on the exposed surface of the gas distribution plate 200, as shown in FIG. 15, two sets of holes 240 extending from the coating film 220 to one set of holes 220. ) Is formed.
다만, 이러한 유형 1 기술에 따르면 가스 분배 플레이트(200)의 가스유로 내벽에는 코팅막을 형성시킬 수 없으므로, 공정 가스 및 플라즈마로 인한 가스유로의 부식을 막을 수 없다.However, according to the type 1 technology, since the coating film cannot be formed on the inner wall of the gas flow path of the gas distribution plate 200, corrosion of the gas flow path due to process gas and plasma cannot be prevented.
또한, 직접 가스 샤워헤드의 관통홀에 코팅막을 형성하지 않기 때문에, 관통홀이 막히지 않는 반면, 상기 코팅막(220)을 관통하는 구멍(240, 제2세트의 구멍) 수백 내지 수천 개를 상기 가스 분배 플레이트(200)에 미리 형성되어 있는 구멍(210, 제1세트의 구멍)과 연통하도록 뚫어야 하는 어려움이 있어 생산성이 저하되는 단점이 있다.In addition, since the coating film is not directly formed in the through-hole of the gas shower head, the through-hole is not blocked, while the gas distribution distributes hundreds to thousands of holes 240 (the second set of holes) through the coating film 220. There is a disadvantage in that it is difficult to drill to communicate with a hole 210 (the first set of holes) previously formed in the plate 200, and thus there is a disadvantage in that productivity is lowered.
아울러, 선행기술 1의 [0013] 문단에 따르면 상기 코팅막(220)은 플라즈마 분사를 통하여 형성된 것이므로 코팅막에 항상 균열이 존재하는 단점도 있다. In addition, according to the paragraph of the prior art 1 because the coating film 220 is formed through the plasma injection there is also a disadvantage that the crack is always present in the coating film.
2. 유형 2 : 가스유로의 가스토출구 부분을 굴곡면으로 형성시키고, 상기 가스토출구가 형성된 노출면(가스 샤워헤드 하면)과 상기 굴곡면을 코팅하고, 가스유로 내경에는 코팅막이 형성되지 않도록 함으로써 응력이 집중되는 부분이 없도록 하는 방법 및 이 방법에 의해 형성된 가스 공급 부재2. Type 2: The gas flow outlet portion of the gas flow path is formed by the curved surface, and the exposed surface (the gas shower head lower surface) and the curved surface on which the gas flow outlet is formed are stressed by not forming a coating film in the gas flow path inner diameter. And a gas supply member formed by the method so that there is no concentrated portion
(1) 관련 선행문헌(1) Related prior documents
- US 9,236,229 "Gas Supply Member, Plasma Treatment Method, and Method of Forming Yttria-Containing Film" (이하, '선행기술 3')-US 9,236,229 "Gas Supply Member, Plasma Treatment Method, and Method of Forming Yttria-Containing Film" (hereinafter, 'prior art 3')
- JP 5389282 "ガス供給部材プラズマ理置およびイットリア含有膜の形成方法" (이하, '선행기술 4')-JP 5389282 "Gas Section Section Prasma Rizo's Oyster Trial Formation Method" (hereinafter referred to as "Predecessor 4")
- JP 5198611 "ガス供給部プラズマ理置およびイットリア含有膜の形成方法" (이하, '선행기술 5')-JP 5198611 "Gas Section Plasma Riko's Motto's Prior Art 5"
(2) 내용 및 분석(2) content and analysis
유형 2 기술은 가스유로와 가스토출구의 경계지점과 상기 가스토출구와 가스 샤워헤드 하면의 경계지점에 응력이 집중되어 크랙(56)이 발생하는 점을 문제 삼고 있다. [도 16]은 위와 같은 크랙(56) 발생의 문제점이 도시되어 있다.The type 2 technique has a problem that cracks are generated due to stress concentration at the boundary point between the gas flow path and the gaseous outlet and the boundary point between the gaseous outlet and the bottom surface of the gas shower head. FIG. 16 illustrates a problem of the crack 56 as described above.
유형 2 기술은 위와 같은 크랙 문제 해결을 위해 [도 17]과 같이 가스토출구 부분을 굴곡면으로 형성시켜 응력이 집중되는 모서리를 없애고, 가스유로 내부에 돌출되는 코팅 부분을 제거하거나 가스유로 내부의 코팅을 차단함으로써 크랙이 발생하지 않도록 한 것이다.In order to solve the above crack problem, the type 2 technology forms a gaseous exit portion as a curved surface as shown in FIG. 17 to eliminate edges where stress is concentrated, and to remove the coating portion protruding from the gas flow passage or to coat the inside of the gas flow passage. This prevents cracks from occurring.
그러나 수백 내지 수천 개의 가스토출구마다 굴곡면을 형성시키는 것은 매우 어렵고, 마찬가지로 수백 내지 수천 개의 가스유로 내부에 돌출되는 코팅 부분을 일일이 제거하거나 가스유로 내부의 코팅을 일일이 차단하는 것 역시 매우 어렵다. However, it is very difficult to form a curved surface for every hundred to thousands of gaseous outlets, and it is also very difficult to remove coating parts protruding therein from several hundred to thousands of gas flows or to block coatings inside the gas flows.
또한, 유형 2 기술은 가스유로 내에 돌출된 코팅막이 형성되면 해당 부분에 크랙이 발생하여 가스 및 플라즈마의 침투가 문제된다는 것인데, 그렇다고 가스유로에 코팅막을 형성하지 않으면 가스유로의 부식을 방지할 수 없게 된다. In addition, the type 2 technology is that if a coating film protruding in the gas flow path is formed, cracks are generated in the corresponding portion, and the penetration of gas and plasma becomes a problem. do.
아울러, 유형 2 기술의 코팅막은 50㎛~100㎛ 또는 약 10㎛~100㎛의 두께로 CVD(Chemical Vapor Deposition)법, 에어로졸 디포지션(Aerosol Deposition)법, 콜드 스프레이법, 가스 디포지션법, 정전미립자 충격 코팅법, 충격 소결법 등의 방법으로 형성한다고 설명되어 있으나, 위 CVD법, 에어로졸 디포지션법, 정전미립자 충격 코팅법, 충격 소결법으로 상기 수십㎛~수백㎛ 두께로 가스유로에 균열 및 박리 없이 코팅막을 형성하는 것 자체가 어렵다. 구체적으로, 상기 스프레이법, 콜드 스프레이법, 가스 디포지션법으로 형성된 코팅막은 항상 균열이 존재하는 문제점이 있고, CVD법, 에어로졸 디포지션법, 정전미립자 충격 코팅법, 충격소결법으로는 수십㎛ 이상 두께의 코팅막을 박리없이 형성하기 어렵다.In addition, the coating film of the type 2 technology has a thickness of 50 μm to 100 μm or about 10 μm to 100 μm, such as CVD (Chemical Vapor Deposition), Aerosol Deposition, Cold Spray, Gas Deposition, Electrostatic It is described that it is formed by a method such as a fine particle impact coating method, an impact sintering method, but the above CVD method, aerosol deposition method, electrostatic fine particle impact coating method, impact sintering method without cracks and peeling in the gas flow path with the thickness of several tens of micrometers to several hundred micrometers It is difficult to form a coating film itself. Specifically, the coating film formed by the spray method, the cold spray method, the gas deposition method has a problem that there is always a crack, CVD method, aerosol deposition method, electrostatic fine particle impact coating method, impact sintering method dozens of ㎛ or more thickness It is difficult to form a coating film without peeling.
3. 유형 3 : 가스 공급 부재에 양극산화(anodizing) 처리하여 가스 공급 부재에 산화알루미나 막을 형성한 샤워헤드 및 산화알루미나 막을 제거한 후 제거된 영역에 이트륨 막을 형성한 가스 공급 부재3. Type 3: A gas supply member in which an anodizing treatment is performed on a gas supply member to remove a shower head and an alumina oxide film formed on the gas supply member, and a yttrium film is formed on the removed region.
(1) 관련 선행문헌(1) Related prior documents
- 대한민국 특허출원 10-2011-7029814 "양극산화 처리된 샤워헤드" (이하, '선행기술 6')-Republic of Korea Patent Application 10-2011-7029814 "Anodized Shower Head" (hereinafter, 'Advanced Technology 6')
- PCT/US2010/034806; US 2010/0288197 "Anodized Showerhead" (이하, '선행기술 7')PCT / US2010 / 034806; US 2010/0288197 "Anodized Showerhead" (hereinafter referred to as "prior art 7")
- US 2014/0231251 "Gas Supply Member, Plasma Processing Apparatus and Method of Fabricating Gas Supply Member" (이하, '선행기술 8')-US 2014/0231251 "Gas Supply Member, Plasma Processing Apparatus and Method of Fabricating Gas Supply Member" (hereinafter, 'prior art 8')
선행기술 6은 CVD 공정부품인 가스 샤워헤드에 양극산화(anodizing) 처리를 한 기술이다. 다만, 양극산화 처리된 샤워헤드 표면에는 균열이 발생하여 식각으로 인한 파티클 생성 및 아킹(arcing) 발생의 단점이 있다.Prior art 6 is an anodizing technique for a gas shower head which is a CVD process component. However, the surface of the anodized shower head has a disadvantage in that cracks are generated to generate particles and arcing due to etching.
(2) 내용 및 분석(2) content and analysis
선행기술 8은 [도 18] 및 [도 19]에 도시된 바와 같이 가스유로에는 양극산화 처리에 의해 알루미나 막(52)을 형성시키고, 가스토출구와 샤워헤드의 하면에는 이트리아 막(51)을 형성시킨 것이다. 양극산화 처리에 의해 상기 가스유로, 가스토출구 및 샤워헤드 하면에 전체적으로 알루미나 막(52)을 형성시킨 후, 상기 가스토출구와 가스 샤워헤드 하면의 알루미나 막은 제거하고 이트리아 막(51)을 형성시켰다. 양극산화 처리에 의해 형성된 알루미나 막에는 균열이 발생하므로 공정가스와 함께 플라즈마와의 접촉이 문제되는 샤워헤드 하면과 가스토출구 부분에는 공정가스 및 플라즈마에 대한 저항성이 큰 이트리아 막을 형성시킨다는 것이다. Prior art 8 forms an alumina film 52 by anodizing in a gas flow path as shown in FIGS. 18 and 19, and an yttria film 51 on the bottom of the gas outlet and the shower head. It is formed. After the alumina film 52 was formed on the gas flow passage and the lower surface of the shower head by the anodization treatment, the alumina film on the gas outlet and the lower surface of the gas shower head was removed and the yttria film 51 was formed. Since cracks occur in the alumina film formed by the anodizing treatment, an yttria film having a high resistance to process gas and plasma is formed on the lower surface of the showerhead and the gaseous exit portion where contact with the plasma is problematic along with the process gas.
그러나, 가스 공급 부재 전체를 양극산화 처리한 후 일부분(가스토출구 및 가스 샤워헤드 하면)에 양극산화된 알루미나 막을 제거하고, 그 제거된 영역에 다시 이트리아 막을 코팅시키는 것은 이중으로 시간이 소요되기 때문에 생산성이 매우 저하된다. 또한, 수백 내지 수천 개의 미세한 가스토출구에 형성된 알루미나 막을 일일이 제거하기도 어렵다. However, after anodizing the entire gas supply member, it is time consuming to remove the anodized alumina film in a portion (the gas outlet and the lower surface of the gas showerhead) and to coat the yttria film again in the removed area. Productivity is very low. In addition, it is difficult to remove alumina films formed at hundreds to thousands of fine gasoline outlets one by one.
4. 유형 4 : 가스 분배 샤워헤드 하면 및 가스유로에 파우더를 직접 분사하여 코팅막을 형성하는 방법에 의해 형성된 가스 공급 부재4. Type 4: Gas supply member formed by spraying powder directly on the lower surface of gas distribution shower head and gas flow path to form a coating film
(1) 관련 선행문헌(1) Related prior documents
- 대한민국 특허공개 10-2013-0093113 "고 복사율 표면을 갖는 가스 분배 샤워헤드(PCT/US2011/039857; US 2012/0052216 "Gas distribution showerhead with high emissivity surface")" (이하, '선행기술 9')-Republic of Korea Patent Publication 10-2013-0093113 "Gas distribution showerhead with high emissivity surface" (PCT / US2011 / 039857; US 2012/0052216 "Gas distribution showerhead with high emissivity surface") "(hereinafter," prior art 9 ")
(2) 내용 및 분석(2) content and analysis
선행기술 9는 [도 20]에 도시된 바와 같이 샤워헤드에 형성된 코팅막(291, 296)은 플라즈마 분사와 같은 열 분사(thermal spraying) 법에 의해 형성된 것이고, 상기 샤워헤드는 본체, 상기 본체로부터 연장하는 복수의 도관들(conduits), 및 프로세싱 표면상에 배치된 코팅을 포함하며, 상기 복수의 도관들의 각각은 본체의 프로세싱 표면으로 연장하는 개구(opening)를 가지며, 상기 코팅은 약 50㎛ 내지 약 200㎛의 두께를 가지며 또한 0.8의 복사율 계수, 약 180마이크로인치(micro-inches) 내지 약 220마이크로인치의 평균 표면거칠기(surface roughness), 및 약 15% 이하의 다공도(porosity)를 갖는 특징이 있다.Prior art 9 shows that the coating films 291 and 296 formed on the shower head as shown in FIG. 20 are formed by a thermal spraying method such as plasma spraying, and the showerhead extends from the main body and the main body. A plurality of conduits, and a coating disposed on the processing surface, each of the plurality of conduits having an opening extending to the processing surface of the body, wherein the coating is from about 50 μm to about It has a thickness of 200 μm and also has an emissivity factor of 0.8, an average surface roughness of about 180 microinches to about 220 microinches, and a porosity of about 15% or less. .
상기 선행기술 9의 샤워헤드에 형성된 코팅막들은 열 분사법에 의해 형성된 것이다. 즉, 열 분사법은 파우더를 녹여서 분사하는 코팅방법 특성으로 인하여 상기 코팅막에는 필연적으로 균열(crack)이 존재하므로 가스샤워헤드 하면 및 가스유로에 균열 없이 형성된 본 발명의 가스샤워헤드의 코팅막 효과를 발현할 수 없는 문제점이 있다.  The coating films formed on the showerhead of the prior art 9 are formed by a thermal spray method. That is, the thermal spraying method inevitably exhibits cracks in the coating film due to the coating method characteristic of dissolving and spraying powder, thereby expressing the coating film effect of the gas shower head of the present invention formed without cracks on the lower surface and the gas flow path. There is a problem that cannot be done.
또한, 상기 열사분법 이외에 파우더를 직접 분사할 수 있는 대표적인 방법으로 에어로졸 디포지션(aerosol deposition) 방법이 1997년 이후 공지되어 있는데, 이 방법은 에어로졸 발생장치(aerosol generator; aerosol room)를 통하여 에어로졸화(aerosolization) 과정을 거친 후 그 에어로졸이 분사 코팅되도록 하는 방법이다. 다만, 상기 에어로졸 디포지션 방법에서는 필수적으로 에어로졸 발생장치의 에어로졸화 공정으로 파우더를 공급하게 되는데, 이 때 에어로졸 발생장치에서 수송관에 공급되는 파우더가 불규칙 및 비정량적으로 공급되는 방법 특성 때문에 가스샤워헤드의 수백 내지 수천 개의 미세한 가스유로 구멍의 출구 또는 내벽에 파우더가 코팅되지 않고 쌓여 가스유로에 코팅막이 균열 및 박리 없이 형성되지 않는 문제점이 있다.In addition, aerosol deposition (aerosol deposition) method is known since 1997 as a representative method that can directly spray the powder in addition to the thermal quarter method, this method is aerosolization (aerosol generator; After aerosolization, the aerosol is spray coated. However, in the aerosol deposition method, the powder is essentially supplied to the aerosolization process of the aerosol generating device, at this time, the gas shower head because of the characteristic of the method that the powder supplied to the transport pipe in the aerosol generating device irregularly and quantitatively supplied Hundreds to thousands of fine gas flow paths have a problem that the coating film is not formed on the exit or inner wall of the hole without being coated without cracking and peeling.
본 발명은 공정가스 및 플라즈마에 의한 부식이나 파티클 발생을 방지하는 가스 샤워헤드를 제공하기 위한 것으로서, 보다 상세하게는 공정가스 및 플라즈마에 노출되는 가스 샤워헤드 하면 및 가스유로에 이트륨 원소를 포함한 균열 없는 코팅막이 형성된 가스 샤워헤드를 제공함에 그 목적이 있다.The present invention is to provide a gas shower head to prevent corrosion or particles generated by the process gas and plasma, and more particularly, there is no crack containing a yttrium element in the lower surface and the gas flow path exposed to the process gas and plasma The purpose is to provide a gas shower head with a coating film formed thereon.
전술한 과제 해결을 위해 본 발명은 『가스유로가 하면(下面)까지 형성되어 있고, 상기 하면 및 가스유로에 이트륨(Yttrium) 원소를 포함한 코팅막이 균열 없이 형성되고, 상기 코팅막은 회색(grey color)인 것을 특징으로 하는 가스 샤워헤드』를 제공한다.In order to solve the above-described problems, the present invention provides that the gas flow path is formed to the bottom surface, and a coating film containing a yttrium element is formed on the bottom surface and the gas flow path without cracking, and the coating film is gray color. It provides a gas shower head 'characterized in that.
상기 가스 샤워헤드에서 상기 코팅막을 제외한 본체는 알루미늄, 스테인레스 스틸, 인코넬(inconel), 니켈(nickel) 중 하나의 금속재료로 구성할 수 있다.In the gas shower head, the main body excluding the coating layer may be made of one metal material of aluminum, stainless steel, inconel, and nickel.
상기 코팅막은 유동하는 수송기체에 이트륨 원소를 포함한 파우더가 유입되어 상기 하면 및 가스유로에 분사되도록 하여 형성시킬 수 있다. 이트륨 원소를 포함한 파우더를 상기 하면과 이루는 입사각(θ, 0°<θ<90°)으로 분사하여 형성시킬 수 있으며, 상기 파우더는 Y2O3, Y2O3/2OZr2, Y2O3/ZrO2/Nb2O5, ZrO2/3Y2O3, Y2O3/ZrO2/HfO2, YAG, Al2O3/YAG, YF3, YOF 중 어느 하나를 적용할 수 있다. 또한, 상기 하면의 코팅막 두께는 1㎛~10㎛ 범위에서 형성시키고, 상기 가스유로의 코팅막 두께는 0.1㎛~10㎛ 범위에서 형성시킬 수 있다.The coating film may be formed by injecting powder containing yttrium element into the flowing transport gas and spraying the lower surface and the gas flow path. The powder containing the yttrium element may be formed by spraying at the incident angle (θ, 0 ° <θ <90 °) formed with the lower surface, and the powder is Y 2 O 3 , Y 2 O 3 / 2OZr 2 , Y 2 O 3 Any one of / ZrO 2 / Nb 2 O 5 , ZrO 2 / 3Y 2 O 3 , Y 2 O 3 / ZrO 2 / HfO 2 , YAG, Al 2 O 3 / YAG, YF 3 , and YOF may be applied. In addition, the coating film thickness of the lower surface may be formed in the range of 1㎛ ~ 10㎛, the coating thickness of the gas flow path may be formed in the range of 0.1㎛ ~ 10㎛.
본 발명은 하면(下面) 및 가스유로에 이트륨 원소를 포함한 균열 없는 회색 코팅막이 형성된 가스 샤워헤드를 제공함으로써 다음과 같은 효과가 있다.The present invention has the following effects by providing a gas shower head in which a crack-free gray coating film containing yttrium element is formed on a lower surface and a gas flow path.
1. 종래에는 동일한 물질로 코팅할 수 있는 부분은 가스 샤워헤드의 하면 및 가스토출구에 국한되어 있었던 것에 반해, 본 발명은 가스 샤워헤드의 하면 및 가스유로에 동일한 물질로 균열이 없는 코팅막을 형성할 수 있기 때문에 에칭 공정 및 증착 공정에서 아킹(arcing) 발생이 억제되는 효과가 있다. 1. Conventionally, the part which can be coated with the same material was limited to the lower surface and gaseous outlet of the gas shower head, whereas the present invention can form a coating film free of cracks on the lower surface and gas flow path of the gas shower head. Because of this, arcing is suppressed in the etching process and the deposition process.
2. 종래에는 가스토출구의 코팅막 두께를 수십㎛~수백㎛ 범위에서 형성시키고, 가스유로와 가스토출구가 연결되는 굴곡부에 코팅막을 연마하는 등의 방법으로 코팅막을 제거하여 가스유로가 막히지 않도록 했던 것에 반해, 본 발명에 따른 가스 샤워헤드는 하면의 코팅막 두께를 1㎛~10㎛, 가스유로의 코팅막 두께를 0.1㎛~10㎛ 범위에서 균열 없이 형성시킴으로써 상기 가스유로가 막히거나 코팅막이 박리되는 현상을 방지하는 효과가 있다. 2. In the past, the coating film thickness of the gaseous outlet was formed in the range of several tens of micrometers to several hundreds of micrometers, and the coating film was removed by polishing the coating film in the bent portion where the gas flow path and the gaseous outlet were connected to prevent the gas flow passage from being blocked. The gas shower head according to the present invention has a thickness of 1 μm to 10 μm in the lower surface of the gas shower head and a thickness of the gas channel in the range of 0.1 μm to 10 μm without cracking, thereby preventing the gas channel from clogging or peeling off the coating layer. It is effective.
3. 본 발명은 가스유로가 개방된 상태에서 파우더 분사에 의해 가스 샤워헤드의 하면(下面) 및 가스유로에 코팅막을 형성시킨 것이므로, 수백 내지 수천 개의 가스유로를 포토 레지스트, 마개 등의 툴(tool)로 막고 코팅한 후 다시 상기 마개 등의 툴을 제거하는 등의 부가적인 공정이 필요 없으므로 생산성이 향상되는 효과가 있다. 3. In the present invention, since the coating film is formed on the lower surface of the gas shower head and the gas flow path by powder injection while the gas flow path is open, hundreds to thousands of gas flow paths are formed by using a tool such as a photoresist or a stopper. After the coating and coating with), no additional process such as removing the tool such as the stopper is needed again, thereby improving productivity.
4. 본 발명에 따른 가스 샤워헤드의 코팅막은 회색(grey color)의 색깔로 구현되어, 종래의 용사방법으로 구현된 흰색(white color)의 코팅막보다 반사도가 더 잘 조절됨으로써 기판 전체면적에 걸쳐 온도가 균일하게 분포되는 효과가 있다. 4. The coating film of the gas shower head according to the present invention is embodied in gray color, so that the reflectivity is better controlled than that of the white color coating film implemented by the conventional spraying method. Is uniformly distributed.
5. 본 발명에 따른 가스 샤워헤드는 하면 및 가스유로에 균열이 없는 코팅막이 형성되어 있어 온도 균일도가 좋아지고 증착 후 반응생성물이 샤워헤드에 덜 부착하기 때문에 본 발명에 따른 가스 샤워헤드를 증착 공정에 적용하면 종래에 비해 증착 두께의 편차가 감소하여 증착막 두께의 균일도가 더 향상되는 효과가 있다.5. The gas shower head according to the present invention has a coating film without cracks formed on the lower surface and the gas flow path, so that the temperature uniformity is improved and the reaction product is less attached to the shower head after deposition. When applied to, the variation in deposition thickness is reduced compared to the prior art, thereby improving the uniformity of the thickness of the deposited film.
6. 본 발명에 따른 가스 샤워헤드를 에칭 공정에 적용하면 종래에 비해 식각으로 인한 부산물(by-product) 및 파티클 부착량이 더 감소하는 효과가 있다.6. When the gas showerhead according to the present invention is applied to an etching process, by-product and particle adhesion due to etching are further reduced compared to the conventional method.
[도 1]은 에칭공정 또는 증착공정에 사용되는 가스 샤워헤드 일예의 단면 모식도이다.1 is a schematic cross-sectional view of an example of a gas shower head used in an etching process or a deposition process.
[도 2]는 가스유로가 일정한 직경으로 형성된 가스 샤워헤드 단면의 일예이다.2 is an example of a cross section of a gas shower head in which a gas flow path is formed to have a constant diameter.
[도 3]은 가스유로가 하방향으로 점차 확공되도록 형성된 가스 샤워헤드 단면의 일예이다.3 is an example of a cross section of a gas shower head formed such that a gas passage gradually expands downward.
[도 4]는 가스유로 말단의 출구가 단차지게 형성된 가스 샤워헤드 단면의 일예이다.4 is an example of a cross section of a gas shower head in which an outlet at a gas flow path end is stepped.
[도 5]는 가스유로가 일정한 직경으로 형성되다가 하방향으로 점차 확공되도록 형성된 가스 샤워헤드 단면의 일예이다.FIG. 5 is an example of a cross section of a gas shower head formed such that a gas flow passage is formed to have a constant diameter and gradually expands downward.
[도 6]은 본 발명에 따른 가스 샤워헤드 하면측의 사진이다.6 is a photograph of the lower surface side of the gas shower head according to the present invention.
[도 7]은 본 발명에 따른 가스 샤워헤드 하면측의 확대 사진이다.7 is an enlarged photograph of the bottom surface of the gas shower head according to the present invention.
[도 8] 내지 [도 12]는 가스유로의 직경(Di)과 가스유로 출구의 직경(Do) 변화, 파우더 분사각(θ; 가스 샤워헤드 하면과 이루는 각)에 따른 본 발명의 샤워헤드 가스유로의 최대 코팅막 형성 깊이(Max(Lc))를 나타내는 단면의 일예이다.8 to 12 are views of the shower head gas according to the present invention according to the diameter Di of the gas channel, the diameter Do of the outlet of the gas channel, and the powder spray angle θ (angle formed with the lower surface of the gas shower head). It is an example of the cross section which shows the maximum coating film formation depth Max (Lc) of a flow path.
[도 13] 내지 [도 15]는 선행기술 1의 도2a, 도2b 및 도2c에 각각 해당하는 것이다.13 to 15 correspond to FIGS. 2A, 2B and 2C of the prior art 1, respectively.
[도 16] 및 [도 17]은 선행기술 4의 도 5 및 도 8에 각각 해당하는 것이다.FIG. 16 and FIG. 17 correspond to FIGS. 5 and 8 of the prior art 4, respectively.
[도 18] 및 [도 19]는 선행기술 8의 도 5 및 도 6에 해당하는 것이다.FIG. 18 and FIG. 19 correspond to FIGS. 5 and 6 of the prior art 8. FIG.
[도 20]은 선행기술 9의 도 2에 해당하는 것이다.FIG. 20 corresponds to FIG. 2 of the prior art 9. FIG.
[도 21]은 본 발명의 일예에 따른 가스샤워헤드의 하면 및 가스유로에 형성된 균열 없는 코팅막의 단면 전자현미경(SEM) 이미지이다.FIG. 21 is a cross-sectional electron microscope (SEM) image of a crack-free coating film formed on a lower surface and a gas flow path of a gas shower head according to an embodiment of the present invention.
본 발명 실시를 위한 최선의 형태는 「가스유로가 하면(下面)까지 형성되되, 상기 하면에 상기 가스유로의 출구가 수백 내지 수천 개 형성되어 있고, 상기 하면 및 가스유로에 이트륨(Yttrium) 원소를 포함한 코팅막이 균열 없이 형성되어 있고, 상기 코팅막은 회색(grey color)이고, 상기 코팅막을 제외한 본체가 알루미늄, 스테인레스 스틸, 인코넬(inconel), 니켈(nickel) 중 하나의 금속재료로 구성되어 있으며, 상기 가스유로의 코팅막 두께(d2)가 0.1㎛~10㎛인 것을 특징으로 하는 가스 샤워헤드」이다.The best mode for carrying out the present invention is that the gas flow path is formed to the lower surface, and the lower surface and the outlet of the gas flow path are formed hundreds to thousands, and the yttrium element is formed on the lower surface and the gas flow path. The coating film is formed without cracks, and the coating film is gray color, and the main body except the coating film is made of one metal material of aluminum, stainless steel, inconel, and nickel. Gas shower head, wherein the coating film thickness d2 of the gas flow path is 0.1 µm to 10 µm.
본 발명은 『가스유로가 하면(下面)까지 형성되어 있고, 상기 하면 및 가스유로에 이트륨(Yttrium) 원소를 포함한 코팅막이 균열 없이 형성되고, 상기 코팅막은 회색(grey color)인 것을 특징으로 하는 가스 샤워헤드』를 제공한다.According to the present invention, "the gas flow path is formed to the lower surface, and a coating film containing a yttrium element is formed on the lower surface and the gas flow path without cracking, and the coating film is gray color. Shower head.
이하에서는 첨부된 도면과 함께 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with the accompanying drawings.
본 발명은 가스 샤워헤드에 관한 것으로서, 에칭(etching) 공정 또는 증착(deposition) 공정에 사용되는 것이다. 본 발명이 제공하는 가스 샤워헤드는 코팅막(20)과 상기 코팅막(20)을 제외한 본체(10)로 구성되는데, 상기 본체(10)는 알루미늄, 스테인레스 스틸, 인코넬(inconel), 니켈(nickel) 중 하나의 금속재료로 구성할 수 있으며, 본 발명은 상기 샤워헤드 본체의 형태와는 무관하게 적용할 수 있다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas showerhead and is used in an etching process or a deposition process. The gas shower head provided by the present invention includes a coating film 20 and a main body 10 except for the coating film 20, wherein the main body 10 is made of aluminum, stainless steel, inconel, and nickel. It can be composed of one metal material, the present invention can be applied irrespective of the shape of the shower head body.
[도 1]에는 상단의 가스공급구(11)에 공급된 공정가스가 하면(12)으로 향해 있는 가스유로(13)를 통해 토출되도록 구성된 가스 샤워헤드 본체(10)의 예가 도시되어 있다. 다만, 본 발명은 [도 1]에 도시된 예 이외에도 상기 본체(10)의 형태적 특징에 관계없이 모두 적용될 수 있다.FIG. 1 shows an example of a gas shower head body 10 configured to discharge the process gas supplied to the gas supply port 11 at the upper end through the gas flow passage 13 facing the lower surface 12. However, the present invention may be applied regardless of the shape features of the main body 10 in addition to the example shown in FIG.
본 발명은 상기 하면(12) 및 가스유로(13)에 이트륨(Yttrium) 원소를 포함한 코팅막이 균열없이 형성된 것을 특징으로 하고, 또한 상기 코팅막은 회색(grey color)인 것을 특징으로 하는데, 상기 가스유로(13)의 직경과 형태, 가스유로의 출구 형태 등은 다양하게 구성될 수 있으며, 본 발명은 이들의 형태와 관계없이 적용될 수 있다. The present invention is characterized in that the coating film containing the yttrium element is formed on the lower surface 12 and the gas flow passage 13 without cracking, and the coating film is gray color. The diameter and shape of (13), the outlet shape of the gas flow path and the like can be configured in various ways, the present invention can be applied irrespective of their shape.
본 발명은 [도 2]에 도시된 바와 같이 가스유로가 일정한 직경으로 형성된 것(이하, 실시예 1), [도 3]에 도시된 바와 같이 가스유로가 하방향으로 점차 확공되는 것(이하, 실시예 2), 가스유로가 하방향으로 점차 축소되는 것(이하, 실시예 3), [도 4]에 도시된 바와 같이 가스유로 말단의 출구가 단차지게 형성된 것(이하, 실시예 4), [도 5]에 도시된 바와 같이 가스유로가 일정한 직경으로 형성되다가 하방향으로 점차 확공되는 것(이하, 실시예 5) 등에 모두 적용할 수 있다.In the present invention, as shown in FIG. 2, the gas passage is formed to have a constant diameter (hereinafter, Example 1), and as shown in FIG. 3, the gas passage gradually expands downward (hereinafter, Example 2), the gas flow path is gradually reduced in the downward direction (hereinafter, Example 3), the outlet of the gas flow path end is formed stepped as shown in Figure 4 (hereinafter, Example 4), As shown in FIG. 5, the gas flow passage may be formed to have a constant diameter and then gradually expand in the downward direction (hereinafter, Example 5).
즉, 본 발명에 따른 가스 샤워헤드는 상기 실시예 1 내지 실시예 5와 같은 유형을 모두 포함한다.That is, the gas showerhead according to the present invention includes all the same types as in the first to fifth embodiments.
본 발명의 코팅막은 이트륨 원소를 포함한 파우더를 상기 하면과 이루는 입사각(θ, 0°<θ<90°)으로 분사하여 형성시킬 수 있으며, 상기 파우더는 Y2O3, Y2O3/2OZr2, Y2O3/ZrO2/Nb2O5, ZrO2/3Y2O3, Y2O3/ZrO2/HfO2, YAG, Al2O3/YAG, YF3, YOF 중 어느 하나를 적용할 수 있다. 위와 같은 성분의 파우더는 에칭공정 및 증착공정에서 사용되는 공정가스(F(fluorine)계의 가스 또는 Cl(chlorine)계의 가스) 및 플라즈마에 저항성이 큰 코팅 물질이다.The coating film of the present invention may be formed by spraying a powder containing yttrium element at an incident angle (θ, 0 ° <θ <90 °) formed with the lower surface, and the powder is Y 2 O 3 , Y 2 O 3 / 2OZr 2 , Y 2 O 3 / ZrO 2 / Nb 2 O 5 , ZrO 2 / 3Y 2 O 3 , Y 2 O 3 / ZrO 2 / HfO 2 , YAG, Al 2 O 3 / YAG, YF 3 , YOF Applicable Powder of the above components is a coating material having a high resistance to the process gas (F (fluorine) gas or Cl (chlorine) gas) and plasma used in the etching process and the deposition process.
본 발명의 코팅막은 유동하는 수송기체에 이트륨 원소를 포함하는 파우더가 유입되어 상기 가스샤워헤드 하면 및 가스유로에 분사되도록 함으로써 형성시킬 수 있다. The coating film of the present invention can be formed by injecting a powder containing yttrium element into the flowing transport gas to be injected into the lower surface and the gas flow path of the gas shower head.
즉, 본 발명의 코팅막 형성방법은 수송관을 통하여 수송기체의 기류가 먼저 형성된 상태에서 파우더가 수송기체의 기류에 유입되어 상기 하면 및 가스유로의 내벽에 분사되도록 하는 것이다. That is, in the coating film forming method of the present invention, the powder is introduced into the air stream of the transport gas in the state where the air flow of the transport gas is first formed through the transport pipe so as to be sprayed on the lower surface and the inner wall of the gas flow path.
본 발명의 코팅방법과 대조적으로 에어로졸 디포지션(aerosol deposition) 방법은 미리 에어로졸 발생장치(aerosol generator; aerosol room)를 통하여 파우더를 가스 중에 분산시켜 에어로졸화(aerosolization) 시킨 후 그 에어로졸이 수송관에 공급되어 분사 코팅되도록 하는 방법인데, 가스샤워헤드의 아주 작은 직경(예를 들어, 직경 1mm 이하)의 미세한 가스유로 내벽에 균열 및 박리 없이 코팅막을 형성할 수 있는지 여부의 관점에서 본 발명의 코팅막 형성 방법과 에어로졸 디포지션 방법과는 상당히 큰 차이점이 있다.In contrast to the coating method of the present invention, the aerosol deposition method is previously aerosolized by dispersing the powder in a gas through an aerosol generator (aerosol generator) and then supplying the aerosol to the transport pipe. The method of forming a coating film according to the present invention in view of whether or not a coating film can be formed on the inner wall of the gas shower head without cracking and peeling with a very small diameter (for example, 1 mm or less in diameter) of the gas shower head. There is a significant difference between this method and the aerosol deposition method.
에어로졸 디포지션방법에서는 필수적인 구성장치인 에어로졸 발생장치에 의해 에어로졸화된 파우더가 수송관에 불규칙 및 비정량적으로 공급되는 방법 특성 때문에 가스샤워헤드의 수백 내지 수천 개의 미세한 가스유로 구멍의 출구 또는 내벽에 파우더가 코팅되지 않고 쌓이게 된다. In the aerosol deposition method, powders at the outlet or the inner wall of the hundreds or thousands of minute gas flow paths of the gas shower head are provided by the aerosol-generating device, which is an essential component, in that the aerosolized powder is irregularly and quantitatively supplied to the transport pipe. Is stacked without coating.
[도 21]은 본 발명의 일예로서, 가스샤워헤드의 하면 및 가스유로에 형성된 균열 없는 코팅막의 단면 전자현미경(SEM) 이미지를 도시한 것이다. 에어로졸 디포지션 방법으로는 [도 21]에 도시된 바와 같이 가스샤워헤드 가스유로 내벽에 코팅막이 형성되지 않는다는 것이 당 산업계에서 잘 알려져 있는 것이 주지의 사실이다.FIG. 21 illustrates a cross-sectional electron microscope (SEM) image of a crack-free coating film formed on a lower surface of a gas shower head and a gas flow path as an example of the present invention. It is well known in the art that the coating film is not formed on the inner wall of the gas shower head gas flow path as shown in FIG. 21 as the aerosol deposition method.
본 발명은 종래의 용사(thermal spray; 열 분사) 방법 및 에어로졸 디포지션(aerosol deposition) 방법 등과 달리 위와 같은 본 발명의 가스샤워헤드 하면 및 가스유로의 코팅막 구현을 위해서는 특허 제1094725호 "산화이트륨 코팅막 및 산화이트륨 코팅방법", 특허 제1568287호 "고상파우더 코팅장치 및 코팅방법", 특허 제1447890호 "고상파우더 코팅장치 및 코팅방법", 특허 제0916944 "고상파우더 연속증착장치 및 고상파우더 연속 증착방법" 등을 적용할 수 있으며, 특허 제1065271호 "고상파우더 코팅장치"등을 이용할 수 있다. The present invention, unlike the conventional thermal spray (thermal spray) method and aerosol deposition (aerosol deposition) method and the like to implement a coating film of the gas shower head lower surface and the gas flow path of the present invention as described above Patent No. 1094725 "Yttrium oxide coating film And yttrium coating method ", Patent No. 1568287" Solid powder coating apparatus and coating method ", Patent No. 1447890" Solid powder coating apparatus and coating method ", Patent No. 0916944" Solid powder continuous deposition apparatus and solid powder continuous deposition method "And the like, and patent 1065271" solid powder coating apparatus "and the like can be used.
또한, 상기 코팅막은 특허 제1500517호 "이트리아 구조물"의 특성이 발현되도록 형성시킬 수 있다.In addition, the coating film may be formed to express the characteristics of the patent "1500 structure".
본 발명에서 상기 하면의 코팅막 두께(d1)는 1㎛~10㎛ 범위에서 형성시킬 수 있고, 상기 가스유로의 코팅막 두께(d2)는 0.1㎛~10㎛ 범위에서 형성시킬 수 있다. 이러한 코팅막 두께에 의해 코팅과정에서 상기 가스유로가 막히는 현상이 발생하지 않으며, 형성된 코팅막에도 균열과 탈리가 발생하지 않는다.In the present invention, the coating film thickness d1 of the lower surface may be formed in a range of 1 μm to 10 μm, and the coating film thickness d2 of the gas flow path may be formed in a range of 0.1 μm to 10 μm. Due to the coating film thickness, the phenomenon that the gas flow path is not blocked in the coating process does not occur, and cracks and detachment do not occur even in the formed coating film.
[도 6] 및 [도 7]의 사진에 보이는 바와 같이, 상기 코팅막의 색깔은 회색(grey color)으로 나타난다. As shown in the photographs of FIGS. 6 and 7, the color of the coating layer is shown in gray color.
알루미늄, 스테인레스 스틸, 인코넬(inconel), 니켈(nickel) 중 하나의 금속재료로 구성된 가스 샤워헤드 본체(10)의 표면 조도(surface roughness) 및 상기 본체(10)에 형성된 코팅막(20)의 표면 조도에 따라 진한 회색(dark grey) 내지 연한 회색(light grey)의 회색(grey color)으로 나타난다. Surface roughness of the gas showerhead body 10 made of a metal material of aluminum, stainless steel, inconel, or nickel, and the surface roughness of the coating film 20 formed on the body 10. Depending on the color from dark gray to light gray.
또한, 상기 본체(10)의 표면 조도와 상기 코팅막(20) 표면 조도에 따라 저광택(Low Gloss: 10GU(85° 미만), 중간 광택(Semi Gloss: 10~70GU(60°)), 고광택(High Gloss: 70GU 이상(20°)) 중 하나의 광택을 나타낼 수 있도록 가스 샤워헤드 본체(10)의 표면 및 상기 코팅막(20)의 표면 상태를 폴리싱(polishing) 등의 방법으로 광택(gloss)을 조절할 수 있다.In addition, according to the surface roughness of the main body 10 and the surface roughness of the coating film 20, low gloss: 10GU (less than 85 °), semi gloss: 10-70GU (60 °), high gloss (High) Gloss: Adjust the gloss by polishing the surface of the gas showerhead body 10 and the surface of the coating film 20 so as to exhibit a gloss of one of 70GU or more (20 °). Can be.
반면, 종래의 가스 샤워헤드에 용사(플라즈마 분사) 방법으로 형성된 코팅막의 색깔은 흰색(white)인데, 본 발명에 따른 회색의 코팅막이 형성된 가스 공급 부재 보다 반사도가 낮다.On the other hand, although the color of the coating film formed by the thermal spraying (plasma injection) method in the conventional gas shower head is white, the reflectivity is lower than that of the gas supply member in which the gray coating film according to the present invention is formed.
공정 기판 온도는 가스 샤워헤드의 반사도가 변함에 따라 드리프트(drift) 하려는 경향을 가지는데, 상기 가스 샤워헤드의 반사도 변화는 공정 영역의 온도 및 기판의 온도에 영향을 끼치며, 이는 기판상에 형성되는 막 및 막 특성에 영향을 끼친다.The process substrate temperature tends to drift as the reflectivity of the gas showerhead changes, and the change in reflectivity of the gas showerhead affects the temperature of the process region and the temperature of the substrate, which is formed on the substrate. Affects membrane and membrane properties.
이에 따라 가스 샤워헤드 하면(코팅막이 형성된 하면)의 반사도를 조절함으로써 에칭 공정 또는 증착 공정에서 기판 전체면적에 걸쳐 온도가 균일하게 분포되는데 영향을 줄 수 있다. Accordingly, by adjusting the reflectivity of the lower surface of the gas shower head (the lower surface on which the coating film is formed), the temperature may be uniformly distributed over the entire area of the substrate in the etching process or the deposition process.
본 발명은 가스 샤워헤드의 하면은 물론 가스유로에까지 코팅막이 형성되는 것이 특징이다. 상기 파우더의 입사각(θ)은 상기 가스 샤워헤드의 하면과 이루는 파우더의 분사각도로서, 상기 입사각과 상기 가스유로의 직경 및 형태에 따라 상기 가스유로 내 최대 코팅막 형성 깊이(Max(Lc))가 결정된다([도 8] 내지 [도 12] 참조). The present invention is characterized in that the coating film is formed on the lower surface of the gas shower head as well as the gas flow path. The incident angle θ of the powder is the spray angle of the powder formed on the lower surface of the gas shower head, and the maximum coating film formation depth Max (Lc) in the gas passage is determined according to the incident angle and the diameter and shape of the gas passage. (See FIG. 8 to FIG. 12).
상기 가스유로의 코팅막 형성 깊이(Lc)는 상기 가스헤드의 하면과 이루는 파우더 분사각(θ), 가스유로의 직경(Di), 가스유로의 출구 직경(Do)의 함수로 표현되고, 상기 가스유로에 형성되는 코팅막의 형성깊이의 최대값((Max(Lc))은 The coating film formation depth Lc of the gas flow path is expressed as a function of the powder injection angle θ, the diameter of the gas flow path Di, and the outlet diameter Do of the gas flow path, which form the lower surface of the gas head. The maximum value ((Max (Lc)) of the forming depth of the coating film formed on the
Figure PCTKR2018001701-appb-I000001
,
Figure PCTKR2018001701-appb-I000001
,
Figure PCTKR2018001701-appb-I000002
,
Figure PCTKR2018001701-appb-I000002
,
Figure PCTKR2018001701-appb-I000003
,
Figure PCTKR2018001701-appb-I000003
,
Figure PCTKR2018001701-appb-I000004
중 하나의 값으로 나타날 수 있다.
Figure PCTKR2018001701-appb-I000004
It can appear as a value.
[도 8]은 상기 실시예 1을 나타낸 것으로서, 가스유로의 직경(Di), 가스유로의 출구 직경(Do)은 동일하며, 가스유로에 형성되는 코팅막의 형성깊이의 최대값((Max(Lc))은
Figure PCTKR2018001701-appb-I000005
또는
Figure PCTKR2018001701-appb-I000006
로 나타난다.
8 shows the first embodiment, in which the diameter Di of the gas flow path and the outlet diameter Do of the gas flow path are the same, and the maximum value of the depth of formation of the coating film formed on the gas flow path (Max (Lc ))silver
Figure PCTKR2018001701-appb-I000005
or
Figure PCTKR2018001701-appb-I000006
Appears.
[도 9]는 상기 실시예 2를 나타낸 것으로서, 가스유로에 형성되는 코팅막의 형성깊이의 최대값((Max(Lc))은
Figure PCTKR2018001701-appb-I000007
로 나타난다.
9 shows the second embodiment, wherein the maximum value ((Max (Lc)) of the depth of formation of the coating film formed in the gas flow path is
Figure PCTKR2018001701-appb-I000007
Appears.
[도 10]은 상기 실시예 3을 나타낸 것으로서, 가스유로에 형성되는 코팅막의 형성깊이의 최대값((Max(Lc))은
Figure PCTKR2018001701-appb-I000008
로 나타난다.
FIG. 10 shows the third embodiment, wherein the maximum value ((Max (Lc)) of the formation depth of the coating film formed in the gas flow path is
Figure PCTKR2018001701-appb-I000008
Appears.
[도 11] 및 [도 12]는 각각 상기 실시예 4 및 실시예 5를 나타낸 것으로서, 가스유로에 형성되는 코팅막의 형성깊이의 최대값((Max(Lc))은 모두
Figure PCTKR2018001701-appb-I000009
로 나타난다.
11 and 12 show Examples 4 and 5, respectively, wherein the maximum value ((Max (Lc)) of the formation depth of the coating film formed in the gas flow path is all
Figure PCTKR2018001701-appb-I000009
Appears.
본 발명에서 상기 코팅막 형성 시에는 가스유로에 포토레지스트 또는 마개(plug) 등의 툴(tool)을 삽입하여 상기 가스유로를 막는 과정 등이 불필요하다. 본 발명은 가스 샤워헤드 하면의 가스유로가 개방된 상태에서 이트륨 원소를 포함한 파우더를 상기 하면과 이루는 입사각(θ, 0°θ<90°)으로 직접 분사하여 상기 가스유로의 막힘 없이 상기 하면 및 가스유로에 균열이 없는 코팅막이 형성되도록 한 것이다. In the present invention, when the coating film is formed, a process of blocking the gas flow path by inserting a tool such as a photoresist or plug into the gas flow path is unnecessary. According to the present invention, a powder containing yttrium element is directly injected at an incident angle (θ, 0 ° θ <90 °) formed with the lower surface of the gas shower head to open the lower surface and the gas without clogging the gas channel. It is to form a coating film without cracks in the flow path.
다만, 상기 가스유로에는 코팅되지 않은 잔류 파우더가 남을 수 있고, 이러한 잔류 파우더는 증착 공정이나 에칭 공정에서 불순물 파티클이 될 수 있으므로, 이들을 제거해 주는 작업이 필요하다. However, uncoated residual powder may remain in the gas flow path, and the residual powder may become impurity particles in a deposition process or an etching process, and thus a work for removing them is necessary.
상기 잔류 파우더 제거 작업에는 가스유로에 액체를 주입하여 상기 잔류 파우더를 외부로 배출시키는 펌핑(pumping) 방법을 적용할 수 있다.In the residual powder removal operation, a pumping method of injecting a liquid into a gas flow path and discharging the residual powder to the outside may be applied.
본 발명이 제공하는 가스 샤워헤드는 하면 및 가스유로에 균열이 없는 코팅막이 형성되어 있어 온도 균일도가 좋아지고 증착 후 반응생성물이 샤워헤드에 덜 부착하기 때문에 본 발명에 따른 가스 샤워헤드를 증착 공정에 적용하면 종래에 비해 증착 두께의 편차가 감소하여 증착막 두께의 균일도가 더 향상되는 효과가 있다. In the gas shower head provided by the present invention, since the coating film having no cracks is formed on the lower surface and the gas flow path, the temperature uniformity is improved and the reaction product is less attached to the shower head after deposition. When applied, the variation in deposition thickness is reduced compared to the prior art, thereby improving the uniformity of the thickness of the deposited film.
또한, 종래에는 가스 샤워헤드의 가스유로에 균열이 없는 코팅막을 형성하는 것이 어려워서, 양극산화 처리를 통해 상기 가스유로에 알루미나 막을 형성시켰는데 이 알루미나 막 역시 균열이 존재하였기 때문에 아킹 및 파티클 생성 문제가 있었다. 본 발명의 가스 샤워헤드에 형성되는 코팅막은 상기 가스유로의 코팅막 형성 깊이(Lc)까지 균열 없이 형성되므로 에칭 공정에 사용하는 경우는 식각으로 인한 부산물(by-product) 및 파티클 부착량이 더 감소되고, 아킹이 발생되지 않는다. In addition, it is difficult to form a coating film without cracks in the gas flow path of the gas shower head in the related art, and thus an alumina treatment is used to form an alumina film in the gas flow path. there was. Since the coating film formed on the gas shower head of the present invention is formed without cracking up to the coating layer formation depth Lc of the gas flow path, when used in an etching process, by-product and particle adhesion due to etching are further reduced. Arcing does not occur.
본 발명은 첨부된 도면과 관련하여 설명하였으나 본 발명의 요지를 벗어남이 없는 범위에서 수정 및 변형이 가능하며, 다양한 분야에서 사용될 수도 있다. 따라서 본 발명의 청구범위는 이건 발명의 진정한 범위 내에 속하는 수정 및 변형을 포함한다.Although the present invention has been described with reference to the accompanying drawings, modifications and variations are possible without departing from the spirit of the present invention and may be used in various fields. Therefore, the claims of the present invention include modifications and variations that fall within the true scope of the invention.
[부호의 설명][Description of the code]
10 : 가스 샤워헤드 본체 10: gas shower head body
11 : 가스 샤워헤드의 가스 공급구 11: gas supply port of the gas shower head
12 : 가스 샤워헤드의 하면12: lower surface of the gas shower head
13 : 가스 샤워헤드의 가스유로13: gas flow path of the gas shower head
14 : 가스 샤워헤드의 가스유로 출구14 gas outlet of the gas shower head
20 : 코팅막 20: coating film
20a : 가스 샤워헤드 하면의 코팅막20a: coating film on the bottom of the gas shower head
20b : 가스유로의 코팅막20b: coating film of gas flow path
d1 : 가스 샤워헤드 하면의 코팅막 두께d1: coating film thickness of the lower surface of the gas shower head
d2 : 가스 유로의 코팅막 두께d2: coating film thickness of the gas flow path
Di : 가스유로의 직경Di: diameter of gas channel
Do : 가스유로의 출구 직경Do: outlet diameter of gas channel
Max(Lc) : 가스유로의 최대 코팅막 형성 깊이Max (Lc): Maximum coating depth for gas flow
θ : 파우더 분사각(degree; 가스 샤워헤드 하면과 이루는 각)θ: powder spray angle (angle formed with the gas shower head lower surface)
본 발명은 반도체 공정 중 에칭 공정 또는 증착 공정에서 공정 가스들의 균일한 공급 및 분배를 위해 가스 샤워헤드에 적용될 수 있다. The present invention can be applied to a gas showerhead for uniform supply and distribution of process gases in an etching process or a deposition process during a semiconductor process.

Claims (6)

  1. 가스유로가 하면(下面)까지 형성되어 있고, The gas flow path is formed to the lower surface,
    상기 하면 및 가스유로에 이트륨(Yttrium) 원소를 포함한 코팅막이 균열 없이 형성되어 있고,In the lower surface and the gas flow path, a coating film containing a yttrium element is formed without cracking,
    상기 코팅막은 회색(grey color)인 것을 특징으로 하는 가스 샤워헤드.The coating film is a gas shower head, characterized in that (grey color).
  2. 제1항에서,In claim 1,
    상기 코팅막을 제외한 본체가 알루미늄, 스테인레스 스틸, 인코넬(inconel), 니켈(nickel) 중 하나의 금속재료로 구성된 것을 특징으로 하는 가스 샤워헤드.Gas showerhead, characterized in that the main body except for the coating film is made of a metal material of aluminum, stainless steel, inconel (nickel).
  3. 제1항에서,In claim 1,
    상기 하면의 코팅막 두께(d1)가 1㎛~10㎛인 것을 특징으로 하는 가스 샤워헤드.The gas showerhead, wherein the coating film thickness d1 of the lower surface is 1 μm to 10 μm.
  4. 제1항에서,In claim 1,
    상기 가스유로의 코팅막 두께(d2)가 0.1㎛~10㎛인 것을 특징으로 하는 가스 샤워헤드.The gas shower head, characterized in that the coating film thickness (d2) of the gas flow path is 0.1㎛ ~ 10㎛.
  5. 제1항에서,In claim 1,
    상기 가스유로의 직경을 Di, 상기 가스유로의 출구 직경을 Do, 상기 코팅막을 구성하는 이트륨을 포함한 파우더의 상기 하면에 대한 분사각을 θ(0°<θ<90°)라 할 때,When the diameter of the gas channel is Di, the outlet diameter of the gas channel is Do, and the injection angle of the lower surface of the powder containing yttrium constituting the coating film is θ (0 ° <θ <90 °),
    상기 가스유로에 형성된 코팅막 형성깊이의 최대값((Max(Lc))은 The maximum value (Max (Lc)) of the coating film formation depth formed in the gas flow path is
    Figure PCTKR2018001701-appb-I000010
    ,
    Figure PCTKR2018001701-appb-I000010
    ,
    Figure PCTKR2018001701-appb-I000011
    ,
    Figure PCTKR2018001701-appb-I000011
    ,
    Figure PCTKR2018001701-appb-I000012
    ,
    Figure PCTKR2018001701-appb-I000012
    ,
    Figure PCTKR2018001701-appb-I000013
    중 하나인 것을 특징으로 하는 가스 샤워헤드.
    Figure PCTKR2018001701-appb-I000013
    Gas showerhead, characterized in that one of.
  6. 제1항 내지 제5항 중 어느 한 항에서,The method according to any one of claims 1 to 5,
    상기 코팅막은 유동하는 수송기체에 이트륨 원소를 포함한 파우더가 유입되어 상기 하면 및 가스유로에 분사됨으로써 형성된 것을 특징으로 하는 가스 샤워헤드. The coating membrane is a gas shower head, characterized in that the powder containing the yttrium element flows into the flowing transport gas is formed by spraying the lower surface and the gas flow path.
PCT/KR2018/001701 2017-02-15 2018-02-08 Gas showerhead having gas flow channel with crackless coating film WO2018151462A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170020450A KR20170024592A (en) 2017-02-15 2017-02-15 Gas Showerhead Having Gas Flow Channel With Non Crack Coating Film
KR10-2017-0020450 2017-02-15

Publications (1)

Publication Number Publication Date
WO2018151462A1 true WO2018151462A1 (en) 2018-08-23

Family

ID=58411264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001701 WO2018151462A1 (en) 2017-02-15 2018-02-08 Gas showerhead having gas flow channel with crackless coating film

Country Status (3)

Country Link
KR (1) KR20170024592A (en)
TW (1) TWI678730B (en)
WO (1) WO2018151462A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116240519A (en) * 2022-12-28 2023-06-09 楚赟精工科技(上海)有限公司 Gas spray header and gas phase reaction device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI767244B (en) * 2020-05-29 2022-06-11 朗曦科技股份有限公司 Gas shower head for semiconductor process chamber
KR102627888B1 (en) * 2021-09-23 2024-01-23 주식회사 뉴파워 프라즈마 Coating apparatus, gas supply member and coating method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100118994A (en) * 2008-02-26 2010-11-08 어플라이드 머티어리얼스, 인코포레이티드 Ceramic coating comprising yttrium which is resistant to a reducing plasma
KR101094725B1 (en) * 2011-06-24 2011-12-16 주식회사 펨빅스 Coating layer and coating method of yttrium oxide
KR20130093102A (en) * 2010-07-30 2013-08-21 어플라이드 머티어리얼스, 인코포레이티드 Apparatus for controlling the flow of a gas in a process chamber
KR20130093113A (en) * 2010-08-27 2013-08-21 어플라이드 머티어리얼스, 인코포레이티드 Gas distribution showerhead with high emissivity surface
JP5909737B2 (en) * 2010-02-10 2016-04-27 有限会社 渕田ナノ技研 Yttria film deposition method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010132716A2 (en) 2009-05-13 2010-11-18 Applied Materials, Inc. Anodized showerhead
JP5447235B2 (en) * 2009-07-31 2014-03-19 セイコーエプソン株式会社 Marker processing method, marker processing apparatus, and marker processing program
US20110198034A1 (en) 2010-02-11 2011-08-18 Jennifer Sun Gas distribution showerhead with coating material for semiconductor processing
JP5198611B2 (en) * 2010-08-12 2013-05-15 株式会社東芝 Gas supply member, plasma processing apparatus, and method for forming yttria-containing film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100118994A (en) * 2008-02-26 2010-11-08 어플라이드 머티어리얼스, 인코포레이티드 Ceramic coating comprising yttrium which is resistant to a reducing plasma
JP5909737B2 (en) * 2010-02-10 2016-04-27 有限会社 渕田ナノ技研 Yttria film deposition method
KR20130093102A (en) * 2010-07-30 2013-08-21 어플라이드 머티어리얼스, 인코포레이티드 Apparatus for controlling the flow of a gas in a process chamber
KR20130093113A (en) * 2010-08-27 2013-08-21 어플라이드 머티어리얼스, 인코포레이티드 Gas distribution showerhead with high emissivity surface
KR101094725B1 (en) * 2011-06-24 2011-12-16 주식회사 펨빅스 Coating layer and coating method of yttrium oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116240519A (en) * 2022-12-28 2023-06-09 楚赟精工科技(上海)有限公司 Gas spray header and gas phase reaction device

Also Published As

Publication number Publication date
KR20170024592A (en) 2017-03-07
TW201832271A (en) 2018-09-01
TWI678730B (en) 2019-12-01

Similar Documents

Publication Publication Date Title
WO2018151462A1 (en) Gas showerhead having gas flow channel with crackless coating film
US20200325073A1 (en) Slurry plasma spray of plasma resistant ceramic coating
WO2017116130A1 (en) Plasma resistant coating film and formation method therefor
TWI664073B (en) Plasma erosion resistant rare-earth oxide based thin film coatings
WO2016021799A1 (en) Cvd process chamber component having aluminum fluoride generation barrier film formed thereon
TWI665322B (en) Ion assisted deposition top coat of rare-earth oxide
US6875477B2 (en) Method for coating internal surface of plasma processing chamber
KR100830068B1 (en) Boron nitride/yttria composite components of semiconductor processing equipment and method of manufacturing thereof
KR101076244B1 (en) Carbonitride coated component of semiconductor processing equipment and method of manufacturing thereof
WO2016072724A1 (en) Processing component having improved plasma etch resistance, and treatment method for reinforcing plasma etch resistance of processing component
KR100882758B1 (en) Cerium oxide containing ceramic components and coatings in semiconductor processing equipment
WO2018217062A1 (en) A method for forming yttrium oxide fluoride coating film and yttrium oxide fluoride coating film prepared thereby
KR101828862B1 (en) Plasma processing apparatus and shower head
WO2021225258A1 (en) Slurry composition for suspension plasma thermal spray, preparation method therefor, and suspension plasma thermal spray coating film
WO2023182747A1 (en) Plasma-resistant two-layer coating film structure and manufacturing method thereof
WO2017171282A1 (en) Metal parts and method for manufacturing same and process chamber provided with metal parts
TW202219308A (en) Metal oxide with low temperature fluorination
US7060622B2 (en) Method of forming dummy wafer
WO2024151000A1 (en) Method for manufacturing high-density yttria film by atmospheric plasma spraying method and yttria thermal-sprayed film manufactured using same
US20230051800A1 (en) Methods and apparatus for plasma spraying silicon carbide coatings for semiconductor chamber applications
WO2024176957A1 (en) Component for plasma processing device
WO2020017671A1 (en) Aerosol deposition coating method for plasma-resistant coating
KR20060031136A (en) Coating layer by thermal spray for vacuum plasma chamber and fabrication method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/11/2019)