WO2018151011A1 - 生体情報測定装置、生体情報測定装置の装着状態検出方法、及び生体情報測定装置の制御プログラム - Google Patents
生体情報測定装置、生体情報測定装置の装着状態検出方法、及び生体情報測定装置の制御プログラム Download PDFInfo
- Publication number
- WO2018151011A1 WO2018151011A1 PCT/JP2018/004442 JP2018004442W WO2018151011A1 WO 2018151011 A1 WO2018151011 A1 WO 2018151011A1 JP 2018004442 W JP2018004442 W JP 2018004442W WO 2018151011 A1 WO2018151011 A1 WO 2018151011A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- biological information
- electrode
- living body
- contact
- signal
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/25—Bioelectric electrodes therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
Definitions
- the present invention relates to a biological information measuring device, a wearing state detecting method of the biological information measuring device, and a control program for the biological information measuring device.
- Patent Document 2 discloses an automatic attachment recognition device for recognizing that a detection instrument for detecting a biological signal of a living body is attached to a living body.
- the automatic attachment recognition device of Patent Document 2 includes two electrodes, and when the detection instrument is attached to the living body, the two electrodes also contact the living body.
- the automatic attachment recognition device recognizes that the detection instrument has been attached to the living body based on a high-frequency signal flowing between the two electrodes.
- the present invention has been made in view of such circumstances, and an object of the present invention is to provide a biological information measuring device, a biological information measuring device mounting state detecting method, and a biological information measuring device capable of determining wearing by reducing the number of electrodes in contact with the living body. It is to provide a control program.
- the attachment state of the contact electrode to the living body can be detected by comparing the input from the contact electrode and the input from the separated electrode.
- the attachment determination can be performed with fewer electrodes in contact with the living body than in the case where both the contact electrode and the separated electrode are brought into contact with the living body. it can.
- a biological signal that is an electrical signal generated by the living body is detected via the contact electrode, and the living body signal is detected based on the biological signal detected by the biological signal detecting unit.
- a biological information measuring unit that measures the biological information.
- the shape of the contact electrode and the shape of the separation electrode are substantially the same.
- the mounting determination can be performed accurately.
- the present invention includes a biological information including a housing that can be mounted on a living body, a contact electrode that is mounted on the housing so as to be in contact with the living body, and a spaced electrode that is mounted on the housing so as to be spaced apart from the living body.
- a method for detecting a mounting state of a biological information measuring device executed by a measuring device comprising: detecting a mounting state of a contact electrode on a living body based on an input from a contact electrode and an input from a separation electrode This is a wearing state detection method.
- the present invention is a control program for a biological information measuring apparatus that causes a computer to execute the above-described wearing state detection method.
- the present invention it is possible to determine wearing by reducing the number of electrodes in contact with the living body.
- FIG. 1 is a configuration diagram of a biological information measuring apparatus 100 according to an embodiment.
- the controller 110 includes a first pad 111-1 to a fourth pad 111-4, and a first wiring 112-1 to a fourth wiring 112-4.
- the first pad 111-1 includes a flat plate-like first insulator 113-1 and a flat plate-like first contact electrode 211-1 bonded to one surface of the first insulator 113-1.
- the second pad 111-2 includes a flat plate-like second insulator 113-2 and a flat plate-like second contact electrode 211-2 bonded to one surface of the second insulator 113-2.
- the third pad 111-3 includes a flat plate-like third insulator 113-3 and a flat plate-like third contact electrode 211-3 bonded to one surface of the third insulator 113-3.
- the first contact electrode 211-1, the second contact electrode 211-2, and the third contact electrode 211-3 may be referred to as the contact electrode 211 without distinction.
- Each of the three contact electrodes 211 is formed of a conductive member such as metal and is exposed to the outside so as to be in contact with a living body.
- the fourth pad 111-4 includes a flat plate-like fourth insulator 113-4, a flat plate-like separation electrode 211-4, and a thin-film-like fifth insulator 113-5.
- the separation electrode 211-4 is sandwiched between the flat plate-like fourth insulator 113-4 and the fifth insulator 113-5. Since the separation electrode 211-4 is not exposed to the outside at the planar portion, it does not directly contact the living body.
- the control device 110 accommodates parts constituting an electrical system described later.
- the first wiring 112-1 connects the control device 110 and the first contact electrode 211-1.
- the second wiring 112-2 connects the control device 110 and the second contact electrode 211-2.
- the third wiring 112-3 connects the control device 110 and the third contact electrode 211-3.
- the fourth wiring 112-4 electrically connects the control device 110 and the separation electrode 211-4.
- the biological information measuring apparatus 100 executes a biological information measuring method for measuring biological information based on an electrical signal from the living body and a mounting state detecting method for detecting the mounting state of the contact electrode 211 with respect to the living body.
- the living body is, for example, a human body.
- the biological information is, for example, an electrocardiogram.
- the biological information measuring apparatus 100 operates with the power of a built-in battery (not shown).
- the biological information measuring device 100 that measures biological information as in the present embodiment is also called a biological information measuring device.
- the biological information measuring device 100 detects a wearing state, but may not measure biological information.
- the first electrode 211-1 to the fourth electrode 211-4 are arranged on the skin near the heart of the human body.
- the third electrode 211-3 is disposed closest to the heart between the first electrode 211-1 and the second electrode 211-2.
- the first electrode 211-1 and the second electrode 211-2 are arranged symmetrically with the third electrode 211-3 as the center.
- a voltage waveform between the first electrode 211-1 and the third electrode 211-3 is detected. Further, the voltage waveform between the second electrode 211-2 and the third electrode 211-3 is detected.
- the difference between the two detected voltage waveforms represents the electrocardiogram information of the human body.
- the fourth electrode 211-4 is disposed near the other three electrodes 211. Since the fifth insulator 113-5 contacts the living body, the position of the separation electrode 211-4 relative to the living body is stabilized, and at the same time, the separation electrode 211-4 and the three contact electrodes 211 can be arranged in a similar environment. . In another example, the separation electrode 211-4 may be insulated from the living body by air. The separation electrode 211-4 may be disposed at another position where environmental noise can be measured.
- the storage device 220 stores the control program 221.
- the control program 221 is read by the arithmetic processing device 230, and causes the arithmetic processing device 230 to implement a biological information measurement method, a wearing state detection method, and other functions.
- the storage device 220 is controlled by the arithmetic processing device 230 and stores necessary information as appropriate.
- the storage device 220 is a non-transitory tangible storage medium.
- the storage device 220 includes a ROM (read only memory) and a RAM (random access memory).
- the storage device 220 is a volatile or nonvolatile storage medium.
- the storage device 220 may be removable or non-removable.
- the arithmetic processing device 230 functions as the biological information measurement unit 231 and the wearing state detection unit 232 by reading and executing the control program 221 stored in the storage device 220.
- the arithmetic processing unit 230 according to the present embodiment is a general-purpose computer, but may be an application specific integrated circuit (ASIC), and other functions that can implement the functions described in the present embodiment. It may be a circuit.
- ASIC application specific integrated circuit
- the control device 110 detects a biological signal, which is an electrical signal generated by a living body, via three contact electrodes 211, and a first capacitor 245-1 to a third capacitor 245. 3, a signal detection unit 250, and a fourth capacitor 256.
- a biological signal which is an electrical signal generated by a living body
- the biological signal detection unit 240 includes a first node 241-1 to a third node 241-3, a first differential amplifier 242-1, a second differential amplifier 242-2, a first LPF 243-1, and a second LPF 243-2. And a first resistor 244-1 to a sixth resistor 244-6.
- the first resistor 244-1 is connected between a power supply voltage (VDD) of about 2.5V and the first node 241-1.
- the second resistor 244-2 is connected between a ground voltage (GND) of about 0V and the first node 241-1.
- the third resistor 244-3 is connected between VDD and the third node 241-3.
- the fourth resistor 244-4 is connected between the GND and the third node 241-3.
- the fifth resistor 244-5 is connected between the VDD and the second node 241-2.
- the sixth resistor 244-6 is connected between the GND and the second node 241-2.
- a DC voltage of about 1.2 V is applied to each of the first node 241-1 to the third node 241-3 by the first resistor 244-1 to the sixth resistor 244-6.
- the first differential amplifier 242-1 amplifies the difference between the voltage of the first node 241-1 and the voltage of the third node 241-3 on the basis of the voltage of the third node 241-3, and outputs the amplified signal. Generate.
- the first LPF 243-1 is a low pass filter, and removes high frequency noise (for example, 50 Hz) of the amplified signal output from the first differential amplifier 242-1 to generate the first detection signal 272-1. It is generated and sent to the arithmetic processing unit 230.
- the second differential amplifier 242-2 amplifies the difference between the voltage of the second node 241-2 and the voltage of the third node 241-3 with reference to the voltage of the third node 241-3, and outputs the amplified signal. Generate.
- the second LPF 243-2 is a low-pass filter, removes high-frequency noise from the amplified signal output from the second differential amplifier 242-2, generates the second detection signal 272-2, and sends it to the arithmetic processing unit 230.
- the first capacitor 245-1 is connected in series between the first node 241-1 and the first contact electrode 211-1.
- the second capacitor 245-2 is connected in series between the second node 241-2 and the second contact electrode 211-2.
- the third capacitor 245-3 is connected in series between the third node 241-3 and the third contact electrode 211-3.
- the first capacitor 245-1 to the third capacitor 245-2 connected in series between the three contact electrodes 211 and the biological signal detector 240 are respectively connected to the biological signal detector 240 and the three contact electrodes 211.
- the first electrode signal 271-1 which is a voltage detected by the first contact electrode 211-1, is input to the first differential amplifier 242-1 through the first capacitor 245-1.
- the second electrode signal 271-2 which is a voltage detected by the second contact electrode 211-2, is input to the second differential amplifier 242-2 through the second capacitor 245-2.
- the third electrode signal 271-3 which is a voltage detected by the third contact electrode 211-3, passes through the third capacitor 245-3, and the first differential amplifier 242-1 and the second differential amplifier 242-2. Is input.
- the first electrode signal 271-1 to the third electrode signal 271-3 include a biological signal generated in the living body and noise (for example, 50 Hz).
- the first detection signal 272-1 output from the first LPF 243-1 and the second detection signal 272-2 output from the second LPF 243-2 are input to the arithmetic processing unit 230. Since the noise is canceled out by the first differential amplifier 242-1, the first detection signal 272-1 is substantially generated by the first contact electrode 211-1 with reference to the potential of the third contact electrode 211-3. Represents a detected biological signal. Since the noise is canceled out by the second differential amplifier 242-2, the second detection signal 272-2 is substantially the second contact electrode 211-2 based on the potential of the third contact electrode 211-3. Represents a detected biological signal.
- the signal detector 250 includes a reference node 251, a seventh resistor 252-1, an eighth resistor 252-2, a first buffer 253, a second buffer 254, and a multiplexer (MUX) 255.
- the reference node 251 is electrically connected to the separation electrode 211-4.
- the seventh resistor 252-1 and the eighth resistor 252-2 are directly connected between VDD and GND. The same DC voltage as that of each of the first node 241-1 to the third node 241-3 is applied to the reference node 251 by the seventh resistor 252-1 and the eighth resistor 252-2.
- the fourth capacitor 256 is connected in series between the reference node 251 and the separation electrode 211-4.
- the fourth capacitor 256 connected in series between the separation electrode 211-4 and the signal detection unit 250 has an unnecessary DC current between the reference node 251 and the separation electrode 211-4. Current) is prevented from flowing.
- the capacitance value of the fourth capacitor 256 is preferably the same as the capacitance value of each of the first capacitor 245-1 to the third capacitor 245-2.
- the voltage detected by the separation electrode 211-4 is called a separation electrode signal 273.
- the voltage detected at the reference node 251 is called the reference signal 274.
- Reference signal 274 represents spaced electrode signal 273 after passing through fourth capacitor 256.
- the voltage detected at the third node 241-3 is called a measurement signal 275.
- the measurement signal 275 represents the third electrode signal 271-3 after passing through the third capacitor 245-3. Note that the measurement signal 275 may be the voltage at the first node 241-1 or the voltage at the second node 241-2.
- the electrode from which the measurement signal 275 is detected is the detection target of the wearing state. There may be a plurality of attachment state detection targets.
- the biological information measurement unit 231 measures biological information of the biological body based on the biological signal represented by the first detection signal 272-1 and the second detection signal 272-2 detected by the biological signal detection unit 240. Specifically, the electrocardiogram on the right side of the living heart is measured by the first detection signal 272-1, and the electrocardiogram on the left side of the living heart is measured by the second detection signal 272-2.
- step 282 the wearing state detection unit 232 determines whether the waveform of the reference signal 274 and the waveform of the measurement signal 275 are substantially the same.
- FIG. 4 is a diagram illustrating an exemplary measurement signal 275.
- the horizontal axis is time, and the vertical axis is the voltage of the measurement signal 275.
- the third contact electrode 211-3 is not properly attached to the living body and is away from the living body, the high-frequency environmental noise 291 is detected from the air.
- the living body detects the environmental noise 292 received from the periphery from the living body.
- the environmental noise 292 detected through the living body during the period T2 has an overall increase in high-frequency components compared to the environmental noise 291 detected from the air during the period T1.
- the third contact electrode 211-3 is separated from the living body.
- the reference signal 274 and the measurement signal 275 are greatly different, there is a high possibility that the third contact electrode 211-3 is correctly attached to the living body.
- the determination of the identity between the reference signal 274 and the measurement signal 275 may be determined by the magnitude of the amplitude, may be determined by the similarity of the frequency components, or may be determined by waveform matching.
- step 282 shown in FIG. 3 If it is determined in step 282 shown in FIG. 3 that the reference signal 274 and the measurement signal 275 are not substantially the same, the mounting state detection unit 232 proceeds to step 283 and determines that the third contact electrode 211-3 is mounted. judge. If it is determined in step 282 that the reference signal 274 and the measurement signal 275 are substantially the same, the mounting state detection unit 232 proceeds to step 284 and determines that the third contact electrode 211-3 is not mounted.
- the wearing state detection unit 232 repeatedly executes the wearing state detection method at regular time intervals.
- the wearing state detection unit 232 may execute the wearing state detection method at another timing.
- the biological information measurement method by the biological information measurement unit 231 is changed. If it is determined that the third contact electrode 211-3 is not attached, the biological information measurement unit 231 may, for example, stop measuring biological information, change the measurement timing of biological information, or measure biological information. Reduce frequency, etc. When it is determined that the third contact electrode 211-3 is attached, the biological information measurement unit 231 starts, for example, measurement of biological information, changes the measurement timing of biological information, and measures biological information. Increase frequency, etc. By measuring more biological information when the third contact electrode 211-3 is attached than when the third contact electrode 211-3 is not attached, it is possible to accurately measure the biological information and save power. Can be achieved.
- the mounting state is automatically detected with a simple configuration as compared with the case where electrodes are separately prepared. can do. Therefore, highly accurate and highly reliable biological information can be measured with a simple configuration with few human operations.
- the shape of the contact electrode 211 and the shape of the separation electrode 211-4 are substantially the same, environmental noise when the contact electrode 211 is separated from the living body is detected by the separation electrode 211-4. Since it is substantially the same as the environmental noise, it is possible to accurately and easily determine the wearing.
- the separation electrode 211-4 and the living body are reliably insulated from each other by the fifth insulator 113-5, so that the mounting determination can be performed accurately.
- the present invention can be applied to various biological information measuring devices attached to a living body, for example, biological information measuring devices used for electrocardiographic measurement, electrooculogram measurement, and myoelectric potential measurement.
- DESCRIPTION OF SYMBOLS 100 ... Biological information measuring device, 110 ... Control apparatus, 113-5 ... 5th insulator 211 ... Contact electrode (211-1-3 ... 1st-3rd contact electrode) 211-4 ... spaced electrodes, 221 ... control program 231 ... biological information measuring unit, 232 ... wearing state detecting unit, 240 ... biological signal detecting unit 250 ... signal detecting unit, 291 ... environmental noise, 292 ... environmental noise
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Cardiology (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
生体情報測定装置100は、生体に装着可能な筐体110と、生体に接触可能に筐体110に搭載された接触電極211と、生体から離間して配置可能に筐体110に搭載された離間電極211-4と、接触電極211からの入力と離間電極211-4からの入力とに基づいて、接触電極211の生体への装着状態を検出する装着状態検出部232とを備える。
Description
本発明は、生体情報測定装置、生体情報測定装置の装着状態検出方法、及び生体情報測定装置の制御プログラムに関するものである。
従来、人などの生体に装着して、生体から発生する心電情報などの生体情報を測定する生体情報測定装置がある。生体情報測定装置の一つとして、特許文献1に心電情報計測装置が開示されている。特許文献1の心電情報計測装置では、胸部に貼り付けた心電電極により心電波形を測定する。特許文献1の心電情報計測装置にて高精度に心電波形を測定するには、心電電極がはがれなく接触しているかを、人が確認する必要がある。
特許文献2には、生体の生体信号を検出する検出器具が生体に装着されたことを認識するための自動装着認識装置が開示されている。特許文献2の自動装着認識装置は2つの電極を備え、生体に検出器具が装着されたときに2つの電極も生体に接触する。自動装着認識装置は、2つの電極間に流れる高周波信号に基づいて、検出器具が生体に装着されたことを認識する。
しかしながら、特許文献2の装置では、かならず2つの電極を生体に装着する必要がある。そのため、場所的な制約があって装着判定用の電極を配置できない場合には適さず、また、装着したときの不快感が増すという不利益がある。さらに、生体に接触させる必要のある電極が多い場合、適切に装着されない可能性が増し、生体情報を測定するための電極が適切に装着されているか正確に判定できないという不利益がある。
本発明はかかる事情に鑑みてなされたものであり、その目的は、生体に接触する電極を減らして装着判定ができる生体情報測定装置、生体情報測定装置の装着状態検出方法、及び生体情報測定装置の制御プログラを提供することにある。
本発明は、生体に装着可能な筐体と、生体に接触可能に筐体に搭載された接触電極と、生体から離間して配置可能に筐体に搭載された離間電極と、接触電極からの入力と離間電極からの入力とに基づいて、接触電極の生体への装着状態を検出する装着状態検出部と、を備える、生体情報測定装置である。
この構成によれば、接触電極が適切に装着されているときには、離間電極で検出される環境ノイズとは異なる信号が接触電極から検出され、接触電極が適切に装着されていないときには、離間電極で検出される環境ノイズと類似した信号が接触電極から検出されるので、接触電極からの入力と離間電極からの入力とを比較することで接触電極の生体への装着状態を検出できる。すなわち、離間電極を生体に接触させなくても接触電極の装着判定ができるため、接触電極と離間電極との両方を生体に接触させる場合に比べて、生体に接触する電極を減らして装着判定ができる。これにより、場所的な制約があって装着判定用の電極を配置できない場合でも、装着判定が可能である。また、装着したときの不快感が低減する。さらに、生体に接触する必要のある電極が少ないので、電極が適切に装着されない可能性が減り、装着状態を正確に判定できる。
好適には本発明の生体情報測定装置において、生体により生じる電気信号である生体信号を、接触電極を介して検出する生体信号検出部と、生体信号検出部により検出された生体信号に基づいて生体の生体情報を測定する生体情報測定部と、をさらに備える。
この構成によれば、生体信号の検出に使用する電極を装着判定に兼用するので、別々に電極を用意する場合に比べて、簡単な構成で自動的に装着状態を検出することができる。従って、人の操作が少なく簡単な構成で高精度に信頼性の高い生体情報を測定できる。
好適には本発明の生体情報測定装置において、接触電極の形状と離間電極の形状とが略同一である。
この構成によれば、接触電極の形状と離間電極の形状とが略同一であるので、接触電極が生体から離間したときの環境ノイズが離間電極で検出される環境ノイズと略同一となるので、正確かつ簡単に装着判定を行うことができる。
好適には本発明の生体情報測定装置において、生体への装着時に生体と離間電極との間に配置可能な位置において離間電極の少なくとも一部を覆う絶縁体をさらに備える。
この構成によれば、絶縁体によって離間電極と生体とが確実に絶縁されるので、正確に装着判定を行うことができる。
本発明は、生体に装着可能な筐体と、生体に接触可能に筐体に搭載された接触電極と、生体から離間して配置可能に筐体に搭載された離間電極と、を備える生体情報測定装置により実行される生体情報測定装置の装着状態検出方法であって、接触電極からの入力と離間電極からの入力とに基づいて、接触電極の生体への装着状態を検出すること、を含む装着状態検出方法である。
本発明は、コンピュータに、上記の装着状態検出方法を実行させる生体情報測定装置の制御プログラムである。
本発明によれば、生体に接触する電極を減らして装着判定ができる。
(全体構成)
以下、本発明の実施形態に係る生体情報測定装置について説明する。図1は、実施形態の生体情報測定装置100の構成図である。制御装置110と、第1パッド111-1~第4パッド111-4と、第1配線112-1~第4配線112-4とを含む。
以下、本発明の実施形態に係る生体情報測定装置について説明する。図1は、実施形態の生体情報測定装置100の構成図である。制御装置110と、第1パッド111-1~第4パッド111-4と、第1配線112-1~第4配線112-4とを含む。
第1パッド111-1は、平板状の第1絶縁体113-1と、第1絶縁体113-1の片面に貼り合わせた平板状の第1接触電極211-1とを含む。第2パッド111-2は、平板状の第2絶縁体113-2と、第2絶縁体113-2の片面に貼り合わせた平板状の第2接触電極211-2とを含む。第3パッド111-3は、平板状の第3絶縁体113-3と、第3絶縁体113-3の片面に貼り合わせた平板状の第3接触電極211-3とを含む。以下、第1接触電極211-1と第2接触電極211-2と第3接触電極211-3とを区別せずに接触電極211と呼ぶ場合がある。3つの接触電極211は、いずれも、金属などの導電性部材で形成されており、生体に接触可能なように外部に露出されている。
第4パッド111-4は、平板状の第4絶縁体113-4と平板状の離間電極211-4と薄膜状の第5絶縁体113-5とを含む。離間電極211-4は、平板状の第4絶縁体113-4と第5絶縁体113-5との間に挟まれている。離間電極211-4は、平面部分で外部に露出されていないので、生体に直接接触しない。
制御装置110は、後述の電気系統を構成する部品を収容している。第1配線112-1は、制御装置110と第1接触電極211-1とを接続している。第2配線112-2は、制御装置110と第2接触電極211-2とを接続している。第3配線112-3は、制御装置110と第3接触電極211-3とを接続している。第4配線112-4は、制御装置110と離間電極211-4とを電気的に接続している。
生体情報測定装置100は、生体からの電気信号に基づいて生体情報を測定する生体情報測定方法と、生体に対する接触電極211の装着状態を検出する装着状態検出方法とを実行する。生体は、例えば、人体である。生体情報は、例えば、心電である。生体情報測定装置100は、図示しない内蔵電池の電力により動作する。本実施形態のように生体情報を測定する生体情報測定装置100は、生体情報測定装置とも呼ばれる。他の例において、生体情報測定装置100は、装着状態を検出するが、生体情報を測定しないものでもよい。
第1電極211-1~第4電極211-4は、人体の心臓近くの皮膚上に配置される。第3電極211-3は、第1電極211-1と第2電極211-2との間で、心臓に一番近く配置される。生体に正しく装着したとき、第1電極211-1と第2電極211-2とが、第3電極211-3を中心として対称に配置される。第1電極211-1と第3電極211-3との間の電圧波形が検出される。さらに、第2電極211-2と第3電極211-3との間の電圧波形が検出される。検出された2つの電圧波形の差分が、人体の心電情報を表す。
第4電極211-4は、他の3つの電極211の近くに配置される。第5絶縁体113-5が生体に接触するので、離間電極211-4の生体に対する位置が安定すると同時に、離間電極211-4と3つの接触電極211とを類似した環境に配置することができる。他の例において、離間電極211-4は、空気により生体から絶縁されてもよい。離間電極211-4は、環境ノイズを測定可能な他の位置に配置されてもよい。
(制御系統の構成)
図2は、生体情報測定装置100の制御系統の構成図である。制御装置110は、記憶装置220と演算処理装置230とを含む。
図2は、生体情報測定装置100の制御系統の構成図である。制御装置110は、記憶装置220と演算処理装置230とを含む。
記憶装置220は、制御プログラム221を記憶する。制御プログラム221は、演算処理装置230によって読み出されて、演算処理装置230に生体情報測定方法と装着状態検出方法と実行するための機能、及び他の機能を実装させる。演算処理装置230が種々の機能を実行するとき、記憶装置220は、演算処理装置230に制御されて、適宜必要な情報を記憶する。記憶装置220は、非一時的な有形の記憶媒体である。記憶装置220は、ROM(read only memory)及びRAM(random access memory)を含む。記憶装置220は、揮発性または不揮発性の記憶媒体である。記憶装置220は、取り外し可能であってもよく、取り外し不能であってもよい。
演算処理装置230は、記憶装置220に記憶された制御プログラム221を読み出して実行することにより、生体情報測定部231と装着状態検出部232として機能する。本実施形態の演算処理装置230は、汎用コンピュータであるが、特定用途向け集積回路(ASIC;application specific integrated circuits)であってもよく、本実施形態で説明される各機能を実装可能な他の回路であってもよい。
生体情報測定部231と装着状態検出部232との動作については、後で詳細に説明する。
図2に示すように、制御装置110は、生体により生じる電気信号である生体信号を3つの接触電極211を介して検出する生体信号検出部240と第1コンデンサ245-1~第3コンデンサ245-3と信号検出部250と第4コンデンサ256とを含む。
(生体情報検出部)
生体信号検出部240は、第1ノード241-1~第3ノード241-3と、第1差動増幅器242-1と第2差動増幅器242-2と、第1LPF243-1と第2LPF243-2と、第1抵抗244-1~第6抵抗244-6とを含む。
生体信号検出部240は、第1ノード241-1~第3ノード241-3と、第1差動増幅器242-1と第2差動増幅器242-2と、第1LPF243-1と第2LPF243-2と、第1抵抗244-1~第6抵抗244-6とを含む。
第1抵抗244-1は、約2.5Vの電源電圧(VDD)と第1ノード241-1との間に接続されている。第2抵抗244-2は、約0Vのグランド電圧(GND)と第1ノード241-1との間に接続されている。第3抵抗244-3は、VDDと第3ノード241-3との間に接続されている。第4抵抗244-4は、GNDと第3ノード241-3との間に接続されている。第5抵抗244-5は、VDDと第2ノード241-2との間に接続されている。第6抵抗244-6は、GNDと第2ノード241-2との間に接続されている。第1抵抗244-1~第6抵抗244-6により、第1ノード241-1~第3ノード241-3の各々に、約1.2Vの直流電圧が印加されている。
第1差動増幅器242-1は、第3ノード241-3の電圧を基準として、第1ノード241-1の電圧と第3ノード241-3の電圧との差分を増幅して、増幅信号を生成する。第1LPF243-1は、ローパスフィルター(law pass filter)であり、第1差動増幅器242-1から出力される増幅信号の高周波ノイズ(例えば、50Hz)を除去して第1検出信号272-1を生成し、演算処理装置230に送る。
第2差動増幅器242-2は、第3ノード241-3の電圧を基準として、第2ノード241-2の電圧と第3ノード241-3の電圧との差分を増幅して、増幅信号を生成する。第2LPF243-2は、ローパスフィルターであり、第2差動増幅器242-2から出力される増幅信号の高周波ノイズを除去して第2検出信号272-2を生成し、演算処理装置230に送る。
(第1~第3コンデンサ)
第1コンデンサ245-1は、第1ノード241-1と第1接触電極211-1との間に直列に接続されている。第2コンデンサ245-2は、第2ノード241-2と第2接触電極211-2との間に直列に接続されている。第3コンデンサ245-3は、第3ノード241-3と第3接触電極211-3との間に直列に接続されている。3つの接触電極211と生体信号検出部240との間に、それぞれ直列に接続された第1コンデンサ245-1~第3コンデンサ245-3は、生体信号検出部240と3つの接触電極211との間に不必要な直流電流(例えば、生体に危険を及ぼす電流)が流れるのを防ぐ。
第1コンデンサ245-1は、第1ノード241-1と第1接触電極211-1との間に直列に接続されている。第2コンデンサ245-2は、第2ノード241-2と第2接触電極211-2との間に直列に接続されている。第3コンデンサ245-3は、第3ノード241-3と第3接触電極211-3との間に直列に接続されている。3つの接触電極211と生体信号検出部240との間に、それぞれ直列に接続された第1コンデンサ245-1~第3コンデンサ245-3は、生体信号検出部240と3つの接触電極211との間に不必要な直流電流(例えば、生体に危険を及ぼす電流)が流れるのを防ぐ。
(生体情報の測定のための信号)
第1接触電極211-1で検出される電圧である第1電極信号271-1は、第1コンデンサ245-1を通って第1差動増幅器242-1に入力される。第2接触電極211-2で検出される電圧である第2電極信号271-2は、第2コンデンサ245-2を通って第2差動増幅器242-2に入力される。第3接触電極211-3で検出される電圧である第3電極信号271-3は、第3コンデンサ245-3を通って第1差動増幅器242-1と第2差動増幅器242-2とに入力される。第1電極信号271-1~第3電極信号271-3には、生体で発生する生体信号とノイズ(例えば、50Hz)とが含まれる。
第1接触電極211-1で検出される電圧である第1電極信号271-1は、第1コンデンサ245-1を通って第1差動増幅器242-1に入力される。第2接触電極211-2で検出される電圧である第2電極信号271-2は、第2コンデンサ245-2を通って第2差動増幅器242-2に入力される。第3接触電極211-3で検出される電圧である第3電極信号271-3は、第3コンデンサ245-3を通って第1差動増幅器242-1と第2差動増幅器242-2とに入力される。第1電極信号271-1~第3電極信号271-3には、生体で発生する生体信号とノイズ(例えば、50Hz)とが含まれる。
第1LPF243-1から出力される第1検出信号272-1と、第2LPF243-2から出力される第2検出信号272-2とは、演算処理装置230に入力される。第1差動増幅器242-1によりノイズが相殺されるので、第1検出信号272-1は、実質的に第3接触電極211-3の電位を基準とした、第1接触電極211-1で検出される生体信号を表す。第2差動増幅器242-2によりノイズが相殺されるので、第2検出信号272-2は、実質的に第3接触電極211-3の電位を基準とした、第2接触電極211-2で検出される生体信号を表す。
(信号検出部)
信号検出部250は、参照ノード251と第7抵抗252-1と第8抵抗252-2と第1バッファ253と第2バッファ254とマルチプレクサ(MUX:multiplexer)255とを備える。参照ノード251は、離間電極211-4に電気的に接続されている。第7抵抗252-1と第8抵抗252-2とは、VDDとGNDとの間に直接に接続されている。第7抵抗252-1と第8抵抗252-2とにより、第1ノード241-1~第3ノード241-3の各々と同じ直流電圧が参照ノード251に印加される。
信号検出部250は、参照ノード251と第7抵抗252-1と第8抵抗252-2と第1バッファ253と第2バッファ254とマルチプレクサ(MUX:multiplexer)255とを備える。参照ノード251は、離間電極211-4に電気的に接続されている。第7抵抗252-1と第8抵抗252-2とは、VDDとGNDとの間に直接に接続されている。第7抵抗252-1と第8抵抗252-2とにより、第1ノード241-1~第3ノード241-3の各々と同じ直流電圧が参照ノード251に印加される。
参照ノード251の電圧は、第1バッファ253により整形されてMUX255に入力される。第3ノード241-3の電圧は、第2バッファ254により整形されてMUX255に入力される。MUX255は、演算処理装置230からの指令に従って、第1バッファ253からの入力と、第2バッファ254からの入力とを選択的に演算処理装置230に送信する。
(第4コンデンサ)
第4コンデンサ256は、参照ノード251と離間電極211-4との間に直列に接続されている。離間電極211-4と信号検出部250との間に直列に接続された第4コンデンサ256は、参照ノード251と離間電極211-4との間に不必要な直流電流(例えば、生体に危険を及ぼす電流)が流れるのを防ぐ。第4コンデンサ256の容量値は、好適には第1コンデンサ245-1~第3コンデンサ245-3の各々の容量値と同じである。
第4コンデンサ256は、参照ノード251と離間電極211-4との間に直列に接続されている。離間電極211-4と信号検出部250との間に直列に接続された第4コンデンサ256は、参照ノード251と離間電極211-4との間に不必要な直流電流(例えば、生体に危険を及ぼす電流)が流れるのを防ぐ。第4コンデンサ256の容量値は、好適には第1コンデンサ245-1~第3コンデンサ245-3の各々の容量値と同じである。
(装着状態の検出のための信号)
離間電極211-4で検出される電圧は、離間電極信号273と呼ばれる。参照ノード251で検出される電圧は、参照信号274と呼ばれる。参照信号274は、第4コンデンサ256を通った後の離間電極信号273を表す。第3ノード241-3で検出される電圧は、測定信号275と呼ばれる。測定信号275は、第3コンデンサ245-3を通った後の第3電極信号271-3を表す。なお、測定信号275は、第1ノード241-1の電圧であってもよく、第2ノード241-2の電圧であってもよい。3つの接触電極211のうち、測定信号275が検出される電極が、装着状態の検出対象である。装着状態の検出対象は、複数でもよい。
離間電極211-4で検出される電圧は、離間電極信号273と呼ばれる。参照ノード251で検出される電圧は、参照信号274と呼ばれる。参照信号274は、第4コンデンサ256を通った後の離間電極信号273を表す。第3ノード241-3で検出される電圧は、測定信号275と呼ばれる。測定信号275は、第3コンデンサ245-3を通った後の第3電極信号271-3を表す。なお、測定信号275は、第1ノード241-1の電圧であってもよく、第2ノード241-2の電圧であってもよい。3つの接触電極211のうち、測定信号275が検出される電極が、装着状態の検出対象である。装着状態の検出対象は、複数でもよい。
(生体情報測定方法)
生体情報測定部231は、生体信号検出部240により検出された第1検出信号272-1と第2検出信号272-2とが表す生体信号に基づいて生体の生体情報を測定する。具体的には、第1検出信号272-1により、生体の心臓の右側の心電を測定し、第2検出信号272-2により、生体の心臓の左側の心電を測定する。
生体情報測定部231は、生体信号検出部240により検出された第1検出信号272-1と第2検出信号272-2とが表す生体信号に基づいて生体の生体情報を測定する。具体的には、第1検出信号272-1により、生体の心臓の右側の心電を測定し、第2検出信号272-2により、生体の心臓の左側の心電を測定する。
(装着状態検出方法)
図3は、装着状態検出方法を説明するためのフローチャートである。以下、図3を参照して、図2の装着状態検出部232が実行する装着状態検出方法について説明する。
図3は、装着状態検出方法を説明するためのフローチャートである。以下、図3を参照して、図2の装着状態検出部232が実行する装着状態検出方法について説明する。
まず、ステップ281において、装着状態検出部232は、MUX255を切り替えて参照信号274と測定信号275とを順に演算処理装置230に送信するように指令する。
次に、ステップ282において、装着状態検出部232は、参照信号274の波形と測定信号275の波形とが略同一であるか判定する。
図4は、例示的な測定信号275を示す図である。横軸が時間であり、縦軸が測定信号275の電圧である。期間T1では、第3接触電極211-3は、生体に正しく装着されておらず、生体から離れているので、空気中から高周波の環境ノイズ291を検出する。期間T2では、第3接触電極211-3は、生体に正しく装着されているので、生体信号に由来する低周波成分に加え、生体が周辺から受信した環境ノイズ292を生体から検出する。期間T2に生体を介して検出される環境ノイズ292は、期間T1に空気中から検出される環境ノイズ291に比べると、全体的に高周波成分が増加している。
参照信号274は、人体から絶縁されているので、常に、図4の期間T1における環境ノイズ291と同様の環境ノイズを受信する。
参照信号274と測定信号275とが略同一である場合、第3接触電極211-3が生体から離れている可能性が高い。参照信号274と測定信号275とが大きく異なる場合、第3接触電極211-3が生体に正しく装着されている可能性が高い。参照信号274と測定信号275との同一性の判定は、振幅の大きさで判定してもよく、周波数成分の類似度で判定してもよく、波形のマッチングで判定してもよい。
装着状態検出部232は、図3に示すステップ282において、参照信号274と測定信号275とが略同一でないと判定した場合、ステップ283に進み、第3接触電極211-3が装着されていると判定する。装着状態検出部232は、ステップ282において、参照信号274と測定信号275とが略同一であると判定した場合、ステップ284に進み、第3接触電極211-3が非装着であると判定する。
装着状態検出部232は、一定時間ごとに装着状態検出方法を繰り返し実行する。装着状態検出部232は、他のタイミングで装着状態検出方法を実行してもよい。
装着状態検出部232により判定された装着状態に基づいて、生体情報測定部231による生体情報測定方法が変更される。第3接触電極211-3が装着されていないと判定された場合、生体情報測定部231は、例えば、生体情報の測定を停止すること、生体情報の測定タイミングを変更すること、生体情報の測定頻度を下げること、などを実行する。第3接触電極211-3が装着されていると判定された場合、生体情報測定部231は、例えば、生体情報の測定を開始すること、生体情報の測定タイミングを変更すること、生体情報の測定頻度を上げること、などを実行する。第3接触電極211-3が装着されていない場合よりも、第3接触電極211-3が装着されている場合に多く生体情報を測定することにより、正確に生体情報を測定できると共に、省電力化が図れる。
(まとめ)
本実施形態によれば、接触電極211が適切に装着されているときには、離間電極211-4で検出される環境ノイズとは異なる信号が接触電極211から検出され、接触電極211が適切に装着されていないときには、離間電極211-4で検出される環境ノイズと類似した信号が接触電極211から検出されるので、接触電極211からの入力と離間電極211-4からの入力とを比較することで接触電極211の生体への装着状態を検出できる。すなわち、離間電極211-4を生体に接触させなくても接触電極211の装着判定ができるため、接触電極211と離間電極211-4との両方を生体に接触させる場合に比べて、生体に接触する電極を減らして装着判定ができる。これにより、場所的な制約があって装着判定用の電極を配置できない場合でも、装着判定が可能である。また、装着したときの不快感が低減する。さらに、生体に接触する必要のある電極が少ないので、電極が適切に装着されない可能性が減り、装着状態を正確に判定できる。
本実施形態によれば、接触電極211が適切に装着されているときには、離間電極211-4で検出される環境ノイズとは異なる信号が接触電極211から検出され、接触電極211が適切に装着されていないときには、離間電極211-4で検出される環境ノイズと類似した信号が接触電極211から検出されるので、接触電極211からの入力と離間電極211-4からの入力とを比較することで接触電極211の生体への装着状態を検出できる。すなわち、離間電極211-4を生体に接触させなくても接触電極211の装着判定ができるため、接触電極211と離間電極211-4との両方を生体に接触させる場合に比べて、生体に接触する電極を減らして装着判定ができる。これにより、場所的な制約があって装着判定用の電極を配置できない場合でも、装着判定が可能である。また、装着したときの不快感が低減する。さらに、生体に接触する必要のある電極が少ないので、電極が適切に装着されない可能性が減り、装着状態を正確に判定できる。
本実施形態によれば、生体信号の検出に使用する第3電極211-3を装着判定に兼用するので、別々に電極を用意する場合に比べて、簡単な構成で自動的に装着状態を検出することができる。従って、人の操作が少なく簡単な構成で高精度に信頼性の高い生体情報を測定できる。
本実施形態によれば、接触電極211の形状と離間電極211-4の形状とが略同一であるので、接触電極211が生体から離間したときの環境ノイズが離間電極211-4で検出される環境ノイズと略同一となるので、正確かつ簡単に装着判定を行うことができる。
本実施形態によれば、第5絶縁体113-5によって離間電極211-4と生体とが確実に絶縁されるので、正確に装着判定を行うことができる。
本発明は上述した実施形態には限定されない。すなわち、当業者は、本発明の技術的範囲またはその均等の範囲内において、上述した実施形態の構成要素に関し、様々な変更、コンビネーション、サブコンビネーション、並びに代替を行ってもよい。
本発明は、生体に装着される様々な生体情報測定装置、例えば、心電測定、眼電位測定、筋電位測定に使用される生体情報測定装置に適用可能である。
100…生体情報測定装置、110…制御装置、113-5…第5絶縁体
211…接触電極(211-1~3…第1~第3接触電極)
211-4…離間電極、221…制御プログラム
231…生体情報測定部、232…装着状態検出部、240…生体信号検出部
250…信号検出部、291…環境ノイズ、292…環境ノイズ
211…接触電極(211-1~3…第1~第3接触電極)
211-4…離間電極、221…制御プログラム
231…生体情報測定部、232…装着状態検出部、240…生体信号検出部
250…信号検出部、291…環境ノイズ、292…環境ノイズ
Claims (6)
- 生体に装着可能な筐体と、
前記生体に接触可能に前記筐体に搭載された接触電極と、
前記生体から離間して配置可能に前記筐体に搭載された離間電極と、
前記接触電極からの入力と前記離間電極からの入力とに基づいて、前記接触電極の前記生体への装着状態を検出する装着状態検出部と、
を備える、生体情報測定装置。 - 前記生体により生じる電気信号である生体信号を、前記接触電極を介して検出する生体信号検出部と、
前記生体信号検出部により検出された前記生体信号に基づいて前記生体の生体情報を測定する生体情報測定部と、
をさらに備える、請求項1に記載の生体情報測定装置。 - 前記接触電極の形状と前記離間電極の形状とが略同一である、
請求項1または請求項2に記載の生体情報測定装置。 - 前記生体への装着時に前記生体と前記離間電極との間に配置可能な位置において前記離間電極の少なくとも一部を覆う絶縁体をさらに備える、
請求項1乃至請求項3のいずれか一項に記載の生体情報測定装置。 - 生体に装着可能な筐体と、前記生体に接触可能に前記筐体に搭載された接触電極と、前記生体から離間して配置可能に前記筐体に搭載された離間電極と、を備える生体情報測定装置により実行される生体情報測定装置の装着状態検出方法であって、
前記接触電極からの入力と前記離間電極からの入力とに基づいて、前記接触電極の前記生体への装着状態を検出すること、
を含む装着状態検出方法。 - コンピュータに、請求項5に記載の前記装着状態検出方法を実行させる生体情報測定装置の制御プログラム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017028537 | 2017-02-17 | ||
JP2017-028537 | 2017-02-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018151011A1 true WO2018151011A1 (ja) | 2018-08-23 |
Family
ID=63169399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/004442 WO2018151011A1 (ja) | 2017-02-17 | 2018-02-08 | 生体情報測定装置、生体情報測定装置の装着状態検出方法、及び生体情報測定装置の制御プログラム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018151011A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003339655A (ja) * | 2002-05-28 | 2003-12-02 | Nippon Koden Corp | 生体情報測定装置 |
JP2011255187A (ja) * | 2010-06-10 | 2011-12-22 | Samsung Electronics Co Ltd | 生体信号測定装置及び方法、インターフェース装置、生体信号のノイズ除去装置及び検出装置、並びにコンピュータ読み取り可能な記録媒体 |
JP2014094097A (ja) * | 2012-11-08 | 2014-05-22 | Seiko Instruments Inc | 生体情報検出装置、及び生体情報検出方法 |
JP2014195514A (ja) * | 2013-03-29 | 2014-10-16 | ソニー株式会社 | 生体情報取得装置及び生体情報通信システム |
-
2018
- 2018-02-08 WO PCT/JP2018/004442 patent/WO2018151011A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003339655A (ja) * | 2002-05-28 | 2003-12-02 | Nippon Koden Corp | 生体情報測定装置 |
JP2011255187A (ja) * | 2010-06-10 | 2011-12-22 | Samsung Electronics Co Ltd | 生体信号測定装置及び方法、インターフェース装置、生体信号のノイズ除去装置及び検出装置、並びにコンピュータ読み取り可能な記録媒体 |
JP2014094097A (ja) * | 2012-11-08 | 2014-05-22 | Seiko Instruments Inc | 生体情報検出装置、及び生体情報検出方法 |
JP2014195514A (ja) * | 2013-03-29 | 2014-10-16 | ソニー株式会社 | 生体情報取得装置及び生体情報通信システム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102400106B1 (ko) | 심전도 센서 칩, 시스템 온 칩과, 웨어러블 기기 | |
US7141987B2 (en) | Sensor system for measurement of one or more vector components of an electric field | |
US10016144B2 (en) | Biological signal acquisition device and method for acquiring biological signal | |
KR102335768B1 (ko) | 체지방을 측정하는 방법 및 장치 | |
US20120253206A1 (en) | Measurement apparatus, measurement method, information processing apparatus, information processing method, and program | |
US8773147B2 (en) | Capacitive touch sensing device by detecting induced electric field | |
US20130310677A1 (en) | Measurement devices for bio-signals | |
WO2018151011A1 (ja) | 生体情報測定装置、生体情報測定装置の装着状態検出方法、及び生体情報測定装置の制御プログラム | |
UA55474C2 (uk) | Пристрій та спосіб детектування зміни в діелектрокінетичних ефектах у навколишньому середовищі | |
JP2014223184A (ja) | 心電計 | |
JP2011200558A (ja) | 生体情報取得装置 | |
US10792999B2 (en) | Multi-capacitor sensor array with integrated temperature measurement | |
WO2018150923A1 (ja) | 生体情報測定装置、生体情報測定装置の装着状態検出方法、及び生体情報測定装置の制御プログラム | |
US11006898B2 (en) | Biological information measurement apparatus, method for controlling the same, and recording medium | |
US10806350B2 (en) | Sensor system for occupant support | |
CN209980275U (zh) | 一种电容式指纹感测电路及电容式指纹感测装置 | |
KR101001865B1 (ko) | 비접촉식 센서 회로 | |
US20220257165A1 (en) | Step Counting System and Method | |
KR101001863B1 (ko) | 비접촉식 센서 회로 | |
US10121046B2 (en) | Dermatoglyph identification apparatus and identifying method thereof | |
US20230380770A1 (en) | Multi-channel array sensor for spatiotemporal signal tracking | |
CN104757962B (zh) | 心电检测电路的感抗调节电路及心电检测设备 | |
CN111787857B (zh) | 双向传感器电路 | |
US11433242B2 (en) | Pulse discrimination device and electrocardiogram analyzer | |
Liu et al. | A physiological sound sensing system using accelerometer based on flip-chip piezoelectric technology and asymmetrically gapped cantilever |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18755116 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18755116 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |