WO2018150877A1 - アーク検出回路、開閉器システム、パワーコンディショナシステム及びアーク検出方法 - Google Patents

アーク検出回路、開閉器システム、パワーコンディショナシステム及びアーク検出方法 Download PDF

Info

Publication number
WO2018150877A1
WO2018150877A1 PCT/JP2018/003202 JP2018003202W WO2018150877A1 WO 2018150877 A1 WO2018150877 A1 WO 2018150877A1 JP 2018003202 W JP2018003202 W JP 2018003202W WO 2018150877 A1 WO2018150877 A1 WO 2018150877A1
Authority
WO
WIPO (PCT)
Prior art keywords
arc
characteristic
detection circuit
base
current
Prior art date
Application number
PCT/JP2018/003202
Other languages
English (en)
French (fr)
Inventor
達雄 古賀
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018568091A priority Critical patent/JP6807552B2/ja
Priority to US16/483,414 priority patent/US11088528B2/en
Publication of WO2018150877A1 publication Critical patent/WO2018150877A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • H02H1/0015Using arc detectors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to an arc detection circuit, a switch system, a power conditioner system, and an arc detection method for detecting an arc in a transmission line.
  • an object of the present invention is to provide an arc detection circuit or the like that can accurately detect an arc generated in a transmission path for transmitting power from a power supply device.
  • an arc detection circuit for detecting an arc generated in a transmission path for transmitting power from a power supply device to a power conditioner, wherein the transmission A current detector for detecting a current flowing in a path; a storage unit for storing a base characteristic which is a frequency characteristic of a current flowing in the transmission path when the arc is not generated; and a current detected by the current detector And an arc determination unit that determines the occurrence of the arc based on a comparison result between the detection characteristic that is the frequency characteristic of the first and the base characteristic.
  • one aspect of the switch system according to the present invention includes the arc detection circuit and a switch that is controlled based on a signal output from the arc detection circuit.
  • one aspect of a power conditioner system includes the arc detection circuit and a power conditioner to which power from the power supply device is supplied via the transmission line. Is provided.
  • one aspect of the arc detection method is an arc detection method for detecting an arc generated in a transmission line for transmitting power from a power supply device to a power conditioner, Detected in a current detection step for detecting a current flowing in the transmission line, a storage step for storing a base characteristic that is a frequency characteristic of a current flowing in the transmission line when the arc is not generated, and the current detection step.
  • an arc detection circuit or the like that can accurately detect an arc generated in a transmission line that transmits power from the power supply device.
  • FIG. 1 is a block diagram showing the overall configuration of the arc detection circuit according to the first embodiment.
  • FIG. 2 is a flowchart showing an arc detection method in the arc detection circuit according to the first embodiment.
  • FIG. 3 is a graph showing an example of a frequency spectrum of current corresponding to the base characteristic stored in the storage unit according to the first embodiment.
  • FIG. 4 is a graph showing an example of a frequency spectrum of current corresponding to detection characteristics used in the arc determination unit according to the first embodiment.
  • FIG. 5 is a graph showing an example of the frequency spectrum of the difference between the frequency spectrum corresponding to the detection characteristic and the frequency spectrum corresponding to the base characteristic, calculated by the arc determination unit according to the first embodiment.
  • FIG. 1 is a block diagram showing the overall configuration of the arc detection circuit according to the first embodiment.
  • FIG. 2 is a flowchart showing an arc detection method in the arc detection circuit according to the first embodiment.
  • FIG. 3 is a graph showing an example of a frequency spectrum of current
  • FIG. 6 is a block diagram showing the overall configuration of the arc detection circuit according to the second embodiment.
  • FIG. 7 is a graph illustrating frequency spectra of currents corresponding to a plurality of base characteristics stored in the storage unit according to the second embodiment.
  • FIG. 8 is a block diagram showing another connection mode of the arc detection circuit 10 according to the first embodiment.
  • FIG. 1 is a block diagram showing an overall configuration of an arc detection circuit 10 according to the present embodiment.
  • the transmission path 36 provided with the arc detection circuit 10 the PV panel 30 connected to the transmission path 36, the switch 40 and the power conditioner (power conditioner) 50, and the switching of the switch 40 are switched.
  • An open / close control circuit 42 is also shown.
  • the PV panel 30 is an example of a power supply device that outputs DC power to the transmission path 36.
  • the PV panel 30 is used as an example of the power supply device, but the power supply device is not limited to the PV panel 30.
  • the power supply device may be a power generation device other than the PV panel 30.
  • the transmission path 36 is a power line that transmits DC power output from a power supply device such as the PV panel 30 to the power conditioner 50.
  • the transmission path 36 has a conducting wire made of a conductive member such as copper and a coating made of an insulating member that protects the conducting wire. For example, an arc can occur when the coating is degraded.
  • the switch 40 is a power device that switches between opening and closing the transmission path 36. In the present embodiment, switching of the switch 40 is switched based on a signal from the switching control circuit 42.
  • the opening / closing control circuit 42 is a driver that controls opening / closing of the switch 40.
  • the switching control circuit 42 controls the switching of the switch 40 based on the signal from the arc detection circuit 10.
  • the power conditioner 50 is a device to which the DC power output from the power supply device is supplied via the transmission path 36, and converts the supplied DC power into AC power and outputs it.
  • the power conditioner 50 employs, for example, the MPPT (Maximum Power Point Tracking) method, and the current and voltage of the DC power supplied from the PV panel 30 are values that maximize the power. Adjust to.
  • the power conditioner 50 converts the input DC power into AC power having a voltage of 100 V and a frequency of 50 Hz or 60 Hz, for example. As a result, the AC power output from the power conditioner 50 can be used in household electrical equipment and the like.
  • the arc detection circuit 10 is a circuit that detects an arc generated in the transmission path 36 that transmits power from the power supply device to the power conditioner 50.
  • the arc detection circuit 10 includes a current detector 12, an arc determination unit 16, and a storage unit 18.
  • the current detector 12 is a detector that detects a current flowing through the transmission path 36.
  • the current supplied from the PV panel 30 is detected, and a signal corresponding to the detected current is output to the arc determination unit 16 and the storage unit 18.
  • the current detector 12 can be constituted by, for example, a resistance element having a minute resistance value. By inserting such a resistance element into the transmission path 36 and detecting the voltage applied to the resistance element, a value corresponding to the current flowing through the transmission path 36 can be detected.
  • the storage unit 18 stores a base characteristic that is a frequency characteristic of a current flowing through the transmission line 36 when no arc is generated.
  • the storage unit 18 acquires a base characteristic based on the current detected by the current detector 12 when no arc is generated in the transmission path 36, and stores the base characteristic. For example, when the arc is not generated, the storage unit 18 obtains the frequency spectrum of the current signal by performing Fourier transform on the time waveform of the current signal input from the current detector 12. The storage unit 18 stores the acquired frequency spectrum as a base characteristic.
  • storage part 18 which concerns on this Embodiment acquires a base characteristic based on the electric current detected when the arc has not generate
  • the arc determination unit 16 is a processing unit that determines the occurrence of an arc based on a comparison result between a detection characteristic that is a frequency characteristic of a current detected by the current detector 12 and a base characteristic stored in the storage unit 18. .
  • a current signal corresponding to the current flowing through the transmission path 36 is input from the current detector 12 to the arc determination unit 16.
  • the arc determination unit 16 acquires the frequency spectrum of the current signal by, for example, Fourier transforming the time waveform of the current signal.
  • the arc determination unit 16 uses the acquired frequency spectrum as a detection characteristic to determine the occurrence of an arc.
  • a current difference that is a difference between a frequency spectrum corresponding to the detection characteristic and a frequency spectrum corresponding to the base characteristic is calculated, and the maximum value of the frequency spectrum of the current difference exceeds the first threshold value. It is determined that an arc has occurred in the transmission path 36, and if it is equal to or less than the first threshold, it is determined that no arc has occurred in the transmission path 36.
  • the first threshold value is determined based on experiments. For example, a detection characteristic when an arc is generated in the transmission line 36 and a detection characteristic (that is, a base characteristic) when no arc is generated are acquired in advance, and the maximum value of the difference between the frequency spectra corresponding to these characteristics The following value may be defined as the first threshold value.
  • the arc determination unit 16 outputs a signal to the open / close control circuit 42 when it is determined that an arc has occurred. Along with this, a signal for controlling the switch 40 to be in an open state is output from the switching control circuit 42. As a result, the switch 40 is opened, and transmission of power from the PV panel 30 to the power conditioner 50 is interrupted. Thereby, it can suppress that electric power continues being transmitted in the state which the arc generate
  • the arc determination unit 16 is realized by, for example, a microcomputer (MCU; Micro-Controller Unit).
  • the microcomputer is a one-chip semiconductor having ROM, RAM, a processor (CPU; Central Processing Unit) for executing the program, a timer, an input / output circuit including an A / D converter and a D / A converter, and the like. Integrated circuit.
  • FIG. 2 is a flowchart showing an arc detection method in the arc detection circuit 10 according to the present embodiment.
  • FIG. 3 is a graph showing an example of a frequency spectrum of current corresponding to the base characteristic stored in the storage unit 18 according to the present embodiment.
  • FIG. 4 is a graph showing an example of the frequency spectrum of the current corresponding to the detection characteristics used in the arc determination unit 16 according to the present embodiment.
  • FIG. 4 shows an example of a frequency spectrum of current corresponding to the detection characteristic acquired by the arc determination unit 16 when an arc is generated.
  • FIG. 5 is a graph showing an example of the frequency spectrum of the difference between the frequency spectrum corresponding to the detection characteristic and the frequency spectrum corresponding to the base characteristic, calculated by the arc determination unit 16 according to the present embodiment.
  • the storage unit 18 of the arc detection circuit 10 stores base characteristics (S10).
  • the storage unit 18 acquires a base characteristic having a frequency spectrum as shown in FIG. 3 based on the current detected by the current detector 12 when no arc is generated in the transmission line 36.
  • the base characteristic is stored.
  • Base characteristics include noise unrelated to the arc, such as noise caused by the power conditioner 50 and the transmission path 36.
  • the current detector 12 detects the current supplied from the power supply device via the transmission path 36 (S11).
  • current detector 12 detects a current supplied from PV panel 30 which is an example of a power supply device, and outputs a current signal corresponding to the detected current to arc determination unit 16.
  • the arc determination unit 16 acquires detection characteristics from the current signal input from the current detector 12 (S12).
  • a current signal corresponding to the current flowing through the transmission path 36 is input to the arc determination unit 16 from the current detector 12, and the arc determination unit 16 performs, for example, Fourier transform on the time waveform of the current signal as shown in FIG. Obtain the frequency spectrum of the current signal as shown.
  • the detection characteristics include noise irrelevant to the arc and noise caused by the arc.
  • the arc determination unit 16 compares the detection characteristic acquired in step S12 with the base characteristic stored in the storage unit 18.
  • the first threshold is compared with the current difference that is the difference between the frequency spectrum corresponding to the detection characteristic and the frequency spectrum corresponding to the base characteristic (S13).
  • the current difference that is the difference between the frequency spectrum corresponding to the detection characteristic and the frequency spectrum corresponding to the base characteristic has a frequency spectrum as shown in FIG.
  • the frequency band of noise that has not been removed in the current difference shown in FIG. 5 is considered to be the frequency band of noise caused by the arc.
  • the arc determination unit 16 determines that an arc has occurred (S14). That is, the arc detection circuit 10 detects an arc.
  • the arc determination unit 16 outputs a signal to the open / close control circuit 42 when it is determined that an arc has occurred.
  • the switch 40 is opened by the switching control circuit 42 and the transmission of power from the PV panel 30 to the power conditioner 50 is interrupted.
  • the occurrence of an arc is determined based on the comparison result between the current base characteristic and the detection characteristic when no arc has occurred. For this reason, it is possible to distinguish between noise unrelated to the arc included in the base characteristic and noise caused by the arc not included in the base characteristic and included in the detection characteristic. For this reason, the arc detection circuit 10 can reduce false detection of arc due to noise unrelated to the arc. That is, the arc detection circuit 10 according to the present embodiment can accurately detect an arc.
  • the storage unit 18 acquires the base characteristic based on the current detected when no arc is generated, the arc detection circuit 10 acquires the base characteristic in the same manner as the detection characteristic. Can be used. Thereby, the frequency characteristics of noise unrelated to the arc included in each of the base characteristics and the detection characteristics can be substantially matched. For this reason, for example, as described above, by calculating the difference between the detection characteristic and the base characteristic, it is possible to more clearly distinguish the noise unrelated to the arc and the noise due to the arc.
  • the arc detection circuit 10 includes the current detector 12 that detects the current flowing through the transmission line 36 and the frequency characteristics of the current that flows through the transmission line 36 when no arc is generated.
  • a storage unit 18 that stores a certain base characteristic; an arc determination unit 16 that determines the occurrence of an arc based on a comparison result between a detection characteristic that is a frequency characteristic of a current detected by the current detector 12 and the base characteristic; Is provided.
  • the arc detection circuit 10 can reduce false detection of arc due to noise unrelated to the arc. That is, the arc detection circuit 10 according to the present embodiment can accurately detect an arc.
  • the storage unit 18 may acquire the base characteristic based on the current detected when no arc is generated.
  • the arc detection circuit 10 can use the acquired base characteristic in the same manner as the detection characteristic. Thereby, the frequency characteristics of noise unrelated to the arc included in each of the base characteristics and the detection characteristics can be substantially matched. For this reason, for example, as described above, by calculating the difference between the detection characteristic and the base characteristic, it is possible to more clearly distinguish the noise unrelated to the arc and the noise due to the arc.
  • the arc detection method stores a current detection step for detecting a current flowing through the transmission line 36 and a base characteristic that is a frequency characteristic of the current flowing through the transmission line 36 when no arc is generated.
  • the arc detection circuit according to the present embodiment is different from the arc detection circuit 10 according to the first embodiment in that a plurality of base characteristics are selectively used according to the operating condition of the power conditioner.
  • the arc detection circuit according to the present embodiment will be described with reference to the drawings with a focus on differences from the arc detection circuit 10 according to the first embodiment.
  • FIG. 6 is a block diagram showing the overall configuration of the arc detection circuit 110 according to the present embodiment.
  • FIG. 7 is a graph showing frequency spectra of currents corresponding to a plurality of base characteristics stored in the storage unit 118 according to the present embodiment.
  • the arc detection circuit 110 includes a current detector 12, an arc determination unit 116, and a storage unit 118, similarly to the arc detection circuit 10 according to the first embodiment.
  • the arc detection circuit 110 is different from the arc determination unit 16 according to the first embodiment in the configuration of the arc determination unit 116 and the storage unit 118.
  • the storage unit 118 stores a plurality of base characteristics respectively corresponding to a plurality of operating situations of the power conditioner 50.
  • the intensity of noise generated in the power conditioner 50 changes according to the power supplied to the power conditioner 50. Therefore, as shown in FIG. 7, the base characteristic changes according to the operating condition of the power conditioner 50. Note that FIG. 7 shows base characteristics in three cases where input power to the power conditioner 50 is different. Generally, the noise generated in the power conditioner increases as the input power to the power conditioner increases.
  • the arc detection circuit 110 stores a plurality of base characteristics respectively corresponding to a plurality of operating conditions of the power conditioner 50, so that a plurality of bases are selected according to the operating condition of the power conditioner 50. You can use different characteristics. Thereby, it is possible to further reduce the error between the noise characteristic unrelated to the arc included in the detection characteristic and the base characteristic.
  • the arc determination unit 116 is based on a comparison result between one base characteristic selected from the plurality of base characteristics stored in the storage unit 118 based on the operating condition of the power conditioner and the detection characteristic. Then, the occurrence of an arc in the transmission path 36 is determined.
  • the arc determination unit 116 is input with a signal indicating an operation state from the power conditioner 50.
  • running condition of the power conditioner 50 can be selected from the several base characteristic which the memory
  • the arc determination unit 116 may acquire information indicating the operation status from another device or the like. For example, information indicating the operation status may be acquired based on the voltage and current applied to the transmission path 36.
  • the storage unit 118 stores a plurality of base characteristics corresponding to a plurality of operating conditions of the power conditioner 50, and the arc determination unit 116 includes a plurality of arc characteristics.
  • the generation of arc in the transmission line 36 is determined based on the comparison result between one base characteristic selected from the base characteristics of the power conditioner 50 based on the operating condition of the power conditioner 50 and the detection characteristics.
  • the storage unit 118 stores a plurality of base characteristics respectively corresponding to a plurality of operating conditions of the power conditioner 50, so that a plurality of base characteristics can be used properly according to the operating condition of the power conditioner 50.
  • the arc detection circuit 110 can further reduce the error between the noise characteristics irrelevant to the arc included in the detection characteristics and the base characteristics, so that the arc can be detected more accurately.
  • the plurality of base characteristics stored in the storage unit 118 of the arc detection circuit 110 according to the present embodiment are the currents detected when no arc is generated, as in the storage unit 18 according to the first embodiment.
  • a base characteristic may be obtained based on Further, the plurality of base characteristics may be generated in advance based on experiments, simulations, and the like and stored in the storage unit 118.
  • the storage unit 118 stores a plurality of base characteristics respectively corresponding to a plurality of types of power conditioners, and the arc determination unit 116 selects one of the plurality of base characteristics based on the type of the power conditioner.
  • the occurrence of an arc in the transmission line 36 may be determined based on a comparison result between the two base characteristics and the detection characteristics.
  • the base characteristic according to the type of the power conditioner can be used, even when the type of the power conditioner connected to the transmission line 36 is changed, the noise unrelated to the arc included in the detection characteristic. An error between the characteristic and the base characteristic can be reduced.
  • FIG. 8 is a block diagram showing another connection mode of the arc detection circuit 10 according to the first embodiment.
  • the arc detection circuit 10 may output a signal to the power conditioner 50.
  • the power conditioner 50 may stop the operation upon receiving a signal from the arc detection circuit, or may block the input power from the transmission path 36. Thereby, when an arc generate
  • one aspect of the present invention may be realized as a switch system including the arc detection circuit according to each of the above embodiments and a switch 40 that is controlled based on a signal output from the arc detection circuit.
  • the switch 40 may include an arc detection circuit.
  • one aspect of the present invention is realized as a power conditioner system including the arc detection circuit according to each of the above embodiments and a power conditioner 50 to which power from the power supply device is supplied via the transmission path 36. May be.
  • the power conditioner 50 may include an arc detection circuit.
  • the arc detection circuit is realized by software by a microcomputer, it may be realized by software on a general-purpose computer such as a personal computer. Furthermore, the arc detection circuit may be realized in hardware by a dedicated electronic circuit including an A / D converter, a logic circuit, a gate array, a D / A converter, and the like.
  • the embodiment can be realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or a form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Control Of Electrical Variables (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Inverter Devices (AREA)

Abstract

電力供給装置(PVパネル(30))からパワーコンディショナ(50)に電力を伝送する伝送路(36)において発生するアークを検出するアーク検出回路(10)であって、伝送路(36)に流れる電流を検出する電流検出器(12)と、アークが発生していない場合に伝送路(36)に流れる電流の周波数特性であるベース特性を記憶する記憶部(18)と、電流検出器(12)によって検出される電流の周波数特性である検出特性と、ベース特性との比較結果に基づいて、アークの発生を判定するアーク判定部(16)とを備える。

Description

アーク検出回路、開閉器システム、パワーコンディショナシステム及びアーク検出方法
 本発明は、伝送路におけるアークを検出するアーク検出回路、開閉器システム、パワーコンディショナシステム及びアーク検出方法に関する。
 従来、PV(Photo Voltaic)パネルなどの電力供給装置から伝送路を介して供給される直流電力をパワーコンディショナで交流電力に変換するシステムが知られている。PVパネルとパワーコンディショナとを接続する伝送路は、屋外に配置されることが多いため劣化し易い。このような伝送路の劣化に起因してアーク(つまりアーク放電)が発生する場合がある。アークが発生した場合に伝送路に流れる電流を遮断するために、伝送路に開閉器が設けられる。しかしながら、アーク発生時に、開閉器がトリップする程度に大きい電流が流れない場合がある。このため、アーク発生時に伝送路に電流が流れ続ける場合がある。そこで、アークを検出するためのアーク検出手段が提案されている(例えば、特許文献1)。特許文献1に開示されたアーク検出手段においては、伝送路に印加される電圧及び電流に基づいてアークを検出しようとしている。
特開2011-7765号公報
 しかしながら、特許文献1に開示されたアーク検出手段では、アークによる電圧及び電流の変動と、アーク以外のノイズなどの要因による電圧及び電流の変動との区別が十分にできない。
 そこで、本発明は、電力供給装置からの電力を伝送する伝送路において発生するアークを正確に検出できるアーク検出回路などを提供することを目的とする。
 上記目的を達成するために、本発明に係るアーク検出回路の一態様は、電力供給装置からパワーコンディショナに電力を伝送する伝送路において発生するアークを検出するアーク検出回路であって、前記伝送路に流れる電流を検出する電流検出器と、前記アークが発生していない場合に前記伝送路に流れる電流の周波数特性であるベース特性を記憶する記憶部と、前記電流検出器によって検出される電流の周波数特性である検出特性と、前記ベース特性との比較結果に基づいて、前記アークの発生を判定するアーク判定部とを備える。
 また、上記目的を達成するために、本発明に係る開閉器システムの一態様は、上記アーク検出回路と、上記アーク検出回路から出力される信号に基づいて制御される開閉器とを備える。
 また、上記目的を達成するために、本発明に係るパワーコンディショナシステムの一態様は、上記アーク検出回路と、上記電力供給装置からの電力が前記伝送路を介して供給されるパワーコンディショナとを備える。
 また、上記目的を達成するために、本発明に係るアーク検出方法の一態様は、電力供給装置からパワーコンディショナに電力を伝送する伝送路において発生するアークを検出するアーク検出方法であって、前記伝送路に流れる電流を検出する電流検出ステップと、前記アークが発生していない場合に前記伝送路に流れる電流の周波数特性であるベース特性を記憶する記憶ステップと、前記電流検出ステップにおいて検出される電流の周波数特性である検出特性と、前記ベース特性との比較結果に基づいて、前記アークの発生を判定する判定ステップとを含む。
 本発明の一態様によれば、電力供給装置からの電力を伝送する伝送路において発生するアークを正確に検出できるアーク検出回路などを提供できる。
図1は、実施の形態1に係るアーク検出回路の全体構成を示すブロック図である。 図2は、実施の形態1に係るアーク検出回路におけるアーク検出方法を示すフローチャートである。 図3は、実施の形態1に係る記憶部が記憶するベース特性に対応する電流の周波数スペクトルの一例を示すグラフである。 図4は、実施の形態1に係るアーク判定部において用いられる検出特性に対応する電流の周波数スペクトルの一例を示すグラフである。 図5は、実施の形態1に係るアーク判定部で算出される、検出特性に対応する周波数スペクトルとベース特性に対応する周波数スペクトルとの差の周波数スペクトルの一例を示すグラフである。 図6は、実施の形態2に係るアーク検出回路の全体構成を示すブロック図である。 図7は、実施の形態2に係る記憶部が記憶する複数のベース特性に対応する電流の周波数スペクトルを示すグラフである。 図8は、実施の形態1に係るアーク検出回路10の他の接続態様を示すブロック図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。以下に説明する実施の形態は、いずれも本発明の一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態等は、一例であって本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
 (実施の形態1)
 [1-1.全体構成]
 実施の形態1に係るアーク検出回路の全体構成について、図面を用いて説明する。
 図1は、本実施の形態に係るアーク検出回路10の全体構成を示すブロック図である。なお、図1においては、アーク検出回路10が設けられる伝送路36と、伝送路36に接続されたPVパネル30、開閉器40及びパワーコンディショナ(パワコン)50と、開閉器40の開閉を切り換える開閉制御回路42とが併せて示されている。
 PVパネル30は、直流電力を伝送路36に出力する電力供給装置の一例である。なお、本実施の形態では、電力供給装置の一例としてPVパネル30を用いているが、電力供給装置はPVパネル30に限定されない。例えば、電力供給装置はPVパネル30以外の発電装置であってもよい。
 伝送路36は、PVパネル30などの電力供給装置から出力された直流電力をパワーコンディショナ50に伝送する電力線である。伝送路36は、銅などの導電性部材からなる導線と、当該導線を保護する絶縁部材からなる被覆とを有する。例えば、当該被覆が劣化した場合に、アークが発生し得る。
 開閉器40は、伝送路36の開閉を切り換える電力機器である。本実施の形態では、開閉器40は、開閉制御回路42からの信号に基づいて開閉が切り換えられる。
 開閉制御回路42は、開閉器40の開閉を制御するドライバである。本実施の形態では、開閉制御回路42は、アーク検出回路10からの信号に基づいて開閉器40の開閉を制御する。
 パワーコンディショナ50は、電力供給装置から出力される直流電力が、伝送路36を介して供給される機器であり、供給された直流電力を交流電力に変換して出力する。本実施の形態では、パワーコンディショナ50は、例えば、MPPT(Maximum Power Point Tracking)方式を採用しており、PVパネル30から供給される直流電力の電流及び電圧を、それぞれ電力が最大となる値に調整する。パワーコンディショナ50は、入力された直流電力を、例えば、電圧が100Vで、周波数が50Hz又は60Hzの交流電力に変換する。これによりパワーコンディショナ50から出力される交流電力を家庭用電気機器などで使用できる。
 アーク検出回路10は、電力供給装置からパワーコンディショナ50に電力を伝送する伝送路36において発生するアークを検出する回路である。アーク検出回路10は、電流検出器12と、アーク判定部16と、記憶部18とを備える。
 電流検出器12は、伝送路36に流れる電流を検出する検出器である。本実施の形態では、PVパネル30から供給される電流を検出し、検出した電流に対応する信号をアーク判定部16及び記憶部18に出力する。電流検出器12は、例えば、微小な抵抗値を有する抵抗素子などで構成し得る。このような抵抗素子を伝送路36に挿入し、抵抗素子に印可される電圧を検出することで、伝送路36に流れる電流に対応する値を検出できる。
 記憶部18は、アークが発生していない場合に伝送路36に流れる電流の周波数特性であるベース特性を記憶する。本実施の形態では、記憶部18は、伝送路36でアークが発生していない場合に電流検出器12で検出された電流に基づいてベース特性を取得し、当該ベース特性を記憶する。記憶部18には、例えば、アークが発生していない場合に電流検出器12から入力された電流信号の時間波形をフーリエ変換することによって電流信号の周波数スペクトルを取得する。記憶部18は、取得した周波数スペクトルをベース特性として記憶する。以上のように、本実施の形態に係る記憶部18は、アークが発生していない場合に検出された電流に基づいてベース特性を取得する。
 アーク判定部16は、電流検出器12によって検出される電流の周波数特性である検出特性と、記憶部18が記憶するベース特性との比較結果に基づいて、アークの発生を判定する処理部である。アーク判定部16には、伝送路36に流れる電流に対応する電流信号が電流検出器12から入力される。アーク判定部16は、例えば、電流信号の時間波形をフーリエ変換することによって電流信号の周波数スペクトルを取得する。アーク判定部16は、取得した周波数スペクトルを検出特性としてアークの発生の判定に用いる。
 本実施の形態では、検出特性に対応する周波数スペクトルとベース特性に対応する周波数スペクトルとの差である電流差を算出し、電流差の周波数スペクトルの最大値が、第一閾値を超える場合には、伝送路36でアークが発生したと判定し、第一閾値以下である場合には、伝送路36でアークが発生していないと判定する。ここで、第一閾値は実験に基づいて決定される。例えば、伝送路36でアークが発生している場合の検出特性と、アークが発生していない場合の検出特性(つまりベース特性)とを予め取得し、これらに対応する周波数スペクトルの差の最大値以下の値を第一閾値と定めてもよい。
 アーク判定部16は、アークが発生したと判定した場合に、開閉制御回路42に信号を出力する。これに伴い、開閉制御回路42から、開閉器40が開状態となるように制御するための信号が出力される。これにより、開閉器40が開状態となり、PVパネル30からパワーコンディショナ50への電力の伝送が遮断される。これにより、アークが発生した状態で、電力が伝送され続けることを抑制できる。
 アーク判定部16は、例えば、マイコン(MCU;Micro-Controller Unit)で実現される。マイコンは、プログラムが格納されたROM、RAM、プログラムを実行するプロセッサ(CPU;Central Processing Unit)、タイマ、A/D変換器やD/A変換器を含む入出力回路などを有する1チップの半導体集積回路である。
 [1-2.動作]
 次に、本実施の形態に係るアーク検出回路10の動作について図面を用いて説明する。
 図2は、本実施の形態に係るアーク検出回路10におけるアーク検出方法を示すフローチャートである。図3は、本実施の形態に係る記憶部18が記憶するベース特性に対応する電流の周波数スペクトルの一例を示すグラフである。図4は、本実施の形態に係るアーク判定部16において用いられる検出特性に対応する電流の周波数スペクトルの一例を示すグラフである。なお、図4には、アークが発生している場合にアーク判定部16が取得する検出特性に対応する電流の周波数スペクトルの一例が示されている。図5は、本実施の形態に係るアーク判定部16で算出される、検出特性に対応する周波数スペクトルとベース特性に対応する周波数スペクトルとの差の周波数スペクトルの一例を示すグラフである。
 図2に示されるように、まず、アーク検出回路10の記憶部18は、ベース特性を記憶する(S10)。本実施の形態では、記憶部18は、伝送路36でアークが発生していない場合に電流検出器12で検出された電流に基づいて図3に示されるような周波数スペクトルを有するベース特性を取得し、当該ベース特性を記憶する。ベース特性には、パワーコンディショナ50、伝送路36に起因するノイズなど、アークに無関係なノイズが含まれる。
 続いて、電流検出器12は、電力供給装置から伝送路36を介して供給される電流を検出する(S11)。本実施の形態では、電流検出器12は、電力供給装置の一例であるPVパネル30から供給される電流を検出し、検出した電流に対応する電流信号をアーク判定部16に出力する。
 続いて、アーク判定部16は、電流検出器12から入力された電流信号から検出特性を取得する(S12)。アーク判定部16には、伝送路36に流れる電流に対応する電流信号が電流検出器12から入力され、アーク判定部16は、例えば、電流信号の時間波形をフーリエ変換することによって、図4に示されるような電流信号の周波数スペクトルを取得する。検出特性には、アークに無関係なノイズと、アークに起因するノイズとが含まれる。
 続いて、アーク判定部16は、ステップS12で取得した検出特性と、記憶部18が記憶するベース特性とを比較する。本実施の形態では、検出特性に対応する周波数スペクトルとベース特性に対応する周波数スペクトルとの差である電流差と、第一閾値とを比較する(S13)。検出特性に対応する周波数スペクトルとベース特性に対応する周波数スペクトルとの差である電流差は、図5に示されるような周波数スペクトルを有する。このような電流差を求めることにより、図5に示されるように、ベース特性と検出特性とに共通するノイズ成分のほとんどを除去できる。一方、図5に示される電流差において除去されていないノイズの周波数帯域は、アークに起因するノイズの周波数帯域と考えられる。伝送路36においてアークが発生する場合、固有の周波数帯のノイズが増加する。
 図2に戻って、アーク判定部16は、上記電流差が第一閾値より大きくないと判断した場合には(S13でNO)、ステップS11に戻る。
 一方、アーク判定部16は、上記電流差が第一閾値より大きいと判断した場合には(S13でYES)、アークが発生したと判定する(S14)。つまり、アーク検出回路10はアークを検出する。アーク判定部16は、アークが発生したと判定した場合に、開閉制御回路42に信号を出力する。これに伴い、開閉制御回路42によって開閉器40が開状態とされ、PVパネル30からパワーコンディショナ50への電力の伝送が遮断される。
 以上のように、本実施の形態に係るアーク検出回路10においては、アークが発生していない場合における電流のベース特性と、検出特性との比較結果に基づいて、アークの発生を判定する。このため、ベース特性に含まれるアークに無関係なノイズと、ベース特性に含まれず、かつ、検出特性に含まれるアークに起因するノイズとを区別することができる。このため、アーク検出回路10では、アークに無関係なノイズによるアークの誤検出を低減できる。つまり、本実施の形態に係るアーク検出回路10においては、正確にアークを検出できる。
 また、本実施の形態に係る記憶部18は、アークが発生していない場合に検出された電流に基づいてベース特性を取得するため、アーク検出回路10では検出特性と同様に取得されたベース特性を用いることができる。これにより、ベース特性及び検出特性のそれぞれに含まれるアークに無関係なノイズの周波数特性をほぼ一致させることができる。このため、例えば、上述のように、検出特性とベース特性との差を算出することで、アークに無関係なノイズと、アークに起因するノイズとをより明確に区別することができる。
 [1-3.まとめ]
 以上のように、本実施の形態に係るアーク検出回路10は、伝送路36に流れる電流を検出する電流検出器12と、アークが発生していない場合に伝送路36に流れる電流の周波数特性であるベース特性を記憶する記憶部18と、電流検出器12によって検出される電流の周波数特性である検出特性と、ベース特性との比較結果に基づいて、アークの発生を判定するアーク判定部16とを備える。
 これにより、ベース特性に含まれるアークに無関係なノイズと、ベース特性に含まれず、かつ、検出特性に含まれるアークに起因するノイズとを区別することができる。このため、アーク検出回路10では、アークに無関係のノイズによるアークの誤検出を低減できる。つまり、本実施の形態に係るアーク検出回路10においては、正確にアークを検出できる。
 また、アーク検出回路10において、記憶部18は、アークが発生していない場合に検出された電流に基づいてベース特性を取得してもよい。
 このように、アーク検出回路10では、検出特性と同様に取得されたベース特性を用いることができる。これにより、ベース特性及び検出特性のそれぞれに含まれるアークに無関係なノイズの周波数特性をほぼ一致させることができる。このため、例えば、上述のように、検出特性とベース特性との差を算出することで、アークに無関係なノイズと、アークに起因するノイズとをより明確に区別することができる。
 また、本実施の形態に係るアーク検出方法は、伝送路36に流れる電流を検出する電流検出ステップと、アークが発生していない場合に伝送路36に流れる電流の周波数特性であるベース特性を記憶する記憶ステップと、電流検出ステップにおいて検出される電流の周波数特性である検出特性と、ベース特性との比較結果に基づいて、アークの発生を判定する判定ステップとを含む。
 これにより、アーク検出回路10と同様の効果を奏することができる。
 (実施の形態2)
 次に、実施の形態2に係るアーク検出回路について説明する。本実施の形態に係るアーク検出回路は、パワーコンディショナの運転状況に応じて複数のベース特性を使い分ける点において、実施の形態1に係るアーク検出回路10と相違する。以下、本実施の形態に係るアーク検出回路について、実施の形態1に係るアーク検出回路10との相違点を中心に図面を用いて説明する。
 図6は、本実施の形態に係るアーク検出回路110の全体構成を示すブロック図である。図7は、本実施の形態に係る記憶部118が記憶する複数のベース特性に対応する電流の周波数スペクトルを示すグラフである。
 図6に示されるように、アーク検出回路110は、実施の形態1に係るアーク検出回路10と同様に、電流検出器12と、アーク判定部116と、記憶部118とを備える。
 アーク検出回路110は、アーク判定部116及び記憶部118の構成において、実施の形態1に係るアーク判定部16と相違する。
 本実施の形態に係る記憶部118は、パワーコンディショナ50の複数の運転状況にそれぞれ対応する複数のベース特性を記憶する。一般に、パワーコンディショナ50に供給される電力に応じて、パワーコンディショナ50において発生するノイズの強度は変化する。そのため、パワーコンディショナ50の運転状況に応じて、図7に示されるように、ベース特性は変化する。なお、図7では、パワーコンディショナ50への入力電力が異なる三つの場合のベース特性が示されている。一般に、パワーコンディショナへの入力電力が大きくなるほどパワーコンディショナにおいて発生するノイズは増大する。
 そこで、本実施の形態では、アーク検出回路110がパワーコンディショナ50の複数の運転状況にそれぞれ対応する複数のベース特性を記憶することで、パワーコンディショナ50の運転状況に応じて、複数のベース特性を使い分けることができる。これにより、検出特性に含まれるアークに無関係なノイズ特性と、ベース特性との誤差をより一層低減することができる。
 本実施の形態に係るアーク判定部116は、記憶部118が記憶する複数のベース特性の中からパワーコンディショナの運転状況に基づいて選択された一つのベース特性と検出特性との比較結果に基づいて、伝送路36におけるアークの発生を判定する。本実施の形態では、アーク判定部116には、パワーコンディショナ50から、運転状況を示す信号が入力される。これにより、記憶部118が記憶する複数のベース特性の中からパワーコンディショナ50の運転状況に適したベース特性を選択することができる。なお、アーク判定部116は、他の機器などから当該運転状況を示す情報を取得してもよい。例えば、伝送路36に印加される電圧及び電流に基づいて当該運転状況を示す情報を取得してもよい。
 以上のように、本実施の形態に係るアーク検出回路110において、記憶部118は、パワーコンディショナ50の複数の運転状況にそれぞれ対応する複数のベース特性を記憶し、アーク判定部116は、複数のベース特性の中からパワーコンディショナ50の運転状況に基づいて選択された一つのベース特性と検出特性との比較結果に基づいて、伝送路36におけるアークの発生を判定する。
 これにより、記憶部118がパワーコンディショナ50の複数の運転状況にそれぞれ対応する複数のベース特性を記憶することで、パワーコンディショナ50の運転状況に応じて、複数のベース特性を使い分けることができる。これにより、アーク検出回路110においては、検出特性に含まれるアークに無関係なノイズ特性と、ベース特性との誤差をより一層低減することができるため、より一層正確にアークを検出することができる。
 なお、本実施の形態に係るアーク検出回路110の記憶部118が記憶する複数のベース特性は、実施の形態1に係る記憶部18と同様に、アークが発生していない場合に検出された電流に基づいてベース特性を取得されてもよい。また、複数のベース特性は、予め、実験、シミュレーションなどに基づいて生成され、記憶部118に保存されてもよい。
 また、記憶部118は、複数種類のパワーコンディショナにそれぞれ対応する複数のベース特性を記憶し、アーク判定部116は、複数のベース特性の中からパワーコンディショナの種類に基づいて選択された一つのベース特性と検出特性との比較結果に基づいて、伝送路36におけるアークの発生を判定してもよい。
 これにより、パワーコンディショナの種類に応じたベース特性を用いることができるため、伝送路36に接続されるパワーコンディショナの種類が変更された場合にも、検出特性に含まれるアークに無関係なノイズ特性と、ベース特性との誤差を低減することができる。
 (変形例など)
 以上、本発明について、各実施の形態に基づいて説明したが、本発明は、上記各実施の形態に限定されるものではない。
 例えば、上記各実施の形態に係るアーク検出回路は、開閉制御回路42に信号を出力して、開閉器40を開状態としたが、アーク検出回路からの信号は、開閉制御回路42以外の機器に入力されてもよい。このような変形例について、図面を用いて説明する。図8は、実施の形態1に係るアーク検出回路10の他の接続態様を示すブロック図である。図8に示されるように、アーク検出回路10は、パワーコンディショナ50に信号を出力してもよい。パワーコンディショナ50は、アーク検出回路からの信号を受けて、動作を停止してもよいし、伝送路36からの入力電力を遮断してもよい。これにより、アークが発生した場合に、PVパネル30からパワーコンディショナ50への電力の供給を停止することができる。
 また、本発明の一態様は、上記各実施の形態に係るアーク検出回路と、アーク検出回路から出力される信号に基づいて制御される開閉器40とを備える開閉器システムとして実現されてもよい。また、開閉器40が、アーク検出回路を備えてもよい。
 また、本発明の一態様は、上記各実施の形態に係るアーク検出回路と、電力供給装置からの電力が伝送路36を介して供給されるパワーコンディショナ50とを備えるパワーコンディショナシステムとして実現されてもよい。また、パワーコンディショナ50が、アーク検出回路を備えてもよい。
 また、上記各実施の形態に係るアーク検出回路は、マイコンによってソフトウェア的に実現されたが、パーソナルコンピュータなどの汎用コンピュータにおいてソフトウェア的に実現されてもよい。さらに、アーク検出回路は、A/D変換器、論理回路、ゲートアレイ、D/A変換器等で構成される専用の電子回路によってハードウェア的に実現されてもよい。
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
10、110 アーク検出回路
12 電流検出器
16、116 アーク判定部
18、118 記憶部
30 PVパネル(電力供給装置)
36 伝送路
40 開閉器
50 パワーコンディショナ(パワコン)

Claims (7)

  1.  電力供給装置からパワーコンディショナに電力を伝送する伝送路において発生するアークを検出するアーク検出回路であって、
     前記伝送路に流れる電流を検出する電流検出器と、
     前記アークが発生していない場合に前記伝送路に流れる電流の周波数特性であるベース特性を記憶する記憶部と、
     前記電流検出器によって検出される電流の周波数特性である検出特性と、前記ベース特性との比較結果に基づいて、前記アークの発生を判定するアーク判定部とを備える
     アーク検出回路。
  2.  前記記憶部は、前記パワーコンディショナの複数の運転状況にそれぞれ対応する複数の前記ベース特性を記憶し、
     前記アーク判定部は、複数の前記ベース特性の中から前記パワーコンディショナの運転状況に基づいて選択された一つの前記ベース特性と前記検出特性との比較結果に基づいて、前記アークの発生を判定する
     請求項1に記載のアーク検出回路。
  3.  前記記憶部は、複数種類の前記パワーコンディショナにそれぞれ対応する複数の前記ベース特性を記憶し、
     前記アーク判定部は、複数の前記ベース特性の中から前記パワーコンディショナの種類に基づいて選択された一つの前記ベース特性と前記検出特性との比較結果に基づいて、前記アークの発生を判定する
     請求項1に記載のアーク検出回路。
  4.  前記記憶部は、前記アークが発生していない場合に検出された電流に基づいて前記ベース特性を取得する
     請求項1~3のいずれか1項に記載のアーク検出回路。
  5.  請求項1~4のいずれか1項に記載のアーク検出回路と、
     前記アーク検出回路から出力される信号に基づいて制御される開閉器とを備える
     開閉器システム。
  6.  請求項1~4のいずれか1項に記載のアーク検出回路と、
     前記電力供給装置からの電力が前記伝送路を介して供給されるパワーコンディショナとを備える
     パワーコンディショナシステム。
  7.  電力供給装置からパワーコンディショナに電力を伝送する伝送路において発生するアークを検出するアーク検出方法であって、
     前記伝送路に流れる電流を検出する電流検出ステップと、
     前記アークが発生していない場合に前記伝送路に流れる電流の周波数特性であるベース特性を記憶する記憶ステップと、
     前記電流検出ステップにおいて検出される電流の周波数特性である検出特性と、前記ベース特性との比較結果に基づいて、前記アークの発生を判定する判定ステップとを含む
     アーク検出方法。
PCT/JP2018/003202 2017-02-14 2018-01-31 アーク検出回路、開閉器システム、パワーコンディショナシステム及びアーク検出方法 WO2018150877A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018568091A JP6807552B2 (ja) 2017-02-14 2018-01-31 アーク検出回路、開閉器システム、パワーコンディショナシステム及びアーク検出方法
US16/483,414 US11088528B2 (en) 2017-02-14 2018-01-31 Arc detection circuit, switch system, power conditioner system and arc detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-025456 2017-02-14
JP2017025456 2017-02-14

Publications (1)

Publication Number Publication Date
WO2018150877A1 true WO2018150877A1 (ja) 2018-08-23

Family

ID=63169904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003202 WO2018150877A1 (ja) 2017-02-14 2018-01-31 アーク検出回路、開閉器システム、パワーコンディショナシステム及びアーク検出方法

Country Status (3)

Country Link
US (1) US11088528B2 (ja)
JP (1) JP6807552B2 (ja)
WO (1) WO2018150877A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109239560A (zh) * 2018-11-29 2019-01-18 宁波习羽智能科技有限公司 故障电弧检测方法、装置及存储介质
JP2020076710A (ja) * 2018-11-09 2020-05-21 パナソニックIpマネジメント株式会社 アーク検出回路、ブレーカ、パワーコンディショナ、太陽光パネル、太陽光パネル付属モジュール、接続箱、アーク検出方法及びプログラム
CN112305308A (zh) * 2020-10-21 2021-02-02 阳光电源股份有限公司 一种直流电弧检测方法、装置及组串逆变器
JP2021063663A (ja) * 2019-10-10 2021-04-22 パナソニックIpマネジメント株式会社 アーク検出装置、ブレーカ、パワーコンディショナ、太陽光パネル、太陽光パネル付属モジュール、接続箱、アーク検出システム及びアーク検出方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11329471B2 (en) * 2017-10-27 2022-05-10 Panasonic Intellectual Property Management Co., Ltd. Arc detection circuit, breaker system, connection box system, power conditioner, micro inverter, DC optimizer, and arc detection method
EP4060009B1 (en) 2021-03-19 2023-05-03 Evonik Operations GmbH Viscosity index improver and lubricant compositions thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134445A (ja) * 2013-01-10 2014-07-24 Mitsubishi Electric Corp アーク検出装置
JP2015211606A (ja) * 2014-04-30 2015-11-24 三菱電機株式会社 直流発電システムおよび直流発電システムの保護方法
JP2016166773A (ja) * 2015-03-09 2016-09-15 オムロン株式会社 アーク検出装置およびアーク検出方法
US20160282398A1 (en) * 2015-03-25 2016-09-29 Delta Electronics (Shanghai) Co., Ltd Method and Device for ARC Fault Detection for Photovoltaic Inverter and Photovoltaic Inverter Using the Same

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5452223A (en) 1993-08-20 1995-09-19 Eaton Corporation Arc detection using current variation
US6567250B1 (en) * 1998-02-19 2003-05-20 Square D Company Arc fault protected device
JP2001045652A (ja) 1999-07-30 2001-02-16 Matsushita Electric Works Ltd アーク検出器
JP2003317598A (ja) 2002-04-19 2003-11-07 Matsushita Electric Works Ltd 回路遮断器
US7177125B2 (en) 2003-02-12 2007-02-13 Honeywell International Inc. Arc fault detection for SSPC based electrical power distribution systems
JP5369490B2 (ja) 2008-05-13 2013-12-18 シンフォニアテクノロジー株式会社 アーク検出装置及びこれを備えた航空機
JP5419579B2 (ja) 2009-05-28 2014-02-19 京セラ株式会社 アーク検出手段とそれを用いた制御手段及び連絡手段
WO2011011711A2 (en) 2009-07-23 2011-01-27 Enphase Energy, Inc. Method and apparatus for detection and control of dc arc faults
KR101993746B1 (ko) * 2012-09-10 2019-09-30 삼성전자주식회사 아크 결함 검출 장치, 그를 가지는 전기기기 및 그 제어 방법
EP3041104B1 (en) * 2013-08-26 2021-06-02 Mitsubishi Electric Corporation Dc power generation system and protection method for dc power generation system
CN105659348A (zh) * 2013-10-17 2016-06-08 三菱电机株式会社 电力开关控制装置及断开控制方法
JP6299507B2 (ja) * 2014-07-29 2018-03-28 オムロン株式会社 太陽光発電システムの保護装置および太陽光発電システムの保護方法
US9664723B2 (en) * 2015-01-26 2017-05-30 Hamilton Sundstrand Corporation Systems and methods for arc detection
US20170025842A1 (en) * 2015-04-28 2017-01-26 Thomas L. Peterson Method and apparatus for monitoring and controlling electrical energy consumption
US9837809B2 (en) * 2015-05-27 2017-12-05 Korea Institute Of Energy Research Arc detection apparatus, arc detecting method, and power system
JP6642075B2 (ja) * 2016-02-10 2020-02-05 オムロン株式会社 アーク対応制御装置およびアーク対応制御方法
JP6597394B2 (ja) * 2016-02-29 2019-10-30 オムロン株式会社 アーク発生位置検出装置およびアーク発生位置検出方法
US11277000B2 (en) * 2016-06-21 2022-03-15 Mitsubishi Electric Corporation DC electrical circuit protection apparatus and ARC detection method
TW201806289A (zh) * 2016-08-02 2018-02-16 台達電子工業股份有限公司 智慧型開關系統及開關箱控制方法
US10875406B2 (en) * 2017-01-19 2020-12-29 Solaredge Technologies Ltd. Electric-vehicle charging apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134445A (ja) * 2013-01-10 2014-07-24 Mitsubishi Electric Corp アーク検出装置
JP2015211606A (ja) * 2014-04-30 2015-11-24 三菱電機株式会社 直流発電システムおよび直流発電システムの保護方法
JP2016166773A (ja) * 2015-03-09 2016-09-15 オムロン株式会社 アーク検出装置およびアーク検出方法
US20160282398A1 (en) * 2015-03-25 2016-09-29 Delta Electronics (Shanghai) Co., Ltd Method and Device for ARC Fault Detection for Photovoltaic Inverter and Photovoltaic Inverter Using the Same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020076710A (ja) * 2018-11-09 2020-05-21 パナソニックIpマネジメント株式会社 アーク検出回路、ブレーカ、パワーコンディショナ、太陽光パネル、太陽光パネル付属モジュール、接続箱、アーク検出方法及びプログラム
JP7170221B2 (ja) 2018-11-09 2022-11-14 パナソニックIpマネジメント株式会社 アーク検出回路、ブレーカ、パワーコンディショナ、太陽光パネル、太陽光パネル付属モジュール、接続箱、アーク検出方法及びプログラム
CN109239560A (zh) * 2018-11-29 2019-01-18 宁波习羽智能科技有限公司 故障电弧检测方法、装置及存储介质
CN109239560B (zh) * 2018-11-29 2021-04-13 浙江习羽智能科技有限公司 故障电弧检测方法、装置及存储介质
JP2021063663A (ja) * 2019-10-10 2021-04-22 パナソニックIpマネジメント株式会社 アーク検出装置、ブレーカ、パワーコンディショナ、太陽光パネル、太陽光パネル付属モジュール、接続箱、アーク検出システム及びアーク検出方法
JP7325010B2 (ja) 2019-10-10 2023-08-14 パナソニックIpマネジメント株式会社 アーク検出装置、ブレーカ、パワーコンディショナ、太陽光パネル、接続箱、アーク検出システム及びアーク検出方法
CN112305308A (zh) * 2020-10-21 2021-02-02 阳光电源股份有限公司 一种直流电弧检测方法、装置及组串逆变器
CN112305308B (zh) * 2020-10-21 2023-08-11 阳光电源股份有限公司 一种直流电弧检测方法、装置及组串逆变器

Also Published As

Publication number Publication date
US11088528B2 (en) 2021-08-10
US20200014188A1 (en) 2020-01-09
JP6807552B2 (ja) 2021-01-06
JPWO2018150877A1 (ja) 2019-11-07

Similar Documents

Publication Publication Date Title
WO2018150877A1 (ja) アーク検出回路、開閉器システム、パワーコンディショナシステム及びアーク検出方法
JP6132919B2 (ja) 直流発電システムおよび直流発電システムの保護方法
WO2018150876A1 (ja) アーク検出回路、開閉器システム、パワーコンディショナシステム及びアーク検出方法
JP6246062B2 (ja) 直流発電システムおよび直流発電システムの保護方法
WO2018150696A1 (ja) アーク検出装置およびアーク検出方法
CN111279206B (zh) 电弧检测电路、断路器系统、接线箱系统、功率调节器、微型逆变器、直流优化器以及电弧检测方法
WO2019208027A1 (ja) アーク検出回路、ブレーカ、パワーコンディショナ、太陽光パネル、太陽光パネル付属モジュールおよび接続箱
JP7170221B2 (ja) アーク検出回路、ブレーカ、パワーコンディショナ、太陽光パネル、太陽光パネル付属モジュール、接続箱、アーク検出方法及びプログラム
JP3867677B2 (ja) 冷却装置の制御回路及び冷却装置の制御方法
US8487570B2 (en) Method and device for operating an electric drive with the aid of a phase angle control
US11181569B2 (en) Arc detection method and apparatus using statistical value of electric current
JP7117630B2 (ja) アーク検出回路、ブレーカ、パワーコンディショナ、太陽光パネル、太陽光パネル付属モジュール、接続箱、アーク検出方法およびプログラム
JP7325010B2 (ja) アーク検出装置、ブレーカ、パワーコンディショナ、太陽光パネル、接続箱、アーク検出システム及びアーク検出方法
JP3879653B2 (ja) アーク電流判別方法、及びアーク電流判別装置
US7405912B2 (en) Arc fault detection apparatus using microcomputer
JP2012059502A (ja) 転流式遮断装置
JP6958146B2 (ja) アーク検出装置
JP2003125532A (ja) トラッキングブレーカ
JP6733818B1 (ja) 電力変換装置
JP2001016759A (ja) 短絡の検出方法、及びその方法を用いた回路遮断方法及び警報出力方法、及びその回路遮断方法または警報出力方法を用いたプラグまたはコンセント。
JP2005117749A (ja) アーク電流検出方法、及びそれを用いたアーク電流検出装置、回路遮断器
JP2004022462A (ja) トラッキングブレーカ
JPH08111931A (ja) 過負荷検出装置及び白熱灯制御装置
JP5587127B2 (ja) コード短絡検知回路及びコンセント装置
JP4462870B2 (ja) 回路遮断器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754793

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568091

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18754793

Country of ref document: EP

Kind code of ref document: A1