WO2018150071A1 - Aparato y método de medición en línea de pulsos láser con polarización dependiente del tiempo - Google Patents

Aparato y método de medición en línea de pulsos láser con polarización dependiente del tiempo Download PDF

Info

Publication number
WO2018150071A1
WO2018150071A1 PCT/ES2018/070116 ES2018070116W WO2018150071A1 WO 2018150071 A1 WO2018150071 A1 WO 2018150071A1 ES 2018070116 W ES2018070116 W ES 2018070116W WO 2018150071 A1 WO2018150071 A1 WO 2018150071A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
ordinary
extraordinary
components
spectral
Prior art date
Application number
PCT/ES2018/070116
Other languages
English (en)
French (fr)
Inventor
Iñigo SOLA LARRAÑAGA
Benjamín ALONSO FERNÁNDEZ
Rosa María ROMERO MUÑIZ
Original Assignee
Universidad De Salamanca
Sphere Ultrafast Photonics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Salamanca, Sphere Ultrafast Photonics filed Critical Universidad De Salamanca
Priority to US16/484,605 priority Critical patent/US11105687B2/en
Priority to EP18719956.7A priority patent/EP3584552A1/en
Publication of WO2018150071A1 publication Critical patent/WO2018150071A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J4/00Measuring polarisation of light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J11/00Measuring the characteristics of individual optical pulses or of optical pulse trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0057Temporal shaping, e.g. pulse compression, frequency chirping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/0014Monitoring arrangements not otherwise provided for

Definitions

  • the object of the invention is framed in the field of Physics
  • this document is directed to the online measurement of laser pulses with time-dependent polarization and a method of online measurement of laser pulses with time-dependent polarization that allow to carry out an online measurement of laser pulses whose polarization depends of time, that is, it is variable over time throughout the duration of said pulse.
  • the technique is based on a double channel configuration, measuring in a same shot in each of said channels, unlike phase of each pulse polarization component under study with the corresponding auxiliary reference pulse components.
  • another approach to the problem was presented using tomographic reconstruction in P. Schlup, O. Masihzadeh, L. Xu, R. Trebino, and RA Barteis, "Tomographic retrieval of the polarization s ⁇ a ⁇ e of an ultrafast laser pulse," Opiles Le ⁇ ters 33, 267 -269 (2008).
  • the technique and apparatus of the present invention are based on an online configuration, in contrast to the dual configuration described above by W. J, Walecki, DN Fittinghoff, A. L Smir ⁇ , and R. Trebino, "Characierization heard the poiarization state heard weak uitrashort coherent sign by duai-channei spectrai interferometry," Optics Letters 22, 81-83 (1997),
  • a second auxiliary reference beam is dispensed with, while one of the pulse polarization components under study plays the role of said reference. This allows an online configuration of the device, robust and simple, avoiding noise and instability (vibrations, drafts, etc.) associated with classic interferometers. DESCRIPTION OF THE INVENTION
  • This document describes an apparatus that allows the characterization of light with polarization dependent on the time that overcomes the disadvantages and disadvantages of the aforementioned, while providing not only greater stability against vibrations, but also is easier to align than the Known devices so far.
  • a second aspect of the invention corresponding to a method of measuring laser pulses in line with time-dependent polarization.
  • This measurement method is first carried out with a known polarization beam, in order to calibrate the spectral phases introduced by the measurement system.
  • the procedure to measure the beam to be analyzed is reproduced.
  • an auxiliary non-vector pulse reconstruction system that is, presenting only one linear polarization component
  • the spectral phase of one of the two beam components ordinary or extraordinary
  • the amplitudes and spectral phases of the two polarization components, ordinary and extraordinary are extracted from the beam a analyze. Subsequently, by applying Fourier transformation to said spectral amplitudes and phases, the evolution of the ordinary and extraordinary components of the beam to be analyzed is temporarily reconstructed, thereby obtaining the polarization state of the time-dependent pulses of light.
  • a measurement of the pulse spectrum is made with the linear poiarizer positioned so that only the ordinary polarization component of the birefringent system (120) can pass through. In this way the spectrum of said component is known.
  • a measurement of the pulse spectrum is made with the linear poiarizer positioned so that only the extraordinary polarization component of the birefringent system can pass through. In this way the spectrum of said component is known.
  • a measurement of the pulse spectrum is made with the linear poiarizer placed at an angle between the vibration directions of the ordinary and extraordinary polarization components of the birefringent system ⁇ for example, 45 e ).
  • the spectral interferences in said spectrum contain information of the phase difference between both components.
  • One of the two pulse polarization components is selected and its spectral phase is characterized by measuring it with a standard technique for pulse reconstruction with constant linear polarization (eg FROG, SPIDER, d-scan). In this way the reconstruction of the reference pulse is obtained.
  • This selection can be made in several ways, for example, a linear poiarizer can be used, which allows only the component to be measured to pass through.
  • Another example would be to measure it with the assembly polarizer by selecting the reference and measurement component by subtracting the dispersion that the birefringent element can provide or a Brewster angled surface can also be provided, so that the reflected light will be polarized in the direction perpendicular to the plane of incidence.
  • the device Prior to a measurement, the device can be calibrated. For this purpose, a pulse with known polarization will be measured (for example, a pulse with linear polarization at 45 9 between the ordinary and extraordinary directions of the birefringent system). After carrying out the measurement process, the relative phase extracted between both components will be the calibration of the device, which must be subtracted from the measurements that are made. This calibration will be valid as long as the measurements are made with the beam aligned in the device in the same way and provided that the pulse to be measured does not have new spectral components with respect to the pulse used in the calibration.
  • a pulse with known polarization will be measured (for example, a pulse with linear polarization at 45 9 between the ordinary and extraordinary directions of the birefringent system).
  • the relative phase extracted between both components will be the calibration of the device, which must be subtracted from the measurements that are made. This calibration will be valid as long as the measurements are made with the beam aligned in the device in the same way and provided that the pulse to be measured does not have new
  • the beam is aligned, ensuring that it is the same alignment as the calibration. Subsequently, and in a manner similar to that described above, a measurement is made with the poiarizer parallel to the direction of the ordinary component of the birefringent element, a measurement with the poiarizer parallel to the direction of the extraordinary component of the birefringent element and a measured with the intermediate polarizer (typically 45 e , but it could be another).
  • the intermediate polarizer typically 45 e , but it could be another.
  • spectrometer response or monochromator, optical spectrum analyzer, spectral characterization system, etc.
  • polarization an iineally polarized beam can be used, which is rotated The polarization (for example, using a half-wave delay sheet) and the signal measured by the spectrometer for the various orientations is recorded.
  • This calibration can be done only once, it would be valid later, provided that the pulse to be measured does not have new spectral components with respect to! Pulse used in calibration.
  • Figure 1 A flow chart of the method of the second aspect of the invention can be seen in Figure 1, while the different components to be used of the apparatus of the first aspect of the invention.
  • an apparatus for in-line measurement of laser pulses with time-dependent polarization comprising one or more, preferably one, sheets of birefringent material defining a birefringent system (120) , preferably with the optical axis perpendicular to the direction of propagation of! beam, a linear polarizer (130) and a spectrometer (140) in the spectrum range of! make to measure acting as a spectral characterization system; in such a way that a! to pass light through the sheet its extraordinary and ordinary polarization components have a delay between them.
  • a birefringent system 120
  • a linear polarizer 130
  • a spectrometer 140
  • the apparatus object of the first aspect of the invention which comprises a sheet of birefringent material, with the optical axis perpendicular to the direction of propagation of a beam to be measured, means of spectral characterization of the light, as can be Be a spectrometer, in the range of the beam to be measured, and a polarizer line! adapted to select several polarization projections.
  • FIG. 1 He operation or implementation of said apparatus can be seen in Figure 1 where there is an incident beam (101) to be analyzed, which passes through a selection unit (10) to select a polarization component, which is a component of reference (1 12) and lead it to a temporally polarized pulse measurement unit (160);
  • the selection unit (1 10) can be a surface that can be introduced into the optical path on which the beam (101) hits Brewster's angle, a mirror that reflects the beam ( 101) and pass it through a non-linear polarizer with calibrated dispersion, etc. This selection will be made only when you want to measure the reference component (1 12).
  • an outgoing beam to analyze (1 1 1) arrives at a birefringent system (120) that breaks down into two polarization components, ordinary and extraordinary, traveling at different speeds through the system birefringent (120).
  • a resulting beam (121) of the passage through the birefringent system (120) crosses a linear polarizer (130) which will be oriented to select one or more polarization projections.
  • the resulting light (131) which is linearly polarized with respect to certain directions of interest, will be coupled to a spectral analysis unit (140), such as a spectrometer (140), to carry out a spectral analysis in the range of the beam spectrum (101) incident to analyze.
  • the resulting data (141) will be analyzed in a processing module (150).
  • ⁇ Projection in extraordinary wave direction allows to measure the spectrum in said component.
  • Projection in ordinary wave direction allows to measure the spectrum in said component.
  • Projection in an intermediate direction (typically 45 e ): it allows measuring the spectrum by presenting interference between the two delayed components that, through a Fourier filtering process, provides the phase difference between them, essential for the determination of the spectral phase of each of the components, ordinary and extraordinary.
  • the incident beam (101) to be analyzed must be passed through the birefringent system (120), for later select the polarization projection in the ordinary direction of the birefringent medium by rotating the linear polarizer (130),
  • the polarization projection in the ordinary direction of the birefringent medium is detected and measured by the spectrometer (140), to subsequently select the polarization projection in the extraordinary direction of the birefringent medium or birefringent system (120) by rotation of ! linear polarizer (130). Once this is done, the polarization projection can be detected and measured using the spectrometer (140)
  • the polarization projection in a direction with ordinary and extraordinary components (for example, forming an angle of 45 Q with respect to them) of the birefringent medium by rotation of the linear polarizer (130) is then detected and measure the polarization projection with the interference structure between the two components by means of the spectrometer in order to be able to extract, using a spectral interferometry reconstruction algorithm, also using the spectra of the projections of the ordinary and extraordinary components measured in the previous steps, the amplitude of the ordinary and extraordinary components of the beam to be analyzed and the difference between its spectral phases after having passed through the birefringent system.
  • the device can be calibrated with a polarized beam in a known way, for example, linearly with projections in the ordinary and extraordinary propagation components in the birefringent medium, to determine the phase shifts of the two components, ordinary and extraordinary, in said birefringent material.
  • the method of inline measurement of laser pulses with time-dependent polarization of the invention may comprise eliminating the contribution due to the birefringent system to the difference in spectral phases between the ordinary and extraordinary components after the birefringent material, obtained as detailed above, thus extracting the phase difference spectral between the ordinary and extraordinary polarization components before going through matter! birefringent.
  • the polarization components these being an ordinary component and an extraordinary component with respect to the birefringent system, to subsequently measure the spectral phase of the reference component selected above.
  • the measurement of the spectral phase of the reference component of the step can be carried out by means of a constant polarization pulse reconstruction technique, such as FROG, SPIDER and d-scan
  • the difference in spectral phases between the ordinary and extraordinary components before passing through the birefringent material, obtained as previously indicated, is added to the spectral phase of the reference component mentioned above, thus calculating the spectral phase of The other polarization component.
  • the complex spectral amplitudes of the projections of the polarization components are calculated ordinary and extraordinary beam (101).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Se describen un aparato y un método de medición en línea de pulsos láser con polarización dependiente del tiempo que permiten llevar a cabo una medida en línea de pulsos laser cuya polarización depende del tiempo. Para ello se selecciona una o varias proyecciones de polarización: que el espectrómetro detecte la proyección en el eje de propagación extraordinaria de un sistema birrefringente para medir el espectro en dicha componente, la proyección en el eje de propagación ordinaria, para medir el espectro en dicha componente y finalmente una proyección en una dirección intermedia que permite medir el espectro interferencial entre las dos componentes. El método permite extraer la evolución temporal del pulso y su estado de polarización en función del tiempo, las amplitudes y fases espectrales de las diversas proyecciones de polarización del haz.

Description

Figure imgf000003_0001
El objeto de la invención se enmarca en el campo de la Física,
Más concretamente, este documento va dirigido a la medición en línea de pulsos láser con polarización dependiente del tiempo y un método de medición en línea de pulsos láser con polarización dependiente del tiempo que permiten llevar a cabo una medida en línea de pulsos láser cuya polarización depende del tiempo, es decir, ésta es variable en el transcurso del tiempo a lo largo de la duración de dicho pulso. ANTECEDENTES DE LA INVENCIÓN
En las últimas décadas se ha logrado generar pulsos de luz láser de duración extremadamente breve (sobre el rango del íemtosegundo, 10"15 s). Ello ha llevado aparejado el desarrollo de nuevas técnicas de medida de dichos pulsos (autocorrelación, SPIDER, FROG o d-scan, entre otras). Dichas técnicas tienen en común que asumen que la luz está polarizada linealmente y que dicho estado de polarización no cambia a lo largo del pulso. Si bien esto es lo habitual en dichas fuentes de luz, existen situaciones, en número e interés creciente, en las que la luz presenta una cierta polarización cambiante en el tiempo.
La primera técnica de caracterización de polarización variable en el tiempo en rango ultrarrápido {íemtosegundo), conocida como "POLLIWQG", aparece en 1997 en W. J. Wa!ecki, D. N, Fittinghoff, A, L Smirl, and R. Trebino, "Characterization oí the polarization síate oí weak ultrashort coherent signáis by duai-channei spectrai interferometry, " Optics Letters 22, 81-83 (1997). En dicho trabajo, se hace uso de interferometría espectral para obtener la diferencia de fase entre componentes de polarización vertical y horizontal del pulso en estudio refiriéndolas a un pulso auxiliar de referencia (tanto en fase espectral como en polarización). Dicha diferencia de fase entre componentes, junto con las amplitudes espectrales (medidas con un espectrómetro, por ejemplo), permiten la reconstrucción de la polarización en función del tiempo. La técnica se basa en una configuración de doble canal, midiendo en un mismo tiro en cada uno de dichos canales ¡a diferencia de fase de cada componente de polarización del pulso en estudio con las correspondientes componentes del pulso auxiliar de referencia. Posteriormente se presentó otra aproximación al problema empleando reconstrucción tomográfica en P. Schlup, O. Masihzadeh, L. Xu, R. Trebino, and R. A. Barteis, "Tomographic retrieval of the polarization síaíe of an ultrafast láser pulse , " Opiles Leíters 33, 267-269 (2008) . Se basa en medir la reconstrucción temporal de los pulsos en diversas proyecciones de polarización lineal mediante alguna de las técnicas de reconstrucción estándar aptas sólo para dicha polarización, es decir, que no son capaces de ver la evolución de la polarización. Por ejemplo, se miden dos proyecciones perpendiculares y una a 45Q respecto a estas. Conociendo las perpendiculares, se ajusta la fase entre dichas componentes para obtener el resultado de la proyección intermedia a 45s. En este proceso de ajuste se determina la fase que, con ios datos anteriores, permite reconstruir la evolución temporal de la polarización.
Otras técnicas ópticas propuestas en la bibliografía se basan en efecto Talbot como ¡a técnica detallada en C. C. Chen, and S. D, Yang, "All-optical self-referenclng measurement of vectorial optlcal arbitrar/ waveform, " Opiles Express 22, 28838-28844 (2014), en poiarimetría basada en modulación no lineal de la fase como la detallada en E. Lopez-Lago, and fí. de la Fuente, "Measurement of the polarization dynamlcs oí ultrashort pulses by using noniinear phase modulation and channelled spectroscopic polarimetry, " Journal of Optics A-Pure and Applied Optics 7, 400-403 (2005), o en interferometría espaciai-temporal multiplexada en ángulo como la técnica detallada en A. Rakhman, M, W. Lin, and l. Jovanovic, "Angle-multiplexed spatiai-spectral interferometry for simultaneous measurement of spectral phase and polarization state, " Optics Express 21, 26896-26907 (2013). Recientemente se ha propuesto una técnica basada en experimentos de attosecond streaking usando un microscopio de reacción. Esta técnica detallada en R. Boge, S. Heuser, M, Sabbar, M. Lucchini, L Gailmann, C, Cirelii, and U. Keiier, "Revealing the fime-dependent polarization of ultrashort pulses with sub-cyele resolution, " Optics Express 22, 26967-26975 (2014), además de ser muy compleja y cara, se encuentra muy alejada del concepto de la que se presenta.
La técnica y el aparato de la presente invención se basan en una configuración en línea, en contraste con ¡a configuración dual descrita anteriormente de W. J, Walecki, D. N. Fittinghoff, A. L Smirí, and R. Trebino, "Characierization oí the poiarization state oí weak uitrashort coherent signáis by duai-channei spectrai interferometry, " Optics Letters 22, 81- 83 (1997), En ¡a presente invención, se prescinde de un segundo haz auxiliar de referencia, ai tiempo que una de las componentes de polarización del pulso en estudio desempeña el papel de dicha referencia. Esto permite una configuración en línea del aparato, robusta y sencilla, evitando ruidos e inestabilidades (vibraciones, corrientes de aire, etc.) asociados a interferómetros clásicos. DESCRIPCIÓN DE LA INVENCIÓN
Se describe en este documento un aparato que permite caracterizar luz con polarización dependiente del tiempo que supera ios inconvenientes y desventajas de lo anteriormente citado a la par que aporta no sólo una mayor estabilidad frente a vibraciones, sino que además resulta más sencillo de alinear que los dispositivos conocidos hasta el momento.
De esta manera se tiene un primer aspecto de la invención correspondiente a un aparato para la medición en línea de pulsos láser con polarización dependiente del tiempo que permite llevar a cabo, entre otros:
· Estudios de dicroísmo, quiralidad y actividad óptica de especies.
Estudios de fenómenos no lineales de polarización.
Aplicación de espectroscopia óptica en nanoescaia.
Estudios de sistemas moleculares a través de pulsos modulados en polarización. Estudios de pozos cuánticos.
· Caracterización de trenes de pulsos en telecomunicaciones.
Análisis de efectos no lineales sobre luz con polarización dependiente del tiempo.
Asimismo, se tiene un segundo aspecto de la invención correspondiente a un método de medición en línea de pulsos láser con polarización dependiente del tiempo. Este método de medida se efectúa en primer lugar con un haz de polarización conocida, a fin de calibrar las fases espectrales introducidas por el sistema de medición. A continuación, se reproduce el procedimiento para medir el haz a analizar. Mediante un sistema auxiliar de reconstrucción de pulsos no vectoriales (esto es, presentando sólo una componente de polarización lineal), se determina la fase espectral de una de las dos componentes del haz (ordinaria o extraordinaria), que actuará como referencia. Gracias ai retardo entre componentes ordinaria y extraordinarias introducido por un elemento birrefringente y mediante un procedimiento de reconstrucción de interferometría espectral empleando los datos medidos con anterioridad, se extraen las amplitudes y fases espectrales de las dos componentes de polarización, ordinaria y extraordinaria, del haz a analizar. Posteriormente, mediante la aplicación de transformación de Fourier a dichas amplitudes y fases espectrales, se reconstruye temporalmente la evolución de las componentes ordinaria y extraordinaria del haz a analizar, con lo que se obtiene el estado de polarización de los pulsos de luz dependiente del tiempo.
Para llevar a cabo el método del segundo aspecto de la invención se tiene que realizar un proceso de medida que se puede poner en funcionamiento de la siguiente forma:
1 . Se realiza una medida del espectro del pulso con el poiarizador lineal colocado de forma que permita pasar sólo la componente ordinaria de polarización del sistema birrefringente (120). De esta forma se conoce el espectro de dicha componente.
2. Se efectúa una medida del espectro del pulso con el poiarizador lineal colocado de forma que permita pasar sólo la componente extraordinaria de polarización del sistema birrefringente. De esta forma se conoce el espectro de dicha componente.
3. Se efectúa una medida del espectro del pulso con el poiarizador lineal colocado formando un ángulo entre las direcciones de vibración de las componentes ordinaria y extraordinaria de polarización del sistema birrefringente {por ejemplo, 45e). Las interferencias espectrales en dicho espectro contienen información de la diferencia de fase entre ambas componentes.
4. Se selecciona una de las dos componentes de polarización del pulso y se caracteriza su fase espectral midiéndola con una técnica estándar para reconstrucción de pulsos con polarización lineal constante (p.ej. FROG, SPIDER, d-scan). De esta forma se obtiene la reconstrucción del pulso de referencia. Esta selección se puede hacer de varias formas, por ejemplo, se puede usar un poiarizador lineal, que deje pasar sólo la componente a medir. Otro ejemplo sería medirla con el poiarizador del montaje seleccionando la componente de referencia y de la medida sustrayendo la dispersión que pueda aportar el elemento birrefringente o también se puede tener una superficie en ángulo de Brewster, con lo que la luz reflejada estará polarizada en dirección perpendicular al plano de incidencia.
5. Con los datos adquiridos anteriormente, se emplean algoritmos de reconstrucción de interferometría espectral como, por ejemplo, ios descritos en L, Lepetii, G. Cheríaux, and M. Joífre, "Linear techniques oí phase measurement by femtosecond specíraí iníerferomeíry for applicaíions in spectroscopy, " Journal oí íhe Optica! Society oí America B-Optical Physics 12, 2467-2474 (1995). En dicha reconstrucción el pulso de referencia será la componente de polarización previamente reconstruida. De esta forma, se obtendrá la fase espectral de la segunda componente sin ambigüedad con respecto a la primera. Esto permite conocer, mediante transformación de
Fourier, el estado de polarización del pulso en función del tiempo.
Previamente a una medida se puede llevar a cabo un calibrado el aparato. Para ello se efectuará la medida de un pulso con polarización conocida (por ejemplo, un pulso con polarización lineal a 459 entre las direcciones ordinarias y extraordinarias del sistema birrefringente). Tras efectuar el proceso de medida, la fase relativa extraída entre ambas componentes será la calibración del aparato, que se deberá sustraer de las medidas que se efectúen. Esta calibración será válida mientras las medidas se efectúen con el haz alineado en el aparato de la misma forma y siempre que el pulso a medir no tenga nuevas componentes espectrales respecto al pulso usado en la calibración.
Tal y como se ha indicado anteriormente para llevar a cabo una medida de un pulso problema se alinea el haz, garantizando que sea el mismo alineamiento que el de calibración. Posteriormente, y de manera similar a lo anteriormente descrito, se procede a realizar una medida con el poiarizador paralelo a la dirección de la componente ordinaria del elemento birrefringente, una medida con el poiarizador paralelo a la dirección de la componente extraordinaria del elemento birrefringente y una medida con el poiarizador en dirección intermedia (típicamente 45e, pero podría ser otra).
Cabe destacar asimismo que ai efectuar el montaje del aparato se puede hacer necesario calibrar preferentemente la respuesta del espectrómetro (o monocromador, analizador de espectro ópticos, sistema de caracterización espectral, etc.) con la polarización. Para ello, se puede emplear un haz iinealmente polarizado, al que se rota !a polarización (por ejemplo, mediante una lámina de retardo de media onda) y se registra la señal medida por el espectrómetro para las diversas orientaciones. Este calibrado puede efectuarse sólo una vez, sería válido posteriormente, siempre que el pulso a medir no tenga nuevas componentes espectrales respecto a! pulso usado en la calibración.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente: Figura 1 En la figura 1 se aprecia un diagrama de flujo del método del segundo aspecto de la invención a la vez que se aprecian los distintos componentes a utilizar del aparato del primer aspecto de la invención.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
En una realización preferente de un primer aspecto de la invención se tiene un aparato para medición en línea de pulsos láser con polarización dependiente del tiempo, aparato que comprende una o más, preferentemente una, láminas de material birrefringente que definen un sistema birrefringente (120), preferentemente con el eje óptico perpendicular a la dirección de propagación de! haz, un polarizador lineal (130) y un espectrómetro (140) en el rango del espectro de! haz a medir actuando como sistema de caracterización espectral; de tal manera que a! hacer pasar luz a través de la lámina sus componentes de polarización extraordinaria y ordinaria presentan un retraso e tre ellas.
De esta manera se tiene el aparato objeto del primer aspecto de la invención, el cual comprende una lámina de material birrefringente, con el eje óptico perpendicular a la dirección de propagación de un haz a medir, medios de caracterización espectral de la luz, como puede ser un espectrómetro, en el rango del haz a medir, y un polarizador linea! adaptado para seleccionar varias proyecciones de polarización. El funcionamiento o implementación de dicho aparato se puede observar en la figura 1 donde se tiene un haz (101 ) incidente a analizar, el cual pasa a través de una unidad de selección ( 10) para seleccionar una componente de polarización, que es una componente de referencia (1 12) y conducirla a una unidad de medida temporal (160) de pulsos polarizados iinealmente; a modo de ejemplo, pero no limitativo, la unidad de selección (1 10) puede ser una superficie que pueda introducirse en el camino óptico sobre ¡a que el haz (101 ) incida en ángulo de Brewster, un espejo que refleje el haz (101 ) y lo haga pasar por un polarizador no lineal con dispersión calibrada, etc. Esta selección se efectuará sólo cuando se quiere medir la componente de referencia (1 12). Cuando no se efectúa esta selección y sí una medida en polarización, un haz a analizar saliente (1 1 1 ) liega a un sistema birrefringente (120) que descompone en dos componentes de polarización, ordinaria y extraordinaria, viajando a diferente velocidad por el sistema birrefringente (120). Un haz resultante (121 ) del paso por el sistema birrefringente (120) atraviesa un polarizador lineal (130) el cual se orientará para seleccionar una o varias proyecciones de polarización. La luz resultante (131 ), la cual se encuentra Iinealmente polarizada respecto a ciertas direcciones de interés, será acoplada a una unidad de análisis espectral (140), como puede ser un espectrómetro (140), para llevar a cabo un análisis espectral en el rango del espectro del haz (101 ) incidente a analizar. Los datos resultantes (141 ) serán analizados en un módulo de procesado (150).
Dicho funcionamiento hace uso del citado polarizador lineal (130) mediante el cual se puede seleccionar una o varias proyecciones de polarización que el espectrómetro (140) detectará:
· Proyección en dirección de onda extraordinaria: permite medir el espectro en dicha componente.
Proyección en dirección de onda ordinaria: permite medir el espectro en dicha componente.
Proyección en una dirección intermedia (típicamente 45e): permite medir el espectro presentando interferencias entre las dos componentes retardadas que, a través de un proceso de filtrado de Fourier, proporciona la diferencia de fase entre ellas, fundamental para la determinación de la fase espectral de cada una de las componentes, ordinaria y extraordinaria. En una realización preferente de un segundo aspecto de la invención correspondiente a un método de medición en línea de pulsos láser con polarización dependiente del tiempo que hace uso del aparato del primer aspecto de la invención se tiene que hacer pasar el haz (101 ) incidente a analizar a través del sistema birrefringente (120), para posteriormente seleccionar la proyección de polarización en la dirección ordinaria del medio birrefringente mediante rotación del polarizador lineal (130),
A continuación, se procede a detectar y medir mediante el espectrómetro (140) dicha proyección de polarización en la dirección ordinaria del medio birrefringente, para posteriormente seleccionar la proyección de polarización en la dirección extraordinaria del medio birrefringente o sistema birrefringente (120) mediante rotación de! polarizador lineal (130). Hecho esto, se puede proceder a detectar y medir dicha proyección de polarización mediante el espectrómetro (140)
Una vez se ha seleccionado la proyección de polarización en una dirección con componentes ordinarias y extraordinarias (por ejemplo, formando un ángulo de 45Q con respecto a las mismas) del medio birrefringente mediante rotación del polarizador lineal (130), se procede a detectar y medir mediante el espectrómetro la proyección de polarización con la estructura de interferencias entre las dos componentes para poder extraer, mediante un algoritmo de reconstrucción de interferometría espectral, empleando asimismo los espectros de las proyecciones de las componentes ordinarias y extraordinarias medidas en los pasos previos, la amplitud de las componentes ordinaria y extraordinaria del haz a analizar y la diferencia entre sus fases espectrales después de haber pasado por el sistema birrefringente. Adicionalmente se puede efectuar un calibrado del aparato con un haz polarizado de forma conocida, por ejemplo, linealmente con proyecciones en las componentes ordinaria y extraordinaria de propagación en el medio birrefringente, para determinar los desfases de las dos componentes, ordinaria y extraordinaria, en dicho material birrefringente.
De manera adicional el método de medición en línea de pulsos láser con polarización dependiente del tiempo de la invención puede comprender eliminar la contribución debida al sistema birrefringente a la diferencia de fases espectrales entre las componentes ordinaria y extraordinaria tras el material birrefringente, obtenida tal y como se detallado anteriormente, extrayendo de esta manera la diferencia de fases espectrales entre las componentes ordinaria y extraordinaria de polarización antes de pasar por el materia! birrefringente.
A continuación, se selecciona preferentemente, a modo de ejemplo, pero no ¡imitativo, previamente al sistema birrefringente (120) una de las componentes de polarización, siendo ésas una componente ordinaria y una componente extraordinaria con respecto al sistema birrefringente, para posteriormente medir la fase espectral de la componente de referencia seleccionada anteriormente. La medición de la fase espectral de la componente de referencia del paso se puede llevar a cabo mediante una técnica de reconstrucción de pulsos con polarización constante, como por ejemplo FROG, SPIDER y d-scan
Adicionalmente se añade a ¡a fase espectral de la componente de referencia anteriormente la citada la diferencia de fases espectrales entre las componentes ordinaria y extraordinaria antes de pasar por el material birrefringente, obtenida según se ha indicado previamente, calculando de esta forma la fase espectral de la otra componente de polarización. A partir de dichas fases espectrales y de ios espectros de ¡as proyecciones de ¡as componentes de polarización ordinaria y extraordinaria del haz (101 ) medidos como se ha detallado previamente, se calculan ¡as amplitudes espectrales complejas de las proyecciones de las componentes de polarización ordinaria y extraordinaria del haz (101 ). Hecho esto, se puede proceder a reconstruir temporalmente ¡a evolución de las componentes ordinaria y extraordinaria del haz a analizar (101 ) con la transformación de Fourier de dichas amplitudes espectra¡es comp¡ejas, obteniendo el estado de polarización para cada instante del pulso.

Claims

REIVINDICACIONES
Aparato de medición en línea de pulsos láser con polarización dependiente del tiempo, aparato caracterizado porque comprende:
una unidad de selección (101 ) destinada a seleccionar una componente de polarización que es una componente de referencia (1 12) y conducirla a una unidad estándar de caracterización (160) de pulsos polarizados linealmente para su caracterización temporal,
un sistema birrefringente (120) que a su vez puede comprender al menos una lámina de material birrefringente, con el eje óptico preferentemente perpendicular a la dirección de propagación de un haz a analizar incidente (1 1 1 ), de manera que éste se descomponga en dos componentes de polarización, ordinaria y extraordinaria, viajando a diferente velocidad por el sistema birrefringente (120),
- un polarizador lineal (130) adaptado para seleccionar varias proyecciones de polarización,
- una unidad de análisis espectral (140) en el rango del espectro del haz a medir, y
un módulo de procesado (150) de datos resultantes (141 ) de la unidad de análisis espectral ( 40).
Método de medición en línea de pulsos láser con polarización dependiente del tiempo que hace uso del aparato descrito en la reivindicación 1 , estando el método caracterizado porque comprende:
i. hacer pasar haz (101 ) incidente a analizar a través del sistema birrefringente (120),
ii. seleccionar la proyección de polarización en la dirección ordinaria del medio birrefringente mediante rotación del polarizador lineal (130), iii. detectar y medir mediante la unidad de análisis espectral (140) la proyección de polarización,
iv. seleccionar la proyección de polarización en la dirección extraordinaria del sistema birrefringente (120) mediante rotación del polarizador lineal (130), v. detectar y medir mediante la unidad de análisis espectral (140) la proyección de polarización,
vi. seleccionar la proyección de polarización en una dirección con componentes ordinarias y extraordinarias de! sistema birrefringente (120) mediante rotación del poiarizador linea! (130),
vii. detectar y medir mediante el espectrómetro la proyección de polarización con la estructura de interferencias espectrales entre las dos componentes, viii. seleccionar preferentemente, previamente a! sistema birrefringente (120), una de las componentes de polarización, siendo éstas una componente ordinaria y una componente extraordinaria definidas con respecto ai sistema birrefringente,
ix, medir la fase espectral de la componente de referencia seleccionada del paso anterior, y
x. extraer, mediante un algoritmo de reconstrucción de interferometría espectral, empleando ios datos obtenidos en los pasos previos, la amplitud de las componentes ordinaria y extraordinaria del haz (121 ) y la diferencia entre sus fases espectrales después de haber pasado por el sistema birrefringente (120).
Método de medición en línea de pulsos láser con polarización dependiente del tiempo, según reivindicación 2, donde la medición de la componente de referencia del paso ix se lleva a cabo mediante una técnica de reconstrucción de pulsos con polarización lineal constante, como por ejemplo FROG, SPIDER y d-scan.
Método de medición en línea de pulsos láser con polarización dependiente del tiempo, según reivindicación 2, estando el método caracterizado porque adicionalmente comprende efectuar un calibrado del aparato descrito en la reivindicación 1 con un haz polarizado de forma conocida, por ejemplo linealmente con proyecciones en las componentes ordinarias y extraordinaria de propagación en el medio birrefringente, para determinar ios desfases de las dos componentes, ordinaria y extraordinaria, introducidos por el material birrefringente del sistema birrefringente (120).
Método de medición en línea de pulsos láser con polarización dependiente del tiempo, según reivindicación 2, estando el método caracterizado porque adicionalmente comprende los siguientes pasos:
i. sustraer a la diferencia de fases espectrales entre componentes ordinaria y extraordinaria del haz (121 ) tras el sistema birrefringente (120), obtenida mediante un algoritmo de reconstrucción de interferometría espectral según el paso x, ¡a contribución a la fase espectral correspondiente a un retraso entre ¡as componentes y su dispersión debida al sistema birrefringente (120), obtenida mediante calibración, aislando de esta forma la diferencia de fases entre componentes ordinaria y extraordinaria del haz (101 ) antes del sistema birrefringente (120),
añadir a la diferencia de fases espectrales entre componentes ordinaria y extraordinaria obtenida en el paso anterior, la fase espectral de la componente de referencia, con lo que se calcula la fase espectral de la componente ordinaria y/o componente extraordinaria,
calcular las amplitudes y fases espectrales de las dos componentes de polarización, ordinaria y extraordinaria, del haz a analizar (101 ) a partir de los datos obtenidos en el paso anterior y de las medidas de las intensidades espectrales de cada componente del haz (101 ),
reconstruir temporalmente la evolución de las componentes ordinaria y extraordinaria el haz a analizar (101 ) a partir de los resultados del paso anterior y su transformada de Fourier y,
obtener, a partir de los datos obtenidos en el paso anterior, la evolución temporal del pulso incidente (101 ) y de su estado de polarización mediante la suma vectorial de la evolución de las componentes ordinaria y extraordinaria obtenidas para el haz a analizar (101 ),
PCT/ES2018/070116 2017-02-20 2018-02-20 Aparato y método de medición en línea de pulsos láser con polarización dependiente del tiempo WO2018150071A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/484,605 US11105687B2 (en) 2017-02-20 2018-02-20 Apparatus and method for in-line measurement of laser pulses with time-dependent polarization
EP18719956.7A EP3584552A1 (en) 2017-02-20 2018-02-20 Apparatus and method for the online measurement of laser pulses with time-dependent polarisation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201730215 2017-02-20
ES201730215A ES2680045B1 (es) 2017-02-20 2017-02-20 Aparato y metodo de medicion en linea de pulsos laser con polarizacion dependiente del tiempo

Publications (1)

Publication Number Publication Date
WO2018150071A1 true WO2018150071A1 (es) 2018-08-23

Family

ID=62046963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2018/070116 WO2018150071A1 (es) 2017-02-20 2018-02-20 Aparato y método de medición en línea de pulsos láser con polarización dependiente del tiempo

Country Status (4)

Country Link
US (1) US11105687B2 (es)
EP (1) EP3584552A1 (es)
ES (1) ES2680045B1 (es)
WO (1) WO2018150071A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110646102A (zh) * 2019-10-17 2020-01-03 南昌大学 一种全斯托克斯单光子压缩偏振成像装置和方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003010487A1 (en) * 2001-07-23 2003-02-06 University Of Rochester Optical pulse measurement

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936732A (en) * 1997-07-24 1999-08-10 Smirl; Arthur Apparatus and method for characterizing ultrafast polarization varying optical pulses
GB0510338D0 (en) * 2005-05-20 2005-06-29 Isis Innovation Electromagnetic radiation pulse measurement apparatus and method
US8797532B2 (en) * 2010-03-24 2014-08-05 Yeda Research And Development Company Ltd. System and method for polarization measurement
US9285275B2 (en) * 2012-04-26 2016-03-15 Inter-University Research Institute Corporation National Institutes Of Natural Sciences Apparatus and method for measuring the intensity and phase of a light pulse
EP3062075B1 (en) * 2015-02-06 2024-01-10 Universitat Politècnica De Catalunya Optical system and method for ultrashort laser pulse characterization
WO2018029615A1 (en) * 2016-08-10 2018-02-15 Sphere Ultrafast Photonics, S.A. Ultrashort laser pulse characterization and compression method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003010487A1 (en) * 2001-07-23 2003-02-06 University Of Rochester Optical pulse measurement

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
A. RAKHMAN; M. W. LIN; I. JOVANOVIC: "Angle-multiplexed spatial-spectral interferometry for simultaneous measurement of spectral phase and polarization state", OPTICS EXPRESS, vol. 21, 2013, pages 26896 - 26907
BENJAMÍN ALONSO ET AL: "Spatiotemporal amplitude-and-phase reconstruction by Fourier-transform of interference spectra of high-complex-beams", JOURNAL OF THE OPTICAL SOCIETY OF AMERICA - B., vol. 27, no. 5, 1 May 2010 (2010-05-01), US, pages 933, XP055491969, ISSN: 0740-3224, DOI: 10.1364/JOSAB.27.000933 *
C. C. CHEN; S. D. YANG: "All-optical self-referencing measurement of vectorial optical arbitrary waveform", OPTICS EXPRESS, vol. 22, 2014, pages 28838 - 28844
E. LOPEZ-LAGO; R. DE LA FUENTE: "Measurement of the polarization dynamics of ultrashort pulses by using nonlinear phase modulation and channelled spectroscopic polarimetry", JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, vol. 7, 2005, pages 400 - 403, XP020093151, DOI: doi:10.1088/1464-4258/7/8/009
IAN A. WALMSLEY ET AL: "Characterization of ultrashort electromagnetic pulses", ADVANCES IN OPTICS AND PHOTONICS, vol. 1, no. 2, 15 April 2009 (2009-04-15), pages 308, XP055484183, DOI: 10.1364/AOP.1.000308 *
JUAN JOSÉ FERREIRO ET AL: "Characterization of arbitrarily polarized ultrashort laser pulses by cross-phase modulation", OPTICS LETTERS, vol. 26, no. 13, 1 July 2001 (2001-07-01), US, pages 1025, XP055490949, ISSN: 0146-9592, DOI: 10.1364/OL.26.001025 *
L. LEPETIT; G. CHERIAUX; M. JOFFRE: "Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy", JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSÍCS, vol. 12, 1995, pages 2467 - 2474, XP007904006
P. SCHLUP; O. MASIHZADEH; L. XU; R. TREBINO; R. A. BARTELS: "Tomographic retrieval of the polarization state of an ultrafast laser pulse", OPTICS LETTERS, vol. 33, 2008, pages 267 - 269, XP001511103, DOI: doi:10.1364/OL.33.000267
R. BOGE; S. HEUSER; M. SABBAR; M. LUCCHINI; L. GALLMANN; C. CIRELLI; U. KELLER: "Revealing the time-dependent polarization of ultrashort pulses with sub-cycle resolution", OPTICS EXPRESS, vol. 22, 2014, pages 26967 - 26975
W. J. WALECKI; D. N. FITTINGHOFF; A. L. SMIRL; R. TREBINO: "Characterization of the polarization state of weak ultrashort coherent signals by dual-channel spectral interferometry", OPTICS LETTERS, vol. 22, 1997, pages 81 - 83
W.J. WALECKI; D. N. FITTINGHOFF; A. L. SMÍRL; R. TREBINO: "Characterízation of the polarization state of weak ultrashort coherent signa/s by dual-channel spectral interferometry", OPTICS LETTERS, vol. 22, 1997, pages 81 - 83

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110646102A (zh) * 2019-10-17 2020-01-03 南昌大学 一种全斯托克斯单光子压缩偏振成像装置和方法
CN110646102B (zh) * 2019-10-17 2021-05-11 南昌大学 一种全斯托克斯单光子压缩偏振成像装置和方法

Also Published As

Publication number Publication date
US11105687B2 (en) 2021-08-31
ES2680045A1 (es) 2018-09-03
ES2680045B1 (es) 2019-07-02
US20200025628A1 (en) 2020-01-23
EP3584552A1 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
US9869591B2 (en) Cars microscope
CN102879097B (zh) 圆偏振高光谱成像探测系统
US6801318B2 (en) Apparatus and method for measuring intensity and phase of a light pulse with an interferometric asymmetric single-shot autocorrelator
US10634607B1 (en) Snapshot ellipsometer
WO1998013676A1 (fr) Procede et dispositif pour mesurer la polarisation
Davis et al. Experimental single-photon pulse characterization by electro-optic shearing interferometry
ES2680045B1 (es) Aparato y metodo de medicion en linea de pulsos laser con polarizacion dependiente del tiempo
Saito et al. Polarization‐resolved coherent anti‐Stokes Raman scattering (CARS) spectroscopy: a new probe of molecular symmetry through accurate determination of the Raman depolarization ratio
WO2021123481A1 (es) Método y sistema para la caracterización temporal y espectral de la amplitud y fase de pulsos láser ultracortos
JP2003294531A (ja) 偏波解析器
JP3533651B1 (ja) 時間分解・非線形複素感受率測定装置
Gao et al. Dual vortex retarder Mueller matrix ellipsometry
Otani et al. Spectroscopic Mueller matrix polarimeter using four-channeled spectra
CA2914364A1 (fr) Dispositif pour compenser la derive d'un dephasage d'un modulateur d'etat de polarisation d'un faisceau lumineux
Quan et al. Channeled spectropolarimetry with increased bandwidth and aliasing reduction
CN109883952B (zh) 一种基于弱测量技术的非线性系数测量装置及其测量方法
JP4163104B2 (ja) 光学活性分光法における偏光状態変換
Hagen et al. Compact methods for measuring stress birefringence
Dawes et al. Simultaneous quantum-state measurements using array detection
US11391666B1 (en) Snapshot ellipsometer
Tikan et al. Phase and amplitude single-shot measurement by using heterodyne time-lens and ultrafast digital time-holography
Zeuner et al. Enhancing the accuracy of solar polarimetry by coalescing slow and fast modulation: method description and first performance tests
Seka et al. Photodiode arrays: A convenient tool for laser diagnostics
Mead et al. NASA Public Access
Herrera Far-field method for the characterisation of three-dimensional fields: vectorial polarimetry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18719956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018719956

Country of ref document: EP