WO2018149393A1 - 一种用裸眼观看3d影像的拍摄系统及使用方法 - Google Patents

一种用裸眼观看3d影像的拍摄系统及使用方法 Download PDF

Info

Publication number
WO2018149393A1
WO2018149393A1 PCT/CN2018/076649 CN2018076649W WO2018149393A1 WO 2018149393 A1 WO2018149393 A1 WO 2018149393A1 CN 2018076649 W CN2018076649 W CN 2018076649W WO 2018149393 A1 WO2018149393 A1 WO 2018149393A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive
spot
photographing
servo motor
laser
Prior art date
Application number
PCT/CN2018/076649
Other languages
English (en)
French (fr)
Inventor
邢天宜
邢宇
Original Assignee
邢天宜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 邢天宜 filed Critical 邢天宜
Priority to US16/485,459 priority Critical patent/US10955737B2/en
Publication of WO2018149393A1 publication Critical patent/WO2018149393A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • G01B11/005Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates coordinate measuring machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/42Interlocking between shutter operation and advance of film or change of plate or cut-film
    • G03B17/425Interlocking between shutter operation and advance of film or change of plate or cut-film motor drive cameras
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B37/00Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
    • G03B37/04Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe with cameras or projectors providing touching or overlapping fields of view
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/521Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/243Image signal generators using stereoscopic image cameras using three or more 2D image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/40Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images giving the observer of a single two-dimensional [2D] image a perception of depth
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof

Definitions

  • the invention relates to an imaging method of a dynamic picture.
  • it relates to a photographing system and a method for using a naked eye to view a 3D image with a naked eye and a stereoscopic dynamic picture.
  • the prior art adjusts the distance between the two cameras 301 and 302 to 63 mm (distance of the human eye) in parallel and simultaneously biases inwardly a permanently fixed small angle ⁇ and ⁇ ' (at this time).
  • ⁇ '
  • the resulting image the right eyeglass is a polarized lens in the Y direction, so only the image captured by the right camera 302 can be seen, and the image captured by the left camera 301 is not seen.
  • the image is red and green, the red and green glasses are attached, and the left lens is a green lens. Therefore, only the red image captured by the left camera 301 can be seen, but the camera captured by the right camera 302 cannot be seen.
  • the green screen; the right lens is a red lens, so you can only see the green image captured by the right camera 302, but you can't see the red picture captured by the left camera.
  • the picture that the viewer sees in this way is really like a three-dimensional picture that both eyes see at the same time. This is the 3D movie we watched.
  • the first action is to adjust the curvature and thickness of the convex lens of the vitreous in the eyeball according to the distance between the viewer and the object being viewed, so that the distance between the eye and the object to be viewed is exactly equal to the focal length, which makes the object being viewed in the retina
  • the image on it is very clear. This is now done very well in the fully automatic focusing function of the camera and camera. Some advanced photos can even make the image of an object in the same picture very clear, but the object is located in front of or behind the object being viewed. The image is blurred, which means that the camera can adjust the focal length to exactly the same distance as the object. Even though the image on the photo is always very different from what the real person sees, the main difference is the lack of stereo.
  • the second action is that the two eyeballs of the real person 'at the same time' are staring at the same point on the surface of the object being viewed. Because the positions of the two eyes are different, the angles of the two eyes projected to the intersection point "O" are different, so two The two images that the eye can see at the same time are different, but the two images are coincident with high precision at the point of 'at the same time'.
  • the object that the real person sees has a three-dimensional effect. I don't feel the ghost, this is our ideal 3D image.
  • FIG. 1 is a structural diagram of a prior art 3D camera. Since the angles ⁇ and ⁇ ' of the center lines of the two camera lenses and the lines between them are fixed at the time of shooting, that is, the left and right cameras 301 and The relative position of the 302 and the frame 300 is fixed, and only the object is located at the intersection point "O" of the center lines of the left and right cameras 301 and 302 to obtain a clear and non-ghost image, "O" point and two The distance between the camera lens connections is called h, and any position outside the "O” point is a ghost of the two pictures during playback.
  • TV shows and movie shows are taken by a single camera, so in terms of watching movies, we still see the world alone.
  • the technical problem to be solved by the present invention is to provide a photographing system and a method for using the naked eye to view 3D images without having to wear 3D glasses to see a dynamic picture with a stereoscopic effect.
  • a photographing system for viewing a 3D image with a naked eye comprising an L-shaped rack, wherein the top ends of the vertical portions of the L-shaped rack are sequentially arranged at intervals: for the object to be photographed An intermediate photographing mechanism that emits a laser beam to generate a diffuse reflection spot and performs photographing, and a left-side photograph for finding a subject and shooting the diffuse reflection spot generated by the laser beam emitted from the intermediate photographing mechanism, respectively, on the subject a mechanism and a right-side photographing mechanism; a top plate is disposed above the horizontal portion of the L-shaped frame, and the left end photographing mechanism and the right photographing mechanism are respectively disposed on the upper end surface of the pallet for driving the left a side shooting mechanism and a left side driving mechanism and a right side driving mechanism that swing left and right in the right side shooting mechanism, and a horizontal portion of the L-shaped frame is vertically provided with a guiding column and a vertical driving servo motor, and the vertical driving
  • the intermediate photographing mechanism includes an intermediate bracket for fixing an intermediate camera fixed at a top end of a vertical portion of the L-shaped frame, the upper end corresponding to the intermediate camera and hinged with the bracket through a first universal hinge
  • the fixing rod has a lower end connected to the manual rotating rod, and the front end of the manual rotating rod is provided with an intermediate laser pen, and the camera is located on the same vertical line as the intermediate laser pointer.
  • the left side shooting mechanism and the right side shooting mechanism are identical in structure, and include: a second universal joint disposed above the top end of the vertical portion of the L-shaped frame by a bracket, horizontally hinged at the second universal direction a guide shaft on the hinge, one end of the guide shaft is respectively provided with a side camera and a side laser pen through a fixing plate, the side camera and the side laser pen are located on the same vertical line, and the side camera is located Above the side laser pen, the other end of the guide shaft is connected with a left side drive mechanism for driving the guide shaft to drive the side fixing plate, the side camera and the side laser pen to swing left and right and up and down or Right drive mechanism.
  • the left side drive mechanism or the right side drive mechanism has the same structure, and includes: a nut fixed on the pallet, and a left side shooting mechanism or a right side shooting mechanism fixed at an upper end of the nut for penetration a bushing of the guide shaft, and a horizontally driven servo motor fixed to the pallet, the rotating shaft of the horizontal driving servo motor is connected to a horizontal driving screw, and the horizontal driving screw is screwed to the nut, The nut drives the sleeve to move left and right under the driving of the horizontal driving screw, thereby driving the left and right side shooting mechanisms or the right side of the guiding mechanism to swing left and right.
  • a method for using a photographing system for viewing a 3D image with a naked eye comprising: respectively opening an intermediate laser pointer and side laser pointers on both sides to obtain an intermediate spot and two side spots, wherein The intermediate spot is located on the object, the middle camera captures the intermediate spot and the two spots, and feeds the captured signal to the control mechanism, and the control mechanism controls the sides of the vertical drive servo motor and the horizontal drive servo motor drive.
  • the spot emitted by the laser pen coincides with the spot emitted by the middle laser pen; the control mechanism controls the side cameras on both sides to simultaneously take the subject image.
  • the user manually rotates the rod to make the spot emitted by the intermediate laser pen always on the object, and the middle camera always captures the spot in the moving state, and the real-time will be
  • the captured signal is fed back to the control mechanism, and the control mechanism controls the vertical drive servo motor and the horizontally driven servo motor.
  • the spot light from the side laser pen on both sides of the drive is always coincident with the spot emitted by the intermediate laser pen, and the two sides are controlled.
  • the side camera simultaneously takes in the subject image.
  • a method for using a naked eye to view a 3D image capturing system comprising: respectively opening a side laser pointer on both sides, and closing the middle laser pointer, the middle camera capturing the point light source worn on the object and the sides on both sides
  • the spot emitted by the laser pen and feedback the captured signal to the control mechanism controls the spot emitted by the side laser pen on both sides of the vertical drive servo motor and the horizontal drive servo motor drive and the point worn on the object.
  • the light sources are coincident; the control mechanism controls the side cameras on both sides to simultaneously capture the subject image.
  • the intermediate camera When the subject wearing the point light source is in a moving state, the intermediate camera always captures the point light source in the moving state, and feeds the captured signal to the control mechanism in real time, and the control mechanism controls the vertical drive servo motor and the level in real time.
  • the spot emitted by the side laser pens driving the servo motor drives is always coincident with the point light source worn on the subject, and the side cameras on both sides are controlled to simultaneously capture the subject image.
  • a method for using a naked eye to view a 3D image capturing system comprising: respectively opening a side laser pointer on both sides, and closing the middle laser pointer, the photographer uses a laser pen to illuminate the subject to generate a spot, and the middle camera captures the The spot and the spot emitted by the side laser pens on both sides feed back the captured signal to the control mechanism, and the control mechanism controls the spot and the shooting of the side laser pen on both sides of the vertical drive servo motor and the horizontal drive servo motor drive.
  • the spots emitted by the laser pen are superimposed; the control mechanism controls the side cameras on both sides to simultaneously take the subject image.
  • the photographer uses the laser pointer to illuminate the moving subject and generates a spot.
  • the middle camera captures the moving spot in real time, and feeds the captured signal to the control mechanism in real time.
  • the control mechanism The spot light emitted by the side laser pens on both sides of the vertical drive servo motor and the horizontal drive servo motor drive is always coincident with the spot light emitted by the photographer using the laser pen, and the side cameras on both sides are simultaneously controlled to take the subject at the same time. image.
  • the photographing system and the use method for viewing 3D images with the naked eye of the present invention are born according to the high bionics of human vision and fully utilize the ergonomics, and the picture is extremely realistic.
  • any image taken by the present invention it is not necessary to wear glasses when watching the movie, and the image that can be seen with the naked eye is not only realistic, natural, and full of three-dimensional feeling, and there is no uncomfortable feeling when viewed for a long time.
  • the present invention gives us a real world with a realistic visual experience. In other words: although the unrestrained picture is virtual, the viewer's visual experience is real, three-dimensional, and clear.
  • FIG. 1 is a schematic view showing the shooting of a 3D image in the prior art
  • FIG. 2 is a schematic view showing the overall structure of a photographing system for viewing a 3D image with a naked eye according to the present invention
  • Figure 3 is a plan view of Figure 2;
  • Figure 4 is a cross-sectional view taken along line A-A of Figure 2;
  • Figure 5 is a cross-sectional view taken along line B-B of Figure 2;
  • Figure 6 is a schematic view showing the shooting of the method 1 of the present invention.
  • Figure 7 is a schematic view showing the shooting of the method 2 of the present invention.
  • Figure 8 is a schematic view showing the shooting of the method 3 of the present invention.
  • L-frame 1a vertical part
  • Drive screw 8 Vertical drive servo motor
  • Screw hole 35 Manual rotary lever
  • Horizontal drive screw 300 Rack
  • the angle between the shooting direction of the left-side shooting mechanism of the prior art and the line connecting the left and right side shooting mechanisms
  • the angle between the photographing direction of the left side photographing mechanism of the present invention and the line connecting the left and right side photographing mechanisms
  • ⁇ ' the angle between the photographing direction of the right side photographing mechanism of the present invention and the line connecting the left and right side photographing mechanisms
  • the intersection point generated by the shooting directions of the two side shooting mechanisms of the method 1 and the method 3 in the present invention is also the diffuse reflection spot generated by the middle laser pointer or the photographer holding the laser pointer on the surface of the object to be photographed.
  • the intersection point of the shooting direction of the two side shooting mechanisms of the method 2 in the present invention is also the point light source worn on the object to be photographed.
  • H the distance between the intersection point P or Q generated by the shooting directions of the left and right side shooting mechanisms of the present invention and the chassis 300
  • a photographing system for viewing a 3D image with a naked eye includes an L-shaped rack 1.
  • the top ends of the vertical portions 1a of the L-frame 1 are equally arranged in an orderly manner:
  • An intermediate photographing mechanism 3 for generating a diffuse reflection spot and photographing the laser beam emitted from the subject, for respectively finding a laser beam emitted by the intermediate photographing mechanism 3 on the surface of the subject to be produced on the subject a left-side photographing mechanism 2 and a right-side photographing mechanism 4 that take a picture of a subject and a laser beam emitted by itself to coincide with a diffuse reflection spot generated on the subject;
  • the L-shaped machine A pallet 6 is disposed above the horizontal portion 1b of the rack 1, and the left side photographing mechanism 2 and the right side photographing mechanism 4 are respectively provided on the upper end surface of the pallet 6 for driving the left photographing mechanism 2 and the right side
  • a guide post 5 and a vertical drive servo motor 8 are vertically disposed on the horizontal portion 1b of the L
  • the intermediate photographing mechanism 3 includes an intermediate bracket 32 for arranging the intermediate camera 31 at the top end of the vertical portion 1a of the L-frame 1, and the upper end corresponds to the center.
  • the camera 31 is located on the same vertical line as the intermediate laser pointer 36.
  • the left side photographing mechanism 2 and the right side photographing mechanism 4 are identical in structure, and include: a portion disposed above the top end of the vertical portion 1a of the L-shaped frame 1 by the bracket 101. a two-way hinge 102, a guide shaft 103 horizontally hinged on the second universal joint 102, one end of the guide shaft 103 is respectively provided with a side camera 104 and a side laser pen 106 through a fixing plate 105, The side camera 104 and the side laser pointer 106 are mounted on the same fixed plate 105 and on the same vertical line, and the side camera 104 is located above the side laser pointer 106, and the guide shaft 103 is further A left side drive mechanism 9 or a right side drive mechanism 10 for driving the guide shaft 103 to drive the side fixing plate 105, the side camera 104, and the side laser pointer 106 to swing left and right and up and down is connected at one end.
  • the left side drive mechanism 9 or the right side drive mechanism 10 has the same structure, and includes a nut 201 fixed on the pallet 6 and fixed to the upper end of the nut 201. a bushing 202 for inserting a guide shaft 103 inserted into the left side photographing mechanism 2 or the right side photographing mechanism 4, and a horizontal drive servo motor 203 fixed to the pallet 6, the horizontal drive servo motor 203
  • the rotating shaft is connected to the horizontal driving screw 204, and the horizontal driving screw 204 is screwed to the nut 201.
  • the nut 201 drives the sleeve 202 to move left and right, thereby driving the left side shooting mechanism. 2 or the guide shaft 103 in the right photographing mechanism 4 moves to the left and right.
  • the method for using the imaging system for viewing 3D images with the naked eye of the present invention comprises: respectively opening an intermediate laser pointer and side laser pointers on both sides to obtain an intermediate spot and two side spots, wherein the intermediate spot is located in the object Above, the middle camera captures the middle spot and the two side spots, and feeds the captured signal to the control mechanism.
  • the control mechanism controls the spot of the vertical drive servo motor and the side laser pens on both sides of the two horizontal drive servo motor drives.
  • the spot emitted by the intermediate laser pen moves toward the intermediate spot and coincides with the high precision; at the same time, the control mechanism controls the side cameras on both sides to simultaneously take the subject image.
  • the control mechanism controls the vertical drive servo motor and the two horizontally driven servo motor drives on both sides of the side of the laser pen to emit a spot that coincides with the spot emitted by the intermediate laser pen. And control the side cameras on both sides to simultaneously capture the subject image.
  • the photographer holds the camera L-frame 1 of the present invention while shooting, and uses the manual rotation lever 35 to adjust the laser beam pointing angle emitted by the intermediate laser pointer 36 so that the laser beam of the intermediate laser pointer 31 is directed.
  • the point "P" that needs to be photographed on the surface of the object to be photographed and forms a distance H between the diffuse light spot and the diffuse light spot and the vertical plane la plane on the camera L-frame 1, this diffuse reflection
  • the center of the light spot "P" is the center of the diffuse reflection spot formed by the laser beam emitted from the intermediate laser pen 36 on the surface of the object to be measured.
  • the laser beams emitted by the other two driven side laser pointers 106 respectively project to the surface of the object to form two additional centers from the anime reflection spot.
  • the intermediate camera on the intermediate shooting mechanism respectively supplies the positions of the three diffuse reflection spots to the control mechanism, and the control mechanism controls the vertical drive servo motor 8 and the two horizontal drive servo motors 203 according to their positions, the three servos.
  • the motor When the motor is connected to the control mechanism, it will immediately rotate, forward or reverse, and how many turns and turns will be completely controlled by the control mechanism.
  • the vertical drive servo motor 8 drives the drive screw 7 to rotate to drive the pallet 6 to move up and down, and the two laser beams emitted by the two driven side laser pointers 106 are respectively projected onto the surface of the object to be photographed.
  • the center of the diffuse reflection spot is consistent with the height of the "P".
  • the control mechanism also controls the corresponding actions of the two horizontally-driven servo motors 203, so that the diffuse reflection spots formed by the two side laser pointers 106 are quickly captured and moved agilely to the intermediate laser pointer 36.
  • the position of the spot "P" is reflected and overlapped with high precision. At this time, the distance H between the vertical plane of the L-shaped frame and the diffuse reflection spot is determined.
  • the intermediate camera 31 is fixed at the midpoint of the line connecting the two side cameras 104, and the angle between the lens center line of the two side cameras 104 and the la plane of the vertical portion of the L-frame is ⁇ and ⁇ ', respectively.
  • This agile capture action comes from the vertical drive servo motor 8 and the two horizontal drive servo motors 203 are connected to the control mechanism to immediately rotate, forward or reverse, how many turns, and how many angles to fully obey the instructions of the control mechanism .
  • the vertical drive servo motor 8 rotates to drive the drive screw 7 to rotate, so that the pallet 6 is moved up and down to drive the left camera mechanism 2 and the right camera mechanism 4 to move up and down, so that the two guide shafts 103 swing up and down to drive the two fixed plates 105.
  • the two horizontal servo motors 203 respectively drive the two horizontal drive screws 204 to rotate according to the number of turns required by the control mechanism to respectively issue the instructions, so that the two nuts are respectively along two levels.
  • the axis of the driving screw 204 is moved to the left and right, and the two guide shafts 102 are respectively rotated by the two bushings 202 to rotate the left and right sides of the fixed shaft 105 to rotate the right and left sides of the fixed plate 105 to different angles.
  • the two fixing structures 105 in the left-side imaging structure and the right-side imaging mechanism can swing up and down according to the instruction of the control mechanism, and can also swing left and right to drive the vertical direction of the side laser pointer and the L-frame in the left-side imaging mechanism 2.
  • the angle between the partial la planes is ⁇ angle; the angle between the side laser pointers in the right side shooting mechanism 4 and the vertical plane la plane of the L-frame is at an angle ⁇ ' (see Fig. 6).
  • This causes the centers of the two diffuse reflection spots formed by the left and right side laser pointers 106 to be projected onto the surface of the object to rapidly move to the center of the point where the intermediate laser pen emits the diffuse reflection spot "P", and overlaps with high precision.
  • the 3D image capturing system of the present invention has the ability to capture the diffuse reflection spot, and quickly adjust the distance difference between the diffuse reflection spot and the vertical portion of the camera L-frame 1 and the "P", so that this The diffuse reflection spot is always superimposed on the "P" point with high precision of the three diffuse reflection spots formed by one intermediate laser pointer 36 and two side spot pens 106.
  • the angles of the swing angles ⁇ and ⁇ ' of the left and right cameras from the start of shooting to the end of shooting are as follows.
  • the method for using the imaging system for viewing 3D images with the naked eye of the present invention comprises: respectively opening the side laser pointers on both sides, and after turning off the power of the intermediate laser pointer 36, the intermediate camera captures the point light sources worn on the object and two The spot emitted by the side side laser pointer, and the captured signal is fed back to the control mechanism, and the control mechanism controls the spot of the vertical driving servo motor and the side laser pointers of the two horizontally driven servo motor drives to be photographed.
  • the point light sources Q worn on the objects coincide; the control mechanism controls the side cameras on both sides to simultaneously capture the image of the subject, as shown in FIG.
  • the intermediate camera When the subject wearing the point light source is in a moving state, the intermediate camera always captures the point light source Q in the moving state, and feeds the captured signal to the control mechanism in real time, and the control mechanism controls the vertical drive servo motor and the real time in real time.
  • the spot emitted by the side laser pens on both sides of the horizontally driven servo motor drive is always coincident with the point light source, and the side cameras on both sides are controlled to simultaneously capture the subject image.
  • this technique can be modified to allow the 3D image capturing system to capture the target by another method: wearing a point-like light source Q on the subject instead of the "P" in Method 1.
  • the center of this light source Q corresponds to the diffuse reflection spot "P" emitted by the intermediate laser pen described in the above method 1.
  • the photographer places the L-shaped frame of the 3D image capturing system of the present invention in a fixed position, the normal direction of the vertical plane of the L-shaped frame faces the object to be photographed, and then closes the above-mentioned
  • the power supply of the intermediate laser pointer 36 causes the centers of the two diffuse reflection spots formed by the laser beams emitted from the two side laser pointers 106 to capture the center of the light source Q, which are formed by the laser beams of the two side laser pointers 106.
  • the center of the two diffuse reflection spots is highly accurately overlapped with the center point of the light source Q to determine the H value.
  • the capturing action of this diffuse reflection spot is that the center Q point is found by the intermediate camera 31 dedicated to capturing the center of the diffuse reflection spot, and the line between the two side cameras 104 and the direction of the photography of the two side cameras 104 is used.
  • the angles of the two different angles ⁇ and ⁇ ' are transmitted to the control mechanism, and the control mechanism controls one vertical drive servo motor 8 and two horizontal drive servo motors 203 in real time to rotate immediately after being commanded by the control mechanism. Or reverse, how many turns and how many angles to fully obey the instructions of the control agency.
  • the vertical 8 drives the lead screw 7 to rotate to drive the pallet 6 to move up and down, and drives the left camera mechanism 2 and the right camera mechanism 4 to move up and down, so that the two guide shafts 103 swing up and down to drive the two fixed plates 105 to swing up and down, so that 2
  • the side laser pointer 106 and the two side cameras are oscillated up and down in synchronization.
  • the two horizontal servo motors 203 respectively drive the two horizontal drive screws 204 to rotate according to the respective required number of turns according to the instructions issued by the control mechanism, so that the two nuts are respectively along two
  • the axes of the horizontally driven lead wires 204 are respectively moved to the left and right, and the two guide shafts 102 are respectively rotated by the two bushings 202 to rotate the respective angles of the guide plates 102 to swing the fixed plates 105 to different angles.
  • the two fixing structures 105 in the left-side imaging structure and the right-side imaging mechanism can swing up and down according to the command of the control mechanism.
  • the centers of the two diffuse reflection spots formed by projecting the left and right side laser pointers 106 onto the surface of the object are rapidly moved to the center of the Q point and overlap with the high precision.
  • the distance of the Q point on the surface is the H value, and the H value changes all the time, but the 3D image capturing system of the present invention quickly adjusts the angle ⁇ regardless of any change.
  • the angle of the angle of ⁇ ' is adapted to the distance of the Q point. Therefore, the photographing system for viewing 3D images with the naked eye of the present invention has the ability to capture the Q point, so that the Q point is always 2 laser pens.
  • a high-precision overlapping point that forms two diffuse reflection spots is provided.
  • the 3D image capturing system of the present invention can automatically capture the point light source Q and can take a dot shape.
  • the distance between the light source Q and the plane of the vertical portion la plane in the L-shaped frame of the 3D image capturing system is constantly adjusted to the H value. It ensures that every moment you play, you can get a clear and three-dimensional picture.
  • the 3D image capturing system of the present invention has the ability to automatically capture light spots, this method is very practical, especially in sports such as shooting soccer matches. For example: shooting a football match, the photographer can let each athlete on the field wear a point light source Q 1 , Q 2 , Q 3 , Q..., Q 22 ; the football surface also wears a point light source Q 0 .
  • a remote control switch is used to control the closing and opening of these light sources. When the photographer wants to shoot, the corresponding light source is turned on, and the rest of the light sources are all turned off, and then the switch is arbitrarily switched as needed. The scene photographed by this method will be vividly vivid when being projected.
  • the method for using the imaging system for viewing 3D images with the naked eye of the present invention comprises: respectively opening the side laser pointers on both sides, and after the power of the intermediate laser pointer 36 is turned off, the photographer uses another laser 46 to illuminate the subject to generate the spot P.
  • the intermediate camera captures the spot and the two spots emitted by the side laser pens on both sides, and feeds the captured signal back to the control mechanism.
  • the control mechanism controls the vertical drive servo motor and the horizontal drive servo motor.
  • the spot emitted by the side laser pens on both sides of the drive coincides with the point at which the photographer uses another laser 46 pen to illuminate the subject to generate the spot P; the control mechanism controls the side cameras on both sides to simultaneously take the subject image.
  • the photographer uses the laser pointer to illuminate the moving subject and generates a spot P
  • the intermediate camera captures the moving spot in real time, and feeds the captured signal to the control mechanism in real time.
  • the control mechanism controls the spot of the vertical drive servo motor and the horizontally driven servo motor on both sides of the laser pointer.
  • the spot is always coincident with the photographer using another laser 46 to illuminate the subject to generate the spot P, and control two
  • the side camera on the side simultaneously takes in the subject image.
  • the power of the intermediate laser pointer 36 is turned off, and then the photographer places the L-shaped image capturing system of the present invention in a fixed position, and then the photographer is located outside the shooting system of the 3D image.
  • Positioning another laser pointer 46 instead of the middle laser pen 36 in method 1 to illuminate the target being photographed the laser beam is irradiated onto the target to form a diffuse spot P spot, and the 3D image capturing system can capture
  • the center of the two diffuse reflection spots formed by the two laser beams emitted by the two left and right side laser pens 106 captures the center of the spot P of the diffuse reflection, and the two side laser pens
  • the center of the two diffuse reflection spots formed by the two laser beams emitted by the photographer and the L-shaped frame of the photographing system for determining the P point and the 3D image are superimposed with the spot P spot formed by the photographer holding a laser pen 46.
  • the capturing action of the diffuse reflection spot is because the center camera 31 dedicated to capturing the center of the diffuse reflection spot finds the center P point, and the connection between the two side cameras 104 and the photography of the two side cameras 104.
  • the angles of two different angles ⁇ and ⁇ ' between the directions are transmitted to the control mechanism, and the control mechanism controls one vertical drive servo motor 8 and two horizontal drive servo motors 203 to rotate immediately upon receiving an instruction from the control mechanism. , forward or reverse, how many turns and how many angles to completely obey the instructions of the control agency.
  • the vertical 8 drives the lead screw 7 to rotate to drive the pallet 6 to move up and down, and drives the left camera mechanism 2 and the right camera mechanism 4 to move up and down, so that the two guide shafts 103 swing up and down to drive the two fixed plates 105 to swing up and down, so that 2
  • the side laser pointer 106 and the two side cameras are oscillated up and down in synchronization.
  • the two horizontal servo motors 203 respectively drive the two horizontal drive screws 204 to rotate according to the respective required number of turns according to the instructions issued by the control mechanism, so that the two nuts are respectively along two
  • the axes of the horizontally driven lead wires 204 are respectively moved to the left and right, and the two guide shafts 102 are respectively rotated by the two bushings 202 to rotate the respective angles of the guide plates 102 to swing the fixed plates 105 to different angles.
  • the two fixing structures 105 in the left-side imaging structure and the right-side imaging mechanism can swing up and down according to the command of the control mechanism.
  • the centers of the two diffuse reflection spots formed by projecting the left and right side laser pointers 106 onto the surface of the object are rapidly moved to the center of the P point and overlap with the high precision.
  • the point P on the surface thereof is the H value, and the H value changes all the time, but the 3D image capturing system of the present invention quickly adjusts the angle ⁇ regardless of any change.
  • the angle of the angle with ⁇ ' to adapt to the distance of P point.
  • the angle between the lens center line of the two side cameras 104 and the la plane of the vertical portion of the L-frame is ⁇ and ⁇ ' and P when the photographing system for viewing 3D images with naked eyes of the present invention is used for photographing.
  • the distance H between the point and the vertical part plane of the L-shaped frame of the 3D image capturing system changes during the shooting process as the position of the subject moves, and the point P can always be made every time. It is adjusted to the body of the object to be photographed. Therefore, when the pictures taken by the two side cameras 104 are simultaneously played on one screen, two high-precision overlapping images are obtained, and the composite picture is clear and rich. A three-dimensional picture.
  • the second method of use is more flexible when combined with the third method of use. For example, when shooting a football game in the second mode of use, the second mode of use can be switched off to the third mode of use as needed. At some later time, the third usage mode can be turned off as needed, and the second usage mode can be restored.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Optics & Photonics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Holo Graphy (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Abstract

一种用裸眼观看3D影像的拍摄系统及使用方法,在L型机架(1)的垂直部分(1a)顶端等间隔的依次设置有:向被拍摄物发出的激光束而产生漫反射光斑并进行拍摄的中间拍摄机构(3)、通过中间拍摄机构(3)所发出的激光束在被拍摄物上产生的漫反射斑点找到被拍摄物并进行拍摄的左侧拍摄机构(2)和右侧拍摄机构(4);在L型机架(1)上方的托板6)的上端面设置有驱动左侧拍摄机构(2)和右侧拍摄机构(4)左右摆动的左侧驱动机构(9)和右侧驱动机构(10),L型机架(1)水平部分(1b)上设置有导向柱(5)和驱动伺服电机(8),连接驱动伺服电机(8)的驱动轴的驱动丝杠(7)通过螺纹贯穿连接托板(6),使托板(6)沿导向柱(5)上下移动而驱动左侧驱动机构(9)和右侧驱动机构(10)上下移动,从而带动左侧拍摄机构(2)或右侧拍摄机构(4)上下摆动。用裸眼就可以看到逼真、自然的画面。

Description

一种用裸眼观看3D影像的拍摄系统及使用方法 技术领域
本发明涉及一种动态画面的摄像方式。特别是涉及一种用裸眼就可以看到清晰而且具有立体感动态画面的用裸眼观看3D影像的拍摄系统及使用方法。
背景技术
我们希望把我们日常看到的这些真实的3D场景用3D的方法拍摄下来然后再用3D的方法播放出来展示给大家。实现这种效果最普遍采用的是如图1所给出的方式。
如图1所示,现有技术是将两架摄像机301和302的距离调至63毫米(人眼的距离)平行放置并且同时向内偏置一个永远固定的小角度α和α′(此时α=α’),拍摄之前将左侧的摄像机301镜头上装上X方向的偏振光镜片或装上红色镜片,右侧的摄像机302镜头上装上Y方向的偏振光镜片或装上绿色镜片,然后同时开机进行拍摄。放映的时候将这两个画面同时放映在屏幕上,因为两架摄像机镜头中心线的交点“O”与左侧摄像机301和右侧摄像机302之间的连线的距离h值是一个常数,所以无法将“O”点每时每刻都位于被拍摄的物体表面上,因此,播放时如果用裸眼观影,看到的是两幅画面同时播放的重影并且非常模糊,所以人们在观影的时候必须佩戴特殊的眼镜。如果是偏振光拍摄的影像就带上偏振光眼镜,左眼镜片是X方向的偏振光镜片,所以只能看到左侧摄像机301拍摄到的画面,而看不到看到右侧摄像机302拍摄到的画面;右眼镜片是Y方向的偏振光镜片,所以只能看到右侧摄像机302拍摄到的画面,而看不到看到左侧摄像机301拍摄到的画面。如果是红绿光拍摄的影像就带上红绿眼镜,左眼镜片是绿色镜片,所以只能看到左侧摄像机301拍摄到的红色画面,而看不到看到右侧摄像机302拍摄到的绿色画面;右眼镜片是红色镜片,所以只能看到右侧摄像机302拍摄到的绿色画面,而看不到看到左侧摄像机拍摄到的红色画面。观影者用这样的方式看到的画面就真的好像是两只眼睛同时看到的立体画面,这就是我们所观看的3D电影。
但是,上述现有技术存在如下的不足:
真人在‘定睛看’被看物体的时候一定同时伴随着两个动作:
第一动作是根据观看者本人与被看物体之间的距离来调整眼球内玻璃体这个凸透镜的曲率与厚薄,使得眼睛与被看物体之间的距离正好等于焦距,这就使得被看物体在视网膜上的影像非常清楚。这一点现在照相机、摄像机的全自动对焦功能中已经做得很好,有的高级照片甚至于能够做到在同一个画面里某一物体的影像非常清楚,但位于被看物体前方或者后方的物体的影像却很模糊,这就说明相机能把焦距调成与物体的距离一模一样。尽管如此相片上的影像总是与真人看到的物像区别很大,最主要的区别是立体感欠缺。因为当初拍摄的时候无论使用多么高级的照相机或者摄像机,拍摄的时候总是用唯一的一个镜头拍摄的单个画面,尽管观影者是用双眼同时观看这个画面,但由于当初是用一个摄像机拍摄的,所以,观影者的感觉却总还是用一只眼所看到的画面一样,缺乏立体感。
第二个动作就是真人的两个眼球‘同时盯住’被看物体表面上的同一个点,因为两只眼睛所在的位置不同,投射到交点“O”的两道眼光角度就不同,所以两只眼睛同时看得到的两个影 像就有所不同,但是两个影像在‘同时盯住’这个交点“O”上却高精度重合,因此真人所看到的物体就有了立体感的同时还感觉不到重影,这就是我们理想的3D影像。现有技术在拍摄3D的过程中由于被拍摄的物体是运动的,所以拍摄时这个运动着的物体不可能时时刻刻都位于现有3D技术的两个摄像头中心线的交点上“O”上,两个画面同时播放的时候就是重影,这就说明我们在日常生活中看到的景物是不重影的,但在播放3D影像的时候都是重影。因此,在播放的时候必须要戴上3D眼镜才能观影,让左眼只能看到当初拍摄时左侧摄像机拍摄到的画面,而看不到当初拍摄时右侧摄像机拍摄到的画面;右眼只能看到当初拍摄时右侧摄像机拍摄到的画面,而看不到当初拍摄时左侧摄像机拍摄到的画面,这样观影者的脑子里就呈现出立体感的画面,否则看到的都是重影。
图1表示的是现有技术3D摄像机的结构图,由于拍摄的时候两个摄像机镜头中心线与它们之间连线的夹角α和α'是固定值,也就是说左右两个摄像头301和302与机架300的相对位置是固定的,只有被摄物体处在左右两个摄像头301和302中心线交点“O”上才能获得清晰而又没有重影的影像,“O”点与两个摄像机镜头连线之间的距离被称为h,处于“O”点之外的任何位置在播放的时候都是两个画面的重影。
我们就可以明显地看出:在现有技术中如果戴上3D眼镜,虽然我们能够看到清楚的画面而且具有立体的效果,但是除了距离为h以外位置的任意平面上看到的两个画面的位置是不同的。换句话说在现有技术中,现实中被看物体上虽然是同处于一个点的位置,但是观影的时候看到的两个影像点却是两个空间坐标,这种观影效果无法与实际场景真人‘定睛观看’活动物体的两个不同影像的高精度重合的效果相媲美,不完全符合人体工程学,也不完全符合仿生学的,所以观影时间一长必然会有头晕、恶心等不舒服的感觉。
另外,如果用这种方法拍摄的影像之后在电视机或手机屏幕上播放,观影者佩戴特殊眼镜期间就只能观影了,不能再看别处,如果想看别处必须先摘掉眼镜,然后观影的时候又得戴上,反反复复,给观影带来诸多不便,因此现有技术不可能用于日常生活而得到普及。
几乎我们现在所有观看的电视直播、电视节目和电影节目都是单独一台摄像机拍摄的画面,所以就观影而言,时至今日我们仍然是“独眼看世界”。
发明内容
本发明所要解决的技术问题是,提供一种不需佩戴3D眼镜就可以看到具有立体效果动态画面的用裸眼观看3D影像的拍摄系统及使用方法。
本发明所采用的技术方案是:一种用裸眼观看3D影像的拍摄系统,包括L型机架,所述L型机架的垂直部分的顶端等间隔的依次设置有:用于向被拍摄物发出的激光束而产生漫反射光斑并进行拍摄的中间拍摄机构、用于分别通过中间拍摄机构所发出的激光束在被拍摄物上产生的漫反射斑点找到被拍摄物并进行拍摄的左侧拍摄机构和右侧拍摄机构;所述的L型机架的水平部分的上方设置有托板,所述托板的上端面上对应所述左侧拍摄机构和右侧拍摄机构分别设置有用于驱动左侧拍摄机构和右侧拍摄机构左右摆动的左侧驱动机构和右侧驱动机构,所述的L型机架的水平部分上垂直设置有导向柱和垂直驱动伺服电机,所述垂直驱动伺服电机的驱动轴连接有驱动丝杠,所述驱动丝杠通过螺纹贯穿的连接所述托板,所述导 向柱贯穿所述托板,所述托板通过在所述驱动丝杠的驱动下沿所述导向柱上下移动而驱动所述左侧驱动机构和右侧驱动机构上下移动,从而带动左侧拍摄机构或右侧拍摄机构上下摆动。
所述的中间拍摄机构包括有固定在所述L型机架的垂直部分顶端的用于设置中间摄像机的中间支架,上端对应所述的中间摄像机并且与所述的支架通过第一万向铰链铰接的固定杆,所述固定杆的下端连接手动旋转杆,所述手动旋转杆前端设置有中间激光笔,所述摄像机与所述中间激光笔位于同一垂直线上。
所述的左侧拍摄机构和右侧拍摄机构结构完全相同均包括有:通过支架设置在所述L型机架的垂直部分顶端上方的第二万向铰链,水平铰接在所述第二万向铰链上的导向轴,所述导向轴的一端通过固定板分别设置有侧部摄像机和侧部激光笔,所述侧部摄像机和侧部激光笔位于同一垂直线上,且所述侧部摄像机位于所述侧部激光笔的上方,所述导向轴的另一端连接用于驱动所述导向轴带动所述侧部固定板、侧部摄像机和侧部激光笔左右和上下摆动的左侧驱动机构或右侧驱动机构。
所述的左侧驱动机构或右侧驱动机构结构相同,均包括有:固定在所述托板上的螺母,固定在所述螺母上端的用于贯穿的插入左侧拍摄机构或右侧拍摄机构中的导向轴的轴套,以及固定在所述托板上的水平驱动伺服电机,所述水平驱动伺服电机的旋转轴连接水平驱动丝杠,所述水平驱动丝杠与所述螺母螺纹连接,在水平驱动丝杠的驱动下所述螺母带动轴套左右移动,从而带动左侧拍摄机构或右侧拍摄机构中的导向轴左右摆动。
一种权利要求1所述的用裸眼观看3D影像的拍摄系统的使用方法,其特征在于,包括:分别开启中间激光笔和两侧的侧部激光笔,得到中间光斑和两侧光斑,其中,所述的中间光斑位于被拍摄物上,中间摄像机捕捉到中间光斑和两侧光斑,并将捕捉到的信号反馈给控制机构,控制机构控制垂直驱动伺服电机和水平驱动伺服电机驱动两侧的侧部激光笔发出的光斑与中间激光笔发出的光斑重合;控制机构控制两侧的侧部摄像机同时摄取被拍摄物图像。
当所述的被拍摄物处于移动状态时,使用者通过手动旋转杆使所述的中间激光笔发出的光斑一直位于所述被拍摄物上,中间摄像机一直捕捉处于移动状态的光斑,并实时将捕捉到的信号反馈给控制机构,控制机构实时控制垂直驱动伺服电机和水平驱动伺服电机驱动两侧的侧部激光笔发出的光斑一直与所述的中间激光笔发出的光斑重合,并控制两侧的侧部摄像机同时摄取被拍摄物图像。
一种用裸眼观看3D影像的拍摄系统的使用方法,包括:分别开启两侧的侧部激光笔,并且关闭中间激光笔,中间摄像机捕捉到被拍摄物上佩戴的点状光源和两侧的侧部激光笔所发出的光斑,并将捕捉到的信号反馈给控制机构,控制机构控制垂直驱动伺服电机和水平驱动伺服电机驱动两侧的侧部激光笔发出的光斑与被拍摄物上佩戴的点状光源重合;控制机构控制两侧的侧部摄像机同时摄取被拍摄物图像。
当所述佩戴点状光源的被拍摄物处于移动状态时,中间摄像机一直捕捉处于移动状态的点状光源,并实时将捕捉到的信号反馈给控制机构,控制机构实时控制垂直驱动伺服电机和水平驱动伺服电机驱动两侧的侧部激光笔发出的光斑一直与所述被拍摄物上佩戴的点状光源重合,并控制两侧的侧部摄像机同时摄取被拍摄物图像。
一种用裸眼观看3D影像的拍摄系统的使用方法,包括:分别开启两侧的侧部激光笔, 并且关闭中间激光笔,拍摄者使用激光笔照射被拍摄物之后产生光斑,中间摄像机捕捉所述的光斑和两侧的侧部激光笔所发出的光斑,将捕捉到的信号反馈给控制机构,控制机构控制垂直驱动伺服电机和水平驱动伺服电机驱动两侧的侧部激光笔发出的光斑与拍摄者使用激光笔发出的光斑重合;控制机构控制两侧的侧部摄像机同时摄取被拍摄物图像。
被拍摄物处于移动状态时,拍摄者使用激光笔一直照射在移动的被拍摄物上并产生光斑,中间摄像机实时捕捉处于移动状态的光斑,并实时将捕捉到的信号反馈给控制机构,控制机构实时控制垂直驱动伺服电机和水平驱动伺服电机驱动两侧的侧部激光笔发出的光斑一直与所述的拍摄者使用激光笔发出的光斑重合,并控制两侧的侧部摄像机同时摄取被拍摄物图像。
本发明的一种用裸眼观看3D影像的拍摄系统及使用方法,根据真人视觉的高度仿生学孕育而生而且充分运用了人体工程学,画面极其逼真。采用本发明所拍摄任何图像,在观影时不需要佩戴眼镜,用裸眼就可以看到的画面不但逼真、自然并且富有立体感,观看久了也不会有不舒服的感觉。本发明用逼真的视觉感受还给了我们真实的世界。换句话说就是:虽然放眏的画面是虚拟的,但观看者的视觉感受却是真实的、立体的、清晰的。
附图说明
图1是现有技术观看3D影像的拍摄示意图;
图2是本发明用裸眼观看3D影像的拍摄系统的整体结构示意图;
图3是图2的俯视图;
图4是图2的A-A剖视图;
图5是图2的B-B剖视图;
图6是本发明中方法1的拍摄示意图;
图7是本发明中方法2的拍摄示意图;
图8是本发明中方法3的拍摄示意图。
图中
1:L型机架                       1a:垂直部分
1b:水平部分                     2:左侧拍摄机构
3:中间拍摄机构                  4:右侧拍摄机构
5:导向柱                        6:托板
7:驱动丝杠                      8:垂直驱动伺服电机
9:左侧驱动机构                  10:右侧驱动机构
31:中间摄像机                   32:支架
33:第一万向铰链                 34:固定杆
61:螺孔                         35:手动旋转杆
36:中间激光笔                   101:支架
102:第二万向铰链                103:导向轴
104:侧部摄像机                  105:固定板
106:侧部激光笔                  201:螺母
202:轴套                        203:水平驱动伺服电机
204:水平驱动丝杠                300:机架
301:左侧摄像机                  302:右侧摄像机
α:现有技术左侧拍摄机构的拍摄方向与左右侧拍摄机构的连线之间的角度
α′:现有技术右侧拍摄机构的拍摄方向与左右侧拍摄机构的连线之间的角度
“O”:现有技术中左右2个侧拍摄机构的拍摄方向产生的交点
h:现有技术左右2个侧拍摄机构的拍摄方向产生的交点与机架之间的距离
θ:本发明的左侧拍摄机构的拍摄方向与左右侧拍摄机构的连线之间的角度
θ':本发明的右侧拍摄机构的拍摄方向与左右侧拍摄机构的连线之间的角度
P:本发明中方法1和方法3左右2个侧拍摄机构的拍摄方向产生的交点,也是中间激光笔或拍摄者手持激光笔照射到被拍摄物体表面上所产生的漫反射光斑
Q:本发明中方法2左右2个侧拍摄机构的拍摄方向产生的交点,也是被拍摄物体身上佩戴的点状光源
H:本发明的左右2个侧拍摄机构的拍摄方向产生的交点P或Q与机架300之间的距离
46:本发明的方法3中拍摄者手持的激光笔
具体实施方式
下面结合实施例和附图对本发明的一种用裸眼观看3D影像的拍摄系统及使用方法做出详细说明。
如图2、图3所示,本发明的一种用裸眼观看3D影像的拍摄系统,包括L型机架1,所述L型机架1的垂直部分1a的顶端等间隔的依次设置有:用于向被拍摄物发出的激光束而产生漫反射光斑并进行拍摄的中间拍摄机构3、用于分别找到被拍摄物表面上通过中间拍摄机构3所发出的激光束在被拍摄物上产生的漫反射斑点找到被拍摄物,并且让自身发出的激光束在被拍摄物上产生的漫反射斑点与之重合之后进行拍摄的左侧拍摄机构2和右侧拍摄机构4;所述的L型机架1的水平部分1b的上方设置有托板6,所述托板6的上端面上对应所述左侧拍摄机构2和右侧拍摄机构4分别设置有用于驱动左侧拍摄机构2和右侧拍摄机构4左右摆动的左侧驱动机构9和右侧驱动机构10所述的L型机架1的水平部分1b上垂直设置有导向柱5和垂直驱动伺服电机8,所述垂直驱动伺服电机8的驱动轴连接有驱动丝杠7,所述驱动丝杠7通过螺孔61贯穿的连接所述托板6,所述导向柱5贯穿所述托板6,所述托板6通过在所述驱动丝杠7的驱动下沿所述导向柱5上下移动而驱动所述左侧驱动机构9和右侧驱动机构10上下移动,所述左侧驱动机构9和右侧驱动机构10上下移动从而带动左侧拍摄机构2或右侧拍摄机构4中的导向轴103上下摆动。
如图2、图3、图5所示,所述的中间拍摄机构3包括有固定在所述L型机架1的垂直部分1a顶端的用于设置中间摄像机31的中间支架32,上端对应所述的中间摄像机31并且与所述的支架32通过第一万向铰链33铰接的固定杆34,所述固定杆34的下端连接手动旋转杆35,所述手动旋转杆35前端设置有中间激光笔36,所述摄像机31与所述中间激光笔36位于同一垂直线上。
如图2、图4所示,所述的左侧拍摄机构2和右侧拍摄机构4结构完全相同均包括有:通过支架101设置在所述L型机架1的垂直部分1a顶端上方的第二万向铰链102,水平铰接在所述第二万向铰链102上的导向轴103,所述导向轴103的一端通过固定板105分别设置有侧部摄像机104和侧部激光笔106,所述侧部摄像机104和侧部激光笔106安装在同一块固定板105上而且位于同一垂直线上,且所述侧部摄像机104位于所述侧部激光笔106的上方,所述导向轴103的另一端连接用于驱动所述导向轴103带动所述侧部固定板105、侧部摄像机104和侧部激光笔106左右和上下摆动的左侧驱动机构9或右侧驱动机构10。
如图2、图4所示,所述的左侧驱动机构9或右侧驱动机构10结构相同,均包括有:固定在所述托板6上的螺母201,固定在所述螺母201上端的用于贯穿的插入左侧拍摄机构2或右侧拍摄机构4中的导向轴103的轴套202,以及固定在所述托板6上的水平驱动伺服电机203,所述水平驱动伺服电机203的旋转轴连接水平驱动丝杠204,所述水平驱动丝杠204与所述螺母201螺纹连接,在水平驱动丝杠204的驱动下所述螺母201带动轴套202左右移动,从而带动左侧拍摄机构2或右侧拍摄机构4中的导向轴103左右移动摆动。
本发明的一种用裸眼观看3D影像的拍摄系统中的整体控制部分和供电部分均是采用专利号为201420592944.8的专利“基于激光制导的小车遥控装置”中所公开的技术方案。
本发明的用裸眼观看3D影像的拍摄系统的使用方法有三种使用方式。其中,
第一种使用方式:
本发明的用裸眼观看3D影像的拍摄系统的使用方法,包括:分别开启中间激光笔和两侧的侧部激光笔,得到中间光斑和两侧光斑,其中,所述的中间光斑位于被拍摄物上,中间摄像机捕捉到中间光斑和两侧光斑,并将捕捉到的信号反馈给控制机构,控制机构控制垂直驱动伺服电机和2个水平驱动伺服电机驱动两侧的侧部激光笔发出的光斑与中间激光笔发出的光斑向中间光斑移动并且与之高精度重合;与此同时控制机构控制两侧的侧部摄像机同时摄取被拍摄物图像。
当所述的被拍摄物处于移动状态时,使用者通过手动旋转杆35使所述的中间激光笔发出的光斑一直位于所述被拍摄物上,中间摄像机一直捕捉3个处于移动状态的光斑,并实时将捕捉到的信号反馈给控制机构,控制机构控制垂直驱动伺服电机和2个水平驱动伺服电机驱动两侧的侧部激光笔发出的光斑一直与所述的中间激光笔发出的光斑重合,并控制两侧的侧部摄像机同时摄取被拍摄物图像。
如图6所示,拍摄时摄影者手握本发明的摄像机L型机架1,用手动旋转杆35来调整中间激光笔36所发出的激光束指向角度,使中间激光笔31的激光束指向被拍摄的物体表面上需要拍摄的那一点“P”并且形成了1个漫反射光斑点以及漫反射光斑点与摄像机L型机架1上的垂直部分la平面之间的距离H,这个漫反射光斑点“P”的中心就是中间激光笔36发出的激光束在被测物体表面上所形成的漫反射光斑中心。同时另外两个从动的侧部激光笔106所发出的激光束分别投射到物体表面之后也形成了两个另外的从动漫反射光斑中心。此时中间拍摄机构上的中间摄像机分别把3个漫反射光斑的位置提供给控制机构,控制机构就根据它们的位置去控制垂直驱动伺服电机8和2个水平驱动伺服电机203,这3个伺服电机接到控制机构的指令就立即转动,正转还是反转,转多少圈、转多大角度完全由控制机构控制。垂 直驱动伺服电机8带动驱动丝杠7旋转来驱动托板6上下移动,让2个从动的侧部激光笔106所发出的激光束分别投射到被拍摄物体表面之后形成的另外2个从动的漫反射光斑中心与“P”高度一致。与此同时控制机构还分别控制两个水平驱动伺服电机203的相应动作,使2个侧部激光笔106所形成的漫反射光斑迅速地捕捉到并且敏捷地移动至中间激光笔36所形成位于漫反射光斑“P”点的位置,而且与之高精度重叠,这时候也就确定了L形机架中的垂直部分la平面与漫反射光斑点的距离H值。中间摄像头31固定在2个侧部摄像机104连线的中点位置,2个侧部摄像机104的镜头中心线与L型机架垂直部分la平面之间的夹角分别是θ和θ'(如图6)。这一敏捷地捕捉动作来自于垂直驱动伺服电机8和两个水平驱动伺服电机203接到控制机构的指令就立即转动,正转还是反转,转多少圈、转多大角度完全听从控制机构的指令。垂直驱动伺服电机8转动,带动驱动丝杠7旋转使得托板6上下平动来带动左侧摄像机构2和右侧摄像机构4上下移动,使得2个导向轴103上下摆动带动2个固定板105上下摆动而使3个漫反射光斑的高低对齐。与此同时,2个水平伺服电机203分别带动2个水平驱动丝杠204各自按照控制机构给它们分别发出的指令所要求的圈数各自做出旋转动作,使得2个螺母分别沿着2个水平驱动丝杠204的轴线左右移动,通过2个轴套202分别带动2个导向轴102左右摆转各自的角度带动固定板105各自左右摆转不同的角度。这样左侧拍摄结构和右侧拍摄机构中的2个固定板105不但能够根据控制机构的指令上下摆动而且也能左右摆动来带动左侧拍摄机构2中的侧部激光笔与L机架的垂直部分la平面之间的夹角成θ角;带动右侧拍摄机构4中的侧部激光笔与L机架的垂直部分la平面之间的夹角成θ'角(见图6)。这样就使得左右2个侧部激光笔106投射到物体表面后形成的2个漫反射光斑中心迅速地移动到中间激光笔发出漫反射光斑“P”点的中心处,并且与之高精度重叠。
被拍摄的物体运动起来以后它表面上的漫反射光斑“P”点的远近也就是漫反射光斑点与摄像机L型机架1上的垂直部分la平面之间的距离H时时刻刻都发生变化,但是本发明的3D影像的拍摄系统有能力去捕捉漫反射光斑点,快速调节漫反射光斑点与摄像机L型机架1上的垂直部分la平面与“P”之间的距离差,让这个漫反射光斑点时时刻刻都是1个中间激光笔36和2个侧部光斑笔106所形成3个漫反射光斑的高精度重叠于“P”点。
在本发明的一种用裸眼观看3D影像的拍摄系统的工作过程中可以看出:从拍摄开始至拍摄结束的整个拍摄期间里,左右两个摄像头的摆动夹角θ和θ'的角度以及漫反射重合光斑“P”点与摄像机L型机架1上的垂直部分la平面之间的距离H始终是随着时间的推移进行瞬时变化,是时间的函数,时间则是该函数的自变量,即:H=f(t)。在拍摄到某一瞬时距离H值必然等于该视频播放到了这个瞬时的时候屏幕所在的位置。这个H值与时间的函数早在该视频拍摄的时候就被电脑记录下来了,所以在播放视频的时候依靠本发明的一种用裸眼观看3D影像的拍摄系统重现这个函数H=f(t),就能在播放该视频的时候自动按照函数的规律调节两个摄像头与屏幕之间的距离H变化,使播放屏幕从始至终都处于漫反射光斑点之上,从而在屏幕上必然时刻都能获得即清晰又富有立体感的画面。
第二种使用方式:
本发明的用裸眼观看3D影像的拍摄系统的使用方法,包括:分别开启两侧的侧部激光笔,关闭中间激光笔36的电源之后中间摄像机捕捉到被拍摄物上佩戴的点状光源和两侧的侧 部激光笔所发出的光斑,并将捕捉到的信号反馈给控制机构,控制机构控制垂直驱动伺服电机和2个水平驱动伺服电机驱动两侧的侧部激光笔发出的光斑与被拍摄物上佩戴的点状光源Q重合;控制机构控制两侧的侧部摄像机同时摄取被拍摄物图像,如图7所示。
当所述佩戴点状光源的被拍摄物处于移动状态时,中间摄像机一直捕捉处于移动状态的点状光源Q,并实时将捕捉到的信号反馈给控制机构,控制机构实时控制垂直驱动伺服电机和水平驱动伺服电机驱动两侧的侧部激光笔发出的光斑一直与所述的点状光源重合,并控制两侧的侧部摄像机同时摄取被拍摄物图像。
如图7所示,将这种技术稍加改动就可以让该3D影像的拍摄系统用另一方法捕捉目标:在拍摄对象身上佩戴一个点状发光的光源Q来代替方法1中“P”,这个光源Q的中心相当于上述方法1所述中间激光笔发出的漫反射光斑点“P”。拍摄时摄影者将本发明的3D影像的拍摄系统L形机架放置在一固定的位置,L形机架的垂直部分la平面的法线方向对着被拍摄的物体,然后关闭上面所述的中间激光笔36的电源,让2个侧部激光笔106所发出来的激光束形成的两个漫反射的光斑中心捕捉光源Q的中心,这2个侧部激光笔106的激光束所形成的2个漫反射的光斑中心与光源Q的中心点高精度重叠来确定H值。这个漫反射光斑的捕捉动作是由于专用捕捉漫反射斑点中心的中间摄像头31发现这一中心Q点,并且把2个侧部摄像机104间的连线与2个侧部摄像机104的摄影方向之间的2个不同的夹角θ和θ'的角度传输给控制机构,控制机构实时控制1个垂直驱动伺服电机8和2个水平驱动伺服电机203一接到控制机构的指令就立即转动,正转还是反转,转多少圈、转多大角度完全听从控制机构的指令。垂直8带动丝杠7旋转来驱动托板6上下平动,带动左侧摄像机构2和右侧摄像机构4上下移动,使得2个导向轴103上下摆动带动2个固定板105上下摆动,于是2个侧部激光笔106和2个侧部摄像机同步上下摆动。与此同时,2个水平伺服电机203分别带动2个水平驱动丝杠204各自按照控制机构给它们分别发出的指令按照各自所要求的圈数做出旋转动作,使得2个螺母分别沿着2个水平驱动丝杠204的轴线各自左右移动,通过2个轴套202分别带动2个导向轴102左右摆转各自的角度带动固定板105各自摆转不同的角度。这样左侧拍摄结构和右侧拍摄机构中的2个固定板105不但能够根据控制机构的指令上下摆动而且也能左右摆动。使得左右2个侧部激光笔106投射到物体表面后形成的2个漫反射光斑中心迅速地移动到Q点的中心处,并且与之高精度重叠。被拍摄的物体运动起来以后它表面上的Q点的远近也就是H值,该H值时时刻刻都发生变化,但是它无论怎样变化,本发明的3D影像的拍摄系统都会快速调节夹角θ和θ'的角度的大小,去适应Q点的远近,因此,本发明的一种用裸眼观看3D影像的拍摄系统有能力去捕捉Q点,让这个Q点时时刻刻都2个激光笔所形成2个漫反射光斑的高精度重叠点。
用这种方法就可以做到自动拍摄,因为无论点状光源Q怎样移动,移动到哪里,移动多快,本发明的3D影像的拍摄系统都可以自动捕捉点状光源Q,并能够将点状光源Q与3D影像的拍摄系统的L形机架中垂直部分la平面间的距离时时刻刻调整到H值。确保了在播放的时候每个瞬时都能获得即清晰又富立体感的画面。
因为本发明的3D影像的拍摄系统具有光斑的自动捕捉能力,所以这种方法非常实用,尤其是拍摄足球赛事等这样的体育节目更是如此。比如:拍摄一场足球比赛,拍摄者可以让 上场的每一个运动员都佩戴一个发点状光源Q 1、Q 2、Q 3、Q...、Q 22;足球表面也佩戴上一个点状光源Q 0。用一个遥控开关控制这些光源的关闭与开启。拍摄者想拍摄谁就开启相应的光源,其余的光源全部处于关闭状态,然后根据需要任意切换开关,用这种方法拍摄到的场面在放映的时候就会立体感活现,生动无比。
第三种使用方式:
本发明的用裸眼观看3D影像的拍摄系统的使用方法,包括:分别开启两侧的侧部激光笔,关闭中间激光笔36的电源之后拍摄者使用另一个激光46笔照射被拍摄物产生光斑P(见图8),中间摄像机捕捉所述的光斑和两侧的侧部激光笔所发出的2个光斑,将捕捉到的信号反馈给控制机构,控制机构控制垂直驱动伺服电机和水平驱动伺服电机驱动两侧的侧部激光笔发出的光斑与拍摄者使用另一个激光46笔照射被拍摄物产生光斑P点重合;控制机构控制两侧的侧部摄像机同时摄取被拍摄物图像。
被拍摄物处于移动状态时,拍摄者使用激光笔一直照射在移动的被拍摄物上并产生光斑P点,中间摄像机实时捕捉处于移动状态的光斑,并实时将捕捉到的信号反馈给控制机构,控制机构实时控制垂直驱动伺服电机和水平驱动伺服电机驱动两侧的侧部激光笔发出的光斑一直与所述的拍摄者使用另一个激光46笔照射被拍摄物产生光斑P点重合,并控制两侧的侧部摄像机同时摄取被拍摄物图像。
如图8所示,首先关闭中间激光笔36的电源,然后拍摄者将本发明的3D影像的拍摄系统L形放置在一固定的位置,之后拍摄者位于该3D影像的拍摄系统以外的另一位置手握另一个激光笔46来代替方法1里中间激光笔36去照射被拍摄的目标,其激光束照到目标之后就形成了一个漫反射的光斑P点,3D影像的拍摄系统就能捕捉到这个光斑P点,让左右2个侧部激光笔106所发出来的2个激光束所形成的2个漫反射的光斑中心捕捉漫反射的光斑P点的中心,这2个侧部激光笔发出的2个激光束所形成的2个漫反射的光斑中心与拍摄者手握一激光笔46照射所形成的光斑P点高精度重叠来确定P点与3D影像的拍摄系统的L形机架的垂直部分平面的距离H值。所述的这个漫反射光斑的捕捉动作是由于专用捕捉漫反射斑点中心的中间摄像头31发现这一中心P点,并且把2个侧部摄像机104间的连线与2个侧部摄像机104的摄影方向之间的2个不同的夹角θ和θ'的角度传输给控制机构,控制机构实时控制1个垂直驱动伺服电机8和2个水平驱动伺服电机203一接到控制机构的指令就立即转动,正转还是反转,转多少圈、转多大角度完全听从控制机构的指令。垂直8带动丝杠7旋转来驱动托板6上下平动,带动左侧摄像机构2和右侧摄像机构4上下移动,使得2个导向轴103上下摆动带动2个固定板105上下摆动,于是2个侧部激光笔106和2个侧部摄像机同步上下摆动。与此同时,2个水平伺服电机203分别带动2个水平驱动丝杠204各自按照控制机构给它们分别发出的指令按照各自所要求的圈数做出旋转动作,使得2个螺母分别沿着2个水平驱动丝杠204的轴线各自左右移动,通过2个轴套202分别带动2个导向轴102左右摆转各自的角度带动固定板105各自摆转不同的角度。这样左侧拍摄结构和右侧拍摄机构中的2个固定板105不但能够根据控制机构的指令上下摆动而且也能左右摆动。使得左右2个侧部激光笔106投射到物体表面后形成的2个漫反射光斑中心迅速地移动到P点的中心处,并且与之高精度重叠。被拍摄的物体运动起来以后它表面上的P点的远近也就是 H值,该H值时时刻刻都发生变化,但是它无论怎样变化,本发明的3D影像的拍摄系统都会快速调节夹角θ和θ'的角度的大小,去适应P点的远近。
由此可见使用本发明的用裸眼观看3D影像的拍摄系统进行拍摄时2个侧部摄像机104的镜头中心线与L型机架垂直部分la平面之间的夹角分别是θ和θ'和P点与3D影像的拍摄系统的L形机架的垂直部分平面的距离H值在拍摄的过程中时时刻刻随着被拍摄物体运动起来的位置变化而变化,总是能够把交点P每时每刻调整到被拍摄物体的身上,因此2个侧部摄像机104各自拍摄的画面同时在一个屏幕上播放的时候就会获得2个高精度重叠的画面,这样的复合画面就具备了即清晰又富于立体感的画面。
第二种使用方式与第三种使用方式结合起来拍摄起来就更加灵活,比如用第二种使用方式在拍摄足球比赛的时候,根据需要可以关闭第二种使用方式切换至第三种使用方式,之后的某一时刻又可以根据需要关闭第三种使用方式又恢复第二种使用方式。

Claims (10)

  1. 一种用裸眼观看3D影像的拍摄系统,包括L型机架(1),其特征在于,所述L型机架(1)的垂直部分(1a)的顶端等间隔的依次设置有:用于向被拍摄物发出的激光束而产生漫反射光斑并进行拍摄的中间拍摄机构(3)、用于分别通过中间拍摄机构(3)所发出的激光束在被拍摄物上产生的漫反射斑点找到被拍摄物并进行拍摄的左侧拍摄机构(2)和右侧拍摄机构(4);所述的L型机架(1)的水平部分(1b)的上方设置有托板(6),所述托板(6)的上端面上对应所述左侧拍摄机构(2)和右侧拍摄机构(4)分别设置有用于驱动左侧拍摄机构(2)和右侧拍摄机构(4)左右摆动的左侧驱动机构(9)和右侧驱动机构(10),所述的L型机架(1)的水平部分(1b)上垂直设置有导向柱(5)和垂直驱动伺服电机(8),所述垂直驱动伺服电机(8)的驱动轴连接有驱动丝杠(7),所述驱动丝杠(7)通过螺纹贯穿的连接所述托板(6),所述导向柱(5)贯穿所述托板(6),所述托板(6)通过在所述驱动丝杠(7)的驱动下沿所述导向柱(5)上下移动而驱动所述左侧驱动机构(9)和右侧驱动机构(10)上下移动,从而带动左侧拍摄机构(2)或右侧拍摄机构(4)上下摆动。
  2. 根据权利要求1所述的一种用裸眼观看3D影像的拍摄系统,其特征在于,所述的中间拍摄机构(3)包括有固定在所述L型机架(1)的垂直部分(1a)顶端的用于设置中间摄像机(31)的中间支架(32),上端对应所述的中间摄像机(31)并且与所述的支架(32)通过第一万向铰链(33)铰接的固定杆(34),所述固定杆(34)的下端连接手动旋转杆(35),所述手动旋转杆(35)前端设置有中间激光笔(36),所述摄像机(31)与所述中间激光笔(36)位于同一垂直线上。
  3. 根据权利要求1所述的一种用裸眼观看3D影像的拍摄系统,其特征在于,所述的左侧拍摄机构(2)和右侧拍摄机构(4)结构完全相同均包括有:通过支架(101)设置在所述L型机架(1)的垂直部分(1a)顶端上方的第二万向铰链(102),水平铰接在所述第二万向铰链(102)上的导向轴(103),所述导向轴(103)的一端通过固定板(105)分别设置有侧部摄像机(104)和侧部激光笔(106),所述侧部摄像机(104)和侧部激光笔(106)位于同一垂直线上,且所述侧部摄像机(104)位于所述侧部激光笔(106)的上方,所述导向轴(103)的另一端连接用于驱动所述导向轴(103)带动所述侧部固定板(105)、侧部摄像机(104)和侧部激光笔(106)左右和上下摆动的左侧驱动机构(9)或右侧驱动机构(10)。
  4. 根据权利要求1所述的一种用裸眼观看3D影像的拍摄系统,其特征在于,所述的左侧驱动机构(9)或右侧驱动机构(10)结构相同,均包括有:固定在所述托板(6)上的螺母(201),固定在所述螺母(201)上端的用于贯穿的插入左侧拍摄机构(2)或右侧拍摄机构(4)中的导向轴(103)的轴套(202),以及固定在所述托板(6)上的水平驱动伺服电机(203),所述水平驱动伺服电机(203)的旋转轴连接水平驱动丝杠(204),所述水平驱动丝杠(204)与所述螺母(201)螺纹连接,在水平驱动丝杠(204)的驱动下所述螺母(201)带动轴套(202)左右移动,从而带动左侧拍摄机构(2)或右侧拍摄机构(4)中的 导向轴(103)左右摆动。
  5. 一种权利要求1所述的用裸眼观看3D影像的拍摄系统的使用方法,其特征在于,包括:分别开启中间激光笔和两侧的侧部激光笔,得到中间光斑和两侧光斑,其中,所述的中间光斑位于被拍摄物上,中间摄像机捕捉到中间光斑和两侧光斑,并将捕捉到的信号反馈给控制机构,控制机构控制垂直驱动伺服电机和水平驱动伺服电机驱动两侧的侧部激光笔发出的光斑与中间激光笔发出的光斑重合;控制机构控制两侧的侧部摄像机同时摄取被拍摄物图像。
  6. 根据权利要求5所述的用裸眼观看3D影像的拍摄系统的使用方法,其特征在于,当所述的被拍摄物处于移动状态时,使用者通过手动旋转杆使所述的中间激光笔发出的光斑一直位于所述被拍摄物上,中间摄像机一直捕捉处于移动状态的光斑,并实时将捕捉到的信号反馈给控制机构,控制机构实时控制垂直驱动伺服电机和水平驱动伺服电机驱动两侧的侧部激光笔发出的光斑一直与所述的中间激光笔发出的光斑重合,并控制两侧的侧部摄像机同时摄取被拍摄物图像。
  7. 一种权利要求1所述的用裸眼观看3D影像的拍摄系统的使用方法,其特征在于,包括:分别开启两侧的侧部激光笔,并且关闭中间激光笔(36),中间摄像机捕捉到被拍摄物上佩戴的点状光源和两侧的侧部激光笔所发出的光斑,并将捕捉到的信号反馈给控制机构,控制机构控制垂直驱动伺服电机和水平驱动伺服电机驱动两侧的侧部激光笔发出的光斑与被拍摄物上佩戴的点状光源重合;控制机构控制两侧的侧部摄像机同时摄取被拍摄物图像。
  8. 根据权利要求7所述的用裸眼观看3D影像的拍摄系统的使用方法,其特征在于,当所述佩戴点状光源的被拍摄物处于移动状态时,中间摄像机一直捕捉处于移动状态的点状光源,并实时将捕捉到的信号反馈给控制机构,控制机构实时控制垂直驱动伺服电机和水平驱动伺服电机驱动两侧的侧部激光笔发出的光斑一直与所述被拍摄物上佩戴的点状光源重合,并控制两侧的侧部摄像机同时摄取被拍摄物图像。
  9. 一种权利要求1所述的用裸眼观看3D影像的拍摄系统的使用方法,其特征在于,包括:分别开启两侧的侧部激光笔,并且关闭中间激光笔(36),拍摄者使用激光笔照射被拍摄物之后产生光斑,中间摄像机捕捉所述的光斑和两侧的侧部激光笔所发出的光斑,将捕捉到的信号反馈给控制机构,控制机构控制垂直驱动伺服电机和水平驱动伺服电机驱动两侧的侧部激光笔发出的光斑与拍摄者使用激光笔发出的光斑重合;控制机构控制两侧的侧部摄像机同时摄取被拍摄物图像。
  10. 根据权利要求9所述的用裸眼观看3D影像的拍摄系统的使用方法,其特征在于,被拍摄物处于移动状态时,拍摄者使用激光笔一直照射在移动的被拍摄物上并产生光斑,中间摄像机实时捕捉处于移动状态的光斑,并实时将捕捉到的信号反馈给控制机构,控制机构实时控制垂直驱动伺服电机和水平驱动伺服电机驱动两侧的侧部激光笔发出的光斑一直与所述的拍摄者使用激光笔发出的光斑重合,并控制两侧的侧部摄像机同时摄取被拍摄物图像。
PCT/CN2018/076649 2017-02-15 2018-02-13 一种用裸眼观看3d影像的拍摄系统及使用方法 WO2018149393A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/485,459 US10955737B2 (en) 2017-02-15 2018-02-13 Photographing system for viewing 3D images with naked eyes and using method thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201710082499 2017-02-15
CN201710079692.7 2017-02-15
CN201710079692 2017-02-15
CN201710082499.9 2017-02-15
CN201710116306.7 2017-02-28
CN201710116306.7A CN106773508B (zh) 2017-02-15 2017-02-28 一种用裸眼观看3d影像的拍摄系统及使用方法

Publications (1)

Publication Number Publication Date
WO2018149393A1 true WO2018149393A1 (zh) 2018-08-23

Family

ID=58959583

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2018/076649 WO2018149393A1 (zh) 2017-02-15 2018-02-13 一种用裸眼观看3d影像的拍摄系统及使用方法
PCT/CN2018/076648 WO2018149392A1 (zh) 2017-02-15 2018-02-13 全息摄影系统及全息显示系统和立体摄影系统及显示方法
PCT/CN2018/076650 WO2018149394A1 (zh) 2017-02-15 2018-02-13 一种三坐标测绘仪及测绘方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/076648 WO2018149392A1 (zh) 2017-02-15 2018-02-13 全息摄影系统及全息显示系统和立体摄影系统及显示方法
PCT/CN2018/076650 WO2018149394A1 (zh) 2017-02-15 2018-02-13 一种三坐标测绘仪及测绘方法

Country Status (3)

Country Link
US (3) US10908493B2 (zh)
CN (3) CN106773508B (zh)
WO (3) WO2018149393A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106773508B (zh) * 2017-02-15 2022-05-24 天津长瑞大通流体控制系统有限公司 一种用裸眼观看3d影像的拍摄系统及使用方法
CN107490351A (zh) * 2017-08-04 2017-12-19 安徽英昊达精密设备有限公司 一种自动上下料三坐标测量仪装置
US11248971B2 (en) 2018-02-02 2022-02-15 Analog Devices International Unlimited Company Magnetic field torque and/or angle sensor
US11726234B2 (en) 2020-05-04 2023-08-15 Visera Technologies Company Limited Optical device
US11460323B2 (en) 2021-02-05 2022-10-04 Analog Devices International Unlimited Company Magnetic field sensor package
CN113074690A (zh) * 2021-03-10 2021-07-06 江阴市计量测试检定所 一种适用零件综合检测的集成装置及其工作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070035539A1 (en) * 2003-08-21 2007-02-15 Koichi Matsumura Image acquisition system for generation of three-dimensional models
CN201383069Y (zh) * 2009-02-23 2010-01-13 吕为矛 对准拍摄对象的立体照相机
CN102566244A (zh) * 2010-12-21 2012-07-11 天津国信浩天三维科技有限公司 360度全景三维立体拍摄系统
CN105301887A (zh) * 2015-11-27 2016-02-03 常州信息职业技术学院 一种3d环视拍摄系统
CN106773508A (zh) * 2017-02-15 2017-05-31 邢天宜 一种用裸眼观看3d影像的拍摄系统及使用方法
CN206497292U (zh) * 2017-02-15 2017-09-15 邢天宜 一种用裸眼观看3d影像的拍摄系统

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4014140B2 (ja) * 2002-03-13 2007-11-28 日本放送協会 三次元モデリング装置及びその方法及びそのプログラム
CN1771741A (zh) * 2003-02-14 2006-05-10 李宗琦 3d照相机系统及其方法
CN2665667Y (zh) * 2003-08-12 2004-12-22 西北大学 激光三维真彩色扫描仪
US8945746B2 (en) * 2009-08-12 2015-02-03 Samsung Sdi Co., Ltd. Battery pack with improved heat dissipation efficiency
KR100780603B1 (ko) * 2007-05-10 2007-11-30 (주)지에스엠솔루션 이동형 사진측량 시스템에서의 라인 레이저를 이용한시설물의 위치 파악 방법
CN101793496B (zh) * 2009-04-23 2012-01-11 杭州新三联电子有限公司 精密视频测绘分析仪
KR101243032B1 (ko) * 2010-10-08 2013-03-25 주식회사 레드로버 직교방식의 입체 카메라 리그
CN102506748B (zh) * 2011-10-21 2013-09-04 李志扬 一种基于激光探针阵列的三维测量方法及装置
WO2013141923A2 (en) * 2011-12-20 2013-09-26 Sadar 3D, Inc. Scanners, targets, and methods for surveying
CN103888750B (zh) * 2012-12-20 2016-02-24 比比威株式会社 三维影像拍摄控制系统及方法
WO2015085982A1 (de) * 2013-12-11 2015-06-18 Api International Ag Vorrichtung zur 3-d-vermessung einer oberfläche und projektionseinheit, sowie verfahren zur 3-d-vermessung
WO2015108071A1 (ja) * 2014-01-20 2015-07-23 正実 森 3次元データ生成装置、造形物製造システム及び3次元データ生成方法
CN103777455B (zh) * 2014-02-25 2016-08-17 浙江大学 基于光场拼接的球形沉浸式三维显示方法及系统
CN103913149B (zh) * 2014-03-19 2016-05-04 华南理工大学 一种基于stm32单片机的双目测距系统及其测距方法
CN105093800A (zh) * 2014-05-05 2015-11-25 徐平 一种具有自动汇聚功能的多视点立体摄影仪
CN103984482A (zh) * 2014-05-28 2014-08-13 重庆大学 基于普通摄像头的激光笔绘图方法
CN104457574A (zh) * 2014-12-11 2015-03-25 天津大学 一种非接触式测量不规则物体体积的装置和测量方法
US9964398B2 (en) * 2015-05-06 2018-05-08 Faro Technologies, Inc. Three-dimensional measuring device removably coupled to robotic arm on motorized mobile platform
CN204761616U (zh) * 2015-06-05 2015-11-11 浙江宇佑影视传媒有限公司 一种3d成像显示系统
KR101671719B1 (ko) * 2015-06-05 2016-11-02 주식회사코노바코리아 3d 영상 촬영용 거치대
CN105262946A (zh) * 2015-09-23 2016-01-20 上海大学 一种三维双目相机云台实验装置
CN205505992U (zh) * 2016-03-21 2016-08-24 西安工程大学 三维表面激光线扫描非接触测量系统
CN205650802U (zh) * 2016-05-09 2016-10-19 深圳市铭利达精密机械有限公司 一种用于去除摄像机镜头座的水口的装置
CN105929539B (zh) * 2016-05-19 2018-10-02 彭波 汽车3d影像采集和裸眼3d平视显示系统
CN106231287B (zh) * 2016-07-25 2017-12-12 西南科技大学 一种增强用户体验的裸眼3d图像设计方法
CN206876166U (zh) * 2017-02-28 2018-01-12 邢天宜 一种三坐标测绘仪

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070035539A1 (en) * 2003-08-21 2007-02-15 Koichi Matsumura Image acquisition system for generation of three-dimensional models
CN201383069Y (zh) * 2009-02-23 2010-01-13 吕为矛 对准拍摄对象的立体照相机
CN102566244A (zh) * 2010-12-21 2012-07-11 天津国信浩天三维科技有限公司 360度全景三维立体拍摄系统
CN105301887A (zh) * 2015-11-27 2016-02-03 常州信息职业技术学院 一种3d环视拍摄系统
CN106773508A (zh) * 2017-02-15 2017-05-31 邢天宜 一种用裸眼观看3d影像的拍摄系统及使用方法
CN206497292U (zh) * 2017-02-15 2017-09-15 邢天宜 一种用裸眼观看3d影像的拍摄系统

Also Published As

Publication number Publication date
CN106949883A (zh) 2017-07-14
CN107065424B (zh) 2022-05-24
CN106773508B (zh) 2022-05-24
US20190361334A1 (en) 2019-11-28
CN107065424A (zh) 2017-08-18
CN106949883B (zh) 2022-12-23
US10955738B2 (en) 2021-03-23
US10908493B2 (en) 2021-02-02
WO2018149394A1 (zh) 2018-08-23
US10955737B2 (en) 2021-03-23
US20200004131A1 (en) 2020-01-02
US20200003546A1 (en) 2020-01-02
CN106773508A (zh) 2017-05-31
WO2018149392A1 (zh) 2018-08-23

Similar Documents

Publication Publication Date Title
WO2018149393A1 (zh) 一种用裸眼观看3d影像的拍摄系统及使用方法
US11330241B2 (en) Focusing for virtual and augmented reality systems
CN1197372C (zh) 通信系统
KR0181269B1 (ko) 자동 입체 디스플레이용 단일 영상 수신기를 사용한 영상 기록 방법 및 장치
KR20130094294A (ko) 스틸 사진용의 가변 3차원 카메라 어셈블리
TW201640181A (zh) 自動調焦頭戴式顯示裝置
WO2021082798A1 (zh) 一种头戴式显示设备
US20060203363A1 (en) Three-dimensional image display system
JPH07184115A (ja) 画像表示装置
US7111939B2 (en) Image display system with body position compensation
CN207625712U (zh) 视觉显示系统以及头戴显示装置
KR102070997B1 (ko) Hmd 성능 평가 시스템 및 이를 이용한 hmd 성능 평가 방법
CN206497292U (zh) 一种用裸眼观看3d影像的拍摄系统
CN101435989B (zh) 跟踪视场及二次渲染制作立体电影的方法
CN205333973U (zh) 高清裸眼3d立体私人影院显示装置
JP2557406B2 (ja) 3次元画像表示装置
CN108737808A (zh) 3d模型生成装置及方法
CN110703560A (zh) 一种直接投影式一屏多眼独立显示技术
JPH0435395A (ja) 立体モニター装置
CN108144292A (zh) 裸眼3d互动游戏制作设备
Mayhew A 35mm autostereoscopic system for live-action imaging using a single camera and lens
US7988296B2 (en) Apparatus for projecting two-dimensional images as pairs of pseudo-stereoscopic images
US20140354783A1 (en) Human-Perspective Stereoscopic Camera
US20120314035A1 (en) Human-Perspective Stereoscopic Camera
TWI477885B (zh) 三維成像系統及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18753814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.12.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 18753814

Country of ref document: EP

Kind code of ref document: A1