WO2018149351A1 - 一种非晶合金快速成型装置及成型方法 - Google Patents

一种非晶合金快速成型装置及成型方法 Download PDF

Info

Publication number
WO2018149351A1
WO2018149351A1 PCT/CN2018/075702 CN2018075702W WO2018149351A1 WO 2018149351 A1 WO2018149351 A1 WO 2018149351A1 CN 2018075702 W CN2018075702 W CN 2018075702W WO 2018149351 A1 WO2018149351 A1 WO 2018149351A1
Authority
WO
WIPO (PCT)
Prior art keywords
amorphous alloy
molding
processed
alloy material
discharge
Prior art date
Application number
PCT/CN2018/075702
Other languages
English (en)
French (fr)
Inventor
宋佳
Original Assignee
深圳市锆安材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市锆安材料科技有限公司 filed Critical 深圳市锆安材料科技有限公司
Publication of WO2018149351A1 publication Critical patent/WO2018149351A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys

Definitions

  • the invention belongs to the field of metal manufacturing, and in particular relates to a rapid prototyping device for an amorphous alloy and a rapid prototyping method using the same.
  • Amorphous alloy materials are new types of metal materials that have been rapidly developed in recent years.
  • the amorphous alloy material is formed by cooling the molten alloy to a glass transition temperature of the amorphous phase at a very fast cooling rate to complete the formation of the amorphous alloy, thereby avoiding the formation and growth of metal crystals in the alloy. Therefore, it has a special microstructure of short-range order and long-range disorder of metal atoms. Because of the microstructure different from the crystalline metal, the amorphous alloy has characteristics such as high hardness, high strength, and good corrosion resistance.
  • the cooling rate required to obtain amorphous alloy materials after smelting is very high, often needs to reach 10 5 -10 6 ° C / s, on the basis of which it is suitable for amorphous alloys.
  • Various molding processes are produced, such as special casting processes such as vacuum die casting, melt spinning, and planar casting.
  • the cooling rate of amorphous alloy materials mainly depends on the elemental composition of amorphous alloys. By improving the elemental composition of amorphous alloys and the corresponding casting process, blocks with higher forming ability can be obtained at lower cooling rates. Amorphous alloy.
  • the manufacture of amorphous alloy molded products is widely carried out using various vacuum die casting machines, on the one hand, the oxidation of the amorphous alloy during the preparation process can be avoided, and on the other hand, the casting environment is strictly controlled to avoid environmental changes on the casting process. Have an adverse effect.
  • the use of the die casting machine must adopt all the components required for the die casting machine, the cost is relatively expensive, and the preparation process is time consuming and laborious, and it is not a better choice from the economic point of view.
  • the rigorous preparation process of amorphous alloys also leads to high cost of amorphous alloy products, resulting in more high-value-added products for high-end consumer electronics and medical device products.
  • the use of die-casting equipment must strictly control the processing environment, not only high requirements for the operating environment and operators, but once the environmental conditions change, the probability of forming defective parts will soar.
  • the method using the rapid capacitor heating forming provided in the above patent solution can form the amorphous alloy material in a very short time, but the disadvantages in the practical application are very obvious, and mainly include the following points:
  • the molding of the amorphous alloy is carried out by using the device provided in the prior art, and the shape and size of the amorphous alloy material are relatively high, and the amorphous alloy material is easy to adhere to both sides of the flying capacitor when the heating is in a molten state. It is difficult to pick up.
  • the present invention provides a simple and rapid amorphous alloy forming method, and the method of the present invention also utilizes the characteristics of rapid point charging through rapid charging and discharging, so that a certain energy of electric energy is uniformly released.
  • the amorphous alloy material can be heated in a very short time, and then molded by a molding device, and cooled to obtain an amorphous alloy product having a specific shape.
  • the rapid prototyping device and the molding method through the special control of the rapid prototyping device and the molding method, the continuous production of the amorphous alloy product is realized, and the process efficiency is greatly improved, so that the method can be extended to industrial application.
  • the molding device adhesion of the amorphous alloy material can be avoided, and the amorphous alloy product can be separated from the molding device during the manufacturing process.
  • the amorphous alloy rapid prototyping device comprises a processing table, a capacitor discharge heating device and a molding device; the processing table is provided with at least one heating forming station to place an amorphous alloy material to be processed; the capacitor discharge heating The device comprises a charging and discharging capacitor, a power source and a driving device, and the heating device softens the amorphous alloy material to be processed by contacting the amorphous alloy material to be processed by the driving device; the molding device comprises two or more molding components and components The pressure driving device, after the molding assembly is combined, separately forms a molding cavity, or forms a molding cavity together with the electrodes at both ends of the charging and discharging capacitor, the molding cavity shape is the same as that of the amorphous alloy product and is maintained at least in the direction of the force Closed.
  • the charging and discharging capacitor can be simultaneously used as a molding device, and the structure is: setting the electrodes at both ends of the charging and discharging capacitor to match the shaped electrodes, and combining to form a molding cavity; Pressure driving devices are arranged on both sides of the discharge capacitor.
  • a discharge station is further disposed on the processing platform.
  • the separation of the discharging process and the heating forming process can increase the fluency of the overall molding process and is more suitable for industrial production.
  • the charge and discharge capacitor is a fast charge and discharge capacitor.
  • the contact area between the electrodes at both ends of the charge and discharge capacitor and the amorphous alloy material to be processed is greater than 60% of the total area thereof.
  • the processing table is preferably a rotary disk.
  • the above amorphous alloy rapid prototyping apparatus further includes an automatic workpiece moving device.
  • the automatic workpiece moving device is a reciprocating mechanism or a robot.
  • the volume ratio of the amorphous alloy to be processed is 90% or more.
  • the invention also provides a method for rapidly forming an amorphous alloy suitable for the above rapid prototyping apparatus, comprising the following steps:
  • the molding assembly is wrapped by the pressure driving device to enclose the softened amorphous alloy material to be processed, and the amorphous alloy material to be processed is fixedly formed according to the molding cavity formed by the combination of the molding components;
  • the amorphous alloy rapid prototyping method in the present invention is not limited to being carried out in a high vacuum environment, and is preferably carried out under normal temperature and normal pressure.
  • a simple and rapid amorphous alloy forming method and an amorphous alloy rapid prototyping apparatus suitable for the method are provided in the present invention.
  • the method of the present invention utilizes the characteristics of rapid charge and discharge through rapid point charge, so that a certain energy of electric energy is uniformly released on the amorphous alloy material, so that the amorphous alloy material can be heated in a very short time, and then passed.
  • the molding apparatus is molded and cooled to obtain an amorphous alloy product having a specific shape.
  • the method in the invention realizes the continuous production of the amorphous alloy product through special control of the rapid prototyping device and the molding method, and greatly improves the process efficiency, so that the method can be extended to industrial application.
  • the amorphous alloy forming device of the present invention can avoid the adhesion of the amorphous alloy material through the adaptive design, and facilitate the separation of the amorphous alloy product from the molding device during the manufacturing process.
  • Figure 1 is a schematic view of the operation of the amorphous alloy rapid prototyping apparatus of the present invention
  • Figure 2 is a working step 1 of the amorphous alloy rapid prototyping apparatus of the present invention
  • Figure 3 is a working step 2 of the amorphous alloy rapid prototyping apparatus of the present invention.
  • Figure 4 is a working step 3 of the amorphous alloy rapid prototyping apparatus of the present invention.
  • Figure 5 is a schematic view of the operation of the amorphous alloy rapid prototyping apparatus of the present invention 2;
  • Figure 6 is a schematic view of the operation of the amorphous alloy rapid prototyping apparatus of the present invention 3.
  • Figure 7 is a schematic view showing the processing table in the present invention as a rotary disk
  • Figure 8 is a schematic view showing a reciprocating mechanism in the rapid prototyping apparatus of the present invention.
  • Figure 9 is a schematic view of a rapid prototyping device of the present invention including a robot
  • Figure 10 is a schematic illustration of an example of the application of the rapid prototyping apparatus of the present invention.
  • the amorphous alloy rapid prototyping apparatus comprises a processing table, a capacitor discharge heating device and a molding device.
  • the processing table is used for placing the amorphous alloy material to be processed, and is used as a physical carrier, and the processing table is provided with at least one heating forming station for placing the amorphous alloy material to be processed.
  • the capacitor discharge heating device includes a charge and discharge capacitor, a power source, and a driving device, and the heating device softens the amorphous alloy material to be processed by contacting the amorphous alloy material to be processed by the driving device;
  • the molding device includes two or more a molding assembly and a pressure driving device of the assembly, the molding assembly being combined to form a molding cavity separately, or forming a molding cavity together with electrodes at both ends of the charging and discharging capacitor, the molding cavity shape being the same as that of the amorphous alloy product and at least The direction of the force is kept closed.
  • the power supply, the processing table, and the driving device are not shown to simplify the drawing.
  • the power supply adopts the charging and discharging capacitor power supply of the prior art
  • the processing station can also select a physical carrier of a suitable material according to actual needs
  • the driving device can adopt a mechanical driving structure similar to that of the mold driving device, as long as it can satisfy the present invention. Functional requirements are all right.
  • the charge and discharge capacitor used is a fast charge and discharge capacitor, and the contact area between the electrodes at both ends of the charge and discharge capacitor and the amorphous alloy material to be processed is greater than 60% of the total area thereof, and preferably the contact area is larger than Its total area is 80%.
  • the amorphous alloy suitable for use in the invention has a wide range, including a zirconium-based amorphous alloy, a nickel-based amorphous alloy, a titanium-based amorphous alloy, an aluminum-based amorphous alloy, a magnesium-based amorphous alloy, a copper-based amorphous alloy, and a rare earth base.
  • Amorphous alloys, etc., suitable amorphous alloys such as: Zr55.9Al14.5Cu14.5Ni11.5Nb3.6, Zr57.0Al10.0Cu15.4Ni12.6Nb5.0, Zr56.9Al10.0Cu15.4Ni12.6Nb5.0Ce0. 1.
  • the rapid prototyping device heats and encloses the extrusion molding time only for 0.1-0.5 s.
  • the heating and molding time can be controlled to about 0.1 s or even lower to the millisecond level.
  • the amorphous alloy rapid prototyping apparatus provided in Example 1 is as shown in FIG.
  • the amorphous alloy member 104 to be processed is located on a heating forming station on the processing table, the capacitor 103 in the capacitor discharge device is connected to the two ends electrodes 101, 102, and the molding components 105, 106 and the pressure driving device thereof constitute a molding device, and the molding assembly After the combination of 105 and 106, the molding cavity is separately formed, and the internal shape of the molding cavity is the same as that of the desired amorphous alloy product, and the molding cavity is kept closed in the pressure direction thereof.
  • the forming components 105, 106 are moved in the vertical direction as indicated by the arrows in Figure 1 during the forming step, and the forming assemblies 105 and 106 in this direction are capable of forming a closed cavity which is compatible with prior art molds.
  • the cavity is similar, except that the forming assemblies 105 and 106 are each driven by a respective pressure drive.
  • the moving direction of the forming component is set to a vertical direction.
  • the forming component can be set not only as a plurality, for example, when a relatively solid amorphous alloy member is prepared, the forming component can include 3 One, four or more, and the forming assembly can reciprocate in all directions under the driving of the driving device.
  • FIGS. 2-4 are schematic diagrams showing the steps of forming an amorphous alloy part by using the rapid prototyping apparatus of Embodiment 1, in which a side electrode of a charge and discharge capacitor is used as a processing table to place an amorphous alloy to be processed. material.
  • the processing steps are as follows:
  • the electrodes 101 at both ends of the charge and discharge capacitor are moved by the driving device to contact with the amorphous alloy material 104 to be processed, and the discharge function of the charge and discharge capacitor is activated to uniformly introduce the electric energy into the amorphous alloy.
  • the amorphous alloy material rapidly heats up to reach a glass transition temperature range of 0.8-1.2 times of the amorphous alloy material, and preferably the amorphous alloy material reaches a glass transition temperature range of 1-1.2 times until the processing is to be processed.
  • the amorphous alloy material is softened to a viscosity of 50-180 Poise, and the discharge heating is stopped;
  • the process of forming the amorphous alloy rapid prototyping apparatus of the present invention is a process of rapidly softening and deforming the amorphous alloy material in a very short period of time, and the temperature needs to be precisely controlled at a glass transition temperature of 0.8-1.2 times. In the range, the heating temperature should not be too high, on the one hand, the energy consumption is higher, the cost is increased, and on the other hand, the risk of burning of the amorphous alloy material is increased.
  • the degree of softening of the amorphous alloy material depends on the characteristics of the processed amorphous alloy material.
  • the amorphous alloy material In practice, as long as the amorphous alloy material is softened by heating to a viscosity of less than 10 13 Posie, it can be processed by improving the mechanical design of the fit.
  • the molding process can be completed by setting a larger packing force for the molded component.
  • the inventors of the present invention have found that for commonly used amorphous alloy materials, such as zirconium-based amorphous alloys, copper-based amorphous alloys, titanium-based amorphous alloys, iron-based amorphous alloys, nickel-based amorphous alloys, and rare earth-based amorphous materials.
  • the alloy which controls the heating process, softens the amorphous alloy material to 10 3 -10 5 Posie for economical and high efficiency.
  • the viscosity of the alloy after softening should not be lower than 10 2 Posie. If the viscosity is too small, the surface energy of the amorphous alloy material will change, which may lead to excessive spreading of the amorphous alloy material on the processing station.
  • the molding components 105 and 106 are moved in the direction of the arrow by the pressure driving device, and gradually enclose the softened amorphous alloy material 104 to be processed, so that the amorphous alloy material to be processed is combined according to the molding assembly to form a molding cavity.
  • Embodiment 2 Provided in Embodiment 2 is a device for charging and discharging a capacitor and also used as a molding device, and the electrodes at both ends of the charge and discharge capacitor are arranged as matching shaped electrodes, which are combined to form a molding cavity, and pressure is applied to both sides of the charge and discharge capacitor.
  • the drive controls the motion trajectories of the electrodes on both sides.
  • auxiliary molding components 205 and 206 may be disposed on the side faces or other positions of the capacitor electrodes 201 and 202 to assist the capacitor electrode to more stably complete the molding process and control the amorphous alloy during the molding process.
  • the nozzle direction and the nozzle morphology of the amorphous alloy product obtained after the material 204 is formed.
  • the auxiliary molding components are not limited to two, and may be set to one or more than two according to actual conditions, and the auxiliary molding assembly is also provided with a separate driving device to control the path of the path.
  • the molding apparatus of Embodiment 3, as shown in FIG. 6, provides a schematic diagram of a molding assembly together with a charge and discharge capacitor electrode having a profiled structure as a molding apparatus.
  • the amorphous alloy material 304 is press-formed and is suitable for the manufacture of complex members.
  • Embodiment 4 further improves the rapid prototyping apparatus.
  • the processing table is set to a rotary disc which is rotatable along the central axis.
  • the processing table using the rotary disk is more efficient.
  • the rotary disc is provided with a discharging station 701 and a heating forming station 702.
  • the operator places the material to be processed on the discharging station 701, and the disc rotates.
  • the material is transferred to the heating forming station 702, and then processed.
  • the disk is further rotated to the discharging station 701, and the molded product is taken out and the material to be processed is continuously placed to realize continuous production.
  • the rotating disc of the embodiment four working stations are arranged, and two materials to be processed can be simultaneously formed and produced at the same time.
  • the stations can be set to 6 or 8
  • the device can also be set as a multi-layered three-dimensional structure to achieve simultaneous production of multi-level workstations, further improving efficiency.
  • Embodiment 5 further improves the rapid prototyping apparatus.
  • a reciprocating mechanism 803 is added as an automatic workpiece moving device.
  • the reciprocating mechanism pushes the material to be processed to the heating forming station 802.
  • the reciprocating mechanism brings it back to the discharging station 801, takes out the molded product and then continues to place the material to be processed to achieve continuous production, or, in the feeding direction side, a receiving mechanism, a reciprocating mechanism Continue to push the molded product along the feed line to the receiving mechanism.
  • Embodiment 6 further improves the rapid prototyping apparatus.
  • a robot 902 is added as an automatic workpiece moving device.
  • the molding process steps are the same as in the embodiment 5 except that the amorphous alloy material to be processed and the amorphous alloy product after molding are mechanical structure.
  • Embodiment 7 provides a schematic view of processing an amorphous alloy product having a threaded structure using the rapid prototyping apparatus of the present invention.
  • the molding assemblies 1005, 1006 and the capacitor electrodes 1002, 1003 together form a molding cavity, and an amorphous alloy member having a threaded structure on the surface is prepared by using the internal thread structure of the molding assembly 1005, 1006, and the molding assemblies 1005 and 1006 are
  • the direction of pressing the amorphous alloy material is a closed structure, and the capacitor electrodes 1002 and 1003 assist in forming, which limits the flow of the amorphous alloy material to the two sides during the pressing process, which facilitates subsequent deep processing.
  • the amorphous alloy rapid prototyping apparatus and the molding method of the present invention are suitable for processing amorphous alloy materials of different systems such as zirconium-based, titanium-based, iron-based, nickel-based, and rare-earth based.
  • the amorphous alloy material processed by the rapid prototyping apparatus of the present invention is preferably a bulk amorphous alloy having a uniform cross section, which contributes to the passage of current at a uniform density upon energization.
  • the volume ratio of the amorphous alloy material to be processed to the amorphous state accounts for 90% or more, preferably 95% or more. Due to the difference in microstructure between amorphous alloy and crystalline alloy, the internal long-range disordered short-range ordered structure of amorphous alloy material can effectively distribute the electrical energy in the whole material, and the energy of the corresponding crystalline alloy after electrification The distribution is based on the electric field distribution curve, rather than the uniform distribution. Therefore, only amorphous alloy materials with an amorphous ratio of more than 90% can achieve rapid and uniform shaping of amorphous alloy materials during the application of the device of the present invention. purpose.
  • the apparatus and method of the present invention are simple and rapid, the formation of the molding component and the electrode can effectively prevent oxidation of the amorphous alloy material during the preparation process, so the rapid prototyping apparatus and method of the present invention can be used at normal temperature and pressure.
  • the manufacturing process is carried out.

Abstract

一种非晶合金快速成型装置以及使用该装置的方法,该装置包括加工台、电容放电加热装置和成型装置;加工台上设有至少一个加热成型工位放置待加工非晶合金材料;电容放电加热装置包括充放电电容器、电源以及驱动装置;成型装置包括两个或者多个成型组件以及组件的压力驱动装置,成型组件组合后单独构成成型模腔,或者与充放电电容器两端电极共同构成成型模腔,成型模腔形状与非晶合金产品相同且至少在受力方向保持封闭。该方法利用了快速点充气通过快速充放电的特性,使一定能量的电能均匀释放于非晶合金材料上,使非晶合金材料能够在极短的时间内被加热,然后通过成型装置进行成型,冷却后得到具有特定形状的非晶合金产品。

Description

一种非晶合金快速成型装置及成型方法 技术领域
本发明属于金属制造领域,具体涉及一种非晶合金的快速成型装置及应用该装置的快速成型方法。
背景技术
非晶合金材料是近年来发挥迅速的新型金属材料。非晶合金材料是通过加热熔炼后,以极快的冷却速率对合金熔液进行冷却至非晶相的玻璃化转变温度来完成非晶态合金的形成,避免合金内金属晶体的形成及生长,从而具有金属原子短程有序、长程无序的特殊微观结构。正因为具有不同于晶态金属的微观结构,使得非晶合金具有高硬度、高强度、良好的耐腐蚀性等特性。在非晶合金材料开发早期,要获得非晶合金材料所需熔炼后的冷却速率是非常高的,往往需要达到10 5-10 6℃/s,在此基础上开发出适合于非晶态合金生产的各种成型工艺,如真空压铸、熔融纺丝、平面流铸等特殊铸造工艺。目前,非晶合金材料的冷却速率主要还是取决于非晶合金的元素组成,通过改善非晶合金的元素组成以及对应的铸造工艺,可以在较低的冷却速率下获得形成能力更高的块体状非晶合金。
现有技术中,非晶合金成型产品的制造广泛使用各类真空压铸机进行,一方面可避免非晶合金在制备过程中发生氧化,另一方面,严格管控铸造环境,以免环境变化对铸造过程产生不利影响。从制备的过程看来,使用压铸机则必须采纳压铸机所需的所有组件,成本价格较为昂贵,而且制备过程较为费时费力,从经济性的角度考虑并非较佳选择,从实际应用上看,非晶合金的严格制备过程也导致了非晶合金产品的成本居高不下,导致非晶合金产品更多的是应用于高端消费类电子产品、医疗器械产品等高附加值的产品。从制备环境来看,采用压铸设备则必须严格控制加工环境,不仅对操作环境、操作人员提出了较高的要求,而且一旦环境条件变化,形成不良件的几率会飙升。
针对真空压铸设备的缺点,研究人员开发出了许多具有改进效果的成型设备以及成型方法。如申请号为201180057470.6名为《通过快速电容器放电锻造形成金属玻璃》的专利中提供的一种利用快速电容器和锻造板相配合使非晶金属整体成型的方法。
技术问题
上述专利方案中提供的采用快速电容器加热成型的方法尽管能够在非常短的时间内使非晶合金材料成型,但是在实际应用中缺点还是非常明显的,主要包括如下几点:
(1)尽管非晶材料成型过程的时间缩短了,但是其前处理以及加工后冷却、取样的工序非常复杂,无法应用于工业化连续生产。
(2)利用现有技术中提供的装置进行非晶合金的成型,对非晶合金材料形状及尺寸要求较高,非晶合金材料在瞬时加热呈熔化状态时易粘附于快速电容器两侧,造成取件困难。
技术解决方案
为了解决上述现有技术的不足,本发明提供了一种简单快速的非晶合金成型方法,本发明中的方法同样利用了快速点充气通过快速充放电的特性,使一定能量的电能均匀释放于非晶合金材料上,使非晶合金材料能够在极短的时间内被加热,然后通过成型装置进行成型,冷却后得到具有特定形状的非晶合金产品。本发明中通过对快速成型装置及成型方法的特殊控制,实现了非晶合金产品的连续生产,大幅提升了工艺效率,从而使该方法可推广至工业化应用。进一步地,通过对成型装置的设计,可避免非晶合金材料的粘附,便于制造过程中非晶合金产品脱离成型装置。
本发明所要解决的技术问题通过以下技术方案予以实现:
本发明中提供的非晶合金快速成型装置,包括加工台、电容放电加热装置和成型装置;所述加工台上设有至少一个加热成型工位放置待加工非晶合金材料;所述电容放电加热装置包括充放电电容器、电源以及驱动装置,该加热装置通过驱动装置在与待加工非晶合金材料接触,使待加工非晶合金材料软化;所述成型装置包括两个或者多个成型组件以及组件的压力驱动装置,所述成型组件组合后单独构成成型模腔,或者与充放电电容器两端电极共同构成成型模腔,所述成型模腔形状与非晶合金产品相同且至少在受力方向保持封闭。
进一步简化本发明中的非晶合金快速成型装置,所述充放电电容器可同时作为成型装置,其结构为:设置充放电电容器两端电极为相匹配的异形电极,组合后构成成型模腔;充放电电容器两侧设有压力驱动装置。
进一步地,所述加工台上还设有放料工位。将放料工序与加热成型工序分置,可增加整体成型工艺的流畅度,更适合工业化生产。
进一步提升充放电电容器效率,所述充放电电容器为快速充放电电容器。所述充放电电容器两端电极与待加工非晶合金材料接触面积大于其总面积的60%。
进一步地,在实际制备过程中优选加工台为旋转式圆盘。
再进一步地,上述非晶合金快速成型装置中还包括自动工件移动装置。所述自动工件移动装置为往复运动机构或者机械手。
本发明中优选待加工非晶合金非晶态的体积比占90%以上。
本发明中还提供一种适用于上述快速成型装置的进行非晶合金快速成型的方法,包括如下步骤:
S01:将待加工非晶合金材料放置于加热成型工位上;
S02:充放电电容器电极在驱动装置的带动下运动至与待加工非晶合金材料接触,放电加热使非晶合金材料温度达到0.8-1.2倍的玻璃转化温度范围内,使待加工非晶合金材料软化,然后停止放电加热;
S03:成型组件在压力驱动装置的带动下包紧软化后的待加工非晶合金材料,使待加工非晶合金材料按照成型组件组合后构成的成型模腔固定成型;
S04:非晶产品成型冷却后,成型组件在压力驱动装置的带动下离开非晶合金产品表面,得到所需非晶合金产品。
本发明中的非晶合金快速成型方法无需限定在高真空环境下进行,优选再常温常压下进行。
有益效果
本发明具有如下有益效果:
1、本发明中提供了一种简单快速的非晶合金成型方法以及适用于该方法的非晶合金快速成型装置。
2、本发明中的方法利用了快速点充气通过快速充放电的特性,使一定能量的电能均匀释放于非晶合金材料上,使非晶合金材料能够在极短的时间内被加热,然后通过成型装置进行成型,冷却后得到具有特定形状的非晶合金产品。本发明中的方法通过对快速成型装置及成型方法的特殊控制,实现了非晶合金产品的连续生产,大幅提升了工艺效率,从而使该方法可推广至工业化应用。
3、本发明中的非晶合金成型装置通过适应性设计,可避免非晶合金材料的粘附,便于制造过程中非晶合金产品脱离成型装置。
附图说明
图1为本发明中非晶合金快速成型装置工作示意图1;
图2为本发明中非晶合金快速成型装置工作步骤1;
图3为本发明中非晶合金快速成型装置工作步骤2;
图4为本发明中非晶合金快速成型装置工作步骤3;
图5为本发明中非晶合金快速成型装置工作示意图2;
图6为本发明中非晶合金快速成型装置工作示意图3;
图7为本发明中加工台为旋转式圆盘的示意图;
图8为本发明快速成型装置中包含往复运动机构的示意图;
图9为本发明快速成型装置中包含机械手的示意图;
图10为本发明中快速成型装置应用的实例示意图。
本发明的实施方式
下面结合附图和实施例对本发明进行详细的说明。
本发明中提供的非晶合金快速成型装置,包括加工台、电容放电加热装置和成型装置。加工台用于放置待加工的非晶合金材料,作为物理载体进行使用,加工台上设有至少一个加热成型工位用于放置待加工的非晶合金材料。所述电容放电加热装置包括充放电电容器、电源以及驱动装置,该加热装置通过驱动装置在与待加工非晶合金材料接触,使待加工非晶合金材料软化;成型装置则包括两个或者多个成型组件以及组件的压力驱动装置,所述成型组件组合后单独构成成型模腔,或者与充放电电容器两端电极共同构成成型模腔,所述成型模腔形状与非晶合金产品相同且至少在受力方向保持封闭。
在本发明的实施例中,为简化附图,电源、加工台以及驱动装置未标示出。实施例中电源采用现有技术中充放电电容器电源,加工台亦可根据实际需要选择合适材质的物理载体,驱动装置可采用如模具驱动装置相类似的机械驱动结构,只要能够满足本发明中的功能需求即可。本发明中为达到快速加热的目的,采用的充放电电容器为快速充放电电容器,所述充放电电容器两端电极与待加工非晶合金材料接触面积大于其总面积的60%,优选接触面积大于其总面积80%。
本发明中适用的非晶合金范围广,包括锆基非晶合金、镍基非晶合金、钛基非晶合金、铝基非晶合金、镁基非晶合金、铜基非晶合金、稀土基非晶合金等,适用的非晶合金具体组成如:Zr55.9Al14.5Cu14.5Ni11.5Nb3.6、Zr57.0Al10.0Cu15.4Ni12.6Nb5.0、Zr56.9Al10.0Cu15.4Ni12.6Nb5.0Ce0.1、Zr58.5Al12.0Co12.7Ti12.7Nb4.1、Zr58.5Al12.1Sc13.4Mo12.5Hf3.5、Ti45Cu45Zr5Fe5、Ti47.5Cu47.5Zr2.5Co2.5、Ti50Cu42.5Zr6Ir1.5、Ni45Cu45Zr5Fe5、Ni47.5Cu47.5Zr2.5Ti2.5、Cu60Zr25Hf5Ti10、Cu47Ti34Zr11Ni8、Al79Ni7Y5Zr5Fe1B3、Al79Ni7Y5La0Fe2B4Zr3、Al83Ni5Y5La1Fe1B4Zr1、La53Al17(Cu 0.7Ni 0.3)18Co4Li8、Ce50Al13(Cu 0.7Ni 0.3)20Zr2Ta2Li13。上述成分的合金在实践中利用本发明中的快速成型装置可进行有效的成型加工,平均2-5s可完成一次加工过程。在该加热过程中,快速成型装置加热以及包紧挤压成型的时间仅占0.1-0.5s,加工体积小的工件时,加热及成型时间可控制在0.1s左右,甚至更低达到毫秒级别。
    实施例1提供的非晶合金快速成型装置如附图1所示。待加工非晶合金件104位于加工台上的加热成型工位上,电容放电装置中的电容103与两端电极101、102相连,成型组件105、106及其压力驱动装置构成成型装置,成型组件105、106组合后单独构成成型模腔,该成型模腔内部形状与所需非晶合金产品相同,该成型模腔在其压力方向上保持封闭。成型组件105、106在成型步骤中运动方向为如附图1中箭头所示的垂直方向,则在该方向上的成型组件105和106能够形成封闭的模腔,该模腔与现有技术模具中的模腔相似,不同的是成型组件105与106各自由各自的压力驱动装置带动。在实施例中为便于辨识,故将成型组件运动方向设为垂直方向,在实际应用过程中,成型组件不仅可设为多个,如制备较为立体的非晶合金件时,成型组件可包含3个、4个甚至更多,而且成型组件在驱动装置的带动下可在各个方向往复运动。
附图2-4所示为利用实施例1中的快速成型装置进行非晶合金件成型加工的步骤示意图,在该工艺过程中,采用充放电电容器一侧电极作为加工台放置待加工非晶合金材料。加工步骤如下:
S01:如附图2所示,将待加工非晶合金材料放置于电极102上所设定的加热成型工位上;
S02:如附图3所示,充放电电容器两端电极101在驱动装置的带动下运动至与待加工非晶合金材料104相接触,启动充放电电容器的放电功能,将电能均匀引入非晶合金材料内,非晶合金材料迅速升温,达到该非晶合金材料0.8-1.2倍的玻璃转化温度范围内,优选使该非晶合金材料达到1-1.2倍的玻璃转化温度范围内,直至使待加工非晶合金材料软化至粘度为50-180Poise,停止放电加热;
应用本发明中的非晶合金快速成型装置进行成型的过程,是在极短的时间内使非晶合金材料迅速软化、发生形变的过程,温度需进行精确控制在0.8-1.2倍的玻璃转化温度范围内,升温温度不宜过高,一方面能耗较高,成本上升,另一方面增加了非晶合金材料烧损的风险。非晶合金材料软化的程度视加工的非晶合金材料的特性而定,在实践中,只要非晶合金材料加热软化至粘度低于10 13Posie即可进行加工,通过改善适配的机械设计,如为成型组件设定更大的包紧力即可完成成型过程。本发明的发明人发现,针对常用的非晶合金材料,如锆基非晶合金、铜基非晶合金、钛基非晶合金、铁基非晶合金、镍基非晶合金、稀土基非晶合金,控制加热过程,使非晶合金材料软化至10 3-10 5Posie可兼具经济性和高效率。软化后的合金粘度不宜低于10 2Posie,粘度过小会导致非晶合金材料表面能的改变,易导致非晶合金材料过度铺展于加工工位上。
S03:成型组件105、106在压力驱动装置的带动下沿箭头方向运动,逐渐包紧软化后的待加工非晶合金材料104,使待加工非晶合金材料按照成型组件组合后构成的成型模腔固定成型;
S04:如附图4所示,非晶产品成型冷却后,成型组件105、106在其压力驱动装置的带动下离开非晶合金产品表面,并将电极101驱动离开非晶合金件表面得到所需非晶合金产品。
实施例2中提供的是充放电电容器同时还作为成型装置使用的装置,将充放电电容器两端电极设置为相匹配的异形电极,组合后构成成型模腔,充放电电容器两侧还设有压力驱动装置控制两侧电极的运动轨迹。进一步地,还可如附图5所示,在电容器电极201和202的侧面或者其他位置设置辅助成型组件205和206,可协助电容器电极更稳定的完成成型过程,控制在成型过程中非晶合金材料204成型后制得的非晶合金产品的水口方向及水口形貌。辅助成型组件不限制为2个,可以根据实际情况设置为1个或者多于2个,辅助成型组件同样设有单独的驱动装置控制其行径路线。
实施例3中成型装置如附图6所示,提供的是成型组件与具有异形结构的充放电电容器电极共同作为成型装置的示意图,成型组件205和306与异形电极301、302共同组成成型模腔对非晶合金材料304进行压制成型,适合复杂构件的制造。
实施例4进一步对快速成型装置进行改进,如附图7所示,将加工台设为旋转式圆盘,该圆盘可沿着中轴线转动。在实际非晶合金产品制造的过程中,使用旋转式圆盘的加工台效率更高。本实施例中,旋转式圆盘上设有放料工位701和加热成型工位702,在连续生产过程中,操作者将待加工物料放置于放料工位701上,圆盘旋转,将物料转至加热成型工位702处,然后进行加工,加工完毕后圆盘再进行回转至放料工位701处,取出成型产品再继续放置待加工物料,实现连续生产。在本实施例中的旋转式圆盘上设有4个工位,即可同时进行2个待加工物料的同时成型生产,在实际生产过程中,还可将工位设置为6个、8个或者更多,再进一步改进,还可将该装置设置为多层立体结构,实现多层次工位同时生产,进一步提升效率。
实施例5进一步对快速成型装置进行改进,如附图8所示,添加了往复运动机构803作为自动工件移动装置。设有放料工位801和加热成型工位802,在连续生产过程中,操作者将待加工物料放置于放料工位801上,往复运动机构将待加工物料推至加热成型工位802,在经过加热成型后,往复运动机构将其带回至放料工位处801,取出成型产品再继续放置待加工物料,实现连续生产,亦或者,在送料方向侧设置收料机构,往复运动机构继续沿着送料防线将成型后的产品推至收料机构中。
实施例6进一步对快速成型装置进行改进,如附图9所示,添加了机械手902作为自动工件移动装置。与实施例5中成型工艺步骤是一样的,不同的是移动待加工非晶合金材料以及成型后的非晶合金产品的是机械手结构。
    实施例7提供的是利用本发明中的快速成型装置加工具有螺纹结构的非晶合金产品的示意图。如附图10所示,成型组件1005、1006与电容电极1002、1003共同构成成型模腔,利用成型组件1005、1006内部螺纹结构制备表面具有螺纹结构的非晶合金件,成型组件1005和1006在压制非晶合金材料的方向为封闭结构,电容电极1002、1003协助进行成型,限制了非晶合金材料在压制的过程中水口仅能往两侧流,便于后续深加工。
本发明中的非晶合金快速成型装置及成型方法适用于加工锆基、钛基、铁基、镍基、稀土基等不同体系的非晶合金材料。使用本发明中的快速成型装置加工所加工的非晶合金材料优选具有均匀截面的块体非晶合金,有助于在通电时电流以均匀密度通过。
进一步地,所述待加工非晶合金材料非晶态的体积比占90%以上,优选在95%以上。由于非晶合金与晶态合金微观结构上的差异,非晶合金材料的内部长程无序短程有序的结构可有效使电能在材料内部整体呈均匀分布,相对应的晶态合金通电后的能量分布则依照电场分布曲线,而非均匀分布,故只有针对非晶态占比超过90%以上的非晶合金材料,才能够在应用本发明的装置过程中达到快速均匀使非晶合金材料成型的目的。
    由于使用本发明中的装置及方法简单快速,通过对成型组件及电极的设置可有效避免非晶合金材料在制备过程中发生氧化,故应用本发明中的快速成型装置及方法可在常温常压下进行制造工艺。
最后需要说明的是,以上实施例仅用以说明本发明实施例的技术方案而非对其进行限制。尽管参照较佳实施例对本发明实施例进行了详细的说明,本领域的普通技术人员应当理解依然可以对本发明实施例的技术方案进行修改或者等同替换,而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明实施例技术方案的范围。

Claims (10)

  1. 一种非晶合金快速成型装置,其特征在于:
    包括加工台、电容放电加热装置和成型装置;
    所述加工台上设有至少一个加热成型工位放置待加工非晶合金材料;
    所述电容放电加热装置包括充放电电容器、电源以及驱动装置,该加热装置通过驱动装置在与待加工非晶合金材料接触,使待加工非晶合金材料软化;
    所述成型装置包括两个或者多个成型组件以及组件的压力驱动装置,所述成型组件组合后单独构成成型模腔,或者与充放电电容器两端电极共同构成成型模腔,所述成型模腔形状与非晶合金产品相同且至少在受力方向保持封闭。
  2. 如权利要求1所述非晶合金快速成型装置,其特征在于:所述充放电电容器同时作为成型装置,其结构为:设置充放电电容器两端电极为相匹配的异形电极,组合后构成成型模腔;充放电电容器两侧设有压力驱动装置。
  3. 如权利要求1所述非晶合金快速成型装置,其特征在于:所述加工台上还设有放料工位。
  4. 如权利要求1所述非晶合金快速成型装置,其特征在于:所述充放电电容器为快速充放电电容器,所述充放电电容器两端电极与待加工非晶合金材料接触面积大于其总面积的60%。
  5. 如权利要求1所述非晶合金快速成型装置,其特征在于:所述加工台为旋转式圆盘。
  6. 如权利要求1-5任一所述非晶合金快速成型装置,其特征在于:还包括自动工件移动装置。
  7. 如权利要求6所述非晶合金快速成型装置,其特征在于:所述自动工件移动装置为往复运动机构或者机械手。
  8. 如权利要求1所述非晶合金快速成型装置,其特征在于:所述待加工非晶合金材料非晶态的体积比占90%以上。
  9. 一种使用如权利要求1-8任一所述快速成型装置进行非晶合金快速成型的方法,其特征在于包括如下步骤:
    S01:将待加工非晶合金材料放置于加热成型工位上;
    S02:充放电电容器电极在驱动装置的带动下运动至与待加工非晶合金材料接触,放电加热使非晶合金材料温度达到0.8-1.2倍的玻璃转化温度范围内,使待加工非晶合金材料软化,然后停止放电加热;
    S03:成型组件在压力驱动装置的带动下包紧软化后的待加工非晶合金材料,使待加工非晶合金材料按照成型组件组合后构成的成型模腔固定成型;
    S04:非晶产品成型冷却后,成型组件在压力驱动装置的带动下离开非晶合金产品表面,得到所需非晶合金产品。
  10. 如权利要求9所述非晶合金快速成型方法,其特征在于:所述成型方法中的成型工艺在常温常压下进行。
PCT/CN2018/075702 2017-02-14 2018-02-08 一种非晶合金快速成型装置及成型方法 WO2018149351A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710077079.1A CN106555139B (zh) 2017-02-14 2017-02-14 一种非晶合金快速成型装置及成型方法
CN201710077079.1 2017-02-14

Publications (1)

Publication Number Publication Date
WO2018149351A1 true WO2018149351A1 (zh) 2018-08-23

Family

ID=58445730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075702 WO2018149351A1 (zh) 2017-02-14 2018-02-08 一种非晶合金快速成型装置及成型方法

Country Status (2)

Country Link
CN (1) CN106555139B (zh)
WO (1) WO2018149351A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106555139B (zh) * 2017-02-14 2018-03-13 深圳市锆安材料科技有限公司 一种非晶合金快速成型装置及成型方法
CN107829046B (zh) * 2017-11-08 2020-01-31 湖南理工学院 一种含铁的铜基块体非晶合金及其制备工艺
CN111674188A (zh) * 2020-06-09 2020-09-18 常州世竟液态金属有限公司 一种块体非晶合金表面图案快速加工成型的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103228811A (zh) * 2010-10-13 2013-07-31 加利福尼亚技术学院 通过快速电容器放电锻造形成金属玻璃
CN103443321A (zh) * 2011-02-16 2013-12-11 加利福尼亚技术学院 通过快速电容器放电进行的金属玻璃的注射成型
US20150096967A1 (en) * 2013-10-03 2015-04-09 Glassimetal Technology, Inc. Feedstock barrels coated with insulating films for rapid discharge forming of metallic glasses
CN106555139A (zh) * 2017-02-14 2017-04-05 深圳市锆安材料科技有限公司 一种非晶合金快速成型装置及成型方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101984104B (zh) * 2010-12-08 2012-07-11 沈阳工业大学 一种生物医用块体多孔非晶合金的制备方法
CN102527982B (zh) * 2011-12-15 2015-05-13 比亚迪股份有限公司 非晶合金压铸设备及非晶合金压铸工艺
CN104307906A (zh) * 2014-10-17 2015-01-28 深圳市锆安材料科技有限公司 非晶合金与非非晶合金材料的复合体成型方法
CN104947007B (zh) * 2015-06-23 2017-05-03 太原科技大学 用于制备非晶合金的系统
CN105344972B (zh) * 2015-12-01 2017-12-29 华中科技大学 一种非晶合金零件的快速成形方法
CN206418179U (zh) * 2017-02-14 2017-08-18 深圳市锆安材料科技有限公司 一种非晶合金快速成型装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103228811A (zh) * 2010-10-13 2013-07-31 加利福尼亚技术学院 通过快速电容器放电锻造形成金属玻璃
CN103443321A (zh) * 2011-02-16 2013-12-11 加利福尼亚技术学院 通过快速电容器放电进行的金属玻璃的注射成型
US20150096967A1 (en) * 2013-10-03 2015-04-09 Glassimetal Technology, Inc. Feedstock barrels coated with insulating films for rapid discharge forming of metallic glasses
CN106555139A (zh) * 2017-02-14 2017-04-05 深圳市锆安材料科技有限公司 一种非晶合金快速成型装置及成型方法

Also Published As

Publication number Publication date
CN106555139A (zh) 2017-04-05
CN106555139B (zh) 2018-03-13

Similar Documents

Publication Publication Date Title
WO2018149351A1 (zh) 一种非晶合金快速成型装置及成型方法
CN110899482A (zh) 一种基于焦耳热的热塑性合金3d打印系统
CN107457382A (zh) 一种半固态流变压铸生产装置
CN102773482B (zh) 一种粉末冶金制蝶阀阀杆的方法
CN108339959A (zh) 一种轴套零件成形模具
CN203991718U (zh) 一种挤压铜合金的连续挤压装置
CN104966605A (zh) 一种烧结钕铁硼瓦形磁体的成型工艺及其组合式模具
CN104148431A (zh) 一种挤压铜合金的连续挤压装置
CN215845693U (zh) 一种液压式硬质合金胚料快速压制装置
CN208116560U (zh) 一种旋转高效冲压模具
CN206418179U (zh) 一种非晶合金快速成型装置
CN212602916U (zh) 一种换向器的电木粉基体成型装置
CN210548107U (zh) 一种致密均匀的粉末冶金注射成型模具
CN205128837U (zh) 一种二次冷镦加工自动上料机
CN207222943U (zh) 一种金属增材制造装置
CN109226772B (zh) 一种高屈服强度粉末冶金产品的热整形方法
CN210127272U (zh) 一种抛丸器前曲叶片的制备模具机构
CN218192573U (zh) 一种制粉设备的棒料连续送料结构
JP4858853B2 (ja) ガラス物品を成形する装置
CN110449726A (zh) 一种一体增材塑性成型的搅拌摩擦焊装置及其成形方法
CN211330952U (zh) 一种基于焦耳热的热塑性合金3d打印系统
CN113664181A (zh) 一种全液态挤压铸造送料管
CN220007426U (zh) 一种烧结系统
CN207386347U (zh) 一种连续自动上料的冲压模具
EP2821163A1 (en) Method for molding amorphous alloy, and molded object produced by said molding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18754193

Country of ref document: EP

Kind code of ref document: A1