WO2018147692A1 - 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널의 송수신 방법 및 이를 지원하는 장치 - Google Patents
무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널의 송수신 방법 및 이를 지원하는 장치 Download PDFInfo
- Publication number
- WO2018147692A1 WO2018147692A1 PCT/KR2018/001792 KR2018001792W WO2018147692A1 WO 2018147692 A1 WO2018147692 A1 WO 2018147692A1 KR 2018001792 W KR2018001792 W KR 2018001792W WO 2018147692 A1 WO2018147692 A1 WO 2018147692A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pucch
- symbols
- uplink control
- data
- base station
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/0051—Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
- H04L27/3405—Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
- H04L27/3411—Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power reducing the peak to average power ratio or the mean power of the constellation; Arrangements for increasing the shape gain of a signal set
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
- H04L27/38—Demodulator circuits; Receiver circuits
- H04L27/3845—Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier
- H04L27/3854—Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier using a non - coherent carrier, including systems with baseband correction for phase or frequency offset
- H04L27/3872—Compensation for phase rotation in the demodulated signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0803—Configuration setting
- H04L41/0806—Configuration setting for initial configuration or provisioning, e.g. plug-and-play
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
Definitions
- the following description relates to a wireless communication system, and a method of transmitting and receiving a physical uplink control channel (PUCCH) between a terminal and a base station in a wireless communication system to which various numerologies are applicable and an apparatus supporting the same It is about.
- PUCCH physical uplink control channel
- the following description includes a description of a method of transmitting and receiving a physical uplink control channel (PUCCH) between a terminal and a base station that can alleviate a peak-to-average power ratio (PAPR).
- PUCCH physical uplink control channel
- PAPR peak-to-average power ratio
- Wireless access systems are widely deployed to provide various kinds of communication services such as voice and data.
- a wireless access system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
- multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- Massive Machine Type Communications which connects multiple devices and objects to provide various services anytime, anywhere, is also being considered in next-generation communications.
- MTC Massive Machine Type Communications
- a communication system design considering a service / UE that is sensitive to reliability and latency is being considered.
- An object of the present invention is to provide a method for transmitting and receiving a Physical Uplink Control Channel (PUCCH) between a terminal and a base station in a newly proposed communication system.
- PUCCH Physical Uplink Control Channel
- an object of the present invention is to provide a method of transmitting and receiving a physical uplink control channel (PUCCH) between a terminal and a base station that can alleviate a peak-to-average power ratio (PAPR).
- PUCCH physical uplink control channel
- PAPR peak-to-average power ratio
- the present invention provides a method and apparatus for transmitting and receiving a physical uplink control channel between a terminal and a base station in a wireless communication system.
- N is a natural number greater than 1 for each one or more symbols
- PUCCH Physical uplink control channel
- FDM frequency division multiplexed
- a terminal for transmitting a Physical Uplink Control Channel (PUCCH) to a base station in a wireless communication system comprising: a transmitter; And a processor operatively connected to the transmitter, wherein the processor is configured to perform N times in a frequency direction a resource group in which N (N is a natural number greater than 1) data for each of one or more symbols (FDM) Repeatedly configuring the PUCCH; And transmit the configured PUCCH through the one or more symbols by applying a phase rotation having a different slope to each of the N pieces of data.
- N is a natural number greater than 1
- the N pieces of data may include M (M is a natural number) demodulation reference signals (DM-RS) and N-M uplink control information.
- M is a natural number
- DM-RS demodulation reference signals
- the one demodulation reference signal may be transmitted through one or more symbols by applying a phase rotation having a slope of zero.
- each of the N pieces of data may be allocated to resource elements (REs) spaced apart at regular subcarrier intervals in the resource group for each of the one or more symbols, and may be FDM.
- REs resource elements
- configuring the PUCCH by repeating the resource group N times in the frequency direction may include configuring the PUCCH by repeating the resource group N times in a continuous resource in the frequency direction.
- the N data includes one demodulation reference signal (DM-RS) and one uplink control information, and the resource group for each of the one or more symbols
- the one uplink control information may be allocated to the number of resources more than or equal to the one demodulation reference signal.
- one or two symbols may be applied to the one or more symbols.
- a method for receiving a physical uplink control channel (PUCCH) from a terminal by a base station in a wireless communication system, N, for each of the one or more symbols through one or more symbols (N is a natural number greater than 1) Receives a PUCCH in which a resource group in which data is divided by frequency division multiplexing (FDM) is repeated N times in a frequency direction; And decoding the N data received through the one or more symbols by applying a phase rotation having a different slope to each of the N data, wherein the physical uplink control channel reception of the base station is performed. Suggest a method.
- PUCCH physical uplink control channel
- a base station for receiving a Physical Uplink Control Channel (PUCCH) from a terminal in a wireless communication system, the base station receiving unit; And a processor operatively connected to the receiver, wherein the processor includes: a resource group in which N pieces of data (N is a natural number greater than 1) of FDM (Frequency Division Multiplexing) for each of the one or more symbols through one or more symbols Receiving a PUCCH configured repeatedly N times in this frequency direction; And decode the N data received through the one or more symbols by applying a phase rotation having a different slope to each of the N data.
- N is a natural number greater than 1
- FDM Frequency Division Multiplexing
- the base station decoding the N pieces of data received through the one or more symbols, the base station obtains the M (M is a natural number) demodulation reference signal, the M demodulation reference signal and the NM number And acquiring the NM uplink control information based on phase rotation having different inclinations applied to each uplink control information.
- M is a natural number
- the terminal may transmit a physical uplink control channel having a more relaxed PAPR to the base station, and correspondingly, the base station may receive a physical uplink control channel having a more relaxed PAPR from the terminal.
- 1 is a diagram illustrating a physical channel and a signal transmission method using the same.
- FIG. 2 is a diagram illustrating an example of a structure of a radio frame.
- 3 is a diagram illustrating a resource grid for a downlink slot.
- FIG. 4 is a diagram illustrating an example of a structure of an uplink subframe.
- 5 is a diagram illustrating an example of a structure of a downlink subframe.
- FIG. 6 is a diagram illustrating a self-contained subframe structure applicable to the present invention.
- FIG. 7 and 8 illustrate exemplary connection schemes of a TXRU and an antenna element.
- FIG. 9 is a diagram illustrating a hybrid beamforming structure from a TXRU and a physical antenna perspective according to an example of the present invention.
- FIG. 10 is a diagram briefly illustrating a beam sweeping operation of a synchronization signal and system information in a downlink (DL) transmission process according to an embodiment of the present invention.
- FIG. 11 is a diagram briefly showing a PUICCH design method applied to a method 1-1 of PUCCH transmission and reception according to the present invention.
- FIG. 12 is a diagram briefly illustrating a PUCCH design method applied to a method of transmitting and receiving a 1-2 PUCCH according to the present invention.
- FIG. 13 is a diagram schematically illustrating a PUCCH design method applied to a 1-3 PUCCH transmission / reception method according to the present invention.
- FIG. 14 is a diagram briefly illustrating Short PUCCH (Type A) having an RS / UCI ratio of 1: 1 and Short PUCCH (Type B) having an RS / UCI ratio of 1: 3.
- FIG. 15 is a diagram schematically illustrating a case in which a length (N) of a PUCCH resource is 24 and the PUCCH resource is configured to cross four length-6 sequences.
- FIG. 16 is a diagram briefly illustrating a configuration in which modulation symbols of RS and UCI are transmitted in a PUCCH resource utilizing only two sequences in a structure where four sequences are crossed.
- FIG. 17 is a diagram briefly illustrating a process of transmitting UCI in one symbol of PUCCH Format 2 of the conventional LTE system.
- FIG. 18 is a diagram briefly illustrating an example of a PUCCH design method applied to a 3-1 PUCCH transmission / reception method of the present invention.
- FIG. 19 is a diagram briefly illustrating an example of a PUCCH design method applied to a 3-2 PUCCH transmission / reception method of the present invention.
- 20 is a diagram briefly illustrating an example of a PUCCH design method applied to a method 3-4 PUCCH transmission and reception according to the present invention.
- FIG. 21 is a diagram illustrating another example of a PUCCH design method applied to a method 3-4 PUCCH transmission and reception according to the present invention.
- FIG. 22 is a flowchart briefly showing a PUCCH transmission method applicable to the present invention.
- FIG. 23 is a diagram illustrating a configuration of a terminal and a base station in which proposed embodiments can be implemented.
- each component or feature may be considered to be optional unless otherwise stated.
- Each component or feature may be embodied in a form that is not combined with other components or features.
- some of the components and / or features may be combined to form an embodiment of the present invention.
- the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment, or may be replaced with corresponding components or features of another embodiment.
- the base station is meant as a terminal node of a network that directly communicates with a mobile station.
- the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
- various operations performed for communication with a mobile station in a network consisting of a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station.
- the 'base station' is replaced by terms such as a fixed station, a Node B, an eNode B (eNB), a gNode B (gNB), an advanced base station (ABS), or an access point. Can be.
- a terminal may be a user equipment (UE), a mobile station (MS), a subscriber station (SS), or a mobile subscriber station (MSS). It may be replaced with terms such as a mobile terminal or an advanced mobile station (AMS).
- UE user equipment
- MS mobile station
- SS subscriber station
- MSS mobile subscriber station
- AMS advanced mobile station
- the transmitting end refers to a fixed and / or mobile node that provides a data service or a voice service
- the receiving end refers to a fixed and / or mobile node that receives a data service or a voice service. Therefore, in uplink, a mobile station may be a transmitting end and a base station may be a receiving end. Similarly, in downlink, a mobile station may be a receiving end and a base station may be a transmitting end.
- Embodiments of the present invention may be supported by standard documents disclosed in at least one of wireless access systems IEEE 802.xx system, 3rd Generation Partnership Project (3GPP) system, 3GPP LTE system, 3GPP 5G NR system and 3GPP2 system
- embodiments of the present invention include 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321, 3GPP TS 36.331, 3GPP TS 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 and 3GPP TS 38.331 documents
- Transmission Opportunity Period may be used in the same meaning as the term transmission period, transmission burst (Tx burst) or RRP (Reserved Resource Period).
- LBT process may be performed for the same purpose as a carrier sensing process, a clear channel access (CCA), and a channel access procedure (CAP) for determining whether a channel state is idle.
- CCA clear channel access
- CAP channel access procedure
- 3GPP LTE / LTE-A system will be described as an example of a wireless access system in which embodiments of the present invention can be used.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
- TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
- GSM Global System for Mobile communications
- GPRS General Packet Radio Service
- EDGE Enhanced Data Rates for GSM Evolution
- OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
- UTRA is part of the Universal Mobile Telecommunications System (UMTS).
- 3GPP Long Term Evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
- LTE-A (Advanced) system is an improved system of the 3GPP LTE system.
- embodiments of the present invention will be described based on the 3GPP LTE / LTE-A system, but can also be applied to IEEE 802.16e / m system.
- a terminal receives information from a base station through downlink (DL) and transmits information to the base station through uplink (UL).
- the information transmitted and received by the base station and the terminal includes general data information and various control information, and various physical channels exist according to the type / use of the information they transmit and receive.
- FIG. 1 is a diagram for explaining physical channels that can be used in embodiments of the present invention and a signal transmission method using the same.
- the initial cell search operation such as synchronizing with the base station is performed in step S11.
- the UE receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station, synchronizes with the base station, and obtains information such as a cell ID.
- P-SCH Primary Synchronization Channel
- S-SCH Secondary Synchronization Channel
- the terminal may receive a physical broadcast channel (PBCH) signal from the base station to obtain broadcast information in a cell.
- PBCH physical broadcast channel
- the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to confirm the downlink channel state.
- DL RS downlink reference signal
- the UE After completing the initial cell search, the UE receives a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to the physical downlink control channel information in step S12. Specific system information can be obtained.
- PDCCH physical downlink control channel
- PDSCH physical downlink control channel
- the terminal may perform a random access procedure as in steps S13 to S16 to complete the access to the base station.
- the UE transmits a preamble through a physical random access channel (PRACH) (S13), a response message to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. Can be received (S14).
- PRACH physical random access channel
- the UE may perform contention resolution such as transmitting an additional physical random access channel signal (S15) and receiving a physical downlink control channel signal and a corresponding physical downlink shared channel signal (S16). Procedure).
- the UE After performing the above-described procedure, the UE subsequently receives a physical downlink control channel signal and / or a physical downlink shared channel signal (S17) and a physical uplink shared channel (PUSCH) as a general uplink / downlink signal transmission procedure.
- a transmission (Uplink Shared Channel) signal and / or a Physical Uplink Control Channel (PUCCH) signal may be transmitted (S18).
- UCI uplink control information
- HARQ-ACK / NACK Hybrid Automatic Repeat and reQuest Acknowledgement / Negative-ACK
- SR Scheduling Request
- CQI Channel Quality Indication
- PMI Precoding Matrix Indication
- RI Rank Indication
- UCI is generally transmitted periodically through the PUCCH, but may be transmitted through the PUSCH when control information and traffic data should be transmitted at the same time.
- the UCI may be aperiodically transmitted through the PUSCH by the request / instruction of the network.
- FIG. 2 shows a structure of a radio frame used in embodiments of the present invention.
- the type 1 frame structure can be applied to both full duplex Frequency Division Duplex (FDD) systems and half duplex FDD systems.
- FDD Frequency Division Duplex
- One subframe is defined as two consecutive slots, and the i-th subframe includes slots corresponding to 2i and 2i + 1. That is, a radio frame consists of 10 subframes.
- the time taken to transmit one subframe is called a transmission time interval (TTI).
- the slot includes a plurality of OFDM symbols or SC-FDMA symbols in the time domain and a plurality of resource blocks in the frequency domain.
- One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain. Since 3GPP LTE uses OFDMA in downlink, the OFDM symbol is for representing one symbol period. The OFDM symbol may be referred to as one SC-FDMA symbol or symbol period.
- a resource block is a resource allocation unit and includes a plurality of consecutive subcarriers in one slot.
- 10 subframes may be used simultaneously for downlink transmission and uplink transmission during each 10ms period. At this time, uplink and downlink transmission are separated in the frequency domain.
- the terminal cannot transmit and receive at the same time.
- the structure of the radio frame described above is just one example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
- the type 2 frame includes a special subframe consisting of three fields: a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
- DwPTS downlink pilot time slot
- GP guard period
- UpPTS uplink pilot time slot
- the DwPTS is used for initial cell search, synchronization or channel estimation in the terminal.
- UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
- the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
- Table 1 below shows the structure of the special frame (length of DwPTS / GP / UpPTS).
- FIG. 3 is a diagram illustrating a resource grid for a downlink slot that can be used in embodiments of the present invention.
- one downlink slot includes a plurality of OFDM symbols in the time domain.
- one downlink slot includes seven OFDM symbols, and one resource block includes 12 subcarriers in a frequency domain, but is not limited thereto.
- Each element on the resource grid is a resource element, and one resource block includes 12 ⁇ 7 resource elements.
- the number NDL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth.
- the structure of the uplink slot may be the same as the structure of the downlink slot.
- FIG. 4 shows a structure of an uplink subframe that can be used in embodiments of the present invention.
- an uplink subframe may be divided into a control region and a data region in the frequency domain.
- the control region is allocated a PUCCH carrying uplink control information.
- a PUSCH carrying user data is allocated.
- one UE does not simultaneously transmit a PUCCH and a PUSCH.
- the PUCCH for one UE is allocated an RB pair in a subframe. RBs belonging to the RB pair occupy different subcarriers in each of the two slots.
- the RB pair assigned to this PUCCH is said to be frequency hopping at the slot boundary.
- FIG. 5 shows a structure of a downlink subframe that can be used in embodiments of the present invention.
- up to three OFDM symbols from the OFDM symbol index 0 in the first slot in the subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are data regions to which the PDSCH is allocated. to be.
- a downlink control channel used in 3GPP LTE includes a Physical Control Format Indicator Channel (PCFICH), a PDCCH, and a Physical Hybrid-ARQ Indicator Channel (PHICH).
- PCFICH Physical Control Format Indicator Channel
- PDCCH Physical Hybrid-ARQ Indicator Channel
- PHICH Physical Hybrid-ARQ Indicator Channel
- the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels within the subframe.
- the PHICH is a response channel for the uplink and carries an ACK (Acknowledgement) / NACK (Negative-Acknowledgement) signal for a hybrid automatic repeat request (HARQ).
- Control information transmitted through the PDCCH is called downlink control information (DCI).
- the downlink control information includes uplink resource allocation information, downlink resource allocation information or an uplink transmission (Tx) power control command for a certain terminal group.
- a user equipment has been defined to report channel state information (CSI) to a base station (BS or eNB).
- CSI channel state information
- BS base station
- eNB base station
- the channel state information collectively refers to information representing the quality of a radio channel (or link) formed between the UE and the antenna port.
- the channel state information may include a rank indicator (RI), a precoding matrix indicator (PMI), a channel quality indicator (CQI), and the like.
- RI rank indicator
- PMI precoding matrix indicator
- CQI channel quality indicator
- RI represents rank information of a corresponding channel, which means the number of streams received by the UE through the same time-frequency resource. This value is determined dependent on the long term fading of the channel.
- the RI may then be fed back to the BS by the UE in a period longer than PMI and CQI.
- PMI is a value reflecting channel spatial characteristics and indicates a precoding index preferred by the UE based on a metric such as SINR.
- CQI is a value indicating the strength of a channel and generally refers to a reception SINR obtained when a BS uses PMI.
- the base station sets a plurality of CSI processes to the UE, and can receive the CSI report for each process from the UE.
- the CSI process is composed of CSI-RS for signal quality specification from a base station and CSI-interference measurement (CSI-IM) resources for interference measurement.
- CSI-IM CSI-interference measurement
- the serving cell may request RRM measurement information, which is a measurement value for performing an RRM operation, to the UE.
- RRM measurement information which is a measurement value for performing an RRM operation
- the UE may measure and report information such as cell search information, reference signal received power (RSRP), and reference signal received quality (RSRQ) for each cell.
- the UE receives 'measConfig' as a higher layer signal for RRM measurement from the serving cell, and the UE may measure RSRP or RSRQ according to the information of the 'measConfig'.
- RSRP reference to Physical Uplink Reference Signal
- RSRQ reference to Physical Uplink Reference Signal
- RSSI RSSI
- RSRP is defined as the linear average of the power contribution (in [W] units) of the resource elements that transmit the cell-specific reference signal in the measured frequency band under consideration.
- Reference signal received power (RSRP) is defined as the linear average over the power contributions (in [W]) of the resource elements that carry cell-specific reference signals within the considered measurement frequency bandwidth.
- the cell-specific reference signal R 0 may be utilized for this purpose. (For RSRP determination the cell-specific reference signals R 0 shall be used.) If the UE detects that the cell-specific reference signal R 1 is available, the UE may additionally use R 1 to determine RSRP. (If the UE can reliably detect that R 1 is available it may use R 1 in addition to R 0 to determine RSRP.)
- the reference point for RSRP may be the antenna connector of the UE. (The reference point for the RSRP shall be the antenna connector of the UE.)
- the value reported should not be less than the RSRP corresponding to the individual diversity branch. (If receiver diversity is in use by the UE, the reported value shall not be lower than the corresponding RSRP of any of the individual diversity branches.)
- RSRQ is defined as N * RSRP / (E-UTRA carrier RSSI) as a ratio of RSRP to E-UTRA carrier RSSI.
- RSRQ Reference Signal Received Quality
- N is the number of RB's of the E-UTRA carrier RSSI measurement bandwidth.
- the E-UTRA Carrier RSSI is used in the measurement bandwidth, across N resource blocks, for received signals from all sources, including co-channel serving and non-serving cells, adjacent channel interference, thermal noise, and so on. It includes a linear average of the total received power (in [W]) measured by the terminal in OFDM symbols including the reference symbol for antenna port 0 only.
- E-UTRA Carrier Received Signal Strength Indicator comprises the linear average of the total received power (in [W]) observed only in OFDM symbols containing reference symbols for antenna port 0, in the measurement bandwidth, over N number of resource blocks by the UE from all sources, including co-channel serving and non-serving cells, adjacent channel interference, thermal noise etc.) If higher layer signaling indicates some subframes for RSRQ measurement, the indicated sub RSSI is measured for all OFDM symbols in the frames. (If higher-layer signaling indicates certain subframes for performing RSRQ measurements, then RSSI is measured over all OFDM symbols in the indicated subframes.)
- the reference point for RSRQ may be an antenna connector of the UE. (The reference point for the RSRQ shall be the antenna connector of the UE.)
- the reported value should not be less than the RSRQ corresponding to the individual diversity branch. (If receiver diversity is in use by the UE, the reported value shall not be lower than the corresponding RSRQ of any of the individual diversity branches.)
- RSSI is then defined as the received wideband power including thermal noise within the bandwidth defined by the receiver pulse shape filter and noise generated at the receiver.
- RSSI Received Signal Strength Indicator
- the reference point for the measurement may be the antenna connector of the UE. (The reference point for the measurement shall be the antenna connector of the UE.)
- the reported value should not be smaller than the UTRA carrier RSSI corresponding to the individual diversity branch. (If receiver diversity is in use by the UE, the reported value shall not be lower than the corresponding UTRA carrier RSSI of any of the individual receive antenna branches.)
- the UE operating in the LTE system includes information related to allowed measurement bandwidth (IE) related to the allowed measurement bandwidth transmitted in (system information block type 3) in SIB3 in case of intra-frequency measurement.
- IE allowed measurement bandwidth
- RSRP can be measured at the bandwidth indicated by element).
- the terminal may perform at a bandwidth corresponding to one of 6, 15, 25, 50, 75, and 100 RB (resource block) indicated through the allowed measurement bandwidth transmitted in SIB5.
- RSRP can be measured.
- the terminal can measure RSRP in the frequency band of the downlink (DL) system as a default operation.
- the terminal when the terminal receives information on the allowed measurement bandwidth, the terminal may consider the value as the maximum measurement bandwidth and may freely measure the value of RSRP within the value. However, if the serving cell transmits the IE defined by the WB-RSRQ to the terminal and the allowed measurement bandwidth is set to 50 RB or more, the terminal should calculate the RSRP value for the total allowed measurement bandwidth. Meanwhile, when measuring the RSSI, the terminal measures the RSSI using the frequency band of the receiver of the terminal according to the definition of the RSSI bandwidth.
- MTC Massive Machine Type Communications
- a new wireless access technology system has been proposed as a new wireless access technology that considers such enhanced mobile broadband communication, massive MTC, and ultra-reliable and low latency communication (URLLC).
- the technology is referred to as New RAT or NR (New Radio) for convenience.
- ⁇ and cyclic prefix information for each carrier bandwidth part may be signaled for each downlink (DL) or uplink (UL).
- DL downlink
- UL uplink
- ⁇ and cyclic prefix information for a downlink carrier bandwidth part may be signaled through higher layer signaling DL-BWP-mu and DL-MWP-cp.
- ⁇ and cyclic prefix information for an uplink carrier bandwidth part may be signaled through higher layer signaling UL-BWP-mu and UL-MWP-cp.
- Downlink and uplink transmission consists of a frame of 10ms long.
- the frame may be composed of 10 subframes of length 1ms. In this case, the number of consecutive OFDM symbols for each subframe is to be.
- Each frame may consist of two equally sized half frames.
- each half-frame may be configured of subframes 0-4 and subframes 5-9, respectively.
- slots are in ascending order within one subframe. Numbered as in ascending order within a frame It may be numbered as follows. In this case, the number of consecutive OFDM symbols in one slot ( ) Can be determined according to the circulation translocation as shown in the table below. Start slot in one subframe ( ) Is the starting OFDM symbol () in the same subframe ) And time dimension. Table 3 below shows the number of OFDM symbols per slot / frame / subframe for a normal cyclic prefix, and Table 4 shows slots / frame bells / for an extended cyclic prefix. This indicates the number of OFDM symbols per subframe.
- a self-contained slot structure may be applied as the slot structure as described above.
- FIG. 6 is a diagram illustrating a self-contained slot structure applicable to the present invention.
- the base station and the UE may sequentially perform DL transmission and UL transmission in one slot, and may transmit and receive DL data and transmit and receive UL ACK / NACK for the DL data in the one slot.
- this structure reduces the time taken to retransmit data in the event of a data transmission error, thereby minimizing the delay of the final data transfer.
- a time gap of a certain length is required for the base station and the UE to switch from the transmission mode to the reception mode or from the reception mode to the transmission mode.
- some OFDM symbols at the time of switching from DL to UL in the independent slot structure may be set to a guard period (GP).
- the independent slot structure includes both the DL control region and the UL control region.
- the control regions may be selectively included in the independent slot structure.
- the independent slot structure according to the present invention may include not only a case in which both the DL control region and the UL control region are included as shown in FIG. 6, but also a case in which only the DL control region or the UL control region is included.
- a slot may have various slot formats.
- the OFDM symbol of each slot may be classified into downlink (denoted 'D'), flexible (denoted 'X'), and uplink (denoted 'U').
- the UE may assume that downlink transmission occurs only in 'D' and 'X' symbols. Similarly, in the uplink slot, the UE may assume that uplink transmission occurs only in the 'U' and 'X' symbols.
- millimeter wave the short wavelength allows the installation of multiple antenna elements in the same area. That is, since the wavelength is 1 cm in the 30 GHz band, a total of 100 antenna elements can be installed in a 2-dimension array at 0.5 lambda intervals on a 5 * 5 cm panel. Accordingly, in millimeter wave (mmW), a plurality of antenna elements may be used to increase beamforming (BF) gain to increase coverage or to increase throughput.
- BF beamforming
- each antenna element may include a TXRU (Transceiver Unit) to enable transmission power and phase adjustment for each antenna element.
- TXRU Transceiver Unit
- each antenna element may perform independent beamforming for each frequency resource.
- a hybrid BF having B TXRUs having a smaller number than Q antenna elements may be considered as an intermediate form between digital beamforming and analog beamforming.
- the direction of the beam that can be transmitted at the same time may be limited to B or less.
- the TXRU virtualization model represents the relationship between the output signal of the TXRU and the output signal of the antenna element.
- FIG. 7 is a diagram illustrating how a TXRU is connected to a sub-array. In the case of FIG. 7, the antenna element is connected to only one TXRU.
- FIG. 8 shows how TXRU is connected to all antenna elements.
- the antenna element is connected to all TXRUs.
- the antenna element requires a separate adder as shown in FIG. 8 to be connected to all TXRUs.
- W represents the phase vector multiplied by an analog phase shifter.
- W is a main parameter that determines the direction of analog beamforming.
- the mapping between the CSI-RS antenna port and the TXRUs may be 1: 1 or 1: 1-to-many.
- the beamforming focusing is difficult, but there is an advantage that the entire antenna configuration can be configured at a low cost.
- analog beamforming refers to an operation of performing precoding (or combining) in the RF stage.
- the baseband stage and the RF stage respectively perform precoding (or combining). This reduces the number of RF chains and the number of Digital-to-Analog (D / A) (or Analog-to-Digital) converters while delivering near-digital beamforming performance.
- D / A Digital-to-Analog
- the hybrid beamforming structure may be represented by N transceiver units (TXRUs) and M physical antennas.
- TXRUs transceiver units
- the digital beamforming for the L data layers to be transmitted by the transmitter may be represented by an N * L (N by L) matrix.
- the converted N digital signals are converted into analog signals through TXRU, and analog beamforming is applied to the converted signals represented by an M * N (M by N) matrix.
- FIG. 9 is a diagram illustrating a hybrid beamforming structure from a TXRU and a physical antenna perspective according to an example of the present invention.
- the number of digital beams is L and the number of analog beams is N in FIG. 9.
- the base station is designed to change the analog beamforming in units of symbols and considers a method for supporting more efficient beamforming for a terminal located in a specific region.
- specific N TXRU and M RF antennas as one antenna panel as shown in FIG. 9, in the NR system according to the present invention, a plurality of antenna panels to which hybrid beamforming independent of each other is applicable may be defined. It is also considered to adopt.
- the analog beams advantageous for signal reception may be different for each terminal. Accordingly, in the NR system to which the present invention is applicable, the base station transmits a signal (at least a synchronization signal, system information, paging, etc.) by applying a different analog beam for each symbol in a specific subframe (SF) so that all terminals can receive the signal. Beam sweeping operations are being contemplated that allow for receiving opportunities.
- FIG. 10 is a diagram briefly illustrating a beam sweeping operation of a synchronization signal and system information in a downlink (DL) transmission process according to an embodiment of the present invention.
- a physical resource (or physical channel) through which system information of an NR system to which the present invention is applicable is transmitted in a broadcasting manner is referred to as a physical broadcast channel (xPBCH).
- xPBCH physical broadcast channel
- analog beams belonging to different antenna panels in one symbol may be transmitted simultaneously.
- a configuration for measuring channels for analog beams is applied to transmit a reference signal (Reference signal,
- Reference signal The introduction of beam reference signals (Beam RS, BRS), which is RS, is under discussion.
- the BRS may be defined for a plurality of antenna ports, and each antenna port of the BRS may correspond to a single analog beam.
- the synchronization signal or the xPBCH may be transmitted by applying all the analog beams in the analog beam group so that any terminal can receive well.
- PUCCH physical uplink control channel
- This section describes in detail the PUCCH design method for mitigating peak-to-average power ratio (PAPR) and the PUCCH transmission / reception method based thereon while supporting flexible ratio adjustment between RS (reference signal) and UCI (uplink control information) for PUCCH.
- PAPR peak-to-average power ratio
- UCI uplink control information
- an OFDM scheme (or multiple access scheme) having a mutually independent neurology for each time and frequency resource region may be applied.
- a basic time unit for data scheduling is defined as a slot composed of a plurality of OFDM symbols, and a latency for transmitting HARQ-ACK (or decoding result) in the slot.
- PUCCH which is a physical channel for UL control signal transmission, may be transmitted within a relatively short time interval by being time division multiplexed (TDM) with a data channel as shown in FIG. 6.
- a PUCCH transmitted in a short time interval corresponding to several (eg, 1 to 2) OFDM symbols in a slot is referred to as a short PUCCH.
- the Short PUCCH may have a length of one or two OFDM symbols.
- the short PUCCH may determine the length of the short PUCCH.
- the HARQ-ACK (or decoding result) information may be reported to a base station through Short PUCCH.
- the short PUCCH transmission may include important control information such as HARQ-ACK, channel state information (CSI) feedback, scheduling requires (SR), and the like
- the short PUCCH supports wide UL coverage by increasing possible transmission power. It may be desirable to be designed to.
- a limitation on transmission power may occur due to a nonlinearity problem of a power amplifier (PA).
- PA power amplifier
- the Short PUCCH structure has a high PAPR, in order for the amplitude range of the time-axis transmission signal to be included in the interval where the linearity of the PA is guaranteed (that is, the peak power value is included in the linearity interval of the PA).
- the average power needs to be set low.
- a design method for mitigating PAPR for Short PUCCH may be considered.
- the UCI payload size of the Short PUCCH may range from at least 1 bit (for example, HARQ-ACK information for 1 TB) to dozens of bits (for example, HARQ-ACK and CSI feedback information for multiple TBs).
- the density of a demodulation reference signal (DM-RS) that is a PUCCH demodulation reference signal may be adjusted according to the UCI payload size.
- the UCI payload size when the UCI payload size is small, a coding rate effect due to RS overhead may be insignificant. Accordingly, if the UCI payload size is small, the DM-RS density may be transmitted at a relatively high density to improve channel estimation performance.
- the coding rate due to RS overhead may be large. Accordingly, if the UCI payload size is large, the DM-RS density may be set relatively low.
- This section describes how to design a Short PUCCH that can be applied to an NR system and to adjust RS and UCI ratios while relaxing PAPR, and a method of transmitting and receiving Short PUCCH.
- DCI dynamic control information
- a resource element may mean a resource corresponding to a specific subcarrier and a specific OFDM symbol.
- a DM-RS demodulation reference signal
- Slot means a basic time unit for data scheduling, it may be composed of a plurality of symbols. Mini-slot is also defined to have a time interval shorter than a slot as the minimum time unit for data scheduling. In this case, the symbol may mean an OFDM symbol or an SC-FDMA symbol.
- the UE may perform a Short PUCCH (or Short PUCCH) as follows. Can be configured).
- each S-REG may refer to an interlace resource in which an interval between adjacent subcarriers included in the S-REG is a set of subcarriers corresponding to N subcarriers.
- the (N + 1) Interlace resources may be configured by partitioning the REG by an Interleaved Frequency Division Multiplexing (IFDM) scheme.
- IFDM Interleaved Frequency Division Multiplexing
- DM-RS is allocated to one S-REG among the (N + 1) S-REGs, and UCI is allocated to the remaining N S-REGs.
- a sequence of length K may be allocated to one S-REG.
- K * N modulated symbols (DFT spreading applied) or N (CAZAC (Constant Amplitude Zero Autocorrelation Waveform) sequences of length K) may be allocated to N S-REGs. .
- n 1, 2,..., N + 1
- S-REG S-REG
- a phase rotation of exp (j * ⁇ ) * exp [j * 2 ⁇ * (n-1) * (k-1) / Q] may be applied to the signal allocated to the corresponding RE.
- ⁇ is a constant.
- the signals allocated to the Q resource regions may refer to signals allocated on the frequency axis before performing an X-point (X ⁇ Q) Inverse Fast Fourier Transform (IFFT) process.
- X ⁇ Q Inverse Fast Fourier Transform
- the "sequential on the frequency axis" may mean an ascending order on the frequency axis.
- Subcarriers to which the phase rotation of exp [j * 2 ⁇ * (r-1) / (K * (N + 1))] is applied to the signal allocated to the second UCI sequence for the second UCI sequence.
- subcarrier exp [j * 2 ⁇ * 2 * (r-1) / ( K * (N + 1))] may be applied.
- FIG. 11 is a diagram briefly showing a PUICCH design method applied to a method 1-1 of PUCCH transmission and reception according to the present invention.
- k It can be given in the form of (N + 1) * (r-1) + n.
- k It can be given in the form of (N + 1) * (r-1) + n.
- ⁇ and ⁇ are constants and can be neglected during the mathematical analysis.
- (N + 1) Interlace resources can be formed in terms of the applied time base signals.
- the operation of applying different phase rotations for each S-REG is a cyclic time for (N + 1) signals (eg, UCI, N DM-RS sequences) corresponding to (N + 1) S-REGs. It may mean an operation of allocating different resources among the (N + 1) interlace resources by applying a cyclic time shift.
- the aforementioned 1-1 PUCCH transmission and reception method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
- the UE may perform a Short PUCCH (or Short PUCCH) as follows. Can be configured).
- each S-REG may refer to an interlace resource in which an interval between adjacent subcarriers included in the S-REG is a set of subcarriers corresponding to N subcarriers.
- the (N + 1) Interlace resources may be configured by partitioning the REG by an Interleaved Frequency Division Multiplexing (IFDM) scheme.
- IFDM Interleaved Frequency Division Multiplexing
- DM-RS is allocated to one S-REG among the (N + 1) S-REGs, and UCI is allocated to the remaining N S-REGs.
- a sequence of length K may be allocated to one S-REG.
- K * N modulated symbols may be assigned to N S-REGs.
- a specific RE is an RE to which a UCI (or DM-RS) signal is assigned and the RE is one of Q subcarriers.
- ⁇ is a constant.
- the signals allocated to the Q resource regions may refer to signals allocated on the frequency axis before performing an X-point (where X ⁇ Q) IFFT process.
- the "sequential on the frequency axis" may mean an ascending order on the frequency axis.
- the UE when the UCI and the DM-RS have a ratio of N: 1, the UE generates (N + 1) signals satisfying Low PAPR on the time axis and (N + 1). ) Can be allocated to (N + 1) Interlace resources (or Comb resources) orthogonal to the time axis to lower the PAPR of the entire signal.
- the method may be advantageous in terms of PAPR, but has a disadvantage of using too many resources by proportional to the square of (N + 1).
- the PAPR does not increase significantly.
- it may be more preferable in terms of resource efficiency to design only the UCI and RS in the time axis.
- the sequence for the DM-RS may be allocated to the first interlace resource, and the UCI to which DFT spreading is applied may be allocated to the remaining second and third interlace resources.
- the UE repeats the signal in the REG two times on the frequency axis, and then does not apply phase rotation to the DM-RS, and the r-th of the subcarriers assigned to the UCI for the UCI (sequentially on the frequency axis).
- r 1, 2, ..., 2 * K
- a phase rotation of exp [j * 2 ⁇ * (r-1) / (2 * K)] may be applied to a signal allocated to a subcarrier.
- FIG. 12 is a diagram briefly illustrating a PUCCH design method applied to a method of transmitting and receiving a 1-2 PUCCH according to the present invention.
- r which is a relative order of a specific subcarrier through which UCI is transmitted among subcarriers through which UCI is transmitted
- k (N + 1). It may be given in the form of * (r-1) + n.
- k (N + 1).
- * (r-1) + n when the value of k is substituted into exp (j * ⁇ ) * exp [j * 2 ⁇ * (k-1) / Q], the value is exp (j * ⁇ ) * exp [j as described above. * 2 ⁇ * (r-1) / (K * (N + 1))].
- ⁇ and ⁇ are constants and can be ignored.
- the aforementioned 1-2-2 PUCCH transmission / reception method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
- the UE may select a Short PUCCH (or part of a Short PUCCH) from the P. Can transmit to SC-Group.
- the UE corresponds to the SC-Group size corresponding to the SC-Group size of a signal obtained by multiplexing K DM-RS samples and K * N UCI samples for each SC-Group in a time division multiplexing (TDM) scheme on a time axis. point) DFT spreading can be applied.
- TDM time division multiplexing
- the UE when the UE transmits a signal, the UE forms a frequency axis signal (after DFT spreading for each SC-Group) for all SC SC groups as a frequency axis signal, and then converts the signal into a time axis signal through an IFFT process to transmit the signal.
- a frequency axis signal after DFT spreading for each SC-Group
- the DFT vector value (s) applied to the DM-RS may be provided to the UE in one of the following manners.
- the UE de-spreads the DFT vector (s) applied to the DM-RS for each SC-Group (that is, by applying the Hermitian matrix of the corresponding DFT vector) to determine the average channel gain for each SC-Group. It can be estimated.
- the P SC-Groups may be in the form of transmitting the same DM-RS and UCI repeatedly or in the form of transmitting different DM-RS and UCI.
- independent phase values may be applied to the SC SCs in units of SC-Groups.
- the DFT vector (s) applied to the DM-RS for each SC-Group may be different.
- the UE may generate a frequency axis signal by applying M-point DFT spreading (or DFT precoding) to the time axis signal having a length M generated for each SC-Group. Thereafter, signals from all P SC-Groups may be combined on the frequency axis, and then IFFT may be performed on the whole to generate and transmit a time axis signal.
- FIG. 13 is a diagram schematically illustrating a PUCCH design method applied to a 1-3 PUCCH transmission / reception method according to the present invention.
- P 4 SC-Groups
- the M-point DFT spreading may have a form of transmitting UCI and DM-RS in different orthogonal codes.
- the orthogonal code becomes a column vector of the DFT matrix so that the signals in the SC-Group may be set so as not to overlap each other on the time axis.
- the UE de-spreads the corresponding DFT vector (that is, by applying Hermitian of the corresponding DFT vector). ) Can estimate the average channel gain (for multiple subcarriers) in the SC-Group.
- the DFT vector information (for each SC-Group) applied to the DM-RS may be set according to a predetermined method or by a base station through an upper layer signal or a dynamic control signal (eg, DCI).
- the aforementioned 1-3 PUCCH transmission / reception method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
- the UE may configure a short PUCCH as follows.
- the UE configures M-length time-base signals by TDM DM-RS and UCI, then performs M-point DFT spreading (or DFT precoding), and then N-point (eg N ⁇ M) IFFT (or IDFT) can be configured by oversampling.
- the UE may set a guard period (GP) between the DM-RS and the UCI (or a cyclic prefix (CP) for the DM-RS and / or the UCI) in one of the following ways.
- GP guard period
- CP cyclic prefix
- the base station sets an absolute time T 0 applied to the length of the GP (or CP) as a higher layer signal.
- UE is DFT spreading (or DFT precoding) the previous stage (or step)
- L the M samples on the time base signal at the ceil (T 0 / [(N / M) * T s]) the samples GP (Or CP) length can be set.
- the base station sets the length of the GP (or CP) (in terms of the number of samples of the front end of the DFT spreading) as a higher layer signal for each size of frequency resource region that can be allocated for short PUCCH transmission.
- T s may mean a sampling time of an OFDM signal transmitted after an IFFT (or IDFT) process.
- ceil () function may mean a rounding function.
- the base station may set whether to use the GP (or CP for DM-RS and / or UCI) between the DM-RS and UCI.
- the UE may TDM the DM-RS and the UCI on the time axis and apply DFT spreading for a single carrier characteristic to the time axis. Thereafter, the UE may transmit a corresponding signal to a channel through an IFFT process and attach a cyclic prefix (CP).
- CP cyclic prefix
- the base station when the base station performs an FFT process upon reception and then applies DFT de-spreading, the base station may acquire a structure in which the DM-RS and the UCI are multiplexed by the TDM scheme in the time axis.
- the sampling rate becomes relatively high (even when trying to form the same guard time in terms of absolute time), so that the sample of the digital domain used to express the guard time in the front end of the DFT spreading.
- the number can be different.
- the number of samples for representing a specific absolute length GP may vary according to the actual allocated resources, and the base station may inform the UE of the absolute time for the GP (or CP) or the GP (or resource size). CP) can also tell the number of samples to set the length. In this case, the representation of the GP (or CP) length in absolute time or the relative number of samples according to the frequency resource region may follow a method previously promised between the base station and the terminal.
- the UE in the corresponding symbol
- SRS Sounding Reference Signal
- the DM-RS pattern for the Short PUCCH may be changed according to whether multiplexing is supported by the inter FDM scheme.
- the base station may inform whether FDM between Short PUCCH and SRS for a specific symbol is supported through a higher layer signal (eg, RRC signaling) or a dynamic control signal (eg, DCI).
- the base station may configure a DM-RS pattern in a short PUCCH for a specific symbol through an upper layer signal (eg, RRC signaling) or a dynamic control signal (eg, DCI).
- the FFT / IFFT process can be supported when the FFT / IFFT size is a multiple of 2, 3, 5.
- the number of UCI transmission REs other than the RE to which the DM-RS is transmitted should be a multiple of 2, 3, and 5 for the FFT / IFFT process. do.
- the number of REs for the DM-RS within the base unit is only considered when the DM-RS density is 1/2 or less. , 3, 4, 6 ⁇ . Therefore, the number of REs for UCI transmission in the basic unit is a multiple of 2, 3, and 5, so that the resource allocation scheme for frequency axis corresponding to 2, 3, 5 multiples of the basic unit when allocating resources for Short PUCCH All can be supported.
- the number of REs of the DM-RS needs to be adjusted so that the total number of UCI REs for the Short PUCCH is a multiple of 2, 3, and 5, reflecting REs that cannot be used for multiplexing with the SRS (within the corresponding symbol).
- the RE number for the DM-RS in the basic unit may have one of ⁇ 1, 2, 4, 5 ⁇ .
- the configuration has a different aspect from ⁇ 2, 3, 4, 6 ⁇ which is a set of DM-RS RE numbers applicable when SRS is not considered. Therefore, the DM-RS pattern for the Short PUCCH (in the corresponding symbol) may be changed depending on whether multiplexing is supported by the FDM method between the Short PUCCH and the SRS (in the specific symbol).
- the above configuration can be summarized. If the DM-RS and the UCI in the Short PUCCH are multiplexed by the FDM scheme and the DFT spreading (or the DFT precoding) is applied to the UCI, the Short PUCCH Some REs may not be used for purposes such as multiplexing with other signals.
- the UE may set the number of REs for UCI transmission in the Short PUCCH to be a multiple of 2, 3, 5 by changing the DM-RS pattern (in the corresponding symbol).
- the DM-RS density that can be supported may vary depending on the presence or absence of the RE reserved in the Short PUCCH. For example, when the base station informs the presence or absence of the RE reserved in the Short PUCCH, the UE may implicitly assume that the DM-RS pattern applied to the Short PUCCH has been changed.
- the aforementioned 1-5 PUCCH transmission / reception method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
- a PUCCH transmitted in a short time period corresponding to several (eg, 1 or 2) OFDM symbols in one slot may be referred to as a short PUCCH.
- the Short PUCCH is a DL-centric Slot in which a slot carries DL data (for example, a slot having more DL transmission symbols than a UL transmission symbol, for example, a UL transmission symbol in a specific slot includes only two symbols behind the slot). Slot), the Short PUCCH may be transmitted only in a very limited number of OFDM symbol intervals in a slot. Therefore, it may be desirable to fully support multiplexing between a plurality of Short PUCCHs in view of efficiency of resource utilization.
- Short PUCCHs If only FDM and / or TDM are allowed in a multiplexing scheme between Short PUCCHs, the number of short PUCCH transmission resources that can be transmitted in the DL-centric slot may be greatly limited. Accordingly, preferably, a multiplexing method based on CDM (Code Division Multiplexing) between Short PUCCHs may be applied.
- CDM Code Division Multiplexing
- RS / UCI ratio a ratio between RS and UCI
- the Short PUCCH has a form in which RS and UCI are multiplexed by FDM, but the RS / UCI ratio may be set (or supported) to one or more (eg, 1: 1, 1: 3, etc.) values. .
- Short PUCCH when configured based on a sequence, a method of performing CDM-based multiplexing between Short PUCCHs to which different RS / UCI ratios are applied will be described in detail.
- the UE may utilize K ( ⁇ M) sequences among the M sequences as RS, and multiply (independent) modulated symbols for UCI by sequence for the remaining (M-K) sequences for transmission. .
- the sequence number M in the PUCCH resource of length N may be set as an upper layer signal (for example, RRC signaling) or a dynamic control signal (for example, downlink control information (DCI)) by the base station.
- an upper layer signal for example, RRC signaling
- a dynamic control signal for example, downlink control information (DCI)
- K sequences to be utilized as RSs among the M sequences are determined in a predetermined manner or by a base station as an upper layer signal (eg, RRC signaling) or a dynamic control signal (eg, downlink control information (DCI)). Can be set.
- an upper layer signal eg, RRC signaling
- a dynamic control signal eg, downlink control information (DCI)
- each sequence having the length L may be an orthogonal cover code (OCC) or a CAZAC sequence (eg, a Zad-off Chu sequence).
- OCC orthogonal cover code
- CAZAC CAZAC sequence
- Different OCC or CS cyclic shift
- FIG. 14 is a diagram briefly illustrating Short PUCCH (Type A) having an RS / UCI ratio of 1: 1 and Short PUCCH (Type B) having an RS / UCI ratio of 1: 3.
- the Short PUCCH has a form in which RS and UCI are multiplexed in an FDM manner, and 1: 1 and 1: 2 as RS / UCI ratio values for the Short PUCCH. Assume this is supported.
- the K sequences can be transmitted by multiplying the (independent) modulated symbol for UCI by sequence.
- FIG. 15 illustrates a configuration in which a modulation symbol of UCI is multiplied with respect to sequence 1, but the operation configuration is that an independent modulation symbol of UCI is applied to each sequence except for a sequence set to RS. It can be extended by the method.
- RS and UCI of Type A shown in FIG. 14 are represented by a sequence 1/3 to which a specific CS (or OCC) is applied and a sequence 2/4 to which a specific CS (or OCC) is applied, respectively.
- RS and UCI of Type B may be represented by Sequence 1 to which a specific CS (or OCC) is applied and Sequence 2/3/4 to which a specific CS (or OCC) is applied, respectively.
- CDM between PUCCH resources having a PUCCH structure of the 2-1 PUCCH transmission / reception method may be achieved by differently setting a CS or OCC applied to each sequence constituting the PUCCH for each PUCCH resource.
- a CS or OCC applied to each sequence constituting the PUCCH for each PUCCH resource.
- the RS / UCI ratio may be naturally supported for CDM between PUCCH resources having different RS.
- the sequences are sequences for the RS, respectively.
- Length-2 OCC is applied between 1 and 3
- Length-2 OCC may be applied between sequence 2 and sequence 4, which are sequences for UCI transmission.
- IFDMA interleaved frequency division multiple access
- RPF repetition factor
- some of the M 2 sequences in the PUCCH may be utilized as RS, and the remaining sequences may be used for the purpose of delivering UCI by multiplying a modulation symbol for UCI.
- FIG. 16 is a diagram briefly illustrating a configuration in which modulation symbols of RS and UCI are transmitted in a PUCCH resource utilizing only two sequences in a structure where four sequences are crossed.
- sequence 1 is utilized as RS, and a modulation symbol of UCI is multiplied by sequence 3.
- RS may utilize sequence 2
- a modulation symbol of UCI may be transmitted by multiplying sequence 4.
- 1 bit UCI information may be expressed through whether a sequence of the two sequences is transmitted as a corresponding CS value for a specific two sequence among the four sequences.
- two sequence groups dl may be allocated to two UEs.
- the PUCCH resource that informs the UCI information according to whether a sequence is transmitted as described above may be referred to as a sequence based PUCCH resource.
- the base station may inform the terminal of the CS information and the sequence resource information of the sequences to be detected as a higher layer signal (eg, RRC signaling) and / or a dynamic control signal (eg, DCI, L1 / L2 signaling). .
- the base station sets a specific resource set consisting of N (orthogonal) SRS resources to the UE, the UE is one of the N (orthogonal) SRS resources
- the SRS resource may be defined in terms of frequency band, sequence (root index and / or cyclic shift of the CAZAC sequence), and comb index (eg, even or odd).
- the base station may configure information on which SRS resource the k bit ACK / NACK information corresponds to via the upper layer signal (eg, RRC signaling).
- the SRS resource-based ACK / NACK transmission operation may be triggered to a specific state of a Bits field (hereinafter referred to as ACK / NACK resource indicator (ARI)) indicating ACK / NACK resource in DCI corresponding to DL assignment.
- ACK / NACK resource indicator ARI
- the base station may instruct or set the UE to transmit SRS for UL channel measurement.
- the SRS resource is a resource transmitted by a plurality of UEs and may be designed to maximize multiplexing capacity.
- some resources of the SRS resources may be used to carry ACK / NACK information.
- the SRS in 48 RE in frequency axis
- each CAZAC sequence has a maximum of 8 different CS (cyclic shift) values, there are 16 SRS resources in total.
- the UE may report 4 bits ACK / NACK information to the base station as shown in the following table using the 16 SRS resources.
- the aforementioned 2-2 PUCCH transmission / reception method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
- a code division multiplexing (CDM) resource between PUCCH resources is transmitted while transmitting an uplink control information (UCI) payload size proportional to the (frequency axis) resource amount.
- CDM code division multiplexing
- the PUCCH may have a structure that supports multiplexing between PUCCH resources transmitted from a plurality of UEs in terms of efficiency of UL resource utilization.
- a PUCCH resource is composed of a plurality of symbols, and a constant amplitude zero auto-correlation (CAZAC) for each symbol in the PUCCH resource (frequency axis). It can support a structure in which a sequence is transmitted. In this case, a CAZAC sequence transmitted with specific symbols in the PUCCH resource is multiplied by a modulated symbol of UCI, and the CAZAC sequence transmitted with the remaining symbols may be used as a reference signal (RS).
- RS reference signal
- a PUCCH structure in which a PUCCH resource consists of a plurality of symbols, and a symbol multiplied by a modulation symbol of UCI or a sequence (for use as RS) for each symbol is called a sequence modulation-based PUCCH.
- a CAZAC sequence or a sequence in an orthogonal sequence group may be applied to the symbol-by-symbol sequence, the same sequence may be applied to each symbol, or an independent (or other) sequence may be applied.
- sequence modulation-based PUCCH is configured with a CAZAC sequence
- different CS (cyclic shift) resources of the CAZAC sequence are applied to different PUCCH resources, thereby enabling CDM between PUCCH resources.
- FIG. 17 is a diagram briefly illustrating a process of transmitting UCI in one symbol of PUCCH Format 2 of the conventional LTE system.
- the sequence modulation-based PUCCH is configured based on the CAZAC sequence
- the CAZAC sequence is repeated on the frequency axis, resulting in zero-insertion effect on the time axis due to the configuration of simply transmitting the UCI with two PUCCH resources on the frequency axis as described above. Will occur. Therefore, the PAPR has a problem of increasing about 3 dB on average than before using twice the resources on the frequency axis.
- the UE configures a PUCCH (PUCCH 2) in which the frequency resource is increased by N times for a Sequence modulation-based PUCCH (PUCCH 1) generated based on a sequence of length L
- PUCCH 2 a PUCCH
- the UE sets UCI in a specific symbol of the PUCCH 2 as follows.
- N phase rotation methods may be defined as one of the following.
- the specific sequence of length L may be a CAZAC sequence.
- the base station transmits information on the length of the (unit) sequence (for example, L) and the number of repetitions (for example, N) of the (unit) sequence for PUCCH 2 configuration to a higher layer signal such as RRC signaling or dynamic control information (DCI).
- the UE may be informed through a dynamic control signal (of L1 / L2 level) of.
- the above-described operation may be applied to the case where the UE extends frequency resources for RS as well as UCI, and in this case, a separate modulation symbol may not be multiplied in the sequence.
- the UE transmits data modulation symbols by utilizing twice (frequency) resources as shown in FIG. 17.
- the UE according to the aforementioned 3-1 PUCCH transmission / reception method, the UE generates two sequences of length 24 by applying two different phase rotation methods in a form in which a CAZAC sequence having a length of 12 is repeated twice. for the two sequences by multiplying the two data modulation symbol of d m (0) and d m (1), respectively can be transmitted.
- Option 2 is applied in (2) of the 3-1 PUCCH transmission / reception method
- FIG. 18 is a diagram briefly illustrating an example of a PUCCH design method applied to a 3-1 PUCCH transmission / reception method of the present invention.
- the frequency resource region where d m (0) is transmitted and the frequency resource region where d m (1) is transmitted are the same.
- time axis resources through which d m (0) is transmitted and time axis resources through which d m (1) are transmitted through phase rotation may be transmitted from different Interlace resources (or time axis Comb resources).
- the UE first forms a Comb resource structure (or Interlaced resource structure) on the time axis by repeating the sequence on the frequency axis, and then divides it into different Comb resources on the time axis by applying different phase rotations to the repeating sequence.
- a plurality of sequences can be generated.
- the UE may multiply and transmit (independent) data modulation symbols for each sequence in the plurality of sequences.
- the UE configures the PUCCH as described above, even if the amount of resources (frequency axis) is N times, it becomes a form of repeatedly transmitting a specific unit sequence (in the frequency axis) so that the number of CS resources for the sequence (regardless of the amount of frequency axis resources) CDM for as many PUCCH resources may be supported. (I.e., CDM-based multiplexing capacity is always maintained irrespective of the amount of frequency resources.) Also, when the (frequency axis) resource amount is N times, the number of sequences transmitted on the same frequency resource is increased to N, so that the transmittable UCI payload size is also (frequency axis). N times increase in proportion to the amount of resources. In addition, the phase rotation method between the N sequences is divided, so that the N sequences are transmitted to different Comb resources on the time axis, thereby maintaining almost the same PAPR characteristics as before the N times the amount of resources.
- the aforementioned 3-1 PUCCH transmission / reception method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
- the UE may transmit UCI in a specific symbol of the PUCCH 2 as follows. .
- N phase rotation method (n) to generate N sequences (SEQ0, SEQ1, ..., SEQN-1) having a length of N * LN EW .
- the N phase rotation method may be defined as one of the following.
- j means a square root of -1 and floor means a floor function.
- u 0 may be determined in a predetermined manner or set by the base station.
- the specific sequence having the length L NEW may be a CAZAC sequence.
- the base station transmits information about the length of the (unit) sequence (for example, L or L NEW ) and the number of repetitions (for example, N) of the (unit) sequence for PUCCH 2 configuration to a higher layer signal such as RRC signaling or DCI ( The UE may be informed through a dynamic control signal (of L1 / L2 level) such as dynamic control information).
- the above-described operation may be applied to the case where the UE extends frequency resources for RS as well as UCI, and in this case, a separate modulation symbol may not be multiplied in the sequence.
- the UE transmits data modulation symbols by utilizing twice (frequency) resources as shown in FIG. 17.
- the phase rotation method two sequences of length 12 can be generated.
- the UE may multiply two data modulation symbols d m (0) and d m (1) by the two sequences, and then may transmit the signals alternately on the frequency axis.
- Option 2 is applied in (2) of the 3-2 PUCCH transmission / reception method
- FIG. 19 is a diagram briefly illustrating an example of a PUCCH design method applied to a 3-2 PUCCH transmission / reception method of the present invention.
- a sequence in a repeating transmission unit is FDM. Accordingly, when the same frequency resource is assumed for the 3-2 PUCCH transmission and reception method and the 3-1 PUCCH transmission and reception method, the length of a sequence is shorter than that of the 3-1 PUCCH transmission and reception method in the 3-2 PUCCH transmission and reception method. The number of PUCCH resources available for CDM can be reduced.
- the 3-2 PUCCH transmission / reception method may have an advantage that power spectral density (PSD) is evenly distributed on the frequency axis because different UCI transmission sequences are separated from the frequency axis compared to the 3-1 PUCCH transmission / reception method.
- PSD power spectral density
- the aforementioned 3-2 PUCCH transmission / reception method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
- a sequence modulation-based PUCCH may be set to the UE in a resource region composed of M symbols and L subcarriers, and the number of symbols actually transmitted on the PUCCH may be smaller than M.
- the UE increases the frequency axis resource for each symbol (or for specific symbols) in the PUCCH by N times according to one or more of the following rules, and the 3-1 PUCCH described above for the N times increased frequency axis resource.
- UCI (or RS) transmission signal may be configured according to the transmission / reception method (or 3-2 PUCCH transmission / reception method).
- the UE may apply a new sequence of increased length without following the above-described 3-1 PUCCH transmission / reception method or 3-2 PUCCH transmission / reception method. .
- a sequence modulation-based PUCCH is configured to transmit a signal in the form of [UCI RS UCI UCI RS UCI] for 7 symbols for each slot for 2 slots, such as PUCCH format 2 in an LTE system. .
- the transmittable UCI payload size is also reduced by half.
- the UE may expand frequency axis resources when the number of symbols is reduced. For example, when the number of PUCCH transmission symbols is reduced from 14 to 7 in the above example, the UE may double the amount of frequency resources per symbol in the PUCCH. At this time, in order to maintain the CDM based multiplexing capacity and maintain the low PAPR characteristic, the UE performs PUCCH in which the frequency resource amount is doubled according to the operation of the above-described 3-1 PUCCH transmission / reception method (or 3-2 PUCCH transmission / reception method). You can configure the transmission signal of my UCI (or RS).
- the aforementioned 3-3 PUCCH transmission / reception method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
- the UCI transmission region in the PUCCH is divided into M transmission units (with a frequency axis length of L) on the frequency axis, and UCI is repeatedly mapped M times for the M transmission units and then the frequency axis for the M transmission units. It is assumed that Length-M orthogonal cover code (OCC) is applied and transmitted.
- OCC Length-M orthogonal cover code
- the UE may apply one of the following methods.
- a region for transmitting UCI in PUCCH is divided into M transmission units (length N * L) on the frequency axis, and UCI is repeatedly mapped M times for the M transmission units and then M transmission units
- the frequency axis Length-M OCC for may be applied and transmitted.
- an area for transmitting UCI in PUCCH is divided into N * M transmission units (length L) in the frequency axis, and independent UCI for each M transmission unit is repeatedly mapped M times for the M transmission units.
- the frequency axis Length-M OCC for the M transmission units may be applied and transmitted. Accordingly, all N independent UCIs can be transmitted.
- the UCI may be in the form of sequence or in the form of coded bits (or coded symbol).
- the frequency axis OCC may mean an OCC applied to a virtual frequency region of the DFT precoding stage (or step).
- a QPSK modulation symbol is transmitted for each resource element (RE) in a resource region including two symbols and 12 subcarriers in a PUCCH, and a length of 2 OCC is applied on a frequency axis.
- this section describes in detail how to maintain the frequency axis OCC length but increase the (frequency axis) length of the frequency axis transmission unit to which the OCC is applied when the scaling is applied as described above. .
- the frequency axis OCC length is maintained at 2, and the (frequency axis) length of the frequency axis transmission unit to which the OCC is applied is increased to 12 subcarriers.
- FIG. 20 is a diagram briefly illustrating an example of a PUCCH design method applied to a method 3-4 PUCCH transmission and reception according to the present invention.
- ⁇ OCC (0), OCC (1) ⁇ means OCC, and each value may be one of ⁇ +1 +1 ⁇ and ⁇ +1 -1 ⁇ as an example.
- the scaling PUCCH resource area For the length of the frequency axis OCC and the (frequency axis) length of the frequency axis transmission unit to which the OCC is applied can also be considered. (In this case, independent coded bits may be transmitted for each region to which the OCC is applied.)
- a UE transmits a QPSK modulation symbol for each resource element (RE) in a resource region composed of two symbols and 12 subcarriers in a PUCCH, and applies a length of 2 OCCs on a frequency axis, the UE is maximum.
- Coded bits of 2 (Modulated order) x 6 (frequency axis length of a transmission unit to which OCC is applied) x 2 (number of symbols) 24 bits can be transmitted.
- the UE has applied 1/2 scaling on the time axis and 2 times on the frequency axis for the resource region (ie, 1 symbol and 24 subcarriers).
- the frequency axis OCC length is maintained at 2
- the (frequency axis) length of the frequency axis transmission unit to which the OCC is applied may also be maintained at 6 subcarriers.
- FIG. 21 is a diagram illustrating another example of a PUCCH design method applied to a method 3-4 PUCCH transmission and reception according to the present invention.
- a PUCCH structure (eg, PUCCH format 2 similar structure of LTE) for transmitting a modulation symbol for UCI in a sequence (for example, by multiplying the sequence) or
- the amount of frequency resources constituting a single PUCCH resource for a PUCCH structure (a PUCCH format 4/5 similar structure of LTE) that transmits a coded bit (modulation symbol thereof) for UCI over a plurality of REs may be determined as follows.
- Alt 1 Specific UCI based on code rate (R) PUCCH The amount of frequency resources that make up PRB Can be determined
- K may be determined so that the UCI code rate calculated based on the number of UCI symbols N and the number of PRBs K allocated as the PUCCH resource is the maximum code rate without exceeding R. Accordingly, the K value may increase as PUCCH is configured with fewer symbols.
- the number of PRBs set to K (e.g. 1) based on a specific number of UCI symbols N (e.g. 10 or 12) (the UCI code rate is less than or equal to R)
- N e.g. 10 or 12
- the number of PRBs constituting the PUCCH may be set to a value larger than K.
- Alt 2 Specific UCI symbol Based on number (L) PUCCH The amount of frequency resources that make up PRB Can be determined.
- a PUCCH may be configured with a smaller number of PRBs as the number of UCI symbols N allocated as PUCCH resources is larger, and a PUCCH may be configured with a larger number of PRBs as the number of UCI symbols allocated as a PUCCH resource is smaller.
- the number of UCI symbols N allocated as PUCCH resources is greater than or equal to L (eg, 10 or 12)
- the number of PRBs constituting the PUCCH is set to K (eg 1), and the number of allocated UCI symbols N is less than L.
- PUCCH may be configured with a PRB greater than K.
- the frequency resource extension for the RS transmission symbol is a frequency for the UCI transmission symbol.
- the resource extension method may be used or a new RS sequence of a length corresponding to the extended frequency resource may be allocated.
- the application of the frequency domain (F-domain) OCC means that when the DFT is applied to the UCI signal, the OCC is applied to the virtual F-domain preceding the DFT, and the DFT is not applied to the UCI signal. If not, it may mean that the OCC is applied to the (real) F-domain in front of the IFFT.
- 3-4 PUCCH transmission and reception method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
- the DM-RS in the PUCCH is a constant amplitude zero auto correlation (CAZAC) sequence
- the DM-RS sequence length may change in proportion to the frequency resource length allocated to the PUCCH.
- the UE may configure a certain number of (valid) CS (cyclic shift) resources as follows.
- the CS interval between (valid) CS resources in the N-length DM-RS sequence is L
- the CS interval between (valid) CS resources is set to L * M in the N * M length DM-RS sequence.
- the remaining CS resources other than the (valid) CS resources in the DM-RS sequence may be used for (sequence-based) UCI transmission purposes of other UEs
- the CS may mean a cyclic shift in the time (or frequency) axis.
- the (effective) CS resource for the PUSCH DM-RS may be a resource for multiplexing use between a plurality of PUSCH.
- CS resources eg, ⁇ 0, 3, 6, 9 ⁇
- CS resources may be selected as (effective) CS resources to support multiplexing of DM-RSs between different PUCCHs.
- the total CS resources are ⁇ 0, 1, 2,... , 23 ⁇ but the number of (effective) CS resources may still be set to four in terms of supporting multiplexing between the four UEs.
- four (valid) CS resources may be set as ⁇ 0, 6, 12, 18 ⁇ by equalizing CS resources among CS resources.
- Such a method may be characterized by changing the CS interval between (effective) CS resources in proportion to the amount of resources allocated to the PUCCH DM-RS.
- the (effective) CS resource may be set according to the CS interval set by the base station. For example, if the CS interval is still set to 3, the UE may set four CS resources (eg, ⁇ 0, 3, 6, 9 ⁇ ) as the (valid) CS resources to support. In this case, the CS resource of ⁇ 12, 15, 18, 21 ⁇ may also maintain orthogonality with other CS resources. Thus, the CS resources may be used for (sequence based) UCI transmission purpose of another UE. As an applicable example, another UE may transmit 2 bits UCI to the base station by selecting one of the ⁇ 12, 15, 18, 21 ⁇ and transmitting a signal.
- CS resources eg, ⁇ 0, 3, 6, 9 ⁇
- the CS resource of ⁇ 12, 15, 18, 21 ⁇ may also maintain orthogonality with other CS resources.
- the CS resources may be used for (sequence based) UCI transmission purpose of another UE.
- another UE may transmit 2 bits UCI to the base station by selecting one of the
- the aforementioned 3-5 PUCCH transmission and reception method may be combined and applied together unless they are mutually arranged with other proposals of the present invention.
- FIG. 22 is a flowchart briefly showing a PUCCH transmission method applicable to the present invention.
- the UE configures a PUCCH by repeating N resource groups in which N (N is a natural number greater than 1) data for each of one or more symbols N times in a frequency direction (S2210). Accordingly, the PUCCH may be configured as shown in FIGS. 11 and 12.
- the UE transmits the configured PUCCH through the one or more symbols by applying phase rotation having different slopes with respect to each of the N pieces of data (S2220).
- the N data may include M demodulation reference signals (DM-RS) and N-M uplink control information (where M is a natural number).
- DM-RS demodulation reference signals
- N-M uplink control information where M is a natural number
- the one demodulation reference signal may be transmitted through one or more symbols by applying a phase rotation having a slope of zero.
- each of the N pieces of data may be allocated to resource elements (REs) spaced apart at regular subcarrier intervals in the resource group for each of the one or more symbols, and may be FDM.
- REs resource elements
- configuring the PUCCH by repeating the resource group N times in the frequency direction may include configuring the PUCCH by repeating the resource group N times in a continuous resource in the frequency direction.
- the N pieces of data may include one demodulation reference signal (DM-RS) and one uplink control information.
- DM-RS demodulation reference signal
- the one uplink control information in the resource group for each of the one or more symbols may be allocated to the number of resources more than or equal to the one demodulation reference signal.
- the one or more symbols may be one or two symbols.
- the UE may configure and transmit the aforementioned short PUCCH as described above.
- the base station may receive the PUCCH through the following operation.
- the base station receives a PUCCH configured by repeating N resource groups in which N (N is a natural number greater than 1) data for FDM (Frequency Division Multiplexing) for each of the one or more symbols through one or more symbols. do. Thereafter, the base station may decode the N data received through the one or more symbols by applying a phase rotation having a different slope to each of the N data.
- N is a natural number greater than 1
- FDM Frequency Division Multiplexing
- the decoding of the N pieces of data received through the at least one symbol is performed by obtaining the M demodulation reference signals and applying the M demodulation reference signals and the NM uplink control information to each other. It may include all of obtaining the NM uplink control information based on a phase rotation having a different slope.
- examples of the proposed scheme described above may also be regarded as a kind of proposed schemes as they may be included as one of the implementation methods of the present invention.
- the above-described proposed schemes may be independently implemented, some proposed schemes may be implemented in a combination (or merge) form.
- Information on whether the proposed methods are applied may be defined so that the base station informs the terminal through a predefined signal (eg, a physical layer signal or a higher layer signal). have.
- FIG. 23 is a diagram illustrating a configuration of a terminal and a base station in which the proposed embodiment can be implemented.
- the terminal and the base station illustrated in FIG. 23 operate to implement embodiments of the physical uplink control channel transmission and reception method between the terminal and the base station described above.
- a UE (UE) 1 may operate as a transmitting end in uplink and a receiving end in downlink.
- the base station eNB or gNB 100 may operate as a receiver in uplink and as a transmitter in downlink.
- the terminal and the base station may include transmitters 10 and 110 and receivers 20 and 120, respectively, to control transmission and reception of information, data and / or messages.
- the antenna may include antennas 30 and 130 for transmitting and receiving messages.
- the terminal and the base station may each include a processor (Processor 40, 140) for performing the above-described embodiments of the present invention and a memory (50, 150) that can temporarily or continuously store the processing of the processor, respectively. Can be.
- a processor Processor 40, 140
- a memory 50, 150
- the terminal 1 configured as described above is a PUCCH by repeating N times in a frequency direction a resource group in which N (N is a natural number greater than 1) data is FDM (Frequency Division Multiplexing) for each of one or more symbols through the processor 40. Configure Subsequently, the terminal 1 transmits the configured PUCCH through the at least one symbol by applying a phase rotation having a different slope to each of the N pieces of data through the transmitter 10.
- the base station 100 uses the receiver 120 through one or more symbols for the frequency group in which N (N is a natural number greater than 1) data group for each of the one or more symbols is frequency division multiplexing (FDM).
- N is a natural number greater than 1
- FDM frequency division multiplexing
- Receive PUCCH configured repeatedly N times in the direction.
- the base station 100 decodes the N pieces of data received through the one or more symbols by applying a phase rotation having a different slope to each of the N pieces of data through the processor 140. .
- the transmitter and the receiver included in the terminal and the base station include a packet modulation and demodulation function, a high speed packet channel coding function, an orthogonal frequency division multiple access (OFDMA) packet scheduling, and a time division duplex (TDD) for data transmission. Packet scheduling and / or channel multiplexing may be performed.
- the terminal and the base station of FIG. 23 may further include a low power radio frequency (RF) / intermediate frequency (IF) unit.
- RF radio frequency
- IF intermediate frequency
- the terminal is a personal digital assistant (PDA), a cellular phone, a personal communication service (PCS) phone, a GSM (Global System for Mobile) phone, a WCDMA (Wideband CDMA) phone, an MBS.
- PDA personal digital assistant
- PCS personal communication service
- GSM Global System for Mobile
- WCDMA Wideband CDMA
- MBS Multi Mode-Multi Band
- a smart phone is a terminal that combines the advantages of a mobile communication terminal and a personal portable terminal, and may mean a terminal incorporating data communication functions such as schedule management, fax transmission and reception, which are functions of a personal mobile terminal, in a mobile communication terminal.
- a multimode multiband terminal can be equipped with a multi-modem chip to operate in both portable Internet systems and other mobile communication systems (e.g., code division multiple access (CDMA) 2000 systems, wideband CDMA (WCDMA) systems, etc.). Speak the terminal.
- CDMA code division multiple access
- WCDMA wideband CDMA
- Embodiments of the invention may be implemented through various means.
- embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
- a method according to embodiments of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), Field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors and the like can be implemented.
- ASICs application specific integrated circuits
- DSPs digital signal processors
- DSPDs digital signal processing devices
- PLDs programmable logic devices
- FPGAs Field programmable gate arrays
- processors controllers, microcontrollers, microprocessors and the like can be implemented.
- the method according to the embodiments of the present invention may be implemented in the form of a module, procedure, or function that performs the functions or operations described above.
- software code may be stored in memory units 50 and 150 and driven by processors 40 and 140.
- the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
- Embodiments of the present invention can be applied to various wireless access systems.
- various radio access systems include 3rd Generation Partnership Project (3GPP) or 3GPP2 systems.
- 3GPP 3rd Generation Partnership Project
- Embodiments of the present invention can be applied not only to the various wireless access systems, but also to all technical fields to which the various wireless access systems are applied.
- the proposed method can be applied to mmWave communication system using ultra high frequency band.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 발명에서는 무선 통신 시스템에서 단말과 기지국간 물리 상향링크 제어 채널의 송수신 방법 및 이를 지원하는 장치를 개시한다. 보다 구체적으로, 본 발명에서는 PAPR (Peak-to-Average Power Ratio)를 완화할 수 있는 단말과 기지국 간 물리 상향링크 제어 채널 (Physical Uplink Control Channel; PUCCH)의 송수신 방법을 개시한다.
Description
이하의 설명은 무선 통신 시스템에 대한 것으로, 다양한 뉴머롤로지 (Numerology)가 적용 가능한 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 (Physical Uplink Control Channel; PUCCH)의 송수신 방법 및 이를 지원하는 장치에 대한 것이다.
보다 구체적으로, 이하의 설명은 PAPR (Peak-to-Average Power Ratio)를 완화할 수 있는 단말과 기지국 간 물리 상향링크 제어 채널 (Physical Uplink Control Channel; PUCCH)의 송수신 방법에 대한 설명을 포함한다.
무선 접속 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 접속 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
또한, 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT (radio access technology) 에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 MTC (Machine Type Communications) 역시 차세대 통신에서 고려되고 있다. 뿐만 아니라 신뢰성 (reliability) 및 지연(latency) 에 민감한 서비스/UE 를 고려한 통신 시스템 디자인이 고려되고 있다.
이와 같이 향상된 모바일 브로드밴드 통신, 매시브 MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있다.
본 발명의 목적은 새로이 제안되는 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 (Physical Uplink Control Channel; PUCCH)의 송수신하는 방법을 제공하는 것이다.
특히, 본 발명은 PAPR (Peak-to-Average Power Ratio)를 완화할 수 있는 단말과 기지국 간 물리 상향링크 제어 채널 (Physical Uplink Control Channel; PUCCH)의 송수신 방법을 제공하는 것을 목적으로 한다.
본 발명에서 이루고자 하는 기술적 목적들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 발명의 실시 예들로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.
본 발명은 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널을 송수신하는 방법 및 장치들을 제공한다.
본 발명의 일 양태로서, 무선 통신 시스템에서 단말이 기지국으로 물리 상향링크 제어 채널 (Physical Uplink Control Channel; PUCCH)를 전송하는 방법에 있어서, 하나 이상의 심볼 각각에 대해 N개의(N은 1보다 큰 자연수) 데이터가 FDM(Frequency Division Multiplexing)되는 자원 그룹을 주파수 방향으로 N 번 반복하여 PUCCH를 구성; 및 상기 N 개의 데이터 각각에 대해 서로 상이한 기울기를 갖는 위상 회전 (phase rotation)을 적용하여 상기 하나 이상의 심볼을 통해 상기 구성된 PUCCH를 전송;하는 것을 포함하는, 단말의 물리 상향링크 제어 채널 전송 방법을 제안한다.
본 발명의 다른 양태로서, 무선 통신 시스템에서 기지국으로 물리 상향링크 제어 채널 (Physical Uplink Control Channel; PUCCH)를 전송하는 단말에 있어서, 송신부; 및 상기 송신부와 연결되어 동작하는 프로세서를 포함하되, 상기 프로세서는, 하나 이상의 심볼 각각에 대해 N개의(N은 1보다 큰 자연수) 데이터가 FDM(Frequency Division Multiplexing)되는 자원 그룹을 주파수 방향으로 N 번 반복하여 PUCCH를 구성; 및 상기 N 개의 데이터 각각에 대해 서로 상이한 기울기를 갖는 위상 회전 (phase rotation)을 적용하여 상기 하나 이상의 심볼을 통해 상기 구성된 PUCCH를 전송;하도록 구성되는, 단말을 제안한다.
이때, 상기 N 개의 데이터는, M (M은 자연수)개의 복조 참조 신호 (Demodulation Reference Signal; DM-RS) 및 N-M 개의 상향링크 제어 정보를 포함할 수 있다.
이 경우, 상기 M 값이 1인 경우, 상기 1개의 복조 참조 신호는 0(zero)의 기울기를 갖는 위상 회전이 적용되어 상기 하나 이상의 심볼을 통해 전송될 수 있다.
또한, 상기 N 개의 데이터 각각은, 상기 하나 이상의 심볼 각각에 대해 상기 자원 그룹 내 일정한 부반송파 간격으로 이격된 자원 요소 (resource element; RE)에 할당되어 서로 FDM될 수 있다.
또한, 상기 자원 그룹을 주파수 방향으로 N 번 반복하여 PUCCH를 구성하는 것은, 상기 자원 그룹을 주파수 방향으로 연속된 자원에 N 번 반복하여 PUCCH를 구성하는 것을 포함할 수 있다.
또한, 상기 N이 2인 경우, 상기 N개의 데이터는, 1 개의 복조 참조 신호 (Demodulation Reference Signal; DM-RS) 및 1 개의 상향링크 제어 정보를 포함하고, 상기 하나 이상의 심볼 각각에 대해 상기 자원 그룹 내 상기 1개의 상향링크 제어 정보는 상기 1개의 복조 참조 신호보다 많거나 같은 개수의 자원에 할당될 수 있다.
또한, 상기 하나 이상의 심볼로는 1개 또는 2개 심볼이 적용될 수 있다.
본 발명의 또 다른 양태로서, 무선 통신 시스템에서 기지국이 단말로부터 물리 상향링크 제어 채널 (Physical Uplink Control Channel; PUCCH)를 수신하는 방법에 있어서, 하나 이상의 심볼을 통해 상기 하나 이상의 심볼 각각에 대해 N개의(N은 1보다 큰 자연수) 데이터가 FDM(Frequency Division Multiplexing)되는 자원 그룹이 주파수 방향으로 N 번 반복되어 구성되는 PUCCH를 수신; 및 상기 N 개의 데이터 각각에 대해 서로 상이한 기울기를 갖는 위상 회전 (phase rotation)을 적용하여 상기 하나 이상의 심볼을 통해 수신된 상기 N 개의 데이터를 디코딩;하는 것을 포함하는, 기지국의 물리 상향링크 제어 채널 수신 방법을 제안한다.
본 발명의 또 다른 양태로서, 무선 통신 시스템에서 단말로부터 물리 상향링크 제어 채널 (Physical Uplink Control Channel; PUCCH)를 수신하는 기지국에 있어서, 수신부; 및 상기 수신부와 연결되어 동작하는 프로세서를 포함하되, 상기 프로세서는, 하나 이상의 심볼을 통해 상기 하나 이상의 심볼 각각에 대해 N개의(N은 1보다 큰 자연수) 데이터가 FDM(Frequency Division Multiplexing)되는 자원 그룹이 주파수 방향으로 N 번 반복되어 구성되는 PUCCH를 수신; 및 상기 N 개의 데이터 각각에 대해 서로 상이한 기울기를 갖는 위상 회전 (phase rotation)을 적용하여 상기 하나 이상의 심볼을 통해 수신된 상기 N 개의 데이터를 디코딩;하도록 구성되는, 기지국을 제안한다.
여기서, 상기 기지국이 상기 하나 이상의 심볼을 통해 수신된 상기 N 개의 데이터를 디코딩하는 것은, 상기 기지국이 상기 M (M은 자연수)개의 복조 참조 신호를 획득하고, 상기 M개의 복조 참조 신호 및 상기 N-M 개의 상향링크 제어 정보 각각에 적용된 서로 상이한 기울기를 갖는 위상 회전(phase rotation)에 기반하여 상기 N-M 개의 상향링크 제어 정보를 획득하는 것을 포함할 수 있다.
상술한 본 발명의 양태들은 본 발명의 바람직한 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 발명의 실시 예들에 따르면 다음과 같은 효과가 있다.
본 발명에 따르면, 단말은 보다 완화된 PAPR를 갖는 물리 상향링크 제어 채널을 기지국으로 전송할 수 있고, 이에 대응하여 기지국은 보다 완화된 PAPR를 갖는 물리 상향링크 제어 채널을 상기 단말로부터 수신할 수 있다.
본 발명의 실시 예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 발명의 실시 예들에 대한 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. 즉, 본 발명을 실시함에 따른 의도하지 않은 효과들 역시 본 발명의 실시 예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.
이하에 첨부되는 도면들은 본 발명에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 발명에 대한 실시 예들을 제공한다. 다만, 본 발명의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시 예로 구성될 수 있다. 각 도면에서의 참조 번호(reference numerals)들은 구조적 구성요소(structural elements)를 의미한다.
도 1은 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
도 2는 무선 프레임의 구조의 일례를 나타내는 도면이다.
도 3는 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 4는 상향링크 서브 프레임의 구조의 일례를 나타내는 도면이다.
도 5는 하향링크 서브 프레임의 구조의 일례를 나타내는 도면이다.
도 6은 본 발명에 적용 가능한 자립적 서브프레임 구조 (Self-contained subframe structure)를 나타낸 도면이다.
도 7 및 도 8은 TXRU와 안테나 요소 (element)의 대표적인 연결 방식을 나타낸 도면이다.
도 9는 본 발명의 일 예에 따른 TXRU 및 물리적 안테나 관점에서의 하이브리드 빔포밍 구조를 간단히 나타낸 도면이다.
도 10은 본 발명의 일 예에 따른 하향링크 (Downlink, DL) 전송 과정에서 동기 신호 (Synchronization signal)와 시스템 정보 (System information)에 대한 빔 스위핑 (Beam sweeping) 동작을 간단히 나타낸 도면이다.
도 11은 본 발명에 따른 제1-1 PUCCH 송수신 방법에 적용되는 PUICCH 설계 방법을 간단히 나타낸 도면이다.
도 12는 본 발명에 따른 제1-2 PUCCH 송수신 방법에 적용되는 PUCCH 설계 방법을 간단히 나타낸 도면이다.
도 13은 본 발명에 따른 제1-3 PUCCH 송수신 방법에 적용되는 PUCCH 설계 방법을 간단히 나타낸 도면이다.
도 14는 RS/UCI 비율 1:1인 Short PUCCH (Type A)와 RS/UCI 비율이 1:3인 Short PUCCH (Type B)를 간단해 나타낸 도면이다.
도 15는 PUCCH 자원의 길이 (N)가 24이고 상기 PUCCH 자원은 길이-6 시퀀스를 4개 교차하여 구성되는 경우를 간단히 나타낸 도면이다.
도 16은 4개 시퀀스가 교차된 구조에서 2개의 시퀀스만 활용하는 PUCCH 자원에 있어 RS와 UCI의 변조 심볼이 전송되는 구성을 간단히 나타낸 도면이다.
도 17은 종래 LTE 시스템의 PUCCH Format 2의 한 심볼 내 UCI가 전송되는 과정을 간단히 나타낸 도면이다.
도 18은 본 발명의 제3-1 PUCCH 송수신 방법에 적용되는 PUCCH 설계 방법의 일 예를 간단히 나타낸 도면이다.
도 19는 본 발명의 제3-2 PUCCH 송수신 방법에 적용되는 PUCCH 설계 방법의 일 예를 간단히 나타낸 도면이다.
도 20은 본 발명의 제3-4 PUCCH 송수신 방법에 적용되는 PUCCH 설계 방법의 일 예를 간단히 나타낸 도면이다.
도 21은 본 발명의 제3-4 PUCCH 송수신 방법에 적용되는 PUCCH 설계 방법의 다른 예를 간단히 나타낸 도면이다.
도 22는 본 발명에 적용 가능한 PUCCH 전송 방법을 간단히 나타낸 흐름도이다.
도 23은 제안하는 실시 예들이 구현될 수 있는 단말 및 기지국의 구성을 도시하는 도면이다.
이하의 실시 예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성할 수도 있다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 본 발명의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 발명을 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.
본 명세서에서 본 발명의 실시예들은 기지국과 이동국 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 이동국과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 이동국과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국(fixed station), Node B, eNode B(eNB), gNode B(gNB), 발전된 기지국(ABS: Advanced Base Station) 또는 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
또한, 본 발명의 실시예들에서 단말(Terminal)은 사용자 기기(UE: User Equipment), 이동국(MS: Mobile Station), 가입자 단말(SS: Subscriber Station), 이동 가입자 단말(MSS: Mobile Subscriber Station), 이동 단말(Mobile Terminal) 또는 발전된 이동단말(AMS: Advanced Mobile Station) 등의 용어로 대체될 수 있다.
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및/또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및/또는 이동 노드를 의미한다. 따라서, 상향링크에서는 이동국이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크에서는 이동국이 수신단이 되고, 기지국이 송신단이 될 수 있다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP(3rd Generation Partnership Project) 시스템, 3GPP LTE 시스템, 3GPP 5G NR 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있으며, 특히, 본 발명의 실시예들은 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321, 3GPP TS 36.331, 3GPP TS 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 및 3GPP TS 38.331 문서들에 의해 뒷받침 될 수 있다. 즉, 본 발명의 실시예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.
또한, 본 발명의 실시예들에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
예를 들어, 전송기회구간(TxOP: Transmission Opportunity Period)라는 용어는 전송구간, 전송 버스트(Tx burst) 또는 RRP(Reserved Resource Period)라는 용어와 동일한 의미로 사용될 수 있다. 또한, LBT(Listen Before Talk) 과정은 채널 상태가 유휴인지 여부를 판단하기 위한 캐리어 센싱 과정, CCA(Clear Channel Accessment), 채널 접속 과정(CAP: Channel Access Procedure)과 동일한 목적으로 수행될 수 있다.
이하에서는 본 발명의 실시예들이 사용될 수 있는 무선 접속 시스템의 일례로 3GPP LTE/LTE-A 시스템에 대해서 설명한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 적용될 수 있다.
CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다.
UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced) 시스템은 3GPP LTE 시스템이 개량된 시스템이다. 본 발명의 기술적 특징에 대한 설명을 명확하게 하기 위해, 본 발명의 실시예들을 3GPP LTE/LTE-A 시스템을 위주로 기술하지만 IEEE 802.16e/m 시스템 등에도 적용될 수 있다.
1. 3GPP
LTE
/
LTE
_A 시스템
1.1 물리 채널들 및 이를 이용한 신호 송수신 방법
무선 접속 시스템에서 단말은 하향링크(DL: Downlink)를 통해 기지국으로부터 정보를 수신하고, 상향링크(UL: Uplink)를 통해 기지국으로 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 일반 데이터 정보 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 본 발명의 실시예들에서 사용될 수 있는 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 S11 단계에서 기지국과 동기를 맞추는 등의 초기 셀 탐색 (Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 주동기 채널 (P-SCH: Primary Synchronization Channel) 및 부동기 채널 (S-SCH: Secondary Synchronization Channel)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득한다.
그 후, 단말은 기지국으로부터 물리방송채널 (PBCH: Physical Broadcast Channel) 신호를 수신하여 셀 내 방송 정보를 획득할 수 있다.
한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호 (DL RS: Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 S12 단계에서 물리하향링크제어채널 (PDCCH: Physical Downlink Control Channel) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널 (PDSCH: Physical Downlink Control Channel)을 수신하여 조금 더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 이후 단계 S13 내지 단계 S16과 같은 임의 접속 과정 (Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리임의접속채널 (PRACH: Physical Random Access Channel)을 통해 프리앰블 (preamble)을 전송하고(S13), 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S14). 경쟁 기반 임의 접속의 경우, 단말은 추가적인 물리임의접속채널 신호의 전송(S15) 및 물리하향링크제어채널 신호 및 이에 대응하는 물리하향링크공유 채널 신호의 수신(S16)과 같은 충돌해결절차 (Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 물리하향링크제어채널 신호 및/또는 물리하향링크공유채널 신호의 수신(S17) 및 물리상향링크공유채널 (PUSCH: Physical Uplink Shared Channel) 신호 및/또는 물리상향링크제어채널 (PUCCH: Physical Uplink Control Channel) 신호의 전송(S18)을 수행할 수 있다.
단말이 기지국으로 전송하는 제어정보를 통칭하여 상향링크 제어정보(UCI: Uplink Control Information)라고 지칭한다. UCI는 HARQ-ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR (Scheduling Request), CQI (Channel Quality Indication), PMI (Precoding Matrix Indication), RI (Rank Indication) 정보 등을 포함한다.
LTE 시스템에서 UCI는 일반적으로 PUCCH를 통해 주기적으로 전송되지만, 제어정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
1.2. 자원 구조
도 2는 본 발명의 실시예들에서 사용되는 무선 프레임의 구조를 나타낸다.
도 2(a)는 타입 1 프레임 구조(frame structure type 1)를 나타낸다. 타입 1 프레임 구조는 전이중(full duplex) FDD(Frequency Division Duplex) 시스템과 반이중(half duplex) FDD 시스템 모두에 적용될 수 있다.
하나의 무선 프레임(radio frame)은 Tf
= 307200*Ts
= 10ms의 길이를 가지고, Tslot = 15360*Ts = 0.5ms의 균등한 길이를 가지며 0부터 19의 인덱스가 부여된 20개의 슬롯으로 구성된다. 하나의 서브프레임은 2개의 연속된 슬롯으로 정의되며, i 번째 서브프레임은 2i 와 2i+1에 해당하는 슬롯으로 구성된다. 즉, 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성된다. 하나의 서브프레임을 전송하는 데 걸리는 시간을 TTI(transmission time interval)이라 한다. 여기서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼 또는 SC-FDMA 심볼을 포함하고, 주파수 영역에서 복수의 자원블록(Resource Block)을 포함한다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함한다. 3GPP LTE는 하향링크에서 OFDMA를 사용하므로 OFDM 심볼은 하나의 심볼 구간(symbol period)을 표현하기 위한 것이다. OFDM 심볼은 하나의 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. 자원 블록(resource block)은 자원 할당 단위이고, 하나의 슬롯에서 복수의 연속적인 부반송파(subcarrier)를 포함한다.
전이중 FDD 시스템에서는 각 10ms 구간 동안 10개의 서브프레임은 하향링크 전송과 상향링크 전송을 위해 동시에 이용될 수 있다. 이때, 상향링크와 하향링크 전송은 주파수 영역에서 분리된다. 반면, 반이중 FDD 시스템의 경우 단말은 전송과 수신을 동시에 할 수 없다.
상술한 무선 프레임의 구조는 하나의 예시에 불과하며, 무선 프레임에 포함되는 서브 프레임의 수 또는 서브 프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 2(b)는 타입 2 프레임 구조(frame structure type 2)를 나타낸다. 타입 2 프레임 구조는 TDD 시스템에 적용된다. 하나의 무선 프레임(radio frame)은 Tf
= 307200*Ts = 10ms의 길이를 가지며, 153600*Ts = 5ms 길이를 가지는 2개의 하프프레임(half-frame)으로 구성된다. 각 하프프레임은 30720*Ts = 1ms의 길이를 가지는 5개의 서브프레임으로 구성된다. i 번째 서브프레임은 2i 와 2i
+1에 해당하는 각 Tslot = 15360*Ts = 0.5ms의 길이를 가지는 2개의 슬롯으로 구성된다. 여기에서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다.
타입 2 프레임에는 DwPTS(Downlink Pilot Time Slot), 보호구간(GP: Guard Period), UpPTS(Uplink Pilot Time Slot)인 3가지의 필드로 구성되는 특별 서브프레임을 포함한다. 여기서, DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
다음 표 1은 특별 프레임의 구성(DwPTS/GP/UpPTS의 길이)을 나타낸다.
도 3은 본 발명의 실시예들에서 사용될 수 있는 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 3을 참조하면, 하나의 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함한다. 여기서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원 블록은 주파수 영역에서 12개의 부 반송파를 포함하는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
자원 그리드 상에서 각 요소(element)를 자원 요소(resource element)하고, 하나의 자원 블록은 12 × 7 개의 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원 블록들의 수 NDL은 하향링크 전송 대역폭(bandwidth)에 종속한다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 4는 본 발명의 실시예들에서 사용될 수 있는 상향링크 서브 프레임의 구조를 나타낸다.
도 4를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나눌 수 있다. 제어 영역에는 상향링크 제어 정보를 나르는 PUCCH가 할당된다. 데이터 영역은 사용자 데이터를 나르는 PUSCH가 할당된다. 단일 반송파 특성을 유지하기 위해 하나의 단말은 PUCCH와 PUSCH를 동시에 전송하지 않는다. 하나의 단말에 대한 PUCCH에는 서브 프레임 내에 RB 쌍이 할당된다. RB 쌍에 속하는 RB들은 2개의 슬롯들의 각각에서 서로 다른 부 반송파를 차지한다. 이러한 PUCCH에 할당된 RB 쌍은 슬롯 경계(slot boundary)에서 주파수 도약(frequency hopping)된다고 한다.
도 5는 본 발명의 실시예들에서 사용될 수 있는 하향링크 서브 프레임의 구조를 나타낸다.
도 5를 참조하면, 서브 프레임내의 첫번째 슬롯에서 OFDM 심볼 인덱스 0부터 최대 3개의 OFDM 심볼들이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH이 할당되는 데이터 영역(data region)이다. 3GPP LTE에서 사용되는 하향링크 제어 채널의 일례로 PCFICH(Physical Control Format Indicator Channel), PDCCH, PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다.
PCFICH는 서브 프레임의 첫 번째 OFDM 심볼에서 전송되고, 서브 프레임 내에 제어 채널들의 전송을 위하여 사용되는 OFDM 심볼들의 수(즉, 제어 영역의 크기)에 관한 정보를 나른다. PHICH는 상향 링크에 대한 응답 채널이고, HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Negative-Acknowledgement) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보를 하향링크 제어정보(DCI: downlink control information)라고 한다. 하향링크 제어정보는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 또는 임의의 단말 그룹에 대한 상향링크 전송(Tx) 파워 제어 명령을 포함한다.
1.3. CSI 피드백
3GPP LTE 또는 LTE-A 시스템에서는, 사용자 기기(UE)가 채널 상태 정보(CSI)를 기지국(BS 또는 eNB)으로 보고하도록 정의되었다. 여기서, 채널 상태 정보(CSI)는 UE와 안테나 포트 사이에 형성되는 무선 채널(또는 링크)의 품질을 나타내는 정보를 통칭한다.
예를 들어, 상기 채널 상태 정보 (CSI)는 랭크 지시자(rank indicator, RI), 프리코딩 행렬 지시자(precoding matrix indicator, PMI), 채널 품질 지시자(channel quality indicator, CQI) 등을 포함할 수 있다.
여기서, RI는 해당 채널의 랭크(rank) 정보를 나타내며, 이는 UE가 동일 시간-주파수 자원을 통해 수신하는 스트림의 개수를 의미한다. 이 값은 채널의 롱 텀 페이딩(Long Term Fading)에 의해 종속되어 결정된다. 이어, 상기 RI는 PMI, CQI보다 보통 더 긴 주기로 상기 UE에 의해 BS로 피드백될 수 있다.
PMI는 채널 공간 특성을 반영한 값으로 SINR 등의 메트릭(metric)을 기준으로 UE가 선호하는 프리코딩 인덱스를 나타낸다.
CQI는 채널의 세기를 나타내는 값으로 일반적으로 BS가 PMI를 이용했을 때 얻을 수 있는 수신 SINR을 의미한다.
3GPP LTE 또는 LTE-A 시스템에서 기지국은 다수개의 CSI 프로세스를 UE에게 설정해 주고, 각 프로세스에 대한 CSI를 UE로부터 보고 받을 수 있다. 여기서 CSI 프로세스는 기지국으로부터의 신호 품질 특정을 위한 CSI-RS와 간섭 측정을 위한 CSI 간섭 측정 (CSI-interference measurement, CSI-IM) 자원으로 구성된다.
1.4.
RRM
측정
LTE 시스템에서는 전력 제어 (Power control), 스케줄링 (Scheduling), 셀 검색 (Cell search), 셀 재선택 (Cell reselection), 핸드오버 (Handover), 라디오 링크 또는 연결 모니터링 (Radio link or Connection monitoring), 연결 수립/재수립 (Connection establish/re-establish) 등을 포함하는 RRM (Radio Resource Management) 동작을 지원한다. 이때, 서빙 셀은 단말에게 RRM 동작을 수행하기 위한 측정 값인 RRM 측정 (measurement) 정보를 요청할 수 있다. 대표적인 정보로, LTE 시스템에서 단말은 각 셀에 대한 셀 검색 (Cell search) 정보, RSRP (reference signal received power), RSRQ (reference signal received quality) 등의 정보를 측정하여 보고할 수 있다. 구체적으로, LTE 시스템에서 단말은 서빙 셀로부터 RRM 측정을 위한 상위 계층 신호로 'measConfig'를 전달 받고, 상기 단말은 상기 'measConfig'의 정보에 따라 RSRP 또는 RSRQ를 측정할 수 있다.
여기서 LTE 시스템에서 정의하는 RSRP, RSRQ, RSSI는 다음과 같이 정의될 수 있다.
먼저, RSRP는 고려되는 측정 주파수 대역 내 셀-특정 참조 신호를 전송하는 자원 요소들의 전력 분포(power contribution, [W] 단위)의 선형 평균으로 정의된다. (Reference signal received power (RSRP), is defined as the linear average over the power contributions (in [W]) of the resource elements that carry cell-specific reference signals within the considered measurement frequency bandwidth.) 일 예로, RSRP 결정을 위해 셀-특정 참조 신호 R0가 활용될 수 있다. (For RSRP determination the cell-specific reference signals R0 shall be used.) 만약 UE가 셀-특정 참조 신호 R1이 이용 가능하다고 검출하면, 상기 UE는 R1을 추가적으로 이용하여 RSRP를 결정할 수 있다. (If the UE can reliably detect that R1 is available it may use R1 in addition to R0 to determine RSRP.)
RSRP를 위한 참조 포인트는 UE의 안테나 커넥터가 될 수 있다. (The reference point for the RSRP shall be the antenna connector of the UE.)
만약 UE가 수신기 다이버시티를 이용하면, 보고되는 값은 개별적인 다이버시티 브랜치에 대응하는 RSRP보다 작으면 안 된다. (If receiver diversity is in use by the UE, the reported value shall not be lower than the corresponding RSRP of any of the individual diversity branches.)
이어, N이 E-UTRA 반송파 RSSI 측정 대역폭의 RB의 개수일 때, RSRQ는 E-UTRA 반송파 RSSI에 대한 RSRP의 비율로써, N*RSRP/(E-UTRA carrier RSSI)로 정의된다. (Reference Signal Received Quality (RSRQ) is defined as the ratio N*RSRP/(E-UTRA carrier RSSI), where N is the number of RB's of the E-UTRA carrier RSSI measurement bandwidth.) 상기 측정 값 내 분모 및 분자는 자원 블록의 동일한 세트에 의해 결정될 수 있다. (The measurements in the numerator and denominator shall be made over the same set of resource blocks.)
E-UTRA 반송파 RSSI는 공동-채널(co-channel) 서빙 및 비-서빙 셀, 인접 채널 간섭, 열 잡음 등을 포함하는 모든 소스로부터의 수신 신호에 대해, N 개의 자원 블록에 걸쳐, 측정 대역폭에서 안테나 포트 0 에 대한 참조 심볼을 포함하는 OFDM 심볼들만에서 단말에 의해 측정된 총 수신 전력([W] 단위)의 선형 평균을 포함한다. (E-UTRA Carrier Received Signal Strength Indicator (RSSI), comprises the linear average of the total received power (in [W]) observed only in OFDM symbols containing reference symbols for antenna port 0, in the measurement bandwidth, over N number of resource blocks by the UE from all sources, including co-channel serving and non-serving cells, adjacent channel interference, thermal noise etc.) 만약 상위 계층 시그널링이 RSRQ 측정을 위해 어떤 서브프레임들을 지시한 경우, 상기 지시된 서브프레임들 내 모든 OFDM 심볼들에 대해 RSSI가 측정된다. (If higher-layer signalling indicates certain subframes for performing RSRQ measurements, then RSSI is measured over all OFDM symbols in the indicated subframes.)
RSRQ를 위한 참조 포인트는 UE의 안테나 커넥터가 될 수 있다. (The reference point for the RSRQ shall be the antenna connector of the UE.)
만약, UE가 수신기 다이버시티를 이용하면, 보고되는 값은 개별적인 다이버시티 브랜치에 대응하는 RSRQ보다 작으면 안 된다. (If receiver diversity is in use by the UE, the reported value shall not be lower than the corresponding RSRQ of any of the individual diversity branches.)
이어, RSSI는 수신기 펄스 모양 필터에 의해 정의된 대역폭 내 열 잡음 및 수신기에서 생성된 잡음을 포함하는 수신된 광대역 전력으로 정의된다. (Received Signal Strength Indicator (RSSI) is defined as the received wide band power, including thermal noise and noise generated in the receiver, within the bandwidth defined by the receiver pulse shaping filter.)
측정을 위한 참조 포인트는 UE의 안테나 커넥터가 될 수 있다. (The reference point for the measurement shall be the antenna connector of the UE.)
만약, UE가 수신기 다이버시티를 이용하면, 보고되는 값은 개별적인 다이버시티 브랜치에 대응하는 UTRA 반송파 RSSI 보다 작으면 안 된다. (If receiver diversity is in use by the UE, the reported value shall not be lower than the corresponding UTRA carrier RSSI of any of the individual receive antenna branches.)
상기와 같은 정의에 따라, LTE 시스템에서 동작하는 단말은 주파수 간 측정 (Intra-frequency measurement)의 경우 SIB3에는 (system information block type 3)에서 전송되는 허용된 측정 대역폭 (Allowed measurement bandwidth) 관련 IE (information element)를 통해 지시되는 대역폭에서 RSRP를 측정할 수 있다. 또는, 주파수 내 측정 (Inter-frequency measurement)인 경우 상기 단말은 SIB5에서 전송되는 허용된 측정 대역폭을 통해 지시된 6, 15, 25, 50, 75, 100RB (resource block) 중 하나에 대응되는 대역폭에서 RSRP를 측정할 수 있다. 또는, 상기와 같은 IE가 없을 경우 상기 단말은 디폴트 동작으로써 전체 DL (downlink) 시스템의 주파수 대역에서 RSRP를 측정할 수 있다.
이때, 단말이 허용된 측정 대역폭에 대한 정보를 수신하는 경우, 상기 단말은 해당 값을 최대 측정 대역폭 (maximum measurement bandwidth)으로 생각하고 해당 값 이내에서 자유롭게 RSRP의 값을 측정할 수 있다. 다만, 서빙 셀이 WB-RSRQ로 정의되는 IE을 상기 단말에게 전송하고, 허용된 측정 대역폭을 50RB 이상으로 설정하면, 상기 단말은 전체 허용된 측정 대역폭에 대한 RSRP 값을 계산하여야 한다. 한편, 상기 단말은 RSSI 측정시 RSSI 대역폭의 정의에 따라 단말의 수신기가 갖는 주파수 대역을 이용해 RSSI를 측정한다.
2. 새로운 무선 접속 기술 (New Radio Access Technology) 시스템
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 무선 접속 기술 (radio access technology, RAT)에 비해 향상된 단말 광대역 (mobile broadband) 통신에 대한 필요성이 대두되었다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 (massive) MTC (Machine Type Communications) 역시 필요하게 되었다. 뿐만 아니라 신뢰성 (reliability) 및 지연 (latency) 에 민감한 서비스/UE 를 고려한 통신 시스템의 디자인이 제시되었다.
이와 같이 향상된 단말 광대역 통신 (enhanced mobile broadband communication), 매시브 MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 새로운 무선 접속 기술로써 새로운 무선 접속 기술 시스템이 제안되었다. 이하, 본 발명에서는 편의상 해당 기술을 New RAT 또는 NR (New Radio)이라 명명한다.
2.1.
뉴머롤로지들 (Numeriologies)
본 발명이 적용 가능한 NR 시스템에서는 하기 표와 같은 다양한 OFDM 뉴머롤로지를 지원한다. 이때, 반송파 대역폭 부분 (carrier bandwidth part)별 μ 및 순환 전치 (Cyclic prefix) 정보는 하향링크 (DL) 또는 상향링크 (UL) 별로 각각 시그널링될 수 있다. 일 예로, 하향링크 반송파 대역폭 부분 (downlink carrier bandwidth part)을 위한 μ 및 순환 전치 (Cyclic prefix) 정보는 상위 계층 시그널링 DL-BWP-mu 및 DL-MWP-cp를 통해 시그널링될 수 있다. 다른 예로, 상향링크 반송파 대역폭 부분 (uplink carrier bandwidth part)을 위한 μ 및 순환 전치 (Cyclic prefix) 정보는 상위 계층 시그널링 UL-BWP-mu 및 UL-MWP-cp를 통해 시그널링될 수 있다.
2.2. 프레임 구조
하향링크 및 상향링크 전송은 10ms 길이의 프레임으로 구성된다. 상기 프레임은 1ms 길이의 서브프레임이 10개 모여 구성될 수 있다. 이때, 각 서브프레임 별 연속하는 OFDM 심볼의 개수는 이다.
각 프레임은 2개의 동일한 크기를 갖는 하프-프레임(half frame)으로 구성될 수 있다. 이때, 각 하프-프레임은 각각 서브프레임 0 - 4 및 서브프레임 5- 9 로 구성될 수 있다.
부반송파 간격(subcarrier spacing) μ 에 대해, 슬롯은 하나의 서브프레임 내 오름차순으로 와 같이 넘버링되고, 하나의 프레임 내 오름차순으로 와 같이 넘버링될 수 있다. 이때, 하나의 슬롯내 연속하는 OFDM 심볼 개수 ()는 순환 전치에 따라 하기 표와 같이 결정될 수 있다. 하나의 서브프레임 내 시작 슬롯 ()은 동일한 서브프레임 내 시작 OFDM 심볼 () 과 시간 차원에서 정렬되어 있다 (aligned). 하기 표 3은 일반 순환 전치 (normal cyclic prefix)를 위한 슬롯별 / 프레임별/ 서브프레임별 OFDM 심볼의 개수를 나타내고, 표 4는 확장된 순환 전치 (extended cyclic prefix)를 위한 슬롯별 / 프레임벨/ 서브프레임별 OFDM 심볼의 개수를 나타낸다.
본 발명이 적용 가능한 NR 시스템에서는 상기와 같은 슬롯 구조로써 자립적 슬롯 구조 (Self-contained slot structure)가 적용될 수 있다.
도 6은 본 발명에 적용 가능한 자립적 슬롯 구조 (Self-contained slot structure)를 나타낸 도면이다.
도 6에서 빗금친 영역 (예: symbol index =0)은 하향링크 제어 (downlink control) 영역을 나타내고, 검정색 영역 (예: symbol index =13)은 상향링크 제어 (uplink control) 영역을 나타낸다. 이외 영역 (예: symbol index = 1 ~ 12)은 하향링크 데이터 전송을 위해 사용될 수도 있고, 상향링크 데이터 전송을 위해 사용될 수도 있다.
이러한 구조에 따라 기지국 및 UE는 한 개의 슬롯 내에서 DL 전송과 UL 전송을 순차적으로 진행할 수 있으며, 상기 하나의 슬롯 내에서 DL 데이터를 송수신하고 이에 대한 UL ACK/NACK도 송수신할 수 있다. 결과적으로 이러한 구조는 데이터 전송 에러 발생시에 데이터 재전송까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 지연을 최소화할 수 있다.
이와 같은 자립적 슬롯 구조에서 기지국과 UE가 송신 모드에서 수신모드로 전환 또는 수신모드에서 송신모드로 전환을 위해서는 일정 시간 길이의 타입 갭(time gap)이 필요하다. 이를 위하여 자립적 슬롯 구조에서 DL에서 UL로 전환되는 시점의 일부 OFDM 심볼은 가드 구간 (guard period, GP)로 설정될 수 있다.
앞서 상세한 설명에서는 자립적 슬롯 구조가 DL 제어 영역 및 UL 제어 영역을 모두 포함하는 경우를 설명하였으나, 상기 제어 영역들은 상기 자립적 슬롯 구조에 선택적으로 포함될 수 있다. 다시 말해, 본 발명에 따른 자립적 슬롯 구조는 도 6과 같이 DL 제어 영역 및 UL 제어 영역을 모두 포함하는 경우 뿐만 아니라 DL 제어 영역 또는 UL 제어 영역만을 포함하는 경우도 포함할 수 있다.
일 예로, 슬롯은 다양한 슬롯 포맷을 가질 수 있다. 이때, 각 슬롯의 OFDM 심볼은 하향링크 ('D'로 표기함), 플렉시블('X'로 표기함), 상향링크 ('U'로 표기함)로 분류될 수 있다.
따라서, 하향링크 슬롯에서 UE는 하향링크 전송이 'D' 및 'X' 심볼들에서만 발생한다고 가정할 수 있다. 이와 유사하게, 상향링크 슬롯에서 UE는 상향링크 전송이 'U' 및 'X' 심볼에서만 발생한다고 가정할 수 있다.
2.3. 아날로그 빔포밍 (Analog beamforming)
밀리미터 파 (Millimeter Wave, mmW)에서는 파장이 짧아 동일 면적에 다수개의 안테나 요소(element)의 설치가 가능하다. 즉, 30GHz 대역에서 파장은 1cm이므로, 5 * 5 cm의 패널(panel)에 0.5 lambda(파장) 간격으로 2-차원 (2-dimension) 배열을 하는 경우 총 100개의 안테나 요소를 설치할 수 있다. 이에 따라, 밀리미터 파 (mmW)에서는 다수개의 안테나 요소를 사용하여 빔포밍 (beamforming, BF) 이득을 높여 커버리지를 증가시키거나, 쓰루풋 (throughput)을 높일 수 있다.
이때, 안테나 요소 별로 전송 파워 및 위상 조절이 가능하도록 각 안테나 요소는 TXRU(Transceiver Unit)을 포함할 수 있다. 이를 통해, 각 안테나 요소는 주파수 자원 별로 독립적인 빔포밍을 수행할 수 있다.
그러나 100여개의 안테나 요소 모두에 TXRU를 설치하기에는 가격측면에서 실효성이 떨어지는 문제를 갖게 된다. 그러므로 하나의 TXRU에 다수개의 안테나 요소를 매핑하고 아날로그 위상 시프터 (analog phase shifter)로 빔(beam)의 방향을 조절하는 방식이 고려되고 있다. 이러한 아날로그 빔포밍 방식은 전 대역에 있어서 하나의 빔 방향만을 만들 수 있어 주파수 선택적 빔포밍이 어렵다는 단점을 갖는다.
이에 대한 해결 방안으로, 디지털 빔포밍과 아날로그 빔포밍의 중간 형태로 Q개의 안테나 요소보다 적은 개수인 B개의 TXRU를 갖는 하이브리드 빔포밍 (hybrid BF)를 고려할 수 있다. 이 경우에 B개의 TXRU와 Q개의 안테나 요소의 연결 방식에 따라서 차이는 있지만, 동시에 전송할 수 있는 빔(beam)의 방향은 B개 이하로 제한될 수 있다.
도 7 및 도 8은 TXRU와 안테나 요소 (element)의 대표적인 연결 방식을 나타낸 도면이다. 여기서 TXRU 가상화 (virtualization) 모델은 TXRU의 출력 신호와 안테나 요소의 출력 신호의 관계를 나타낸다.
도 7은 TXRU가 서브 어레이 (sub-array)에 연결된 방식을 나타낸 도면이다. 도 7의 경우, 안테나 요소는 하나의 TXRU에만 연결된다.
반면, 도 8은 TXRU가 모든 안테나 요소에 연결된 방식을 나타낸 도면이다. 도 8의 경우, 안테나 요소는 모든 TXRU에 연결된다. 이때, 안테나 요소가 모든 TXRU에 연결되기 위하여 도 8에 도시된 바와 같이 별도의 덧셈기를 필요로 한다.
도 7 및 도 8에서, W는 아날로그 위상 시프터 (analog phase shifter)에 의해 곱해지는 위상 벡터를 나타낸다. 즉, W는 아날로그 빔포밍의 방향을 결정하는 주요 파라미터이다. 여기서 CSI-RS 안테나 포트와 TXRU들과의 매핑은 1:1 또는 1:다(多) (1-to-many) 일 수 있다.
도 7의 구성에 따르면, 빔포밍의 포커싱이 어려운 단점이 있으나, 전체 안테나 구성을 적은 비용으로 구성할 수 있다는 장점이 있다.
도 8의 구성에 따르면, 빔포밍의 포커싱이 쉽다는 장점이 있다. 다만, 모든 안테나 요소에 TXRU가 연결되는 바, 전체 비용이 증가한다는 단점이 있다.
본 발명이 적용 가능한 NR 시스템에서 복수의 안테나가 사용되는 경우, 디지털 빔포밍 (Digital beamforming) 및 아날로그 빔포밍 (Analog beamforming)을 결합한 하이브리드 빔포밍 (Hybrid beamforming) 기법이 적용될 수 있다. 이때, 아날로그 빔포밍 (또는 RF (Radio Frequency) 빔포밍)은 RF 단에서 프리코딩 (또는 콤바이닝 (Combining))을 수행하는 동작을 의미한다. 그리고, 하이브리드 빔포밍에서 베이스밴드 (Baseband) 단과 RF 단은 각각 프리코딩 (또는 콤바이닝)을 수행한다. 이로 인해 RF 체인 수와 D/A (Digital-to-Analog) (또는 A/D (Analog-to-Digital) z컨버터 수를 줄이면서도 디지털 빔포밍에 근접하는 성능을 낼 수 있다는 장점이 있다.
설명의 편의상, 상기 하이브리드 빔포밍 구조는 N개 송수신단 (Transceiver unit, TXRU)과 M개의 물리적 안테나로 표현될 수 있다. 이때, 송신단에서 전송할 L개 데이터 계층 (Data layer)에 대한 디지털 빔포밍은 N * L (N by L) 행렬로 표현될 수 있다. 이후 변환된 N개 디지털 신호는 TXRU를 거쳐 아날로그 신호로 변환되고, 상기 변환된 신호에 대해 M * N (M by N) 행렬로 표현되는 아날로그 빔포밍이 적용된다.
도 9는 본 발명의 일 예에 따른 TXRU 및 물리적 안테나 관점에서의 하이브리드 빔포밍 구조를 간단히 나타낸 도면이다. 이때, 상기 도 9에서 디지털 빔의 개수는 L개이며, 아날로그 빔의 개수는 N개이다.
추가적으로, 본 발명이 적용 가능한 NR 시스템에서는 기지국이 아날로그 빔포밍을 심볼 단위로 변경할 수 있도록 설계하여 특정한 지역에 위치한 단말에게 보다 효율적인 빔포밍을 지원하는 방법을 고려하고 있다. 더 나아가, 도 9와 같이 특정 N개의 TXRU와 M개의 RF 안테나를 하나의 안테나 패널(panel)로 정의할 때, 본 발명에 따른 NR 시스템에서는 서로 독립적인 하이브리드 빔포밍이 적용 가능한 복수의 안테나 패널을 도입하는 방안까지 고려되고 있다.
상기와 같이 기지국이 복수의 아날로그 빔을 활용하는 경우, 단말 별로 신호 수신에 유리한 아날로그 빔이 다를 수 있다. 이에 따라, 본 발명이 적용 가능한 NR 시스템에서는 기지국이 특정 서브프레임 (SF) 내에서 심볼 별로 상이한 아날로그 빔을 적용하여 (적어도 동기 신호, 시스템 정보, 페이징 (Paging) 등) 신호를 전송함으로써 모든 단말이 수신 기회를 가질 수 있도록 하는 빔 스위핑 (Beam sweeping) 동작이 고려되고 있다.
도 10은 본 발명의 일 예에 따른 하향링크 (Downlink, DL) 전송 과정에서 동기 신호 (Synchronization signal)와 시스템 정보 (System information)에 대한 빔 스위핑 (Beam sweeping) 동작을 간단히 나타낸 도면이다.
도 10에 있어, 본 발명이 적용 가능한 NR 시스템의 시스템 정보가 브로드캐스팅 (Broadcasting) 방식으로 전송되는 물리적 자원 (또는 물리 채널)을 xPBCH (physical broadcast channel)으로 명명한다. 이때, 한 심볼 내에서 서로 다른 안테나 패널에 속하는 아날로그 빔들은 동시에 전송될 수 있다.
또한, 도 10에 도시된 바와 같이, 본 발명이 적용 가능한 NR 시스템에서는 아날로그 빔 별 채널을 측정하기 위한 구성으로써 (특정 안테나 패널에 대응되는) 단일 아날로그 빔이 적용되어 전송되는 참조 신호 (Reference signal, RS)인 빔 참조 신호 (Beam RS, BRS)의 도입이 논의되고 있다. 상기 BRS는 복수의 안테나 포트에 대해 정의될 수 있으며, BRS의 각 안테나 포트는 단일 아날로그 빔에 대응될 수 있다. 이때, BRS와 달리, 동기 신호 또는 xPBCH는 임의의 단말이 잘 수신할 수 있도록 아날로그 빔 그룹 내 모든 아날로그 빔이 적용되어 전송될 수 있다.
3. 제안하는
실시예
본 발명에서는 상기와 같은 기술적 사상들에 기반하여, UL 제어 신호 전송을 위한 물리 채널인 PUCCH (physical uplink control channel)의 설계 방법 및 이를 이용한 PUCCH 송수신 방법에 대해 설명한다.
3.1. 제1
PUCCH
송수신 방법
본 절에서는 PUCCH에 대해 RS (reference signal)와 UCI (uplink control information)간 유연한 비율 조정을 지원하면서 PAPR (peak-to-average power ratio)을 완화하는 PUCCH 설계 방법 및 이에 기반한 PUCCH 송수신 방법에 대해 상세히 설명한다.
본 발명이 적용 가능한 NR 시스템에서는 시간 및 주파수 자원 영역마다 서로 독립적인 뉴머롤로지를 갖는 OFDM 방식 (또는 Multiple Access 방식)이 적용될 수 있다.
본 발명이 적용 가능한 NR 시스템에서는 데이터 스케줄링을 위한 기본 시간 단위를 복수 개의 OFDM 심볼들로 구성된 슬롯(slot)으로 정의하고, 상기 슬롯 내에서 HARQ-ACK (또는 decoding 결과) 전송을 위한 지연 (Latency)을 최소화할 목적으로 UL 제어 신호 전송을 위한 물리 채널인 PUCCH가 도 6과 같이 데이터 채널과 TDM(Time Division Multiplexing) 되어 하여 비교적 짧은 시간 구간 내에 전송될 수 있다.
이하 본 발명에서는, 설명의 편의 상, 상기와 같이 슬롯 내 수 개 (예: 1~2개)의 OFDM 심볼에 대응되는 짧은 시간 구간에서 전송되는 PUCCH를 Short PUCCH라 명명한다. 일 예로, 상기 Short PUCCH는 1개 또는 2개 OFDM 심볼만큼의 길이를 가질 수 있다 또한, UE는 동일 Slot 내의 DL 데이터에 대한 HARQ-ACK (또는 decoding 결과) 판정 후 동일 Slot 내 뒤쪽 OFDM 심볼들에서 상기 HARQ-ACK (또는 decoding 결과) 정보를 Short PUCCH로 기지국에게 보고할 수 있다.
Short PUCCH 전송이 HARQ-ACK, CSI (channel state information) feedback, SR (scheduling requires) 등의 중요한 제어 정보를 포함할 수 있는 경우, 상기 Short PUCCH는 가능한 전송 전력을 높여 넓은 UL 커버리지 (coverage)를 지원하도록 설계되는 것이 바람직할 수 있다.
그러나 일반적으로 UE가 OFDM 기반의 신호를 전송할 때, PA (power amplifier)의 비선형성 문제로 전송 전력에 대한 제약이 발생할 수 있다. 예를 들어, Short PUCCH 구조가 높은 PAPR을 가질 때, 시간 축 전송 신호의 진폭 (Amplitude) 범위가 상기 PA의 선형성이 보장되는 구간에 포함되도록 하기 위해서는 (즉, Peak 전력 값이 PA의 선형성 구간에 포함되도록 하려면) 평균 전력이 낮게 설정될 필요가 있다. 상기 관점에서 Short PUCCH에 대해 PAPR을 완화하는 설계 방법이 고려될 수 있다.
한편, 상기 Short PUCCH의 UCI 페이로드 크기는 최소 1 bit (예: 1개 TB(Transmission Block)에 대한 HARQ-ACK 정보에서 수십 bits (예: 복수 TB에 대한 HARQ-ACK과 CSI feedback 정보)까지 될 수 있고, 이때 상기 UCI 페이로드 크기에 따라서 PUCCH 복조용 참조 신호인 DM-RS (demodulation reference signal)의 밀도가 조정될 수 있다.
일 예로, UCI 페이로드 크기가 작은 경우, RS 오버헤드로 인한 코딩 레이트 (Coding rate) 영향이 미미할 수 있다. 이에, UCI 페이로드 크기가 작으면, DM-RS 밀도 (density)는 상대적으로 높은 밀도로 전송되어 채널 추정 성능을 향상시킬 수 있다.
반면, UCI 페이로드 크기가 큰 경우, RS 오버헤드로 인한 코딩 레이트의 영향이 클 수 있다. 이에, UCI 페이로드 크기가 크면, DM-RS 밀도는 상대적으로 낮게 설정될 수 있다.
본 절에서는, NR 시스템에 적용 가능하며, PAPR을 완화하면서 RS와 UCI 비율을 조정할 수 있는 Short PUCCH 설계 방안 및 이에 기반한 Short PUCCH의 송수신 방법에 대해 상세히 설명한다.
이하 설명에 있어, DCI (dynamic control information)은 동적인 제어 신호를 의미할 수 있다. 또한, OFDM 자원이 시간 및 주파수 축 Grid 형태로 표현될 때, RE (resource element)는 특정 부반송파 및 특정 OFDM 심볼에 대응되는 자원을 의미할 수 있다. 또한, DM-RS (demodulation reference signal)은 데이터 복조를 목적으로 채널 추정 등의 수신 동작을 지원하는 참조 신호를 의미할 수 있다. 또한, Slot은 데이터 스케줄링을 위한 기본 시간 단위를 의미하며, 복수의 심볼들로 구성될 수 있다. 또한 Mini-slot은 데이터 스케줄링을 위한 최소 시간 단위로 Slot 보다 짧은 시간 구간을 갖도록 정의된다. 이때, 심볼은 OFDM 심볼 또는 SC-FDMA 심볼을 의미할 수 있다.
3.1.1. 제1-1
PUCCH
송수신 방법
Short PUCCH 내 (특정 OFDM 심볼에서) DM-RS와 UCI간 비율이 1:N (단, N은 양의 정수)로 전송되는 경우, UE는 (상기 OFDM 심볼에서) 아래와 같이 Short PUCCH (또는 Short PUCCH의 일부)를 구성할 수 있다.
(1) (심볼 내) M = K*(N+1)개의 (연속한) 부반송파로 구성된 REG (RE group) 정의
(2) 상기 REG 내 K개 RE들로 구성된 S-REG (sub RE group)을 정의하고, 상기 REG를 (N+1)개 S-REG로 구분. 여기서, 각 S-REG는 S-REG에 포함되는 인접한 부반송파들 간 간격이 N개 부반송파에 해당되는 부반송파들의 집합인 인터레이스 (Interlace) 자원을 의미할 수 있다. 이때, (N+1)개 Interlace 자원은 IFDM (Interleaved Frequency Division Multiplexing) 방식으로 REG가 분할(partition)되어 구성될 수 있다.
(3) 상기 (N+1)개 S-REG 중 한 S-REG에는 DM-RS를 할당하고, 나머지 N개 S-REG에는 UCI를 할당
- DM-RS의 경우, 길이가 K인 시퀀스가 한 S-REG로 할당될 수 있다.
- UCI의 경우, (DFT spreading이 적용된) K*N개 변조된 심볼 (Modulated symbol) 또는 길이가 K인 N개의 (CAZAC (Constant Amplitude Zero Autocorrelation Waveform) 시퀀스가 N개 S-REG로 할당될 수 있다.
(4) 상기 REG를 주파수 축에서 (연속된 자원으로) (N+1)번 반복 (배치)
(5) 상기 REG가 반복 전송되는 Q = M*(N+1)개의 (연속된) 부반송파로 구성된 자원 영역에 대해, 특정 RE가 (해당 RE를 포함하는 REG 내) n번째 (예: n=1, 2, …, N+1) S-REG에 포함되고 상기 RE가 Q개 부반송파 중 (주파수 축에서 순차적으로) k번째 (예: k=1, 2, …, Q) 부반송파에 대응되는 경우, 해당 RE에 할당된 신호에 대해 n 및 k에 비례하는 위상 회전 (Phase rotation)을 적용. 일 예로, 상기 해당 RE에 할당된 신호에 대해 exp(j*φ)*exp[j*2π*(n-1)*(k-1)/Q]만큼의 위상 회전이 적용될 수 있다. 여기서 φ는 상수이다.
여기서, 상기 Q개 자원 영역에 할당된 신호는 X-point (단, X≥Q) IFFT (Inverse Fast Fourier Transform) 과정을 수행하기 이전 주파수 축에서 할당된 신호를 의미할 수 있다.
또한, 상기 '주파수 축에서 순차적으로'의 의미는 주파수 축에서의 오름차순을 의미할 수 있다.
보다 구체적으로, 한 심볼에 대해 K=4, N=2인 경우에 M = 4*(2+1) = 12개의 (연속된) 부반송파로 구성된 REG가 정의될 수 있다. 이때, 한 REG 내에는 인접 부반송파간 간격이 N=2개 부반송파인 Interlace 자원 3개가 존재할 수 있고, 각 Interlace 자원은 K=4개의 부반송파 (또는 RE)를 포함할 수 있다. 이후 DM-RS에 대한 시퀀스가 첫 번째 Interlace 자원에 할당되고, N=2개의 UCI 시퀀스가 나머지 두 번째 및 세 번째 Interlace 자원에 할당될 수 있다.
그 다음, UE는 상기 REG 내 신호를 주파수 축에서 (N+1)=3번 반복하고, 이후 DM-RS에 대해서는 위상 회전을 적용하지 않을 수 있다. 반면, 상기 UE는 첫 번째 UCI sequence에 대해서 상기 첫 번째 UCI가 할당되는 부반송파들 중 (주파수 축에서 순차적으로) r번째 (예: r=1, 2, …, K*(N+1)) 부반송파에 할당된 신호에 exp[j*2π*(r-1)/(K*(N+1))]만큼의 위상 회전을 적용하고, 두 번째 UCI sequence에 대해서 상기 두 번째 UCI가 할당되는 부반송파들 중 (주파수 축에서 순차적으로) r번째 (예: r=1, 2, …, K*(N+1)) 부반송파에 할당된 신호에 exp[j*2π*2*(r-1)/(K*(N+1))]만큼의 위상 회전을 적용할 수 있다.
도 11은 본 발명에 따른 제1-1 PUCCH 송수신 방법에 적용되는 PUICCH 설계 방법을 간단히 나타낸 도면이다.
도 11에 있어, n번째 Interlace 자원에 포함되는 부반송파들 중 n번째 Interlace 자원에 속하는 특정 부반송파의 상대적인 순서인 r과 해당 부반송파에 대한 Short PUCCH로 할당된 전체 부반송파들 중의 상대적인 순서 k의 관계는 k=(N+1)*(r-1)+n의 형태로 주어질 수 있다. 이때 k에 대해 exp(j*φ)*exp[j*2π*(n-1)*(k-1)/Q]를 적용하는 경우, 앞서 설명한 바와 같이 상기 k는 exp(j*ψ)*exp[j*2π*(n-1)*(r-1)/(K*(N+1))]의 형태와 동일하게 된다. 여기서 φ와 ψ는 상수인 바, 수식 해석 과정에서 무시도리 수 있다.
앞서 상술한 바와 같이, Short PUCCH (또는 Short PUCCH의 일부 심볼)을 전송할 경우, REG에 할당된 신호를 주파수 축에서 (N+1)번 반복하는 동작은 Q = M*(N+1) IDFT를 적용한 시간 축 신호 관점에서 (N+1)개의 Interlace 자원을 형성할 수 있다. 또한 S-REG별로 서로 다른 위상 회전을 적용하는 동작은 (N+1)개 S-REG에 대응되는 (N+1)개 신호 (예: UCI, N개 DM-RS sequence)에 대해 순환적 시간 축 천이 (cyclic time shift)를 적용하여 상기 (N+1)개 Interlace 자원 중 서로 다른 자원으로 할당하는 동작을 의미할 수 있다.
UE가 상기 전체 Q개 부반송파로 할당된 신호에 대해 X-point (단, X≥Q) IFFT 과정을 수행하더라도 이와 같은 동작은 오버-샘플링 (Oversampling)의 효과만 갖는 바, 시간 축에서 (N+1)개 신호가 구분되는 특징은 여전히 유효할 수 있다. 따라서, UE가 UCI 그리고/또는 DM-RS 시퀀스가 개별적으로 Low PAPR을 만족하도록 생성하여 앞서 상술한 제1-1 PUCCH 송수신 방법을 적용하는 경우, (N+1)개 신호가 같이 전송되더라고 상기 (N+1) 개 신호는 시간 축에서 구분될 수 있다. 이에 따라, PAPR은 높아지지 않을 수 있다.
앞서 상술한 제1-1 PUCCH 송수신 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.1.2. 제1-2
PUCCH
송수신 방법
Short PUCCH 내 (특정 OFDM 심볼에서) DM-RS와 UCI간 비율이 1:N (단, N은 양의 정수)로 전송되는 경우, UE는 (상기 OFDM 심볼에서) 아래와 같이 Short PUCCH (또는 Short PUCCH의 일부)를 구성할 수 있다.
(1) (심볼 내) M = K*(N+1)개의 (연속한) 부반송파로 구성된 REG (RE group) 정의
(2) 상기 REG 내 K개 RE들로 구성된 S-REG (sub RE group)을 정의하고, 상기 REG를 (N+1)개 S-REG로 구분. 여기서, 각 S-REG는 S-REG에 포함되는 인접한 부반송파들 간 간격이 N개 부반송파에 해당되는 부반송파들의 집합인 인터레이스 (Interlace) 자원을 의미할 수 있다. 이때, (N+1)개 Interlace 자원은 IFDM (Interleaved Frequency Division Multiplexing) 방식으로 REG가 분할(partition)되어 구성될 수 있다.
(3) 상기 (N+1)개 S-REG 중 한 S-REG에는 DM-RS를 할당하고, 나머지 N개 S-REG에는 UCI를 할당
- DM-RS의 경우, 길이가 K인 시퀀스가 한 S-REG로 할당될 수 있다.
- UCI의 경우, (DFT spreading이 적용된) K*N개 변조된 심볼이 N개 S-REG로 할당될 수 있다.
(4) 상기 REG를 주파수 축에서 (연속된 자원으로) 2번 반복 (배치)
(5) 상기 REG가 반복 전송되는 Q = 2*M개의 (연속된) 부반송파로 구성된 자원 영역에 대해, 특정 RE가 UCI (또는 DM-RS) 신호가 할당된 RE이고 상기 RE가 Q개 부반송파 중 (주파수 축에서 순차적으로) k번째 (예: k=1, 2, …, Q) 부반송파에 대응되는 경우, 해당 RE에 할당된 신호에 대해 k에 비례하는 위상 회전을 적용. 일 예로, 상기 해당 RE에 할당된 신호에 exp(j*φ)*exp[j*2π*(k-1)/Q]만큼의 위상 회전이 적용될 수 있다. 여기서 φ는 상수이다.
여기서, 상기 Q개 자원 영역에 할당된 신호는 X-point (단, X≥Q) IFFT 과정을 수행하기 이전 주파수 축에서 할당된 신호를 의미할 수 있다.
또한, 상기 '주파수 축에서 순차적으로'의 의미는 주파수 축에서의 오름차순을 의미할 수 있다.
앞서 3.1.1 절에서 상술한 바와 같이 UCI와 DM-RS가 N:1의 비율을 갖는 경우, UE는 시간 축에서 Low PAPR을 만족하는 (N+1)개의 신호를 생성하고 상기 (N+1)개 신호를 시간 축에서 직교하는 (N+1)개 Interlace 자원 (또는 Comb 자원)들로 할당하여 전체 신호의 PAPR을 낮출 수 있다. 이때, 상기 방법은 PAPR 관점에서는 유리할 수 있으나, 필요로 하는 부반송파 수가 (N+1)의 자승(제곱)에 비례함으로써 지나치게 많은 자원을 사용하는 단점이 있다. 특히 UCI의 경우, DFT spreading을 적용한 결과를 REG 내 서로 다른 S-REG로 나뉘어 전송되더라도 PAPR이 크게 높아지지 않는 특성이 있다. 따라서 3.1.1. 절에서 상술한 방법의 변형 예로 UCI와 RS만 시간 축에서 구분되도록 설계하는 것이 자원 효율성 측면에서 보다 바람직할 수 있다.
보다 구체적으로, 한 심볼에 대해 K=4, N=2인 경우에 M = 4*(2+1) = 12개의 (연속된) 부반송파로 구성된 REG가 정의될 수 있다. 이때, 한 REG 내에는 인접 부반송파간 간격이 N=2개 부반송파인 Interlace 자원 3개가 존재할 수 있고, 각 Interlace 자원은 K=4개의 부반송파 (또는 RE)를 포함할 수 있다. 이후 DM-RS에 대한 Sequence가 첫 번째 Interlace 자원에 할당되고, DFT spreading이 적용된 UCI가 나머지 두 번째 및 세 번째 Interlace 자원에 할당될 수 있다.
이어, UE는 상기 REG 내 신호를 주파수 축에서 2번 반복하고, 이후 DM-RS에 대해서는 위상 회전을 적용하지 않고, UCI에 대해서는 상기 UCI가 할당되는 부반송파들 중 (주파수 축에서 순차적으로) r번째 (예: r=1, 2, …, 2*K) 부반송파에 할당된 신호에 exp[j*2π*(r-1)/(2*K)]만큼의 위상 회전을 적용할 수 있다.
도 12는 본 발명에 따른 제1-2 PUCCH 송수신 방법에 적용되는 PUCCH 설계 방법을 간단히 나타낸 도면이다.
도 12에 있어, UCI가 전송되는 부반송파들 중 UCI가 전송되는 특정 부반송파의 상대적인 순서인 r과 해당 부반송파에 대한 Short PUCCH로 할당된 전체 부반송파들 중의 상대적인 순서 k의 관계는 k=(N+1)*(r-1)+n의 형태로 주어질 수 있다. 이때, k 값에 대해 exp(j*φ)*exp[j*2π*(k-1)/Q]에 대입하는 경우, 상기 값은 앞서 설명한 내용과 같이 exp(j*ψ)*exp[j*2π*(r-1)/(K*(N+1))]의 형태와 동일하게 된다. 여기서 φ와 ψ는 상수이므로 무시될 수 있다.
앞서 상술한 제1-2 PUCCH 송수신 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.1.3. 제1-3
PUCCH
송수신 방법
(연속된) M=K*(N+1)개 부반송파들로 구성된 기본 자원 단위 (이하 Subcarrier-Group 또는 SC-Group)이 정의되는 경우, UE는 Short PUCCH (또는 Short PUCCH의 일부)를 상기 P개 SC-Group으로 전송할 수 있다. 이때, 상기 UE는 각 SC-Group별로 K개 DM-RS 샘플과 K*N개 UCI 샘플을 시간 축에서 TDM (Time Division Multiplexing) 방식으로 다중화한 신호에 상기 SC-Group 크기에 부합하는 (M-point) DFT spreading을 적용할 수 있다.
여기서, UE의 신호 전송 시, 상기 UE는 전체 P개 SC-Group에 대한 (SC-Group별 DFT spreading 이후의) 신호를 주파수 축 신호로 형성하고, 이후 IFFT 과정을 거쳐 시간 축 신호로 변환되어 전송할 수 있다.
또한, UE가 각 SC-Group별로 DFT spreading을 수행할 때, DM-RS에 적용되는 DFT vector 값(들)은 아래 중 하나의 방식으로 UE에게 제공될 수 있다.
(1) (SC-Group별) DFT vector 값(들)을 사전에 약속
(2) (SC-Group별) DFT vector 값(들)을 상위 계층 신호로 설정
(3) (SC-Group별) DFT vector 값(들)을 동적 제어 신호로 설정
여기서, UE는 각 SC-Group별로 DM-RS에 적용된 DFT vector(들)를 De-spreading하여 (즉, 해당 DFT vector의 Hermitian matrix을 적용하여) 각 SC-Group별 평균 채널 이득 (channel gain)을 추정할 수 있다.
또한, 상기 P개 SC-Group는 동일한 DM-RS와 UCI를 반복하여 전송하는 형태이거나 또는 서로 다른 DM-RS와 UCI를 전송하는 형태일 수 있다. 추가적으로 P개 SC-Group에 대해서는 SC-Group 단위로 독립적인 위상 값이 적용될 수 있다.
또한, UE가 각 SC-Group별로 DFT spreading을 수행하는 경우, SC-Group별로 DM-RS에 적용되는 DFT vector(들)이 다를 수 있다.
보다 구체적으로, M=12개 부반송파가 SC-Group으로 정의되고 N=3인 경우, UE는 시간 축에서 3개 샘플 길이를 갖는 DM-RS와 9개 샘플 개수를 갖는 UCI로 구성되는 신호를 생성할 수 있다. 이때, UE는 상기 SC-Group별로 생성된 길이 M의 시간 축 신호에 대해 M-point DFT spreading (또는 DFT precoding)을 적용하여 주파수 축 신호를 생성할 수 있다. 이후 전체 P개 SC-Group들로부터의 신호를 주파수 축에서 결합한 뒤 전체에 대해 IFFT 과정을 수행하여 시간 축 신호를 생성하여 전송할 수 있다.
상기 과정에서 P개의 Single carrier가 결합되는 구성에 따른 PAPR 증가는 유발될 수 있으나 P*M개 신호가 결합되는 경우보다 PAPR은 완화될 수 있다.
도 13은 본 발명에 따른 제1-3 PUCCH 송수신 방법에 적용되는 PUCCH 설계 방법을 간단히 나타낸 도면이다. (여기서, P=4개 SC-Group)
상기 SC-Group에 대한 채널 이득이 부반송파에 따라 크게 변하지 않는다고 가정할 때, 상기 M-point DFT spreading은 UCI와 DM-RS를 서로 다른 직교 코드로 전송하는 형태를 가질 수 있다. 이때, 상기 직교 코드가 DFT matrix의 열 벡터가 됨으로써 상기 SC-Group 내 신호들은 시간 축에서 가능한 중첩되지 않도록 하도록 설정될 수 있다.
상기 관점에서 UE가 SC-Group에 대한 채널 이득을 추정할 때 DM-RS에 적용된 DFT vector가 어떤 것인지 알면, 상기 UE는 해당 DFT vector를 De-spreading하여 (즉, 해당 DFT vector의 Hermitian을 적용하여) SC-Group 내 (복수 부반송파들에 대한) 평균적인 채널 이득을 추정할 수 있다. 이때, 상기 DM-RS에 적용되는 (SC-Group 별) DFT vector 정보는 사전에 약속된 방식을 따르거나 기지국에 의해 상위 계층 신호 또는 동적 제어 신호 (예: DCI)등을 통해 설정될 수 있다.
앞서 상술한 제1-3 PUCCH 송수신 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.1.4. 제1-4
PUCCH
송수신 방법
DFT-s-OFDM (Discrete Fourier Transform - spread OFDM) 방식 기반 Short PUCCH (또는 Short PUCCH의 일부) 전송 시, UE는 하기와 같이 short PUCCH를 구성할 수 있다.
먼저, UE는 M개 길이의 시간 축 신호를 DM-RS와 UCI를 TDM하여 구성한 후 M-point DFT spreading (또는 DFT precoding)을 수행하고, 이후 N-point (예: N≥M) IFFT (또는 IDFT) 과정을 통해 오버샘플링하여 구성할 수 있다. 이때, 상기 UE는 아래 중 하나의 방법으로 DM-RS와 UCI간 GP (guard period) (또는 DM-RS 그리고/또는 UCI에 대한 CP (cyclic prefix)) 길이를 설정할 수 있다.
(1) 상기 GP (또는 CP)의 길이로 적용되는 절대 시간 T0을 기지국과 단말간 사전에 약속. 여기서, UE는 DFT spreading (또는 DFT precoding) 전 단(또는 단계)에서의 시간 축 신호에 대해 M개 샘플 중 L=ceil(T0/[(N/M)*Ts])개의 샘플을 GP (또는 CP) 길이로 설정할 수 있다.
(2) 상기 GP (또는 CP)의 길이로 적용되는 절대 시간 T0을 기지국이 상위 계층 신호로 설정. 여기서, UE는 DFT spreading (또는 DFT precoding) 전 단(또는 단계)에서의 시간 축 신호에 대해 M개 샘플 중 L=ceil(T0/[(N/M)*Ts])개의 샘플을 GP (또는 CP) 길이로 설정할 수 있다.
(3) Short PUCCH 전송을 위해 할당될 수 있는 주파수 자원 영역의 크기 별로 GP (또는 CP)의 (DFT spreading 전 단의 Sample 개수 관점에서의) 길이를 기지국과 단말 간 사전에 약속
(4) Short PUCCH 전송을 위해 할당될 수 있는 주파수 자원 영역의 크기 별로 GP (또는 CP)의 (DFT spreading 전 단의 Sample 개수 관점에서의) 길이를 기지국이 상위 계층 신호로 설정
여기서, 상기 Ts는 IFFT (또는 IDFT) 과정 이후 전송되는 시간 축 (OFDM) 신호의 샘플링 시간 (Sampling time)을 의미할 수 있다. 또한, ceil() 함수는 올림 함수를 의미할 수 있다.
상기 구성에 있어, 기지국은 상기 DM-RS와 UCI간 GP (또는 DM-RS 그리고/또는 UCI에 대한 CP) 사용 여부를 설정할 수 있다.
보다 구체적으로, Short PUCCH 내 특정 심볼 생성 시, UE는 시간 축에서 DM-RS와 UCI를 TDM하고 여기에 단일 반송파 (Single carrier) 특성을 위해 DFT spreading을 적용할 수 있다. 이후, UE는 IFFT 과정을 거치고 CP (cyclic prefix)를 붙여 채널로 해당 신호를 전송할 수 있다.
이에 대응하여, 기지국은 수신 시 FFT 과정을 거치고 이후 DFT de-spreading 적용하면 시간 축에서 DM-RS와 UCI가 TDM 방식으로 다중화되는 구조를 획득할 수 있다.
이때, 만약 DM-RS와 UCI간 Guard time이 없을 경우, 채널의 시간 지연 특성으로 인해 DM-RS와 UCI간에 상호 간섭이 야기될 수 있다. 따라서 DM-RS와 UCI간 상기 Guard time이 도입될 필요가 있다.
그러나, Short PUCCH에 대해 할당된 주파수 자원이 많으면 상대적으로 Sampling rate가 높아져서 (절대 시간 측면에서 동일한 Guard time을 형성하고자 하는 경우에도) DFT spreading 전단에서 상기 Guard time을 표현하기 위해 사용되는 Digital domain의 Sample 수가 다를 수 있다.
따라서 실제 할당된 자원에 따라 특정 절대 길이의 GP (또는 CP)를 표현하기 위한 샘플 수가 다를 수 있고, 기지국은 단말에게 GP (또는 CP)에 대한 절대 시간을 알려줄 수도 있고 또는 자원 크기 별로 GP (또는 CP) 길이로 설정할 샘플 수를 알려줄 수도 있다. 여기서, 상기 GP (또는 CP) 길이의 절대 시간으로의 표현 또는 주파수 자원 영역에 따른 상대적인 샘플 수로의 표현은 사전에 기지국과 단말 간 약속된 방식을 따를 수 있다.
앞서 상술한 제1-4 PUCCH 송수신 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.1.5. 제1-5
PUCCH
송수신 방법
Short PUCCH 내 (특정 심볼에서) DM-RS와 UCI가 FDM 방식으로 다중화되고 UCI에 대해 DFT spreading (또는 DFT precoding)이 적용되는 경우, UE는 (해당 심볼에서) Short PUCCH와 SRS (Sounding Reference Signal)간 FDM 방식으로 다중화를 지원하는지 여부에 따라 (해당 심볼에서) Short PUCCH를 위한 DM-RS 패턴을 변경할 수 있다.
여기서, 기지국은 상위 계층 신호 (예: RRC signaling) 또는 동적 제어 신호 (예: DCI)를 통해 특정 심볼에 대한 Short PUCCH와 SRS간 FDM 지원 여부를 알려줄 수 있다. 또한, 기지국은 상위 계층 신호 (예: RRC signaling) 또는 동적 제어 신호 (예: DCI)를 통해 특정 심볼에 대한 Short PUCCH 내 DM-RS 패턴을 설정할 수도 있다.
기술적으로, 회로 설계의 특성에 따라 FFT/IFFT 과정은 FFT/IFFT 크기가 2, 3, 5의 배수인 경우에 지원될 수 있다.
이에, 만약 Short PUCCH내 특정 심볼에서 DM-RS와 UCI가 FDM되는 경우, DM-RS가 전송되는 RE를 제외한 나머지 UCI 전송 RE들의 수가 상기 FFT/IFFT 과정을 위해 2, 3, 5의 배수가 되어야 한다. 일 예로, Short PUCCH에 대해 12개 부반송파를 기본 단위로 주파수 자원 영역이 할당되는 경우, 상기 기본 단위 내에서 DM-RS를 위한 RE 수는 DM-RS density가 1/2 이하인 경우만 고려할 때 {2, 3, 4, 6} 중 하나의 값을 가질 수 있다. 따라서, 상기 기본 단위 내 UCI 전송을 위한 RE 수가 모두 2, 3, 5의 배수가 되는 바, Short PUCCH를 위한 자원 할당 시 상기 기본 단위의 2, 3, 5 배수에 해당하는 주파수 축 자원할당 방식이 모두 지원될 수 있다.
그러나 만약 특정 심볼에서 Short PUCCH 자원과 SRS 자원이 FDM되는 방식으로 전송되는 경우, (해당 심볼 내) Short PUCCH 내 특정 RE들은 SRS 전송을 위해 사용되지 못할 수 있다. 따라서, (해당 심볼 내) SRS와의 Multiplexing을 위해 사용되지 못하는 RE들을 반영하여 Short PUCCH에 대한 전체 UCI RE 수가 2, 3, 5의 배수가 되도록 DM-RS의 RE 수가 조정될 필요가 있다.
일 예로, 상기 12개 부반송파를 기본 단위로 Short PUCCH에 대한 주파수 자원 영역이 할당되는 경우, 상기 기본 단위마다 SRS과의 Multiplexing 용도로 2개 RE가 유보 (Reserve)된다고 가정한다. 이때, DM-RS density가 1/2 이하인 경우만 고려할 때, 상기 기본 단위 내에서 DM-RS를 위한 RE 수는 {1, 2, 4, 5} 중 하나의 값을 가질 수 있다.
즉, 상기 구성은 SRS를 고려하지 않았을 때 적용 가능했던 DM-RS RE 수 집합인 {2, 3, 4, 6}과 다른 양상을 가지게 된다. 따라서 (특정 심볼에서) Short PUCCH와 SRS 간 FDM 방식으로 Multiplexing을 지원하는 지 여부에 따라 (해당 심볼에서) Short PUCCH를 위한 DM-RS 패턴이 변경될 수 있다.
상기 구성을 보다 일반화하여 정리하면, Short PUCCH내 (특정 심볼에서) DM-RS와 UCI가 FDM 방식으로 Multiplexing되고 UCI에 대해 DFT spreading (또는 DFT precoding)이 적용되는 경우, (해당 심볼에서) Short PUCCH 내 일부 RE는 다른 신호와의 Multiplexing 등의 목적으로 사용되지 못할 수 있다. 이때, UE는 (해당 심볼에서) DM-RS 패턴을 변경하여 Short PUCCH내 UCI 전송을 위한 RE 수가 2, 3, 5의 배수가 되도록 설정할 수 있다. 이때, 상기 Short PUCCH 내 유보되는 RE의 존재 유무에 따라 지원 가능한 DM-RS density가 달라질 수 있다. 일 예로, 기지국이 상기 Short PUCCH 내 Reserved되는 RE의 존재 유무를 알려주는 경우, UE는 암묵적으로 Short PUCCH에 적용되는 DM-RS 패턴이 변경되었다고 가정할 수 있다.
앞서 상술한 제1-5 PUCCH 송수신 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.2. 제2
PUCCH
송수신 방법
본 절에서는 PUCCH가 하나 또는 복수 개의 OFDM 심볼 길이로 전송되는 경우, 상기 PUCCH 간 다중화 용량 (Multiplexing Capacity)를 높일 수 있는 PUCCH 설계 방법 및 이에 기반한 PUCCH 송수신 방법에 대해 상세히 설명한다.
앞서 상술한 바와 같이, 하나의 슬롯 내 수 개 (예: 1~2개)의 OFDM 심볼에 대응되는 짧은 시간 구간에서 전송되는 PUCCH를 Short PUCCH라 명명할 수 있다.
이때, 상기 Short PUCCH가 Slot이 DL data를 나르는 DL-centric Slot(예: Slot 내 DL 전송 심볼이 UL 전송 심볼 보다 많은 Slot, 구체적인 예로, 특정 Slot 내 UL 전송 심볼이 Slot 뒤쪽의 2개 심볼로만 구성되는 Slot) 인 경우, 상기 Short PUCCH는 Slot 내 매우 제한적인 수의 OFDM 심볼 구간에서만 전송 될 수 있다. 따라서, 복수 Short PUCCH들 간 다중화를 최대한 지원하는 것이 자원 활용의 효율성 관점에서 바람직할 수 있다.
만약 Short PUCCH들 간 다중화 방식으로 FDM 그리고/또는 TDM만 허용되는 경우, 상기 DL-centric Slot 내 전송 가능한 Short PUCCH 전송 자원 수가 크게 제한될 수 있다. 이에, 바람직하게는, Short PUCCH 간 CDM (Code Division Multiplexing)기반의 다중화 방법이 적용될 수 있다.
본 발명이 적용 가능한 NR 시스템에서는 Short PUCCH에 대해 RS와 UCI 간 비율 (이하, RS/UCI 비율)로써 하나 이상의 값이 적용하는 구성을 지원할 수 있다. 일 예로, Short PUCCH는 RS와 UCI가 FDM 방식으로 Multiplexing된 형태를 갖되, 상기 RS/UCI 비율은 하나 이상 (예: 1:1, 1:3 등)의 값으로 설정 (또는 지원)될 수 있다.
이하, 본 절에서는 Short PUCCH가 시퀀스(sequence)를 기반으로 구성되는 경우, UE가 서로 다른 RS/UCI 비율이 적용된 Short PUCCH 간 CDM 기반 다중화를 수행하는 방법에 대해 상세히 설명한다.
3.2.1. 제2-1
PUCCH
송수신 방법
UE는 길이가 L인 시퀀스 M개를 교차하여 길이 N (= L*M)인 PUCCH 자원을 구성할 수 있다. 이때, 상기 UE는 상기 M개 시퀀스 중 K (< M)개 시퀀스를 RS로 활용하고, 나머지 (M - K)개 시퀀스에 대해 시퀀스 별로 UCI에 대한 (독립적인) 변조된 심볼을 곱하여 전송할 수 있다.
이때, 상기 길이 N인 PUCCH 자원 내 시퀀스 개수 M은 기지국에 의해 상위 계층 신호 (예: RRC signaling) 또는 동적 제어 신호 (예: DCI (downlink control information))로 설정될 수 있다.
또한, 상기 M개 시퀀스 중 RS로 활용할 K개 시퀀스는 사전에 약속된 방식으로 결정되거나 또는 기지국에 의해 상위 계층 신호 (예: RRC signaling) 또는 동적 제어 신호 (예: DCI (downlink control information))로 설정될 수 있다.
또한, 상기 길이 L인 각 시퀀스는 OCC (orthogonal cover code)이거나 또는 CAZAC sequence (예: Zad-off Chu sequence) 가 적용될 수 있다. (각 시퀀스에 대해) PUCCH 자원 별로 서로 다른 OCC 또는 CS (cyclic shift)가 적용될 수 있다.
또한, 상기 M개 시퀀스 중 RS로 (또는 UCI 전송 목적으로) 활용되는 시퀀스가 P개 (P>1)일 때, 상기 P개 시퀀스는 동일 시퀀스에 Length-P OCC가 적용된 형태를 가질 수 있다. 즉, Length-P OCC가 O(p), p=0, 1, …, P-1과 같이 표현될 때, 상기 RS로 (또는 UCI 전송 목적으로) 활용되는 P개 시퀀스 중 p번째 (p=0, 1, …, P-1) 시퀀스에 O(p) 값이 곱해진 형태로 상기 P개 시퀀스는 전송될 수 있다.
도 14는 RS/UCI 비율 1:1인 Short PUCCH (Type A)와 RS/UCI 비율이 1:3인 Short PUCCH (Type B)를 간단해 나타낸 도면이다.
도 14에 도시된 바와 같이, 본 발명에 적용 가능한 NR 시스템에서는 Short PUCCH가 RS와 UCI가 FDM 방식으로 Multiplexing된 형태를 가지고, 상기 Short PUCCH에 대한 RS/UCI 비율 값으로써 1:1과 1:2이 지원된다고 가정한다. 일 예로, 길이 N = 24인 PUCCH에 대해 RS/UCI 비율 1:1인 Short PUCCH (Type A)와 RS/UCI 비율이 1:3인 Short PUCCH (Type B)는 도 14와 같이 표현될 수 있다.
이때, Short PUCCH Type A와 Short PUCCH Type B에 대해 RS에 대한 부분 또는 UCI에 대한 부분만 고려하면, 서로간 자원 량이 상이하여 CDM을 적용하기 어렵다. 따라서 상기 Short PUCCH Type A와 Short PUCCH Type B 간에 CDM을 적용하기 위한 방안으로써 두 PUCCH Type에 대해 동일 길이의 시퀀스를 복수 개로 구성하고, 각 PUCCY Type 내에서 RS로 사용할 시퀀스와 UCI로 사용할 시퀀스의 비율을 조정함으로써 서로 다른 RS/UCI 비율을 지원하는 방안이 고려될 수 있다. 즉, UE는 길이가 L인 시퀀스 M개를 교차하여 길이 N (= L*M)인 PUCCH 자원을 구성하고, 상기 M개 시퀀스 중 K (< M)개 시퀀스는 RS로 활용하고, 나머지 (M - K)개 시퀀스에 대해 시퀀스 별로 UCI에 대한 (독립적인) Modulated symbol을 곱하여 전송할 수 있다.
도 15는 PUCCH 자원의 길이 (N)가 24이고 상기 PUCCH 자원은 길이-6 시퀀스를 4개 교차하여 구성되는 경우를 간단히 나타낸 도면이다. (즉, M = 4, L = 6)
이때, PUCCH를 구성하는 시퀀스가 CAZAC이 아니고 OCC인 경우, 도 15에서 CS를 적용하는 모듈이 배제되고 w0, w1, …, wL (도 15 에 있어 L = 6)으로 곱해지는 값들이 특정 OCC를 나타낼 수 있다.
또한, 설명의 편의상 도 15에서는 시퀀스 1에 대해 UCI의 변조 심볼이 곱해지는 구성을 도시하였으나, 상기 동작 구성은 RS로 설정된 시퀀스를 제외한 모든 시퀀스에 대해서 각 시퀀스 별로 독립적인 UCI의 변조 심볼이 적용되는 방법으로써 확장 적용될 수 있다.
도 15와 같이 PUCCH를 구성할 경우, 도 14에 도시된 Type A의 RS와 UCI는 각각 특정 CS (또는 OCC)가 적용된 시퀀스 1/3과 특정 CS (또는 OCC)가 적용된 시퀀스 2/4로 표현될 수 있으며, Type B의 RS와 UCI는 각각 특정 CS (또는 OCC)가 적용된 시퀀스 1과 특정 CS (또는 OCC)가 적용된 시퀀스 2/3/4로 표현될 수 있다. 이때, 동일 시퀀스 X (X = 1, 2, 3, 4)에 대해 적용되는 CS 또는 OCC는 Type A인 경우와 Type B인 경우에 대해 서로 다르게 설정될 수 있다. 상기와 같이 동일 시퀀스에 대한 CS 또는 OCC가 다르게 설정되는 경우, Type A와 Type B 간 CDM이 지원될 수 있다.
즉, 일반적으로 제2-1 PUCCH 송수신 방법의 PUCCH 구조를 가지는 PUCCH 자원들 간의 CDM은 PUCCH를 구성하는 각 시퀀스 별 적용되는 CS 또는 OCC를 PUCCH 자원 별로 다르게 설정함으로써 달성할 수 있다. 이때, PUCCH 자원 내에서 복수 개의 시퀀스 중 몇 개가 RS로 활용되는 지의 여부는 시퀀스 별 CS를 적용하는 동작에 영향을 주지 않기 때문에 (상기 제2-1 PUCCH 송수신 방법의 PUCCH structure를 가지는 PUCCH resource들에 대해) RS/UCI 비율이 서로 다른 PUCCH resource 간의 CDM에도 자연스럽게 지원될 수 있다.
도 14에 도시된 Type A의 RS와 UCI를 각각 특정 CS (또는 OCC)가 적용된 시퀀스 1/3과 특정 CS (또는 OCC)가 적용된 시퀀스 2/4로 표현하는 경우, 상기 RS에 대한 시퀀스들인 시퀀스 1과 시퀀스 3 간에 Length-2 OCC가 적용되고, 유사하게 UCI 전송을 위한 시퀀스들인 시퀀스 2와 시퀀스 4간에 Length-2 OCC가 적용될 수 있다.
추가적으로, PUCCH 자원으로 (RPF (repetition factor) = M1인 IFDMA (Interleaved Frequency Division Multiple Access) 방식으로) 주파수 축에서 교차된 시퀀스 M1개 중 일부에 대응되는 M2개 시퀀스만 설정될 수 있다. 이때, 상기 PUCCH 내 M2개 시퀀스 중 일부는 RS로 활용되고, 나머지 시퀀스는 UCI에 대한 변조 심볼을 곱하여 UCI를 전달할 목적으로 활용될 수 있다.
도 16은 4개 시퀀스가 교차된 구조에서 2개의 시퀀스만 활용하는 PUCCH 자원에 있어 RS와 UCI의 변조 심볼이 전송되는 구성을 간단히 나타낸 도면이다.
도 16에 도시된 바와 같이, 4개 시퀀스가 교차된 구조(예: 도 15)에서 2개의 시퀀스만 활용하는 PUCCH 자원에 있어, RS로는 시퀀스 1이 활용되고, UCI의 변조 심볼은 시퀀스 3에 곱하여 전송될 수 있다. 또는, 상기 PUCCH 자원에 있어 RS는 시퀀스 2을 활용하고, UCI의 변조 심볼은 시퀀스 4에 곱하여 전송될 수 있다.
추가적으로, (RPF (repetition factor) = M1인 IFDMA 방식으로) 주파수 축에서 교차된 시퀀스 M1개 전체 (또는 일부)로 특정 PUCCH 자원이 설정될 수 있는 경우, (특정 CS 값을 갖는) 상기 M1개 시퀀스 그룹 (또는 상기 M1개 시퀀스 중 일부 M2 (< M1)개 시퀀스 그룹) 내 (상기 CS 값을 갖는) 어떤 시퀀스가 전송되었는지의 여부를 통해 UCI 정보를 표현할 수 있다.
일 예로 도 15에 있어 특정 CS 값이 가정되는 경우, 해당 CS 값으로 상기 4개 시퀀스 중 어떤 시퀀스가 전송 되었는지의 여부를 통해 2 bits의 UCI 정보가 표현될 수 있다.
또는, 특정 CS 값을 가정하였을 때, 상기 4개 시퀀스 중 특정 2개 시퀀스에 대해 해당 CS 값으로 상기 2개 시퀀스 중 어떤 시퀀스가 전송 되었는지의 여부를 통해 1 bit의 UCI 정보가 표현될 수 있다. (상기 경우, 2개 UE에게 각각 2개 시퀀스 그룹dl 할당될 수 있음)
여기서, 상기와 같이 어떤 시퀀스가 전송 되었는지의 여부로 UCI 정보를 알려주는 PUCCH 자원을 Sequence based PUCCH 자원이라고 명명할 수 있다. 이때, 기지국은 검출 대상이 되는 시퀀스들에 대한 CS 정보 및 시퀀스 자원 정보를 단말에게 상위 계층 신호 (예: RRC signaling) 그리고/또는 동적 제어 신호 (예: DCI, L1/L2 signaling)로 알려줄 수 있다.
앞서 상술한 제2-1 PUCCH 송수신 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.2.2. 제2-2
PUCCH
송수신 방법
UE가 SRS (sound reference signal)를 전송할 수 있는 경우, 기지국은 N개 (직교하는) SRS 자원으로 구성된 특정 자원 집합을 UE에게 설정해 주고, UE는 상기 N개 (직교하는) SRS 자원 중 한 SRS 자원을 선택하여 전송함으로써 k = floor(log2(N)) bits ACK/NACK 정보를 기지국에게 전달할 수 있다.
여기서, 상기 SRS 자원은 주파수 대역, Sequence (CAZAC sequence의 root index 그리고/또는 cyclic shift), Comb index (예: even 또는 odd)의 관점에서 정의될 수 있다. 또한, 기지국은 k bit ACK/NACK 정보가 어떤 SRS 자원에 대응되는지에 대한 정보를 UE에게 상위 계층 신호 (예: RRC signaling)을 통해 설정할 수 있다.
또한, 상기 SRS 자원 기반의 ACK/NACK 전송 동작은 DL assignment에 대응하는 DCI 내 ACK/NACK 자원을 지시하는 Bits field (이하 ARI (ACK/NACK resource indicator))의 특정 상태로 트리거링 (Triggering)될 수 있다. 즉, DL assignment 내 ARI가 복수 State를 지시할 때, 상기 복수 State 중 일부 State는 특정 PUCCH 자원을 지시하고, 다른 특정 State는 SRS 자원 기반 ACK/NACK 전송 동작을 수행함을 지시하는 의미로 해석될 수 있다.
다양한 무선 통신 시스템에서 기지국은 UL 채널 측정을 목적으로 UE가 SRS를 전송하도록 지시 또는 설정할 수 있다. 일반적으로, 상기 SRS 자원은 복수의 UE가 전송하는 자원인 바, 다중화 용량 (Multiplexing capacity)를 극대화 하도록 설계될 수 있다.
만약 SRS 자원이 충분히 많다고 가정하면, SRS 자원의 일부 자원들은 ACK/NACK 정보를 전달하는 데 활용될 수 있다. 일 예로, (주파수 축으로) 48 RE 내 SRS가 Even Comb 또는 Odd Comb으로 길이 24의 CAZAC 시퀀스로 전송된다고 가정한다. 각 CAZAC 시퀀스 별로 서로 다른 CS (cyclic shift) 값을 최대 8개 가진다고 하면, 전체 16개 SRS 자원이 존재하게 된다.
이때, 상기 16개 SRS 자원 집합이 ACK/NACK 전송 목적으로 UE에게 설정된 경우, UE는 상기 16개 SRS 자원을 이용하여 하기 표와 같이 4 bits ACK/NACK 정보를 기지국에게 보고할 수 있다.
앞서 상술한 제2-2 PUCCH 송수신 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.3. 제3 PUCCH 송수신 방법
본 절에서는 PUCCH에 대한 (주파수 축) 자원 량을 변경하는 경우, (주파수 축) 자원 량에 비례하는 UCI (uplink control information) 페이로드 크기를 전송하면서 PUCCH 자원 간 CDM (code division multiplexing) 가능한 PUCCH 자원 수 및 Low PAPR (peak to average power ratio) 특성을 유지하는 PUCCH 설계 방법 및 이에 기반한 PUCCH 송수신 방법에 대해 상세히 설명한다.
본 발명이 적용 가능한 NR 시스템에 있어, PUCCH는 UL 자원 활용의 효율성 측면에서 복수의 UE로부터 전송되는 PUCCH 자원들 간의 다중화를 최대한 지원하는 구조를 가질 수 있다.
일 예로, 종래 LTE 시스템에서의 PUCCH Format 2/2a/2b와 유사하게, NR 시스템에서는 PUCCH 자원이 복수의 심볼로 구성하고 상기 PUCCH 자원 내 심볼 별로 (주파수 축) CAZAC (constant amplitude zero auto-correlation) 시퀀스 (sequence)가 전송되는 구조를 지원할 수 있다. 이때, 상기 PUCCH 자원 내 특정 심볼들로 전송되는 CAZAC 시퀀스에 대해서는 UCI의 변조 심볼 (modulated symbol)이 곱해져 전송되고, 나머지 심볼들로 전송되는 CAZAC 시퀀스는 RS (reference signal)로 활용될 수 있다.
이하 설명에 있어, PUCCH 자원이 복수의 심볼로 구성되고, 각 심볼 별로 UCI의 변조 심볼이 곱해진 시퀀스 또는 (RS로 활용할) 시퀀스를 전송하는 PUCCH 구조를 Sequence modulation 기반 PUCCH라 명명한다. 이때, 상기 심볼 별 시퀀스로는 CAZAC 시퀀스 또는 일반적으로는 직교 시퀀스 그룹 내 하나의 시퀀스가 적용되거나, 심볼 별로 동일한 시퀀스가 적용되거나, 또는 독립적인 (또는 다른) 시퀀스가 적용될 수 있다.
만약 Sequence modulation 기반 PUCCH가 CAZAC 시퀀스로 구성된 경우, 서로 다른 PUCCH 자원에 대해 CAZAC 시퀀스의 서로 다른 CS (cyclic shift) 자원이 적용됨으로써 PUCCH 자원 간 CDM이 지원될 수 있다.
도 17은 종래 LTE 시스템의 PUCCH Format 2의 한 심볼 내 UCI가 전송되는 과정을 간단히 나타낸 도면이다.
본 발명이 적용 가능한 NR 시스템에서 CDM 방식에 따른 Multiplexing Capacity를 유지한 채 PUCCH 자원을 증가시켜 전송 가능한 UCI 페이로드 크기를 2배로 높이는 PUCCH 구조를 지원한다고 가정한다.
이를 위한 간단한 방안으로써 상기 Sequence modulation 기반 PUCCH 자원으로써 주파수 축에서 2개의 PUCCH 자원이 사용되고, 각 PUCCH 자원마다 독립적인 UCI가 전송되는 방안을 고려할 수 있다. 그러나 만약 상기 Sequence modulation 기반 PUCCH가 CAZAC 시퀀스 기반으로 구성된 경우, 상기와 같이 주파수 축에서 단순히 2개 PUCCH 자원으로 UCI를 전송하는 구성으로 인해 CAZAC 시퀀스가 주파수 축에서 반복되어 시간 축에서 Zero-insertion 효과가 발생하게 된다. 따라서, PAPR이 주파수 축에서 2배 자원을 사용하기 전보다 평균적으로 약 3 dB 정도 증가되는 문제점을 갖는다.
상기와 같은 문제를 해결하기 위한 방안으로써, 본 절에서는 PUCCH에 대한 자원 량이 변경될 때, (주파수 축) 자원 량에 비례하는 UCI 페이로드 크기를 전송하면서 PUCCH 자원 간 CDM 가능한 PUCCH 자원 수 및 Low PAPR 특성을 유지하는 PUCCH 설계 방법 및 이에 기반한 PUCCH 송수신 방법에 대해 상세히 설명한다.
3.3.1. 제3-1 PUCCH 송수신 방법
UE가 길이 L인 시퀀스를 토대로 생성된 Sequence modulation 기반 PUCCH (PUCCH 1)에 대해 주파수 자원이 N배 증가한 PUCCH (PUCCH 2)를 구성할 때, 상기 UE는 상기 PUCCH 2의 특정 심볼 내 UCI를 아래와 같이 전송할 수 있다.
(1) 길이 L인 특정 (단위) 시퀀스를 N번 반복하여 길이 N*L인 시퀀스 생성 (SEQREF)
(2) N개 Phase rotation 방법을 상기 SEQREF에 적용하여 길이 N*L인 시퀀스 N개 (SEQ0, SEQ1, …, SEQN-1) 생성
이때, N개 Phase rotation 방법은 아래 중 하나와 같이 정의될 수 있음.
i. Option 1: n번째 (n=0, 1, …, N-1) Phase rotation 방법은 길이 N*L인 특정 시퀀스의 k번째 (k=0, 1, …, N*L) 값에 exp(2π*j*n*k/(N*L))을 곱하는 형태로 정의. 여기서, j는 -1의 제곱근을 의미
ii. Option 2: n번째 (n=0, 1, …, N-1) Phase rotation 방법은 길이 N*L인 특정 시퀀스의 k번째 (k=0, 1, …, N*L) 값에 exp(2π*j*n*floor(k/L)/N)을 곱하는 형태로 정의. 여기서, j는 -1의 제곱근을 의미하며, floor는 내림 함수를 의미
(3) 상기 SEQn (n=0, 1, …, N-1)에 대해 시퀀스 별로 (독립적인) UCI의 변조 심볼을 곱하여 시퀀스의 k번째 (k=0, 1, …, N*L-1) 값을 Subcarrier index (u0+k)에 대응되는 주파수 자원으로 전송. 여기서, u0는 사전에 약속된 방식으로 결정되거나 기지국이 설정할 수 있음
상기 길이 L인 특정 시퀀스는 CAZAC 시퀀스일 수 있다.
기지국은 PUCCH 2 구성을 위한 (단위) 시퀀스의 길이 (예: L), (단위) 시퀀스의 반복 횟수 (예: N)에 대한 정보를 RRC signaling 등의 상위 계층 신호 또는 DCI (dynamic control information) 등의 (L1/L2 수준의) 동적 제어 신호를 통해 UE에게 알려줄 수 있다.
앞서 상술한 동작은 UE가 UCI뿐만 아니라 RS에 대한 주파수 자원을 확장하는 경우에도 적용될 수 있으며, 이 경우 시퀀스에 별도의 변조 심볼이 곱해지지 않을 수 있다.
보다 구체적으로, UE가 도 17에 도시된 예시 대비 2배의 (주파수) 자원을 활용하여 데이터 변조 심볼을 전송한다고 가정한다. 이때, 앞서 상술한 제3-1 PUCCH 송수신 방법에 따르면, UE는 길이 12인 CAZAC 시퀀스를 2번 반복한 형태에서 서로 다른 2개의 Phase rotation 방법을 적용하여 2개의 길이 24인 시퀀스를 생성하고, 상기 2개의 시퀀스에 대해 2개의 데이터 변조 심볼인 dm(0)과 dm(1)을 각각 곱하여 전송할 수 있다. (예: 제3-1 PUCCH 송수신 방법의 (2)에서 Option 2를 적용한 예시)
도 18은 본 발명의 제3-1 PUCCH 송수신 방법에 적용되는 PUCCH 설계 방법의 일 예를 간단히 나타낸 도면이다.
도 18에 있어, dm(0)가 전송되는 주파수 자원 영역과 dm(1)이 전송되는 주파수 자원 영역은 동일하다. 그리고, Phase rotation을 통해 dm(0)이 전송되는 시간 축 자원과 dm(1)이 전송되는 시간 축 자원은 서로 다른 Interlace 자원 (또는 시간 축 Comb 자원)에서 전송될 수 있다.
다시 말해, UE는 먼저 시퀀스를 주파수 축으로 반복함으로써 시간 축에서 Comb 자원 구조 (또는 Interlaced 자원 구조)을 형성하고, 이후 상기 반복 시퀀스에 서로 다른 위상 회전을 적용함으로써 시간 축에서 서로 다른 Comb 자원으로 구분되는 복수의 시퀀스를 생성할 수 있다. 이어, 상기 UE는 상기 복수 시퀀스 내 각 시퀀스 별로 (독립적인) 데이터 변조 심볼을 곱하여 전송할 수 있다.
UE가 상기와 같이 PUCCH를 구성할 경우, (주파수 축) 자원 량이 N배가 되더라도 (주파수 축에서) 특정 단위 시퀀스를 반복 전송한 형태가 되어 (주파수 축 자원 량과 무관하게) 시퀀스에 대한 CS 자원 개수만큼의 PUCCH 자원에 대한 CDM이 지원될 수 있다. (즉, CDM 기반 Multiplexing capacity가 주파수 자원 량과 무관하게 항상 유지됨) 또한 (주파수 축) 자원 량이 N배가 되면 동일 주파수 자원에서 전송되는 시퀀스 수도 N개로 증가하여 전송 가능한 UCI 페이로드 크기도 (주파수 축) 자원 량에 비례하여 N배 증가하게 된다. 게다가, 상기 N개 시퀀스 간 위상 회전 방법이 구분됨으로써 상기 N개 시퀀스는 시간 축에서 서로 다른 Comb 자원으로 전송됨으로써, 자원 량이 N배 되기 이전과 거의 동일한 PAPR 특성을 유지할 수 있다.
앞서 상술한 제3-1 PUCCH 송수신 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.3.2. 제3-2
PUCCH
송수신 방법
길이 L인 시퀀스를 토대로 생성된 Sequence modulation 기반 PUCCH (PUCCH 1)에 대해 주파수 자원이 N배 증가한 PUCCH (PUCCH 2)를 구성할 때, UE는 상기 PUCCH 2의 특정 심볼 내 UCI를 아래와 같이 전송할 수 있다.
(1) 길이 LNEW=L/N인 특정 (단위) 시퀀스 N개에 대해 각 시퀀스 별로 N번 반복한 길이 N*LNEW인 시퀀스 생성 (SEQ(n)REF, n=0, 1, …, N-1)
(2) N개 Phase rotation 방법 중 n번째 Phase rotation 방법을 상기 SEQREF(n)에 적용하여 길이 N*LNEW인 시퀀스 N개 (SEQ0, SEQ1, …, SEQN-1) 생성. 이때, 상기 N개 Phase rotation 방법은 아래 중 하나와 같이 정의될 수 있음
i. Option 1: n번째 (n=0, 1, …, N-1) Phase rotation 방법은 길이 N*LNEW인 특정 시퀀스의 k번째 (k=0, 1, …, N*LNEW) 값에 exp(2π*j*n*k/(N*LNEW))을 곱하는 형태로 정의. 여기서, j는 -1의 제곱근을 의미
ii. Option 2: n번째 (n=0, 1, …, N-1) Phase rotation 방법은 길이 N*L인 특정 시퀀스의 k번째 (k=0, 1, …, N*LNEW) 값에 exp(2π*j*n*floor(k/LNEW)/N)을 곱하는 형태로 정의. 여기서, j는 -1의 제곱근을 의미하며, floor는 내림 함수를 의미.
(3) 상기 SEQn (n=0, 1, …, N-1)에 대해 시퀀스 별로 (독립적인) UCI의 변조 심볼을 곱하여 시퀀스의 k번째 (k=0, 1, …, N*LNEW-1) 값을 Subcarrier index (u0+N*k+n)에 대응되는 주파수 자원으로 전송
여기서, u0는 사전에 약속된 방식으로 결정되거나 기지국에 의해 설정될 수 있다. 또한, 상기 길이 LNEW인 특정 시퀀스는 CAZAC 시퀀스일 수 있다. 또한, 기지국은 PUCCH 2 구성을 위한 (단위) 시퀀스의 길이 (예: L 또는 LNEW), (단위) 시퀀스의 반복 횟수 (예: N)에 대한 정보를 RRC signaling 등의 상위 계층 신호 또는 DCI (dynamic control information) 등의 (L1/L2 수준의) 동적 제어 신호를 통해 UE에게 알려줄 수 있다.
앞서 상술한 동작은 UE가 UCI뿐만 아니라 RS에 대한 주파수 자원을 확장하는 경우에도 적용될 수 있으며, 이 경우 시퀀스에 별도의 변조 심볼이 곱해지지 않을 수 있다.
보다 구체적으로, UE가 도 17에 도시된 예시 대비 2배의 (주파수) 자원을 활용하여 데이터 변조 심볼을 전송한다고 가정한다. 이때, 앞서 상술한 제3-2 PUCCH 송수신 방법에 따르면, UE는 길이 12/2 = 6인 CAZAC 시퀀스 2개 (SEQ 0, SEQ 1)를 각각 2번 반복한 형태에서 각각의 반복 시퀀스 별로 대응되는 Phase rotation 방법을 적용하여 전체 2개의 길이 12인 시퀀스를 생성할 수 있다. 이어, 상기 UE는 상기 2개의 시퀀스에 2개의 데이터 변조 심볼인 dm(0)과 dm(1)을 각각 곱한 후 주파수 축에서 교차하여 전송할 수 있다. (예: 제3-2 PUCCH 송수신 방법의 (2)에서 Option 2를 적용한 예시)
도 19는 본 발명의 제3-2 PUCCH 송수신 방법에 적용되는 PUCCH 설계 방법의 일 예를 간단히 나타낸 도면이다.
상기 제3-2 PUCCH 송수신 방법은 반복하는 전송 단위 내 시퀀스가 FDM되어 있다. 이에, 상기 제3-2 PUCCH 송수신 방법과 제3-1 PUCCH 송수신 방법에 대해 동일 주파수 자원을 가정할 때, 상기 제3-2 PUCCH 송수신 방법은 제3-1 PUCCH 송수신 방법 대비 시퀀스의 길이가 짧아져 CDM 가능한 PUCCH 자원 수가 줄어드는 단점을 가질 수 있다. 다만, 상기 제3-2 PUCCH 송수신 방법은 제3-1 PUCCH 송수신 방법 대비 주파수 축에서 서로 다른 UCI 전송 시퀀스가 분리되어 PSD (power spectral density)가 주파수 축에서 고르게 분포하는 장점을 가질 수 있다.
앞서 상술한 제3-2 PUCCH 송수신 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.3.3. 제3-3
PUCCH
송수신 방법
Sequence modulation 기반 PUCCH가 M개 심볼 및 L개 부반송파들로 구성된 자원 영역으로 UE에게 설정되고, 상기 PUCCH가 실제 전송되는 심볼 수는 M 보다 작아질 수 있다. 이때 UE는 아래 중 하나 이상의 규칙에 따라 상기 PUCCH 내 심볼 별 (또는 특정 심볼들에 대한) 주파수 축 자원을 N배 증가시키고, 상기 N배 증가된 주파수 축 자원에 대해서는 앞서 상술한 제3-1 PUCCH 송수신 방법 (또는 제3-2 PUCCH 송수신 방법)에 따라 UCI (또는 RS) 전송 신호를 구성할 수 있다.
(1) 실제 전송되는 심볼 수가 M 대비 일정 비율 이하일 때, 주파수 축 자원을 N배 증가
(2) 실제 전송되는 심볼 수에 따른 Coding rate가 심볼 수 M인 경우의 Coding rate 대비 일정 비율 이상일 때, 주파수 축 자원을 N배 증가
여기서, UE가 RS에 대한 주파수 자원을 증가시키는 경우, 상기 UE는 앞서 상술한 제3-1 PUCCH 송수신 방법 또는 제3-2 PUCCH 송수신 방법을 따르지 않고, 길이가 증가된 새로운 시퀀스를 적용할 수도 있다.
보다 구체적으로, Sequence modulation 기반 PUCCH는 LTE 시스템에서의 PUCCH format 2와 같이 2개 슬롯에 대해 각 슬롯 별 7개 심볼에 대해 [UCI RS UCI UCI RS UCI]의 형태로 신호를 전송하도록 설정된다고 가정한다. 이때, 만약 상기 Sequence modulation 기반 PUCCH에 대해 실제 전송되는 심볼 수가 특수한 환경 및/또는 조건으로 인해 7개로 줄어들었다면, 전송 가능한 UCI 페이로드 크기 또한 반으로 줄게 된다.
상기와 같이 PUCCH에 대한 전송 심볼 수가 줄어드는 경우, UCI 페이로드 크기가 변경되는 것을 막기 위한 방안으로써, UE는 심볼 수가 줄어들면 주파수 축 자원을 확장할 수 있다. 일 예로, 상기 예시에서 PUCCH 전송 심볼이 14개에서 7개로 줄어드는 경우, 상기 UE는 PUCCH 내 심볼 별 주파수 자원 량을 2배로 증가시킬 수 있다. 이때, CDM 기반 Multiplexing Capacity를 유지하고 Low PAPR 특성을 유지하기 위해, UE는 앞서 상술한 제3-1 PUCCH 송수신 방법 (또는 제3-2 PUCCH 송수신 방법)의 동작에 따라 주파수 자원 량이 2배가 된 PUCCH 내 UCI (또는 RS)의 전송 신호를 구성할 수 있다.
앞서 상술한 제3-3 PUCCH 송수신 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.3.4. 제3-4
PUCCH
송수신 방법
PUCCH 내 UCI 전송 영역이 주파수 축에서 (주파수 축 길이가 L인) M개 전송 단위로 구분되고, UCI가 상기 M개 전송 단위에 대해 M번 반복하여 Mapping된 뒤 상기 M개 전송 단위에 대한 주파수 축 Length-M OCC (orthogonal cover code)가 적용되어 전송된다고 가정한다. 이때, UE가 상기 PUCCH에 대한 자원 영역을 시간 축으로 1/N배 및 주파수 축으로 N배 스케일링(scaling) 할 경우, 상기 UE는 아래 중 하나의 방안을 적용할 수 있다.
(1) OCC 길이를 유지하되, OCC가 적용되는 전송 단위의 주파수 축 길이를 N배 늘리는 방안
이때, PUCCH 내 UCI를 전송하는 영역은 주파수 축에서 (길이가 N*L인) M개 전송 단위로 구분되고, UCI는 상기 M개 전송 단위에 대해 M번 반복하여 Mapping된 뒤 상기 M개 전송 단위에 대한 주파수 축 Length-M OCC가 적용되어 전송될 수 있다.
(2) OCC 길이와 OCC가 적용되는 전송 단위의 주파수 축 길이를 모두 유지하는 방안
이때, PUCCH 내 UCI를 전송하는 영역은 주파수 축에서 (길이가 L인) N*M개 전송 단위로 구분되고, M개 전송 단위 별로 독립적인 UCI는 상기 M개 전송 단위에 대해 M번 반복하여 Mapping된 뒤 상기 M개 전송 단위에 대한 주파수 축 Length-M OCC가 적용되어 전송될 수 있다. 이에 따라, 전체 N개의 독립적인 UCI가 전송될 수 있다.
여기서, 상기 UCI는 Sequence 형태이거나 또는 Coded bits (또는 Coded symbol) 형태일 수 있다.
또한, UCI에 대해 DFT Precoding (또는 DFT Spreading)이 적용되는 경우, 상기 주파수 축 OCC는 DFT Precoding 전 단(또는 단계)의 가상의 주파수 영역에 적용되는 OCC를 의미할 수 있다.
보다 구체적으로, PUCCH 내 2개 심볼 및 12개 부반송파들로 구성된 자원 영역에서 각 RE (resource element) 별로 QPSK 변조 심볼이 전송되고, 주파수 축에서 길이가 2 OCC가 적용된다고 가정한다. 이때, OCC가 적용되는 주파수 축 전송 단위의 (주파수 축) 길이는 6개 부반송파이며, 최대 2 (Modulated order) x 6 (OCC가 적용되는 전송 단위의 주파수 축 길이) x 2 (심볼 수) = 24 bits의 Coded bits가 전송될 수 있다.
이때, 상기 자원 영역에 대해 시간 축으로 1/2배 및 주파수 축으로 2배 스케일링이 적용된다고 가정한다. (즉, 1개 심볼 및 24개 부반송파).
일 예로, 주파수 축 자원이 증가함에 따라 UE가 OCC 길이를 4로 증가시키는 경우, 상기 스케일링된 자원 영역 내 전송 가능한 Coded bits 수는 2*24/4 = 12 bits가 되어 동일한 RE들로 구성된 자원 영역임에도 전송 가능한 Coded bits 수가 달라지는 문제가 발생한다.
이에, 본 절에서는 상기와 같이 전체 RE 수가 보존되는 스케일링이 적용될 때, 주파수 축 OCC 길이를 유지하되 OCC가 적용되는 주파수 축 전송 단위의 (주파수 축) 길이는 N배로 증가 시키는 방법에 대해 상세히 설명한다.
이때, 앞서 상술한 제3-4 PUCCH 송수신 방법이 적용되는 경우, 주파수 축 OCC 길이는 2로 유지되고, OCC가 적용되는 주파수 축 전송 단위의 (주파수 축) 길이는 12개 부반송파들로 늘어나며, 상기 스케일링된 자원 영역 내 전송 가능한 Coded bits 수는 여전히 2 ((Modulated order) x 12 (OCC가 적용되는 전송 단위의 주파수 축 길이) x 1 (심볼 수) = 24 bits로 보존된다.
도 20은 본 발명의 제3-4 PUCCH 송수신 방법에 적용되는 PUCCH 설계 방법의 일 예를 간단히 나타낸 도면이다. 도 20에 있어, {OCC(0), OCC(1)}은 OCC를 의미하며, 각각의 값은 일 예로 {+1 +1}, {+1 -1} 중 하나일 수 있다.
또는, 주파수 축 OCC (orthogonal cover code)가 적용된 (기준) PUCCH 자원 영역에 대해 시간 축으로 1/N배 및 주파수 축으로 N배 스케일링(scaling)이 적용될 수 있는 경우, 상기 스케일링이 적용된 PUCCH 자원 영역에 대해 주파수 축 OCC의 길이 및 OCC가 적용되는 주파수 축 전송 단위의 (주파수 축) 길이를 유지하는 방안도 고려될 수 있다. (단, 상기 경우 OCC가 적용되는 영역 별로 독립적인 Coded bits가 전송될 수 있음)
일 예로, PUCCH 내 2개 심볼 및 12개 부반송파들로 구성된 자원 영역에서 UE가 각 RE (resource element) 별로 QPSK 변조 심볼을 전송하고, 주파수 축에서 길이가 2 OCC를 적용하는 경우, 상기 UE는 최대 2 (Modulated order) x 6 (OCC가 적용되는 전송 단위의 주파수 축 길이) x 2 (심볼 수) = 24 bits의 Coded bits를 전송할 수 있다.
이때, 상기 UE가 상기 자원 영역에 대해 시간 축으로 1/2배 및 주파수 축으로 2배 스케일링을 적용하였다고 가정한다 (즉, 1개 심볼 및 24개 부반송파). 이때, 주파수 축 OCC 길이는 2로 유지되고, OCC가 적용되는 주파수 축 전송 단위의 (주파수 축) 길이도 6개 부반송파로 유지될 수 있다. 이 경우, 길이 2인 OCC가 적용 가능한 영역이 24/(2 x 6) = 2개 발생하며, 각 영역 별로 2 (Modulated order) x 6 (OCC가 적용되는 전송 단위의 주파수 축 길이) x 1 (심볼 수) = 12 bits를 전송할 수 있는 바 UE는 전체 2개 영역을 통해 2x12 = 24 bits를 전송할 수 있다.
도 21은 본 발명의 제3-4 PUCCH 송수신 방법에 적용되는 PUCCH 설계 방법의 다른 예를 간단히 나타낸 도면이다.
추가적으로, 앞서 상술한 제3-1 내지 제3-4 PUCCH 송수신 방법에 있어, UCI에 대한 변조 심볼을 시퀀스에 실어 (예: 시퀀스에 곱하여) 전송하는 PUCCH 구조 (LTE의 PUCCH format 2 유사 구조) 또는 UCI에 대한 coded bit (이에 대한 변조 심볼)을 복수의 RE들에 걸쳐 전송하는 PUCCH 구조 (LTE의 PUCCH format 4/5 유사 구조)에 대해 단일 PUCCH 자원을 구성하는 주파수 자원 양은 아래와 같이 결정될 수 있다.
1) Alt 1: 특정
UCI
code rate (R)을 기준으로
PUCCH를
구성하는 주파수 자원 양 (예:
PRB
수)이 결정될 수 있음
일 예로, PUCCH 자원으로 할당된 UCI 심볼 수 N과 PRB 수 K를 기반으로 계산된 UCI code rate이 R을 초과하지 않으면서 최대 code rate이 되도록 K가 결정될 수 있다. 이에, PUCCH가 적은 심볼로 구성될수록 K 값은 커질 수 있다.
다른 예로, 특정 UCI 심볼 수 N (예: 10 or 12)을 기준으로 PRB 수를 K (예: 1)로 설정한 상태에서 (이때의 UCI code rate은 R 이하), PUCCH 자원으로 할당된 UCI 심볼 수가 N보다 작아지고 PRB 수 K와의 조합에 따른 UCI code rate이 R을 초과하게 될 경우, PUCCH를 구성하는 PRB 수는 K보다 큰 값으로 설정될 수 있다.
2) Alt 2: 특정
UCI
심볼
수 (L)을 기준으로
PUCCH를
구성하는 주파수 자원 양 (예:
PRB
수)이 결정될 수 있음.
일 예로, PUCCH 자원으로 할당된 UCI 심볼 수 N이 클수록 더 적은 수의 PRB로 PUCCH가 구성되고, 할당된 UCI 심볼 수 N이 작을수록 더 많은 수의 PRB로 PUCCH가 구성될 수 있다.
다른 예로, PUCCH 자원으로 할당된 UCI 심볼 수 N이 L (예: 10 or 12) 이상인 경우, PUCCH를 구성하는 PRB 수를 K (e.g. 1)로 설정하고, 할당된 UCI 심볼 수 N이 L 미만인 경우에는 K보다 큰 수의 PRB로 PUCCH가 구성될 수 있다.
UE가 앞서 상술한 제3-1 PUCCH 송수신 방법 내지 제3-4 PUCCH 송수신 방법 중 하나의 방법으로 PUCCH에 대한 주파수 자원이 확장될 때, RS 전송 심볼에 대한 주파수 자원 확장은 UCI 전송 심볼에 대한 주파수 자원 확장 방식을 따르거나 또는 확장된 주파수 자원에 맞는 길이의 새로운 RS 시퀀스가 할당되는 방식을 따를 수 있다.
본 발명에 있어, 주파수 영역 (F-domain) OCC의 적용이라 함은, UCI 신호에 DFT가 적용되는 경우 DFT 전단의 virtual F-domain에 OCC를 적용함을 의미하며, UCI 신호에 DFT가 적용되지 않는 경우에는 IFFT 전단의 (real) F-domain에 OCC를 적용함을 의미할 수 있다.
앞서 상술한 제3-4 PUCCH 송수신 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
3.3.5. 제3-5
PUCCH
송수신 방법
PUCCH 내 DM-RS가 CAZAC (constant amplitude zero auto correlation) 시퀀스일 때, PUCCH에 할당된 주파수 자원 길이에 비례하여 DM-RS 시퀀스 길이가 변할 수 있다. 이때, UE는 아래와 같이 일정한 수의 (유효한) CS (cyclic shift) 자원을 설정할 수 있다.
(1) DM-RS 시퀀스 길이에 비례하는 CS 간격으로 일정한 수의 (유효한) CS 자원 설정
일 예로, N 길이 DM-RS 시퀀스에서 (유효한) CS 자원 간 CS 간격이 L인 경우, N*M 길이 DM-RS 시퀀스에서는 (유효한) CS 자원 간 CS 간격을 L*M으로 설정
(2) 고정된 CS 간격 또는 기지국이 설정한 CS 간격으로 (유효한) CS 자원 설정
여기서, DM-RS 시퀀스 내 (유효한) CS 자원 외의 나머지 CS 자원은 다른 UE의 (시퀀스 기반) UCI 전송 목적으로 활용될 수 있음
앞서 상술한 구성에 있어, 상기 CS는 시간 (또는 주파수) 축에서의 Cyclic Shift를 의미할 수 있다. 또한, 상기 PUSCH DM-RS에 대한 (유효한) CS 자원은 복수 PUSCH 간 Multiplexing 용도를 위한 자원일 수 있다.
보다 구체적으로, PUCCH DM-RS의 길이가 12일 때, 전체 CS 자원으로 {0, 1, …, 11}의 Shift 값들이 고려될 수 있다. 이때, 서로 다른 PUCCH 간 DM-RS의 Multiplexing을 지원할 (유효한) CS 자원으로 4개의 CS 자원(예: {0, 3, 6, 9})이 선택될 수 있다.
이후 주파수 자원을 더 할당하여 PUCCH DM-RS 길이가 24가 된 경우, 전체 CS 자원은 {0, 1, 2, …, 23}으로 주어지지만 상기 4명 UE 간의 Multiplexing을 지원한다는 관점에서 (유효한) CS 자원 수는 여전히 4개로 일정하게 설정될 수 있다.
일 예로, CS 자원 간 CS 자원을 균등하게 하여 {0, 6, 12, 18}과 같이 4개의 (유효한) CS 자원이 설정될 수 있다. 이와 같은 방법은 PUCCH DM-RS에 할당된 자원 량에 비례하여 (유효한) CS 자원 간 CS 간격이 변하는 특징을 까질 수 있다.
또는, 채널의 Delay spread가 크지 않은 경우, 기지국이 설정한 CS 간격에 따라 (유효한) CS 자원이 설정될 수 있다. 일 예로, CS 간격을 여전히 3으로 설정 받은 경우, UE는 지원할 (유효한) CS 자원으로 4개의 CS 자원 (예: {0, 3, 6, 9})을 설정할 수 있다. 이때, {12, 15, 18, 21}의 CS 자원 또한 다른 CS 자원들과 직교성을 잘 유지할 수 있다. 이에, 상기 CS 자원들은 다른 UE의 (시퀀스 기반) UCI 전송 목적으로 활용될 수 있다. 적용 가능한 일 예로, 다른 UE는 상기 {12, 15, 18, 21} 중 하나의 시퀀스를 선택하여 신호를 전송함으로써 2 bits UCI를 기지국에게 전송할 수 있다.
앞서 상술한 제3-5 PUCCH 송수신 방법은 본 발명의 다른 제안 방안들과 상호 배치되지 않는 한에서 결합되어 함께 적용될 수 있다.
도 22는 본 발명에 적용 가능한 PUCCH 전송 방법을 간단히 나타낸 흐름도이다.
먼저, UE는 하나 이상의 심볼 각각에 대해 N개의(N은 1보다 큰 자연수) 데이터가 FDM(Frequency Division Multiplexing)되는 자원 그룹을 주파수 방향으로 N 번 반복하여 PUCCH를 구성한다 (S2210). 이에, 상기 PUCCH는 도 11 및 도 12 등과 같이 구성될 수 있다.
이어, 상기 UE는 상기 N 개의 데이터 각각에 대해 서로 상이한 기울기를 갖는 위상 회전 (phase rotation)을 적용하여 상기 하나 이상의 심볼을 통해 상기 구성된 PUCCH를 전송한다 (S2220).
여기서, 상기 N개의 데이터는, M (여기서, M은 자연수) 개의 복조 참조 신호 (Demodulation Reference Signal; DM-RS) 및 N-M 개의 상향링크 제어 정보를 포함할 수 있다.
이때, 상기 M 값이 1인 경우, 상기 1개의 복조 참조 신호는 0(zero)의 기울기를 갖는 위상 회전이 적용되어 상기 하나 이상의 심볼을 통해 전송될 수 있다.
또한, 상기 N 개의 데이터 각각은, 상기 하나 이상의 심볼 각각에 대해 상기 자원 그룹 내 일정한 부반송파 간격으로 이격된 자원 요소 (resource element; RE)에 할당되어 서로 FDM될 수 있다.
여기서, 상기 자원 그룹을 주파수 방향으로 N 번 반복하여 PUCCH를 구성하는 것은, 상기 자원 그룹을 주파수 방향으로 연속된 자원에 N 번 반복하여 PUCCH를 구성하는 것을 포함할 수 있다.
일 예로, 상기 N이 2인 경우, 상기 N개의 데이터는, 1 개의 복조 참조 신호 (Demodulation Reference Signal; DM-RS) 및 1 개의 상향링크 제어 정보를 포함할 수 있다. 이때, 상기 하나 이상의 심볼 각각에 대해 상기 자원 그룹 내 상기 1개의 상향링크 제어 정보는 상기 1개의 복조 참조 신호보다 많거나 같은 개수의 자원에 할당될 수 있다.
상기 구성에 있어, 상기 하나 이상의 심볼은, 1개 또는 2개 심볼일 수 있다. 다시 말해, UE는 앞서 상술한 short PUCCH를 상기와 같이 구성하여 전송할 수 있다.
이와 같은 UE의 동작에 대응하여, 기지국은 하기와 같은 동작을 통해 PUCCH를 수신할 수 있다.
먼저, 기지국은 하나 이상의 심볼을 통해 상기 하나 이상의 심볼 각각에 대해 N개의(N은 1보다 큰 자연수) 데이터가 FDM(Frequency Division Multiplexing)되는 자원 그룹이 주파수 방향으로 N 번 반복되어 구성되는 PUCCH를 수신한다. 이후 상기 기지국은 상기 N 개의 데이터 각각에 대해 서로 상이한 기울기를 갖는 위상 회전 (phase rotation)을 적용하여 상기 하나 이상의 심볼을 통해 수신된 상기 N 개의 데이터를 디코딩할 수 있다.
이때, 상기 기지국이 상기 하나 이상의 심볼을 통해 수신된 상기 N 개의 데이터를 디코딩하는 것은, 상기 M개의 복조 참조 신호를 획득하고, 상기 M개의 복조 참조 신호 및 상기 N-M 개의 상향링크 제어 정보 각각에 적용된 서로 상이한 기울기를 갖는 위상 회전(phase rotation)에 기반하여 상기 N-M 개의 상향링크 제어 정보를 획득하는 것을 모두 포함할 수 있다.
상기 설명한 제안 방식에 대한 일례들 또한 본 발명의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수 도 있지만, 일부 제안 방식들의 조합 (또는 병합) 형태로 구현될 수 도 있다. 상기 제안 방법들의 적용 여부 정보 (또는 상기 제안 방법들의 규칙들에 대한 정보)는 기지국이 단말에게 사전에 정의된 시그널 (예: 물리 계층 시그널 또는 상위 계층 시그널)을 통해서 알려주도록 규칙이 정의될 수 가 있다.
4. 장치 구성
도 23은 제안하는 실시 예가 구현될 수 있는 단말 및 기지국의 구성을 도시하는 도면이다. 도 23에 도시된 단말 및 기지국은 앞서 설명한 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법의 실시 예들을 구현하기 위해 동작한다.
단말(UE: User Equipment, 1)은 상향링크에서는 송신단으로 동작하고, 하향링크에서는 수신단으로 동작할 수 있다. 또한, 기지국(eNB 또는 gNB, 100)은 상향링크에서는 수신단으로 동작하고, 하향링크에서는 송신단으로 동작할 수 있다.
즉, 단말 및 기지국은 정보, 데이터 및/또는 메시지의 전송 및 수신을 제어하기 위해 각각 송신기(Transmitter: 10, 110) 및 수신기(Receiver: 20, 120)를 포함할 수 있으며, 정보, 데이터 및/또는 메시지를 송수신하기 위한 안테나(30, 130) 등을 포함할 수 있다.
또한, 단말 및 기지국은 각각 상술한 본 발명의 실시 예들을 수행하기 위한 프로세서(Processor: 40, 140)와 프로세서의 처리 과정을 임시적으로 또는 지속적으로 저장할 수 있는 메모리(50, 150)를 각각 포함할 수 있다.
이와 같이 구성된 단말(1)은 프로세서(40)를 통해 하나 이상의 심볼 각각에 대해 N개의(N은 1보다 큰 자연수) 데이터가 FDM(Frequency Division Multiplexing)되는 자원 그룹을 주파수 방향으로 N 번 반복하여 PUCCH를 구성한다. 이어, 상기 단말(1)은 송신기(10)를 통해 상기 N 개의 데이터 각각에 대해 서로 상이한 기울기를 갖는 위상 회전 (phase rotation)을 적용하여 상기 하나 이상의 심볼을 통해 상기 구성된 PUCCH를 전송한다.
이에 대응하여, 기지국(100)은 수신기 (120)를 통해 하나 이상의 심볼을 통해 상기 하나 이상의 심볼 각각에 대해 N개의(N은 1보다 큰 자연수) 데이터가 FDM(Frequency Division Multiplexing)되는 자원 그룹이 주파수 방향으로 N 번 반복되어 구성되는 PUCCH를 수신한다. 이어, 상기 기지국(100)은 프로세서(140)를 통해 상기 N 개의 데이터 각각에 대해 서로 상이한 기울기를 갖는 위상 회전 (phase rotation)을 적용하여 상기 하나 이상의 심볼을 통해 수신된 상기 N 개의 데이터를 디코딩한다.
단말 및 기지국에 포함된 송신기 및 수신기는 데이터 전송을 위한 패킷 변복조 기능, 고속 패킷 채널 코딩 기능, 직교주파수분할다중접속(OFDMA: Orthogonal Frequency Division Multiple Access) 패킷 스케줄링, 시분할듀플렉스(TDD: Time Division Duplex) 패킷 스케줄링 및/또는 채널 다중화 기능을 수행할 수 있다. 또한, 도 23의 단말 및 기지국은 저전력 RF(Radio Frequency)/IF(Intermediate Frequency) 유닛을 더 포함할 수 있다.
한편, 본 발명에서 단말로 개인휴대단말기(PDA: Personal Digital Assistant), 셀룰러폰, 개인통신서비스(PCS: Personal Communication Service) 폰, GSM(Global System for Mobile) 폰, WCDMA(Wideband CDMA) 폰, MBS(Mobile Broadband System) 폰, 핸드헬드 PC(Hand-Held PC), 노트북 PC, 스마트(Smart) 폰 또는 멀티모드 멀티밴드(MM-MB: Multi Mode-Multi Band) 단말기 등이 이용될 수 있다.
여기서, 스마트 폰이란 이동통신 단말기와 개인 휴대 단말기의 장점을 혼합한 단말기로서, 이동통신 단말기에 개인 휴대 단말기의 기능인 일정 관리, 팩스 송수신 및 인터넷 접속 등의 데이터 통신 기능을 통합한 단말기를 의미할 수 있다. 또한, 멀티모드 멀티밴드 단말기란 멀티 모뎀칩을 내장하여 휴대 인터넷시스템 및 다른 이동통신 시스템(예를 들어, CDMA(Code Division Multiple Access) 2000 시스템, WCDMA(Wideband CDMA) 시스템 등)에서 모두 작동할 수 있는 단말기를 말한다.
본 발명의 실시 예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시 예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시 예들에 따른 방법은 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시 예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 예를 들어, 소프트웨어 코드는 메모리 유닛(50, 150)에 저장되어 프로세서(40, 140)에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치할 수 있으며, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 기술적 아이디어 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
본 발명의 실시 예들은 다양한 무선접속 시스템에 적용될 수 있다. 다양한 무선접속 시스템들의 일례로서, 3GPP(3rd Generation Partnership Project) 또는 3GPP2 시스템 등이 있다. 본 발명의 실시 예들은 상기 다양한 무선접속 시스템뿐 아니라, 상기 다양한 무선접속 시스템을 응용한 모든 기술 분야에 적용될 수 있다. 나아가, 제안한 방법은 초고주파 대역을 이용하는 mmWave 통신 시스템에도 적용될 수 있다.
Claims (17)
- 무선 통신 시스템에서 단말이 기지국으로 물리 상향링크 제어 채널 (Physical Uplink Control Channel; PUCCH)를 전송하는 방법에 있어서,하나 이상의 심볼 각각에 대해 N개의(N은 1보다 큰 자연수) 데이터가 FDM(Frequency Division Multiplexing)되는 자원 그룹을 주파수 방향으로 N 번 반복하여 PUCCH를 구성; 및상기 N 개의 데이터 각각에 대해 서로 상이한 기울기를 갖는 위상 회전 (phase rotation)을 적용하여 상기 하나 이상의 심볼을 통해 상기 구성된 PUCCH를 전송;하는 것을 포함하는, 단말의 물리 상향링크 제어 채널 전송 방법.
- 제 1항에 있어서,상기 N개의 데이터는,M(M은 자연수) 개의 복조 참조 신호 (Demodulation Reference Signal; DM-RS) 및N-M 개의 상향링크 제어 정보를 포함하는, 단말의 물리 상향링크 제어 채널 전송 방법.
- 제 2항에 있어서,상기 M 값이 1인 경우,상기 1개의 복조 참조 신호는 0(zero)의 기울기를 갖는 위상 회전이 적용되어 상기 하나 이상의 심볼을 통해 전송되는, 단말의 물리 상향링크 제어 채널 전송 방법.
- 제 1항에 있어서,상기 N 개의 데이터 각각은,상기 하나 이상의 심볼 각각에 대해 상기 자원 그룹 내 일정한 부반송파 간격으로 이격된 자원 요소 (resource element; RE)에 할당되어 서로 FDM되는, 단말의 물리 상향링크 제어 채널 전송 방법.
- 제 1항에 있어서,상기 자원 그룹을 주파수 방향으로 N 번 반복하여 PUCCH를 구성하는 것은,상기 자원 그룹을 주파수 방향으로 연속된 자원에 N 번 반복하여 PUCCH를 구성하는 것을 포함하는, 단말의 물리 상향링크 제어 채널 전송 방법.
- 제 1항에 있어서,상기 N이 2인 경우, 상기 N개의 데이터는,1 개의 복조 참조 신호 (Demodulation Reference Signal; DM-RS) 및1 개의 상향링크 제어 정보를 포함하고,상기 하나 이상의 심볼 각각에 대해 상기 자원 그룹 내 상기 1개의 상향링크 제어 정보는 상기 1개의 복조 참조 신호보다 많거나 같은 개수의 자원에 할당되는, 단말의 물리 상향링크 제어 채널 전송 방법.
- 제 1항에 있어서,상기 하나 이상의 심볼은,1개 또는 2개 심볼인, 단말의 물리 상향링크 제어 채널 전송 방법.
- 무선 통신 시스템에서 기지국이 단말로부터 물리 상향링크 제어 채널 (Physical Uplink Control Channel; PUCCH)를 수신하는 방법에 있어서,하나 이상의 심볼을 통해 상기 하나 이상의 심볼 각각에 대해 N개의(N은 1보다 큰 자연수) 데이터가 FDM(Frequency Division Multiplexing)되는 자원 그룹이 주파수 방향으로 N 번 반복되어 구성되는 PUCCH를 수신; 및상기 N 개의 데이터 각각에 대해 서로 상이한 기울기를 갖는 위상 회전 (phase rotation)을 적용하여 상기 하나 이상의 심볼을 통해 수신된 상기 N 개의 데이터를 디코딩;하는 것을 포함하는, 기지국의 물리 상향링크 제어 채널 수신 방법.
- 제 1항에 있어서,상기 N개의 데이터는,M(M은 자연수) 개의 복조 참조 신호 (Demodulation Reference Signal; DM-RS) 및N-M 개의 상향링크 제어 정보를 포함하는, 기지국의 물리 상향링크 제어 채널 수신 방법.
- 제 9항에 있어서,상기 M 값이 1인 경우,상기 1개의 복조 참조 신호는 0(zero)의 기울기를 갖는 위상 회전이 적용되어 상기 하나 이상의 심볼을 통해 전송되는, 기지국의 물리 상향링크 제어 채널 수신 방법.
- 제 9항에 있어서,상기 하나 이상의 심볼을 통해 수신된 상기 N 개의 데이터를 디코딩하는 것은,상기 M 개의 복조 참조 신호를 획득; 및상기 M 개의 복조 참조 신호 및 상기 N-M 개의 상향링크 제어 정보 각각에 적용된 서로 상이한 기울기를 갖는 위상 회전(phase rotation)에 기반하여 상기 N-M 개의 상향링크 제어 정보를 획득;하는 것을 포함하는, 기지국의 물리 상향링크 제어 채널 수신 방법.
- 제 8항에 있어서,상기 N 개의 데이터 각각은,상기 하나 이상의 심볼 각각에 대해 상기 자원 그룹 내 일정한 부반송파 간격으로 이격된 자원 요소 (resource element; RE)에 할당되어 서로 FDM되는, 기지국의 물리 상향링크 제어 채널 수신 방법.
- 제 8항에 있어서,상기 자원 그룹을 주파수 방향으로 N 번 반복하여 PUCCH를 구성하는 것은,상기 자원 그룹을 주파수 방향으로 연속된 자원에 N 번 반복하여 PUCCH를 구성하는 것을 포함하는, 기지국의 물리 상향링크 제어 채널 수신 방법.
- 제 8항에 있어서,상기 N이 2인 경우, 상기 N개의 데이터는,1 개의 복조 참조 신호 (Demodulation Reference Signal; DM-RS) 및1 개의 상향링크 제어 정보를 포함하고,상기 하나 이상의 심볼 각각에 대해 상기 자원 그룹 내 상기 1개의 상향링크 제어 정보는 상기 1개의 복조 참조 신호보다 많거나 같은 개수의 자원에 할당되는, 기지국의 물리 상향링크 제어 채널 수신 방법.
- 제 8항에 있어서,상기 하나 이상의 심볼은,1개 또는 2개 심볼인, 기지국의 물리 상향링크 제어 채널 수신 방법.
- 무선 통신 시스템에서 기지국으로 물리 상향링크 제어 채널 (Physical Uplink Control Channel; PUCCH)를 전송하는 단말에 있어서,송신부; 및상기 송신부와 연결되어 동작하는 프로세서를 포함하되,상기 프로세서는,하나 이상의 심볼 각각에 대해 N개의(N은 1보다 큰 자연수) 데이터가 FDM(Frequency Division Multiplexing)되는 자원 그룹을 주파수 방향으로 N 번 반복하여 PUCCH를 구성; 및상기 N 개의 데이터 각각에 대해 서로 상이한 기울기를 갖는 위상 회전 (phase rotation)을 적용하여 상기 하나 이상의 심볼을 통해 상기 구성된 PUCCH를 전송;하도록 구성되는, 단말.
- 무선 통신 시스템에서 단말로부터 물리 상향링크 제어 채널 (Physical Uplink Control Channel; PUCCH)를 수신하는 기지국에 있어서,수신부; 및상기 수신부와 연결되어 동작하는 프로세서를 포함하되,상기 프로세서는,하나 이상의 심볼을 통해 상기 하나 이상의 심볼 각각에 대해 N개의(N은 1보다 큰 자연수) 데이터가 FDM(Frequency Division Multiplexing)되는 자원 그룹이 주파수 방향으로 N 번 반복되어 구성되는 PUCCH를 수신; 및상기 N 개의 데이터 각각에 대해 서로 상이한 기울기를 갖는 위상 회전 (phase rotation)을 적용하여 상기 하나 이상의 심볼을 통해 수신된 상기 N 개의 데이터를 디코딩;하도록 구성되는, 기지국.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18751719.8A EP3582461B1 (en) | 2017-02-11 | 2018-02-12 | Method for physical uplink control channel transmission/reception between terminal and base station in wireless communication system, and apparatus supporting same |
US16/485,147 US11153857B2 (en) | 2017-02-11 | 2018-02-12 | Method for physical uplink control channel transmission/reception between terminal and base station in wireless communication system, and apparatus supporting same |
KR1020197022963A KR102446263B1 (ko) | 2017-02-11 | 2018-02-12 | 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널의 송수신 방법 및 이를 지원하는 장치 |
Applications Claiming Priority (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762457834P | 2017-02-11 | 2017-02-11 | |
US62/457,834 | 2017-02-11 | ||
US201762475842P | 2017-03-23 | 2017-03-23 | |
US62/475,842 | 2017-03-23 | ||
US201762480440P | 2017-04-01 | 2017-04-01 | |
US62/480,440 | 2017-04-01 | ||
US201762481086P | 2017-04-03 | 2017-04-03 | |
US201762480551P | 2017-04-03 | 2017-04-03 | |
US62/480,551 | 2017-04-03 | ||
US62/481,086 | 2017-04-03 | ||
US201762501065P | 2017-05-03 | 2017-05-03 | |
US62/501,065 | 2017-05-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018147692A1 true WO2018147692A1 (ko) | 2018-08-16 |
Family
ID=63106926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/001792 WO2018147692A1 (ko) | 2017-02-11 | 2018-02-12 | 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널의 송수신 방법 및 이를 지원하는 장치 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11153857B2 (ko) |
EP (1) | EP3582461B1 (ko) |
KR (1) | KR102446263B1 (ko) |
WO (1) | WO2018147692A1 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111092703A (zh) * | 2019-07-26 | 2020-05-01 | 中兴通讯股份有限公司 | 一种信号发送方法、装置、通讯节点及存储介质 |
WO2021087774A1 (zh) * | 2019-11-05 | 2021-05-14 | 华为技术有限公司 | 通信方法及相关装置 |
US12113744B2 (en) | 2019-11-08 | 2024-10-08 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Information indication method and related devices |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11496255B2 (en) * | 2017-04-17 | 2022-11-08 | Qualcomm Incorporated | Multiplexing for sequence based acknowledgement design for new radio |
JP7035029B2 (ja) * | 2017-04-27 | 2022-03-14 | 株式会社Nttドコモ | 端末、無線通信方法、基地局及びシステム |
WO2019012562A1 (en) * | 2017-07-14 | 2019-01-17 | Wisig Networks Private Limited | METHOD AND APPARATUS FOR TRANSMITTING CONTROL DATA IN A COMMUNICATION NETWORK |
US11251923B2 (en) * | 2017-07-31 | 2022-02-15 | Qualcomm Incorporated | Uplink ACK/NACK and SR in short durations |
WO2019158123A1 (en) * | 2018-02-16 | 2019-08-22 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and system for scheduled uplink transmission to resolve channel interference in a wireless network using a coordination indicator |
US11252704B2 (en) * | 2018-06-08 | 2022-02-15 | Qualcomm Incorporated | Spatially multiplexing physical uplink control channel (PUCCH) and sounding reference signal (SRS) |
EP3797556A1 (en) * | 2018-08-08 | 2021-03-31 | Huawei Technologies Co., Ltd. | Devices, methods and computer programs for saving frequency resources in wireless communications |
US11621799B2 (en) * | 2020-05-08 | 2023-04-04 | Qualcomm Incorporated | Peak-to-average power ratio reduction |
WO2022174818A1 (zh) * | 2021-02-20 | 2022-08-25 | 上海推络通信科技合伙企业(有限合伙) | 一种用于无线通信的节点中的方法和装置 |
KR102467086B1 (ko) | 2022-08-22 | 2022-11-14 | 주식회사 웰씨팜 | 조리의 위생성을 개선한 유탕기 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110081932A1 (en) * | 2009-10-05 | 2011-04-07 | Telefonaktiebolaget L M Ericsson (Publ) | PUCCH Resource Allocation for Carrier Aggregation in LTE-Advanced |
WO2016075475A1 (en) * | 2014-11-12 | 2016-05-19 | Sony Corporation | Signal space diversity with rotation angle dependent on modulation used |
US20160261325A1 (en) * | 2013-11-04 | 2016-09-08 | Lg Electronics Inc. | Method and apparatus for transmitting signal in wireless communication system |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9107211B2 (en) * | 2010-11-17 | 2015-08-11 | Lg Electronics Inc. | Method and device for aperiodically reporting channel state information in wireless connection system |
US9479298B2 (en) * | 2013-07-08 | 2016-10-25 | Intel IP Corporation | Demodulation reference signals (DMRS)for side information for interference cancellation |
US10009925B2 (en) * | 2014-10-03 | 2018-06-26 | Qualcomm Incorporated | Physical layer procedures for LTE in unlicensed spectrum |
JP6624604B2 (ja) * | 2016-02-05 | 2019-12-25 | ホアウェイ・テクノロジーズ・カンパニー・リミテッド | アップリンクサブキャリア間隔指示方法、基地局および端末 |
ES2919748T3 (es) * | 2016-11-25 | 2022-07-28 | Ntt Docomo Inc | Terminal de usuario y método de comunicación inalámbrica |
EP3471488B1 (en) * | 2017-01-08 | 2022-10-05 | LG Electronics Inc. | Method for transmitting or receiving uplink signal between terminal and base station in wireless communication system, and device supporting same |
CN110431903B (zh) * | 2017-01-20 | 2023-05-12 | 株式会社Ntt都科摩 | 终端、无线通信方法以及系统 |
US10841904B2 (en) * | 2017-02-02 | 2020-11-17 | Sharp Kabushiki Kaisha | Short physical uplink control channel (PUCCH) design for 5th generation (5G) new radio (NR) |
WO2018145115A1 (en) * | 2017-02-06 | 2018-08-09 | Intel IP Corporation | Resource mapping and multiplexing of uplink control channel and uplink data channel |
EP3471321B1 (en) * | 2017-03-21 | 2021-07-21 | LG Electronics Inc. | Method and apparatuses for transmitting and receiving physical uplink control channel between terminal and base station in wireless communication system |
CN110383742B (zh) * | 2017-03-23 | 2022-02-01 | Lg电子株式会社 | 在无线通信系统中在用户设备和基站之间发送和接收信号的方法和装置 |
-
2018
- 2018-02-12 WO PCT/KR2018/001792 patent/WO2018147692A1/ko unknown
- 2018-02-12 EP EP18751719.8A patent/EP3582461B1/en active Active
- 2018-02-12 US US16/485,147 patent/US11153857B2/en active Active
- 2018-02-12 KR KR1020197022963A patent/KR102446263B1/ko active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110081932A1 (en) * | 2009-10-05 | 2011-04-07 | Telefonaktiebolaget L M Ericsson (Publ) | PUCCH Resource Allocation for Carrier Aggregation in LTE-Advanced |
US20160261325A1 (en) * | 2013-11-04 | 2016-09-08 | Lg Electronics Inc. | Method and apparatus for transmitting signal in wireless communication system |
WO2016075475A1 (en) * | 2014-11-12 | 2016-05-19 | Sony Corporation | Signal space diversity with rotation angle dependent on modulation used |
Non-Patent Citations (3)
Title |
---|
ERICSSON: "On Short PUCCH Enabling Fast ACK/NACK", R1-1703298, 3GPP TSG RAN WG1 MEETING #88, 7 February 2017 (2017-02-07), Athens, Greece, XP051221923 * |
HUAWEI ET AL.: "Short Duration PUCCH for Small to Medium Payload Sizes", R1-1701646, 3GPP TSG RAN WG1 MEETING #88, 6 February 2017 (2017-02-06), Athens, Greece, XP051220528 * |
See also references of EP3582461A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111092703A (zh) * | 2019-07-26 | 2020-05-01 | 中兴通讯股份有限公司 | 一种信号发送方法、装置、通讯节点及存储介质 |
WO2021087774A1 (zh) * | 2019-11-05 | 2021-05-14 | 华为技术有限公司 | 通信方法及相关装置 |
US12113744B2 (en) | 2019-11-08 | 2024-10-08 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Information indication method and related devices |
Also Published As
Publication number | Publication date |
---|---|
US20200045691A1 (en) | 2020-02-06 |
EP3582461A4 (en) | 2020-12-23 |
KR102446263B1 (ko) | 2022-09-22 |
US11153857B2 (en) | 2021-10-19 |
EP3582461B1 (en) | 2022-09-28 |
KR20190108120A (ko) | 2019-09-23 |
EP3582461A1 (en) | 2019-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018147692A1 (ko) | 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널의 송수신 방법 및 이를 지원하는 장치 | |
WO2018084661A1 (ko) | 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치 | |
WO2018174546A1 (ko) | 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치 | |
WO2018203682A1 (ko) | 무선 통신 시스템에서 단말과 기지국의 신호 송수신 방법 및 이를 지원하는 장치 | |
WO2018128493A1 (ko) | 무선 통신 시스템에서 단말과 기지국 간 상향링크 신호 송수신 방법 및 이를 지원하는 장치 | |
WO2017217799A1 (ko) | 무선 통신 시스템에서 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치 | |
WO2018128399A1 (ko) | 무선 통신 시스템에서, 참조 신호를 전송하는 방법 및 이를 위한 장치 | |
WO2018225927A1 (ko) | 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치 | |
WO2018143771A1 (ko) | 무선 통신 시스템에서 단말과 기지국간 신호 송수신 방법 및 이를 지원하는 장치 | |
WO2019139298A1 (ko) | 물리 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치 | |
WO2018182248A1 (ko) | 무선 통신 시스템에서 단말의 위상 트래킹 참조 신호 수신 방법 및 이를 지원하는 장치 | |
WO2018203616A1 (ko) | 동기 신호를 수신하는 방법 및 이를 위한 장치 | |
WO2018004246A1 (ko) | 무선 통신 시스템에서 기지국과 단말 간 상향링크 신호를 송수신하는 방법 및 이를 지원하는 장치 | |
WO2018021821A1 (ko) | 무선 통신 시스템에서 단말의 상향링크 제어 정보 전송 방법 및 이를 지원하는 장치 | |
WO2018231030A1 (ko) | 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널을 송수신하는 방법 및 이를 지원하는 장치 | |
WO2018174550A1 (ko) | 비면허 대역을 지원하는 무선 통신 시스템에서 단말의 상향링크 신호 전송 방법 및 이를 지원하는 장치 | |
WO2018052275A1 (en) | Method and apparatus for transmitting initial access signals in wireless communication systems | |
WO2018231010A1 (ko) | 하향링크 채널을 송수신하는 방법 및 이를 위한 장치 | |
WO2018143740A1 (ko) | 무선 통신 시스템에서 단말의 상향링크 제어 정보 전송 방법 및 이를 지원하는 장치 | |
WO2018151539A1 (ko) | 비면허 대역을 지원하는 무선 통신 시스템에서 기지국과 단말 간 신호 송수신 방법 및 이를 지원하는 장치 | |
WO2018026182A1 (ko) | 비면허 대역을 지원하는 무선 통신 시스템에서 신호 송수신 방법 및 이를 지원하는 장치 | |
WO2017209505A1 (ko) | 무선 통신 시스템에서 rrm 보고 방법 및 이를 지원하는 장치 | |
WO2018203617A1 (ko) | 동기 신호를 수신하는 방법 및 이를 위한 장치 | |
WO2018151565A1 (ko) | 협대역 사물 인터넷을 지원하는 무선 통신 시스템에서 단말과 기지국 간 신호 송수신 방법 및 이를 지원하는 장치 | |
WO2018062845A1 (ko) | 무선 통신 시스템에서 단말의 동작 방법 및 이를 지원하는 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18751719 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197022963 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018751719 Country of ref document: EP Effective date: 20190911 |