WO2018147669A1 - 분리판 및 이를 포함하는 연료전지 스택 - Google Patents

분리판 및 이를 포함하는 연료전지 스택 Download PDF

Info

Publication number
WO2018147669A1
WO2018147669A1 PCT/KR2018/001738 KR2018001738W WO2018147669A1 WO 2018147669 A1 WO2018147669 A1 WO 2018147669A1 KR 2018001738 W KR2018001738 W KR 2018001738W WO 2018147669 A1 WO2018147669 A1 WO 2018147669A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal wire
fuel cell
cell stack
separator
metal
Prior art date
Application number
PCT/KR2018/001738
Other languages
English (en)
French (fr)
Inventor
김유석
정혜미
공창선
양재춘
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP18751540.8A priority Critical patent/EP3579318B1/en
Priority to JP2019541227A priority patent/JP7293547B2/ja
Priority to US16/483,498 priority patent/US11444290B2/en
Priority to CN201880009626.5A priority patent/CN110235293B/zh
Publication of WO2018147669A1 publication Critical patent/WO2018147669A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a separator, and a fuel cell stack including the same.
  • a fuel cell is a energy conversion device that generates electrical energy through an electrochemical reaction between a fuel and an oxidant, and has the advantage of continuously generating power as long as fuel is continuously supplied.
  • the polymer electrolyte fuel cell stack includes a membrane-electrode assembly (MEA) having an electrode layer formed by applying an anode and a cathode, respectively, around an electrolyte membrane made of a polymer material, and reacting gases in the entire reaction region.
  • MEA membrane-electrode assembly
  • the gas diffusion layer (GDL) which distributes the electrons generated by the oxidation reaction of the anode electrode toward the cathode electrode, and supplies the reaction gases to the gas diffusion layer, and generates an electrochemical reaction.
  • GDL gas diffusion layer
  • a gasket made of elastic rubber material disposed on the outer periphery of the reaction zone of the bipolar plate, separator or membrane-electrode assembly for discharging water to prevent leakage of the reaction gas and cooling water. Can be.
  • the separator formed of the porous body disperses the source gas (air, oxygen) well so that the source gas reacts with the toil ions to generate water well. Specifically, the separator increases the reactivity of oxygen and hydrogen ions, and generates water. It should be possible to discharge it well.
  • An object of the present invention is to provide a separator and a fuel cell stack capable of separating a path of water and a path of a reactive gas through surface treatment.
  • an object of the present invention is to provide a separation plate and a fuel cell stack capable of controlling the size of the movement path of water and the reaction gas and maintaining a constant moisture.
  • a separating plate formed of a metal material, having a plurality of pores, some regions have a hydrophilic surface, and another portion has a hydrophobic surface.
  • the separator plate may comprise a first metal wire having a hydrophilic surface and a second metal wire woven with the first metal wire to form pores of a predetermined size and having a hydrophobic surface.
  • first metal wire and the second metal wire may be continuously woven along the first direction.
  • the spacing between the weaving points in the first direction may be constant.
  • the spacing between the weaving points in the first direction may be different.
  • first metal wire and the second metal wire may have the same diameter.
  • first metal wire and the second metal wire may have different diameters.
  • first and second metal wires may have a diameter of 50 to 500 ⁇ m.
  • another membrane-electrode assembly of the present invention a gas diffusion layer disposed on one surface of the membrane-electrode assembly and a separator disposed in contact with the gas diffusion layer in at least a portion of the region, the separator is formed of a metallic material,
  • a fuel cell stack is provided having a plurality of pores, some regions having a hydrophilic surface, and others having a hydrophobic surface.
  • the separator and the fuel cell stack including the same according to an embodiment of the present invention have the following effects.
  • the surface of the metal wire may be treated in various ways (heat treatment, anodizing, plasma, etc.) to change the physical properties of the metal surface.
  • the size of the fluid can be controlled by the difference in the method of weaving the metal wire (for example, 0.5 rotation, 1.5 rotation or more).
  • each fluid passage can be set differently, and the spacing between the weaving points can be adjusted to control the size of the pores with respect to the vertical plane of the porous body.
  • the liquid may be dispersed or induced by the difference in the velocity of the two materials at the interface between the stagnant liquid and the flowing gas.
  • Such surface properties may be determined in a range depending on the surface tension of the hydrophilic metal wire, the injected humidity, and the flow rate of the gas.
  • FIG. 1 is a conceptual diagram of a fuel cell stack according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram of a separator according to an embodiment of the present invention.
  • FIG. 3 is a conceptual diagram illustrating a fluid flow in the separator illustrated in FIG. 2.
  • FIG. 4 is a conceptual diagram illustrating an example of a weaving method.
  • FIG. 1 is a conceptual diagram (1) of a fuel cell stack according to an embodiment of the present invention
  • FIG. 2 is a conceptual diagram of a separator plate 100 according to an embodiment of the present invention
  • FIG. 3 is a separation diagram shown in FIG. It is a conceptual diagram which shows the fluid flow in a board
  • FIG. 4 is a conceptual diagram for demonstrating an example of a weaving system (0.5 rotation weaving).
  • a fuel cell stack 1 includes a membrane-electrode assembly 10, a gas diffusion layer 20 disposed on one surface of the membrane-electrode assembly, and a gas diffusion layer in at least some regions. And a separator plate 100 disposed in contact with the contact plate.
  • the fuel cell stack 1 includes a plate 30 that supports one surface of the separation plate 100.
  • the separation plate 100 may be attached to at least a portion of the plate 30, for example, may be spot welded.
  • the plate 30 together with the separator 30 forms a flow passage of the reaction gas and the generated water.
  • the separating plate 100 is formed of a metal material, has a plurality of pores, some areas have a hydrophilic surface, and some other areas have a hydrophobic surface.
  • the separator is a porous body having a plurality of pores.
  • the separator 100 is woven with the first metal wires A and A 'having a hydrophilic surface and the first metal wires A and A' to form pores of a predetermined size.
  • second metal wires (B, B ') having a hydrophobic surface.
  • the first and second metal wires may have different surface properties (hydrophilic or hydrophobic) by various treatments.
  • the first metal wire and the second metal wire are regularly or irregularly woven along the first direction to manufacture a metal mesh (porous body) having a predetermined density.
  • two metal wires may be woven together, or three or more metal wires may be woven together to manufacture the separator plate 100.
  • the hydrophilic metal wire (first metal wire) and the hydrophobic metal wire (second metal wire) are intertwined and intertwined, whereby constant moisture can be maintained.
  • the upper and lower passages can be opened. In this vertical passage, the reaction gas can flow vertically without resistance.
  • first metal wire and the second metal wire may be continuously woven along the first direction (predetermined direction).
  • an interval between the weaving points in the first direction may be constant, or an interval between the weaving points in the first direction may be different.
  • first metal wire and the second metal wire may have the same diameter, and the first metal wire and the second metal wire may have different diameters. In this way, by adjusting the diameter (thickness) of the metal wire, it is possible to adjust the size of the movement path of the water and the reaction gas.
  • the size of the fluid can be controlled by the diameter (thickness) of the metal wire.
  • the thickness of the metal wire if the thickness of the metal wire is too thin, the total thickness of the separation plate (also referred to as the 'porous body') porous body becomes thin and the size of the fluid flow passage in the horizontal direction is narrowed so that the pressure difference between the inlet and outlet ends is increased. do.
  • the thickness of the metal wire if the thickness of the metal wire is too thick, the thickness of the passage of the porous body may increase, so that deflection movement of the fluid may occur. Therefore, it is preferable that the first and second metal wires have a diameter of 50 to 500 mu m.
  • the porous body maintains a constant moisture and at the same time maintains a certain amount of pores to facilitate the smooth flow of the reaction gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

본 발명은 분리판, 및 이를 포함하는 연료전지 스택에 관한 것으로, 본 발명의 일 측면에 따르면, 금속 재질로 형성되고, 복수 개의 기공을 가지며, 일부 영역은 친수성 표면을 갖고, 또 다른 일부 영역은 소수성 표면을 갖는 분리판이 제공된다.

Description

분리판 및 이를 포함하는 연료전지 스택
본 발명은 분리판, 및 이를 포함하는 연료전지 스택에 관한 것이다.
본 출원은 2017년 2월 10일자 한국 특허 출원 제10-2017-0018631호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
일반적으로 연료전지(fuel cell)는 연료와 산화제의 전기 화학반응을 통해 전기에너지를 발생시키는 에너지 변환 장치이며, 연료가 계속적으로 공급되는 한 지속적으로 발전이 가능한 장점이 있다.
고분자 전해질 연료전지 스택은 고분자 물질로 구성된 전해질막을 중심으로 애노드(anode)와 캐소드(cathode)가 각각 도포되어 형성된 전극층을 구비하는 막-전극 접합체(Membrane Electrode Assembly, MEA), 반응 기체들을 반응 영역 전체에 걸쳐 고르게 분포시키고, 애노드 전극의 산화반응에 의해 발생된 전자를 캐소드 전극 쪽으로 전달하는 역할의 가스 확산층(Gas Diffusion Layer, GDL), 반응 기체들을 가스 확산층으로 공급하고, 전기화학반응에 의해 발생된 물을 외부로 배출시키는 분리판(bipolar plate), 분리판 또는 막-전극 접합체의 반응 영역 외주에 배치되어 반응 기체 및 냉각수의 누출을 방지하는, 탄성을 갖는 고무 소재의 가스켓(gasket)을 포함할 수 있다.
다공체로 형성된 분리판은 원료 가스(에어, 산소)를 잘 분산시켜 원료 가스가 수고 이온과 반응하여 물이 잘 생성되도록 하며, 구체적으로, 분리판은 산소와 수소 이온의 반응성을 높이고, 생성된 물을 잘 배출시킬 수 있어야 한다.
한편 다량의 물이 발생하게 되면, 물이 분리판 내에 응결되면서 원료 가스의 흐름을 방해하게 되고, 원료 가스와 촉매층의 반응면이 감소하게 되어 결과적으로 반응성이 낮아지게 된다. 이러한 연속적인 현상으로 인해 고출력 운전에서는 다량의 물이 발생하게 되어 전압 강하 또는 출력 저하와 같은 현상이 발생하게 된다.
이와는 다르게 물이 너무 잘 배출되어 전극 표면의 습도가 낮으면 이온전도도가 낮아져서 전지의 저항이 증가하게 된다. 따라서, 전극 내에서 일정한 습도를 유지하며, 그 이상 발생되는 물은 적절하게 배출되는 것이 중요하다.
본 발명은 표면 처리를 통해 물의 경로와 반응 가스의 경로를 분리할 수 있는 분리판 및 연료전지 스택을 제공하는 것을 해결하고자 하는 과제로 한다.
또한, 본 발명은 물과 반응가스의 이동 경로의 크기를 조절할 수 있고, 일정 수분을 유지할 수 있는 분리판 및 연료전지 스택을 제공하는 것을 해결하고자 하는 과제로 한다.
상기한 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면, 금속 재질로 형성되고, 복수 개의 기공을 가지며, 일부 영역은 친수성 표면을 갖고, 또 다른 일부 영역은 소수성 표면을 갖는 분리판이 제공된다.
상기 분리판은 친수성 표면을 갖는 제1 금속 와이어 및 소정 크기의 기공이 형성되도록 제1 금속 와이어와 직조되며, 소수성 표면을 갖는 제2 금속 와이어를 포함할 수 있다.
또한, 제1 금속 와이어 및 제2 금속 와이어는 제1 방향을 따라 연속적으로 직조될 수 있다.
또한, 제1 방향에 따른 직조 지점 사이의 간격이 일정할 수 있다.
또한, 제1 방향에 따른 직조 지점 사이의 간격이 상이할 수 있다.
또한, 제1 금속 와이어 및 제2 금속 와이어는 직경이 동일할 수 있다.
또한, 제1 금속 와이어 및 제2 금속 와이어는 직경이 서로 다를 수 있다.
또한, 제1 및 제2 금속 와이어는 50 내지 500㎛의 직경을 가질 수 있다.
또한, 본 발명의 또 다른 막-전극 접합체, 막-전극 접합체의 일면에 배치된 가스 확산층 및 적어도 일부 영역에서 가스 확산층과 접촉하도록 배치된 분리판을 포함하며, 분리판은 금속 재질로 형성되고, 복수 개의 기공을 가지며, 일부 영역은 친수성 표면을 갖고, 또 다른 일부 영역은 소수성 표면을 갖는 연료전지 스택이 제공된다.
이상에서 살펴본 바와 같이, 본 발명의 일 실시예와 관련된 분리판, 및 이를 포함하는 연료전지 스택은 다음과 같은 효과를 갖는다.
본 발명에 따르면, 표면 성질이 서로 다른 금속 와이어를 직조함으로써, 다양한 구조적, 성능적 적용 확대가 가능하다.
금속 와이어의 표면을 다양한 방식(열처리, anodizing, 플라즈마 등)으로 처리하여 금속 표면의 물성을 다르게 할 수 있다.
또한, 금속 와이어를 엮는 방법(예를 들어, 0.5회 회전, 1.5회 회전 또는 그 이상도 가능)의 차이에 의해 유체(액체, 기체)의 크기를 제어할 수 있다.
또한, 직조되는 2개의 금속 와이어의 두께를 서로 상이하게 하여, 각각의 유체 통로를 다르게 설정할 수 있고, 직조 지점 간의 간격을 조절하여 다공체의 수직 면에 대한 기공의 크기를 제어할 수 있다.
또한, 정체된 액체와 유동하는 기체의 계면에서 두 물질의 속도 차이에 의해 액체가 분산되거나 유동을 유도할 수 있다. 이러한 표면 성질은 친수 성질의 금속 와이어의 표면 장력과, 주입되는 습도, 기체의 유동 속도에 따라 각각의 범위가 결정될 수 있다.
도 1은 본 발명의 일 실시예와 관련된 연료전지 스택의 개념도이다.
도 2는 본 발명의 일 실시예와 관련된 분리판의 개념도이다.
도 3은 도 2에 도시된 분리판에서 유체 흐름을 나타내는 개념도이다.
도 4는 직조방식의 일예를 설명하기 위한 개념도이다.
이하, 본 발명의 일 실시예에 따른 분리판 및 이를 포함하는 연료전지 스택을 첨부된 도면을 참고하여 상세히 설명한다.
또한, 도면 부호에 관계없이 동일하거나 대응되는 구성요소는 동일 또는 유사한 참조번호를 부여하고 이에 대한 중복 설명은 생략하기로 하며, 설명의 편의를 위하여 도시된 각 구성 부재의 크기 및 형상은 과장되거나 축소될 수 있다.
도 1은 본 발명의 일 실시예와 관련된 연료전지 스택의 개념도(1)이고, 도 2는 본 발명의 일 실시예와 관련된 분리판(100)의 개념도이고, 도 3은 도 2에 도시된 분리판에서 유체 흐름을 나타내는 개념도이며, 도 4는 직조방식의 일예(0.5회 회전 엮음)를 설명하기 위한 개념도이다.
도 1을 참조하면, 본 발명의 일 실시예와 관련된 연료전지 스택(1)은 막-전극 접합체(10), 막-전극 접합체의 일면에 배치된 가스 확산층(20) 및 적어도 일부 영역에서 가스 확산층과 접촉하도록 배치된 분리판(100)을 포함한다. 또한, 상기 연료전지 스택(1)은 분리판(100)의 일면을 지지하는 플레이트(30)를 포함한다. 여기서 상기 분리판(100)은 적어도 일부 영역이 플레이트(30)에 부착될 수 있고, 예를 들어, 스팟 용접될 수 있다. 상기 플레이트(30)는 분리판(30)과 함께 반응가스 및 생성수의 유동 통로를 형성한다.
상기 분리판(100)은 금속 재질로 형성되고, 복수 개의 기공을 가지며, 일부 영역은 친수성 표면을 갖고, 또 다른 일부 영역은 소수성 표면을 갖는다. 상기 분리판은 복수 개의 기공을 갖는 다공체이다.
도 1 및 도 2를 참조하면, 분리판(100)은 친수성 표면을 갖는 제1 금속 와이어(A, A') 및 소정 크기의 기공이 형성되도록 제1 금속 와이어(A, A')와 직조되며, 소수성 표면을 갖는 제2 금속 와이어(B, B')를 포함할 수 있다. 제1 및 제2 금속 와이어는 다양한 처리에 의해 서로 다른 표면 물성(친수성 또는 소수성)을 가질 수 있다. 이때, 제1 방향을 따라 제1 금속 와이어와 제2 금속 와이어를 규칙적 또는 불규칙적으로 엮어서 소정 밀도의 금속 망(다공체)을 제조할 수 있다. 또한, 2개의 금속 와이어를 엮을 수도 있고, 3개 이상의 금속 와이어를 엮어서 분리판(100)을 제조할 수도 있다.
2개의 금속 와이어로 구성된 다공체를 세부적으로 관찰하면, 친수성 금속 와이어(제1 금속 와이어)와 소수성 금속 와이어(제2 금속 와이어)가 교차하여 얽혀있기 때문에, 일정 수분을 유지할 수 있다.
또한, 2개의 금속 와이어가 교차하는 위상(직조 지점)에서는 금속 와이어가 수직으로 배열되므로 상하 통로가 개방될 수 있다. 이 상하 통로로는 반응가스가 수직으로 저항없이 유동할 수 있다.
즉, 친수성 성질의 금속 와이어 측에는 일정량의 물이 흡착되어, 전체 습도가 낮아지는 것을 방지할 수 있고, 소수성 성질의 금속 와이어 측에서는 물이 흡착되지 않으므로, 다공체에 필요 이상의 물이 맺히는 것을 방지할 수 있다.
또한, 금속 와이어들의 엮음에 의해, 물의 이동 경로와 반응 가스의 이동 경로를 분리시킬 수 있다.
또한, 제1 금속 와이어 및 제2 금속 와이어는 제1 방향(소정 방향)을 따라 연속적으로 직조될 수 있다. 이때, 제1 방향에 따른 직조 지점 사이의 간격이 일정할 수도 있고, 제1 방향에 따른 직조 지점 사이의 간격이 상이할 수 있다.
또한, 제1 금속 와이어 및 제2 금속 와이어는 직경이 동일할 수도 있고, 제1 금속 와이어 및 제2 금속 와이어는 직경이 서로 다를 수 있다. 이와 같이, 금속 와이어의 직경(두께)을 조절하여, 물과 반응가스의 이동 경로의 크기를 조절할 수 있다.
또한, 금속 와이어의 직경(두께)에 의해 유체(액체, 기체)의 크기를 제어할 수 있다. 구체적으로, 금속 와이어의 두께가 너무 가늘 경우, 분리판('다공체'라고도 함) 다공체의 전체 두께가 얇아져서 수평 방향의 유체 이동 통로의 크기가 좁아지기 때문에 진입단과 배출단의 압력 차이가 커지게 된다. 이와는 다르게, 금속 와이어의 두께가 너무 두꺼울 경우, 다공체의 통로의 두께가 커져서 유체의 편향 이동이 발생할 수 있다. 따라서, 제1 및 제2 금속 와이어는 50 내지 500㎛의 직경을 갖는 것이 바람직하다.
도 1 및 도 2를 참조하면, 유체(물, 반응가스)가 상하방향으로 흐르는 경우, A와 A' 영역(제1 금속 와이어, 붉은색 화살표)에서는 액체(수분) 또는 상대적으로 습도가 높은 기체가 흐르게 된다. 또한, B와 B'영역(제2 금속 와이어, 파란색 화살표)에서는 소수성 표면에 연속적으로 노출되므로, 건조한 기체 또는 상대적으로 습도가 낮은 기체가 흐르게 된다.
또한, A와 A' 영역에서는 수분이 제1 금속 와이어의 친수성 표면에 흡착되므로 전체적으로 일정한 습도를 유지할 수 있게 된다. 또한, B와 B'영역에서는 물의 응결 또는 응집되기 어려우므로 반응가스가 흐르는 통로가 된다.
따라서 다공체는 일정 수분은 유지하면서 일정량의 기공도 동시에 유지하여 반응 가스의 원활한 유동을 용이하게 한다.
위에서 설명된 본 발명의 바람직한 실시예는 예시의 목적을 위해 개시된 것이고, 본 발명에 대한 통상의 지식을 가지는 당업자라면 본 발명의 사상과 범위 안에서 다양한 수정, 변경, 부가가 가능할 것이며, 이러한 수정, 변경 및 부가는 하기의 특허청구범위에 속하는 것으로 보아야 할 것이다.
본 발명에 따르면, 표면 성질이 서로 다른 금속 와이어를 직조함으로써, 분리판의 다양한 구조적, 성능적 적용 확대가 가능하다.

Claims (16)

  1. 금속 재질로 형성되고, 복수 개의 기공을 가지며, 일부 영역은 친수성 표면을 갖고, 또 다른 일부 영역은 소수성 표면을 갖는 분리판.
  2. 제 1 항에 있어서,
    친수성 표면을 갖는 제1 금속 와이어; 및
    소정 크기의 기공이 형성되도록 제1 금속 와이어와 직조되며, 소수성 표면을 갖는 제2 금속 와이어를 포함하는 분리판.
  3. 제 2 항에 있어서,
    제1 금속 와이어 및 제2 금속 와이어는 제1 방향을 따라 연속적으로 직조된 분리판.
  4. 제 3 항에 있어서,
    제1 방향에 따른 직조 지점 사이의 간격이 일정한 분리판.
  5. 제 3 항에 있어서,
    제1 방향에 따른 직조 지점 사이의 간격이 상이한 분리판.
  6. 제 2 항에 있어서,
    제1 금속 와이어 및 제2 금속 와이어는 직경이 동일한 분리판.
  7. 제 2 항에 있어서,
    제1 금속 와이어 및 제2 금속 와이어는 직경이 서로 다른 분리판.
  8. 제 2 항에 있어서,
    제1 및 제2 금속 와이어는 50 내지 500㎛의 직경을 갖는 분리판.
  9. 막-전극 접합체;
    막-전극 접합체의 일면에 배치된 가스 확산층; 및
    적어도 일부 영역에서 가스 확산층과 접촉하도록 배치된 분리판을 포함하며,
    분리판은 금속 재질로 형성되고, 복수 개의 기공을 가지며, 일부 영역은 친수성 표면을 갖고, 또 다른 일부 영역은 소수성 표면을 갖는 연료전지 스택.
  10. 제 9 항에 있어서,
    친수성 표면을 갖는 제1 금속 와이어; 및
    소정 크기의 기공이 형성되도록 제1 금속 와이어와 직조되며, 소수성 표면을 갖는 제2 금속 와이어를 포함하는 연료전지 스택.
  11. 제 10 항에 있어서,
    제1 금속 와이어 및 제2 금속 와이어는 제1 방향을 따라 연속적으로 직조된 연료전지 스택.
  12. 제 11 항에 있어서,
    제1 방향에 따른 직조 지점 사이의 간격이 일정한 연료전지 스택.
  13. 제 11 항에 있어서,
    제1 방향에 따른 직조 지점 사이의 간격이 상이한 연료전지 스택.
  14. 제 10 항에 있어서,
    제1 금속 와이어 및 제2 금속 와이어는 직경이 동일한 연료전지 스택.
  15. 제 10 항에 있어서,
    제1 금속 와이어 및 제2 금속 와이어는 직경이 서로 다른 연료전지 스택.
  16. 제 10 항에 있어서,
    제1 및 제2 금속 와이어는 50 내지 500㎛의 직경을 갖는 연료전지 스택.
PCT/KR2018/001738 2017-02-10 2018-02-09 분리판 및 이를 포함하는 연료전지 스택 WO2018147669A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18751540.8A EP3579318B1 (en) 2017-02-10 2018-02-09 Separator and fuel cell stack comprising same
JP2019541227A JP7293547B2 (ja) 2017-02-10 2018-02-09 分離板、及びこれを含む燃料電池スタック
US16/483,498 US11444290B2 (en) 2017-02-10 2018-02-09 Separator, and fuel cell stack comprising the same
CN201880009626.5A CN110235293B (zh) 2017-02-10 2018-02-09 隔板及包括该隔板的燃料电池堆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0018631 2017-02-10
KR1020170018631A KR102118370B1 (ko) 2017-02-10 2017-02-10 분리판 및 이를 포함하는 연료전지 스택

Publications (1)

Publication Number Publication Date
WO2018147669A1 true WO2018147669A1 (ko) 2018-08-16

Family

ID=63107650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001738 WO2018147669A1 (ko) 2017-02-10 2018-02-09 분리판 및 이를 포함하는 연료전지 스택

Country Status (6)

Country Link
US (1) US11444290B2 (ko)
EP (1) EP3579318B1 (ko)
JP (1) JP7293547B2 (ko)
KR (1) KR102118370B1 (ko)
CN (1) CN110235293B (ko)
WO (1) WO2018147669A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102436846B1 (ko) * 2020-06-03 2022-08-25 (주)두산 모빌리티 이노베이션 연료전지의 스택 구조

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060105222A1 (en) * 2004-11-12 2006-05-18 Abd Elhamid Mahmoud H Hydrophilic surface modification of bipolar plate
JP2008176971A (ja) * 2007-01-17 2008-07-31 Matsushita Electric Ind Co Ltd 高分子電解質形燃料電池
KR20100119230A (ko) * 2009-04-30 2010-11-09 연세대학교 산학협력단 나노 구조물 및 마이크로 구조물이 형성된 연료 전지용 바이폴라 플레이트
KR20110064807A (ko) * 2009-12-09 2011-06-15 한국기계연구원 수분 포집 장치
JP5389767B2 (ja) * 2010-11-02 2014-01-15 株式会社日立製作所 燃料電池用セパレータ及びこれを用いた燃料電池
KR20170018631A (ko) 2015-08-10 2017-02-20 엘지전자 주식회사 이동 단말기 및 그 제어 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5863673A (en) 1995-12-18 1999-01-26 Ballard Power Systems Inc. Porous electrode substrate for an electrochemical fuel cell
EP1327492A1 (en) 2002-01-15 2003-07-16 N.V. Bekaert S.A. Porous metal stack for fuel cells or electrolysers
US7939218B2 (en) * 2004-12-09 2011-05-10 Nanosys, Inc. Nanowire structures comprising carbon
JP2007207719A (ja) 2006-02-06 2007-08-16 Toyota Motor Corp チューブ型燃料電池用膜電極複合体およびチューブ型燃料電池
JP2007242417A (ja) 2006-03-08 2007-09-20 Nissan Motor Co Ltd 燃料電池
WO2009061682A2 (en) 2007-10-31 2009-05-14 Electrochem, Inc. Integrated flow field (iff) structure
JP2009211953A (ja) * 2008-03-04 2009-09-17 Sanyo Electric Co Ltd 電極基材、電極、膜電極接合体、燃料電池および電極基材の製造方法
KR20110062360A (ko) * 2009-12-03 2011-06-10 현대자동차주식회사 메쉬층을 갖는 연료전지 셀

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060105222A1 (en) * 2004-11-12 2006-05-18 Abd Elhamid Mahmoud H Hydrophilic surface modification of bipolar plate
JP2008176971A (ja) * 2007-01-17 2008-07-31 Matsushita Electric Ind Co Ltd 高分子電解質形燃料電池
KR20100119230A (ko) * 2009-04-30 2010-11-09 연세대학교 산학협력단 나노 구조물 및 마이크로 구조물이 형성된 연료 전지용 바이폴라 플레이트
KR20110064807A (ko) * 2009-12-09 2011-06-15 한국기계연구원 수분 포집 장치
JP5389767B2 (ja) * 2010-11-02 2014-01-15 株式会社日立製作所 燃料電池用セパレータ及びこれを用いた燃料電池
KR20170018631A (ko) 2015-08-10 2017-02-20 엘지전자 주식회사 이동 단말기 및 그 제어 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3579318A4

Also Published As

Publication number Publication date
EP3579318A4 (en) 2020-01-15
CN110235293A (zh) 2019-09-13
KR20180092643A (ko) 2018-08-20
JP2020507183A (ja) 2020-03-05
US20200112034A1 (en) 2020-04-09
KR102118370B1 (ko) 2020-06-03
EP3579318A1 (en) 2019-12-11
CN110235293B (zh) 2023-06-13
JP7293547B2 (ja) 2023-06-20
EP3579318B1 (en) 2022-08-10
US11444290B2 (en) 2022-09-13

Similar Documents

Publication Publication Date Title
KR102569814B1 (ko) Pem 수 전해조 시스템, pem 수 전해조 셀, 스택 및 시스템에서 수소를 생산하는 방법
US6531236B1 (en) Polymer electrolyte fuel cell stack
WO2017003116A1 (ko) 분리판, 이의 제조방법 및 이를 포함하는 연료전지 스택
US6485857B2 (en) Fuel cell hybrid flow field humidification zone
JPH04259759A (ja) 固体高分子電解質燃料電池及び電解セルの隔膜加湿構造
JPWO2011114702A1 (ja) 高分子電解質形燃料電池及びそれを備える燃料電池スタック
WO2020027400A1 (ko) 연료전지용 분리판 및 이를 포함하는 연료전지 스택
WO2018147669A1 (ko) 분리판 및 이를 포함하는 연료전지 스택
US10559834B2 (en) Separator for fuel cell
WO2019132606A1 (ko) 유체의 흐름 방향 제어가 가능한 연료전지 막가습기
JP4872252B2 (ja) 燃料電池
US20210159516A1 (en) Fuel cell
WO2018030778A1 (ko) 분리판, 및 이를 포함하는 연료전지 스택
CN108023098A (zh) 金属圈密封件和通道间的相互作用下形成更均匀接触压力分布的通道布局设计
CN112993306B (zh) 用于燃料电池的分离板
WO2019164151A1 (ko) 연료전지 셀 및 이를 포함하는 연료전지 스택
US9203099B2 (en) Fuel cell assembly and method for operating a fuel cell assembly
WO2017007174A1 (ko) 분리판, 이의 제조방법 및 이를 포함하는 연료전지 스택
WO2018131817A1 (ko) 연료전지 시스템
KR20180035002A (ko) 연료 전지
WO2018101754A1 (ko) 분리판 및 이를 포함하는 연료전지 스택
KR102545713B1 (ko) 분리판 및 이를 포함하는 연료전지 스택
WO2018021773A1 (ko) 분리판, 및 이를 포함하는 연료전지 스택
US20240120510A1 (en) Gas diffusion layer, separator and electrochemical reactor
KR20150059867A (ko) 연료 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751540

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019541227

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018751540

Country of ref document: EP

Effective date: 20190902