WO2018147549A1 - Method for manufacturing pouch type secondary battery - Google Patents

Method for manufacturing pouch type secondary battery Download PDF

Info

Publication number
WO2018147549A1
WO2018147549A1 PCT/KR2017/015271 KR2017015271W WO2018147549A1 WO 2018147549 A1 WO2018147549 A1 WO 2018147549A1 KR 2017015271 W KR2017015271 W KR 2017015271W WO 2018147549 A1 WO2018147549 A1 WO 2018147549A1
Authority
WO
WIPO (PCT)
Prior art keywords
pouch
pouch case
secondary battery
type secondary
manufacturing
Prior art date
Application number
PCT/KR2017/015271
Other languages
French (fr)
Korean (ko)
Inventor
홍석현
김명현
박효진
배준성
이의경
허진우
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2018147549A1 publication Critical patent/WO2018147549A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • H01M50/636Closing or sealing filling ports, e.g. using lids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method of manufacturing a pouch type secondary battery, and more particularly, to a method of manufacturing a pouch type secondary battery that can improve the discharge efficiency of the gas in the degasing process.
  • the manufacturing method of the pouch type secondary battery injecting the electrolyte through the electrolyte injection portion located on one side of the edge region of the prepared pouch-type cell, after the first sealing the electrolyte injection portion along the primary sealing line to charge and discharge Advancing, cutting a portion of the electrolyte injection portion along a cutting line located inside the primary sealing line, performing degassing, secondary sealing the electrolyte injection portion, and positioned outside the secondary sealing line Cutting a portion of the electrolyte injection portion along the cutting line.
  • the pouch case ( 2) In the manufacturing method of the pouch type secondary battery, in the degassing process performed after the activation process through charging and discharging, as shown in FIG. 1, the pouch case ( 2) and pressurizes the cell 1 including the electrode assembly 3 to remove the internal activation gas by moving to the outside through the degas hole (4).
  • the electrode assembly has a problem in that the degassing efficiency is limited because it is difficult to smoothly discharge the activating gas to the outside due to a complicated shape such as a stack and folding structure.
  • Residual gas which is not discharged during the degassing process and remains in the cell, increases the resistance of the cell, which causes the quality to be deteriorated.
  • the present invention has been made in view of the above technical background, and provides a method of manufacturing a pouch type secondary battery that can increase the efficiency of the degassing process of removing the activation gas in the manufacturing process of the pouch type secondary battery. There is this.
  • the present invention comprises the steps of (a) casing the electrode assembly to the pouch case; (b) injecting an electrolyte solution through a portion of the pouch case; (c) first sealing the pouch case; (d) charging and discharging; (e) forming a gas hole in the pouch case; (f) discharging an activation gas to the outside of the pouch case while applying ultrasonic pressure from the outside of the pouch case toward the electrode assembly and generating ultrasonic waves to vibrate the electrolyte solution; It provides a method of manufacturing a pouch type secondary battery comprising a; and (g) secondary sealing the pouch case.
  • the degas pusher may be disposed to correspond to at least one surface of the pouch case to apply pressure in a direction perpendicular to the plane of the pouch case, and the ultrasonic vibration may be applied in the pressing direction of the degas pusher.
  • step (f) it is preferable to penetrate the ultrasonic wave to the inside of the electrode assembly.
  • the step (f) is performed in a chamber for creating a vacuum atmosphere, and it is preferable to maintain the internal pressure of the chamber at -95 kPa or less.
  • the electrolyte can be injected through the opening formed in the extension provided on one side of the pouch case.
  • the step (c) may seal the opening to seal the opening, and the step (e) may form the degas hole inside the sealing line formed by the primary sealing.
  • the degassing efficiency can be improved since the activation gas can be smoothly moved by pressurizing the cell during the degassing process and simultaneously applying ultrasonic waves to the cells to vibrate the electrolyte.
  • the degassing process is performed with high efficiency even for an electrode assembly having a high loading density and a high packing density, or a complicated structure such as a stack and folding structure that is difficult to remove gas. Can be improved.
  • FIG. 1 is a cross-sectional view schematically showing a degassing process performed by a method of manufacturing a pouch type secondary battery according to the prior art.
  • FIG. 2 is a cross-sectional view schematically illustrating a degassing process performed by a method of manufacturing a pouch type secondary battery according to a preferred embodiment of the present invention.
  • FIG. 3 is a cross-sectional view illustrating a modification of FIG. 2.
  • FIG. 4 is a flowchart illustrating a process of manufacturing a pouch type secondary battery according to a preferred embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically illustrating a degassing process performed by a method of manufacturing a pouch type secondary battery according to a preferred embodiment of the present invention.
  • the degassing process is performed by arranging the degas pusher 100 and the ultrasonic device 110 to correspond to the planar portion of the cell 1. Press pressure and ultrasonic vibration are applied in the thickness direction of the cell.
  • Each cell 1 has a thin plate-like body and includes a pouch case 2 and an electrode assembly 3 which is built in the pouch case 2 and in which an anode, a separator and a cathode are alternately stacked.
  • the positive electrode and the negative electrode are manufactured by applying a slurry such as an electrode active material, a binder resin, a conductive agent and other additives to at least one side of a current collector.
  • a slurry such as an electrode active material, a binder resin, a conductive agent and other additives to at least one side of a current collector.
  • a conventional positive electrode active material such as a lithium-containing transition metal oxide is used in the case of a positive electrode
  • Conventional negative electrode active materials may be used.
  • a conventional porous polymer film used for a lithium secondary battery may be employed.
  • the pouch case 2 is formed of a sheet material, and includes a housing for accommodating the electrode assembly 3.
  • the pouch case 2 is formed by combining a first case and a second case formed by processing a sheet material into a predetermined shape.
  • the sheet material of the pouch case is an outermost outer resin layer made of insulating material such as polyethylene terephthalate (PET) or nylon (Nylon), and an aluminum material that maintains mechanical strength and prevents penetration of moisture and oxygen. It is composed of a multi-layered structure in which a metal layer and an inner resin layer made of a polyolefin (Polyolepin) -based material having a heat adhesiveness and acting as a sealing material are laminated.
  • a predetermined adhesive resin layer may be interposed between the inner resin layer and the metal layer and the outer resin layer and the metal layer as necessary.
  • the adhesive resin layer is for smooth adhesion between dissimilar materials and is formed in a single layer or multiple layers.
  • the material may be a polyolefin-based resin or a polyurethane resin for smooth processing, and a mixture thereof may be employed. .
  • At least a part of the edge of the cell 1 is a portion where sealing is performed by thermocompression or the like.
  • the edge portion of the cell 1 is relatively thin in thickness compared to the body portion.
  • one side edge portion of the pouch case 2 is provided with a wider extension than the other portion, and the electrolyte is injected through an opening formed in the extension portion. After the injection of the electrolyte is completed, the opening is first sealed, and after the activation process for charging and discharging the cell 1, the degas hole 4 is formed inside the sealing line formed by the first sealing.
  • the degassing process after activation of the cell 1 is carried out inside a chamber which creates a vacuum atmosphere.
  • the degas pusher 100 is disposed to correspond to at least one surface of the cell 1 so that the pouch case 2 and the electrode assembly 3 may be disposed in a thickness direction of the cell 1, that is, a direction perpendicular to the plane of the pouch case 2. It is a press mechanism to apply pressure by pushing).
  • the degas pusher 100 pressurizes the cell 1 to move the gas generated during the activation process and discharge the gas to the outside through the degas hole 4.
  • the degas pusher 100 may be implemented by employing a conventional cylinder device.
  • the ultrasonic device 110 is disposed to correspond to at least one surface of the cell 1 to generate ultrasonic waves to penetrate in a direction perpendicular to the plane of the pouch case 2 during the degassing process to vibrate the electrolyte together with the gas. As the electrolyte vibrates by the ultrasonic waves, fluidity is generated in the electrolyte, thereby facilitating the movement of the gas.
  • the ultrasonic device 110 generates ultrasonic waves in a direction substantially coincident with the pressing direction of the degas pusher 100 to apply vibration to the electrolyte.
  • the output of the ultrasonic transducer for generating ultrasonic waves is set to such a degree that the ultrasonic waves can penetrate to the inside of the electrode assembly 3, so that the activation gas and the electrolyte interposed between the electrodes of the electrode assembly 3 are It is preferable to flow up to.
  • the ultrasound apparatus 110 may be installed in a structure embedded in a part of the degas pusher 100.
  • the ultrasonic device 110 may be installed in a structure in which a pair of the gas pusher 100 and the cell 1 are interposed therebetween.
  • the internal pressure of the chamber 120 may be maintained at a vacuum of ⁇ 95 kPa or less to maximize degas efficiency.
  • FIG. 4 is a flowchart illustrating a process of manufacturing a pouch type secondary battery according to a preferred embodiment of the present invention.
  • the manufacturing method of the pouch-type secondary battery according to a preferred embodiment of the present invention, the casing process (step S10), the electrolyte injection process (step S20), the primary sealing process (step S30), the charge and discharge treatment process (Step S40), a degassing process (step S50) and a secondary sealing process (step S60).
  • the casing process is a step of casing the electrode assembly 3 into the pouch case 2.
  • a pair of electrode leads (not shown) connected to the electrode tabs provided in the electrode assembly 3 are drawn out of the pouch case 2, and the sealant attached to the electrode leads is attached to the electrode leads and the pouch case 2. It is interposed between the inner surfaces of the.
  • the pouch case 2 can seal the electrode assembly 3 by heat-sealing the edge portions, that is, the extension portions, which are in contact with each other. Since the heat fusion is partially omitted in the extension part, an opening for injecting the electrolyte may be formed.
  • the pouch case 2 used for the casing is located on the innermost side and has a first layer of polypropylene (PP) material having corrosion resistance, insulation and heat-sealing resistance to the electrolyte solution, and polyethylene tere having the outermost position and insulating property. It may include a second layer of a phthalate (PET) material, and a third layer interposed between the first layer and the second layer and made of a metal component such as aluminum (Al).
  • PP polypropylene
  • PET phthalate
  • Al aluminum
  • the electrolyte injection process (step S20) is a step of impregnating the electrolyte into the electrode assembly 3 by injecting the electrolyte through the opening of the pouch case 2 after the casing is completed.
  • the first sealing process is a step of sealing the extension part by forming a predetermined sealing line to completely seal the electrode assembly 3 after the injection of the electrolyte is completed.
  • step S40 After sealing of the extension part of the pouch case 2 is completed, the activation process which advances charge / discharge with respect to the cell 1 is performed (step S40).
  • a process of cutting a portion of the extension along the predetermined cutting line may be performed at the outer portion of the sealing line. Since this cutting process cuts out an unnecessary part after sealing to the extension part is completed, it may be made between a primary sealing process (step S30) and a charge / discharge treatment process (step S40).
  • the degassing process applies a physical external force to the cell 1 in a state where the degas hole 4 is formed on the extension portion, and degass the gas generated in the pouch case 2 during the charge / discharge process. Discharging through the hole (4).
  • the degas hole 4 is a fine hole formed through the extension part for discharging gas, and is formed inward of the sealing line formed by the sealing, and a plurality of degas holes 4 may be formed by punching or the like along a direction parallel to the sealing line. have.
  • step S50 pressure is applied in the direction of the electrode assembly 3 from the outside of the pouch case 2 using the degas pusher 100, and ultrasonic waves are generated using the ultrasonic device 110 to generate electrolyte. By vibrating, the gas is discharged to the outside of the pouch case 2 with high efficiency.
  • the degas pusher 100 is disposed corresponding to at least one surface of the pouch case 2 to apply a press pressure in a direction perpendicular to the plane of the pouch case 2, and at the same time 110 applies ultrasonic vibration in the pressing direction of the degas pusher 100.
  • the ultrasonic waves penetrate into the inside of the electrode assembly 2 and flow up to the activation gas and electrolyte interposed between the electrodes of the electrode assembly 3.
  • the internal pressure of the chamber 120 is preferably maintained at -95 kPa or less.
  • the secondary sealing process is a step of closing the degas hole 4 of the degassed cell 1 by taping or the like.
  • a tape made of, for example, a polypropylene (PP) material may be used in the same manner as the innermost surface of the pouch case 2, that is, the first layer.
  • a wing folding process of folding up the extension of the pouch case 2 inward may be added.
  • the manufacturing method of the pouch type secondary battery according to the preferred embodiment of the present invention pressurizes the cell during the degassing process and at the same time by applying ultrasonic waves to vibrate the gas and the electrolyte to promote the movement of the gas to improve the degassing efficiency Can be improved.
  • the present invention can be applied in the manufacture of a pouch type secondary battery having an electrode assembly having high packing density or an electrode assembly which is difficult to remove gas such as a stack and folding structure, thereby improving the quality of a cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

Disclosed is a method for manufacturing a pouch type secondary battery, comprising the steps of: casing an electrode assembly with a pouch case; injecting an electrolyte therein through a part of the pouch case; primarily sealing the pouch case; performing charging/discharging; forming a degas hole in the pouch case; discharging an activated gas to the outside of the pouch case while applying pressure in the direction of the electrode assembly from the outside of the pouch case and vibrating the electrolyte by generating ultrasonic waves; and secondarily sealing the pouch case.

Description

파우치형 이차전지의 제조방법Manufacturing method of pouch type secondary battery
본 발명은 파우치형 이차전지의 제조방법에 관한 것으로서, 더욱 상세하게는 디개싱(Degasing) 공정에서 가스의 배출 효율을 향상시킬 수 있는 파우치형 이차전지의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a pouch type secondary battery, and more particularly, to a method of manufacturing a pouch type secondary battery that can improve the discharge efficiency of the gas in the degasing process.
본 출원은 2017년 02월 13일자로 출원된 한국 특허출원 번호 제10-2017-0019630호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.This application is a priority application for Korean Patent Application No. 10-2017-0019630, filed February 13, 2017, and all contents disclosed in the specification and drawings of the application are incorporated herein by reference.
일반적으로, 파우치 타입 이차전지의 제조방법은, 준비된 파우치 타입 셀의 테두리 영역 중 일측에 위치한 전해액 주입부를 통해 전해액을 주입하는 단계, 1차 실링 라인을 따라 전해액 주입부를 1차 실링한 후 충방전을 진행하는 단계, 1차 실링 라인보다 내측에 위치한 컷팅 라인을 따라 전해액 주입부의 일부를 컷팅하는 단계, 디개싱을 수행하는 단계, 전해액 주입부를 2차 실링 하는 단계, 및 2차 실링 라인보다 외측에 위치한 컷팅 라인을 따라 전해액 주입부의 일부를 컷팅하는 단계를 포함한다.In general, the manufacturing method of the pouch type secondary battery, injecting the electrolyte through the electrolyte injection portion located on one side of the edge region of the prepared pouch-type cell, after the first sealing the electrolyte injection portion along the primary sealing line to charge and discharge Advancing, cutting a portion of the electrolyte injection portion along a cutting line located inside the primary sealing line, performing degassing, secondary sealing the electrolyte injection portion, and positioned outside the secondary sealing line Cutting a portion of the electrolyte injection portion along the cutting line.
파우치 타입 이차전지의 제조방법에 있어서, 충방전을 통한 활성화 처리 이후에 수행되는 디개싱 공정에서는 도 1에 도시된 바와 같이 챔버(11)의 내부에서 디가스 푸셔(10)를 이용하여 파우치 케이스(2) 및 전극조립체(3)를 포함하는 셀(1)을 가압함으로써 내부의 활성화 가스를 디가스 홀(4)을 통해 외부로 이동시켜 제거한다.In the manufacturing method of the pouch type secondary battery, in the degassing process performed after the activation process through charging and discharging, as shown in FIG. 1, the pouch case ( 2) and pressurizes the cell 1 including the electrode assembly 3 to remove the internal activation gas by moving to the outside through the degas hole (4).
그러나, 전극조립체는 통상적으로 스택 앤 폴딩 구조와 같이 복잡한 형태로 이루어지는 특성상 활성화 가스가 외부로 원활히 배출되기가 어려운 문제가 있어 디개싱 효율을 높이는 데에는 한계가 있다.However, the electrode assembly has a problem in that the degassing efficiency is limited because it is difficult to smoothly discharge the activating gas to the outside due to a complicated shape such as a stack and folding structure.
디개싱 효율을 높이기 위해 디가스 푸셔의 압력을 과도하게 높게 설정할 경우에는 전해액이 과도하게 토출되는 문제가 발생하게 된다.When the pressure of the degas pusher is set excessively high in order to increase the degassing efficiency, a problem of excessive discharge of the electrolyte may occur.
디개싱 공정 시 배출되지 못하고 셀 내에 잔류하는 잔여 가스는 셀의 저항을 증가시켜서 품질을 저하시키는 원인이 되므로 이에 대한 대책이 요구된다.Residual gas, which is not discharged during the degassing process and remains in the cell, increases the resistance of the cell, which causes the quality to be deteriorated.
본 발명은 상기와 같은 기술적 배경을 고려하여 창안된 것으로서, 파우치형 이차전지의 제조과정에서 활성화 가스를 제거하는 디개싱 공정의 효율을 높일 수 있는 파우치형 이차전지의 제조방법을 제공하는 데 그 목적이 있다.The present invention has been made in view of the above technical background, and provides a method of manufacturing a pouch type secondary battery that can increase the efficiency of the degassing process of removing the activation gas in the manufacturing process of the pouch type secondary battery. There is this.
상기와 같은 목적을 달성하기 위해 본 발명은 (a) 전극조립체를 파우치 케이스로 케이싱 하는 단계; (b) 상기 파우치 케이스의 일부를 통해 내부에 전해액을 주입하는 단계; (c) 상기 파우치 케이스를 1차 실링하는 단계; (d) 충방전을 진행하는 단계; (e) 상기 파우치 케이스에 디가스 홀을 형성하는 단계; (f) 상기 파우치 케이스의 외부에서 상기 전극조립체 방향으로 압력을 가함과 더불어 초음파를 발생시켜 전해액을 진동시키면서 활성화 가스를 상기 파우치 케이스의 외부로 배출하는 단계; 및 (g) 상기 파우치 케이스를 2차 실링하는 단계;를 포함하는 파우치형 이차전지의 제조방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of (a) casing the electrode assembly to the pouch case; (b) injecting an electrolyte solution through a portion of the pouch case; (c) first sealing the pouch case; (d) charging and discharging; (e) forming a gas hole in the pouch case; (f) discharging an activation gas to the outside of the pouch case while applying ultrasonic pressure from the outside of the pouch case toward the electrode assembly and generating ultrasonic waves to vibrate the electrolyte solution; It provides a method of manufacturing a pouch type secondary battery comprising a; and (g) secondary sealing the pouch case.
상기 단계 (f)는, 상기 파우치 케이스의 적어도 일면에 대응되게 디가스 푸셔를 배치하여 상기 파우치 케이스의 평면에 수직한 방향으로 압력을 가하고, 상기 디가스 푸셔의 가압 방향으로 상기 초음파 진동을 가할 수 있다.In the step (f), the degas pusher may be disposed to correspond to at least one surface of the pouch case to apply pressure in a direction perpendicular to the plane of the pouch case, and the ultrasonic vibration may be applied in the pressing direction of the degas pusher. have.
상기 단계 (f)는, 상기 전극조립체의 내부까지 초음파를 침투시키는 것이 바람직하다.In the step (f), it is preferable to penetrate the ultrasonic wave to the inside of the electrode assembly.
상기 단계 (f)는, 진공 분위기를 조성하는 챔버 내부에서 수행되며, 상기 챔버의 내부 압력을 -95kPa 이하로 유지하는 것이 바람직하다.The step (f) is performed in a chamber for creating a vacuum atmosphere, and it is preferable to maintain the internal pressure of the chamber at -95 kPa or less.
상기 단계 (b)에서, 상기 파우치 케이스의 일측에 마련된 연장부에 형성된 개방구를 통하여 전해액을 주입할 수 있다.In the step (b), the electrolyte can be injected through the opening formed in the extension provided on one side of the pouch case.
상기 단계 (c)는, 상기 개방부를 실링하여 밀봉 처리하고, 상기 단계 (e)는, 상기 1차 실링에 의해 형성된 실링 라인보다 안쪽에 상기 디가스 홀을 형성할 수 있다.The step (c) may seal the opening to seal the opening, and the step (e) may form the degas hole inside the sealing line formed by the primary sealing.
본 발명에 따르면 디개싱 공정 시 셀을 가압함과 동시에 초음파를 셀에 가하여 전해액을 진동시킴으로써 활성화 가스가 원활히 이동될 수 있으므로 디개싱 효율을 향상시킬 수 있다.According to the present invention, the degassing efficiency can be improved since the activation gas can be smoothly moved by pressurizing the cell during the degassing process and simultaneously applying ultrasonic waves to the cells to vibrate the electrolyte.
따라서, 본 발명을 적용할 경우 고로딩 및 높은 팩킹 밀도의 전극 구조를 갖거나, 스택 앤 폴딩 구조와 같이 가스 제거가 어려운 복잡한 구조의 전극조립체에 대해서도 높은 효율로 디개싱 공정을 수행하여 셀의 품질을 개선할 수 있다.Therefore, when the present invention is applied, the degassing process is performed with high efficiency even for an electrode assembly having a high loading density and a high packing density, or a complicated structure such as a stack and folding structure that is difficult to remove gas. Can be improved.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.The following drawings attached to this specification are illustrative of the preferred embodiments of the present invention, and together with the detailed description of the invention to serve to further understand the technical spirit of the present invention, the present invention is a matter described in such drawings It should not be construed as limited to.
도 1은 종래기술에 따른 파우치형 이차전지의 제조방법에 의해 수행되는 디개싱 공정을 개략적으로 도시한 단면도이다.1 is a cross-sectional view schematically showing a degassing process performed by a method of manufacturing a pouch type secondary battery according to the prior art.
도 2는 본 발명의 바람직한 실시예에 따른 파우치형 이차전지의 제조방법에 의해 수행되는 디개싱 공정을 개략적으로 도시한 단면도이다.2 is a cross-sectional view schematically illustrating a degassing process performed by a method of manufacturing a pouch type secondary battery according to a preferred embodiment of the present invention.
도 3은 도 2의 변형예를 도시한 단면도이다.3 is a cross-sectional view illustrating a modification of FIG. 2.
도 4는 본 발명의 바람직한 실시예에 따른 파우치형 이차전지의 제조방법이 수행되는 과정을 도시한 흐름도이다.4 is a flowchart illustrating a process of manufacturing a pouch type secondary battery according to a preferred embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in the specification and claims should not be construed as having a conventional or dictionary meaning, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention. Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.
도 2는 본 발명의 바람직한 실시예에 따른 파우치형 이차전지의 제조방법에 의해 수행되는 디개싱 공정을 개략적으로 도시한 단면도이다.2 is a cross-sectional view schematically illustrating a degassing process performed by a method of manufacturing a pouch type secondary battery according to a preferred embodiment of the present invention.
도 2를 참조하면, 본 발명의 바람직한 실시예에 따른 파우치형 이차전지의 제조방법은 셀(1)의 평면 부분에 대응되게 디가스 푸셔(100)와 초음파 기기(110)를 배치하여 디개싱 공정 시 셀의 두께 방향으로 프레스 압력과 초음파 진동을 가하는 처리를 수행한다.2, in the manufacturing method of the pouch type secondary battery according to the preferred embodiment of the present invention, the degassing process is performed by arranging the degas pusher 100 and the ultrasonic device 110 to correspond to the planar portion of the cell 1. Press pressure and ultrasonic vibration are applied in the thickness direction of the cell.
각각의 셀(1)은 얇은 판상 몸체를 갖는 것으로서, 파우치 케이스(2)와, 상기 파우치 케이스(2)에 내장되고 양극, 세퍼레이터 및 음극이 교대로 적층되어 있는 전극조립체(3)를 포함한다. 상기 양극 및 음극은 집전체의 적어도 한면에 전극 활물질, 바인더 수지, 도전제 및 기타 첨가제 등의 슬러리를 도포함으로써 제조된다. 상기 전극 활물질은, 양극의 경우, 리튬 함유 전이금속 산화물과 같은 통상의 양극 활물질이 사용되고, 음극의 경우에는 리튬 이온이 흡장 및 방출될 수 있는 리튬 금속, 탄소재 및 금속 화합물 또는 이들의 혼합물과 같은 통상의 음극 활물질이 사용될 수 있다. 또한, 상기 세퍼레이터로는 리튬 이차전지에 사용되는 통상의 다공성 고분자 필름이 채용 가능하다.Each cell 1 has a thin plate-like body and includes a pouch case 2 and an electrode assembly 3 which is built in the pouch case 2 and in which an anode, a separator and a cathode are alternately stacked. The positive electrode and the negative electrode are manufactured by applying a slurry such as an electrode active material, a binder resin, a conductive agent and other additives to at least one side of a current collector. In the case of the positive electrode, a conventional positive electrode active material such as a lithium-containing transition metal oxide is used in the case of a positive electrode, and in the case of the negative electrode, a lithium metal, a carbon material and a metal compound or a mixture thereof, in which lithium ions can be occluded and released. Conventional negative electrode active materials may be used. In addition, as the separator, a conventional porous polymer film used for a lithium secondary battery may be employed.
전극조립체(3)와 함께 파우치 케이스(2) 내에 수용되는 전해액으로는 통상의 리튬 이차전지용 전해액이 채용될 수 있다. 파우치 케이스(2)는 시트 소재로 형성되는 것으로서, 전극조립체(3)를 수용하기 위한 수납부를 구비한다. 바람직하게, 파우치 케이스(2)는 시트 소재가 소정 형상으로 가공되어 형성된 제1 케이스와 제2 케이스가 결합되어 형성된다. 파우치 케이스를 이루는 시트 소재는 폴리에틸렌 테레프탈레이트(PolyEthylene Terephthalate, PET)나 나일론(Nylon) 등의 절연물질로 이루어진 최외곽의 외부수지층과, 기계적 강도를 유지하고 수분 및 산소의 침투를 막아주는 알루미늄 소재의 금속층과, 열접착성을 가져 실링재 역할을 하는 폴리올레핀(Polyolepin)계 재료로 이루어진 내부수지층이 적층된 다층 구조로 구성되어 있다.As the electrolyte solution contained in the pouch case 2 together with the electrode assembly 3, a conventional electrolyte solution for lithium secondary batteries may be employed. The pouch case 2 is formed of a sheet material, and includes a housing for accommodating the electrode assembly 3. Preferably, the pouch case 2 is formed by combining a first case and a second case formed by processing a sheet material into a predetermined shape. The sheet material of the pouch case is an outermost outer resin layer made of insulating material such as polyethylene terephthalate (PET) or nylon (Nylon), and an aluminum material that maintains mechanical strength and prevents penetration of moisture and oxygen. It is composed of a multi-layered structure in which a metal layer and an inner resin layer made of a polyolefin (Polyolepin) -based material having a heat adhesiveness and acting as a sealing material are laminated.
파우치 케이스(2)를 이루는 시트 소재는 필요에 따라 상기 내부 수지층과 금속층, 상기 외부 수지층과 금속층 사이에는 소정의 접착수지층이 개재될 수 있다. 상기 접착 수지층은 이종 재료 간의 원활한 부착을 위한 것으로서 단층 또는 다층으로 형성되고, 그 재료는 통상적으로 폴리올레핀계 수지가 사용되거나 원활한 가공을 위해 폴리우레탄 수지가 사용될 수 있으며, 이들의 혼합물도 채용 가능하다.In the sheet material constituting the pouch case 2, a predetermined adhesive resin layer may be interposed between the inner resin layer and the metal layer and the outer resin layer and the metal layer as necessary. The adhesive resin layer is for smooth adhesion between dissimilar materials and is formed in a single layer or multiple layers. The material may be a polyolefin-based resin or a polyurethane resin for smooth processing, and a mixture thereof may be employed. .
셀(1)의 적어도 일부 가장자리 부분은 열압착 등에 의해 실링이 이루어지는 부분이다. 따라서, 셀(1)의 가장자리 부분은 몸체 부분에 비해 두께가 상대적으로 매우 얇게 구성된다.At least a part of the edge of the cell 1 is a portion where sealing is performed by thermocompression or the like. Thus, the edge portion of the cell 1 is relatively thin in thickness compared to the body portion.
파우치형 이차전지의 제조과정에서 파우치 케이스(2)의 일측 가장자리 부분에는 다른 부분에 비해 폭이 넓은 연장부가 마련되고, 이 연장부에 형성되는 개방구를 통해 전해액이 주입된다. 전해액의 주입이 완료된 이후에 상기 개방구는 1차 실링되고, 셀(1)을 충방전시키는 활성화 처리 이후에는 상기 1차 실링에 의해 형성된 실링 라인보다 안쪽에 디가스 홀(4)이 형성된다.In the manufacturing process of the pouch type secondary battery, one side edge portion of the pouch case 2 is provided with a wider extension than the other portion, and the electrolyte is injected through an opening formed in the extension portion. After the injection of the electrolyte is completed, the opening is first sealed, and after the activation process for charging and discharging the cell 1, the degas hole 4 is formed inside the sealing line formed by the first sealing.
상기 셀(1) 활성화 이후 디개싱 과정은 진공 분위기를 조성하는 챔버 내부에서 수행된다. The degassing process after activation of the cell 1 is carried out inside a chamber which creates a vacuum atmosphere.
디가스 푸셔(100)는 셀(1)의 적어도 일면에 대응되게 배치되어 셀(1)의 두께 방향, 즉 파우치 케이스(2)의 평면에 수직한 방향으로 파우치 케이스(2) 및 전극조립체(3)를 밀어서 압력을 가하는 프레스 기구이다. 디가스 푸셔(100)는 셀(1)을 가압하여 활성화 처리 시 발생한 가스를 이동시켜서 디가스 홀(4)을 통해 외부로 배출한다. 이러한 디가스 푸셔(100)는 통상의 실린더 장치를 채용하여 구현될 수 있다.The degas pusher 100 is disposed to correspond to at least one surface of the cell 1 so that the pouch case 2 and the electrode assembly 3 may be disposed in a thickness direction of the cell 1, that is, a direction perpendicular to the plane of the pouch case 2. It is a press mechanism to apply pressure by pushing). The degas pusher 100 pressurizes the cell 1 to move the gas generated during the activation process and discharge the gas to the outside through the degas hole 4. The degas pusher 100 may be implemented by employing a conventional cylinder device.
초음파 기기(110)는 셀(1)의 적어도 일면에 대응되게 배치되어 디개싱 공정 시 파우치 케이스(2)의 평면에 수직한 방향으로 침투되도록 초음파를 발생시켜서 가스와 함께 전해액을 진동시킨다. 초음파에 의해 전해액이 진동함에 따라 전해액에 유동성이 생겨서 가스의 이동이 용이하게 된다.The ultrasonic device 110 is disposed to correspond to at least one surface of the cell 1 to generate ultrasonic waves to penetrate in a direction perpendicular to the plane of the pouch case 2 during the degassing process to vibrate the electrolyte together with the gas. As the electrolyte vibrates by the ultrasonic waves, fluidity is generated in the electrolyte, thereby facilitating the movement of the gas.
초음파 기기(110)는 실질적으로 디가스 푸셔(100)의 가압 방향과 일치하는 방향으로 초음파를 발생시켜서 전해액에 진동을 가한다. 초음파 기기(110)에 있어서 초음파를 발생시키는 초음파 트랜스듀서의 출력은 전극조립체(3)의 내부까지 초음파를 침투시킬 수 있는 정도로 설정되어 전극조립체(3)의 전극들 사이에 개재된 활성화 가스 및 전해액까지 유동시키는 것이 바람직하다.The ultrasonic device 110 generates ultrasonic waves in a direction substantially coincident with the pressing direction of the degas pusher 100 to apply vibration to the electrolyte. In the ultrasonic device 110, the output of the ultrasonic transducer for generating ultrasonic waves is set to such a degree that the ultrasonic waves can penetrate to the inside of the electrode assembly 3, so that the activation gas and the electrolyte interposed between the electrodes of the electrode assembly 3 are It is preferable to flow up to.
초음파 기기(110)는 도 2에 도시된 바와 같이 디가스 푸셔(100)의 일부에 내장되는 구조로 설치될 수 있다. 대안으로, 초음파 기기(110)는 도 3에 도시된 바와 같이 디가스 푸셔(100) 및 셀(1)을 사이에 두고 한 쌍이 대향하는 구조로 설치될 수도 있다.As illustrated in FIG. 2, the ultrasound apparatus 110 may be installed in a structure embedded in a part of the degas pusher 100. Alternatively, as shown in FIG. 3, the ultrasonic device 110 may be installed in a structure in which a pair of the gas pusher 100 and the cell 1 are interposed therebetween.
디가스 푸셔(100) 및 초음파 기기(110)의 작동 시 챔버(120)의 내부 압력은 -95kPa 이하의 진공도로 유지함으로써 디가스 효율을 극대화할 수 있다.During operation of the degas pusher 100 and the ultrasonic device 110, the internal pressure of the chamber 120 may be maintained at a vacuum of −95 kPa or less to maximize degas efficiency.
도 4는 본 발명의 바람직한 실시예에 따른 파우치형 이차전지의 제조방법이 수행되는 과정을 도시한 흐름도이다.4 is a flowchart illustrating a process of manufacturing a pouch type secondary battery according to a preferred embodiment of the present invention.
도 4를 참조하면, 본 발명의 바람직한 실시예에 따른 파우치형 이차전지의 제조방법은 케이싱 공정(단계 S10), 전해액 주입 공정(단계 S20), 1차 실링 공정(단계 S30), 충방전 처리 공정(단계 S40), 디개싱 공정(단계 S50) 및 2차 실링 공정(단계 S60)을 포함한다.Referring to Figure 4, the manufacturing method of the pouch-type secondary battery according to a preferred embodiment of the present invention, the casing process (step S10), the electrolyte injection process (step S20), the primary sealing process (step S30), the charge and discharge treatment process (Step S40), a degassing process (step S50) and a secondary sealing process (step S60).
케이싱 공정(단계 S10)은 전극 조립체(3)를 파우치 케이스(2)로 케이싱 하는 단계이다. 이때, 전극조립체(3)에 구비된 전극탭과 연결된 한 쌍의 전극 리드(미도시)는 파우치 케이스(2)의 외부로 인출되며, 전극 리드에 부착된 실런트는 전극 리드와 파우치 케이스(2)의 내측면 사이에 개재된다.The casing process (step S10) is a step of casing the electrode assembly 3 into the pouch case 2. In this case, a pair of electrode leads (not shown) connected to the electrode tabs provided in the electrode assembly 3 are drawn out of the pouch case 2, and the sealant attached to the electrode leads is attached to the electrode leads and the pouch case 2. It is interposed between the inner surfaces of the.
케이싱 공정(단계 S10)에서, 파우치 케이스(2)는 서로 맞닿는 테두리 부분, 즉 연장부가 열융착됨으로써 전극조립체(3)를 밀봉시킬 수 있다. 상기 연장부에는 부분적으로 열융착이 생략됨으로써 전해액의 주입을 위한 개방구가 형성될 수 있다.In the casing process (step S10), the pouch case 2 can seal the electrode assembly 3 by heat-sealing the edge portions, that is, the extension portions, which are in contact with each other. Since the heat fusion is partially omitted in the extension part, an opening for injecting the electrolyte may be formed.
케이싱에 이용되는 파우치 케이스(2)는 최내측에 위치하여 전해액에 대한 내부식성, 절연성 및 열융착성을 갖는 폴리프로필렌(PP) 소재의 제1층과, 최외측에 위치하며 절연성을 갖는 폴리에틸렌 테레프탈레이트(PET) 소재의 제2층과, 상기 제1층과 제2층 사이에 개재되며 알루미늄(Al)과 같은 금속 성분으로 이루어지는 제3층을 포함하여 이루어질 수 있다.The pouch case 2 used for the casing is located on the innermost side and has a first layer of polypropylene (PP) material having corrosion resistance, insulation and heat-sealing resistance to the electrolyte solution, and polyethylene tere having the outermost position and insulating property. It may include a second layer of a phthalate (PET) material, and a third layer interposed between the first layer and the second layer and made of a metal component such as aluminum (Al).
전해액 주입 공정(단계 S20)은 케이싱이 완료된 후 파우치 케이스(2)의 상기 개방구를 통하여 전해액을 주입함으로써 전극조립체(3)에 전해액을 함침시키는 단계이다.The electrolyte injection process (step S20) is a step of impregnating the electrolyte into the electrode assembly 3 by injecting the electrolyte through the opening of the pouch case 2 after the casing is completed.
1차 실링 공정(단계 S30)은 전해액의 주입이 완료된 후 전극조립체(3)의 완전한 밀봉을 위해 소정의 실링 라인을 형성하며 상기 연장부를 실링하는 단계이다.The first sealing process (step S30) is a step of sealing the extension part by forming a predetermined sealing line to completely seal the electrode assembly 3 after the injection of the electrolyte is completed.
파우치 케이스(2)의 연장부에 대한 실링이 완료되고 나면, 셀(1)에 대한 충방전을 진행하는 활성화 처리가 수행된다(단계 S40).After sealing of the extension part of the pouch case 2 is completed, the activation process which advances charge / discharge with respect to the cell 1 is performed (step S40).
충방전이 완료된 이후에는 실링 라인의 외곽 부분에서 소정의 컷팅 라인을 따라 연장부의 일부를 컷팅하는 공정이 진행될 수 있다. 이러한 컷팅 공정은, 연장부에 대한 실링이 완료된 이후에 불필요한 부분을 잘라내는 단계이므로, 1차 실링 공정(단계 S30)과 충방전 처리 공정(단계 S40) 사이에 이루어져도 무방하다.After the charging and discharging is completed, a process of cutting a portion of the extension along the predetermined cutting line may be performed at the outer portion of the sealing line. Since this cutting process cuts out an unnecessary part after sealing to the extension part is completed, it may be made between a primary sealing process (step S30) and a charge / discharge treatment process (step S40).
디개싱 공정(단계 S50)은 연장부 상에 디가스 홀(4)을 형성한 상태에서 셀(1)에 물리적인 외력을 가하여, 충방전 과정에서 파우치 케이스(2) 내에 발생된 가스를 디가스 홀(4)을 통하여 배출시키는 단계이다. 여기서, 디가스 홀(4)은 가스 배출을 위해 연장부를 관통하여 형성된 미세 홀로서, 실링에 의해 형성된 실링 라인보다 더 안쪽에 형성되며, 실링 라인과 나란한 방향을 따라 펀칭 등에 의해 복수개가 형성될 수 있다.The degassing process (step S50) applies a physical external force to the cell 1 in a state where the degas hole 4 is formed on the extension portion, and degass the gas generated in the pouch case 2 during the charge / discharge process. Discharging through the hole (4). Here, the degas hole 4 is a fine hole formed through the extension part for discharging gas, and is formed inward of the sealing line formed by the sealing, and a plurality of degas holes 4 may be formed by punching or the like along a direction parallel to the sealing line. have.
디개싱 공정(단계 S50)에서는 디가스 푸셔(100)를 이용해 파우치 케이스(2)의 외부에서 전극조립체(3)의 방향으로 압력을 가함과 더불어 초음파 기기(110)를 이용해 초음파를 발생시켜 전해액을 진동시킴으로써 고효율로 가스를 파우치 케이스(2)의 외부로 배출시킨다.In the degassing process (step S50), pressure is applied in the direction of the electrode assembly 3 from the outside of the pouch case 2 using the degas pusher 100, and ultrasonic waves are generated using the ultrasonic device 110 to generate electrolyte. By vibrating, the gas is discharged to the outside of the pouch case 2 with high efficiency.
디개싱 공정(단계 S50)에서, 디가스 푸셔(100)는 파우치 케이스(2)의 적어도 일면에 대응되게 배치되어 파우치 케이스(2)의 평면에 수직한 방향으로 프레스 압력을 가하고, 이와 동시에 초음파 기기(110)는 디가스 푸셔(100)의 가압 방향으로 초음파 진동을 가한다. 이 과정에서, 초음파는 전극조립체(2)의 내부까지 침투하여 전극조립체(3)의 전극들 사이에 개재된 활성화 가스 및 전해액까지 유동시킨다. 이때, 디가스 효율의 극대화를 위해 챔버(120)의 내부 압력은 -95kPa 이하로 유지되는 것이 바람직하다.In the degassing process (step S50), the degas pusher 100 is disposed corresponding to at least one surface of the pouch case 2 to apply a press pressure in a direction perpendicular to the plane of the pouch case 2, and at the same time 110 applies ultrasonic vibration in the pressing direction of the degas pusher 100. In this process, the ultrasonic waves penetrate into the inside of the electrode assembly 2 and flow up to the activation gas and electrolyte interposed between the electrodes of the electrode assembly 3. At this time, in order to maximize the gas efficiency, the internal pressure of the chamber 120 is preferably maintained at -95 kPa or less.
2차 실링 공정(단계 S60)은 디개싱이 완료된 셀(1)의 디가스 홀(4)을 테이핑 등과 같은 방법으로 폐쇄시키는 단계이다. 테이핑 처리를 하는 경우에는 파우치 케이스(2)의 최내측면, 즉 제1층과 동일하게 예컨대, 폴리프로필렌(PP) 재질로 이루어진 테이프가 사용될 수 있다.The secondary sealing process (step S60) is a step of closing the degas hole 4 of the degassed cell 1 by taping or the like. In the case of the taping treatment, a tape made of, for example, a polypropylene (PP) material may be used in the same manner as the innermost surface of the pouch case 2, that is, the first layer.
2차 실링이 완료된 이후에는 파우치 케이스(2)의 연장부를 안쪽으로 접어 올리는 윙 폴딩(wing folding) 공정이 부가될 수 있다.After the secondary sealing is completed, a wing folding process of folding up the extension of the pouch case 2 inward may be added.
상술한 바와 같이, 본 발명의 바람직한 실시예에 따른 파우치형 이차전지의 제조방법은 디개싱 공정 시 셀을 가압함과 동시에 초음파를 가하여 가스 및 전해액을 진동시킴으로써 가스의 이동을 촉진하여 디개싱 효율을 향상시킬 수 있다.As described above, the manufacturing method of the pouch type secondary battery according to the preferred embodiment of the present invention pressurizes the cell during the degassing process and at the same time by applying ultrasonic waves to vibrate the gas and the electrolyte to promote the movement of the gas to improve the degassing efficiency Can be improved.
따라서, 본 발명은 높은 팩킹 밀도의 전극 구조나, 스택 앤 폴딩 구조와 같이 가스 제거가 어려운 전극조립체를 구비한 파우치형 이차전지의 제조 시 적용되어 셀의 품질을 개선할 수 있다.Accordingly, the present invention can be applied in the manufacture of a pouch type secondary battery having an electrode assembly having high packing density or an electrode assembly which is difficult to remove gas such as a stack and folding structure, thereby improving the quality of a cell.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.Although the present invention has been described above by means of limited embodiments and drawings, the present invention is not limited thereto and will be described below by the person skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of the claims.

Claims (6)

  1. (a) 전극조립체를 파우치 케이스로 케이싱 하는 단계;(a) casing the electrode assembly into a pouch case;
    (b) 상기 파우치 케이스의 일부를 통해 내부에 전해액을 주입하는 단계;(b) injecting an electrolyte solution through a portion of the pouch case;
    (c) 상기 파우치 케이스를 1차 실링하는 단계;(c) first sealing the pouch case;
    (d) 충방전을 진행하는 단계;(d) charging and discharging;
    (e) 상기 파우치 케이스에 디가스 홀을 형성하는 단계;(e) forming a gas hole in the pouch case;
    (f) 상기 파우치 케이스의 외부에서 상기 전극조립체 방향으로 압력을 가함과 더불어 초음파를 발생시켜 전해액을 진동시키면서 활성화 가스를 상기 파우치 케이스의 외부로 배출하는 단계; 및(f) discharging an activation gas to the outside of the pouch case while applying ultrasonic pressure from the outside of the pouch case toward the electrode assembly and generating ultrasonic waves to vibrate the electrolyte solution; And
    (g) 상기 파우치 케이스를 2차 실링하는 단계;를 포함하는 파우치형 이차전지의 제조방법.(g) secondary sealing the pouch case; a method of manufacturing a pouch type secondary battery comprising a.
  2. 제1항에 있어서, 상기 단계 (f)는,The method of claim 1, wherein step (f) comprises:
    상기 파우치 케이스의 적어도 일면에 대응되게 디가스 푸셔를 배치하여 상기 파우치 케이스의 평면에 수직한 방향으로 압력을 가하고,Placing a degas pusher corresponding to at least one surface of the pouch case to apply pressure in a direction perpendicular to the plane of the pouch case,
    상기 디가스 푸셔의 가압 방향으로 상기 초음파 진동을 가하는 것을 특징으로 하는 파우치형 이차전지의 제조방법.The method of manufacturing a pouch type secondary battery, characterized in that the ultrasonic vibration is applied in the pressing direction of the degas pusher.
  3. 제2항에 있어서, 상기 단계 (f)는,The method of claim 2, wherein step (f) comprises:
    상기 전극조립체의 내부까지 초음파를 침투시키는 것을 특징으로 하는 파우치형 이차전지의 제조방법.Method of manufacturing a pouch type secondary battery, characterized in that to penetrate the ultrasonic wave to the inside of the electrode assembly.
  4. 제2항에 있어서, 상기 단계 (f)는,The method of claim 2, wherein step (f) comprises:
    진공 분위기를 조성하는 챔버 내부에서 수행되며, 상기 챔버의 내부 압력을 -95kPa 이하로 유지하는 것을 특징으로 하는 파우치형 이차전지의 제조방법.A method of manufacturing a pouch type secondary battery, which is performed in a chamber for creating a vacuum atmosphere and maintains the internal pressure of the chamber at -95 kPa or less.
  5. 제1항에 있어서, 상기 단계 (b)에서,The method of claim 1, wherein in step (b),
    상기 파우치 케이스의 일측에 마련된 연장부에 형성된 개방구를 통하여 전해액을 주입하는 것을 특징으로 하는 파우치형 이차전지의 제조방법.Method of manufacturing a pouch type secondary battery, characterized in that the electrolyte is injected through the opening formed in the extension provided on one side of the pouch case.
  6. 제5항에 있어서,The method of claim 5,
    상기 단계 (c)는, 상기 개방구를 실링하여 밀봉 처리하고,In step (c), the opening is sealed and sealed.
    상기 단계 (e)는, 상기 1차 실링에 의해 형성된 실링 라인보다 안쪽에 상기 디가스 홀을 형성하는 것을 특징으로 하는 파우치형 이차전지의 제조방법.The step (e) is a manufacturing method of the pouch type secondary battery, characterized in that for forming the gas hole inside the sealing line formed by the primary sealing.
PCT/KR2017/015271 2017-02-13 2017-12-21 Method for manufacturing pouch type secondary battery WO2018147549A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170019630A KR102649923B1 (en) 2017-02-13 2017-02-13 Method for manufacturing pouch type secondary battery
KR10-2017-0019630 2017-02-13

Publications (1)

Publication Number Publication Date
WO2018147549A1 true WO2018147549A1 (en) 2018-08-16

Family

ID=63107224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015271 WO2018147549A1 (en) 2017-02-13 2017-12-21 Method for manufacturing pouch type secondary battery

Country Status (2)

Country Link
KR (1) KR102649923B1 (en)
WO (1) WO2018147549A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113767515A (en) * 2019-09-16 2021-12-07 株式会社Lg新能源 Method of manufacturing secondary battery and secondary battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098612A1 (en) 2017-11-14 2019-05-23 주식회사 엘지화학 Cathode slurry composition, secondary battery cathode comprising same, and lithium secondary battery
KR20240057919A (en) * 2022-10-25 2024-05-03 주식회사 엘지에너지솔루션 Method for manufacturing secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101334623B1 (en) * 2010-12-02 2013-11-29 주식회사 엘지화학 Degassing Method of Secondary Battery Using Centrifugal Force
KR20140018014A (en) * 2012-08-03 2014-02-12 에스케이이노베이션 주식회사 The manufacturing method of pouch type secondary battery
KR20140018695A (en) * 2012-08-03 2014-02-13 에스케이이노베이션 주식회사 The sealing method of pouch type secondary battery
KR101456901B1 (en) * 2012-05-16 2014-10-31 주식회사 엘지화학 Device for Removing Gas from Battery Cell
KR20150062849A (en) * 2013-11-29 2015-06-08 주식회사 엘지화학 Method For Manufacturing Polymer Battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101334623B1 (en) * 2010-12-02 2013-11-29 주식회사 엘지화학 Degassing Method of Secondary Battery Using Centrifugal Force
KR101456901B1 (en) * 2012-05-16 2014-10-31 주식회사 엘지화학 Device for Removing Gas from Battery Cell
KR20140018014A (en) * 2012-08-03 2014-02-12 에스케이이노베이션 주식회사 The manufacturing method of pouch type secondary battery
KR20140018695A (en) * 2012-08-03 2014-02-13 에스케이이노베이션 주식회사 The sealing method of pouch type secondary battery
KR20150062849A (en) * 2013-11-29 2015-06-08 주식회사 엘지화학 Method For Manufacturing Polymer Battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113767515A (en) * 2019-09-16 2021-12-07 株式会社Lg新能源 Method of manufacturing secondary battery and secondary battery
US11876185B2 (en) 2019-09-16 2024-01-16 Lg Energy Solution, Ltd. Method for manufacturing secondary battery and secondary battery
CN113767515B (en) * 2019-09-16 2024-02-23 株式会社Lg新能源 Method for manufacturing secondary battery and secondary battery

Also Published As

Publication number Publication date
KR102649923B1 (en) 2024-03-20
KR20180093482A (en) 2018-08-22

Similar Documents

Publication Publication Date Title
KR102381443B1 (en) Method for manufacturing pouch type secondary battery
KR101499471B1 (en) Method for Manufacturing a secondary Battery and the secondary Battery Manufactured Thereby
KR101456901B1 (en) Device for Removing Gas from Battery Cell
WO2018147549A1 (en) Method for manufacturing pouch type secondary battery
KR20010015414A (en) Method for producing film packed battery
KR101936058B1 (en) The sealing method of pouch type secondary battery
JP2022175247A (en) All-solid battery
CN1160821C (en) Cell and cell inspecting method
KR20150107102A (en) Method for Manufacturing Battery Cell and Device for Eliminating Gas from Battery Cell
US20220115688A1 (en) Sequential pressure formation jig and formation method using same
KR20140018014A (en) The manufacturing method of pouch type secondary battery
KR20180107859A (en) Device for Eliminating Gas from Activated Battery Cell
KR101791535B1 (en) Method for Manufacturing Battery Cell by Device for Eliminating Gas from Battery Cell
KR101845958B1 (en) Method of preparing lithium secondary battery and lithium secondary battery prepared from the smae
KR102326441B1 (en) Sealing device and sealing method of pouch for secondary battery
KR101754484B1 (en) Cap assembly and secondary battery including the same
US20230049301A1 (en) Battery cell activation method and battery cell manufacturing method comprising same
KR20030037771A (en) Li-ion polymer battery
US11949062B2 (en) Pressing jig for removing gas trap and method for manufacturing secondary battery using same
KR100303842B1 (en) Li-ion polymer battery
KR102053987B1 (en) Battery Cell
KR20200074358A (en) Lead sealant films and secondary batteries using the same
WO2021256804A1 (en) Secondary battery and method for manufacturing same
EP4383387A1 (en) Manufacturing method of power storage module and power storage module
KR102386690B1 (en) Method for making pouch-typed secondary batteries controlling discharge of electrolyte solution and apparatus therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895845

Country of ref document: EP

Kind code of ref document: A1