WO2018147477A1 - 스마트폰 어플리케이션을 통한 근로자 건강관리 방법 - Google Patents

스마트폰 어플리케이션을 통한 근로자 건강관리 방법 Download PDF

Info

Publication number
WO2018147477A1
WO2018147477A1 PCT/KR2017/001407 KR2017001407W WO2018147477A1 WO 2018147477 A1 WO2018147477 A1 WO 2018147477A1 KR 2017001407 W KR2017001407 W KR 2017001407W WO 2018147477 A1 WO2018147477 A1 WO 2018147477A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
output
server
signal
control unit
Prior art date
Application number
PCT/KR2017/001407
Other languages
English (en)
French (fr)
Inventor
김희철
주문일
서영우
Original Assignee
인제대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인제대학교 산학협력단 filed Critical 인제대학교 산학협력단
Publication of WO2018147477A1 publication Critical patent/WO2018147477A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/22Social work or social welfare, e.g. community support activities or counselling services
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/30ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/725Cordless telephones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches

Definitions

  • the present invention relates to a worker health management method through a smart phone application, and more specifically, to prevent the industrial accident in the industrial site by grasping the health status based on the bio-signal of workers wearing safety management work clothes measuring the bio-signal
  • biosignals such as electrocardiogram, acceleration, and body temperature detected by the biosignal sensor of the safety management work clothes
  • the safety status is analyzed by analyzing the workers' status such as stress state, exercise intensity, movement and behavior pattern in the big data based server. It prevents accidents, and provides a personalized health care service for employees through smartphone applications to provide workers health management methods through smartphone applications that promote disaster prevention, productivity and health promotion.
  • the safety workwear of the Korean Utility Model Registration No. 20-0356373 has a water-repellent waterproof layer on the back side and a surface of which is made of a fabric colored with fluorescent material, and has a retroreflective effect on the front plate, back plate and sleeve.
  • Safety workwear is characterized in that it is in the form of a jumper or jacket with at least one strap.
  • the construction site management system through the altitude detection of the worker of Published Patent Publication No. 10-2016-0081430, the location of the floor of the work building where the workers are located to grasp the current location and work information of the workers
  • Tag terminal attached to the helmet of the worker to transmit the tag information including the unique ID code and location information of the worker
  • a plurality of built-in atmospheric pressure sensors are installed at the work site, and after receiving tag information from the tag terminal, receiving the tag information and receiving code information including the atmospheric pressure information and the terminal code detected by the atmospheric pressure sensor Terminal;
  • the atmospheric pressure information for each floor number of the work building is previously stored, and after receiving the reception code information from the receiving terminal, the atmospheric pressure information of the reception code information and the atmospheric pressure information for each floor number are matched to the work building where the worker is located.
  • the present invention through the employee health management method through the smart phone application, while preventing the industrial accidents in the industrial site by grasping the health status based on the bio-signal of workers wearing safety management work clothes to measure the bio-signal, the safety management work clothes
  • bio signals such as electrocardiogram, acceleration, and body temperature detected by the biosignal sensor of the company
  • it analyzes the worker's condition such as stress state, exercise intensity, movement and behavior pattern in the big data server to prevent safety accidents.
  • the company aims to provide workers' health management methods through smartphone applications that promote disaster prevention, productivity improvement, and health promotion.
  • the present invention provides a method for managing employee health through a smartphone application, comprising: a screen output step of executing an application on a smartphone and outputting a main screen to a display under the control of a controller; After the controller of the smartphone makes a request to the web service 210 of the server 200 through network communication, the biosignal stored in the Hadoop Distributed File System 230 (HDFS, Hadoop Distributed File System) of the server 200.
  • the control unit is a data output step of displaying the converted bio-signal data to match each position of the main screen to be displayed on the display; Characterized in that consists of.
  • Worker health management method using a smart phone application of the present invention to prevent the industrial accidents in the industrial site by grasping the health status based on the bio-signal of workers wearing safety management work clothes measuring the bio-signal, By using bio signals such as electrocardiogram, acceleration and body temperature detected by signal sensors, it analyzes workers' status such as stress state, exercise intensity, movement and behavior pattern in big data based server, and prevents safety accidents. By providing continuous personalized health care services to workers through the application, there is a remarkable effect of preventing accidents, improving productivity and promoting health.
  • Figure 2 is a conceptual diagram wearing a bio-signal based safety management work clothes of the present invention
  • Figure 3 is a configuration of the band attached to the safety management work clothes based on the present invention bio-signal
  • FIG. 4 is a block diagram of a sensor for a body signal
  • FIG. 5 is a conceptual diagram of a sensor for a body signal of the present invention
  • FIG. 6 is a conceptual diagram of the method of the present invention.
  • FIG. 7 is a conceptual diagram showing the exercise intensity according to the age and the back in the output device of the present invention
  • FIG. 9 is a configuration diagram of a screen output to the output device of the present invention.
  • HDFS Hadoop Distributed File System
  • the present invention provides a method for managing employee health through a smartphone application, comprising: a screen output step of executing an application on a smartphone and outputting a main screen to a display under the control of a controller; After the controller of the smartphone makes a request to the web service 210 of the server 200 through network communication, the biosignal stored in the Hadoop Distributed File System 230 (HDFS, Hadoop Distributed File System) of the server 200.
  • the control unit is a data output step of displaying the converted bio-signal data to match each position of the main screen to be displayed on the display; Characterized in that consists of.
  • a conversion step and a data output step are performed at predetermined time intervals, and the controller checks the change of the biosignal data stored in the server in real time and outputs the result to the display.
  • the main screen outputs a connection confirmation unit for confirming that communication with the server is connected (connected) at the top, and below the connection confirmation unit to check the state according to the exercise intensity of the bio-signal data with a seek bar (Seekbar)
  • the exercise intensity check unit is output
  • a detailed data output unit for outputting the number of steps, the average heart rate per minute, and the movement distance of the biological signal data is output to the lower portion of the exercise intensity check unit
  • FIG. 1 is a conceptual diagram of the present invention
  • Figure 2 is a conceptual diagram wearing a bio-signal-based safety management work clothes of the present invention
  • Figure 3 is a block diagram of a band attached to the safety management work clothes of the present invention
  • Figure 4 is 5 is a conceptual diagram of a sensor for a body signal of the present invention
  • Figure 6 is a conceptual diagram of the method of the present invention
  • Figure 7 is a conceptual diagram showing the exercise intensity according to the age and McBack in the output device of the present invention
  • Figure 8 Is a configuration diagram of the main screen output to the smartphone application of the present invention
  • Figure 9 is a configuration diagram of the screen output to the output device of the present invention.
  • the biosignal-based safety management work clothes 100, the work clothes 110 and; A band 120 attached to an inner surface of the work clothes, the band 120 being made of a stretchable polyester fabric to minimize human body grounding of the sensor and module for body signals; A body signal sensor 130 attached to the band; A module 140 for receiving and processing a signal from the biosignal sensor; A battery 150; A digital room 160 capable of transferring a signal between the biosignal sensor and a module or a module and a battery; Is made of.
  • the work clothes generally refer to work clothes worn by a user, and may be variously manufactured.
  • the band is made of 'X' or ' ⁇ ' type, the digital chamber is coupled to each ECG sensor and module, and also coupled to the module and the battery.
  • the module includes a radio induction field (RIF) filter, a high pass filter (HPF), an alternating current (AC) amplifier (AMP, amplifier), a low pass filter (LPF, low pass filter), and a digital signal.
  • RIF radio induction field
  • HPF high pass filter
  • AC alternating current
  • LPF low pass filter
  • DSP Digital signal processor
  • memory and Bluetooth module are embedded.
  • radio induction field (RIF) filter high frequency filter (HPF, high pass filter), alternating current (AC) amplifier (AMP, amplifier), low pass filter (LPF, low pass filter), digital signal A digital signal processor (DSP) is a data processor capable of processing data at high speed in real time while removing noise and amplifying a signal.
  • RIF radio induction field
  • HPF high frequency filter
  • AC alternating current amplifier
  • LPF low pass filter
  • DSP digital signal A digital signal processor
  • the Bluetooth module uses a 4.0-based Bluetooth module capable of continuously and minimum power transmission of data processed by the data processor.
  • the 4.0-based Bluetooth module is also called BLE.
  • the optimal packet size that can be transmitted is 20 bytes, and the packet size 20 bytes is divided into Pkt No 1 byte, offset 1 byte, Moving 17 byte, and ChkSum 1 byte.
  • the equation for compressing the data to transmit the ECG 200Hz and the acceleration 25Hz in one second is as follows.
  • Sample (n) Sample (n-1) + Diff;
  • the range of n is 1 to 16, and the value of Diff is changed as follows as the value of n is changed.
  • the module receives the electrocardiogram signal of the ECG sensor from the module so that the radio influence field (RIF) filter, high pass filter (HPF), alternating current (AC) amplifier (AMP), low pass
  • RIF radio influence field
  • HPF high pass filter
  • AC alternating current amplifier
  • AMP alternating current amplifier
  • LPF low pass filter
  • DSP digital signal processor
  • the body signal sensor includes an electrocardiogram (ECG) sensor, a heart rate sensor, and a three-axis acceleration sensor, and the + pole terminal, the-pole terminal, and the ground (GND, ground) terminal of the ECG sensor minimize movement, respectively. Attached to the position.
  • ECG electrocardiogram
  • a + pole terminal is attached to the right chest
  • a ground (GND) terminal is attached to the bottom of the right chest
  • a-pole terminal is attached to the bottom of the left chest.
  • the battery is mounted on the left chest and the module is located at the center of both chests to minimize discomfort when moving.
  • the worker health management system using the bio-signal-based safety management work clothes of the present invention is a bio-signal-based safety management work clothes with a built-in sensor and module for the bio-signal;
  • the biosignal-based safety management workwear is equipped with a biosignal measuring module and a sensor, and transmits the biosignal measured by the biosignal measuring sensor to a server through a communication unit, and the server analyzes and stores the biosignal.
  • the server analyzes a biosignal based on a matlab (matrix laboratory), which is engineering software that provides a numerical analysis and programming environment.
  • the matlab provides data mining to systematically and automatically find statistical rules or patterns in large-scale stored data.
  • the server stores the data through Hadoop Distributed File System (HDFS) and uses HBase, which is an open non-relational database for applying to the Hadoop Distributed File System. It's a technology that processes large amounts of data by binding inexpensive computers as if they were one.
  • HDFS Hadoop Distributed File System
  • the biosignal data processed using HiveQL is stored in the Hive.
  • the Hadoop distributed file system provides read / write integrity, HDFS storage, MapReduce, Java client, and API, and is optimized for data storage and retrieval based on Service Oriented Architecture (SOA).
  • SOA Service Oriented Architecture
  • the server determines the worker's behavioral pattern, stress, and heart rate abnormality through the algorithm using the electrocardiogram data among the biological signals, and analyzes the health management and emergency situation through the algorithm that analyzes and evaluates the individual health indicators of the worker. It is.
  • the behavior pattern is classified into no-mounting, rest, dry season, run, jump, and the like.
  • a k-Nearest Neighborhood (kNN) algorithm is applied based on an acceleration signal to analyze the behavior pattern. Define data as Train Data.
  • the body signal sensor is made of a conductive fabric, a conductive adhesive, and a protection liner.
  • the body signal sensor has a size of 52 mm * 38 mm * 3.6 mm and has a resistance of 0.4 k ⁇ . .
  • the body signal sensor can be attached and detached using a magnet.
  • a conductive fabric coated with a metal plasma is used so that the sensor for the biosignal is not inconvenient to the body, but the conductive fabric is a plasma coating using pure gold in consideration of skin compatibility.
  • the R peak is extracted, but the accuracy of extracting the R peak is poor in a section in which noise occurs.
  • the output device is to use a computer or a smart phone, the application is installed in the output device, the ECG data detected through the ECG sensor in real time from the server, the pulse data detected through the heart rate sensor when the application is executed, The acceleration data detected through the 3-axis acceleration is received and displayed on the screen.
  • the screen of the output device can check the health status analyzed by the server by the date measured, detects the abnormal rhythm through the real-time change of heart rate, shows the stress state, and shows the average heart rate and the amount of exercise.
  • the screen of the output device outputs information according to the exercise intensity according to the state of the pulse data, and determines and outputs the exercise intensity according to the heart rate according to the pulse data and the set age of the user.
  • the heart rate is 100% when the heart rate is 200bpm, and each time the age is increased by reducing the criterion of 100% exercise intensity by 0.25%, the exercise intensity 100%
  • the standard bpm is 195bpm with 200bpm * 0.975 in the 30s, and 190bpm with 200bpm * 0.950 in the 40s, 185bpm with 200bpm * 0.925 in the 50s, and 200bpm * 0.900 in the 60s. It becomes 180bpm, and in the 70s, 200bpm * 0.875 is 175bpm.
  • the exercise intensity on the screen of the output device is more than 60% and less than 70%
  • the message "The current state is most appropriate” is displayed on the screen of the output device, if more than 70% and less than 90% is aerobic exercise state It is printed as "Aerobic exercise", and more than 90% of the danger zone "pulse is too strong. Please be careful.”
  • the exercise intensity can be linked to the above-described age-based standards, the reference exercise intensity by age 20 200bpm, 30s 195bpm, 40s 190bpm, 50s 185bpm, 60s 180bpm, 70s 175bpm To differentiate.
  • the screen of the output device shows the real time steps and the movement distance according to the acceleration data.
  • the biosignal-based safety management work clothes of the present invention are attached to the sensor, the sensors are harmful gas sensor that can detect sulfur dioxide, etc., a sound sensor for detecting noise, and ultraviolet light detection UV sensor, dust sensor for detecting dust, ozone sensor for detecting ozone.
  • the sensor is a conventional one, and a detailed description of the sensor itself will be omitted.
  • the sensors are connected to the module through a digital room to transmit a detection signal to the module, and the module receives the detection signal from the sensors, processes the data through the data processor, and then transmits the data to the server through the Bluetooth module. .
  • the detection signal includes harmful gas detection data, noise detection data, ultraviolet data, dust data, and ozone data.
  • the server receives the detection signals of the respective sensors and delivers them to the output device.
  • the output device receives the detection signal and outputs each data of the detection signal to the display.
  • the text of the harmful gas detection data for the last 24 hours is displayed on the display of the output device as text, but when the numerical value of the harmful gas detection data is 0.05 ppm or less for the last 24 hours, the text is displayed in green. If the time is 0.05ppm or more and 0.15ppm or less during the time, the text is displayed in orange for warning, and if the text exceeds 0.15ppm in the last 24 hours, the text is displayed in red for the danger.
  • the noise detection data is output as a graph over time (y-axis is a number and x-axis is a time graph), and the bars corresponding to each time are displayed in green when 55 dBA or less, and in orange when 55 dBA or less and 85 dBA or less. If it exceeds 85dBA, it will appear red. In particular, if it exceeds 85dBA, the warning window "Please use earplugs" is displayed on the screen of the output device.
  • the output according to the numerical value of the ultraviolet data for the last 24 hours is divided into three stages, but if the 50 ⁇ g / m2 or less of the 24 hours is the first stage, the text 1 is output in green to indicate the normal, 50 ⁇ g If the status exceeding / m2 is less than 6 hours out of 24 hours, the text 2 will be output in orange to indicate that it is slightly worse. If the status over 50 ⁇ g / m2 is more than 6 hours out of 24 hours, it becomes 3 steps. The text 3 is printed in red to indicate bad.
  • the output according to the numerical value of the dust data is divided into four stages, but if the output is less than 30 ⁇ g / m3 is the first stage, the text is output in blue to indicate good, and if the 30 ⁇ g / m3 exceeding 80 ⁇ g / m3 or less In two steps, the text is output in green to indicate that it is normal. If it is over 80 ⁇ g / m3, if it is less than 150 ⁇ g / m3, in three steps, it outputs the text in orange. Step 4 is to print the text in red to indicate very bad.
  • the output according to the numerical value of the ozone data is divided into four stages, but outputs the text in blue to indicate that the first stage is good if less than 0.030 ⁇ g / m3, and less than 0.030 ⁇ g / m3 and less than 0.090 ⁇ g / m3
  • the text is output in green color to indicate that it is normal.
  • Step 4 is to print the text in red to indicate very bad.
  • the output device outputs a warning window "It is dangerous to operate outdoors.”
  • the start and stop button is displayed on the screen, and when stopped through the button by storing the electrocardiogram data and acceleration data measured so far, by transmitting the measurement date and time and the user ID to the server, It can be stored in the server.
  • an IoT-based healthcare system used in various places such as homes, companies, and hospitals can be grasped in real time in an industrial site by communicating with a server using the Internet of Things (IoT).
  • IoT Internet of Things
  • the monitoring method through the worker health management system using the bio-signal-based safety management work clothes transmits the signal detected through the bio-signal sensor provided in the bio-signal-based safety management work clothes to the web service of the server.
  • the web service then requests the server's database to insert or delete the algorithm, or to request the server's Hadoop Distributed File System (HDFS) to store the algorithm.
  • HDFS Hadoop Distributed File System
  • the database inserts or deletes an algorithm according to an algorithm insertion or deletion request, and the Hadoop distributed file system stores the algorithm when the algorithm is stored, and then transmits the algorithm to a web service to execute the stored algorithm.
  • the web service After receiving the algorithm, the web service receives the algorithm, searches for the applied data, sends a Simple Object Access Protocol (SOAP) message to the service, and outputs the service through an output device.
  • SOAP Simple Object Access Protocol
  • SOAP Simple Object Access Protocol
  • the bio-signal-based safety management coverall is to transmit a SOAP (Simple Object Access Protocol) message to the web service after applying the bio-signal algorithm to the signal detected through the sensor for the bio-signal provided through Matlab (Matlab) .
  • SOAP Simple Object Access Protocol
  • the command for applying the Matlab algorithm is as follows.
  • dcRemData rawData-mean (rawData);
  • lpData lpassfilter (dcRemData, fl, fs);
  • hpData hpassfilter (lpData, fh, fs);
  • diffData diff (hpData);
  • integralData integral (delay: length (integral));
  • the worker health management method using the smart phone application of the present invention is a screen output step of outputting the main screen on the display under the control of the control unit running the smart phone application;
  • the controller of the smartphone makes a request to the web service 210 of the server 200 through network communication, the biosignal stored in the Hadoop Distributed File System 230 (HDFS, Hadoop Distributed File System) of the server 200.
  • the control unit is a data output step of displaying the converted bio-signal data matched to each position of the main screen output to the display; It is made of.
  • a login screen is output before the main screen, and a login screen for inputting a user ID is output.
  • the login screen is passed to the main screen.
  • a conversion step and a data output step are performed every predetermined time, and the controller checks the change of the biosignal data stored in the server in real time and outputs it to the display.
  • the main screen outputs a connection confirmation unit for confirming that the communication with the server is connected (connected) at the top, and the lower portion of the connection confirmation unit can check the state according to the exercise intensity among the bio-signal data with a seek bar.
  • the exercise intensity checking unit is output, and the lower part of the exercise intensity checking unit outputs a detailed data output unit for outputting the number of steps, the average heart rate per minute, and the movement distance among the biosignal data, and sends the signal to the control unit below the detailed data output unit.
  • the start and stop buttons are output to control the start and stop and to transmit the measurement date and time from start to stop to the server when a stop signal is input to the controller, and the measurement time and the start time are below the start and stop buttons.
  • the time output unit for outputting is output.
  • connection confirmation unit distinguishes words that can confirm connection refused, connecting, connected, disconnected, etc. under the control of the control unit so as to check the communication connection state with the server. To print.
  • connection confirmation For example, if connected, "Connected" is printed in English to the connection confirmation so that the user can confirm that the connection is established.
  • the exercise intensity checking unit is a user's exercise intensity according to the position of the seek bar (Seekbar) output so that the bar can move to the left and right according to the exercise intensity data, and the bar that changes according to the exercise intensity data on the seek bar (Seekbar) It is composed of an explanatory text view in which the exercise intensity state is output as text at the top of the bar position when the exercise intensities are 50%, 75%, and 100%.
  • the exercise intensity state output in the explanatory text view is divided into fat burning at 50%, weight loss at 75%, and warning at 100%.
  • the detailed data output unit has three text views arranged horizontally so that the number of steps, the average heart rate per minute, and the moving distance data can be numerically checked among the exercise intensity data.
  • the average heart rate is output to be an integer by rounding up to one decimal place, and the moving distance is output in km units, but is output to the first decimal place by rounding up to two decimal places.
  • Each start and stop button is a button that is changed to a start button if it is a start button and a start button if it is a stop button.
  • a start signal is transmitted to the control unit.
  • the control unit changes the start button to the end button, and stores the date and time at which the start signal was input.
  • the end signal is transmitted to the control unit.
  • the control unit changes the end button to the start button, and then the server measures the date and time of the start signal and the date and time of the end signal. By transmitting to the server, the measurement date and time for each user is stored.
  • the time output unit includes a measurement time unit for outputting a measurement time on the left side and a start time unit for outputting a start time on the right side, and outputs the time obtained by subtracting the time from which the start signal is input to the measurement time unit by the control unit.
  • the start time section outputs a time at which a start signal is input.
  • the minimum unit of time output to the measurement time unit is in seconds
  • the minimum unit of time output to the start time unit is in minutes
  • the monitoring method through the worker health management system using the bio-signal-based safety management work clothes identifies the health status based on the bio-signal of the worker wearing the safety management work clothes that measure the bio-signal, Analyze the state of workers such as stress state, exercise intensity, movement and behavior pattern in big data based server by using biosignal such as ECG, acceleration, and body temperature detected by biosignal sensor of safety management work clothes. It prevents safety accidents and provides a remarkable effect of preventing accidents, improving productivity and promoting health by providing continuous personalized health care services for workers through smartphone applications.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • General Physics & Mathematics (AREA)
  • Primary Health Care (AREA)
  • Cardiology (AREA)
  • Biophysics (AREA)
  • Software Systems (AREA)
  • General Business, Economics & Management (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Marketing (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • General Engineering & Computer Science (AREA)
  • Physiology (AREA)
  • Epidemiology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Child & Adolescent Psychology (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Human Computer Interaction (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

본 발명 스마트폰 어플리케이션을 통한 근로자 건강관리 방법은 스마트폰에 어플리케이션이 실행되어 제어부의 제어하에 메인화면을 디스플레이에 출력하는 화면출력단계; 상기 스마트폰의 제어부가 네트워크통신을 통해 서버(200)의 웹 서비스(210)에 요청을 한 후, 서버(200)의 하둡 분산 파일 시스템(230)(HDFS, Hadoop Distributed File System)에 저장된 생체신호 데이터를 수신하여 디스플레이에 출력할 수 있도록 변환하는 변환단계; 상기 제어부는 변환된 생체신호 데이터를 디스플레이에 출력되는 메인화면의 각 위치에 매칭하여 표시하는 데이터출력단계; 로 이루어지는 것이 특징이다.

Description

스마트폰 어플리케이션을 통한 근로자 건강관리 방법
본 발명은 스마트폰 어플리케이션을 통한 근로자 건강관리 방법에 관한 것으로, 더욱 자세하게는 생체신호를 측정하는 안전관리작업복을 착용한 근로자의 생체신호 기반의 건강 상태를 파악하여 산업현장에서의 업무상사고를 예방하되, 상기 안전관리작업복의 생체신호용 센서를 통해 감지한 심전도, 가속도, 체온 등의 생체신호를 활용하여 빅데이터 기반의 서버에서 스트레스 상태, 운동 강도, 움직임 및 행동 패턴 등의 근로자의 상태를 분석하여 안전사고를 예방하며, 스마트폰 어플리케이션을 통해 근로자를 대상으로 지속적인 개인 맞춤형 건강관리 서비스를 제공함으로써 재해 예방, 생산성 향상, 건강증진을 도모하는 스마트폰 어플리케이션을 통한 근로자 건강관리 방법에 관한 것이다.
4차 산업 혁명으로 명명되는 Industry 4.0은 제조업과 ICT 등의 융합을 통해 미래형 생산체계로 변화되며, 생산과 서비스 요소 간 네트워크로 연결되고 정보를 교환함으로써 최적화된 생산 및 근로자의 건강과 안전관리 중요성을 강조한다.
산업현장에서의 업무상 사고는 지속적으로 증가하고 있으며, 전체 사고재해자수 중 가장 많은 사고재해자수의 발생형태는 2015년도를 기준으로 넘어짐 19%, 떨어짐 17.2%, 끼임 16.4%가 발생하였으며, 발생형태 중에서 넘어짐과 끼임은 제조업에서 가장 많이 발생하고 있다.
종래기술로서 등록실용신안공보 등록번호 제20-0356373호의 안전 작업복에는, 이면에는 투습방수층이 형성되고 표면은 형광물질로 착색된 직물로 이루어지며, 앞판과 등판 및 소매 부위에 재귀반사효과를 갖는 반사띠가 각각 하나 이상 부착된 점퍼 또는 재킷형태인 것을 특징으로 하는 안전 작업복을 기재하고 있다.
상기 종래기술과 같이 산업안전을 위해서는 주로 작업장의 환경 요소만 고려한 기술들만이 개발되어 왔으며, 산업 근로자에 대한 피로도, 집중도, 스트레스, 심장이상, 폐활량, 이산화탄소 중독 등의 건강상태를 파악하는 기술에 대한 개발이 제대로 이루어지지 않고 있다.
다른 종래기술로서 공개특허공보 공개번호 제10-2016-0081430호의 작업자의 고도 검출을 통한 건설 현장 관리 시스템에는, 작업자들이 위치한 작업 건물의 층 수 위치를 감지하여 상기 작업자들의 현재 위치와 작업 정보를 파악하는 작업자의 고도 검출을 통한 건설 현장 관리 시스템에 있어서, 작업자의 고유 ID 코드와 위치 정보를 포함하는 태그 정보를 전송하도록 상기 작업자의 안전모에 부착되어 있는 태그 단말; 대기압 센서를 내장하여 작업 현장에 다수 개 설치되고, 상기 태그 단말로부터 태그 정보를 수신한 후, 상기 태그 정보와 상기 대기압 센서에 의하여 감지된 대기압 정보 및 단말 코드를 포함하는 수신 코드 정보를 생성하는 수신 단말; 및 상기 작업 건물의 층 수별 대기압 정보가 미리 저장되어 있고, 상기 수신 단말로부터 상기 수신 코드 정보를 수신한 후, 상기 수신 코드 정보의 대기압 정보와 상기 층 수별 대기압 정보를 매칭하여 상기 작업자가 위치한 작업 건물의 층 수 정보를 산출하고, 상기 산출된 작업 건물의 층 수 정보와 작업자의 위치 정보를 이용하여 작업 현장별 관제 데이터를 생성하는 관리 서버를 포함하는 것을 특징으로 하는 작업자의 고도 검출을 통한 건설 현장 관리 시스템이라고 기재되어 있다.
그러나 상기와 같은 종래의 기술들은 직업관련 질병과 산업재해의 문제가 꾸준히 제기되고 있으며, 산업 근로자는 신체능력,숙련도,근로환경 등의 개별적 특성이 다르기에, 일관된 안전 수칙 및 통제로는 효율성에 한계가 있다.
본 발명 스마트폰 어플리케이션을 통한 근로자 건강관리 방법을 통하여, 생체신호를 측정하는 안전관리작업복을 착용한 근로자의 생체신호 기반의 건강 상태를 파악하여 산업현장에서의 업무상사고를 예방하되, 상기 안전관리작업복의 생체신호용 센서를 통해 감지한 심전도, 가속도, 체온 등의 생체신호를 활용하여 빅데이터 기반의 서버에서 스트레스 상태, 운동 강도, 움직임 및 행동 패턴 등의 근로자의 상태를 분석하여 안전사고를 예방하며, 스마트폰 어플리케이션을 통해 근로자를 대상으로 지속적인 개인 맞춤형 건강관리 서비스를 제공함으로써 재해 예방, 생산성 향상, 건강증진을 도모하는 스마트폰 어플리케이션을 통한 근로자 건강관리 방법을 제공하고자 하는 것이다.
본 발명 스마트폰 어플리케이션을 통한 근로자 건강관리 방법은 스마트폰에 어플리케이션이 실행되어 제어부의 제어하에 메인화면을 디스플레이에 출력하는 화면출력단계; 상기 스마트폰의 제어부가 네트워크통신을 통해 서버(200)의 웹 서비스(210)에 요청을 한 후, 서버(200)의 하둡 분산 파일 시스템(230)(HDFS, Hadoop Distributed File System)에 저장된 생체신호 데이터를 수신하여 디스플레이에 출력할 수 있도록 변환하는 변환단계; 상기 제어부는 변환된 생체신호 데이터를 디스플레이에 출력되는 메인화면의 각 위치에 매칭하여 표시하는 데이터출력단계; 로 이루어지는 것을 특징으로 한다.
본 발명 스마트폰 어플리케이션을 통한 근로자 건강관리 방법은 생체신호를 측정하는 안전관리작업복을 착용한 근로자의 생체신호 기반의 건강 상태를 파악하여 산업현장에서의 업무상사고를 예방하되, 상기 안전관리작업복의 생체신호용 센서를 통해 감지한 심전도, 가속도, 체온 등의 생체신호를 활용하여 빅데이터 기반의 서버에서 스트레스 상태, 운동 강도, 움직임 및 행동 패턴 등의 근로자의 상태를 분석하여 안전사고를 예방하며, 스마트폰 어플리케이션을 통해 근로자를 대상으로 지속적인 개인 맞춤형 건강관리 서비스를 제공함으로써 재해 예방, 생산성 향상, 건강증진을 도모하는 현저한 효과가 있다.
도 1은 본 발명의 개념도
도 2는 본 발명의 생체신호 기반의 안전관리 작업복을 착용한 개념도
도 3은 본 발명 생체신호 기반의 안전관리 작업복 내부에 부착되는 밴드의 구성도
도 4는 신체신호용 센서의 구성도
도 5는 본 발명의 신체신호용 센서의 개념도
도 6은 본 발명의 방법 개념도
도 7은 본 발명의 출력장치에서 맥백과 나이에 따른 운동강도를 나타내는 개념도
도 8은 본 발명의 스마트폰 어플리케이션에 출력되는 메인화면 구성도
도 9는 본 발명의 출력장치에 출력되는 화면의 구성도
<도면의 주요 부분에 대한 부호의 설명>
100 : 생체신호 기반의 안전관리 작업복
110 : 작업복
120 : 밴드
130 : 신체신호용 센서
140 : 모듈
150 : 배터리
160 : 디지털실
200 : 서버
210 : 웹 서비스
220 : 데이터베이스
230 : 하둡 분산 파일 시스템(HDFS)
본 발명 스마트폰 어플리케이션을 통한 근로자 건강관리 방법은 스마트폰에 어플리케이션이 실행되어 제어부의 제어하에 메인화면을 디스플레이에 출력하는 화면출력단계; 상기 스마트폰의 제어부가 네트워크통신을 통해 서버(200)의 웹 서비스(210)에 요청을 한 후, 서버(200)의 하둡 분산 파일 시스템(230)(HDFS, Hadoop Distributed File System)에 저장된 생체신호 데이터를 수신하여 디스플레이에 출력할 수 있도록 변환하는 변환단계; 상기 제어부는 변환된 생체신호 데이터를 디스플레이에 출력되는 메인화면의 각 위치에 매칭하여 표시하는 데이터출력단계; 로 이루어지는 것을 특징으로 한다.
또한, 상기 데이터출력단계 이후, 일정시간마다 변환단계 및 데이터출력단계가 진행되는 것으로, 제어부는 실시간으로 서버에 저장된 생체신호 데이터의 변화를 확인하여 디스플레이에 출력하는 것을 특징으로 한다.
또한, 상기 메인화면에는 상단에 서버와 통신이 연결(connect)된 것을 확인할 수 있는 연결확인부가 출력되고, 상기 연결확인부 하부에는 생체신호 데이터 중에서 운동강도에 따른 상태를 시크바(Seekbar)로 확인할 수 있는 운동강도확인부가 출력되고, 상기 운동강도확인부 하부에는 생체신호 데이터 중에서 걸음수, 분당 평균심박수, 및 이동거리를 출력하는 세부데이터출력부가 출력되고, 상기 세부데이터출력부 하부에는 제어부로 신호를 보내어 시작과 정지를 제어하고 제어부에 정지신호가 입력될 경우 시작부터 정지까지의 측정일시 및 사용자아이디를 서버로 전송하도록 시작 및 정지 버튼이 출력되고, 상기 시작 및 정지 버튼의 하부에는 측정시간 및 시작시간을 출력하는 시간출력부가 출력되는 것을 특징으로 한다.
본 발명의 첨부 도면에 따라 설명하면 다음과 같다.
도 1은 본 발명의 개념도, 도 2는 본 발명의 생체신호 기반의 안전관리 작업복을 착용한 개념도, 도 3은 본 발명 생체신호 기반의 안전관리 작업복 내부에 부착되는 밴드의 구성도, 도 4는 신체신호용 센서의 구성도, 도 5는 본 발명의 신체신호용 센서의 개념도, 도 6은 본 발명의 방법 개념도, 도 7은 본 발명의 출력장치에서 맥백과 나이에 따른 운동강도를 나타내는 개념도, 도 8은 본 발명의 스마트폰 어플리케이션에 출력되는 메인화면 구성도, 도 9는 본 발명의 출력장치에 출력되는 화면의 구성도이다.
본 발명에 대해 더욱 구체적으로 기술하면, 본 발명 생체신호 기반의 안전관리 작업복(100)은 작업복(110)과; 상기 작업복의 내부면에 부착되되 신체신호용 센서 및 모듈의 인체 접지 최소화를 위해 신축성 있는 폴리에스터 원단으로 제조된 밴드(120)와; 상기 밴드에 부착되는 신체신호용 센서(130)와; 상기 생체신호용 센서로부터 신호를 전달받아 처리하는 모듈(140)과; 배터리(150)와; 상기 생체신호용 센서와 모듈 또는 모듈과 배터리 간에 신호를 전달할 수 있는 디지털실(160); 로 이루어진다.
상기 작업복은 통상적으로 사용자가 입을 수 있는 작업복을 말하는 것으로, 다양하게 제조될 수 있다.
상기 밴드는 'X'형 또는 'ㅛ'형으로 제조되는 것이며, 상기 밴드에는 디지털실이 각각의 심전도 센서와 모듈을 연결하며, 또한 모듈과 배터리를 연결하기 위해 결합되어 있다.
상기 모듈에는 무선유도계(RIF, Radio Influence Field) 필터, 고주파 필터(HPF, High Pass filter), 교류(AC, Alternating Current) 앰플리파이어(AMP, Amplifier), 저역 필터(LPF, Low pass filter), 디지털신호처리장치(DSP, digital signal processor), 메모리, 블루투스모듈이 내장된다.
특히, 상기 무선유도계(RIF, Radio Influence Field) 필터, 고주파 필터(HPF, High Pass filter), 교류(AC, Alternating Current) 앰플리파이어(AMP, Amplifier), 저역 필터(LPF, Low pass filter), 디지털신호처리장치(DSP, digital signal processor)는 노이즈 제거 및 신호를 증폭하면서 데이터를 실시간으로 고속 처리할 수 있는 데이터 처리부인 것이다.
그리고 상기 블루투스 모듈은 데이터 처리부에서 처리된 데이터를 연속적이며 최소 전력 송신이 가능한 4.0 기반 블루투스 모듈을 사용한다.
상기 4.0 기반 블루투스 모듈은 BLE라고도 하며, 전송할 수 있는 최적의 패킷 사이즈가 20Byte이며, 상기 패킷 사이즈 20byte는 Pkt No 1byte, offset 1byte, Moving 17byte, ChkSum 1byte로 나누어진다.
이때, 심전도 200Hz와 가속도 25Hz를 1초에 전송하기 위해 데이터를 압축하는 수식은 다음과 같다.
Sample(0) = Offset*128+Moving[0];
Sample(n) = Sample(n-1) + Diff;
이때, n의 범위는 1~16이며, Diff의 값은 n의 값이 변함에 따라 아래와 같이 변하게 된다.
if(Moving[n]) <128) Diff=Moving[n]; else Diff=-1*(128-Moving[n]);
그리고 n의 값이 변경될 때, Moving[n]의 값도 변경되며, Moving[n]의 범위는 -127 ~ +127이다.
그러므로 상기 모듈은 심전도 센서의 심전도 신호를 모듈에서 수신하여 무선유도계(RIF, Radio Influence Field) 필터, 고주파 필터(HPF, High Pass filter), 교류(AC, Alternating Current) 앰플리파이어(AMP, Amplifier), 저역 필터(LPF, Low pass filter), 디지털신호처리장치(DSP, digital signal processor)를 거친 심전도 신호를 메모리에 저장하며, 블루투스모듈로 전송하는 것이다.
상기 신체신호용 센서는 심전도(ECG, electrocardiogram) 센서와, 심박센서와, 3축 가속도 센서로 이루어지며, 상기 심전도 센서의 +극 단자, -극 단자, 그라운드(GND, Ground) 단자는 각각 움직임이 최소화되는 위치에 부착된 것이다.
예를들면, 오른쪽 가슴 위에는 +극 단자가 부착되며, 오른쪽 가슴 밑에는 그라운드(GND, Ground) 단자가 부착되며, 왼쪽 가슴 밑에는 -극 단자가 부착된다.
상기 배터리는 왼쪽 가슴 위에 장착되며, 모듈은 양쪽의 가슴 중앙에 위치하도록 함으로써 움직일 때의 불편함을 최소화하는 것이다.
한편, 본 발명의 생체신호 기반의 안전관리 작업복을 이용한 근로자 건강관리 시스템은 생체신호용 센서 및 모듈이 내장된 생체신호 기반의 안전관리 작업복과; 상기 생체신호 기반의 안전관리 작업복으로부터 사용자의 생체신호를 전달받아 분석, 판단하여 사용자의 패턴을 판단할 수 있는 데이터로 변환하는 서버와; 상기 서버에서 제공받은 데이터를 통해 건강상태를 모니터링 할 수 있도록 화면에 출력하는 출력장치; 로 이루어진다.
상기 생체신호 기반의 안전관리 작업복에는 생체신호 측정용 모듈 및 센서가 부착되어 있으며, 상기 생체신호 측정용 센서에서 측정된 생체신호를 통신부를 통해 서버로 전달하며, 상기 서버는 생체신호를 분석 및 저장하는 것으로, 상기 서버는 수치 해석 및 프로그래밍 환경을 제공하는 공학용 소프트웨어인 매트랩(Matlab, matrix laboratory)을 기반으로 생체신호를 분석하는 것이다.
이때, 상기 매트랩에서는 대규모로 저장된 데이터 안에서 체계적이고 자동적으로 통계적 규칙이나 패턴을 찾아 내는 데이터 마이닝을 제공한다.
상기 서버는 하둡 분산 파일 시스템(HDFS, Hadoop Distributed File System)을 통해 저장하며, 상기 하둡 분산 파일 시스템에 적용하기 위한 공개 비관계형 분산 데이터 베이스인 HBase를 사용하는 것으로, 상기 하둡(Hadoop)은 여러 개의 저렴한 컴퓨터를 마치 하나인 것처럼 묶어 대용량 데이터를 처리하는 기술이다.
상기 HBase에서 검색한 생체신호 데이터에 생체신호 분석 알고리즘을 적용하여 HiveQL(Hive Query Language)을 이용하여 가공한 생체신호 데이터를 Hive에 저장한다.
상기 하둡 분산 파일 시스템은 읽기/쓰기 작업의 무결성, HDFS 스토리지, 맵리듀스(MapReduce), 자바 클라이언트, API를 제공하는 것으로, 서비스지향아키텍처(Service oriented Architecture, SOA) 기반의 데이터 저장 및 검색에 최적화되는 것이다.
그리고 상기 서버는 생체신호 중에서 심전도 데이터를 활용한 알고리즘을 통해 근로자의 행동패턴, 스트레스, 및 심박 이상상태를 판단한 후, 근로자의 개인별 건강 지표를 분석하여 평가하는 알고리즘을 통해 건강관리 및 응급상황을 분석하는 것이다.
상기 행동패턴은 무장착, 휴식, 건기, 뛰기, 점프 등으로 구분되며, 행동패턴을 판단하기 위해서는 가속도신호를 기반으로 kNN(k-Nearest Neighborhood) 알고리즘을 적용하는 것으로, 상기 행동패턴을 분석하기 위한 데이터를 Train Data로 정의한다.
상기 Train Data를 분석하기 위한 수식은 다음과 같다.
Figure PCTKR2017001407-appb-I000001
상기 행동패턴에 따른 수식의 결과 값에 따라 1은 무장착, 2는 휴식, 3은 걷기, 4는 뛰기, 5는 점프인 것으로 판단한다.
상기 신체신호용 센서는 전도성 천(conductive fabric), 전도성 접착제(conductive adhesive), 보호 안감(Release Liner)으로 이루어지는 것으로, 적절하게는 52mm*38mm*3.6mm의 사이즈를 가지며, 0.4Ω의 저항을 가지는 것이다.
그리고 상기 신체신호용 센서는 자석을 이용하여 탈부착할 수 있는 것이다.
특히, 상기 생체신호용 센서가 신체에 밀착되어도 불편함이 없도록 금속 플라즈마가 코팅된 전도성 천(conductive fabric)을 사용하되, 상기 전도성 천은 피부적합성을 고려하여 천에 순수 금을 사용한 플라즈마 코팅을 한 것이다.
상기 생체신호를 측정하기 위해서는 R 피크를 추출하고 있으나, 노이즈가 발생하는 구간에서는 R 피크를 추출하는 정확도가 떨어진다.
상기 출력장치는 컴퓨터 또는 스마트폰을 사용하는 것으로, 출력장치에는 어플리케이션이 설치되어, 상기 어플리케이션이 실행되면 서버로부터 실시간으로 심전도센서를 통해 감지된 심전도 데이터와, 심박센서를 통해 감지된 맥박 데이터와, 3축 가속도를 통해 감지된 가속도 데이터를 전달받아 화면에 보여주는 것이다.
상기 출력장치의 화면에는 서버에서 분석한 건강상태를 측정한 날짜별로 확인할 수 있으며, 심장박동의 실시간 변화를 통해 비정상 리듬을 감지하며, 스트레스 상태를 보여주며, 평균박동수와 운동량을 보여주는 것이다.
상기 출력장치의 화면에는 맥박 데이터의 상태에 따라 운동강도에 따른 정보를 출력하되, 상기 맥박 데이터에 따른 심장박동수, 설정된 사용자의 나이에 따른 운동강도를 판단하여 출력하는 것이다.
예를들면, 상기 나이가 20대인 경우 심장박동수가 200bpm일 경우를 운동강도가 100%가 되며, 나이대가 증가할 때마다 운동강도 100%의 기준을 0.25%씩 감소하는 것으로, 상기 운동강도 100%의 기준bpm은 나이가 30대인 경우 200bpm*0.975를 하여 195bpm이 되며, 40대인 경우 200bpm*0.950을 하여 190bpm이 되며, 50대인 경우 200bpm*0.925를 하여 185bpm이 되며, 60대인 경우 200bpm*0.900을 하여 180bpm이 되며, 70대인 경우 200bpm*0.875를 하여 175bpm이 되는 것이다.
이때, 상기 출력장치의 화면에는 운동강도가 60%이상 70%미만의 경우 출력장치의 화면에 "현재 상태가 가장 적절합니다."라고 메시지가 출력되며, 70%이상 90%미만인 경우 유산소 운동상태인 것으로 "현재 유산소 운동중입니다."라고 출력되며, 90%이상은 위험구간으로 "맥박이 너무 강합니다. 주의해주세요."라고 출력되는 것이다.
한편, 상기 운동강도는 앞서 기재한 나이별 기준을 연계할 수 있는 것으로, 나이별로 기준운동강도를 20대 200bpm, 30대 195bpm, 40대 190bpm, 50대 185bpm, 60대 180bpm, 70대 175bpm으로 설정하여 차별화 할 수 있다.
상기 출력장치의 화면에는 가속도 데이터에 따라 실시간 걸음수와 운동거리를 보여주는 것이다.
다른 실시예로서, 본 발명의 생체신호 기반의 안전관리 작업복에는 센서들이 부착되어 있는 것으로, 상기 센서들은 아황산가스 등을 감지할 수 있는 유해가스센서와, 소음을 감지하는 사운드센서와, 자외선을 감지하는 자외선센서와, 분진을 감지하는 더스트센서와, 오존을 감지하는 오존센서로 이루어진다. 이때, 상기 센서들은 관용의 것을 사용하는 것으로 센서 자체에 대한 자세한 설명은 생략한다.
그리고 상기 센서들은 모듈에 디지털실을 통해 연결되어 모듈에 감지신호를 전달하며, 상기 모듈은 센서들로부터 감지신호를 전달받아 데이터 처리부를 통해 데이터를 처리한 후, 블루투스모듈을 통해 서버로 전송하는 것이다.
상기 감지신호는 유해가스감지데이터, 소음감지데이터, 자외선데이터, 분진데이터, 및 오존데이터를 포함한다.
그리고 상기 서버는 각각의 센서들의 감지신호를 받아서 출력장치에 전달하게 된다.
상기 출력장치는 감지신호를 전달받아 디스플레이에 감지신호의 각 데이터를 출력한다.
상기 출력장치의 디스플레이에 최근 24시간 동안의 유해가스감지데이터의 수치를 텍스트로 출력하되, 유해가스감지데이터의 수치가 최근 24시간 동안 0.05ppm이하인 경우 안전하다는 의미로 텍스트를 초록색으로 나타내며, 최근 24시간 동안 0.05ppm초과 0.15ppm 이하인 경우 경고의 의미로 텍스트를 주황색으로 나타내며, 최근 24시간 동안 0.15ppm를 초과한 경우 위험의 의미로 텍스트를 빨간색으로 나타내게 된다.
그리고 소음감지데이터의 수치를 시간에 따른 그래프(y축이 수치이며 x축이 시간인 그래프)로 출력하되, 각 시간에 해당하는 막대는 55dBA 이하인 경우 초록색으로 나타나며, 55dBA를 초과하며 85dBA 이하인 경우 주황색으로 나타나며, 85dBA를 초과하는 경우 빨간색으로 나타나는 것이다. 특히, 85dBA를 초과하는 경우, 출력장치의 화면에는 "귀마개를 사용해주세요"라는 경고창이 출력되는 것이다.
그리고 최근 24시간 동안의 자외선데이터의 수치에 따른 단계를 3단계로 구분하여 출력하되, 24시간 중에서 50㎍/㎡이하인 경우 1단계가 되어 보통임을 나타내기 위해 텍스트 1을 초록색으로 출력하며, 50㎍/㎡초과인 상태가 24시간 중 6시간 미만인 경우 2단계가 되어 약간나쁨을 나타내기 위해 텍스트 2를 주황색으로 출력하며, 50㎍/㎡초과인 상태가 24시간 중 6시간 이상인 경우 3단계가 되어 나쁨을 나타내기 위해 텍스트 3을 빨간색으로 출력하는 것이다.
상기 분진데이터의 수치에 따른 단계를 4단계로 구분하여 출력하되, 30㎍/㎥이하이면 1단계가 되어 좋음을 나타내기 위해 파란색으로 텍스트를 출력하며, 30㎍/㎥초과 80㎍/㎥이하이면 2단계가 되어 보통임을 나타내기 위해 초록색으로 텍스트를 출력하며, 80㎍/㎥초과 150㎍/㎥이하이면 3단계가 되어 나쁨을 나타내기 위해 주황색으로 텍스트를 출력하며, 150㎍/㎥을 초과하면 4단계가 되어 매우나쁨을 나타내기 위해 빨간색으로 텍스트를 출력하는 것이다.
상기 오존데이터의 수치에 따른 단계를 4단계로 구분하여 출력하되, 0.030㎍/㎥이하이면 1단계가 되어 좋음을 나타내기 위해 파란색으로 텍스트를 출력하며, 0.030㎍/㎥초과 0.090㎍/㎥이하이면 2단계가 되어 보통임을 나타내기 위해 초록색으로 텍스트를 출력하며, 0.090㎍/㎥초과 0.150㎍/㎥이하이면 3단계가 되어 나쁨을 나타내기 위해 주황색으로 텍스트를 출력하며, 0.150㎍/㎥을 초과하면 4단계가 되어 매우나쁨을 나타내기 위해 빨간색으로 텍스트를 출력하는 것이다.
특히, 상기 출력장치는 제어부에 의해 분진데이터와 오존데이터가 각각 3단계 이상(3단계 또는 4단계)으로 판단되면, 디스플레이에 "실외에서 활동하기에는 위험합니다."라는 경고창을 출력하는 것이다.
한편, 상기 화면에는 시작 및 정지하는 버튼이 표시되어, 상기 버튼을 통해 정지할 경우 현재까지 측정된 심전도 데이터와 가속도 데이터를 저장한 후, 저장된 데이터와 함께 측정일시와 사용자아이디를 서버로 전송함으로써, 상기 서버에 저장시킬 수 있는 것이다.
상기 본 발명은 사물인터넷(IoT, internet of things)을 활용하여 서버와 통신함에 따라 산업현장에서 응급 상황을 실시간으로 파악할 수 있으며, 가정, 회사, 병원 등의 다양한 장소에서 이용하는 IoT 기반의 헬스케어 시스템으로 확장할 수 있다.
한편, 본 발명 생체신호 기반의 안전관리 작업복을 이용한 근로자 건강관리 시스템을 통한 모니터링 방법은 생체신호 기반의 안전관리 작업복에 구비된 생체신호용 센서를 통해 감지된 신호를 서버의 웹 서비스에 전송한다.
그러면, 상기 웹 서비스는 알고리즘 삽입 또는 삭제를 서버의 데이터베이스에 요청하거나, 또는 알고리즘 저장을 서버의 하둡 분산 파일 시스템(HDFS, Hadoop Distributed File System)에 요청하는 것이다.
이때, 상기 데이터베이스는 알고리즘 삽입 또는 삭제 요청에 따라 알고리즘을 삽입 또는 삭제하고, 상기 하둡 분산 파일 시스템은 알고리즘 저장 요청시 알고리즘을 저장한 후, 저장된 알고리즘을 실행하기 위해 알고리즘을 웹 서비스로 전송한다.
그리고 상기 알고리즘을 수신한 웹 서비스는 알고리즘 검색 및 적용한 후, 적용된 데이터를 검색하여 SOAP(Simple Object Access Protocol) 메시지를 서비스에 보내며, 상기 서비스를 출력장치를 통해 출력하는 것이다.
한편, 상기 SOAP(Simple Object Access Protocol)은 객체 간의 인터넷을 통하여 통신할 수 있도록 하는 기술이다.
또한, 상기 생체신호 기반의 안전관리 작업복은 구비된 생체신호용 센서를 통해 감지된 신호에 매트랩(Matlab)을 통해 생체신호 알고리즘을 적용한 후, SOAP(Simple Object Access Protocol) 메시지를 웹 서비스로 전송하는 것이다.
상기 매트랩(Matlab)의 알고리즘을 적용하기 위한 명령어는 다음과 같다.
function [maxIdx, maxVal, endIdx] = Detection(data, FS)
if nargin < 2
FS=100;
end
fs=FS; fl=60; fh=5;
maxIdx=[]; maxVal=[]; maxIdx=[];
rawData=data;
dcRemData = rawData-mean(rawData);
lpData = lpassfilter(dcRemData, fl, fs);
hpData = hpassfilter(lpData, fh, fs);
diffData = diff(hpData);
sqrData = diffData*diffData;
window=ones(1,30);
integral=medfilt1(filter(window,1,sqrData),10);
delay=ceil(length(window)/2);
integralData=integral(delay:length(integral));
max_h=max(integralData);
thresh=0.3;
peak_reg=integralData>(thresh*max_h);
sIndex=find(diff([0 peak_reg'])==1);
eIndex=find(diff(peak_reg' 0])==-1);
그러므로 상기와 같은 매트랩(Matlab)의 명령어를 통해 알고리즘을 적용하는 것이다.
한편, 상기 출력장치로 어플리케이션이 설치된 스마트폰을 사용할 때, 본 발명 스마트폰 어플리케이션을 통한 근로자 건강관리 방법은 스마트폰에 어플리케이션이 실행되어 제어부의 제어하에 메인화면을 디스플레이에 출력하는 화면출력단계; 상기 스마트폰의 제어부가 네트워크통신을 통해 서버(200)의 웹 서비스(210)에 요청을 한 후, 서버(200)의 하둡 분산 파일 시스템(230)(HDFS, Hadoop Distributed File System)에 저장된 생체신호 데이터를 수신하여 디스플레이에 출력할 수 있도록 변환하는 변환단계; 상기 제어부는 변환된 생체신호 데이터를 디스플레이에 출력되는 메인화면의 각 위치에 매칭하여 표시하는 데이터출력단계; 로 이루어지는 것이다.
상기 화면출력단계에서 메인화면 이전에 로그인 화면이 먼저 출력되어 사용자아이디를 입력할 수 있는 로그인화면이 출력되며, 사용자아이디가 입력되면 메인화면으로 넘어가는 것이다.
상기 데이터출력단계 이후, 일정시간마다 변환단계 및 데이터출력단계가 진행되는 것으로, 제어부는 실시간으로 서버에 저장된 생체신호 데이터의 변화를 확인하여 디스플레이에 출력하는 것이다.
상기 메인화면에는 상단에 서버와 통신이 연결(connect)된 것을 확인할 수 있는 연결확인부가 출력되고, 상기 연결확인부 하부에는 생체신호 데이터 중에서 운동강도에 따른 상태를 시크바(Seekbar)로 확인할 수 있는 운동강도확인부가 출력되고, 상기 운동강도확인부 하부에는 생체신호 데이터 중에서 걸음수, 분당 평균심박수, 및 이동거리를 출력하는 세부데이터출력부가 출력되고, 상기 세부데이터출력부 하부에는 제어부로 신호를 보내어 시작과 정지를 제어하고 제어부에 정지신호가 입력될 경우 시작부터 정지까지의 측정일시 및 사용자아이디를 서버로 전송하도록 시작 및 정지 버튼이 출력되고, 상기 시작 및 정지 버튼의 하부에는 측정시간 및 시작시간을 출력하는 시간출력부가 출력되는 것이다.
상기 연결확인부는 서버와의 통신 연결상태를 확인할 수 있도록 제어부의 제어하에 연결거절(Connection refused), 연결중(Connecting), 연결됨(Connected), 연결끊김(disconnected) 등을 확인할 수 있는 단어를 구분하여 출력하는 것이다.
예를들어 연결됨일 경우에는 연결된 것을 사용자가 확인할 수 있도록 연결확인부에 영어로 "Connected"라고 출력하는 것이다.
상기 운동강도 확인부는 막대가 운동강도 데이터에 따라 좌우로 이동할 수 있도록 출력된 시크바(Seekbar)와, 상기 시크바(Seekbar) 상부에 운동강도 데이터에 따라 변하는 막대의 위치에 따라 사용자가 운동강도를 확인할 수 있도록 운동강도가 50%, 75%, 및 100%일 때의 막대 위치의 상단에 운동강도 상태가 텍스트로 출력된 설명텍스트뷰로 이루어진다.
상기 설명텍스트뷰에 출력되는 운동강도 상태는 50%일 때 지방연소, 75%일 때 체중감량, 100%일 때 경고로 구분되어 나타나는 것이다.
상기 세부데이터출력부는 운동강도 데이터 중에서 걸음수, 분당 평균심박수, 및 이동거리 데이터를 수치로 확인할 수 있도록 3개의 텍스트 뷰가 가로로 배치되는 것이다.
이때, 평균심박수는 소수 첫째 자리 이하를 반올림하여 정수가 되도록 출력하며, 이동거리는 km단위로 출력되되 소수 둘째 자리 이하를 반올림하여 소수 첫째 자리까지 출력하는 것이다.
상기 시작 및 정지 버튼은 누를 때마다, 시작버튼이면 정지버튼으로, 정지버튼이면 시작버튼으로 변경되는 버튼이다.
상기 시작버튼을 누르면 제어부로 시작신호가 전달되며, 상기 제어부는 시작버튼을 종료버튼으로 변경한 후, 시작신호가 입력된 일자 및 시간을 저장하게 된다.
그리고 상기 종료버튼을 누르면 제어부로 종료신호가 전달되며, 제어부는 종료버튼을 시작버튼으로 변경한 후, 시작신호가 입력된 일자 및 시간과 종료신호가 입력된 일자 및 시간이 포함된 측정일시를 서버로 전송함으로써, 상기 서버에는 사용자별 측정일자 및 시간이 저장되는 것이다.
상기 시간출력부는 좌측에 측정시간을 출력하는 측정시간부와, 우측에 시작시간을 출력하는 시작시간부로 이루어지는 것으로, 제어부에 의해 측정시간부에는 현재 시간에서 시작신호가 입력된 시간을 뺀 시간을 출력하고, 상기 시작시간부에는 시작신호가 입력된 시간을 출력하는 것이다.
이때, 상기 측정시간부에 출력되는 시간의 최소 단위는 초단위이며, 상기 시작시간부에 출력되는 시간의 최소 단위는 분단위이다.
따라서 본 발명 생체신호 기반의 안전관리 작업복을 이용한 근로자 건강관리 시스템을 통한 모니터링 방법은 생체신호를 측정하는 안전관리작업복을 착용한 근로자의 생체신호 기반의 건강 상태를 파악하여 산업현장에서의 업무상사고를 예방하되, 상기 안전관리작업복의 생체신호용 센서를 통해 감지한 심전도, 가속도, 체온 등의 생체신호를 활용하여 빅데이터 기반의 서버에서 스트레스 상태, 운동 강도, 움직임 및 행동 패턴 등의 근로자의 상태를 분석하여 안전사고를 예방하며, 스마트폰 어플리케이션을 통해 근로자를 대상으로 지속적인 개인 맞춤형 건강관리 서비스를 제공함으로써 재해 예방, 생산성 향상, 건강증진을 도모하는 현저한 효과가 있다.

Claims (3)

  1. 스마트폰에 어플리케이션이 실행되어 제어부의 제어하에 메인화면을 디스플레이에 출력하는 화면출력단계; 상기 스마트폰의 제어부가 네트워크통신을 통해 서버(200)의 웹 서비스(210)에 요청을 한 후, 서버(200)의 하둡 분산 파일 시스템(230)(HDFS, Hadoop Distributed File System)에 저장된 생체신호 데이터를 수신하여 디스플레이에 출력할 수 있도록 변환하는 변환단계; 상기 제어부는 변환된 생체신호 데이터를 디스플레이에 출력되는 메인화면의 각 위치에 매칭하여 표시하는 데이터출력단계; 로 이루어지는 것을 특징으로 하는 스마트폰 어플리케이션을 통한 근로자 건강관리 방법
  2. 제 1항에 있어서, 상기 데이터출력단계 이후, 일정시간마다 변환단계 및 데이터출력단계가 진행되는 것으로, 제어부는 실시간으로 서버에 저장된 생체신호 데이터의 변화를 확인하여 디스플레이에 출력하는 것을 특징으로 하는 스마트폰 어플리케이션을 통한 근로자 건강관리 방법
  3. 제 1항에 있어서, 상기 메인화면에는 상단에 서버와 통신이 연결(connect)된 것을 확인할 수 있는 연결확인부가 출력되고, 상기 연결확인부 하부에는 생체신호 데이터 중에서 운동강도에 따른 상태를 시크바(Seekbar)로 확인할 수 있는 운동강도확인부가 출력되고, 상기 운동강도확인부 하부에는 생체신호 데이터 중에서 걸음수, 분당 평균심박수, 및 이동거리를 출력하는 세부데이터출력부가 출력되고, 상기 세부데이터출력부 하부에는 제어부로 신호를 보내어 시작과 정지를 제어하고 제어부에 정지신호가 입력될 경우 시작부터 정지까지의 측정일시 및 사용자아이디를 서버로 전송하도록 시작 및 정지 버튼이 출력되고, 상기 시작 및 정지 버튼의 하부에는 측정시간 및 시작시간을 출력하는 시간출력부가 출력되는 것을 특징으로 하는 스마트폰 어플리케이션을 통한 근로자 건강관리 방법
PCT/KR2017/001407 2017-02-08 2017-02-09 스마트폰 어플리케이션을 통한 근로자 건강관리 방법 WO2018147477A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170017516A KR101959615B1 (ko) 2017-02-08 2017-02-08 스마트폰 어플리케이션을 통한 근로자 건강관리 방법
KR10-2017-0017516 2017-02-08

Publications (1)

Publication Number Publication Date
WO2018147477A1 true WO2018147477A1 (ko) 2018-08-16

Family

ID=63106887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001407 WO2018147477A1 (ko) 2017-02-08 2017-02-09 스마트폰 어플리케이션을 통한 근로자 건강관리 방법

Country Status (2)

Country Link
KR (1) KR101959615B1 (ko)
WO (1) WO2018147477A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112842308A (zh) * 2020-12-29 2021-05-28 广东湾区智能终端工业设计研究院有限公司 运动推荐显示方法及可穿戴设备、计算设备、存储介质
WO2022013738A1 (en) * 2020-07-16 2022-01-20 Stone Three Digital (Pty) Ltd Worker health and safety system and method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110083648B (zh) * 2019-04-17 2023-06-02 河北省体育科学研究所 冬季项目运动员科学选材和辅助分析系统
CN111603145A (zh) * 2020-05-09 2020-09-01 珠海格力电器股份有限公司 一种体温测量方法、设备和介质
WO2021251778A1 (en) * 2020-06-10 2021-12-16 S-Alpha Therapeutics, Inc. Method and apparatus for enhancing performance
KR102232807B1 (ko) 2020-09-28 2021-03-25 이다은 감염병 관리 어플리케이션 제공 시스템
KR102593367B1 (ko) 2021-02-05 2023-10-24 에이치아이엘(주) 장애인 맞춤형 건강관리 시스템 및 건강데이터 공유 방법 및 장치
KR102476661B1 (ko) 2022-09-20 2022-12-09 김태수 통신 시스템에서 건설 현장 내 근로자의 건강 관리를 지원하기 위한 방법 및 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239197A (ja) * 2005-03-04 2006-09-14 Mitsubishi Electric System & Service Co Ltd 携帯通信端末機
KR20120053481A (ko) * 2010-11-17 2012-05-25 서울대학교산학협력단 작업자의 생체정보 측정시스템 및 신체활동량과 종합스트레스지수 예측모델 시스템
KR20140045055A (ko) * 2012-10-08 2014-04-16 조선대학교산학협력단 스마트폰 및 웹서비스 기반 유-헬스케어 측정 시스템 및 방법
KR101438274B1 (ko) * 2012-09-20 2014-09-15 동국대학교 경주캠퍼스 산학협력단 스마트 단말기를 통한 건강 상태 체크 방법 및 이를 이용한 건강 상태 체크 시스템
JP2015016244A (ja) * 2013-07-12 2015-01-29 国立大学法人横浜国立大学 疲労度推定方法、疲労度推定装置、疲労度表示装置、及びプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239197A (ja) * 2005-03-04 2006-09-14 Mitsubishi Electric System & Service Co Ltd 携帯通信端末機
KR20120053481A (ko) * 2010-11-17 2012-05-25 서울대학교산학협력단 작업자의 생체정보 측정시스템 및 신체활동량과 종합스트레스지수 예측모델 시스템
KR101438274B1 (ko) * 2012-09-20 2014-09-15 동국대학교 경주캠퍼스 산학협력단 스마트 단말기를 통한 건강 상태 체크 방법 및 이를 이용한 건강 상태 체크 시스템
KR20140045055A (ko) * 2012-10-08 2014-04-16 조선대학교산학협력단 스마트폰 및 웹서비스 기반 유-헬스케어 측정 시스템 및 방법
JP2015016244A (ja) * 2013-07-12 2015-01-29 国立大学法人横浜国立大学 疲労度推定方法、疲労度推定装置、疲労度表示装置、及びプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022013738A1 (en) * 2020-07-16 2022-01-20 Stone Three Digital (Pty) Ltd Worker health and safety system and method
CN112842308A (zh) * 2020-12-29 2021-05-28 广东湾区智能终端工业设计研究院有限公司 运动推荐显示方法及可穿戴设备、计算设备、存储介质

Also Published As

Publication number Publication date
KR20180092130A (ko) 2018-08-17
KR101959615B1 (ko) 2019-03-18

Similar Documents

Publication Publication Date Title
WO2018147477A1 (ko) 스마트폰 어플리케이션을 통한 근로자 건강관리 방법
WO2018147560A1 (ko) 생체신호 기반의 안전관리 작업복을 이용한 근로자 건강관리 시스템 및 모니터링 방법
WO2018212423A1 (ko) 안전도 계산 방법 및 장치
WO2015008936A1 (ko) 습관을 이용한 진단 장치 및 진단 관리 장치와 그를 이용한 진단 방법
WO2017065442A1 (ko) 웨어러블 디바이스 및 그를 이용하여 환자를 통제하거나 알람을 제공하는 방법, 모니터링 서버, 컴퓨터 프로그램
WO2018135693A1 (ko) 스트레스 측정을 위한 이어 헤드셋 장치 및 이를 이용한 스트레스 측정 방법
WO2010085033A9 (ko) 유비쿼터스망을 이용한 헬스케어 서비스 시스템 및 방법
WO2019103187A1 (ko) 뇌파를 통한 뇌 인지기능 평가 플랫폼 및 방법
US20050059867A1 (en) Method for monitoring temperature of patient
EP3044715A1 (en) Wearable device performing user authentication using bio-signals and authentication method of the same
WO2017026612A1 (ko) 사용자 움직임 모니터링 방법 및 이를 수행하는 시스템
WO2018205424A1 (zh) 基于肌电的生物识别方法、终端及计算机可读存储介质
WO2017026611A1 (ko) 스마트 베드, 이를 이용한 사용자 상태 모니터링 시스템 및 사용자 상태 모니터링 방법
KR101962002B1 (ko) 생체신호 기반의 안전관리 작업복을 이용한 근로자 건강관리 모니터링 방법
WO2020106104A1 (en) Electronic device for providing meditation contents and operating method thereof
WO2023219319A1 (ko) 웨어러블 심전도 패치를 이용한 재택 심장 재활 시스템
WO2017099340A1 (ko) 전자 장치, 그의 신호 처리 방법, 생체 신호 측정 시스템 및 비일시적 컴퓨터 판독가능 기록매체
WO2016140389A1 (ko) 사용자 모니터링을 위한 착용형 장치 및 시스템
WO2021025492A1 (ko) 헤드형 공기질 위험 경고 및 개선장치
WO2016197385A1 (zh) 一种可监控人体意外摔倒的报警系统及方法
WO2013141667A1 (ko) 일상 건강 정보 제공 시스템 및 일상 건강 정보 제공 방법
WO2024063321A1 (ko) 스마트 인솔 기반 부분 체중 부하 보행 가이드 제공 방법 및 그 시스템
KR101951538B1 (ko) 생체신호 기반의 안전관리 작업복
WO2017099448A1 (ko) 법정선량계를 결합하는 스마트 선량계
KR101945095B1 (ko) 생체신호 기반의 안전관리 작업복을 이용한 근로자 건강관리 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896061

Country of ref document: EP

Kind code of ref document: A1