KR101951538B1 - 생체신호 기반의 안전관리 작업복 - Google Patents

생체신호 기반의 안전관리 작업복 Download PDF

Info

Publication number
KR101951538B1
KR101951538B1 KR1020170017498A KR20170017498A KR101951538B1 KR 101951538 B1 KR101951538 B1 KR 101951538B1 KR 1020170017498 A KR1020170017498 A KR 1020170017498A KR 20170017498 A KR20170017498 A KR 20170017498A KR 101951538 B1 KR101951538 B1 KR 101951538B1
Authority
KR
South Korea
Prior art keywords
bio
signal
sensor
data
text
Prior art date
Application number
KR1020170017498A
Other languages
English (en)
Other versions
KR20180092122A (ko
Inventor
김희철
주문일
최성훈
Original Assignee
인제대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인제대학교 산학협력단 filed Critical 인제대학교 산학협력단
Priority to KR1020170017498A priority Critical patent/KR101951538B1/ko
Priority to PCT/KR2018/000559 priority patent/WO2018147560A1/ko
Publication of KR20180092122A publication Critical patent/KR20180092122A/ko
Application granted granted Critical
Publication of KR101951538B1 publication Critical patent/KR101951538B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D1/00Garments
    • A41D1/002Garments adapted to accommodate electronic equipment
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D27/00Details of garments or of their making
    • A41D27/02Linings
    • A61B5/0402
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/015Input arrangements based on nervous system activity detection, e.g. brain waves [EEG] detection, electromyograms [EMG] detection, electrodermal response detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D2500/00Materials for garments
    • A41D2500/50Synthetic resins or rubbers
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D2600/00Uses of garments specially adapted for specific purposes
    • A41D2600/20Uses of garments specially adapted for specific purposes for working activities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/18Physical properties including electronic components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/01Indexing scheme relating to G06F3/01
    • G06F2203/011Emotion or mood input determined on the basis of sensed human body parameters such as pulse, heart rate or beat, temperature of skin, facial expressions, iris, voice pitch, brain activity patterns

Abstract

본 발명은 작업복(110)과; 상기 작업복의 내부면에 부착되되 생체신호용 센서 및 모듈의 인체 접지 최소화를 위해 신축성 있는 합성수지 원단으로 제조된 밴드(120)와; 상기 밴드에 부착되는 생체신호용 센서(130)와; 상기 생체신호용 센서로부터 신호를 전달받아 처리하는 모듈(140)과; 배터리(150)와; 상기 생체신호용 센서와 모듈 또는 모듈과 배터리 간에 신호를 전달할 수 있는 디지털실(160); 로 이루어지는 것으로,
본 발명 생체신호 기반의 안전관리 작업복은 생체신호 기반의 안전관리 작업복을 착용한 근로자의 생체신호 기반의 건강 상태를 파악하여 산업현장에서의 업무상사고를 예방하되, 상기 안전관리작업복의 생체신호용 센서를 통해 감지한 심전도, 가속도, 체온 등의 생체신호를 활용하여 빅데이터 기반의 서버에서 스트레스 상태, 운동 강도, 움직임 및 행동 패턴 등의 근로자의 상태를 분석하여 안전사고를 예방하며, 근로자를 대상으로 지속적인 개인 맞춤형 건강관리 서비스를 제공함으로써 재해 예방, 생산성 향상, 건강증진을 도모하는 현저한 효과가 있다.

Description

생체신호 기반의 안전관리 작업복 { Safety management work clothes based on biological signals }
본 발명은 생체신호 기반의 안전관리 작업복에 관한 것으로, 더욱 자세하게는 생체신호 기반의 안전관리 작업복을 착용한 근로자의 생체신호 기반의 건강 상태를 파악하여 산업현장에서의 업무상사고를 예방하되, 상기 안전관리작업복의 생체신호용 센서를 통해 감지한 심전도, 가속도, 체온 등의 생체신호를 활용하여 빅데이터 기반의 서버에서 스트레스 상태, 운동 강도, 움직임 및 행동 패턴 등의 근로자의 상태를 분석하여 안전사고를 예방하며, 근로자를 대상으로 지속적인 개인 맞춤형 건강관리 서비스를 제공함으로써 재해 예방, 생산성 향상, 건강증진을 도모하는 생체신호 기반의 안전관리 작업복에 관한 것이다.
4차 산업 혁명으로 명명되는 Industry 4.0은 제조업과 ICT 등의 융합을 통해 미래형 생산체계로 변화되며, 생산과 서비스 요소 간 네트워크로 연결되고 정보를 교환함으로써 최적화된 생산 및 근로자의 건강과 안전관리 중요성을 강조한다.
산업현장에서의 업무상 사고는 지속적으로 증가하고 있으며, 전체 사고재해자수 중 가장 많은 사고재해자수의 발생형태는 2015년도를 기준으로 넘어짐 19%, 떨어짐 17.2%, 끼임 16.4%가 발생하였으며, 발생형태 중에서 넘어짐과 끼임은 제조업에서 가장 많이 발생하고 있다.
종래기술로서 등록실용신안공보 등록번호 제20-0356373호의 안전 작업복에는, 이면에는 투습방수층이 형성되고 표면은 형광물질로 착색된 직물로 이루어지며, 앞판과 등판 및 소매 부위에 재귀반사효과를 갖는 반사띠가 각각 하나 이상 부착된 점퍼 또는 재킷형태인 것을 특징으로 하는 안전 작업복을 기재하고 있다.
상기 종래기술과 같이 산업안전을 위해서는 주로 작업장의 환경 요소만 고려한 기술들만이 개발되어 왔으며, 산업 근로자에 대한 피로도, 집중도, 스트레스, 심장이상, 폐활량, 이산화탄소 중독 등의 건강상태를 파악하는 기술에 대한 개발이 제대로 이루어지지 않고 있다.
다른 종래기술로서 공개특허공보 공개번호 제10-2016-0081430호의 작업자의 고도 검출을 통한 건설 현장 관리 시스템에는, 작업자들이 위치한 작업 건물의 층 수 위치를 감지하여 상기 작업자들의 현재 위치와 작업 정보를 파악하는 작업자의 고도 검출을 통한 건설 현장 관리 시스템에 있어서, 작업자의 고유 ID 코드와 위치 정보를 포함하는 태그 정보를 전송하도록 상기 작업자의 안전모에 부착되어 있는 태그 단말; 대기압 센서를 내장하여 작업 현장에 다수 개 설치되고, 상기 태그 단말로부터 태그 정보를 수신한 후, 상기 태그 정보와 상기 대기압 센서에 의하여 감지된 대기압 정보 및 단말 코드를 포함하는 수신 코드 정보를 생성하는 수신 단말; 및 상기 작업 건물의 층 수별 대기압 정보가 미리 저장되어 있고, 상기 수신 단말로부터 상기 수신 코드 정보를 수신한 후, 상기 수신 코드 정보의 대기압 정보와 상기 층 수별 대기압 정보를 매칭하여 상기 작업자가 위치한 작업 건물의 층 수 정보를 산출하고, 상기 산출된 작업 건물의 층 수 정보와 작업자의 위치 정보를 이용하여 작업 현장별 관제 데이터를 생성하는 관리 서버를 포함하는 것을 특징으로 하는 작업자의 고도 검출을 통한 건설 현장 관리 시스템이라고 기재되어 있다.
그러나 상기와 같은 종래의 기술들은 직업관련 질병과 산업재해의 문제가 꾸준히 제기되고 있으며, 산업 근로자는 신체능력,숙련도,근로환경 등의 개별적 특성이 다르기에, 일관된 안전 수칙 및 통제로는 효율성에 한계가 있다.
본 발명 생체신호 기반의 안전관리 작업복을 통하여, 생체신호 기반의 안전관리 작업복을 착용한 근로자의 생체신호 기반의 건강 상태를 파악하여 산업현장에서의 업무상사고를 예방하되, 상기 안전관리작업복의 생체신호용 센서를 통해 감지한 심전도, 가속도, 체온 등의 생체신호를 활용하여 빅데이터 기반의 서버에서 스트레스 상태, 운동 강도, 움직임 및 행동 패턴 등의 근로자의 상태를 분석하여 안전사고를 예방하며, 근로자를 대상으로 지속적인 개인 맞춤형 건강관리 서비스를 제공함으로써 재해 예방, 생산성 향상, 건강증진을 도모하는 생체신호 기반의 안전관리 작업복을 제공하고자 하는 것이다.
본 발명의 생체신호 기반의 생체신호 기반의 안전관리 작업복은 작업복과; 상기 작업복의 내부면에 부착되되 생체신호용 센서 및 모듈의 인체 접지 최소화를 위해 신축성 있는 합성수지 원단으로 제조된 밴드와; 상기 밴드에 부착되는 생체신호용 센서와; 상기 생체신호용 센서로부터 신호를 전달받아 처리하는 모듈과; 배터리와; 생체신호용 센서와 모듈 또는 모듈과 배터리 간에 신호를 전달할 수 있는 디지털실; 로 이루어지는 것을 특징으로 한다.
본 발명 생체신호 기반의 안전관리 작업복은 생체신호 기반의 안전관리 작업복을 착용한 근로자의 생체신호 기반의 건강 상태를 파악하여 산업현장에서의 업무상사고를 예방하되, 상기 안전관리작업복의 생체신호용 센서를 통해 감지한 심전도, 가속도, 체온 등의 생체신호를 활용하여 빅데이터 기반의 서버에서 스트레스 상태, 운동 강도, 움직임 및 행동 패턴 등의 근로자의 상태를 분석하여 안전사고를 예방하며, 근로자를 대상으로 지속적인 개인 맞춤형 건강관리 서비스를 제공함으로써 재해 예방, 생산성 향상, 건강증진을 도모하는 현저한 효과가 있다.
도 1은 본 발명의 개념도
도 2는 본 발명의 생체신호 기반의 안전관리 작업복을 착용한 개념도
도 3은 본 발명 생체신호 기반의 안전관리 작업복 내부에 부착되는 밴드의 구성도
도 4는 생체신호용 센서의 구성도
도 5는 본 발명의 생체신호용 센서의 개념도
도 6은 본 발명의 방법 개념도
도 7은 본 발명의 출력장치에서 맥백과 나이에 따른 운동강도를 나타내는 개념도
도 8 내지 9는 본 발명의 출력장치에 출력되는 화면의 구성도
본 발명의 생체신호 기반의 생체신호 기반의 안전관리 작업복은 작업복(110)과; 상기 작업복의 내부면에 부착되되 생체신호용 센서 및 모듈의 인체 접지 최소화를 위해 신축성 있는 합성수지 원단으로 제조된 밴드(120)와; 상기 밴드에 부착되는 생체신호용 센서(130)와; 상기 생체신호용 센서로부터 신호를 전달받아 처리하는 모듈(140)과; 배터리(150)와; 상기 생체신호용 센서와 모듈 또는 모듈과 배터리 간에 신호를 전달할 수 있는 디지털실(160); 로 이루어지는 것을 특징으로 한다.
또한, 상기 밴드(120)는 'X'형 또는 'ㅛ'형으로 제조되는 것을 특징으로 한다.
또한, 상기 생체신호용 센서(130)는 심전도(ECG, electrocardiogram) 센서와, 심박센서와, 3축 가속도 센서로 이루어지며, 상기 심전도 센서의 +극 단자, -극 단자, 그라운드(GND, Ground) 단자는 각각 움직임이 최소화되는 위치에 부착된 것을 특징으로 한다.
또한, 상기 모듈(140)에는 무선유도계(RIF, Radio Influence Field) 필터, 고주파 필터(HPF, High Pass filter), 교류(AC, Alternating Current) 앰플리파이어(AMP, Amplifier), 저역 필터(LPF, Low pass filter), 디지털신호처리장치(DSP, digital signal processor), 메모리, 블루투스모듈이 내장된 것을 특징으로 한다.
본 발명의 첨부 도면에 따라 설명하면 다음과 같다.
도 1은 본 발명의 개념도, 도 2는 본 발명의 생체신호 기반의 안전관리 작업복을 착용한 개념도, 도 3은 본 발명 생체신호 기반의 안전관리 작업복 내부에 부착되는 밴드의 구성도, 도 4는 생체신호용 센서의 구성도, 도 5는 본 발명의 생체신호용 센서의 개념도, 도 6은 본 발명의 방법 개념도, 도 7은 본 발명의 출력장치에서 맥백과 나이에 따른 운동강도를 나타내는 개념도, 도 8 내지 9는 본 발명의 출력장치에 출력되는 화면의 구성도이다.
본 발명에 대해 더욱 구체적으로 기술하면, 본 발명 생체신호 기반의 안전관리 작업복(100)은 작업복과; 상기 작업복의 내부면에 부착되되 생체신호용 센서 및 모듈의 인체 접지 최소화를 위해 신축성 있는 폴리에스터 원단으로 제조된 밴드와; 상기 밴드에 부착되는 생체신호용 센서와; 상기 생체신호용 센서로부터 신호를 전달받아 처리하는 모듈과; 배터리와; 생체신호용 센서와 모듈 또는 모듈과 배터리 간에 신호를 전달할 수 있는 디지털실; 로 이루어진다.
상기 작업복은 통상적으로 사용자가 입을 수 있는 작업복을 말하는 것으로, 다양하게 제조될 수 있다.
상기 밴드는 'X'형 또는 'ㅛ'형으로 제조되는 것이며, 상기 밴드에는 디지털실이 각각의 심전도 센서와 모듈을 연결하며, 또한 모듈과 배터리를 연결하기 위해 결합되어 있다.
상기 모듈에는 무선유도계(RIF, Radio Influence Field) 필터, 고주파 필터(HPF, High Pass filter), 교류(AC, Alternating Current) 앰플리파이어(AMP, Amplifier), 저역 필터(LPF, Low pass filter), 디지털신호처리장치(DSP, digital signal processor), 메모리, 블루투스모듈이 내장된다.
특히, 상기 무선유도계(RIF, Radio Influence Field) 필터, 고주파 필터(HPF, High Pass filter), 교류(AC, Alternating Current) 앰플리파이어(AMP, Amplifier), 저역 필터(LPF, Low pass filter), 디지털신호처리장치(DSP, digital signal processor)는 노이즈 제거 및 신호를 증폭하면서 데이터를 실시간으로 고속 처리할 수 있는 데이터 처리부인 것이다.
그리고 상기 블루투스 모듈은 데이터 처리부에서 처리된 데이터를 연속적이며 최소 전력 송신이 가능한 4.0 기반 블루투스 모듈을 사용한다.
상기 4.0 기반 블루투스 모듈은 BLE라고도 하며, 전송할 수 있는 최적의 패킷 사이즈가 20Byte이며, 상기 패킷 사이즈 20byte는 Pkt No 1byte, offset 1byte, Moving 17byte, ChkSum 1byte로 나누어진다.
이때, 심전도 200Hz와 가속도 25Hz를 1초에 전송하기 위해 데이터를 압축하는 수식은 다음과 같다.
Sample(0) = Offset*128+Moving[0];
Sample(n) = Sample(n-1) + Diff;
이때, n의 범위는 1~16이며, Diff의 값은 n의 값이 변함에 따라 아래와 같이 변하게 된다.
if(Moving[n]) <128) Diff=Moving[n]; else Diff=-1*(128-Moving[n]);
그리고 n의 값이 변경될 때, Moving[n]의 값도 변경되며, Moving[n]의 범위는 -127 ~ +127이다.
그러므로 상기 모듈은 심전도 센서의 심전도 신호를 모듈에서 수신하여 무선유도계(RIF, Radio Influence Field) 필터, 고주파 필터(HPF, High Pass filter), 교류(AC, Alternating Current) 앰플리파이어(AMP, Amplifier), 저역 필터(LPF, Low pass filter), 디지털신호처리장치(DSP, digital signal processor)를 거친 심전도 신호를 메모리에 저장하며, 블루투스모듈로 전송하는 것이다.
상기 생체신호용 센서는 심전도(ECG, electrocardiogram) 센서와, 심박센서와, 3축 가속도 센서로 이루어지며, 상기 심전도 센서의 +극 단자, -극 단자, 그라운드(GND, Ground) 단자는 각각 움직임이 최소화되는 위치에 부착된 것이다.
예를들면, 오른쪽 가슴 위에는 +극 단자가 부착되며, 오른쪽 가슴 밑에는 그라운드(GND, Ground) 단자가 부착되며, 왼쪽 가슴 밑에는 -극 단자가 부착된다.
상기 배터리는 왼쪽 가슴 위에 장착되며, 모듈은 양쪽의 가슴 중앙에 위치하도록 함으로써 움직일 때의 불편함을 최소화하는 것이다.
한편, 본 발명의 생체신호 기반의 안전관리 작업복을 이용한 근로자 건강관리 시스템은 생체신호용 센서 및 모듈이 내장된 생체신호 기반의 안전관리 작업복과; 상기 생체신호 기반의 안전관리 작업복으로부터 사용자의 생체신호를 전달받아 분석, 판단하여 사용자의 패턴을 판단할 수 있는 데이터로 변환하는 서버(200)와; 상기 서버에서 제공받은 데이터를 통해 건강상태를 모니터링 할 수 있도록 화면에 출력하는 출력장치; 로 이루어진다.
상기 생체신호 기반의 안전관리 작업복에는 생체신호용 모듈 및 센서가 부착되어 있으며, 상기 생체신호용 센서에서 측정된 생체신호를 통신부를 통해 서버로 전달하며, 상기 서버는 생체신호를 분석 및 저장하는 것으로, 상기 서버는 수치 해석 및 프로그래밍 환경을 제공하는 공학용 소프트웨어인 매트랩(Matlab, matrix laboratory)을 기반으로 생체신호를 분석하는 것이다.
이때, 상기 매트랩에서는 대규모로 저장된 데이터 안에서 체계적이고 자동적으로 통계적 규칙이나 패턴을 찾아 내는 데이터 마이닝을 제공한다.
상기 서버는 하둡 분산 파일 시스템(HDFS, Hadoop Distributed File System)을 통해 저장하며, 상기 하둡 분산 파일 시스템에 적용하기 위한 공개 비관계형 분산 데이터 베이스인 HBase를 사용하는 것으로, 상기 하둡(Hadoop)은 여러 개의 저렴한 컴퓨터를 마치 하나인 것처럼 묶어 대용량 데이터를 처리하는 기술이다.
상기 HBase에서 검색한 생체신호 데이터에 생체신호 분석 알고리즘을 적용하여 HiveQL(Hive Query Language)을 이용하여 가공한 생체신호 데이터를 Hive에 저장한다.
상기 하둡 분산 파일 시스템은 읽기/쓰기 작업의 무결성, HDFS 스토리지, 맵리듀스(MapReduce), 자바 클라이언트, API를 제공하는 것으로, 서비스지향아키텍처(Service oriented Architecture, SOA) 기반의 데이터 저장 및 검색에 최적화되는 것이다.
그리고 상기 서버는 생체신호 중에서 심전도 데이터를 활용한 알고리즘을 통해 근로자의 행동패턴, 스트레스, 및 심박 이상상태를 판단한 후, 근로자의 개인별 건강 지표를 분석하여 평가하는 알고리즘을 통해 건강관리 및 응급상황을 분석하는 것이다.
상기 행동패턴은 무장착, 휴식, 건기, 뛰기, 점프 등으로 구분되며, 행동패턴을 판단하기 위해서는 가속도신호를 기반으로 kNN(k-Nearest Neighborhood) 알고리즘을 적용하는 것으로, 상기 행동패턴을 분석하기 위한 데이터를 Train Data로 정의한다.
상기 Train Data를 분석하기 위한 수식은 다음과 같다.
Figure 112017013133654-pat00001
상기 행동패턴에 따른 수식의 결과 값에 따라 1은 무장착, 2는 휴식, 3은 걷기, 4는 뛰기, 5는 점프인 것으로 판단한다.
상기 생체신호용 센서는 전도성 천(conductive fabric), 전도성 접착제(conductive adhesive), 보호 안감(Release Liner)으로 이루어지는 것으로, 적절하게는 52mm*38mm*3.6mm의 사이즈를 가지며, 0.4Ω의 저항을 가지는 것이다.
그리고 상기 생체신호용 센서는 자석을 이용하여 탈부착할 수 있는 것이다.
특히, 상기 생체신호용 센서가 신체에 밀착되어도 불편함이 없도록 금속 플라즈마가 코팅된 전도성 천(conductive fabric)을 사용하되, 상기 전도성 천은 피부적합성을 고려하여 천에 순수 금을 사용한 플라즈마 코팅을 한 것이다.
상기 생체신호를 측정하기 위해서는 R 피크를 추출하고 있으나, 노이즈가 발생하는 구간에서는 R 피크를 추출하는 정확도가 떨어진다.
상기 출력장치는 컴퓨터 또는 모바일장치를 사용하는 것으로, 출력장치에는 어플리케이션이 설치되어, 상기 어플리케이션이 실행되면 서버로부터 실시간으로 심전도센서를 통해 감지된 심전도 데이터와, 심박센서를 통해 감지된 맥박 데이터와, 3축 가속도를 통해 감지된 가속도 데이터를 전달받아 화면에 보여주는 것이다.
상기 출력장치의 화면에는 서버에서 분석한 건강상태를 측정한 날짜별로 확인할 수 있으며, 심장박동의 실시간 변화를 통해 비정상 리듬을 감지하며, 스트레스 상태를 보여주며, 평균박동수와 운동량을 보여주는 것이다.
상기 출력장치의 화면에는 맥박 데이터의 상태에 따라 운동강도에 따른 정보를 출력하되, 상기 맥박 데이터에 따른 심장박동수, 설정된 사용자의 나이에 따른 운동강도를 판단하여 출력하는 것이다.
예를들면, 상기 나이가 20대인 경우 심장박동수가 200bpm일 경우를 운동강도가 100%가 되며, 나이대가 증가할 때마다 운동강도 100%의 기준을 0.25%씩 감소하는 것으로, 상기 운동강도 100%의 기준bpm은 나이가 30대인 경우 200bpm*0.975를 하여 195bpm이 되며, 40대인 경우 200bpm*0.950을 하여 190bpm이 되며, 50대인 경우 200bpm*0.925를 하여 185bpm이 되며, 60대인 경우 200bpm*0.900을 하여 180bpm이 되며, 70대인 경우 200bpm*0.875를 하여 175bpm이 되는 것이다.
이때, 상기 출력장치의 화면에는 운동강도가 60%이상 70%미만의 경우 출력장치의 화면에 "현재 상태가 가장 적절합니다."라고 메시지가 출력되며, 70%이상 90%미만인 경우 유산소 운동상태인 것으로 "현재 유산소 운동중입니다."라고 출력되며, 90%이상은 위험구간으로 "맥박이 너무 강합니다. 주의해주세요."라고 출력되는 것이다.
한편, 상기 운동강도는 앞서 기재한 나이별 기준을 연계할 수 있는 것으로, 나이별로 기준운동강도를 20대 200bpm, 30대 195bpm, 40대 190bpm, 50대 185bpm, 60대 180bpm, 70대 175bpm으로 설정하여 차별화 할 수 있다.
상기 출력장치의 화면에는 가속도 데이터에 따라 실시간 걸음수와 운동거리를 보여주는 것이다.
한편, 상기 화면에는 시작 및 정지하는 버튼이 표시되어, 상기 버튼을 통해 정지할 경우 현재까지 측정된 심전도 데이터와 가속도 데이터를 저장한 후, 저장된 데이터와 함께 측정일자,시간,사용자아이디를 서버로 전송함으로써, 상기 서버에 저장시킬 수 있는 것이다.
다른 실시예로서, 본 발명의 생체신호 기반의 안전관리 작업복에는 센서들이 부착되어 있는 것으로, 상기 센서들은 아황산가스 등을 감지할 수 있는 유해가스센서와, 소음을 감지하는 사운드센서와, 자외선을 감지하는 자외선센서와, 분진을 감지하는 더스트센서와, 오존을 감지하는 오존센서로 이루어진다. 이때, 상기 센서들은 관용의 것을 사용하는 것으로 센서 자체에 대한 자세한 설명은 생략한다.
그리고 상기 센서들은 모듈에 디지털실을 통해 연결되어 모듈에 감지신호를 전달하며, 상기 모듈은 센서들로부터 감지신호를 전달받아 데이터 처리부를 통해 데이터를 처리한 후, 블루투스모듈을 통해 서버로 전송하는 것이다.
상기 감지신호는 유해가스감지데이터, 소음감지데이터, 자외선데이터, 분진데이터, 및 오존데이터를 포함한다.
그리고 상기 서버는 각각의 센서들의 감지신호를 받아서 출력장치에 전달하게 된다.
상기 출력장치는 감지신호를 전달받아 디스플레이에 감지신호의 각 데이터를 출력한다.
상기 출력장치의 디스플레이에 최근 24시간 동안의 유해가스감지데이터의 수치를 텍스트로 출력하되, 유해가스감지데이터의 수치가 최근 24시간 동안 0.05ppm이하인 경우 안전하다는 의미로 텍스트를 초록색으로 나타내며, 최근 24시간 동안 0.05ppm초과 0.15ppm 이하인 경우 경고의 의미로 텍스트를 주황색으로 나타내며, 최근 24시간 동안 0.15ppm를 초과한 경우 위험의 의미로 텍스트를 빨간색으로 나타내게 된다.
그리고 소음감지데이터의 수치를 시간에 따른 그래프(y축이 수치이며 x축이 시간인 그래프)로 출력하되, 각 시간에 해당하는 막대는 55dBA 이하인 경우 초록색으로 나타나며, 55dBA를 초과하며 85dBA 이하인 경우 주황색으로 나타나며, 85dBA를 초과하는 경우 빨간색으로 나타나는 것이다. 특히, 85dBA를 초과하는 경우, 출력장치의 화면에는 "귀마개를 사용해주세요"라는 경고창이 출력되는 것이다.
그리고 최근 24시간 동안의 자외선데이터의 수치에 따른 단계를 3단계로 구분하여 출력하되, 24시간 중에서 50㎍/㎡이하인 경우 1단계가 되어 보통임을 나타내기 위해 텍스트 1을 초록색으로 출력하며, 50㎍/㎡초과인 상태가 24시간 중 6시간 미만인 경우 2단계가 되어 약간나쁨을 나타내기 위해 텍스트 2를 주황색으로 출력하며, 50㎍/㎡초과인 상태가 24시간 중 6시간 이상인 경우 3단계가 되어 나쁨을 나타내기 위해 텍스트 3을 빨간색으로 출력하는 것이다.
상기 분진데이터의 수치에 따른 단계를 4단계로 구분하여 출력하되, 30㎍/㎥이하이면 1단계가 되어 좋음을 나타내기 위해 파란색으로 텍스트를 출력하며, 30㎍/㎥초과 80㎍/㎥이하이면 2단계가 되어 보통임을 나타내기 위해 초록색으로 텍스트를 출력하며, 80㎍/㎥초과 150㎍/㎥이하이면 3단계가 되어 나쁨을 나타내기 위해 주황색으로 텍스트를 출력하며, 150㎍/㎥을 초과하면 4단계가 되어 매우나쁨을 나타내기 위해 빨간색으로 텍스트를 출력하는 것이다.
상기 오존데이터의 수치에 따른 단계를 4단계로 구분하여 출력하되, 0.030㎍/㎥이하이면 1단계가 되어 좋음을 나타내기 위해 파란색으로 텍스트를 출력하며, 0.030㎍/㎥초과 0.090㎍/㎥이하이면 2단계가 되어 보통임을 나타내기 위해 초록색으로 텍스트를 출력하며, 0.090㎍/㎥초과 0.150㎍/㎥이하이면 3단계가 되어 나쁨을 나타내기 위해 주황색으로 텍스트를 출력하며, 0.150㎍/㎥을 초과하면 4단계가 되어 매우나쁨을 나타내기 위해 빨간색으로 텍스트를 출력하는 것이다.
특히, 상기 출력장치는 제어부에 의해 분진데이터와 오존데이터가 각각 3단계 이상(3단계 또는 4단계)으로 판단되면, 디스플레이에 "실외에서 활동하기에는 위험합니다."라는 경고창을 출력하는 것이다.
상기 본 발명은 사물인터넷(IoT, internet of things)을 활용하여 서버와 통신함에 따라 산업현장에서 응급 상황을 실시간으로 파악할 수 있으며, 가정, 회사, 병원 등의 다양한 장소에서 이용하는 IoT 기반의 헬스케어 시스템으로 확장할 수 있다.
한편, 본 발명 생체신호 기반의 안전관리 작업복을 이용한 근로자 건강관리 시스템을 통한 모니터링 방법은 생체신호 기반의 안전관리 작업복에 구비된 생체신호용 센서를 통해 감지된 신호를 서버의 웹 서비스(210)에 전송한다.
그러면, 상기 웹 서비스는 알고리즘 삽입 또는 삭제를 서버의 데이터베이스(220))에 요청하거나, 또는 알고리즘 저장을 서버의 하둡 분산 파일 시스템(230)(HDFS, Hadoop Distributed File System)에 요청하는 것이다.
이때, 상기 데이터베이스는 알고리즘 삽입 또는 삭제 요청에 따라 알고리즘을 삽입 또는 삭제하고, 상기 하둡 분산 파일 시스템은 알고리즘 저장 요청시 알고리즘을 저장한 후, 저장된 알고리즘을 실행하기 위해 알고리즘을 웹 서비스로 전송한다.
그리고 상기 알고리즘을 수신한 웹 서비스는 알고리즘 검색 및 적용한 후, 적용된 데이터를 검색하여 SOAP(Simple Object Access Protocol) 메시지를 서비스에 보내며, 상기 서비스를 출력장치를 통해 출력하는 것이다.
한편, 상기 SOAP(Simple Object Access Protocol)은 객체 간의 인터넷을 통하여 통신할 수 있도록 하는 기술이다.
또한, 상기 생체신호 기반의 안전관리 작업복은 구비된 생체신호용 센서를 통해 감지된 신호에 매트랩(Matlab)을 통해 생체신호 알고리즘을 적용한 후, SOAP(Simple Object Access Protocol) 메시지를 웹서비스를 지원하는 웹 서비스로 전송하는 것이다.
상기 매트랩(Matlab)의 알고리즘을 적용하기 위한 명령어는 다음과 같다.
function [maxIdx, maxVal, endIdx] = Detection(data, FS)
if nargin < 2
FS=100;
end
fs=FS; fl=60; fh=5;
maxIdx=[]; maxVal=[]; maxIdx=[];
rawData=data;
dcRemData = rawData-mean(rawData);
lpData = lpassfilter(dcRemData, fl, fs);
hpData = hpassfilter(lpData, fh, fs);
diffData = diff(hpData);
sqrData = diffData*diffData;
window=ones(1,30);
integral=medfilt1(filter(window,1,sqrData),10);
delay=ceil(length(window)/2);
integralData=integral(delay:length(integral));
max_h=max(integralData);
thresh=0.3;
peak_reg=integralData>(thresh*max_h);
sIndex=find(diff([0 peak_reg'])==1);
eIndex=find(diff(peak_reg' 0])==-1);
그러므로 상기와 같은 매트랩(Matlab)의 명령어를 통해 알고리즘을 적용하는 것이다.
따라서 본 발명 생체신호 기반의 안전관리 작업복은 생체신호 기반의 안전관리 작업복을 착용한 근로자의 생체신호 기반의 건강 상태를 파악하여 산업현장에서의 업무상사고를 예방하되, 상기 안전관리작업복의 생체신호용 센서를 통해 감지한 심전도, 가속도, 체온 등의 생체신호를 활용하여 빅데이터 기반의 서버에서 스트레스 상태, 운동 강도, 움직임 및 행동 패턴 등의 근로자의 상태를 분석하여 안전사고를 예방하며, 근로자를 대상으로 지속적인 개인 맞춤형 건강관리 서비스를 제공함으로써 재해 예방, 생산성 향상, 건강증진을 도모하는 현저한 효과가 있다.
100 : 생체신호 기반의 안전관리 작업복
110 : 작업복
120 : 밴드
130 : 생체신호용 센서
140 : 모듈
150 : 배터리
160 : 디지털실
200 : 서버
210 : 웹 서비스
220 : 데이터베이스
230 : 하둡 분산 파일 시스템(HDFS)

Claims (4)

  1. 작업복(110)과; 상기 작업복의 내부면에 부착되되 생체신호용 센서 및 모듈의 인체 접지 최소화를 위해 신축성 있는 합성수지 원단으로 제조된 밴드(120)와; 상기 밴드에 부착되는 생체신호용 센서(130)와; 상기 생체신호용 센서로부터 신호를 전달받아 처리하는 모듈(140)과; 배터리(150)와; 상기 생체신호용 센서와 모듈 또는 모듈과 배터리 간에 신호를 전달할 수 있는 디지털실(160); 로 이루어지는 생체신호 기반의 안전관리 작업복에 있어서,
    상기 밴드(120)는 'X'형 또는 'ㅛ'형으로 제조되는 것이며,
    상기 생체신호용 센서(130)는 심전도(ECG, electrocardiogram) 센서와, 심박센서와, 3축 가속도 센서로 이루어지며, 상기 심전도 센서의 +극 단자, -극 단자, 그라운드(GND, Ground) 단자는 각각 움직임이 최소화되는 위치에 부착된 것이며,
    상기 모듈(140)에는 무선유도계(RIF, Radio Influence Field) 필터, 고주파 필터(HPF, High Pass filter), 교류(AC, Alternating Current) 앰플리파이어(AMP, Amplifier), 저역 필터(LPF, Low pass filter), 디지털신호처리장치(DSP, digital signal processor), 메모리, 블루투스모듈이 내장된 것이며,
    상기 생체신호용 센서(130)에서 측정된 생체신호를 서버(200)로 전달하며, 상기 서버(200)는 생체신호를 분석 및 저장하되, 수치 해석 및 프로그래밍 환경을 제공하는 공학용 소프트웨어인 매트랩(Matlab, matrix laboratory)을 기반으로 생체신호를 분석하고, 분석된 사용자의 생체신호를 통해 사용자의 패턴을 판단할 수 있는 데이터로 변환하는 것이며,
    상기 매트랩에서는 대규모로 저장된 데이터 안에서 체계적이고 자동적으로 통계적 규칙이나 패턴을 찾아 내는 데이터 마이닝을 제공하는 것이며,
    상기 서버(200)에서 제공받은 데이터를 통해 출력장치는 건강상태를 모니터링 할 수 있도록 화면에 출력하는 것이며,
    상기 출력장치는 감지신호를 전달받아 디스플레이에 감지신호의 각 데이터를 출력하는 것으로, 최근 24시간 동안의 유해가스감지데이터의 수치를 텍스트로 출력하되, 유해가스감지데이터의 수치가 최근 24시간 동안 0.05ppm이하인 경우 안전하다는 의미로 텍스트를 초록색으로 나타내며, 최근 24시간 동안 0.05ppm초과 0.15ppm 이하인 경우 경고의 의미로 텍스트를 주황색으로 나타내며, 최근 24시간 동안 0.15ppm를 초과한 경우 위험의 의미로 텍스트를 빨간색으로 나타내는 것이며,
    상기 생체신호 기반의 안전관리 작업복에는 소음을 감지하는 사운드센서와, 분진을 감지하는 더스트센서와, 오존을 감지하는 오존센서가 부착되며,
    상기 사운드센서, 더스트센서, 오존센서는 모듈에 디지털실을 통해 연결되어 모듈에 감지신호를 전달하며, 상기 모듈은 사운드센서, 더스트센서, 오존센서로부터 감지신호를 전달받아 데이터 처리부를 통해 데이터를 처리한 후, 블루투스모듈을 통해 서버로 전송하는 것이며,
    상기 감지신호는 소음감지데이터, 분진데이터, 및 오존데이터를 포함하는 것으로,
    상기 소음감지데이터의 수치를 y축이 수치이며 x축이 시간인 그래프로 출력하되, 각 시간에 해당하는 막대는 55dBA 이하인 경우 초록색으로 나타나며, 55dBA를 초과하며 85dBA 이하인 경우 주황색으로 나타나며, 85dBA를 초과하는 경우 빨간색으로 나타나는 것이며,
    상기 85dBA를 초과하는 경우, 출력장치의 화면에는 "귀마개를 사용해주세요"라는 경고창이 출력되는 것이며,
    최근 24시간 동안의 자외선데이터의 수치에 따른 단계를 3단계로 구분하여 출력하되, 24시간 중에서 50㎍/㎡이하인 경우 1단계가 되어 보통임을 나타내기 위해 텍스트 1을 초록색으로 출력하며, 50㎍/㎡초과인 상태가 24시간 중 6시간 미만인 경우 2단계가 되어 약간나쁨을 나타내기 위해 텍스트 2를 주황색으로 출력하며, 50㎍/㎡초과인 상태가 24시간 중 6시간 이상인 경우 3단계가 되어 나쁨을 나타내기 위해 텍스트 3을 빨간색으로 출력하는 것이며,
    상기 분진데이터의 수치에 따른 단계를 4단계로 구분하여 출력하되, 30㎍/㎥이하이면 1단계가 되어 좋음을 나타내기 위해 파란색으로 텍스트를 출력하며, 30㎍/㎥초과 80㎍/㎥이하이면 2단계가 되어 보통임을 나타내기 위해 초록색으로 텍스트를 출력하며, 80㎍/㎥초과 150㎍/㎥이하이면 3단계가 되어 나쁨을 나타내기 위해 주황색으로 텍스트를 출력하며, 150㎍/㎥을 초과하면 4단계가 되어 매우나쁨을 나타내기 위해 빨간색으로 텍스트를 출력하는 것이며,
    상기 오존데이터의 수치에 따른 단계를 4단계로 구분하여 출력하되, 0.030㎍/㎥이하이면 1단계가 되어 좋음을 나타내기 위해 파란색으로 텍스트를 출력하며, 0.030㎍/㎥초과 0.090㎍/㎥이하이면 2단계가 되어 보통임을 나타내기 위해 초록색으로 텍스트를 출력하며, 0.090㎍/㎥초과 0.150㎍/㎥이하이면 3단계가 되어 나쁨을 나타내기 위해 주황색으로 텍스트를 출력하며, 0.150㎍/㎥을 초과하면 4단계가 되어 매우나쁨을 나타내기 위해 빨간색으로 텍스트를 출력하는 것이며,
    상기 출력장치는 제어부에 의해 분진데이터와 오존데이터가 각각 3단계 또는 4단계로 판단되면, 디스플레이에 "실외에서 활동하기에는 위험합니다."라는 경고창을 출력하는 것을 특징으로 하는 생체신호 기반의 안전관리 작업복
  2. 삭제
  3. 삭제
  4. 삭제
KR1020170017498A 2017-02-08 2017-02-08 생체신호 기반의 안전관리 작업복 KR101951538B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020170017498A KR101951538B1 (ko) 2017-02-08 2017-02-08 생체신호 기반의 안전관리 작업복
PCT/KR2018/000559 WO2018147560A1 (ko) 2017-02-08 2018-01-11 생체신호 기반의 안전관리 작업복을 이용한 근로자 건강관리 시스템 및 모니터링 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170017498A KR101951538B1 (ko) 2017-02-08 2017-02-08 생체신호 기반의 안전관리 작업복

Publications (2)

Publication Number Publication Date
KR20180092122A KR20180092122A (ko) 2018-08-17
KR101951538B1 true KR101951538B1 (ko) 2019-02-22

Family

ID=63408195

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170017498A KR101951538B1 (ko) 2017-02-08 2017-02-08 생체신호 기반의 안전관리 작업복

Country Status (1)

Country Link
KR (1) KR101951538B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102071231B1 (ko) 2019-09-18 2020-01-31 주식회사 지벤에프앤씨 스마트 작업복

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116400756B (zh) * 2023-06-05 2023-08-18 山东颐德电气设备工程有限公司 一种多场地电气设备监控管理系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100895300B1 (ko) * 2007-07-20 2009-05-07 한국전자통신연구원 생체신호 측정의복과 생체신호 처리시스템
KR20110131661A (ko) * 2010-05-31 2011-12-07 한국전기연구원 생체신호 수집이 가능한 의류 및 이를 이용한 시스템
KR20120094857A (ko) * 2011-02-17 2012-08-27 주식회사 라이프사이언스테크놀로지 피복타입 무구속 생체신호 측정 및 이를 이용한 재활훈련 정도 판단방법
KR101550410B1 (ko) * 2014-01-23 2015-09-08 한국생산기술연구원 엑스 밴드 형태의 건강 관리용 디지털 의류

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102071231B1 (ko) 2019-09-18 2020-01-31 주식회사 지벤에프앤씨 스마트 작업복

Also Published As

Publication number Publication date
KR20180092122A (ko) 2018-08-17

Similar Documents

Publication Publication Date Title
KR101959615B1 (ko) 스마트폰 어플리케이션을 통한 근로자 건강관리 방법
US10478065B2 (en) Systems and methods for monitoring subjects in potential physiological distress
KR101962002B1 (ko) 생체신호 기반의 안전관리 작업복을 이용한 근로자 건강관리 모니터링 방법
Gay et al. A health monitoring system using smart phones and wearable sensors
EP2217140B1 (en) Apparatus and method for detection of syncopes
CN105118236A (zh) 瘫倒监测和预防装置及其处理方法
EP2417905A1 (en) Systems and methods for real-time physiological monitoring
CN105411554A (zh) 一种无线式无创伤人体生理参数采集、检测及智能诊断系统
Leijdekkers et al. Personal heart monitoring system using smart phones to detect life threatening arrhythmias
KR20120133979A (ko) 감성인지 기반 보디가드 시스템, 감성인지 디바이스, 영상 및 센서 제어 장치, 신변 보호 관리 장치 및 그 제어 방법
NL2020786B1 (en) Wearable device
CN108937886A (zh) 一种医院患者安全管理方法及系统
KR101951538B1 (ko) 생체신호 기반의 안전관리 작업복
KR101945095B1 (ko) 생체신호 기반의 안전관리 작업복을 이용한 근로자 건강관리 시스템
US9905105B1 (en) Method of increasing sensing device noticeability upon low battery level
Umar et al. IoT-based cardiac healthcare system for ubiquitous healthcare service
AU2021101013A4 (en) Aiot based pandemic related smart health management system for industrial workers
KR101364638B1 (ko) 화생방 상황에 대응하기 위한 환경 검출 시스템, 장치 및 방법
KR101708727B1 (ko) 사람의 생명이 위험한 상태에 있는지를 조기에 검출하기 위한 시스템
KR102520806B1 (ko) 생체신호를 이용한 개인 상태 모니터링 시스템
CN109716412A (zh) 用于监视至少一个用户的身体状况的系统以及用于监视用户的身体状况的方法
KR101997225B1 (ko) 노약자 안심케어 시스템
Patnaik et al. iCAP: An IoT based Wearable For Real-Time Accidental Fall Detection and Health Monitoring of Remote Maintenance Workers
JP6829984B2 (ja) 検出装置および当該検出装置を備える見守りシステム
JP3113378U (ja) 患者監視装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant