WO2018147340A1 - 位置計測システム、作業機械、及び位置計測方法 - Google Patents

位置計測システム、作業機械、及び位置計測方法 Download PDF

Info

Publication number
WO2018147340A1
WO2018147340A1 PCT/JP2018/004257 JP2018004257W WO2018147340A1 WO 2018147340 A1 WO2018147340 A1 WO 2018147340A1 JP 2018004257 W JP2018004257 W JP 2018004257W WO 2018147340 A1 WO2018147340 A1 WO 2018147340A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
image data
stereo
data
parallax
Prior art date
Application number
PCT/JP2018/004257
Other languages
English (en)
French (fr)
Inventor
大樹 菅原
博義 山口
彰吾 厚見
保雄 金光
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to KR1020187018968A priority Critical patent/KR102076631B1/ko
Priority to US16/069,560 priority patent/US11120577B2/en
Priority to DE112018000007.9T priority patent/DE112018000007T5/de
Priority to CN201880000776.XA priority patent/CN108700402B/zh
Publication of WO2018147340A1 publication Critical patent/WO2018147340A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/245Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using a plurality of fixed, simultaneously operating transducers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • G06T7/85Stereo camera calibration
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • G01C11/06Interpretation of pictures by comparison of two or more pictures of the same area
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • G01C11/06Interpretation of pictures by comparison of two or more pictures of the same area
    • G01C11/08Interpretation of pictures by comparison of two or more pictures of the same area the pictures not being supported in the same relative position as when they were taken
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/10Measuring distances in line of sight; Optical rangefinders using a parallactic triangle with variable angles and a base of fixed length in the observation station, e.g. in the instrument
    • G01C3/14Measuring distances in line of sight; Optical rangefinders using a parallactic triangle with variable angles and a base of fixed length in the observation station, e.g. in the instrument with binocular observation at a single point, e.g. stereoscopic type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/128Adjusting depth or disparity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/243Image signal generators using stereoscopic image cameras using three or more 2D image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/246Calibration of cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N2013/0074Stereoscopic image analysis
    • H04N2013/0081Depth or disparity estimation from stereoscopic image signals

Definitions

  • the present invention relates to a position measurement system, a work machine, and a position measurement method.
  • Patent Document 1 In the technical field related to work machines, a hydraulic excavator having a stereo camera as disclosed in Patent Document 1 is known.
  • the stereo camera has a first camera and a second camera, and performs three-dimensional measurement based on the principle of triangulation.
  • a calibration process for adjusting the relative position between the first camera and the second camera is performed.
  • the stereo camera calibration process includes a process of photographing the calibration target with the first camera and the second camera. If the relative position between the first camera and the second camera changes after the calibration process of the stereo camera, it is necessary to recalibrate the stereo camera.
  • the calibration target must be photographed every time the recalibration process is performed, the work of the recalibration process becomes complicated, and the work efficiency of the work machine decreases.
  • An aspect of the present invention aims to smoothly perform a recalibration process and suppress a decrease in work efficiency.
  • the first image data photographed by the first camera of the first stereo camera provided in the work machine and the second image data photographed by the second camera of the first stereo camera are obtained.
  • a stereo measurement unit that performs stereo measurement based on the image data acquisition unit, the first image data, the second image data, and the parameters relating to the first camera and the second camera; and
  • a first adjustment unit that adjusts the stereo ratio of the first parallax image data measured in stereo by changing at least a part thereof; and a first adjustment unit that is obtained from the first parallax image data by changing at least a part of the parameters.
  • a second adjusting unit that adjusts the scale of one three-dimensional data.
  • the recalibration process can be performed smoothly, and a reduction in work efficiency can be suppressed.
  • FIG. 1 is a perspective view illustrating an example of a work machine according to the first embodiment.
  • FIG. 2 is a perspective view illustrating an example of the stereo camera according to the first embodiment.
  • FIG. 3 is a diagram schematically illustrating an example of the detection system according to the first embodiment.
  • FIG. 4 is a functional block diagram illustrating an example of the position measurement system according to the first embodiment.
  • FIG. 5 is a schematic diagram for explaining an example of the stereo measurement method according to the first embodiment.
  • FIG. 6 is a diagram schematically illustrating an example of the stereo camera according to the first embodiment.
  • FIG. 7 is a diagram schematically illustrating an example of the first image data captured by the first camera and the second image data captured by the second camera according to the first embodiment.
  • FIG. 1 is a perspective view illustrating an example of a work machine according to the first embodiment.
  • FIG. 2 is a perspective view illustrating an example of the stereo camera according to the first embodiment.
  • FIG. 3 is a diagram schematically illustrating an example of
  • FIG. 8 is a diagram schematically illustrating an example of the first image data captured by the first camera and the second image data captured by the second camera according to the first embodiment.
  • FIG. 9 is a schematic diagram for explaining a relative position between the first camera and the second camera according to the first embodiment.
  • FIG. 10 is a diagram schematically illustrating an example of parallax image data when the search has failed according to the first embodiment.
  • FIG. 11 is a schematic diagram for explaining an example of stereo ratio adjustment processing by the first adjustment unit according to the first embodiment.
  • FIG. 12 is a schematic diagram for explaining an example of a stereo ratio adjustment method by the first adjustment unit according to the first embodiment.
  • FIG. 13 is a diagram schematically illustrating an example of parallax image data when the search is successful according to the first embodiment.
  • FIG. 14 is a schematic diagram for explaining an example of scale adjustment processing by the second adjustment unit according to the first embodiment.
  • FIG. 15 is a flowchart illustrating an example of the position measurement method according to the first embodiment.
  • FIG. 16 is a diagram schematically illustrating an example of an imaging target according to the first embodiment.
  • FIG. 17 is a diagram schematically illustrating an example of parallax image data generated based on the first image data and the second image data acquired by the first stereo camera according to the first embodiment.
  • FIG. 18 is a diagram illustrating an example of first parallax image data and second parallax image data according to the first embodiment.
  • FIG. 19 is a schematic diagram for explaining an example of a scale adjustment method by the second adjustment unit according to the first embodiment.
  • FIG. 19 is a schematic diagram for explaining an example of a scale adjustment method by the second adjustment unit according to the first embodiment.
  • FIG. 20 is a schematic diagram for explaining an example of the position measurement method according to the second embodiment.
  • FIG. 21 is a schematic diagram for explaining an example of the position measurement method according to the third embodiment.
  • FIG. 22 is a schematic diagram for explaining an example of a scale adjustment method by the second adjustment unit according to the third embodiment.
  • FIG. 23 is a diagram schematically illustrating an example of a position measurement system according to the fifth embodiment.
  • FIG. 24 is a schematic diagram for explaining an example of the position measurement method according to the sixth embodiment.
  • a three-dimensional global coordinate system (Xg, Yg, Zg), a three-dimensional vehicle body coordinate system (Xm, Ym, Zm), and a three-dimensional camera coordinate system (Xs, Ys, Zs) are defined. Then, the positional relationship of each part will be described.
  • the global coordinate system is a coordinate system based on the origin fixed on the earth.
  • the global coordinate system is a coordinate system defined by GNSS (Global Navigation Satellite System).
  • GNSS Global Navigation Satellite System
  • GNSS refers to the global navigation satellite system.
  • GPS Global Positioning System
  • the global coordinate system is defined by the horizontal Xg axis, the horizontal Yg axis orthogonal to the Xg axis, and the Xg axis and the Zg axis orthogonal to the Yg axis.
  • the rotation or tilt direction around the Xg axis is taken as the ⁇ Xg direction
  • the rotation or tilt direction around the Yg axis is taken as the ⁇ Yg direction
  • the rotation or tilt direction around the Zg axis is taken as the ⁇ Zg direction.
  • the Zg axis direction is the vertical direction.
  • the vehicle body coordinate system includes the Xm axis of the first predetermined surface with reference to the origin defined in the vehicle body of the work machine, the Ym axis of the first predetermined surface orthogonal to the Xm axis, and Zm orthogonal to the Xm axis and the Ym axis. Defined by axis.
  • the rotation or tilt direction around the Xm axis is the ⁇ Xm direction
  • the rotation or tilt direction around the Ym axis is the ⁇ Ym direction
  • the rotation or tilt direction around the Zm axis is the ⁇ Zm direction.
  • the Xm-axis direction is the longitudinal direction of the work machine
  • the Ym-axis direction is the vehicle width direction of the work machine
  • the Zm-axis direction is the vertical direction of the work machine.
  • the camera coordinate system includes an Xs axis of a second predetermined surface with respect to an origin defined by the camera, a Ys axis of a second predetermined surface orthogonal to the Xs axis, and a Zs axis orthogonal to the Xs axis and the Ys axis. It is prescribed.
  • the rotation or tilt direction around the Xs axis is taken as the ⁇ Xs direction
  • the rotation or tilt direction around the Ys axis is taken as the ⁇ Ys direction
  • the rotation or tilt direction around the Zs axis is taken as the ⁇ Zs direction.
  • the Xs axis direction is the vertical direction of the camera
  • the Ys axis direction is the width direction of the camera
  • the Zs axis direction is the front-back direction of the camera.
  • the Zs-axis direction is parallel to the optical axis of the camera optical system.
  • FIG. 1 is a perspective view illustrating an example of a work machine 1 according to the present embodiment.
  • the work machine 1 is a hydraulic excavator
  • the work machine 1 is appropriately referred to as a hydraulic excavator 1.
  • the excavator 1 includes a vehicle body 1 ⁇ / b> B and a work machine 2.
  • the vehicle body 1B includes a revolving body 3 and a traveling body 5 that supports the revolving body 3 so as to be able to turn.
  • the swivel body 3 has a cab 4.
  • a hydraulic pump and an internal combustion engine are arranged on the swing body 3.
  • the revolving structure 3 can revolve around the revolving axis Zr.
  • the turning axis Zr is parallel to the Zm axis of the vehicle body coordinate system.
  • the origin of the vehicle body coordinate system is defined at the center of the swing circle of the revolving structure 3.
  • the center of the swing circle is located on the turning axis Zr of the turning body 3.
  • the traveling body 5 has crawler tracks 5A and 5B. As the crawler belts 5A and 5B rotate, the excavator 1 travels.
  • the Zm axis of the vehicle body coordinate system is orthogonal to the contact surfaces of the crawler belts 5A and 5B.
  • the upper side (+ Zm direction) of the vehicle body coordinate system is a direction away from the contact surfaces of the crawler belts 5A and 5B, and the lower side ( ⁇ Zm direction) of the vehicle body coordinate system is the opposite direction to the upper side of the vehicle body coordinate system.
  • the work machine 2 is connected to the swivel body 3.
  • the vehicle body coordinate system at least a part of the work implement 2 is arranged in front of the revolving structure 3.
  • the front (+ Xm direction) of the vehicle body coordinate system is the direction in which the work implement 2 is present with reference to the revolving structure 3, and the rear ( ⁇ Xm direction) of the vehicle body coordinate system is the direction opposite to the front of the vehicle body coordinate system. is there.
  • the work implement 2 drives a boom 6 connected to the swing body 3, an arm 7 connected to the boom 6, a bucket 8 connected to the arm 7, a boom cylinder 10 that drives the boom 6, and the arm 7.
  • Each of the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12 is a hydraulic cylinder driven by hydraulic pressure.
  • the boom 6 is rotatably connected to the swing body 3 via the boom pin 13.
  • the arm 7 is rotatably connected to the tip of the boom 6 via the arm pin 14.
  • Bucket 8 is rotatably connected to the tip of arm 7 via bucket pin 15.
  • the boom pin 13 includes a rotation axis AX1 of the boom 6 with respect to the revolving structure 3.
  • the arm pin 14 includes a rotation axis AX ⁇ b> 2 of the arm 7 with respect to the boom 6.
  • the bucket pin 15 includes a rotation axis AX3 of the bucket 8 with respect to the arm 7.
  • the rotation axis AX1 of the boom 6, the rotation axis AX2 of the arm 7, and the rotation axis AX3 of the bucket 8 are parallel to the Ym axis of the vehicle body coordinate system.
  • FIG. 2 is a perspective view showing an example of the stereo camera 300 according to the present embodiment.
  • the excavator 1 includes a stereo camera 300.
  • the stereo camera 300 refers to a camera capable of acquiring data in the depth direction of the shooting target SB by simultaneously shooting the shooting target SB from a plurality of different directions.
  • the imaging target SB includes a construction target to be constructed at a construction site.
  • the construction object includes an excavation object excavated by the work machine 2 of the excavator 1.
  • the construction object may be a construction object constructed by a work machine different from the hydraulic excavator 1 or a construction object constructed by an operator.
  • a construction object is a concept including a construction object before construction, a construction object during construction, and a construction object after construction.
  • the stereo camera 300 is provided on the revolving unit 3. In the present embodiment, the stereo camera 300 is provided inside the cab 4. The stereo camera 300 is disposed, for example, in front of the cab 4 (+ Xm direction) and above (+ Zm direction). The stereo camera 300 images the imaging object SB in front of the excavator 1.
  • the stereo camera 300 has a plurality of cameras 30.
  • the camera 30 has an optical system and an image sensor.
  • the image sensor includes a CCD (Couple Charged Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
  • the camera 30 includes four cameras 30A, 30B, 30C, and 30D. Note that the stereo camera 300 may not have the four cameras 30, and may have at least a pair of cameras 30.
  • the stereo camera 300 is configured by a combination of two cameras 30 among the plurality of cameras 30.
  • the stereo camera 300 includes a first stereo camera 301 configured by a combination of cameras 30A and 30B and a second stereo camera 302 configured by a combination of cameras 30C and 30D.
  • the cameras 30A and 30C are arranged on the + Ym side (working machine 2 side) from the cameras 30B and 30D.
  • the camera 30A and the camera 30B are arranged at an interval in the Ym axis direction.
  • the camera 30C and the camera 30D are arranged with an interval in the Ym axis direction.
  • the cameras 30A and 30B are arranged on the + Zm side with respect to the cameras 30C and 30D.
  • the camera 30A and the camera 30B are disposed at substantially the same position.
  • the camera 30C and the camera 30D are disposed at substantially the same position.
  • the cameras 30A and 30B face upward (+ Zm direction).
  • the cameras 30C and 30D face downward ( ⁇ Zm direction). Further, the cameras 30A and 30C face forward (+ Xm direction).
  • the cameras 30B and 30D face slightly to the + Ym side (working machine 2 side) from the front. That is, the cameras 30A and 30C face the front of the revolving unit 3, and the cameras 30B and 30D face the cameras 30A and 30C.
  • the cameras 30B and 30D may face the front of the revolving unit 3, and the cameras 30A and 30C may face the cameras 30B and 30D.
  • the camera 30 performs stereo shooting of the shooting target SB existing in front of the revolving unit 3.
  • the shooting target SB is three-dimensionally measured using the stereo image data from the pair of cameras 30, and the three-dimensional data DG of the shooting target SB is calculated.
  • the three-dimensional data DG of the imaging target SB is the three-dimensional data DG of the ground surface that is the surface of the construction target.
  • the three-dimensional data DG of the photographing target SB includes three-dimensional shape data of the photographing target SB in the global coordinate system.
  • a camera coordinate system is defined for each of the plurality of cameras 30.
  • the camera coordinate system is a coordinate system based on the origin fixed to the camera 30.
  • the Zs axis of the camera coordinate system coincides with the optical axis of the optical system of the camera 30.
  • one camera 30A of the first stereo cameras 301 is appropriately referred to as a first camera 30A
  • the other camera 30B is appropriately referred to as a second camera 30B
  • one camera 30C of the second stereo camera 302 is appropriately referred to as a third camera 30C
  • the other camera 30D is appropriately referred to as a fourth camera 30D.
  • the driver's seat 4 ⁇ / b> S and the operation device 35 are arranged in the cab 4.
  • the operating device 35 is operated by the driver for operating the work machine 2 and the swing body 3.
  • the operating device 35 includes a right operating lever 35R and a left operating lever 35L.
  • a driver who has boarded the cab 4 operates the operating device 35 to drive the work implement 2 and to turn the revolving structure 3.
  • FIG. 3 is a diagram schematically illustrating an example of the detection system 20 according to the present embodiment.
  • the detection system 20 detects a work machine angle detector 22 that detects the angle of the work machine 2, a position detector 23 that detects the position of the revolving body 3, and a posture of the revolving body 3. It has an orientation detector 24 and an orientation detector 25 that detects the orientation of the revolving unit 3.
  • the position detector 23 includes a GPS receiver.
  • the position detector 23 is provided on the revolving unit 3.
  • the position detector 23 detects an absolute position that is the position of the revolving structure 3 defined by the global coordinate system.
  • the absolute position of the swing body 3 includes coordinate data in the Xg axis direction, coordinate data in the Yg axis direction, and coordinate data in the Zg axis direction.
  • a GPS antenna 21 is provided on the revolving unit 3.
  • two GPS antennas 21 are arranged in the Ym-axis direction of the vehicle body coordinate system.
  • the GPS antenna 21 receives radio waves from GPS satellites and outputs a signal generated based on the received radio waves to the position detector 23.
  • the position detector 23 detects the absolute position, which is the position of the GPS antenna 21 defined by the global coordinate system, based on the signal supplied from the GPS antenna 21.
  • the position detector 23 performs an arithmetic process based on at least one of the absolute positions of the two GPS antennas 21 and calculates the absolute position of the revolving structure 3.
  • the absolute position of the revolving unit 3 may be the absolute position of one GPS antenna 21, or may be a position between the absolute position of one GPS antenna 21 and the absolute position of the other GPS antenna 21.
  • the attitude detector 24 includes an inertial measurement device (IMU: Inertial Measurement Unit).
  • the attitude detector 24 is provided on the revolving unit 3.
  • the attitude detector 24 calculates the inclination angle of the revolving unit 3 with respect to the horizontal plane (XgYg plane) defined by the global coordinate system.
  • the tilt angle of the swing body 3 with respect to the horizontal plane includes the tilt angle of the swing body 3 in the rotation direction around the Ym axis and the tilt angle of the swing body 3 in the rotation direction around the Xm axis.
  • the attitude detector 24 detects acceleration and angular velocity acting on the attitude detector 24. By detecting the acceleration and angular velocity acting on the posture detector 24, the acceleration and angular velocity acting on the swing body 3 are detected. Based on the acceleration and angular velocity acting on the revolving structure 3, the posture of the revolving structure 3 is derived.
  • the orientation detector 25 calculates the orientation of the revolving unit 3 with respect to the reference orientation defined by the global coordinate system based on the absolute position of one GPS antenna 21 and the absolute position of the other GPS antenna 21.
  • the reference orientation is, for example, north.
  • the azimuth detector 25 calculates a straight line connecting the absolute position of one GPS antenna 21 and the absolute position of the other GPS antenna 21, and based on the angle formed by the calculated straight line and the reference azimuth, a turning body with respect to the reference azimuth 3 bearings are calculated.
  • the azimuth of the swing body 3 with respect to the reference azimuth includes an azimuth angle indicating an angle formed by the reference azimuth and the azimuth of the swing body 3.
  • the work implement 2 includes a boom stroke sensor 16 that detects a boom stroke that is disposed in the boom cylinder 10 and indicates the drive amount of the boom cylinder 10, and an arm that is disposed in the arm cylinder 11 and detects an arm stroke that indicates the drive amount of the arm cylinder 11.
  • a stroke sensor 17 and a bucket stroke sensor 18 that is disposed in the bucket cylinder 12 and detects a bucket stroke that indicates a driving amount of the bucket cylinder 12 are included.
  • the work machine angle detector 22 detects the angle of the boom 6, the angle of the arm 7, and the angle of the bucket 8.
  • the work machine angle detector 22 calculates a boom angle indicating the tilt angle of the boom 6 with respect to the Zm axis of the vehicle body coordinate system based on the boom stroke detected by the boom stroke sensor 16.
  • the work machine angle detector 22 calculates an arm angle indicating an inclination angle of the arm 7 with respect to the boom 6 based on the arm stroke detected by the arm stroke sensor 17.
  • the work machine angle detector 22 calculates a bucket angle indicating an inclination angle of the blade edge 8BT of the bucket 8 with respect to the arm 7 based on the bucket stroke detected by the bucket stroke sensor 18.
  • the boom angle, the arm angle, and the bucket angle may be detected by, for example, an angle sensor provided in the work machine 2 without using the stroke sensor.
  • FIG. 4 is a functional block diagram illustrating an example of the position measurement system 50 according to the present embodiment.
  • the position measurement system 50 is provided in the hydraulic excavator 1.
  • the position measurement system 50 includes a stereo camera 300 including a first stereo camera 301 and a second stereo camera 302, a work machine angle detector 22, a position detector 23, an attitude detector 24, an azimuth detector 25, A display device 26 and a control device 100 are provided.
  • the control device 100 is provided on the swing body 3 of the excavator 1.
  • the display device 26 includes a flat panel display such as a liquid crystal display (LCD: Liquid Crystal Display) or an organic EL display (OELD: Organic Electroluminescence Display).
  • LCD Liquid Crystal Display
  • OELD Organic Electroluminescence Display
  • the control device 100 includes a computer system.
  • the control device 100 includes an arithmetic processing device including a processor such as a CPU (Central Processing Unit), a volatile memory such as a RAM (Random Access Memory), and a nonvolatile memory such as a ROM (Read Only Memory).
  • a processor such as a CPU (Central Processing Unit)
  • a volatile memory such as a RAM (Random Access Memory)
  • a nonvolatile memory such as a ROM (Read Only Memory).
  • a device and an input / output interface is an input / output interface.
  • the control device 100 includes an image data acquisition unit 101, a stereo measurement unit 102, a first adjustment unit 103, a second adjustment unit 104, a position data calculation unit 105, a work implement position data calculation unit 106, and map data.
  • a creation unit 107, a display control unit 108, a storage unit 109, and an input / output unit 110 are included.
  • the arithmetic processing apparatus includes an image data acquisition unit 101, a stereo measurement unit 102, a first adjustment unit 103, a second adjustment unit 104, a position data calculation unit 105, a work implement position data calculation unit 106, a map data creation unit 107, and a display.
  • Each function of the control unit 108 is provided.
  • the storage device has the function of the storage unit 109.
  • the input / output interface has the function of the input / output unit 110.
  • Stereo camera 300, work implement angle detector 22, position detector 23, attitude detector 24, orientation detector 25, and display device 26 are connected to input / output unit 110.
  • the display control unit 108, the storage unit 109, the stereo camera 300, the work machine angle detector 22, the position detector 23, the attitude detector 24, the orientation detector 25, and the display device 26 are input / output. Data communication is possible via the unit 110.
  • the image data acquisition unit 101 includes first image data MR1 of the shooting target SB shot by the first camera 30A provided on the excavator 1, second image data ML1 of the shooting target SB shot by the second camera 30B, The third image data MR2 of the shooting target SB shot by the third camera 30C and the fourth image data ML2 of the shooting target SB shot by the fourth camera 30D are acquired. That is, the image data acquisition unit 101 acquires stereo image data captured by at least a pair of cameras 30 of the stereo camera 300.
  • the storage unit 109 stores a plurality of parameters related to the first camera 30A and the second camera 30B of the first stereo camera 301 and a plurality of parameters related to the third camera 30C and the fourth camera 30D of the second stereo camera 302.
  • the parameter can be determined by a predetermined calibration operation.
  • the parameters are a plurality of external parameters that define the relative positions of the first camera 30A and the second camera 30B of the first stereo camera 301, and the relative positions of the third camera 30C and the fourth camera 30D of the second stereo camera 302. Including a plurality of external parameters defining
  • the external parameters include parameters indicating the relative positions of the pair of cameras 30 of the stereo camera 300 with respect to the six directions of the Xs axis direction, the Ys axis direction, the Zs axis direction, the ⁇ Xs axis direction, the ⁇ Ys axis direction, and the ⁇ Zs axis direction.
  • the parameters include internal parameters of the first camera 30A, the second camera 30B, the third camera 30C, and the fourth camera 30D.
  • the internal parameter defines unique data of each of the plurality of cameras 30.
  • the internal parameters include, for example, the focal length of the optical system of the camera 30 and the amount of positional deviation between the intersection between the optical axis of the optical system of the camera 30 and the imaging surface of the image sensor and the image center of the image sensor.
  • the stereo measurement unit 102 performs stereo image processing on the first image data MR1 and the second image data ML1 acquired by the image data acquisition unit 101, and calculates the three-dimensional data DG of the shooting target SB in the camera coordinate system. To do. In addition, the stereo measurement unit 102 performs image processing on the third image data MR2 and the fourth image data ML2 acquired by the image data acquisition unit 101 in a stereo manner, and the three-dimensional data DG of the shooting target SB in the camera coordinate system. Is calculated.
  • the stereo measurement unit 102 performs coordinate conversion on the three-dimensional data DG of the shooting target SB in the camera coordinate system, and calculates the three-dimensional data DG of the shooting target SB in the vehicle body coordinate system. In addition, the stereo measurement unit 102 performs coordinate conversion on the three-dimensional data DG of the shooting target SB in the vehicle body coordinate system, and calculates the three-dimensional data DG of the shooting target SB in the global coordinate system.
  • the three-dimensional data DG of the shooting target SB includes coordinate data at a plurality of points in the shooting target SB.
  • the stereo measurement unit 102 generates parallax image data SG by performing image processing on the two image data MR (MR1, MR2) and ML (ML1, ML2) of the imaging target SB captured by two different cameras 30 in a stereo manner. Then, the three-dimensional data DG is obtained by arithmetic processing.
  • the stereo measurement unit 102 is stored in the first image data MR1 acquired by the image data acquisition unit 101, the second image data ML1 acquired by the image data acquisition unit 101, and the storage unit 109. Stereo measurement is performed based on the parameters.
  • the stereo measurement unit 102 also includes third image data MR2 acquired by the image data acquisition unit 101, fourth image data ML2 acquired by the image data acquisition unit 101, and parameters stored in the storage unit 109. Based on the above, stereo measurement is performed.
  • the first adjustment unit 103 adjusts the stereo ratio by changing at least some of the plurality of parameters stored in the storage unit 109.
  • the stereo rate indicates a ratio of pixels in which stereo measurement is successful among a plurality of pixels of the parallax image data SG to be stereo-measured.
  • the first adjustment unit 103 is stored in the storage unit 109 so that, for example, when the position of one camera 30 of the stereo camera 300 is shifted and the stereo rate is reduced, the stereo rate is improved. Change the parameter.
  • the second adjustment unit 104 adjusts the scale of the three-dimensional data DG generated by the stereo measurement unit 102 by changing at least some of the plurality of parameters stored in the storage unit 109.
  • the second adjustment unit 104 changes the parameters stored in the storage unit 109 so that the difference between the reference scale and the scale of the three-dimensional data DG becomes small.
  • the position data calculation unit 105 is a camera in the global coordinate system based on the position data of the revolving structure 3, the attitude data of the revolving structure 3, the orientation data of the revolving structure 3, and the position data of the camera 30 in the vehicle body coordinate system. 30 position data are calculated.
  • the position data calculation unit 105 acquires the position data of the swing body 3 from the position detector 23, acquires the attitude data of the swing body 3 from the attitude detector 24, and acquires the orientation data of the swing body 3 from the direction detector 25. To do.
  • the position data of the revolving structure 3 indicates the absolute position of the revolving structure 3 in the global coordinate system.
  • the attitude data of the revolving structure 3 indicates the attitude of the revolving structure 3 in the global coordinate system.
  • the orientation data of the revolving structure 3 indicates the orientation of the revolving structure 3 in the global coordinate system.
  • the storage unit 109 stores the position data of the camera 30 in the vehicle body coordinate system.
  • the position data of the camera 30 in the vehicle body coordinate system is known data derived from design data or specification data of the hydraulic excavator 1 and the camera 30, and is stored in the storage unit 109.
  • the position data calculation unit 105 calculates the position of the origin of the vehicle body coordinate system in the global coordinate system based on the position data of the revolving structure 3, the posture data of the revolving structure 3, and the orientation data of the revolving structure 3.
  • the position data calculation unit 105 includes the position data of the revolving structure 3, the posture data of the revolving structure 3, the orientation data of the revolving structure 3, and the position data of the camera 30 in the vehicle body coordinate system stored in the storage unit 109. Based on this, position data of the camera 30 in the global coordinate system is calculated.
  • the work machine position data calculation unit 106 acquires work machine angle data indicating the angle of the work machine 2 from the work machine angle detector 22.
  • the work machine angle data includes a boom angle, an arm angle, and a bucket angle.
  • the work machine position data calculation unit 106 is configured to determine the position data of the boom 6 in the vehicle body coordinate system based on the work machine angle data acquired from the work machine angle detector 22 and the work machine data stored in the storage unit 109.
  • the position data of the arm 7 and the position data of the bucket 8 are calculated.
  • the position data of each of the boom 6, the arm 7, and the bucket 8 includes coordinate data of each of a plurality of parts of the boom 6, a plurality of parts of the arm 7, and a plurality of parts of the bucket 8.
  • the work machine position data calculation unit 106 includes position data of the swing body 3, posture data of the swing body 3, orientation data of the swing body 3, work machine angle data, and work stored in the storage unit 109. Based on the machine data, the position data of each of the boom 6, the arm 7 and the bucket 8 in the global coordinate system is calculated.
  • the work machine data includes design data or specification data of the work machine 2.
  • the design data of the work machine 2 includes 3D CAD data of the work machine 2.
  • the work machine data includes at least one of outer shape data of the work machine 2 and dimension data of the work machine 2.
  • the work machine data includes a boom length, an arm length, and a bucket length.
  • the boom length is a distance between the rotation axis AX1 and the rotation axis AX2.
  • the arm length is a distance between the rotation axis AX2 and the rotation axis AX3.
  • the bucket length is the distance between the rotation axis AX3 and the cutting edge 8BT of the bucket 8.
  • the map data creation unit 107 creates 3D data DG based on the parallax image data SG.
  • the three-dimensional data DG includes parallax image data SG, three-dimensional data such as a vehicle body coordinate system, and three-dimensional map data (elevation map data) described later.
  • the display control unit 108 causes the display device 26 to display the first image data MR1, the second image data ML1, the third image data MR2, and the fourth image data ML2 acquired by the image data acquisition unit 101. Further, the display control unit 108 causes the display device 26 to display the parallax image data SG generated by the stereo measurement unit 102. The display control unit 108 causes the display device 26 to display the three-dimensional data DG created by the map data creation unit 107.
  • FIG. 5 is a schematic diagram for explaining an example of the stereo measurement method according to the present embodiment.
  • the image data MR (MR1, MR2) acquired by the image data acquisition unit 101 and the image data ML (ML1, ML2) are subjected to image processing in a stereo manner, and the three-dimensional data DG to be imaged is calculated. It is processing.
  • one camera 30 constituting the stereo camera 300 is appropriately referred to as a first camera 30R (30A, 30C), and the other camera 30 is appropriately referred to as a second camera 30L (30B, 30D).
  • the image data MR photographed by the first camera 30R (30A, 30C) is appropriately referred to as first image data MR (MR1, MR2), and the second camera 30L (30B, 30D).
  • the image data ML photographed in step 2 is appropriately referred to as second image data (ML1, ML2).
  • the 3D data DG is calculated by the first camera 30A and the second camera 30B of the first stereo camera 301, and the 3D data DG is calculated by the third camera 30C and the fourth camera 30D of the second stereo camera 302. The method is the same.
  • the right camera 30 is the first camera 30R and the left camera 30 is the second camera 30L, but the left camera 30 is the first camera 30R and the right camera 30 is The second camera 30L may be used.
  • the position data of the first camera 30R and the position data of the second camera 30L are stored in the storage unit 109.
  • the position data of the first camera 30R includes the position of the optical center OR of the first camera 30R and the direction of the optical axis of the optical system of the first camera 30R.
  • the position data of the second camera 30L includes the position of the optical center OL of the second camera 30L and the direction of the optical axis of the optical system of the second camera 30L.
  • relative position data between the first camera 30R and the second camera 30L is stored in the storage unit 109.
  • the relative position data between the first camera 30R and the second camera 30L includes the dimension of the base line BL connecting the optical center OR of the first camera 30R and the optical center OL of the second camera 30L.
  • the image of the measurement point P of the imaging target SB existing in the three-dimensional space is projected on each of the projection surface of the first camera 30R and the projection surface of the second camera 30L. Further, the image of the measurement point P and the image of the point EL on the projection surface of the second camera 30L are projected on the projection surface of the first camera 30R, and an epipolar line is defined. Similarly, the image of the measurement point P and the image of the point ER on the projection surface of the first camera 30R are projected on the projection surface of the second camera 30L, and an epipolar line is defined. An epipolar plane is defined by the measurement point P, the point ER, and the point EL.
  • the projection surface of the first camera 30R includes the imaging surface of the image sensor of the first camera 30R.
  • the projection surface of the second camera 30L includes the imaging surface of the image sensor of the second camera 30L.
  • the image data acquisition unit 101 acquires first image data MR photographed by the first camera 30R and second image data ML photographed by the second camera 30L.
  • the first image data MR photographed by the first camera 30R and the second image data ML photographed by the second camera 30B are each two-dimensional image data projected on the projection plane.
  • the first image data MR and the second image data ML acquired by the image data acquisition unit 101 are output to the stereo measurement unit 102.
  • the stereo measurement unit 102 is based on the coordinate data of the image of the measurement point P in the first image data MR defined in the camera coordinate system, the coordinate data of the image of the measurement point P in the second image data ML, and the epipolar plane. Thus, the three-dimensional coordinate data of the measurement point P in the camera coordinate system is calculated.
  • the stereo measurement unit 102 calculates the three-dimensional coordinate data of each of the plurality of measurement points P of the shooting target SB based on the first image data MR and the second image data ML. Thereby, the three-dimensional data DG of the photographing target SB is calculated.
  • the stereo measurement unit 102 calculates the three-dimensional coordinate data of the plurality of measurement points P in the camera coordinate system by stereo measurement, and then performs coordinate conversion to calculate 3 of the plurality of measurement points P in the vehicle body coordinate system. Dimensional coordinate data and three-dimensional coordinate data of a plurality of measurement points P in the global coordinate system are calculated.
  • the stereo measurement unit 102 performs image processing on the first image data MR and the second image data ML in a stereo manner, and calculates three-dimensional data DG of the shooting target SB.
  • the stereo measurement unit 102 calculates a distance ZP from the baseline BL of the stereo camera 300 to the measurement point P of the shooting target SB based on the principle of triangulation.
  • FIG. 6 is a diagram schematically illustrating an example of the stereo camera 300 according to the present embodiment.
  • the first camera 30R and the second camera 30L of the stereo camera 300 can be arranged in a direction parallel to the Ys axis of the camera coordinate system.
  • the Ys axis of the camera coordinate system of the first camera 30R and the Ys axis of the camera coordinate system of the second camera 30L are arranged on the same straight line and face the same direction.
  • the first camera 30R has an image sensor 31R.
  • the origin of the first camera 30R in the camera coordinate system is defined by the optical center OR.
  • the optical axis of the optical system of the first camera 30R is parallel to the Zs axis and passes through the optical center OR.
  • First image data MR including the imaging target SB is acquired by the first camera 30R.
  • the second camera 30L has an image sensor 31L.
  • the origin of the second camera 30L in the camera coordinate system is defined by the optical center OL.
  • the optical axis of the optical system of the second camera 30L is parallel to the Zs axis and passes through the optical center OL.
  • Second image data ML including the imaging target SB is acquired by the second camera 30L.
  • a three-dimensional coordinate system (X, Y, Z) having the origin at the optical center OL of the second camera 30L is set.
  • the X axis and the Xs axis are substantially parallel.
  • the Y axis and the Ys axis are substantially parallel.
  • the Z axis and the Zs axis are substantially parallel.
  • the projection plane of the first camera 30R defined on the imaging plane of the image sensor 31R and the projection plane of the second camera 30L defined on the imaging plane of the image sensor 31L are arranged in the same plane. .
  • the projection surface of the first camera 30R and the projection surface of the second camera 30L are arranged at the same position.
  • the first image data MR includes a projection image of the imaging target SB formed on the projection surface of the first camera 30R.
  • the second image data ML includes a projection image of the shooting target SB formed on the projection surface of the second camera 30L.
  • the dimension of the baseline BL is b.
  • the position in the Y-axis direction of the pixel PXr including the measurement point P is YR.
  • the position in the Y-axis direction of the pixel PXl including the measurement point P is YL.
  • the distance in the Z-axis direction between the projection plane of the second camera 30L and the base line BL is f.
  • the distance f is equal to the focal length of the optical system of the second camera 30L.
  • the parallax indicating the distance between the projection point of the measurement point P in the first image data MR and the projection point of the measurement point P in the second image data ML is d.
  • the parallax d may be a shift amount (unit: pixel) between the pixel PXr including the measurement point P and the pixel PXl including the measurement point P, or the pixel PXr including the measurement point P, the pixel PXl including the measurement point P, and the pixel PXr. It may be a distance to.
  • the distance ZP from the baseline BL of the stereo camera 300 to the measurement point P of the shooting target SB is calculated based on the equation (1).
  • [Parallax image data] 7 and 8 are diagrams schematically illustrating an example of the first image data MR photographed by the first camera 30R and the second image data ML photographed by the second camera 30L according to the present embodiment.
  • the first image is caused by the parallax d indicating the distance between the projection point of the measurement point P in the first image data MR and the projection point of the measurement point P in the second image data ML.
  • the position of the measurement point P in the data MR and the position of the measurement point P in the second image data ML are different in the Ys axis direction.
  • the parallax d is a deviation in the Ys-axis direction between the projection point (pixel) of the measurement point P in the first image data MR and the projection point (pixel) of the measurement point P in the second image data ML.
  • the stereo measurement unit 102 performs image processing on the first image data MR and the second image data ML in a stereo manner, and generates parallax image data SG of the shooting target SB. Specifically, the stereo measurement unit 102 performs a stereo corresponding point search for the first image data MR and the second image data ML.
  • the stereo corresponding point search refers to a process of searching for the pixel PXr and the pixel PXl on which the same measurement point P is projected in each of the first image data MR and the second image data ML.
  • Stereo measurement unit 102 uses first image data MR as reference image data, and second image data ML as reference image data. As illustrated in FIG. 8, the stereo measurement unit 102 uses the second image data for the pixel PXl including the projection point of the same measurement point P with respect to the pixel PXr of the first image data MR including the projection point of the measurement point P. Search from ML. In the present embodiment, the stereo measurement unit 102 searches for a pixel PMl including the projection point of the measurement point P from among the plurality of pixels PXl existing on the epipolar line of the second image data ML.
  • the pixels PXr and PXl used for the stereo correspondence point search may be one pixel of the image sensor or an aggregate of a plurality of pixels.
  • the pixel PXr including the projection point of the measurement point P in the first image data MR is appropriately referred to as a target pixel PXr, and includes the projection point of the same measurement point P in the second image data ML.
  • the pixel PXl is appropriately referred to as a corresponding pixel PXl.
  • a state where the corresponding pixel PXl is successfully searched as a result of searching for the corresponding pixel PXl with respect to the target pixel PXr is appropriately referred to as successful search.
  • a state where the search for the corresponding pixel PXl has failed is appropriately referred to as search failure.
  • the stereo measurement unit 102 can obtain the parallax d (for example, the number of displaced pixels) based on the distance between the target pixel PXr and the corresponding pixel PXl.
  • the dimension b and the focal length f of the baseline BL are known data derived from the design data or specification data of the camera 30 and are stored in the storage unit 109. Therefore, when the search is successful and the parallax d is calculated, the stereo measurement unit 102 determines the distance to the measurement point P based on the dimension b and the focal length f stored in the storage unit 109 and the calculated parallax d.
  • the distance ZP can be calculated.
  • the stereo measurement unit 102 cannot calculate the parallax d and cannot calculate the distance ZP to the measurement point P.
  • the stereo measurement unit 102 When the search is successful, the stereo measurement unit 102 generates the pixel PXs based on the target pixel PXr and the corresponding pixel PXl that have been successfully searched. On the other hand, when the search is unsuccessful, the stereo measurement unit 102 generates the pixel PXs based on the target pixel PXr and the corresponding pixel PXl for which the search has failed.
  • the stereo measurement unit 102 performs a stereo corresponding point search for each of the plurality of pixels PXr of the first image data MR. Thereby, a plurality of pixels PXs are generated, and parallax image data SG in which the plurality of pixels PXs are two-dimensionally arranged is generated.
  • the parallax image data SG is image data obtained by visualizing the magnitude of parallax in each pixel PXs calculated by the stereo measurement unit 102. For example, each pixel is displayed in gray according to the magnitude of parallax as shown in FIG. This is expressed by shading (displayed white when the parallax is large and black when the parallax is small).
  • the parallax image data SG may be expressed in a manner other than light and shade, for example, may be expressed by a color that changes according to the magnitude of the parallax.
  • the stereo measurement unit 102 assigns success data indicating successful search to the pixel PXs generated based on the target pixel PXr and the corresponding pixel PXl that have been successfully searched, and based on the target pixel PXr and the corresponding pixel PX1 that have failed to be searched. Failure data indicating that the search has failed may be added to the generated pixel PXs. By adding failure data to the pixel PXs, the pixel PXs is displayed in black, for example.
  • the pixel PXs generated based on the target pixel PXr and the corresponding pixel PXl that have been successfully searched is simply referred to as the pixel PXs that has been successfully searched, and is generated based on the target pixel PXr and the corresponding pixel PX1 that have failed to be searched.
  • the obtained pixel PXs is simply referred to as a pixel PXs that has failed to be searched.
  • the stereo measurement unit 102 can generate a parallax image by expressing each of the plurality of pixels PXs successfully searched based on the parallax d.
  • the stereo measurement unit 102 can generate a distance image by expressing each of the plurality of pixels PXs that have been successfully searched based on the distance ZP.
  • the distance image may be image data in which the distance ZP from the camera 30 to the target point P is stored in some form in each pixel PXs in the image data, or the target point P from the camera 30 of each pixel PXs. An image that visually expresses the distance ZP to the distance may be used.
  • the parallax image data SG includes distance image data.
  • the stereo rate refers to, for example, a ratio of pixels PXs in which stereo measurement is successful among a plurality of pixels PXs of the parallax image data SG generated by the stereo measurement unit 102.
  • the pixel PXs for which the stereo measurement has succeeded is the pixel PXs generated based on the target pixel PXr and the corresponding pixel PXl which has been successfully searched as a result of searching for the corresponding point PXl as a result of searching for the corresponding pixel PXr.
  • the stereo rate STR is expressed by the following equation (2).
  • PXA is the total number of pixels PXs of the parallax image data SG.
  • PXS is the total number of pixels PXs in which the stereo measurement is successful in the parallax image data SG.
  • the pixel PXs excluding the pixel PXs corresponding to the region where no pattern exists from all the pixels PXs of the parallax image data SG may be used as the denominator of the equation (2).
  • the stereo rate STR may be the total number of pixels PXs in which the stereo measurement is successful in the parallax image data SG.
  • FIG. 9 is a schematic diagram for explaining the relative positions of the first camera 30R and the second camera 30L of the stereo camera 300 according to the present embodiment.
  • the first camera 30R and the second camera 30L may be arranged in a direction parallel to the Ys axis, for example.
  • a plurality of parameters related to the first camera 30R and the second camera 30L are obtained in advance and stored in the storage unit 109.
  • the storage unit 109 stores a plurality of external parameters that define the relative positions of the first camera 30R and the second camera 30L.
  • External parameters include parameters ⁇ , ⁇ , ⁇ in the rotation direction of the second camera 30L with respect to the first camera 30R, and parameters Tx, Ty, Tz in the translation direction of the second camera 30L with respect to the first camera 30R.
  • the parameter ⁇ indicates the relative angle of the optical axis of the optical system of the second camera 30L in the ⁇ Xs direction with respect to the first camera 30R.
  • the parameter ⁇ indicates the relative angle of the optical axis of the optical system of the second camera 30L in the ⁇ Ys direction with respect to the first camera 30R.
  • the parameter ⁇ indicates the relative angle of the optical axis of the optical system of the second camera 30L in the ⁇ Zs direction with respect to the first camera 30R.
  • the parameter ⁇ is appropriately referred to as a yaw angle ⁇
  • the parameter ⁇ is appropriately referred to as a pitch angle ⁇
  • the parameter ⁇ is appropriately referred to as a roll angle ⁇ .
  • the parameter Tx indicates the relative position of the second camera 30L in the Xs axis direction with respect to the first camera 30R.
  • the parameter Ty indicates the relative position of the second camera 30L in the Ys axis direction with respect to the first camera 30R.
  • the parameter Tz indicates the relative position of the second camera 30L in the Zs axis direction with respect to the first camera 30R.
  • the parameter Tx is appropriately referred to as a shift amount Tx
  • the parameter Ty is appropriately referred to as a shift amount Ty
  • the parameter Tz is appropriately referred to as a shift amount Tz.
  • the storage unit 109 stores the yaw angle ⁇ , pitch angle ⁇ , roll angle ⁇ , shift amount Tx, shift amount Ty, and shift amount Tz as external parameters.
  • the relative position between the first camera 30R and the second camera 30L is defined by the following equation (3) including the plurality of external parameters described above.
  • (x 1 , y 1 , z 1 ) represents the coordinates of the first camera 30R in the camera coordinate system of the first camera 30R.
  • (X 2 , y 2 , z 2 ) indicates the coordinates of the second camera 30L in the camera coordinate system of the second camera 30L.
  • Equation (3) is expressed by three rotation matrices defined by the yaw angle ⁇ , the pitch angle ⁇ , and the roll angle ⁇ , and a translation vector defined by the shift amount Tx, the shift amount Ty, and the shift amount Tz. including.
  • Expression (3) is a conversion expression for converting the position of the second camera 30L in the camera coordinate system of the second camera 30L into a position in the camera coordinate system of the first camera 30R.
  • the relative position between the first camera 30R and the second camera 30L is defined based on the equation (3).
  • the first adjustment unit 103 and the second adjustment unit 104 adjust at least one of the yaw angle ⁇ , the pitch angle ⁇ , the roll angle ⁇ , the shift amount Tx, the shift amount Ty, and the shift amount Tz, thereby adjusting the first camera.
  • the relative position between the first camera 30R and the second camera 30L can be adjusted.
  • the yaw angle ⁇ , the pitch angle ⁇ , the roll angle ⁇ , the shift amount Tx, and the shift amount Ty of the second camera 30L with respect to the first camera 30R are set so that the stereo rate is equal to or greater than the stereo threshold.
  • the shift amount Tz are adjusted.
  • the stereo threshold is a threshold defined for the stereo ratio. In the following description, adjusting the relative positions of the first camera 30R and the second camera 30L so that the stereo rate is equal to or greater than the stereo threshold is appropriately referred to as external calibration processing.
  • the conversion formula including the yaw angle ⁇ , pitch angle ⁇ , roll angle ⁇ , shift amount Tx, shift amount Ty, and shift amount Tz derived in the external calibration process is stored in the storage unit 109 when the excavator 1 is shipped from the factory. Is done.
  • the stereo measurement unit 102 uses the parameters stored in the storage unit 109 to perform image processing on the first image data MR and the second image data ML in a stereo manner to generate parallax image data SG.
  • the camera 30 may physically move due to external factors such as vibration, impact, or heat. . Due to external factors, for example, the Xs axis direction, Ys axis direction, Zs axis direction, ⁇ Xs direction, ⁇ Ys direction, and ⁇ Zs direction of the other camera 30 with respect to one camera 30 of the first camera 30R and the second camera 30L. There is a possibility that the position in at least one direction is shifted.
  • the first camera 30R and the second camera 30L defined by the external parameters stored in the storage unit 109 at the time of factory shipment. There is a difference between the relative position and the actual relative position between the first camera 30R and the second camera 30L after the camera 30 has moved. In that case, even if the corresponding points are searched for by stereo measurement for the first image data MR and the second image data ML, there is a high possibility that the search will fail. As a result, the stereo rate is reduced, and it is difficult to accurately perform stereo measurement of the shooting target SB.
  • the first adjustment unit 103 causes the stereo ratio to improve again when the position of at least one of the first camera 30R and the second camera 30L shifts and the stereo ratio decreases.
  • (3) Change at least some of the plurality of external parameters included in the equation.
  • the second adjustment unit 104 causes the position of at least one of the first camera 30R and the second camera 30L to shift, and the scale of the measurement result by the stereo camera 300 (the distance or scale from the camera 30 to the measurement point P). ) Towards inaccurate, the scale of the three-dimensional data DG is adjusted by changing at least some of the plurality of external parameters included in the equation (3).
  • the control device 100 when the position of the camera 30 has physically moved, changes the external parameters stored in the storage unit 109 to change the first camera 30R and the second camera 30L.
  • the relative position fluctuation is automatically corrected by calculation processing.
  • the first adjustment unit 103 adjusts the external parameters and performs a stereo ratio adjustment process.
  • the display control unit 108 causes the display device 26 to display the parallax image data SG generated by the stereo measurement unit 102.
  • the stereo measurement unit 102 assigns success data for displaying gray to the pixels PXs that have been successfully searched, and assigns failure data for displaying black to the pixels PXs that have failed to search.
  • FIG. 10 is a diagram schematically illustrating an example of the parallax image data SG when the search according to the present embodiment has failed.
  • the search may fail even if the stereo corresponding points are searched for the first image data MR and the second image data ML. High nature.
  • the stereo rate is reduced, and most of the pixels PXs of the parallax image data SG are displayed in black.
  • FIG. 11 is a schematic diagram for explaining an example of stereo ratio adjustment processing by the first adjustment unit 103 according to the present embodiment.
  • the first adjustment unit 103 changes, for example, the pitch angle ⁇ among the plurality of external parameters stored in the storage unit 109.
  • the second camera 30L is artificially rotated in the ⁇ Ys direction by adjusting the pitch angle ⁇ of the external parameter.
  • the stereo measurement unit 102 searches for the pixel PXl including the projection point of the measurement point P from the plurality of pixels PXl existing on the epipolar line of the second image data ML. .
  • the first camera 30R and the second camera 30L are arranged in the Ys axis direction, and the epipolar line extends in the Ys axis direction.
  • the first adjustment unit 103 searches for a plurality of pixels PXl on the epipolar line that is likely to have a corresponding pixel PXl including the projection point of the measurement point P by changing the pitch angle ⁇ of the external parameter. Can do.
  • the first adjustment unit 103 adjusts the pitch angle ⁇ so that the stereo rate of the parallax image data SG is improved.
  • storage unit 109 stores a reference pitch angle beta 0.
  • the reference pitch angle ⁇ 0 is the pitch angle ⁇ adjusted so that the stereo rate becomes the maximum or the stereo threshold value or more in the external calibration process at the time of factory shipment.
  • First adjusting portion 103 in a predetermined range including a reference pitch angle beta 0 by changing the pitch angle beta of the second camera 30L, and calculates the maximum value of, for example, a stereo rate.
  • FIG. 12 is a schematic diagram for explaining an example of a stereo ratio adjusting method by the first adjusting unit 103 according to the present embodiment.
  • the horizontal axis indicates the external parameter pitch angle ⁇
  • the vertical axis indicates the stereo ratio.
  • the first adjustment unit 103 with reference to the reference pitch angle beta 0, in the positive and negative directions within a predetermined range, changing the pitch angle beta by a predetermined angle.
  • the stereo measurement unit 102 calculates the stereo rate every time the pitch angle ⁇ is changed. As shown in FIG. 12, the stereo rate changes according to the change of the pitch angle ⁇ .
  • the first adjustment unit 103 determines the pitch angle ⁇ when the maximum value of the stereo ratio is obtained in a predetermined range as the correct pitch angle ⁇ r.
  • any pitch angle ⁇ may be set as the correct pitch angle ⁇ r as long as the stereo rate is equal to or greater than the stereo threshold.
  • FIG. 13 is a diagram schematically illustrating an example of the parallax image data SG when the search is successful according to the present embodiment.
  • the first adjustment unit 103 changes the pitch angle ⁇ (reference pitch angle ⁇ 0 ) stored in the storage unit 109 to the correct pitch angle ⁇ r. That is, (3) the pitch angle beta of the rotation matrix type is changed to the correct pitch angle ⁇ r from the reference pitch angle beta 0.
  • the stereo measurement unit 102 performs stereo measurement based on the first image data MR, the second image data ML, and the external parameters including the correct pitch angle ⁇ r, and generates parallax image data SG.
  • the pitch angle beta is changed to correct the pitch angle ⁇ r from the reference pitch angle beta 0, external parameters stored in the storage unit 109, the first camera 30R and the second after the relative positions have been physically change It is optimized for the camera 30L. Therefore, after the relative position between the first camera 30R and the second camera 30L of the stereo camera 300 is physically changed, the stereo measurement unit 102 uses the first image data MR and the second image data ML to support stereo. When a point search is performed, the possibility of a successful search increases. As a result, as shown in FIG. 13, the stereo rate is improved, and most of the pixels PXs of the parallax image data SG are displayed in gray.
  • the second adjustment unit 104 adjusts the external parameters and performs a scale adjustment process on the three-dimensional data DG.
  • the stereo ratio adjustment is a process of improving the stereo ratio by artificially adjusting the position of the camera 30 whose position has physically changed by changing external parameters.
  • the scale of the three-dimensional data DG whose stereo rate is improved by the above-described method is adjusted.
  • the scale adjustment is a process of grasping how far the three-dimensional data DG exists from the stereo camera 300 and adjusting the three-dimensional data DG so as to match the actual current landform. By adjusting the scale, three-dimensional data DG with high accuracy or small error that matches the actual current topography can be obtained.
  • FIG. 14 is a schematic diagram for explaining an example of scale adjustment processing by the second adjustment unit 104 according to the present embodiment.
  • the second adjustment unit 104 changes, for example, the yaw angle ⁇ among the plurality of external parameters stored in the storage unit 109.
  • the second camera 30L is artificially rotated in the ⁇ Xs direction by adjusting the yaw angle ⁇ of the external parameter.
  • the first camera 30R and the second camera 30L are arranged in the Ys-axis direction, and the distance ZP to the measurement point P is calculated based on the principle of triangulation. Therefore, the second adjustment unit 104 can adjust the parallax of the pixel on which the measurement point P is projected in the parallax image data SG by changing the yaw angle ⁇ of the external parameter of the second camera 30L.
  • the scale of the three-dimensional data DG is indirectly adjusted by adjusting the parallax in the parallax image data SG.
  • the second adjustment unit 104 changes the yaw angle ⁇ of the external parameter defined for the stereo camera 300 so that the difference between the reference scale described later and the scale of the three-dimensional data DG obtained from the parallax image data SG is reduced.
  • the reference scale is a reference used when adjusting the scale (distance or scale) from the camera 30 to the measurement point P so that the three-dimensional data DG obtained from the parallax image data SG matches the actual current landform. It is a scale.
  • the second adjustment unit 104 determines the correct yaw angle ⁇ r at which the difference between the reference scale and the scale of the three-dimensional data DG is minimum or less than a threshold value.
  • storage unit 109 stores a reference yaw angle alpha 0.
  • Reference yaw angle alpha 0 is the yaw angle alpha which is adjusted parallax image data in the external calibration processing factory.
  • the second adjusting portion 104 in a predetermined range including a reference yaw angle alpha 0 by changing the yaw angle alpha of the second camera 30L, and calculates the minimum value of the difference between the scale of the reference scale and the three-dimensional data DG.
  • the second adjustment unit 104 changes the yaw angle ⁇ (reference yaw angle ⁇ 0 ) stored in the storage unit 109 to the correct yaw angle ⁇ r. That is, the yaw angle ⁇ of the rotation matrix of the equation (3) is changed from the reference yaw angle ⁇ 0 to the correct yaw angle ⁇ r.
  • the stereo measurement unit 102 performs stereo measurement based on the first image data MR, the second image data ML, and the external parameters including the correct yaw angle ⁇ r to generate parallax image data SG.
  • yaw angle alpha is changed to correct the yaw angle ⁇ r from the reference yaw angle alpha 0, after the relative position of the first camera 30R and the second camera 30L is physically change, stored in the storage unit 109
  • the external parameters are optimized for the first camera 30R and the second camera 30L after the relative position has physically changed. Therefore, after the relative position between the first camera 30R and the second camera 30L of the stereo camera 300 is physically changed, the scale of the three-dimensional data DG is the same scale as the actual construction site. That is, the shape of the three-dimensional data DG is the same shape as the actual construction site.
  • FIG. 15 is a flowchart illustrating an example of the position measurement method according to the present embodiment.
  • the first stereo camera 301 provided in the hydraulic excavator 1 photographs a distant view area that is the first area of the photographing target SB.
  • the second stereo camera 302 provided in the excavator 1 captures a foreground area that is the second area of the imaging target SB.
  • the image data acquisition unit 101 includes first image data MR1 and second image data ML1 captured by the first camera 30A and the second camera 30B of the first stereo camera 301, a third camera 30C of the second stereo camera 302, and The third image data MR2 and the fourth image data ML2 captured by the fourth camera 30D are acquired (step SP10).
  • the first image data MR1 and the second image data ML1 photographed by the first stereo camera 301 include a distant view area of the photographing target SB.
  • the third image data MR2 and the fourth image data ML2 captured by the second stereo camera 302 include a foreground area of the capturing target SB.
  • the stereo measurement unit 102 performs stereo measurement based on the first image data MR1 and the second image data ML1 captured by the first stereo camera 301 and a plurality of parameters stored in the storage unit 109.
  • the stereo measurement unit 102 performs stereo measurement and generates first parallax image data SG1 indicating a distant view area of the shooting target SB.
  • the stereo measurement unit 102 performs stereo measurement based on the third image data MR2 and the fourth image data ML2 captured by the second stereo camera 302 and a plurality of parameters stored in the storage unit 109. To do.
  • the stereo measurement unit 102 performs stereo measurement and generates second parallax image data SG2 indicating the foreground area of the shooting target SB (step SP20).
  • FIG. 16 is a diagram schematically showing the first image data MR1 obtained by photographing the subject SB according to the present embodiment with the first camera 30A.
  • the first stereo camera 301 captures a distant view area of the capturing target SB.
  • the distant view area of the photographing target SB includes not only the ground as a construction target but also an object disposed at an infinite point with respect to the first stereo camera 301 such as the sky or a cloud floating in the sky.
  • FIG. 17 is a diagram schematically illustrating an example of the first parallax image data SG1 generated based on the first image data MR1 and the second image data ML1 acquired by the first stereo camera 301 according to the present embodiment. is there.
  • the parallax d between the first image data MR1 and the second image data ML1 of an object existing at an infinite point with respect to the first stereo camera 301 in the shooting target SB is zero. Therefore, the portion corresponding to the sky and clouds in the first parallax image data SG1 is displayed in black.
  • external calibration processing of the first stereo camera 301 and the second stereo camera 302 is performed at the time of factory shipment.
  • the stereo corresponding point search for the third image data MR2 and the fourth image data ML2 acquired by the second stereo camera 302 is successful, and the second parallax image data SG2
  • the stereo rate is greater than or equal to the stereo threshold.
  • the first stereo camera 301 at least one of the first camera 30A and the second camera 30B is displaced after the external calibration process, and the first image data MR1 and the second image data acquired by the first stereo camera 301 are shifted.
  • the stereo corresponding point search for the image data ML1 fails, and the stereo rate of the first parallax image data SG1 is smaller than the stereo threshold.
  • the stereo corresponding point search has failed in most of the pixels of the first parallax image data SG1, for example, as shown in FIG. 10, most of the parallax images are black areas.
  • the first adjustment unit 103 changes at least some of the plurality of parameters defined for the first stereo camera 301 to adjust the stereo ratio of the first parallax image data SG1 to improve the stereo ratio. (Step SP30).
  • adjusting the stereo ratio includes changing the pitch angle ⁇ .
  • the first adjusting unit 103 uses the above-described method to improve the stereo ratio of the first parallax image data SG1 for which the search has failed for the most part, and the pitch angle ⁇ of the external parameter defined for the first stereo camera 301 is used. To change.
  • the first adjustment unit 103 determines the correct pitch angle ⁇ r at which the stereo rate is the maximum or equal to or greater than the stereo threshold.
  • the stereo measurement unit 102 performs stereo measurement of the first image data MR1 and the second image data ML1 using the correct pitch angle ⁇ r. Accordingly, first parallax image data SG1 with an improved stereo rate is generated, for example, as in the parallax image illustrated in FIG.
  • the second adjustment unit 104 uses the correct pitch angle ⁇ r for the first stereo camera 301 to obtain the first three-dimensional data DG1 obtained from the first parallax image data SG1 having a maximum stereo ratio or a threshold value or more.
  • the scale is adjusted (step SP40).
  • adjusting the scale includes adjusting the yaw angle ⁇ .
  • the second adjustment unit 104 changes the external parameter yaw angle ⁇ defined for the first stereo camera 301 so that the difference between the reference scale and the scale of the first three-dimensional data DG1 becomes small.
  • the second adjustment unit 104 determines the correct yaw angle ⁇ r at which the difference between the reference scale and the scale of the first three-dimensional data DG1 is the minimum or less than the threshold value.
  • the reference scale is the second three-dimensional data obtained from the second parallax image data SG2 generated based on the third image data MR2 and the fourth image data ML2 acquired from the second stereo camera 302.
  • the second adjustment unit 104 includes a scale of the second three-dimensional data DG2 generated based on the third image data MR2 and the fourth image data ML2 captured by the second stereo camera 302, and the first stereo camera 301.
  • the external parameter yaw stored in the storage unit 109 is reduced so that the difference from the scale of the first three-dimensional data DG1 generated based on the photographed first image data MR1 and second image data ML1 is reduced.
  • the angle ⁇ reference yaw angle ⁇ 0
  • the stereo rate of the second parallax image data SG2 is equal to or greater than the stereo threshold. Therefore, it can be considered that the relative positions of the third camera 30C and the fourth camera 30D of the second stereo camera 302 have not changed since the factory shipment.
  • the external calibration process at the time of factory shipment not only the stereo ratio but also the scale is adjusted. That is, in the external calibration process, the relative positions of the pair of cameras 30 of the stereo camera 300 are adjusted so that the stereo rate is equal to or higher than the stereo threshold and the scale of the three-dimensional data DG is the correct value.
  • the second adjustment unit 104 uses the scale of the second three-dimensional data DG2 as the reference scale.
  • the first stereo camera 301 captures the distant view area of the subject SB.
  • the second stereo camera 302 captures the foreground area of the subject SB.
  • the first stereo camera 301 and the second stereo camera 302 photograph the photographing target SB so that the distant view area and a part of the foreground area overlap.
  • the second adjustment unit 104 reduces the difference between the scale of the first three-dimensional data DG1 and the scale of the second three-dimensional data DG2 in the overlapping region of the far-field region and the foreground region of the shooting target SB. Change the external parameter yaw angle ⁇ .
  • FIG. 18 is a diagram illustrating an example of the first three-dimensional data DG1 and the second three-dimensional data DG2 according to the present embodiment. As shown in FIG. 18, the display control unit 108 displays the first three-dimensional data DG1 and the second three-dimensional data DG2 generated by the stereo measurement unit 102.
  • the first three-dimensional data DG1 is data indicating distances ZP from the first stereo camera 301 to each of a plurality of parts of the imaging target SB.
  • the distance ZP is calculated for each of the plurality of pixels PXs of the first parallax image data SG1 based on the equation (1).
  • the map data creation unit 107 creates 3D map data in the camera coordinate system based on the distance ZP calculated for each of the plurality of pixels PXs. By coordinate transformation of the three-dimensional data DG in the camera coordinate system, the three-dimensional data DG in the vehicle body coordinate system and the three-dimensional data DG in the global coordinate system are created.
  • the first three-dimensional map data (elevation map data) is calculated by calculating the height of each mesh provided at a predetermined interval (x, y) using the three-dimensional data DG in the global coordinate system.
  • DG1 is created.
  • the three-dimensional data DG in the global coordinate system has three-dimensional data as many as the number of pixels, but the three-dimensional map data has only three-dimensional data for each predetermined mesh.
  • the map data creation unit 107 creates the second 3D map data DG2 based on the second parallax image data SG2 by a creation method similar to the creation method of the 3D map data of the first parallax image data SG1.
  • the three-dimensional data DG includes parallax image data SG, three-dimensional data such as a vehicle body coordinate system, and three-dimensional map data (elevation map data).
  • the map data creating unit 107 overlaps the distant view area and the foreground area of the shooting target SB, that is, the overlap area between the first 3D map data DG1 and the second 3D map data DG2.
  • the overlapping area data DA which is the data at, is created.
  • the overlapping area data DA is the same as the first three-dimensional map data DG1 and the second three-dimensional map data DG2 in the Z-axis direction at the same position (mesh) or each corresponding position in the XY plane in the global coordinate system.
  • the difference data is included.
  • the map data creation unit 107 includes the height data (z) of the first three-dimensional map data DG1 and the height data (z) of the second three-dimensional map data DG2 at each position in the overlapping region. ) And the scale is adjusted so that the total sum of the overlapping areas of each difference is the minimum or less than or equal to the threshold value.
  • the height data of the first three-dimensional map data DG1 and the second 3 The difference between the dimension map data DG2 and the height data is increased, that is, the total sum of the entire overlapping areas of the differences is also increased.
  • the second adjustment unit 104 determines that the scale of the first three-dimensional data DG1 is the second value.
  • the yaw angle ⁇ of the external parameter is adjusted so as to match the scale of the three-dimensional data DG2. Specifically, the second adjustment unit 104 overlaps the entire overlapping region of the first three-dimensional data DG1 obtained by photographing the distant view region of the photographing target SB and the second three-dimensional data DG2 obtained by photographing the close-up region of the photographing target SB.
  • the yaw angle ⁇ of the external parameter is changed so that the sum of the difference between the height data of the first three-dimensional data DG1 and the height data of the second three-dimensional data DG2 becomes small.
  • FIG. 19 is a schematic diagram for explaining an example of a scale adjustment method by the second adjustment unit 104 according to the present embodiment.
  • the horizontal axis represents the external parameter yaw angle ⁇
  • the vertical axis represents the difference between the height data of the first three-dimensional data DG1 and the height data of the second three-dimensional data DG2. The difference from the sum of
  • the second adjustment unit 104 changes the yaw angle ⁇ by a predetermined angle within a predetermined range in the plus direction and the minus direction with reference to the reference yaw angle ⁇ 0 .
  • the stereo measurement unit 102 calculates the difference between the height data of the first three-dimensional data DG1 and the sum of the differences between the height data of the second three-dimensional data DG2 every time the yaw angle ⁇ is changed. As shown in FIG. 19, the difference between the sum of the differences between the height data of the first three-dimensional data DG1 and the height data of the second three-dimensional data DG2 changes according to the change in the yaw angle ⁇ . .
  • the second adjustment unit 104 obtains the minimum value of the difference between the height data of the first three-dimensional data DG1 and the sum of the differences between the height data of the second three-dimensional data DG2 within a predetermined range.
  • the yaw angle ⁇ is determined to be the correct yaw angle ⁇ r.
  • the method for determining the correct yaw angle ⁇ r may not be the method described above. If the difference between the height data of the first three-dimensional data DG1 and the sum of the differences between the height data of the second three-dimensional data DG2 is a yaw angle ⁇ that is equal to or less than a threshold value, an arbitrary yaw angle ⁇ is correct.
  • the yaw angle ⁇ r may be used.
  • the stereo measurement unit 102 uses the external parameters including the correct pitch angle ⁇ r and the correct yaw angle ⁇ r to use the first stereo.
  • Stereo measurement of the first image data MR1 and the second image data ML1 taken by the camera 301 is performed.
  • the first parallax image data SG1 and the first three-dimensional data DG1 having a stereo ratio equal to or higher than the stereo threshold and a scale of the correct value are generated (step SP50).
  • step SP10 to step SP50 described above is performed at a predetermined sampling period.
  • the stereo camera 300 is automatically calibrated so that the stereo ratio is improved and the scale becomes the correct value.
  • the control device 100 changes the parameters defined for the first camera 30R and the second camera 30L, and performs arithmetic processing based on the changed parameters.
  • Stereo ratio and scale can be adjusted.
  • the stereo terrain 300 can measure the current terrain over a wide area.
  • the scale by adjusting the scale, the three-dimensional data DG measured by the stereo camera 300 becomes highly accurate data with little difference or error from the actual current landform.
  • the three-dimensional data DG and the parallax image data SG in which the stereo ratio and the scale are adjusted can be measured without performing a complicated recalibration process. Even if the relative position between the first camera 30R and the second camera 30L varies, the automatic calibration process is performed, so that a reduction in work efficiency of the hydraulic excavator 1 is suppressed.
  • the second adjustment unit 104 uses the second three-dimensional data DG2 as a reference scale, and the scale of the first three-dimensional data DG1 in the overlapping region of the distant view region and the foreground region.
  • the parameter is changed so that the difference from the scale of the second three-dimensional data DG2 becomes small. Thereby, the scale of the first three-dimensional data DG1 can be adjusted efficiently.
  • the stereo ratio is improved by changing the pitch angle ⁇ of the external parameter.
  • the stereo rate may be improved by changing the shift amount Tz, or the plurality of external parameters may be changed simultaneously.
  • the scale is adjusted by changing the yaw angle ⁇ of the external parameter, but the pitch angle ⁇ or roll angle ⁇ , the shift amount Tx, the shift amount Ty, and the shift in the equation (3)
  • the scale may be adjusted by changing the amount Tz, or the plurality of external parameters may be changed simultaneously.
  • the scale of the first three-dimensional data DG1 generated based on the first stereo camera 301 using the second three-dimensional data DG2 generated based on the second stereo camera 302 as a reference scale It was decided to adjust.
  • an example of adjusting the scale of the three-dimensional data DG using a reference object as a reference scale will be described. Also in this embodiment, processing for improving the stereo ratio may be performed in advance according to the above-described embodiment.
  • FIG. 20 is a schematic diagram for explaining an example of the position measurement method according to the present embodiment.
  • the target TG that is the reference object is arranged in the shooting area of the stereo camera 300.
  • the target TG includes, for example, a plate member having a white surface and a reference mark drawn in black on the white surface of the plate member. There may be one or more reference marks. In the present embodiment, the reference mark is a circular mark. Note that the target TG may not have a reference mark.
  • the target TG is arranged at a predetermined position whose position in the global coordinate system is known. That is, in this embodiment, the position data indicating the position of the target TG in the global coordinate system is known data.
  • the position data of the target TG is input to the position data calculation unit 105.
  • the position data calculation unit 105 can calculate the position data of the camera 30 in the global coordinate system.
  • the position data calculation unit 105 calculates relative position data between the stereo camera 300 and the target TG in the global coordinate system.
  • the position data calculation unit 105 calculates a reference distance ZF from the relative position data between the stereo camera 300 and the target TG in the global coordinate system.
  • the second adjustment unit 104 changes the yaw angle ⁇ of the external parameter so that the difference between the reference scale and the scale of the three-dimensional data DG becomes small.
  • the reference scale includes a reference distance ZF that is a distance between the stereo camera 300 and the target TG.
  • the stereo camera 300 images the imaging target SB including the target TG.
  • the stereo measurement unit 102 generates the parallax image data SG according to the above-described embodiment.
  • the first adjustment unit 103 adjusts the stereo rate according to the above-described embodiment.
  • the stereo measurement unit 102 obtains three-dimensional data DG based on the parallax image data SG.
  • the parallax image data SG or the three-dimensional data DG includes a target TG.
  • the stereo measurement unit 102 calculates a distance ZP from the stereo camera 300 to the target TG based on the parallax image data SG or the three-dimensional data DG.
  • the determination of which pixel in the parallax image data SG or the three-dimensional data DG corresponds to the target TG is performed, for example, by determining the center of the reference mark by image processing. Note that any method may be used as long as a pixel corresponding to the target TG can be determined. For example, it may be determined from the shape of the target TG without using a reference mark, or data such as a pixel corresponding to the target TG may be specified using a predetermined input device.
  • the second adjustment unit 104 reduces the difference between the reference distance ZF calculated by the position data calculation unit 105 and the distance ZP between the stereo camera 300 and the target TG in the parallax image data SG or the three-dimensional data DG. Change the external parameter yaw angle ⁇ .
  • the scale of the three-dimensional data DG can be adjusted using the target TG whose absolute position is known.
  • the relative positions of the first camera 30A and the second camera 30B of the first stereo camera 301 and the relative positions of the third camera 30C and the fourth camera 30D of the second stereo camera 302 both vary. Even if it has been done, the automatic calibration process of the first stereo camera 301 and the automatic calibration process of the second stereo camera 302 can be performed separately.
  • the first adjustment unit 103 is the above-described embodiment. Accordingly, the adjustment process for improving the stereo ratio can be performed. After the stereo ratio is improved, the second adjustment unit 104 captures the first TG by the first stereo camera 301 with the improved stereo ratio, and the second adjustment unit 104 performs the first adjustment according to the scale adjustment method according to the present embodiment. The scale of the three-dimensional data DG1 can be adjusted. The same applies to the second stereo camera 302.
  • the position measurement method according to the present embodiment can also be applied when the excavator 1 has only the first stereo camera 301.
  • the process of adjusting the scale by the second adjustment unit 104 using the position measurement method according to the present embodiment without performing the process of improving the stereo ratio using the first adjustment unit 103. May be implemented.
  • the scale can be adjusted even when the scale becomes inaccurate.
  • the stereo camera 300 captures a reference object placed at an infinite point of the stereo camera 300, such as a cloud floating in the sky shown in FIG.
  • Each of the first image data MR photographed by the first camera 30R and the second image data ML photographed by the second camera 30L includes image data of a reference object disposed at the infinity point of the stereo camera 300.
  • the reference scale is the distance to the reference object at the infinity point measured in stereo by the stereo camera 300 whose scale is adjusted to the correct value, that is, includes infinity.
  • FIG. 21 is a schematic diagram for explaining an example of the position measurement method according to the present embodiment.
  • each measurement point P of the photographing target SB is projected when, for example, the photographing target SB with a large proportion of the object existing at the infinity point as illustrated in FIG. 17 is photographed by the stereo camera 300.
  • It is a histogram figure which shows the relationship between the parallax d which arose in the pixel, and the frequency which is the result of accumulating the parallax d which arose in each pixel in the whole parallax image data SG.
  • the horizontal axis indicates the parallax d
  • the vertical axis indicates the frequency of the parallax d.
  • a peak value ⁇ d of the frequency occurs in the parallax d corresponding to the point at infinity as shown in FIG.
  • the frequency of the parallax d shows the peak value ⁇ d when the parallax d is zero.
  • the frequency of the parallax d shows the peak value ⁇ d when the parallax d is not zero.
  • the second adjustment unit 104 determines that the parallax d between the image data of the reference object (the infinity point in the present embodiment) in the first image data MR and the image data of the reference object in the second image data ML is the reference parallax d 0.
  • the yaw angle ⁇ of the external parameter is changed so as to coincide with (zero in this embodiment). That is, when the peak of the parallax d when the reference object at the infinity point is photographed is not zero, the second adjustment unit 104 changes the yaw angle ⁇ of the external parameter so that the peak of the parallax d is zero. .
  • FIG. 22 is a schematic diagram for explaining an example of a scale adjustment method by the second adjustment unit 104 according to the present embodiment.
  • the horizontal axis indicates the external parameter yaw angle ⁇
  • the vertical axis indicates the peak value ⁇ d of the parallax d when the measurement point P of the object existing at the infinity point is photographed, that is, FIG.
  • the peak value ⁇ d of the parallax d indicates the peak of the frequency of the parallax d when the shooting target SB having a large proportion of the object existing at the infinity point as shown in FIG.
  • the second adjustment unit 104 changes the yaw angle ⁇ by a predetermined angle within a predetermined range using the reference yaw angle ⁇ 0 as a reference.
  • the stereo measurement unit 102 calculates a peak value at the frequency of the parallax d at each of the changed yaw angles ⁇ .
  • the parallax d in each pixel of the parallax image data SG changes based on the change of the yaw angle ⁇ .
  • the second adjustment unit 104 determines a yaw angle ⁇ at which the minimum value of the difference between the reference parallax d 0 and the parallax d is obtained in a predetermined range to correct yaw angle .alpha.r.
  • the second adjustment unit 104 determines the yaw angle ⁇ whose peak value of the frequency of the parallax d at the changed yaw angle ⁇ is closest to zero as the correct yaw angle ⁇ r.
  • the second adjusting portion 104 may determine the yaw angle ⁇ at which the difference between the reference parallax d 0 and the parallax d becomes equal to or less than the disparity threshold in a predetermined range to correct yaw angle .alpha.r.
  • Parallax threshold is defined threshold for the difference between the reference parallax d 0 and the parallax d.
  • the scale of the three-dimensional data DG can be adjusted using an object that exists at an infinite point. Also in the present embodiment, both the relative position between the first camera 30A and the second camera 30B of the first stereo camera 301 and the relative position between the third camera 30C and the fourth camera 30D of the second stereo camera 302 vary. Even if it has been done, the automatic calibration process of the first stereo camera 301 and the automatic calibration process of the second stereo camera 302 can be performed separately.
  • the position measurement method according to the present embodiment can also be applied when the excavator 1 has only the first stereo camera 301.
  • the process of adjusting the scale by the second adjustment unit 104 using the position measurement method according to the present embodiment without performing the process of improving the stereo ratio using the first adjustment unit 103. May be implemented.
  • the scale can be adjusted even when the scale becomes inaccurate.
  • the parameter changed by the first adjustment unit 103 and the second adjustment unit 104 is an external parameter that defines the relative position between the first camera MR and the second camera ML.
  • the parameters changed by the first adjustment unit 103 and the second adjustment unit 104 are internal parameters of the first camera 30R and the second camera 30L will be described.
  • the internal parameter defines unique data of each of the first camera 30R and the second camera 30L.
  • the internal parameters include, for example, the focal length of the optical system of the camera 30, the amount of positional deviation between the optical center of the optical system of the camera 30 and the imaging surface of the image sensor, and the image center of the image sensor.
  • the internal parameters include the position of the image sensor 31L of the second camera 30L with respect to the optical axis of the optical system of the second camera 30L in the direction parallel to the Xs axis and the Ys axis. That is, in the present embodiment, the internal parameter includes the position of the image center in the Xs axis direction and the Ys axis direction.
  • the image sensor may move inside the camera 30 due to external factors.
  • the position of the image sensor may fluctuate due to the influence of heat.
  • the position of the image sensor fluctuates, the position of the image center indicating the intersection of the optical axis of the optical system of the camera 30 and the imaging surface of the image sensor fluctuates. If the position of the center of the image fluctuates, the stereo rate of the parallax image data SG may decrease, or the difference between the scale of the three-dimensional data DG and the correct value of the scale may increase.
  • the first adjustment unit 103 adjusts the position of the image center in the Xs axis direction by changing the position of the image sensor 31L in the Xs axis direction as an internal parameter in order to adjust the stereo ratio.
  • the second adjustment unit 104 adjusts the position of the image center in the Ys axis direction by changing the position of the image sensor 31L in the Ys axis direction as an internal parameter in order to adjust the scale.
  • the unique data of the camera 30 is defined by the following equation (4) including the plurality of internal parameters described above.
  • (X, Y, Z) indicates the position of the image center of the second camera 30L in the global coordinate system.
  • s represents a distance or scale in the Zs axis direction in the camera coordinate system.
  • u represents a position in the Xs-axis direction in the camera coordinate system.
  • f indicates a focal length.
  • su represents the pixel ratio in the Xs axis direction (ratio to the Ys axis direction).
  • sv represents a pixel ratio in the Ys axis direction (ratio to the Xs axis direction) in the camera coordinate system.
  • u 0 indicates the position of the image center of the second camera 30L in the Xs-axis direction in the camera coordinate system.
  • v 0 indicates the position of the image center of the second camera 30L in the Ys-axis direction in the camera coordinate system.
  • Expression (4) indicates the camera internal matrix defined by the yaw angle ⁇ , pitch angle ⁇ , roll angle ⁇ , position u 0 , and position v 0 regarding the second camera 30L, and the position and orientation of the second camera 30L.
  • a camera external matrix defined by a plurality of parameters, and a translation vector defined by each of position X, position Y, and position Z in the global coordinate system.
  • Equation (4) is obtained by calculating the position u 0 of the image center in the Xs axis direction and the position v 0 of the image center in the Ys axis direction in the camera coordinate system of the second camera 30L in the Xs axis direction in the camera coordinate system of the first camera 30R. It is a conversion formula for converting into the image center position u and the image center position v in the Ys-axis direction.
  • the first adjustment unit 103 changes the position u 0 so that the stereo ratio is increased. Changing the position u 0 is similar to changing the pitch angle ⁇ described in the above embodiment.
  • the storage unit 109 stores the reference position of the image sensor 31L in the Xs axis direction.
  • the reference position of the image sensor 31L in the Xs axis direction includes the reference position of the image center of the second camera 30L in the Xs axis direction.
  • the reference position in the Xs-axis direction is the position of the center of the image adjusted so that the stereo rate is equal to or higher than the stereo threshold value in the external calibration process at the time of shipment from the factory.
  • the first adjustment unit 103 changes the position of the image sensor 31L within a predetermined range including the reference position in the Xs-axis direction, and calculates the maximum value of the stereo ratio.
  • the second adjustment unit 104 changes the position v 0 so that the difference between the reference scale and the scale of the three-dimensional data DG becomes small. Changing the position v 0 is similar to changing the yaw angle ⁇ described in the above embodiment.
  • the storage unit 109 stores the reference position of the image sensor 31L in the Ys axis direction.
  • the reference position of the image sensor 31L in the Ys axis direction includes the reference position of the image center of the second camera 30L in the Ys axis direction.
  • the reference position in the Ys-axis direction is the position of the center of the image adjusted so that the difference between the reference scale and the scale of the three-dimensional data DG is equal to or less than the scale threshold value in the external calibration process at the time of shipment from the factory.
  • the second adjustment unit 104 changes the position of the image sensor 31L within a predetermined range including the reference position in the Ys-axis direction, and calculates the minimum value of the difference between the reference scale and the scale of the three-dimensional data DG.
  • the first adjustment unit 103 and the second adjustment unit 104 improve the stereo ratio of the parallax image data SG by adjusting the internal parameters of the camera 30, and correct the scale of the three-dimensional data DG. Can approach.
  • FIG. 23 is a diagram schematically illustrating an example of the position measurement system 500 according to the present embodiment.
  • the control device 100 of the excavator 1 can perform data communication with a server 501 and a terminal device 503 that are provided at a remote location of the excavator 1 via a communication line 502.
  • the server 501 includes a computer system.
  • the terminal device 503 includes a personal computer or a portable terminal.
  • the communication line 502 includes at least one of the Internet, a local area network (LAN), a mobile phone communication network, and a satellite communication network.
  • the server 501 has a part or all of the functions of the control device 100. That is, the server 501 includes an image data acquisition unit 101, a stereo measurement unit 102, a first adjustment unit 103, a second adjustment unit 104, a position data calculation unit 105, a work machine position data calculation unit 106, a map data creation unit 107, a display At least one of the control unit 108, the storage unit 109, and the input / output unit 110 is included.
  • Image data picked up by the camera 30 of the excavator 1, position data of the swing body 3 detected by the position detector 23, posture data of the swing body 3 detected by the posture detector 24, and detection by the direction detector 25 The orientation data of the swivel body 3 is supplied to the server 501 via the communication line 502.
  • the server 501 when the server 501 includes the stereo measurement unit 102, the first adjustment unit 103, the second adjustment unit 104, and the storage unit 109, the server 501 captures an image captured by the camera 30 and supplied via the communication line 502. Based on the data, stereo measurement can be performed, the parameter can be changed so that the stereo ratio becomes large, or the parameter can be changed so that the scale becomes the correct value.
  • the terminal device 503 may have a part or all of the functions of the control device 100. That is, the terminal device 503 includes an image data acquisition unit 101, a stereo measurement unit 102, a first adjustment unit 103, a second adjustment unit 104, a position data calculation unit 105, a work machine position data calculation unit 106, a map data creation unit 107, You may have at least one of the display control part 108, the memory
  • the display device 26 controlled by the display control unit 108 may be provided in the excavator 1, connected to the server 501, or connected to the terminal device 503. .
  • the scale of the three-dimensional data DG is adjusted using the target TG.
  • an example of adjusting the scale of the three-dimensional data DG using the work machine 2 as a reference scale will be described.
  • a process for improving the stereo ratio is performed according to the above-described embodiment.
  • FIG. 24 is a schematic diagram for explaining an example of the position measurement method according to the present embodiment.
  • the cutting edge 8BT of the bucket 8 which is a reference object is arranged in the imaging region of the stereo camera 300.
  • the blade edge 8BT is arranged in the imaging region of the stereo camera 300 in a state where the posture of the work machine 2 is adjusted so that the distance between the stereo camera 300 and the blade edge 8BT in the Xm-axis direction is the longest.
  • the work machine position data calculation unit 106 can calculate the position of the cutting edge 8BT of the bucket 8 in the global coordinate system.
  • the position data calculation unit 105 can calculate the position data of the camera 30 in the global coordinate system.
  • the position data calculation unit 105 calculates relative position data between the stereo camera 300 and the blade edge 8BT in the global coordinate system.
  • the second adjustment unit 104 changes the yaw angle ⁇ of the external parameter so that the difference between the reference scale and the scale of the three-dimensional data DG becomes small.
  • the reference scale includes a reference distance ZF that is a distance between the stereo camera 300 and the cutting edge 8BT.
  • the working machine 2 can be used to adjust the scale of the three-dimensional data DG.
  • a working machine of a hydraulic excavator different from the hydraulic excavator 1 may be used as a reference scale. If another hydraulic excavator has the work machine angle detector 22, the position detector 23, the attitude detector 24, the azimuth detector 25, and the control device 100 as in the hydraulic excavator 1 according to the present embodiment. Another hydraulic excavator can obtain the absolute position of the blade edge of the bucket of another hydraulic excavator work machine. The absolute position data indicating the absolute position of the blade edge of the other hydraulic excavator is transmitted to the hydraulic excavator 1 according to the present embodiment via the communication device, so that the hydraulic excavator 1 is different from the stereo camera 300. The relative position data with respect to the blade edge can be acquired.
  • the hydraulic excavator 1 is provided with four cameras 30 and two stereo cameras 300 has been described. It is sufficient that at least two cameras 30 are provided in the excavator 1. In the second embodiment and the third embodiment described above, at least one stereo camera 300 may be provided.
  • the stereo rate indicates a ratio of pixels in which stereo measurement is successful among a plurality of pixels of the parallax image data SG to be stereo-measured.
  • the stereo rate may have other definitions.
  • the stereo rate may indicate the total number of pixels in which stereo measurement is successful among a plurality of pixels of parallax image data that is stereo-measured.
  • the scale is changed by adjusting the yaw angle or the like, that is, adjusting the parallax d, as the scale adjustment of the three-dimensional data.
  • the scale may be changed by adjusting, for example, b (inter-camera distance) or f (focal length) in Equation 1.
  • the work machine 1 is a hydraulic excavator.
  • the work machine 1 may be a work machine capable of constructing a construction target, and may be a drilling machine capable of excavating the construction target and a transport machine capable of transporting earth and sand.
  • the work machine 1 may be a wheel loader, a bulldozer, or a dump truck, for example.
  • SYMBOLS 1 Hydraulic excavator (work machine), 1B ... Vehicle body, 2 ... Working machine, 3 ... Turning body, 4 ... Driver's cab, 4S ... Driver's seat, 5 ... Running body, 5A ... Track, 5B ... Track, 6 ... Boom, DESCRIPTION OF SYMBOLS 7 ... Arm, 8 ... Bucket, 8BT ... Cutting edge, 10 ... Boom cylinder, 11 ... Arm cylinder, 12 ... Bucket cylinder, 13 ... Boom pin, 14 ... Arm pin, 15 ... Bucket pin, 16 ... Boom stroke sensor, 17 ... Arm stroke Sensor, 18 ... Bucket stroke sensor, 20 ... Detection system, 21 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Electromagnetism (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

位置計測システムは、作業機械に設けられた第1ステレオカメラの第1カメラで撮影された第1画像データ及び第1ステレオカメラの第2カメラで撮影された第2画像データを取得する画像データ取得部と、第1画像データと、第2画像データと、第1カメラ及び第2カメラに関するパラメータとに基づいて、ステレオ計測を実施するステレオ計測部と、パラメータの少なくとも一部を変更して、ステレオ計測された第1視差画像データのステレオ率を調整する第1調整部と、パラメータの少なくとも一部を変更して、第1視差画像データから求められる第1の3次元データのスケールを調整する第2調整部と、を備える。

Description

位置計測システム、作業機械、及び位置計測方法
 本発明は、位置計測システム、作業機械、及び位置計測方法に関する。
 作業機械に係る技術分野において、特許文献1に開示されているような、ステレオカメラを有する油圧ショベルが知られている。
特開2012-233353号公報
 ステレオカメラは、第1カメラ及び第2カメラを有し、三角測量の原理に基づいて3次元計測する。ステレオカメラにおいては、第1カメラと第2カメラとの相対位置を調整する較正処理が実施される。ステレオカメラの較正処理は、第1カメラ及び第2カメラでキャリブレーションターゲットを撮影する処理を含む。ステレオカメラの較正処理後、第1カメラと第2カメラとの相対位置が変動してしまった場合、ステレオカメラを再較正処理する必要が生じる。再較正処理の度にキャリブレーションターゲットを撮影しなければならない場合、再較正処理の作業が煩雑となり、作業機械の作業効率が低下する。
 本発明の態様は、再較正処理を円滑に実施して、作業効率の低下を抑制することを目的とする。
 本発明の態様に従えば、作業機械に設けられた第1ステレオカメラの第1カメラで撮影された第1画像データ及び前記第1ステレオカメラの第2カメラで撮影された第2画像データを取得する画像データ取得部と、前記第1画像データと、前記第2画像データと、前記第1カメラ及び前記第2カメラに関するパラメータとに基づいて、ステレオ計測を実施するステレオ計測部と、前記パラメータの少なくとも一部を変更して、ステレオ計測された第1視差画像データのステレオ率を調整する第1調整部と、前記パラメータの少なくとも一部を変更して、前記第1視差画像データから求められる第1の3次元データのスケールを調整する第2調整部と、を備える位置計測システムが提供される。
 本発明の態様によれば、再較正処理を円滑に実施でき、作業効率の低下を抑制できる。
図1は、第1実施形態に係る作業機械の一例を示す斜視図である。 図2は、第1実施形態に係るステレオカメラの一例を示す斜視図である。 図3は、第1実施形態に係る検出システムの一例を模式的に示す図である。 図4は、第1実施形態に係る位置計測システムの一例を示す機能ブロック図である。 図5は、第1実施形態に係るステレオ計測方法の一例を説明するための模式図である。 図6は、第1実施形態に係るステレオカメラの一例を模式的に示す図である。 図7は、第1実施形態に係る第1カメラによって撮影された第1画像データ及び第2カメラによって撮影された第2画像データの一例を模式的に示す図である。 図8は、第1実施形態に係る第1カメラによって撮影された第1画像データ及び第2カメラによって撮影された第2画像データの一例を模式的に示す図である。 図9は、第1実施形態に係る第1カメラと第2カメラとの相対位置を説明するための模式図である。 図10は、第1実施形態に係る探索失敗したときの視差画像データの一例を模式的に示す図である。 図11は、第1実施形態に係る第1調整部によるステレオ率の調整処理の一例を説明するための模式図である。 図12は、第1実施形態に係る第1調整部によるステレオ率の調整方法の一例を説明するための模式図である。 図13は、第1実施形態に係る探索成功したときの視差画像データの一例を模式的に示す図である。 図14は、第1実施形態に係る第2調整部によるスケールの調整処理の一例を説明するための模式図である。 図15は、第1実施形態に係る位置計測方法の一例を示すフローチャートである。 図16は、第1実施形態に係る撮影対象の一例を模式的に示す図である。 図17は、第1実施形態に係る第1ステレオカメラで取得された第1画像データ及び第2画像データに基づいて生成された視差画像データの一例を模式的に示す図である。 図18は、第1実施形態に係る第1視差画像データ及び第2視差画像データの一例を示す図である。 図19は、第1実施形態に係る第2調整部によるスケールの調整方法の一例を説明するための模式図である。 図20は、第2実施形態に係る位置計測方法の一例を説明するための模式図である。 図21は、第3実施形態に係る位置計測方法の一例を説明するための模式図である。 図22は、第3実施形態に係る第2調整部によるスケールの調整方法の一例を説明するための模式図である。 図23は、第5実施形態に係る位置計測システムの一例を模式的に示す図である。 図24は、第6実施形態に係る位置計測方法の一例を説明するための模式図である。
 以下、本発明に係る実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。以下で説明する実施形態の構成要素は適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。
 以下の説明においては、3次元のグローバル座標系(Xg,Yg,Zg)、3次元の車体座標系(Xm,Ym,Zm)、及び3次元のカメラ座標系(Xs,Ys,Zs)を規定して、各部の位置関係について説明する。
 グローバル座標系は、地球に固定された原点を基準とする座標系である。グローバル座標系は、GNSS(Global Navigation Satellite System)によって規定される座標系である。GNSSとは、全地球航法衛星システムをいう。全地球航法衛星システムの一例として、GPS(Global Positioning System)が挙げられる。
 グローバル座標系は、水平面のXg軸と、Xg軸と直交する水平面のYg軸と、Xg軸及びYg軸と直交するZg軸とによって規定される。Xg軸を中心とする回転又は傾斜方向をθXg方向とし、Yg軸を中心とする回転又は傾斜方向をθYg方向とし、Zg軸を中心とする回転又は傾斜方向をθZg方向とする。Zg軸方向は鉛直方向である。
 車体座標系は、作業機械の車体に規定された原点を基準とする第1所定面のXm軸と、Xm軸と直交する第1所定面のYm軸と、Xm軸及びYm軸と直交するZm軸とによって規定される。Xm軸を中心とする回転又は傾斜方向をθXm方向とし、Ym軸を中心とする回転又は傾斜方向をθYm方向とし、Zm軸を中心とする回転又は傾斜方向をθZm方向とする。Xm軸方向は作業機械の前後方向であり、Ym軸方向は作業機械の車幅方向であり、Zm軸方向は作業機械の上下方向である。
 カメラ座標系は、カメラに規定された原点を基準とする第2所定面のXs軸と、Xs軸と直交する第2所定面のYs軸と、Xs軸及びYs軸と直交するZs軸とによって規定される。Xs軸を中心とする回転又は傾斜方向をθXs方向とし、Ys軸を中心とする回転又は傾斜方向をθYs方向とし、Zs軸を中心とする回転又は傾斜方向をθZs方向とする。Xs軸方向はカメラの上下方向であり、Ys軸方向はカメラの幅方向であり、Zs軸方向はカメラの前後方向である。Zs軸方向はカメラの光学系の光軸と平行である。
第1実施形態.
[作業機械]
 図1は、本実施形態に係る作業機械1の一例を示す斜視図である。本実施形態においては、作業機械1が油圧ショベルである例について説明する。以下の説明においては、作業機械1を適宜、油圧ショベル1、と称する。
 図1に示すように、油圧ショベル1は、車体1Bと、作業機2とを有する。車体1Bは、旋回体3と、旋回体3を旋回可能に支持する走行体5とを有する。
 旋回体3は、運転室4を有する。油圧ポンプ及び内燃機関が旋回体3に配置される。旋回体3は、旋回軸Zrを中心に旋回可能である。旋回軸Zrは、車体座標系のZm軸と平行である。本実施形態において、車体座標系の原点は、旋回体3のスイングサークルの中心に規定される。スイングサークルの中心は、旋回体3の旋回軸Zrに位置する。
 走行体5は、履帯5A,5Bを有する。履帯5A,5Bが回転することにより、油圧ショベル1が走行する。本実施形態において、車体座標系のZm軸は、履帯5A,5Bの接地面と直交する。車体座標系の上方(+Zm方向)は、履帯5A,5Bの接地面から離れる方向であり、車体座標系の下方(-Zm方向)は、車体座標系の上方とは反対の方向である。
 作業機2は、旋回体3に連結される。車体座標系において、作業機2の少なくとも一部は、旋回体3よりも前方に配置される。車体座標系の前方(+Xm方向)は、旋回体3を基準として作業機2が存在する方向であり、車体座標系の後方(-Xm方向)は、車体座標系の前方とは反対の方向である。
 作業機2は、旋回体3に連結されるブーム6と、ブーム6に連結されるアーム7と、アーム7に連結されるバケット8と、ブーム6を駆動するブームシリンダ10と、アーム7を駆動するアームシリンダ11と、バケット8を駆動するバケットシリンダ12とを有する。ブームシリンダ10、アームシリンダ11、及びバケットシリンダ12はそれぞれ、油圧によって駆動される油圧シリンダである。
 ブーム6は、ブームピン13を介して旋回体3に回転可能に連結される。アーム7は、アームピン14を介してブーム6の先端部に回転可能に連結される。バケット8は、バケットピン15を介してアーム7の先端部に回転可能に連結される。ブームピン13は、旋回体3に対するブーム6の回転軸AX1を含む。アームピン14は、ブーム6に対するアーム7の回転軸AX2を含む。バケットピン15は、アーム7に対するバケット8の回転軸AX3を含む。ブーム6の回転軸AX1、アーム7の回転軸AX2、及びバケット8の回転軸AX3は、車体座標系のYm軸と平行である。
[ステレオカメラ]
 次に、本実施形態に係るステレオカメラ300について説明する。図2は、本実施形態に係るステレオカメラ300の一例を示す斜視図である。図2に示すように、油圧ショベル1は、ステレオカメラ300を有する。ステレオカメラ300とは、撮影対象SBを複数の異なる方向から同時に撮影することにより、撮影対象SBの奥行き方向のデータも取得可能なカメラをいう。
 本実施形態において、撮影対象SBは、施工現場において施工される施工対象を含む。施工対象は、油圧ショベル1の作業機2で掘削される掘削対象を含む。なお、施工対象は、油圧ショベル1とは別の作業機械によって施工される施工対象でもよいし、作業者によって施工される施工対象でもよい。また、施工対象は、施工前の施工対象、施工中の施工対象、及び施工後の施工対象を含む概念である。
 ステレオカメラ300は、旋回体3に設けられる。本実施形態において、ステレオカメラ300は、運転室4の内側に設けられる。ステレオカメラ300は、例えば運転室4の前方(+Xm方向)かつ上方(+Zm方向)に配置される。ステレオカメラ300は、油圧ショベル1の前方の撮影対象SBを撮影する。
 ステレオカメラ300は、複数のカメラ30を有する。カメラ30は、光学系と、イメージセンサとを有する。イメージセンサは、CCD(Couple Charged Device)イメージセンサ又はCMOS(Complementary Metal Oxide Semiconductor)イメージセンサを含む。本実施形態において、カメラ30は、4つのカメラ30A,30B,30C,30Dを含む。なお、ステレオカメラ300は、4つのカメラ30を有さなくてもよく、少なくとも一対のカメラ30を有すればよい。
 複数のカメラ30のうち2つのカメラ30の組合せによりステレオカメラ300が構成される。本実施形態において、ステレオカメラ300は、カメラ30A,30Bの組合せにより構成される第1ステレオカメラ301と、カメラ30C,30Dの組合せにより構成される第2ステレオカメラ302とを含む。
 カメラ30A,30Cは、カメラ30B,30Dよりも+Ym側(作業機2側)に配置される。カメラ30Aとカメラ30Bとは、Ym軸方向に間隔をあけて配置される。カメラ30Cとカメラ30Dとは、Ym軸方向に間隔をあけて配置される。カメラ30A,30Bは、カメラ30C,30Dよりも+Zm側に配置される。Zm軸方向において、カメラ30Aとカメラ30Bとは、実質的に同一の位置に配置される。Zm軸方向において、カメラ30Cとカメラ30Dとは、実質的に同一の位置に配置される。
 本実施形態において、カメラ30A,30Bは、上方(+Zm方向)を向く。カメラ30C,30Dは、下方(-Zm方向)を向く。また、カメラ30A,30Cは、前方(+Xm方向)を向く。カメラ30B,30Dは、前方よりも僅かに+Ym側(作業機2側)を向く。すなわち、カメラ30A,30Cは、旋回体3の正面を向き、カメラ30B,30Dは、カメラ30A,30C側を向く。なお、カメラ30B,30Dが旋回体3の正面を向き、カメラ30A,30Cがカメラ30B,30D側を向いてもよい。
 カメラ30は、旋回体3の前方に存在する撮影対象SBをステレオ撮影する。一対のカメラ30によるステレオ画像データを用いて撮影対象SBが3次元計測され、撮影対象SBの3次元データDGが算出される。撮影対象SBの3次元データDGは、施工対象の表面である地表の3次元データDGである。撮影対象SBの3次元データDGは、グローバル座標系における撮影対象SBの3次元形状データを含む。
 複数のカメラ30のそれぞれについてカメラ座標系が規定される。カメラ座標系は、カメラ30に固定された原点を基準とする座標系である。カメラ座標系のZs軸は、カメラ30の光学系の光軸と一致する。
 以下の説明においては、第1ステレオカメラ301のうち一方のカメラ30Aを適宜、第1カメラ30A、と称し、他方のカメラ30Bを適宜、第2カメラ30B、と称する。また、第2ステレオカメラ302のうち一方のカメラ30Cを適宜、第3カメラ30C、と称し、他方のカメラ30Dを適宜、第4カメラ30D、と称する。
 図2に示すように、運転席4S及び操作装置35が運転室4に配置される。操作装置35は、作業機2及び旋回体3の操作のために運転者に操作される。操作装置35は、右操作レバー35R及び左操作レバー35Lを含む。運転室4に搭乗した運転者は、操作装置35を操作して、作業機2の駆動及び旋回体3の旋回を実施する。
[検出システム]
 次に、本実施形態に係る油圧ショベル1の検出システム20について説明する。図3は、本実施形態に係る検出システム20の一例を模式的に示す図である。図3に示すように、検出システム20は、作業機2の角度を検出する作業機角度検出器22と、旋回体3の位置を検出する位置検出器23と、旋回体3の姿勢を検出する姿勢検出器24と、旋回体3の方位を検出する方位検出器25とを有する。
 位置検出器23は、GPS受信機を含む。位置検出器23は、旋回体3に設けられる。位置検出器23は、グローバル座標系で規定される旋回体3の位置である絶対位置を検出する。旋回体3の絶対位置は、Xg軸方向の座標データ、Yg軸方向の座標データ、及びZg軸方向の座標データを含む。
 GPSアンテナ21が旋回体3に設けられる。GPSアンテナ21は、例えば車体座標系のYm軸方向に2つ配置される。GPSアンテナ21は、GPS衛星から電波を受信して、受信した電波に基づいて生成した信号を位置検出器23に出力する。位置検出器23は、GPSアンテナ21から供給された信号に基づいて、グローバル座標系で規定されるGPSアンテナ21の位置である絶対位置を検出する。
 位置検出器23は、2つのGPSアンテナ21の絶対位置の少なくとも一方に基づいて演算処理を実施して、旋回体3の絶対位置を算出する。旋回体3の絶対位置は、一方のGPSアンテナ21の絶対位置でもよいし、一方のGPSアンテナ21の絶対位置と他方のGPSアンテナ21の絶対位置との間の位置でもよい。
 姿勢検出器24は、慣性計測装置(IMU:Inertial Measurement Unit)を含む。姿勢検出器24は、旋回体3に設けられる。姿勢検出器24は、グローバル座標系で規定される水平面(XgYg平面)に対する旋回体3の傾斜角度を算出する。水平面に対する旋回体3の傾斜角度は、Ym軸を中心とする回転方向における旋回体3の傾斜角度と、Xm軸を中心とする回転方向における旋回体3の傾斜角度とを含む。
 姿勢検出器24は、姿勢検出器24に作用する加速度及び角速度を検出する。姿勢検出器24に作用する加速度及び角速度が検出されることにより、旋回体3に作用する加速度及び角速度が検出される。旋回体3に作用する加速度及び角速度に基づいて、旋回体3の姿勢が導出される。
 方位検出器25は、一方のGPSアンテナ21の絶対位置と他方のGPSアンテナ21の絶対位置とに基づいて、グローバル座標系で規定される基準方位に対する旋回体3の方位を算出する。基準方位は、例えば北である。方位検出器25は、一方のGPSアンテナ21の絶対位置と他方のGPSアンテナ21の絶対位置とを結ぶ直線を算出し、算出した直線と基準方位とがなす角度に基づいて、基準方位に対する旋回体3の方位を算出する。基準方位に対する旋回体3の方位は、基準方位と旋回体3の方位とがなす角度を示す方位角を含む。
 作業機2は、ブームシリンダ10に配置されブームシリンダ10の駆動量を示すブームストロークを検出するブームストロークセンサ16と、アームシリンダ11に配置されアームシリンダ11の駆動量を示すアームストロークを検出するアームストロークセンサ17と、バケットシリンダ12に配置されバケットシリンダ12の駆動量を示すバケットストロークを検出するバケットストロークセンサ18とを有する。
 作業機角度検出器22は、ブーム6の角度、アーム7の角度、及びバケット8の角度を検出する。作業機角度検出器22は、ブームストロークセンサ16で検出されたブームストロークに基づいて、車体座標系のZm軸に対するブーム6の傾斜角度を示すブーム角度を算出する。作業機角度検出器22は、アームストロークセンサ17で検出されたアームストロークに基づいて、ブーム6に対するアーム7の傾斜角度を示すアーム角度を算出する。作業機角度検出器22は、バケットストロークセンサ18で検出されたバケットストロークに基づいて、アーム7に対するバケット8の刃先8BTの傾斜角度を示すバケット角度を算出する。
 なお、ブーム角度、アーム角度、及びバケット角度は、ストロークセンサを用いずに、例えば、作業機2に設けられた角度センサにより検出されてもよい。
[位置計測システム]
 次に、本実施形態に係る位置計測システム50について説明する。図4は、本実施形態に係る位置計測システム50の一例を示す機能ブロック図である。本実施形態において、位置計測システム50は、油圧ショベル1に設けられる。
 位置計測システム50は、第1ステレオカメラ301及び第2ステレオカメラ302を含むステレオカメラ300と、作業機角度検出器22と、位置検出器23と、姿勢検出器24と、方位検出器25と、表示装置26と、制御装置100とを備える。制御装置100は、油圧ショベル1の旋回体3に設けられる。
 表示装置26は、液晶ディスプレイ(LCD:Liquid Crystal Display)又は有機ELディスプレイ(OELD:Organic Electroluminescence Display)のようなフラットパネルディスプレイを含む。
 制御装置100は、コンピュータシステムを含む。制御装置100は、CPU(Central Processing Unit)のようなプロセッサを含む演算処理装置と、RAM(Random Access Memory)のような揮発性メモリ及びROM(Read Only Memory)のような不揮発性メモリを含む記憶装置と、入出力インターフェースとを有する。
 制御装置100は、画像データ取得部101と、ステレオ計測部102と、第1調整部103と、第2調整部104と、位置データ算出部105と、作業機位置データ算出部106と、マップデータ作成部107と、表示制御部108と、記憶部109と、入出力部110とを有する。
 演算処理装置は、画像データ取得部101、ステレオ計測部102、第1調整部103、第2調整部104、位置データ算出部105、作業機位置データ算出部106、マップデータ作成部107、及び表示制御部108それぞれの機能を有する。記憶装置は、記憶部109の機能を有する。入出力インターフェースは、入出力部110の機能を有する。
 ステレオカメラ300、作業機角度検出器22、位置検出器23、姿勢検出器24、方位検出器25、及び表示装置26は、入出力部110と接続される。画像データ取得部101と、ステレオ計測部102と、第1調整部103と、第2調整部104と、位置データ算出部105と、作業機位置データ算出部106と、マップデータ作成部107と、表示制御部108と、記憶部109と、ステレオカメラ300と、作業機角度検出器22と、位置検出器23と、姿勢検出器24と、方位検出器25と、表示装置26とは、入出力部110を介してデータ通信可能である。
 画像データ取得部101は、油圧ショベル1に設けられた第1カメラ30Aで撮影された撮影対象SBの第1画像データMR1、第2カメラ30Bで撮影された撮影対象SBの第2画像データML1、第3カメラ30Cで撮影された撮影対象SBの第3画像データMR2、及び第4カメラ30Dで撮影された撮影対象SBの第4画像データML2を取得する。すなわち、画像データ取得部101は、ステレオカメラ300の少なくとも一対のカメラ30で撮影されたステレオ画像データを取得する。
 記憶部109は、第1ステレオカメラ301の第1カメラ30A及び第2カメラ30Bに関する複数のパラメータ、及び第2ステレオカメラ302の第3カメラ30C及び第4カメラ30Dに関する複数のパラメータを記憶する。パラメータは、所定の較正作業によって求めることができる。
 パラメータは、第1ステレオカメラ301の第1カメラ30Aと第2カメラ30Bとの相対位置を規定する複数の外部パラメータ、及び第2ステレオカメラ302の第3カメラ30Cと第4カメラ30Dとの相対位置を規定する複数の外部パラメータを含む。
 外部パラメータは、Xs軸方向、Ys軸方向、Zs軸方向、θXs軸方向、θYs軸方向、及びθZs軸方向の6つの方向に関するステレオカメラ300の一対のカメラ30の相対位置を示すパラメータを含む。
 また、パラメータは、第1カメラ30A、第2カメラ30B、第3カメラ30C、及び第4カメラ30Dそれぞれの内部パラメータを含む。内部パラメータは、複数のカメラ30それぞれの固有データを規定する。内部パラメータは、例えば、カメラ30の光学系の焦点距離、及びカメラ30の光学系の光軸とイメージセンサの撮像面との交点とイメージセンサにおける画像中心との位置ずれ量を含む。
 ステレオ計測部102は、画像データ取得部101で取得された第1画像データMR1と第2画像データML1とをステレオ方式で画像処理して、カメラ座標系における撮影対象SBの3次元データDGを算出する。また、ステレオ計測部102は、画像データ取得部101で取得された第3画像データMR2と第4画像データML2とをステレオ方式で画像処理して、カメラ座標系における撮影対象SBの3次元データDGを算出する。
 また、ステレオ計測部102は、カメラ座標系における撮影対象SBの3次元データDGを座標変換して、車体座標系における撮影対象SBの3次元データDGを算出する。また、ステレオ計測部102は、車体座標系における撮影対象SBの3次元データDGを座標変換して、グローバル座標系における撮影対象SBの3次元データDGを算出する。
 撮影対象SBの3次元データDGは、撮影対象SB内の複数の点における座標データを含む。ステレオ計測部102は、異なる2つのカメラ30で撮影された撮影対象SBの2つの画像データMR(MR1,MR2),ML(ML1,ML2)をステレオ方式で画像処理して視差画像データSGを生成して、演算処理によって3次元データDGを求める。
 本実施形態において、ステレオ計測部102は、画像データ取得部101で取得された第1画像データMR1と、画像データ取得部101で取得された第2画像データML1と、記憶部109に記憶されているパラメータとに基づいて、ステレオ計測を実施する。また、ステレオ計測部102は、画像データ取得部101で取得された第3画像データMR2と、画像データ取得部101で取得された第4画像データML2と、記憶部109に記憶されているパラメータとに基づいて、ステレオ計測を実施する。
 第1調整部103は、記憶部109に記憶されている複数のパラメータの少なくとも一部を変更して、ステレオ率を調整する。ステレオ率は、ステレオ計測される視差画像データSGの複数の画素のうちステレオ計測が成功した画素の割合を示す。本実施形態において、第1調整部103は、例えばステレオカメラ300の一方のカメラ30の位置がずれてステレオ率が低下してしまった場合、ステレオ率が向上するように、記憶部109に記憶されているパラメータを変更する。
 第2調整部104は、記憶部109に記憶されている複数のパラメータの少なくとも一部を変更して、ステレオ計測部102で生成された3次元データDGのスケールを調整する。本実施形態において、第2調整部104は、基準スケールと3次元データDGのスケールとの差が小さくなるように、記憶部109に記憶されているパラメータを変更する。
 位置データ算出部105は、旋回体3の位置データと、旋回体3の姿勢データと、旋回体3の方位データと、車体座標系におけるカメラ30の位置データとに基づいて、グローバル座標系におけるカメラ30の位置データを算出する。
 位置データ算出部105は、位置検出器23から旋回体3の位置データを取得し、姿勢検出器24から旋回体3の姿勢データを取得し、方位検出器25から旋回体3の方位データを取得する。旋回体3の位置データは、グローバル座標系における旋回体3の絶対位置を示す。旋回体3の姿勢データは、グローバル座標系における旋回体3の姿勢を示す。旋回体3の方位データは、グローバル座標系における旋回体3の方位を示す。
 記憶部109は、車体座標系におけるカメラ30の位置データを記憶する。車体座標系におけるカメラ30の位置データは、油圧ショベル1及びカメラ30の設計データ又は諸元データから導出される既知データであり、記憶部109に記憶される。位置データ算出部105は、旋回体3の位置データと、旋回体3の姿勢データと、旋回体3の方位データとに基づいて、グローバル座標系における車体座標系の原点の位置を算出する。位置データ算出部105は、旋回体3の位置データと、旋回体3の姿勢データと、旋回体3の方位データと、記憶部109に記憶されている車体座標系におけるカメラ30の位置データとに基づいて、グローバル座標系におけるカメラ30の位置データを算出する。
 作業機位置データ算出部106は、作業機2の角度を示す作業機角度データを作業機角度検出器22から取得する。作業機角度データは、ブーム角度、アーム角度、及びバケット角度を含む。作業機位置データ算出部106は、作業機角度検出器22から取得した作業機角度データと、記憶部109に記憶されている作業機データとに基づいて、車体座標系におけるブーム6の位置データ、アーム7の位置データ、及びバケット8の位置データを算出する。ブーム6、アーム7、及びバケット8のそれぞれの位置データは、ブーム6の複数の部位、アーム7の複数の部位、及びバケット8の複数の部位のそれぞれの座標データを含む。
 また、作業機位置データ算出部106は、旋回体3の位置データと、旋回体3の姿勢データと、旋回体3の方位データと、作業機角度データと、記憶部109に記憶されている作業機データとに基づいて、グローバル座標系におけるブーム6、アーム7、及びバケット8のそれぞれの位置データを算出する。
 作業機データは、作業機2の設計データ又は諸元データを含む。作業機2の設計データは、作業機2の3次元CADデータを含む。作業機データは、作業機2の外形データ及び作業機2の寸法データの少なくとも一方を含む。作業機データは、ブーム長さ、アーム長さ、及びバケット長さを含む。ブーム長さは、回転軸AX1と回転軸AX2との距離である。アーム長さは、回転軸AX2と回転軸AX3との距離である。バケット長さは、回転軸AX3とバケット8の刃先8BTとの距離である。
 マップデータ作成部107は、視差画像データSGに基づいて、3次元データDGを作成する。3次元データDGは、視差画像データSG、車体座標系等の3次元データ、及び後述する3次元マップデータ(エレベーションマップデータ)を含む。
 表示制御部108は、画像データ取得部101で取得された第1画像データMR1、第2画像データML1、第3画像データMR2、及び第4画像データML2を表示装置26に表示させる。また、表示制御部108は、ステレオ計測部102で生成された視差画像データSGを表示装置26に表示させる。また、表示制御部108は、マップデータ作成部107で作成された3次元データDGを表示装置26に表示させる。
[ステレオ計測]
 次に、ステレオ計測について説明する。図5は、本実施形態に係るステレオ計測方法の一例を説明するための模式図である。ステレオ計測は、画像データ取得部101で取得された画像データMR(MR1,MR2)と画像データML(ML1,ML2)とをステレオ方式で画像処理して、撮影対象の3次元データDGを算出する処理である。
 以下の説明においては、ステレオカメラ300を構成する一方のカメラ30を適宜、第1カメラ30R(30A,30C)と称し、他方のカメラ30を適宜、第2カメラ30L(30B,30D)と称する。また、以下の説明においては、第1カメラ30R(30A,30C)で撮影された画像データMRを適宜、第1画像データMR(MR1,MR2)、と称し、第2カメラ30L(30B,30D)で撮影された画像データMLを適宜、第2画像データ(ML1,ML2)、と称する。第1ステレオカメラ301の第1カメラ30A及び第2カメラ30Bによって3次元データDGが算出される方法と、第2ステレオカメラ302の第3カメラ30C及び第4カメラ30Dによって3次元データDGが算出される方法とは、同様である。
 なお、本実施形態においては、右側のカメラ30が第1カメラ30Rであり、左側のカメラ30が第2カメラ30Lであるが、左側のカメラ30が第1カメラ30Rであり、右側のカメラ30が第2カメラ30Lでもよい。
 第1カメラ30Rの位置データ及び第2カメラ30Lの位置データが記憶部109に記憶されている。第1カメラ30Rの位置データは、第1カメラ30Rの光学中心ORの位置及び第1カメラ30Rの光学系の光軸の向きを含む。第2カメラ30Lの位置データは、第2カメラ30Lの光学中心OLの位置及び第2カメラ30Lの光学系の光軸の向きを含む。
 また、第1カメラ30Rと第2カメラ30Lとの相対位置データが記憶部109に記憶されている。第1カメラ30Rと第2カメラ30Lとの相対位置データは、第1カメラ30Rの光学中心ORと第2カメラ30Lの光学中心OLとを結ぶベースラインBLの寸法を含む。
 図5において、3次元空間に存在する撮影対象SBの計測点Pの像が、第1カメラ30Rの投影面及び第2カメラ30Lの投影面のそれぞれに投影される。また、第1カメラ30Rの投影面に計測点Pの像及び第2カメラ30Lの投影面の点ELの像が投影され、エピポーラ線が規定される。同様に、第2カメラ30Lの投影面に計測点Pの像及び第1カメラ30Rの投影面の点ERの像が投影され、エピポーラ線が規定される。また、計測点Pと点ERと点ELとによりエピポーラ平面が規定される。
 第1カメラ30Rの投影面は、第1カメラ30Rのイメージセンサの撮像面を含む。第2カメラ30Lの投影面は、第2カメラ30Lのイメージセンサの撮像面を含む。
 画像データ取得部101は、第1カメラ30Rで撮影された第1画像データMRと、第2カメラ30Lで撮影された第2画像データMLとを取得する。第1カメラ30Rで撮影された第1画像データMR及び第2カメラ30Bで撮影された第2画像データMLはそれぞれ、投影面に投影された2次元画像データである。
 画像データ取得部101で取得された第1画像データMR及び第2画像データMLは、ステレオ計測部102に出力される。ステレオ計測部102は、カメラ座標系において規定される第1画像データMRにおける計測点Pの像の座標データと、第2画像データMLにおける計測点Pの像の座標データと、エピポーラ平面とに基づいて、カメラ座標系における計測点Pの3次元座標データを算出する。
 ステレオ計測部102は、第1画像データMR及び第2画像データMLに基づいて、撮影対象SBの複数の計測点Pのそれぞれの3次元座標データを算出する。これにより、撮影対象SBの3次元データDGが算出される。
 本実施形態において、ステレオ計測部102は、ステレオ計測によりカメラ座標系における複数の計測点Pの3次元座標データを算出した後、座標変換することによって、車体座標系における複数の計測点Pの3次元座標データ、及びグローバル座標系における複数の計測点Pの3次元座標データを算出する。
[計測点までの距離の算出]
 ステレオ計測部102は、第1画像データMR及び第2画像データMLをステレオ方式で画像処理して、撮影対象SBの3次元データDGを算出する。ステレオ計測部102は、三角測量の原理に基づいて、ステレオカメラ300のベースラインBLから撮影対象SBの計測点Pまでの距離ZPを算出する。
 図6は、本実施形態に係るステレオカメラ300の一例を模式的に示す図である。図6に示すように、例えばステレオカメラ300の第1カメラ30Rと第2カメラ30Lとは、カメラ座標系のYs軸と平行な方向に配置することができる。その場合、第1カメラ30Rのカメラ座標系のYs軸と、第2カメラ30Lのカメラ座標系のYs軸とは、同一直線上に配置され、同一方向を向く。
 第1カメラ30Rは、イメージセンサ31Rを有する。カメラ座標系における第1カメラ30Rの原点は、光学中心ORに規定される。第1カメラ30Rの光学系の光軸は、Zs軸と平行であり、光学中心ORを通る。撮影対象SBを含む第1画像データMRが第1カメラ30Rによって取得される。
 第2カメラ30Lは、イメージセンサ31Lを有する。カメラ座標系における第2カメラ30Lの原点は、光学中心OLに規定される。第2カメラ30Lの光学系の光軸は、Zs軸と平行であり、光学中心OLを通る。撮影対象SBを含む第2画像データMLが第2カメラ30Lによって取得される。
 図6において、第2カメラ30Lの光学中心OLを原点とする3次元座標系(X,Y,Z)が設定される。X軸とXs軸とは実質的に平行である。Y軸とYs軸とは実質的に平行である。Z軸とZs軸とは実質的に平行である。
 図6において、イメージセンサ31Rの撮像面に規定される第1カメラ30Rの投影面と、イメージセンサ31Lの撮像面に規定される第2カメラ30Lの投影面とは、同一平面内に配置される。また、Z軸方向において、第1カメラ30Rの投影面と、第2カメラ30Lの投影面とは、同一位置に配置される。
 第1画像データMRは、第1カメラ30Rの投影面に形成される撮影対象SBの投影画像を含む。第2画像データMLは、第2カメラ30Lの投影面に形成される撮影対象SBの投影画像を含む。
 ベースラインBLの寸法はbである。第1カメラ30Rによって撮影された第1画像データMRのうち計測点Pを含む画素PXrのY軸方向の位置はYRである。第2カメラ30Bによって撮影された第2画像データMLのうち計測点Pを含む画素PXlのY軸方向の位置はYLである。第2カメラ30Lの投影面とベースラインBLとのZ軸方向の距離はfである。なお、距離fは第2カメラ30Lの光学系の焦点距離と等しい。
 第1画像データMRにおける計測点Pの投影点と第2画像データMLにおける計測点Pの投影点との距離を示す視差は、dである。視差dは、計測点Pを含む画素PXrと計測点Pを含む画素PXlとのずれ量(単位:pixel)でもよいし、計測点Pを含む画素PXrと計測点Pを含む画素PXlと画素PXrとの距離でもよい。
 ステレオカメラ300のベースラインBLから撮影対象SBの計測点Pまでの距離ZPは、(1)式に基づいて算出される。
Figure JPOXMLDOC01-appb-M000001
[視差画像データ]
 図7及び図8は、本実施形態に係る第1カメラ30Rによって撮影された第1画像データMR及び第2カメラ30Lによって撮影された第2画像データMLの一例を模式的に示す図である。
 図7及び図8に示すように、第1画像データMRにおける計測点Pの投影点と第2画像データMLにおける計測点Pの投影点との距離を示す視差dに起因して、第1画像データMRにおける計測点Pの位置と、第2画像データMLにおける計測点Pの位置とは、Ys軸方向において異なる。図7に示すように、視差dとは、第1画像データMRにおける計測点Pの投影点(画素)と第2画像データMLにおける計測点Pの投影点(画素)とのYs軸方向のずれ量をいう。
 ステレオ計測部102は、第1画像データMRと第2画像データMLとをステレオ方式で画像処理して、撮影対象SBの視差画像データSGを生成する。具体的には、ステレオ計測部102は、第1画像データMR及び第2画像データMLについて、ステレオ対応点探索を実施する。ステレオ対応点探索とは、第1画像データMR及び第2画像データMLのそれぞれにおいて、同一の計測点Pが投影された画素PXr及び画素PXlを探索する処理をいう。
 ステレオ計測部102は、第1画像データMRを基準画像データとし、第2画像データMLを参照画像データとする。図8に示すように、ステレオ計測部102は、計測点Pの投影点を含む第1画像データMRの画素PXrに対して、同一の計測点Pの投影点を含む画素PXlを第2画像データMLの中から探索する。本実施形態において、ステレオ計測部102は、第2画像データMLのエピポーラ線上に存在する複数の画素PXlの中から、計測点Pの投影点を含む画素PMlを探索する。
 なお、ステレオ対応点探索に用いる画素PXr,PXlは、イメージセンサの1つの画素でもよいし、複数の画素の集合体でもよい。
 以下の説明においては、第1画像データMRのうち計測点Pの投影点を含む画素PXrを適宜、注目画素PXr、と称し、第2画像データMLのうち同一の計測点Pの投影点を含む画素PXlを適宜、対応画素PXl、と称する。
 また、以下の説明においては、注目画素PXrについて対応画素PXlを探索した結果、対応画素PXlの探索に成功した状態を適宜、探索成功、と称する。また、注目画素PXrについて対応画素PXlを探索した結果、対応画素PXlの探索に失敗した状態を適宜、探索失敗、と称する。
 探索成功したとき、ステレオ計測部102は、注目画素PXrと対応画素PXlとの距離に基づいて、視差d(例えば、ずれている画素の数)を求めることができる。(1)式において、ベースラインBLの寸法b及び焦点距離fは、カメラ30の設計データ又は諸元データから導出される既知データであり、記憶部109に記憶されている。したがって、探索成功し、視差dが算出されたとき、ステレオ計測部102は、記憶部109に記憶されている寸法b及び焦点距離fと、算出した視差dとに基づいて、計測点Pまでの距離ZPを算出することができる。
 一方、探索失敗したとき、ステレオ計測部102は、視差dを算出することができず、計測点Pまでの距離ZPを算出することができない。
 探索成功したとき、ステレオ計測部102は、探索成功した注目画素PXr及び対応画素PXlに基づいて、画素PXsを生成する。一方、探索失敗したとき、ステレオ計測部102は、探索失敗した注目画素PXr及び対応画素PXlに基づいて、画素PXsを生成する。
 ステレオ計測部102は、第1画像データMRの複数の画素PXrのそれぞれについて、ステレオ対応点探索を実施する。これにより、複数の画素PXsが生成され、複数の画素PXsが2次元配列された視差画像データSGが生成される。視差画像データSGとは、ステレオ計測部102によって算出された、各画素PXsにおける視差の大きさを可視化した画像データであり、例えば図8のように視差の大きさに応じて各画素をグレーの濃淡(視差が大きい場合は白く、視差が小さい場合は黒く表示)により表現したものである。視差画像データSGは、濃淡以外の表現でもよく、例えば視差の大きさに応じて変化する色彩により表現されてもよい。
 ステレオ計測部102は、探索成功した注目画素PXr及び対応画素PXlに基づいて生成された画素PXsに探索成功したことを示す成功データを付与し、探索失敗した注目画素PXr及び対応画素PXlに基づいて生成された画素PXsに探索失敗したことを示す失敗データを付与してもよい。画素PXsに失敗データが付与されることにより、画素PXsは例えば黒く表示される。
 以下の説明においては、探索成功した注目画素PXr及び対応画素PXlに基づいて生成された画素PXsを単に、探索成功した画素PXs、と称し、探索失敗した注目画素PXr及び対応画素PXlに基づいて生成された画素PXsを単に、探索失敗した画素PXs、と称する。
 ステレオ計測部102は、探索成功した複数の画素PXsのそれぞれを視差dに基づいて表現して、視差画像を生成することができる。また、ステレオ計測部102は、探索成功した複数の画素PXsのそれぞれを距離ZPに基づいて表現して、距離画像を生成することができる。距離画像とは、画像データにおける各画素PXsのそれぞれに、何らかの形でカメラ30から対象点Pまでの距離ZPを格納した画像データであってもよいし、各画素PXsのカメラ30から対象点Pまでの距離ZPを可視的に表現した画像でもよい。視差画像データSGは、距離画像データを含む。
[ステレオ率]
 次に、ステレオ率について説明する。ステレオ率とは、例えばステレオ計測部102で生成された視差画像データSGの複数の画素PXsのうちステレオ計測が成功した画素PXsの割合をいう。ステレオ計測が成功した画素PXsとは、注目画素PXrについてステレオ対応点検索した結果、対応画素PXlの探索に成功し、その注目画素PXrと探索成功した対応画素PXlとに基づいて生成された画素PXsをいう。
 ステレオ率STRは、以下の(2)式で示される。
Figure JPOXMLDOC01-appb-M000002
 (2)式において、PXAは、視差画像データSGの画素PXsの総数である。PXSは、視差画像データSGのうちステレオ計測が成功した画素PXsの総数である。
 なお、視差画像データSGの全ての画素PXsから模様が存在しない領域に相当する画素PXsを除いた画素PXsを(2)式の分母としてもよい。
 なお、ステレオ率STRは、視差画像データSGのうちステレオ計測が成功した画素PXsの総数でもよい。
[パラメータ]
 次に、記憶部109に記憶される第1カメラ30Rと第2カメラ30Lとの相対位置を規定するパラメータについて説明する。以下の説明においては、第1カメラ30Rが基準カメラであり、第2カメラ30Lが参照カメラであることとする。
 図9は、本実施形態に係るステレオカメラ300の第1カメラ30Rと第2カメラ30Lとの相対位置を説明するための模式図である。図9に示すように、第1カメラ30Rと第2カメラ30Lとは、例えばYs軸と平行な方向に配置されてもよい。
 本実施形態においては、第1カメラ30R及び第2カメラ30Lに関する複数のパラメータが予め求められ、記憶部109に記憶されている。本実施形態において、記憶部109は、第1カメラ30Rと第2カメラ30Lとの相対位置を規定する複数の外部パラメータを記憶する。
 外部パラメータは、第1カメラ30Rに対する第2カメラ30Lの回転方向のパラメータα,β,γと、第1カメラ30Rに対する第2カメラ30Lの並進方向のパラメータTx,Ty,Tzとを含む。
 パラメータαは、第1カメラ30Rに対するθXs方向の第2カメラ30Lの光学系の光軸の相対角度を示す。パラメータβは、第1カメラ30Rに対するθYs方向の第2カメラ30Lの光学系の光軸の相対角度を示す。パラメータγは、第1カメラ30Rに対するθZs方向の第2カメラ30Lの光学系の光軸の相対角度を示す。
 以下の説明においては、パラメータαを適宜、ヨー角α、と称し、パラメータβを適宜、ピッチ角β、と称し、パラメータγを適宜、ロール角γ、と称する。
 パラメータTxは、第1カメラ30Rに対するXs軸方向の第2カメラ30Lの相対位置を示す。パラメータTyは、第1カメラ30Rに対するYs軸方向の第2カメラ30Lの相対位置を示す。パラメータTzは、第1カメラ30Rに対するZs軸方向の第2カメラ30Lの相対位置を示す。
 以下の説明においては、パラメータTxを適宜、シフト量Tx、と称し、パラメータTyを適宜、シフト量Ty、と称し、パラメータTzを適宜、シフト量Tz、と称する。
 本実施形態において、記憶部109は、外部パラメータとして、ヨー角α、ピッチ角β、ロール角γ、シフト量Tx、シフト量Ty、及びシフト量Tzを記憶する。
 第1カメラ30Rと第2カメラ30Lとの相対位置は、上述の複数の外部パラメータを含む下記の(3)式で規定される。
Figure JPOXMLDOC01-appb-M000003
 (3)式において、(x,y,z)は、第1カメラ30Rのカメラ座標系における第1カメラ30Rの座標を示す。(x,y,z)は、第2カメラ30Lのカメラ座標系における第2カメラ30Lの座標を示す。
 (3)式は、ヨー角α、ピッチ角β、及びロール角γのそれぞれによって規定される3つの回転行列と、シフト量Tx、シフト量Ty、及びシフト量Tzによって規定される平行移動ベクトルとを含む。(3)式は、第2カメラ30Lのカメラ座標系における第2カメラ30Lの位置を、第1カメラ30Rのカメラ座標系における位置に変換する変換式である。
 本実施形態においては、(3)式に基づいて、第1カメラ30Rと第2カメラ30Lとの相対位置が規定される。第1調整部103及び第2調整部104は、ヨー角α、ピッチ角β、ロール角γ、シフト量Tx、シフト量Ty、及びシフト量Tzの少なくとも一つを調整することにより、第1カメラ30Rのカメラ座標系において、第1カメラ30Rと第2カメラ30Lとの相対位置を調整することができる。
 油圧ショベル1の工場出荷時においては、ステレオ率がステレオ閾値以上になるように、第1カメラ30Rに対する第2カメラ30Lのヨー角α、ピッチ角β、ロール角γ、シフト量Tx、シフト量Ty、及びシフト量Tzが調整されている。ステレオ閾値は、ステレオ率について規定された閾値である。以下の説明においては、ステレオ率がステレオ閾値以上になるように第1カメラ30Rと第2カメラ30Lとの相対位置を調整することを適宜、外部較正処理、と称する。
 外部較正処理において導出されたヨー角α、ピッチ角β、ロール角γ、シフト量Tx、シフト量Ty、及びシフト量Tzを含む変換式は、油圧ショベル1の工場出荷時において記憶部109に記憶される。
 ステレオ計測部102は、記憶部109に記憶されているパラメータを用いて、第1画像データMRと第2画像データMLとをステレオ方式で画像処理して、視差画像データSGを生成する。
 外部較正処理が実施されたステレオカメラ300が搭載された油圧ショベル1の工場出荷後、例えば振動、衝撃、又は熱のような外的要因により、カメラ30が物理的に動いてしまう可能性がある。外的要因により、例えば第1カメラ30R及び第2カメラ30Lの一方のカメラ30に対して他方のカメラ30のXs軸方向、Ys軸方向、Zs軸方向、θXs方向、θYs方向、及びθZs方向の少なくとも1つの方向の位置がずれてしまう可能性がある。
 第1カメラ30Rと第2カメラ30Lとの相対位置が物理的に変動した場合、工場出荷時において記憶部109に記憶されている外部パラメータによって規定される第1カメラ30Rと第2カメラ30Lとの相対位置と、カメラ30が動いてしまった後の実際の第1カメラ30Rと第2カメラ30Lとの相対位置とに差異が生じる。その場合、第1画像データMRと第2画像データMLとをステレオ計測により対応点を探索しても、探索失敗する可能性が高い。その結果、ステレオ率が低下し、撮影対象SBのステレオ計測を正確に実施することが困難となる。
 本実施形態において、第1調整部103は、第1カメラ30R及び第2カメラ30Lの少なくとも一方のカメラ30の位置がずれてしまいステレオ率が低下した場合において、ステレオ率が再度向上するように、(3)式に含まれる複数の外部パラメータの少なくとも一部を変更する。また、第2調整部104は、第1カメラ30R及び第2カメラ30Lの少なくとも一方のカメラ30の位置がずれてしまいステレオカメラ300による計測結果の縮尺(カメラ30から計測点Pまでの距離又はスケール)が不正確になった場合において、(3)式に含まれる複数の外部パラメータの少なくとも一部を変更して、3次元データDGのスケールを調整する。
 すなわち、本実施形態において、制御装置100は、カメラ30の位置が物理的に動いてしまった場合、記憶部109に記憶されている外部パラメータを変更して、第1カメラ30Rと第2カメラ30Lとの相対位置の変動を演算処理によって自動修正する。
[ステレオ率の調整]
 次に、本実施形態に係るステレオ率の調整について説明する。第1調整部103は、外部パラメータを調整して、ステレオ率の調整処理を実施する。
 表示制御部108は、ステレオ計測部102で生成された視差画像データSGを表示装置26に表示させる。ステレオ計測部102は、グレー表示させるための成功データを探索成功した画素PXsに付与し、黒表示させるための失敗データを探索失敗した画素PXsに付与する。
 図10は、本実施形態に係る探索失敗したときの視差画像データSGの一例を模式的に示す図である。ステレオカメラ300の第1カメラ30Rと第2カメラ30Lとの相対位置が物理的に変動した場合、第1画像データMRと第2画像データMLとをステレオ対応点探索しても、探索失敗する可能性が高い。その結果、図10に示すように、ステレオ率が低下し、視差画像データSGの大部分の画素PXsが黒表示される。
 図11は、本実施形態に係る第1調整部103によるステレオ率の調整処理の一例を説明するための模式図である。ステレオ率が低下したとき、第1調整部103は、記憶部109に記憶されている複数の外部パラメータのうち、例えばピッチ角βを変更する。図11に示すように、外部パラメータのピッチ角βが調整されることにより、第2カメラ30Lは、疑似的にθYs方向に回転する。
 上述のように、ステレオ対応点探索においては、ステレオ計測部102は、第2画像データMLのエピポーラ線上に存在する複数の画素PXlの中から、計測点Pの投影点を含む画素PXlを探索する。本実施形態において、第1カメラ30Rと第2カメラ30Lとは、Ys軸方向に配置され、エピポーラ線は、Ys軸方向に延在する。第1カメラ30Rと第2カメラ30LとがYs軸方向に配置された場合、ステレオ処理における探索の成否は、ピッチ角βのずれによって大きく影響される。そのため、第1調整部103は、外部パラメータのピッチ角βを変更することにより、計測点Pの投影点を含む対応画素PXlが存在する可能性が高いエピポーラ線上の複数の画素PXlを探索することができる。
 第1調整部103は、視差画像データSGのステレオ率が向上するように、ピッチ角βを調整する。本実施形態において、記憶部109は、基準ピッチ角βを記憶する。基準ピッチ角βは、工場出荷時の外部較正処理において、ステレオ率が最大又はステレオ閾値以上になるように調整されたピッチ角βである。第1調整部103は、基準ピッチ角βを含む所定範囲において第2カメラ30Lのピッチ角βを変更して、例えばステレオ率の最大値を算出する。
 図12は、本実施形態に係る第1調整部103によるステレオ率の調整方法の一例を説明するための模式図である。図12に示すグラフにおいて、横軸は、外部パラメータのピッチ角βを示し、縦軸は、ステレオ率を示す。
 第1調整部103は、基準ピッチ角βを基準として、プラス方向及びマイナス方向の所定範囲において、ピッチ角βを所定角度ずつ変更する。ステレオ計測部102は、ピッチ角βを変更する毎に、ステレオ率を算出する。図12に示すように、ステレオ率は、ピッチ角βの変更に応じて変化する。第1調整部103は、例えば所定範囲においてステレオ率の最大値が得られたときのピッチ角βを正解ピッチ角βrに決定する。
 なお、正解ピッチ角βrを決定する方法は、上述の方法でなくてもよい。ステレオ率がステレオ閾値以上であるピッチ角βであれば、任意のピッチ角βを正解ピッチ角βrとしてもよい。
 図13は、本実施形態に係る探索成功したときの視差画像データSGの一例を模式的に示す図である。第1調整部103は、記憶部109に記憶されているピッチ角β(基準ピッチ角β)を正解ピッチ角βrに変更する。すなわち、(3)式の回転行列のピッチ角βが、基準ピッチ角βから正解ピッチ角βrに変更される。ステレオ計測部102は、第1画像データMRと、第2画像データMLと、正解ピッチ角βrを含む外部パラメータとに基づいて、ステレオ計測を実施して、視差画像データSGを生成する。ピッチ角βが基準ピッチ角βから正解ピッチ角βrに変更されることにより、記憶部109に記憶されている外部パラメータは、相対位置が物理的に変動した後の第1カメラ30R及び第2カメラ30Lに最適化されている。そのため、ステレオカメラ300の第1カメラ30Rと第2カメラ30Lとの相対位置が物理的に変動した後において、ステレオ計測部102が第1画像データMRと第2画像データMLとを用いてステレオ対応点探索したとき、探索成功する可能性が高くなる。これにより、図13に示すように、ステレオ率は向上し、視差画像データSGの大部分の画素PXsがグレー表示される。
[スケールの調整]
 次に、本実施形態に係るステレオ率の調整について説明する。第2調整部104は、外部パラメータを調整して、3次元データDGのスケールの調整処理を実施する。
 ステレオ率の調整は、外部パラメータを変更することにより、物理的に位置が変動したカメラ30の位置を疑似的に調整することによってステレオ率を向上させる処理である。しかし、ステレオ率を向上させただけでは、実際の現況地形とステレオカメラ300によって計測された3次元データDGとのスケールの差が大きく、十分な計測精度が得られない。そのため、本実施形態においては、上述の方法によりステレオ率が向上された3次元データDGのスケールの調整が実施される。スケールの調整は、3次元データDGがステレオカメラ300からどれくらいの距離だけ離れたところに存在するのかを把握し、実際の現況地形と整合するように調整する処理である。スケールの調整により、実際の現況地形と整合する、精度の高い又は誤差の小さい3次元データDGが得られる。
 図14は、本実施形態に係る第2調整部104によるスケールの調整処理の一例を説明するための模式図である。3次元データDGのスケールを調整するとき、第2調整部104は、記憶部109に記憶されている複数の外部パラメータのうち、例えばヨー角αを変更する。図14に示すように、外部パラメータのヨー角αが調整されることにより、第2カメラ30Lは、疑似的にθXs方向に回転する。
 本実施形態において、第1カメラ30Rと第2カメラ30LとがYs軸方向に配置され、三角測量の原理に基づいて計測点Pまでの距離ZPが算出される。そのため、第2調整部104は、第2カメラ30Lの外部パラメータのヨー角αを変更することにより、視差画像データSGにおける計測点Pが投影される画素の視差を調整することができる。視差画像データSGにおける視差が調整されることによって、間接的に3次元データDGのスケールが調整される。
 第2調整部104は、後述する基準スケールと視差画像データSGにより求められる3次元データDGのスケールとの差が小さくなるように、ステレオカメラ300について規定されている外部パラメータのヨー角αを変更する。基準スケールとは、視差画像データSGから求められる3次元データDGが実際の現況地形と整合するように、カメラ30から計測点Pまでの縮尺(距離又はスケール)を調整するときに用いる基準となるスケールである。第2調整部104は、基準スケールと3次元データDGのスケールとの差が最小又は閾値以下となる正解ヨー角αrを決定する。
 本実施形態において、記憶部109は、基準ヨー角αを記憶する。基準ヨー角αは、工場出荷時の外部較正処理において視差画像データを調整されたヨー角αである。第2調整部104は、基準ヨー角αを含む所定範囲において第2カメラ30Lのヨー角αを変更して、基準スケールと3次元データDGのスケールとの差の最小値を算出する。
 第2調整部104は、記憶部109に記憶されているヨー角α(基準ヨー角α)を正解ヨー角αrに変更する。すなわち、(3)式の回転行列のヨー角αが、基準ヨー角αから正解ヨー角αrに変更される。ステレオ計測部102は、第1画像データMRと、第2画像データMLと、正解ヨー角αrを含む外部パラメータとに基づいて、ステレオ計測を実施して、視差画像データSGを生成する。ヨー角αが基準ヨー角αから正解ヨー角αrに変更されることにより、第1カメラ30Rと第2カメラ30Lとの相対位置が物理的に変動した後において、記憶部109に記憶されている外部パラメータは、相対位置が物理的に変動した後の第1カメラ30R及び第2カメラ30Lに最適化されている。そのため、ステレオカメラ300の第1カメラ30Rと第2カメラ30Lとの相対位置が物理的に変動した後において、3次元データDGのスケールは、実際の施工現場と同様のスケールとなる。すなわち、3次元データDGの形状は、実際の施工現場の形状と同様の形状となる。
[形状計測方法]
 次に、本実施形態に係る位置計測方法について説明する。図15は、本実施形態に係る位置計測方法の一例を示すフローチャートである。
 油圧ショベル1に設けられた第1ステレオカメラ301は、撮影対象SBの第1領域である遠景領域を撮影する。油圧ショベル1に設けられた第2ステレオカメラ302は、撮影対象SBの第2領域である近景領域を撮影する。
 画像データ取得部101は、第1ステレオカメラ301の第1カメラ30A及び第2カメラ30Bで撮影された第1画像データMR1及び第2画像データML1と、第2ステレオカメラ302の第3カメラ30C及び第4カメラ30Dで撮影された第3画像データMR2及び第4画像データML2を取得する(ステップSP10)。
 第1ステレオカメラ301で撮影された第1画像データMR1及び第2画像データML1は、撮影対象SBの遠景領域を含む。第2ステレオカメラ302で撮影された第3画像データMR2及び第4画像データML2は、撮影対象SBの近景領域を含む。
 ステレオ計測部102は、第1ステレオカメラ301で撮影された第1画像データMR1及び第2画像データML1と、記憶部109に記憶されている複数のパラメータとに基づいて、ステレオ計測を実施する。ステレオ計測部102は、ステレオ計測を実施して、撮影対象SBの遠景領域を示す第1視差画像データSG1を生成する。
 また、ステレオ計測部102は、第2ステレオカメラ302で撮影された第3画像データMR2及び第4画像データML2と、記憶部109に記憶されている複数のパラメータとに基づいて、ステレオ計測を実施する。ステレオ計測部102は、ステレオ計測を実施して、撮影対象SBの近景領域を示す第2視差画像データSG2を生成する(ステップSP20)。
 図16は、本実施形態に係る撮影対象SBを第1カメラ30Aにより撮影した第1画像データMR1を模式的に示す図である。図16に示すように、第1ステレオカメラ301は、撮影対象SBの遠景領域を撮影する。撮影対象SBの遠景領域は、施工対象である地面のみならず、例えば空又は空に浮かぶ雲のような、第1ステレオカメラ301に対して無限遠点に配置されている物体を含む。
 図17は、本実施形態に係る第1ステレオカメラ301で取得された第1画像データMR1及び第2画像データML1に基づいて生成された第1視差画像データSG1の一例を模式的に示す図である。なお、図17において、撮影対象SBのうち第1ステレオカメラ301に対して無限遠点に存在する物体の第1画像データMR1と第2画像データML1との視差dはゼロとなる。そのため、第1視差画像データSG1のうち、空及び雲に相当する部分は、黒表示される。
 本実施形態においては、例えば工場出荷時に第1ステレオカメラ301及び第2ステレオカメラ302の外部較正処理が実施される。以下の説明においては、第2ステレオカメラ302については、第2ステレオカメラ302で取得された第3画像データMR2及び第4画像データML2に関するステレオ対応点探索が成功し、第2視差画像データSG2のステレオ率はステレオ閾値以上であることとする。一方、第1ステレオカメラ301については、外部較正処理後に第1カメラ30A及び第2カメラ30Bの少なくとも一方にずれが生じてしまい、第1ステレオカメラ301で取得された第1画像データMR1及び第2画像データML1に関するステレオ対応点探索が失敗し、第1視差画像データSG1のステレオ率はステレオ閾値よりも小さいこととする。第1視差画像データSG1の画素の大部分においてステレオ対応点探索が失敗しているとき、例えば図10に示すように、視差画像の大部分が黒い領域となる。
 第1調整部103は、第1ステレオカメラ301について規定されている複数のパラメータのうち少なくとも一部のパラメータを変更して、第1視差画像データSG1のステレオ率を調整して、ステレオ率を向上させる(ステップSP30)。
 本実施形態において、ステレオ率を調整することは、ピッチ角βを変更することを含む。第1調整部103は、大部分において探索が失敗した第1視差画像データSG1のステレオ率が向上するように、上述の方法により、第1ステレオカメラ301について規定されている外部パラメータのピッチ角βを変更する。第1調整部103は、ステレオ率が最大又はステレオ閾値以上となる正解ピッチ角βrを決定する。
 ステレオ計測部102は、正解ピッチ角βrを用いて、第1画像データMR1及び第2画像データML1をステレオ計測する。これにより、例えば図13に示す視差画像のように、ステレオ率が向上した第1視差画像データSG1が生成される。
 次に、第2調整部104は、第1ステレオカメラ301について正解ピッチ角βrを用いてステレオ率が最大又は閾値以上となった第1視差画像データSG1により求められる第1の3次元データDG1のスケールを調整する(ステップSP40)。
 本実施形態において、スケールを調整することは、ヨー角αを調整することを含む。第2調整部104は、基準スケールと第1の3次元データDG1のスケールとの差が小さくなるように、第1ステレオカメラ301について規定されている外部パラメータのヨー角αを変更する。第2調整部104は、基準スケールと第1の3次元データDG1のスケールとの差が最小又は閾値以下となる正解ヨー角αrを決定する。
 本実施形態において、基準スケールは、第2ステレオカメラ302から取得された第3画像データMR2及び第4画像データML2に基づいて生成された第2視差画像データSG2により求められる第2の3次元データDG2のスケールを含む。第2調整部104は、第2ステレオカメラ302で撮影された第3画像データMR2及び第4画像データML2に基づいて生成された第2の3次元データDG2のスケールと、第1ステレオカメラ301で撮影された第1画像データMR1及び第2画像データML1に基づいて生成された第1の3次元データDG1のスケールとの差が小さくなるように、記憶部109に記憶されている外部パラメータのヨー角α(基準ヨー角α)を変更する。
 上述のように、本実施形態において、第2視差画像データSG2のステレオ率は、ステレオ閾値以上である。したがって、工場出荷時から、第2ステレオカメラ302の第3カメラ30Cと第4カメラ30Dとの相対位置は変動していないとみなすことができる。工場出荷時における外部較正処理においては、ステレオ率の調整のみならずスケールの調整も実施される。すなわち、外部較正処理においては、ステレオ率がステレオ閾値以上となり、かつ3次元データDGのスケールが正解値となるように、ステレオカメラ300の一対のカメラ30の相対位置の調整が実施されている。そのため、第2視差画像データSG2のステレオ率がステレオ閾値以上であるとき、第2ステレオカメラ302の第3カメラ30Cと第4カメラ30Dとの相対位置は変動していないとみなすことができる。つまり、第2の3次元データDG2のスケールは正解値であると推定することができる。そのため、本実施形態においては、第2調整部104は、基準スケールとして、第2の3次元データDG2のスケールを使用する。
 上述のように、第1ステレオカメラ301は、撮影対象SBの遠景領域を撮影する。第2ステレオカメラ302は、撮影対象SBの近景領域を撮影する。本実施形態において、第1ステレオカメラ301と第2ステレオカメラ302とは、遠景領域と近景領域の一部とが重複するように、撮影対象SBを撮影する。
 第2調整部104は、撮影対象SBの遠景領域と近景領域との重複領域において、第1の3次元データDG1のスケールと第2の3次元データDG2のスケールとの差が小さくなるように、外部パラメータのヨー角αを変更する。
 図18は、本実施形態に係る第1の3次元データDG1及び第2の3次元データDG2の一例を示す図である。図18に示すように、表示制御部108は、ステレオ計測部102で生成された第1の3次元データDG1及び第2の3次元データDG2を表示させる。
 第1の3次元データDG1は、第1ステレオカメラ301から撮影対象SBの複数の部位までのそれぞれとの距離ZPを示すデータである。距離ZPは、(1)式に基づいて第1視差画像データSG1の複数の画素PXs毎に算出される。マップデータ作成部107は、複数の画素PXs毎に算出された距離ZPに基づいて、カメラ座標系における3次元マップデータを作成する。カメラ座標系における3次元データDGが座標変換されることにより、車体座標系における3次元データDG、及びグローバル座標系における3次元データDGが作成される。また、グローバル座標系における3次元データDGを用いて、所定間隔(x、y)で設けられたメッシュ毎の高さが算出されることにより、第1の3次元マップデータ(エレベーションマップデータ)DG1が作成される。グローバル座標系における3次元データDGは、画素の数だけ3次元データが存在するが、3次元マップデータは、予め規定されたメッシュ毎にしか3次元データが存在しない。
 また、マップデータ作成部107は、第1視差画像データSG1の3次元マップデータの作成方法と同様の作成方法で、第2視差画像データSG2に基づいて第2の3次元マップデータDG2を作成する。3次元データDGは、視差画像データSG、車体座標系等の3次元データ、及び3次元マップデータ(エレベーションマップデータ)を含む。
 図18に示すように、マップデータ作成部107は、撮影対象SBの遠景領域と近景領域との重複領域、すなわち第1の3次元マップデータDG1と第2の3次元マップデータDG2との重複領域におけるデータである重複領域データDAを作成する。
 重複領域データDAは、第1の3次元マップデータDG1と第2の3次元マップデータDG2において、グローバル座標系におけるXY平面内の各同一の位置(メッシュ)又は各対応する位置における、Z軸方向の差分データを含む。本実施形態においては、マップデータ作成部107は、重複領域内の各位置における第1の3次元マップデータDG1の高さデータ(z)と第2の3次元マップデータDG2の高さデータ(z)との差分を算出し、各差分の重複領域全体の総和が最小又は閾値以下となるようにスケールを調整する。
 第1の3次元データDG1のスケールと第2の3次元データDG2のスケールとの差が大きい場合、重複領域内の各位置における第1の3次元マップデータDG1の高さデータと第2の3次元マップデータDG2の高さデータとの差分は大きくなり、すなわち各差分の重複領域全体の総和も大きくなる。
 本実施形態においては、上述のように第2の3次元データDG2のスケールが正解値(基準スケール)であるため、第2調整部104は、第1の3次元データDG1のスケールが第2の3次元データDG2のスケールに一致するように、外部パラメータのヨー角αを調整する。具体的には、第2調整部104は、撮影対象SBの遠景領域を撮影した第1の3次元データDG1と撮影対象SBの近景領域を撮影した第2の3次元データDG2との重複領域全体における、第1の3次元データDG1の高さデータと第2の3次元データDG2の高さデータとの差分の総和が小さくなるように、外部パラメータのヨー角αを変更する。
 図19は、本実施形態に係る第2調整部104によるスケールの調整方法の一例を説明するための模式図である。図19に示すグラフにおいて、横軸は、外部パラメータのヨー角αを示し、縦軸は、第1の3次元データDG1の高さデータと第2の3次元データDG2の高さデータとの差分の総和との差を示す。
 第2調整部104は、基準ヨー角αを基準として、プラス方向及びマイナス方向の所定範囲において、ヨー角αを所定角度ずつ変更する。ステレオ計測部102は、ヨー角αを変更する毎に、第1の3次元データDG1の高さデータと第2の3次元データDG2の高さデータとの差分の総和との差を算出する。図19に示すように、第1の3次元データDG1の高さデータと第2の3次元データDG2の高さデータとの差分の総和との差は、ヨー角αの変更に応じて変化する。第2調整部104は、所定範囲において第1の3次元データDG1の高さデータと第2の3次元データDG2の高さデータとの差分の総和との差の最小値が得られたときのヨー角αを正解ヨー角αrに決定する。
 なお、正解ヨー角αrを決定する方法は、上述の方法でなくてもよい。第1の3次元データDG1の高さデータと第2の3次元データDG2の高さデータとの差分の総和との差が閾値以下であるヨー角αであれば、任意のヨー角αを正解ヨー角αrとしてもよい。
 ステップSP30において正解ピッチ角βrが決定され、ステップSP40において正解ヨー角αrが決定された後、ステレオ計測部102は、正解ピッチ角βr及び正解ヨー角αrを含む外部パラメータを用いて、第1ステレオカメラ301で撮影された第1画像データMR1及び第2画像データML1のステレオ計測を実施する。これにより、ステレオ率がステレオ閾値以上であり、かつスケールが正解値である第1視差画像データSG1および第1の3次元データDG1が生成される(ステップSP50)。
 本実施形態において、上述のステップSP10からステップSP50の処理は、所定のサンプリング周期で実施される。何らかの外的要因によりカメラ30が物理的に動いてしまったとき、ステレオ率が向上しスケールが正解値になるように、ステレオカメラ300の自動較正処理が実施される。
[作用及び効果]
 以上説明したように、本実施形態によれば、制御装置100は、第1カメラ30R及び第2カメラ30Lについて規定されているパラメータを変更し、変更されたパラメータに基づいて演算処理を実施して、ステレオ率及びスケールを調整することができる。ステレオ率を向上させることにより、ステレオカメラ300によって広範囲に現況地形を計測することができる。また、スケールを調整することにより、ステレオカメラ300によって計測された3次元データDGは、実際の現況地形との差分または誤差が少ない高精度なデータになる。これにより、外部較正処理の後、第1カメラ30Rと第2カメラ30Lとの相対位置が変動してしまっても、制御装置100は、記憶部109に記憶されているパラメータを変更するだけで、煩雑な再較正処理を実施することなく、ステレオ率及びスケールが調整された3次元データDG及び視差画像データSGを計測することができる。第1カメラ30Rと第2カメラ30Lとの相対位置が変動してしまっても、自動較正処理が実施されることにより、油圧ショベル1の作業効率の低下が抑制される。
 また、本実施形態においては、第2調整部104は、基準スケールとして第2の3次元データDG2を利用し、遠景領域と近景領域との重複領域において、第1の3次元データDG1のスケールと第2の3次元データDG2のスケールとの差が小さくなるように、パラメータを変更する。これにより、第1の3次元データDG1のスケールを効率良く調整することができる。
 なお、本実施形態においては、外部パラメータのピッチ角βを変更することによりステレオ率を向上させることとしたが、(3)式におけるヨー角α又はロール角γ、シフト量Tx、シフト量Ty、シフト量Tzを変更してステレオ率を向上させてもよいし、それら複数の外部パラメータを同時に変更してもよい。
 なお、本実施形態においては、外部パラメータのヨー角αを変更することによりスケールを調整することとしたが、(3)式におけるピッチ角β又はロール角γ、シフト量Tx、シフト量Ty、シフト量Tzを変更してスケールを調整してもよいし、それら複数の外部パラメータを同時に変更してもよい。
第2実施形態.
 第2実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成要素については同一の符号を付し、その説明を簡略又は省略する。
 上述の実施形態においては、第2ステレオカメラ302に基づいて生成された第2の3次元データDG2を基準スケールとして、第1ステレオカメラ301に基づいて生成された第1の3次元データDG1のスケールを調整することとした。本実施形態においては、基準スケールとして基準物体を用いて、3次元データDGのスケールを調整する例について説明する。なお、本実施形態においても、上述の実施形態に従って、事前にステレオ率を向上する処理が実施されていてもよい。
 図20は、本実施形態に係る位置計測方法の一例を説明するための模式図である。本実施形態においては、基準物体であるターゲットTGがステレオカメラ300の撮影領域に配置される。ターゲットTGは、例えば白色の表面を有する板部材と、板部材の白色の表面に黒色で描かれた基準マークとを含む。基準マークは、1つでもよいし、複数でもよい。本実施形態において、基準マークは、円形マークである。なお、ターゲットTGは、基準マークを有しなくてもよい。
 ターゲットTGは、グローバル座標系における位置が既知である所定位置に配置される。すなわち、本実施形態において、グローバル座標系におけるターゲットTGの位置を示す位置データは、既知データである。ターゲットTGの位置データは、位置データ算出部105に入力される。
 上述のように、位置データ算出部105は、グローバル座標系におけるカメラ30の位置データを算出可能である。
 位置データ算出部105は、グローバル座標系におけるステレオカメラ300とターゲットTGとの相対位置データを算出する。位置データ算出部105は、グローバル座標系におけるステレオカメラ300とターゲットTGとの相対位置データから、基準距離ZFを演算する。
 第2調整部104は、基準スケールと3次元データDGのスケールとの差が小さくなるように、外部パラメータのヨー角αを変更する。本実施形態において、基準スケールは、ステレオカメラ300とターゲットTGとの距離である基準距離ZFを含む。
 ステレオカメラ300は、ターゲットTGを含む撮影対象SBを撮影する。ステレオ計測部102は、上述の実施形態に従って、視差画像データSGを生成する。視差画像データSGの生成において、ステレオ率がステレオ閾値未満のとき、上述の実施形態に従って、第1調整部103によりステレオ率の調整が実施される。ステレオ計測部102は、視差画像データSGに基づいて、3次元データDGを求める。
 本実施形態において、視差画像データSG又は3次元データDGは、ターゲットTGを含む。ステレオ計測部102は、視差画像データSG又は3次元データDGに基づいて、ステレオカメラ300からターゲットTGまでの距離ZPを算出する。
 視差画像データSG又は3次元データDGにおけるどの画素がターゲットTGに該当するか否かの判別は、例えば画像処理により基準マークの中心を判別することによって実施される。なお、ターゲットTGに該当する画素を判別することができれば、任意の方法を用いてもよい。例えば基準マークを用いなくてもターゲットTGの形状から判別してもよいし、所定の入力装置を用いてターゲットTGに該当する画素等のデータを指定してもよい。
 第2調整部104は、位置データ算出部105で算出された基準距離ZFと、視差画像データSG又は3次元データDGにおけるステレオカメラ300とターゲットTGとの距離ZPとの差が小さくなるように、外部パラメータのヨー角αを変更する。
 以上説明したように、本実施形態においては、絶対位置が既知であるターゲットTGを使って、3次元データDGのスケールを調整することができる。本実施形態によれば、第1ステレオカメラ301の第1カメラ30Aと第2カメラ30Bとの相対位置、及び第2ステレオカメラ302の第3カメラ30Cと第4カメラ30Dとの相対位置が共に変動してしまった場合でも、第1ステレオカメラ301の自動較正処理、及び第2ステレオカメラ302の自動較正処理を個別に実施することができる。
 例えば、第1ステレオカメラ301の第1カメラ30Aと第2カメラ30Bとの相対位置が変動し、第1視差画像データSG1のステレオ率が低下した場合、第1調整部103は、上述の実施形態に従って、ステレオ率を向上させる調整処理を実施することができる。ステレオ率が向上された後、そのステレオ率が向上された第1ステレオカメラ301でターゲットTGを撮影することにより、第2調整部104は、本実施形態に係るスケールの調整方法に従って、第1の3次元データDG1のスケールを調整することができる。第2ステレオカメラ302についても同様である。
 なお、本実施形態に係る位置計測方法は、油圧ショベル1が第1ステレオカメラ301しか有していない場合にも適用できる。
 なお、本実施形態において、第1調整部103を用いてステレオ率を向上する処理を実施せずに、本実施形態に係る位置計測方法を用いて、第2調整部104がスケールを調整する処理を実施してもよい。
 なお、本実施形態においては、ステレオカメラ300の代わりにレーザースキャナを使用する場合、スケールが不正確になった場合でもスケールを調整できる。
第3実施形態.
 第3実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成要素については同一の符号を付し、その説明を簡略又は省略する。
 本実施形態においては、基準スケールとしてステレオカメラ300の無限遠点に配置された基準物体を用いて、3次元データDGのスケールを調整する例について説明する。なお、本実施形態においても、上述の実施形態に従って、ステレオ率を向上する処理が実施される。
 ステレオカメラ300は、図17に示した空に浮かぶ雲のような、ステレオカメラ300の無限遠点に配置された基準物体を撮影する。第1カメラ30Rで撮影された第1画像データMR及び第2カメラ30Lで撮影された第2画像データMLのそれぞれは、ステレオカメラ300の無限遠点に配置された基準物体の画像データを含む。
 外部較正処理によりスケールが正解値に調整されているステレオカメラ300で無限遠点の基準物体の計測点Pを撮影した場合、視差dはゼロになる。一方、スケールが正解値ではないステレオカメラ300で無限遠点の基準物体の計測点Pを撮影した場合、視差dはゼロにならない。
 本実施形態において、基準スケールは、スケールが正解値に調整されているステレオカメラ300においてステレオ計測された無限遠点の基準物体までの距離であり、すなわち無限遠を含む。
 図21は、本実施形態に係る位置計測方法の一例を説明するための模式図である。図21は、例えばステレオカメラ300によって、図17に示したような無限遠点に存在する物体が占める割合が大きい撮影対象SBを撮影したときの、撮影対象SBの各計測点Pが投影された画素において生じた視差dと、視差画像データSG全体における各画素において生じた視差dを積み上げた結果である頻度との関係を示すヒストグラム図である。図21に示すグラフにおいて、横軸は、視差dを示し、縦軸は、視差dの頻度を示す。
 撮影対象SBにおいて、雲のような無限遠点に存在する物体の割合が大きい場合、図21に示すように、無限遠点に対応する視差dにおいて、その頻度のピーク値Δdが発生する。外部較正処理によりスケールが正解値に調整されているステレオカメラ300で無限遠点の物体を撮影した場合、視差dの頻度は、視差dがゼロのときにピーク値Δdを示す。一方、スケールが正解値でないステレオカメラ300で無限遠点の物体を撮影した場合、視差dの頻度は、視差dがゼロでないときにピーク値Δdを示す。
 第2調整部104は、第1画像データMRにおける基準物体(本実施形態においては無限遠点)の画像データと第2画像データMLにおける基準物体の画像データとの視差dが、基準視差d(本実施形態ではゼロ)と一致するように、外部パラメータのヨー角αを変更する。すなわち、第2調整部104は、無限遠点の基準物体を撮影したときの視差dのピークがゼロでない場合、その視差dのピークがゼロになるように、外部パラメータのヨー角αを変更する。
 図22は、本実施形態に係る第2調整部104によるスケールの調整方法の一例を説明するための模式図である。図22に示すグラフにおいて、横軸は、外部パラメータのヨー角αを示し、縦軸は、無限遠点に存在する物体の計測点Pを撮影したときの視差dのピーク値Δd、すなわち図17に示したような無限遠点に存在する物体が占める割合が大きい撮影対象SBを撮影したときの視差dの頻度がピークを示している視差dのピーク値Δdを示す。
 第2調整部104は、基準ヨー角αを基準として、所定範囲において、ヨー角αを所定角度ずつ変更する。ステレオ計測部102は、変更されたヨー角αのそれぞれにおいて、視差dの頻度におけるピーク値を算出する。図22に示すように、視差画像データSGの各画素における視差dは、ヨー角αの変更に基づいて変化する。第2調整部104は、所定範囲において基準視差dと視差dとの差の最小値が得られたときのヨー角αを正解ヨー角αrに決定する。すなわち、第2調整部104は、変更したヨー角αにおける視差dの頻度のピーク値が最もゼロに近いヨー角αを正解ヨー角αrに決定する。なお、第2調整部104は、所定範囲において基準視差dと視差dとの差が視差閾値以下になったときのヨー角αを正解ヨー角αrに決定してもよい。視差閾値は、基準視差dと視差dとの差について規定された閾値である。
 以上説明したように、本実施形態においては、無限遠点に存在する物体を使って、3次元データDGのスケールを調整することができる。本実施形態においても、第1ステレオカメラ301の第1カメラ30Aと第2カメラ30Bとの相対位置、及び第2ステレオカメラ302の第3カメラ30Cと第4カメラ30Dとの相対位置の両方が変動してしまった場合でも、第1ステレオカメラ301の自動較正処理、及び第2ステレオカメラ302の自動較正処理を個別に実施することができる。
 なお、本実施形態に係る位置計測方法は、油圧ショベル1が第1ステレオカメラ301しか有していない場合にも適用できる。
 なお、本実施形態において、第1調整部103を用いてステレオ率を向上する処理を実施せずに、本実施形態に係る位置計測方法を用いて、第2調整部104がスケールを調整する処理を実施してもよい。
 なお、本実施形態においては、ステレオカメラ300の代わりにレーザースキャナを使用する場合、スケールが不正確になった場合でもスケールを調整できる。
第4実施形態.
 第4実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成要素については同一の符号を付し、その説明を簡略又は省略する。
 上述の実施形態においては、第1調整部103及び第2調整部104によって変更されるパラメータが、第1カメラMRと第2カメラMLとの相対位置を規定する外部パラメータであることとした。
 本実施形態においては、第1調整部103及び第2調整部104によって変更されるパラメータが、第1カメラ30R及び第2カメラ30Lそれぞれの内部パラメータである例について説明する。
 内部パラメータは、第1カメラ30R及び第2カメラ30Lそれぞれの固有データを規定する。内部パラメータは、例えば、カメラ30の光学系の焦点距離、及びカメラ30の光学系の光学中心とイメージセンサの撮像面との交点と、イメージセンサにおける画像中心との位置ずれ量を含む。
 本実施形態において、内部パラメータは、Xs軸及びYs軸と平行な方向の第2カメラ30Lの光学系の光軸に対する第2カメラ30Lのイメージセンサ31Lの位置を含む。すなわち、本実施形態において、内部パラメータは、Xs軸方向及びYs軸方向における画像中心の位置を含む。
 例えば外的要因により、カメラ30の内部においてイメージセンサが動いてしまう可能性がある。例えば熱の影響により、イメージセンサの位置が変動する可能性がある。イメージセンサの位置が変動すると、カメラ30の光学系の光軸とイメージセンサの撮像面との交点を示す画像中心の位置が変動する。画像中心の位置が変動すると、視差画像データSGのステレオ率が低下したり、3次元データDGのスケールとスケールの正解値との差が大きくなったりする可能性がある。
 本実施形態において、第1調整部103は、ステレオ率を調整するために、内部パラメータとして、Xs軸方向のイメージセンサ31Lの位置を変更して、Xs軸方向における画像中心の位置を調整する。
 本実施形態において、第2調整部104は、スケールを調整するために、内部パラメータとして、Ys軸方向のイメージセンサ31Lの位置を変更して、Ys軸方向における画像中心の位置を調整する。
 カメラ30の固有データは、上述の複数の内部パラメータを含む下記の(4)式で規定される。
Figure JPOXMLDOC01-appb-M000004
 (4)式において、(X,Y,Z)は、グローバル座標系における第2カメラ30Lの画像中心の位置を示す。sは、カメラ座標系におけるZs軸方向の距離又はスケールを示す。uは、カメラ座標系におけるXs軸方向の位置を示す。fは、焦点距離を示す。suは、Xs軸方向の画素比率(Ys軸方向に対する比)を示す。svは、カメラ座標系におけるYs軸方向の画素比率(Xs軸方向に対する比)を示す。uは、カメラ座標系におけるXs軸方向の第2カメラ30Lの画像中心の位置を示す。vは、カメラ座標系におけるYs軸方向の第2カメラ30Lの画像中心の位置を示す。
 (4)式は、第2カメラ30Lに関するヨー角α、ピッチ角β、ロール角γ、位置u、及び位置vによって規定されるカメラ内部行列と、第2カメラ30Lの位置及び姿勢を示す複数のパラメータによって規定されるカメラ外部行列と、グローバル座標系における位置X、位置Y、及び位置Zのそれぞれによって規定される平行移動ベクトルとを含む。(4)式は、第2カメラ30Lのカメラ座標系におけるXs軸方向の画像中心の位置u及びYs軸方向の画像中心の位置vを第1カメラ30Rのカメラ座標系におけるXs軸方向の画像中心の位置u及びYs軸方向の画像中心の位置vに変換する変換式である。
 第1調整部103は、ステレオ率が大きくなるように、位置uを変更する。位置uを変更することは、上述の実施形態で説明した、ピッチ角βを変更することと近似する。
 本実施形態において、記憶部109は、Xs軸方向のイメージセンサ31Lの基準位置を記憶する。Xs軸方向のイメージセンサ31Lの基準位置は、Xs軸方向の第2カメラ30Lの画像中心の基準位置を含む。Xs軸方向の基準位置は、工場出荷時の外部較正処理において、ステレオ率がステレオ閾値以上になるように調整された画像中心の位置である。第1調整部103は、Xs軸方向の基準位置を含む所定範囲においてイメージセンサ31Lの位置を変更して、ステレオ率の最大値を算出する。
 第2調整部104は、基準スケールと3次元データDGのスケールとの差が小さくなるように、位置vを変更する。位置vを変更することは、上述の実施形態で説明した、ヨー角αを変更することと近似する。
 本実施形態において、記憶部109は、Ys軸方向のイメージセンサ31Lの基準位置を記憶する。Ys軸方向のイメージセンサ31Lの基準位置は、Ys軸方向の第2カメラ30Lの画像中心の基準位置を含む。Ys軸方向の基準位置は、工場出荷時の外部較正処理において、基準スケールと3次元データDGのスケールとの差がスケール閾値以下になるように調整された画像中心の位置である。第2調整部104は、Ys軸方向の基準位置を含む所定範囲においてイメージセンサ31Lの位置を変更して、基準スケールと3次元データDGのスケールとの差の最小値を算出する。
 以上説明したように、第1調整部103及び第2調整部104は、カメラ30の内部パラメータを調整することによって、視差画像データSGのステレオ率を向上させ、3次元データDGのスケールを正解値に近付けることができる。
第5実施形態.
 第5実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成要素については同一の符号を付し、その説明を簡略又は省略する。
 図23は、本実施形態に係る位置計測システム500の一例を模式的に示す図である。本実施形態において、油圧ショベル1の制御装置100は、通信回線502を介して、油圧ショベル1の遠隔地に設けられているサーバ501及び端末装置503とデータ通信可能である。サーバ501は、コンピュータシステムを含む。端末装置503は、パーソナルコンピュータ又は携帯端末を含む。通信回線502は、インターネット(internet)、ローカルエリアネットワーク(LAN:Local Area Network)、携帯電話通信網、及び衛星通信網の少なくとも一つを含む。
 本実施形態において、サーバ501は、制御装置100の一部又は全部の機能を有する。すなわち、サーバ501は、画像データ取得部101、ステレオ計測部102、第1調整部103、第2調整部104、位置データ算出部105、作業機位置データ算出部106、マップデータ作成部107、表示制御部108、記憶部109、及び入出力部110の少なくとも一つを有する。
 油圧ショベル1のカメラ30で撮像された画像データ、位置検出器23で検出された旋回体3の位置データ、姿勢検出器24で検出された旋回体3の姿勢データ、及び方位検出器25で検出された旋回体3の方位データが、通信回線502を介して、サーバ501に供給される。
 例えば、サーバ501が、ステレオ計測部102、第1調整部103、第2調整部104、及び記憶部109を有する場合、サーバ501は、カメラ30で撮影され通信回線502を介して供給された画像データに基づいて、ステレオ計測を実施したり、ステレオ率が大きくなるようにパラメータを変更したり、スケールが正解値になるようにパラメータを変更したりすることができる。
 なお、本実施形態において、端末装置503が、制御装置100の一部または全部の機能を有してもよい。すなわち、端末装置503が、画像データ取得部101、ステレオ計測部102、第1調整部103、第2調整部104、位置データ算出部105、作業機位置データ算出部106、マップデータ作成部107、表示制御部108、記憶部109、及び入出力部110の少なくとも一つを有してもよい。
 なお、本実施形態において、表示制御部108に制御される表示装置26は、油圧ショベル1に設けられてもよいし、サーバ501に接続されてもよいし、端末装置503に接続されてもよい。
第6実施形態.
 第6実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成要素については同一の符号を付し、その説明を簡略又は省略する。
 上述の第2実施形態においては、ターゲットTGを用いて3次元データDGのスケールを調整することとした。本実施形態においては、基準スケールとして作業機2を用いて、3次元データDGのスケールを調整する例について説明する。なお、本実施形態においても、上述の実施形態に従って、ステレオ率を向上する処理が実施される。
 図24は、本実施形態に係る位置計測方法の一例を説明するための模式図である。本実施形態においては、基準物体であるバケット8の刃先8BTがステレオカメラ300の撮影領域に配置される。例えば、Xm軸方向におけるステレオカメラ300と刃先8BTとの距離が最も長くなるように作業機2の姿勢が調整された状態で、刃先8BTがステレオカメラ300の撮影領域に配置される。
 作業機位置データ算出部106は、グローバル座標系におけるバケット8の刃先8BTの位置を算出可能である。また、位置データ算出部105は、グローバル座標系におけるカメラ30の位置データを算出可能である。
 位置データ算出部105は、グローバル座標系におけるステレオカメラ300と刃先8BTとの相対位置データを算出する。
 第2調整部104は、基準スケールと3次元データDGのスケールとの差が小さくなるように、外部パラメータのヨー角αを変更する。本実施形態において、基準スケールは、ステレオカメラ300と刃先8BTとの距離である基準距離ZFを含む。
 以上説明したように、本実施形態においては、作業機2を使って、3次元データDGのスケールを調整することができる。
 なお、本実施形態において、油圧ショベル1とは別の油圧ショベルの作業機が基準スケールとして利用されてもよい。別の油圧ショベルが、本実施形態に係る油圧ショベル1と同様に、作業機角度検出器22、位置検出器23、姿勢検出器24、方位検出器25、及び制御装置100を有していれば、別の油圧ショベルは、別の油圧ショベルの作業機のバケットの刃先の絶対位置を取得することができる。その別の油圧ショベルの刃先の絶対位置を示す絶対位置データが、通信装置を介して本実施形態に係る油圧ショベル1に送信されることにより、油圧ショベル1は、ステレオカメラ300と別の油圧ショベルの刃先との相対位置データを取得することができる。
 なお、上述の各実施形態においては、油圧ショベル1にカメラ30が4つ、及びステレオカメラ300が2つ設けられる例について説明した。カメラ30は、油圧ショベル1に少なくとも2つ設けられていればよい。また、上述の第2実施形態及び第3実施形態においては、ステレオカメラ300は少なくとも1つ設けられていればよい。
 なお、上述の各実施形態においては、ステレオ率は、ステレオ計測される視差画像データSGの複数の画素のうちステレオ計測が成功した画素の割合を示すこととした。ステレオ率は、他の定義でもよい。例えば、ステレオ率は、ステレオ計測される視差画像データの複数の画素のうちステレオ計測が成功した画素の総数を示すこととしてもよい。
 なお、上述の各実施形態においては、3次元データのスケール調整として、ヨー角などを調整、つまり視差dを調整することによりスケールを変更するようにしたが、その実施形態に限られず、その他の調整、例えば数1におけるb(カメラ間距離)やf(焦点距離)を調整することによりスケールを変更することとしてもよい。
 なお、上述の各実施形態においては、作業機械1が油圧ショベルであることとした。作業機械1は、施工対象を施工可能な作業機械であればよく、施工対象を掘削可能な掘削機械及び土砂を運搬可能な運搬機械でもよい。作業機械1は、例えばホイールローダでもよいし、ブルドーザでもよいし、ダンプトラックでもよい。
 1…油圧ショベル(作業機械)、1B…車体、2…作業機、3…旋回体、4…運転室、4S…運転席、5…走行体、5A…履帯、5B…履帯、6…ブーム、7…アーム、8…バケット、8BT…刃先、10…ブームシリンダ、11…アームシリンダ、12…バケットシリンダ、13…ブームピン、14…アームピン、15…バケットピン、16…ブームストロークセンサ、17…アームストロークセンサ、18…バケットストロークセンサ、20…検出システム、21…GPSアンテナ、22…作業機角度検出器、23…位置検出器、24…姿勢検出器、25…方位検出器、26…表示装置、30…カメラ、30A…第1カメラ、30B…第2カメラ、30C…第3カメラ、30D…第4カメラ、30L…第2カメラ、30R…第1カメラ、31L…イメージセンサ、31R…イメージセンサ、35…操作装置、35L…左操作レバー、35R…右操作レバー、50…位置計測システム、100…制御装置、101…画像データ取得部、102…ステレオ計測部、103…第1調整部、104…第2調整部、105…位置データ算出部、106…作業機位置データ算出部、107…マップデータ作成部、108…表示制御部、109…記憶部、110…入出力部、300…ステレオカメラ、301…第1ステレオカメラ、302…第2ステレオカメラ、500…位置計測システム、501…サーバ、502…通信回線、AX1…回転軸、AX2…回転軸、AX3…回転軸、DG…3次元データ、ER…点、EL…点、BL…ベースライン、MR…第1画像データ、ML…第2画像データ、OR…光学中心、OL…光学中心、P…計測点、SB…撮影対象、SG…視差画像データ、Zr…旋回軸。

Claims (11)

  1.  作業機械に設けられた第1ステレオカメラの第1カメラで撮影された第1画像データ及び前記第1ステレオカメラの第2カメラで撮影された第2画像データを取得する画像データ取得部と、
     前記第1画像データと、前記第2画像データと、前記第1カメラ及び前記第2カメラに関するパラメータとに基づいて、ステレオ計測を実施するステレオ計測部と、
     前記パラメータの少なくとも一部を変更して、ステレオ計測された第1視差画像データのステレオ率を調整する第1調整部と、
     前記パラメータの少なくとも一部を変更して、前記第1視差画像データから求められる第1の3次元データのスケールを調整する第2調整部と、
    を備える位置計測システム。
  2.  前記第2調整部は、前記第1視差画像データの視差を調整して、前記第1の3次元データのスケールを調整する、
    請求項1に記載の位置計測システム。
  3.  前記パラメータは、前記第1カメラと前記第2カメラとの相対位置を規定する外部パラメータを含み、
     前記外部パラメータは、前記第2カメラのピッチ角を含み、
     前記第1調整部は、前記ピッチ角を変更する、
    請求項1又は請求項2に記載の位置計測システム。
  4.  前記パラメータは、前記第1カメラと前記第2カメラとの相対位置を規定する外部パラメータを含み、
     前記外部パラメータは、前記第2カメラのヨー角を含み、
     前記第2調整部は、前記ヨー角を変更する、
    請求項1から請求項3のいずれか一項に記載の位置計測システム。
  5.  第3カメラ及び第4カメラからなる第2ステレオカメラをさらに備え、
     前記第2調整部は、前記第3カメラから取得された第3画像データ及び前記第4カメラから取得された第4画像データに基づいて生成された第2の3次元データのスケールと前記第1の3次元データのスケールとの差が小さくなるように、前記第1の3次元データのスケールを調整する、
    請求項1から請求項4のいずれか一項に記載の位置計測システム。
  6.  前記第2調整部は、前記第1ステレオカメラの位置データと基準物体の位置データとに基づいて算出される前記第1ステレオカメラと基準物体との基準距離と、前記第1の3次元データにおける前記第1ステレオカメラと前記基準物体との距離との差が小さくなるように、前記パラメータを変更する、
    請求項1から請求項4のいずれか一項に記載の位置計測システム。
  7.  前記第1画像データ及び前記第2画像データのそれぞれは、前記第1ステレオカメラの無限遠点に配置された基準物体の画像データを含み、
     前記第2調整部は、前記第1画像データ及び前記第2画像データに基づき計測された第1視差画像データにおける視差のピークがゼロとなるように、前記パラメータを変更する、
    請求項1から請求項4のいずれか一項に記載の位置計測システム。
  8.  作業機械に設けられたステレオカメラの第1カメラで撮影された第1画像データ及び前記ステレオカメラの第2カメラで撮影された第2画像データを取得する画像データ取得部と、
     前記第1画像データと、前記第2画像データと、前記第1カメラ及び前記第2カメラに関するパラメータとに基づいて、ステレオ計測を実施するステレオ計測部と、
     前記ステレオカメラの絶対位置データと基準物体の絶対位置データとに基づいて算出される前記ステレオカメラと前記基準物体との基準距離と、前記ステレオ計測部で生成された視差画像データにおける前記ステレオカメラと前記基準物体との距離との差が小さくなるように、前記パラメータの少なくとも一部を変更する第2調整部と、
    を備える位置計測システム。
  9.  作業機械に設けられたステレオカメラの第1カメラで撮影された前記ステレオカメラの無限遠点に配置された基準物体を含む第1画像データ及び前記ステレオカメラの第2カメラで撮影された前記基準物体を含む第2画像データを取得する画像データ取得部と、
     前記第1画像データと、前記第2画像データと、前記第1カメラ及び前記第2カメラに関するパラメータとに基づいて、ステレオ計測を実施するステレオ計測部と、
     前記第1画像データ及び前記第2画像データに基づき計測された第1視差画像データにおける視差のピークがゼロとなるように、前記パラメータの少なくとも一部を変更する第2調整部と、
    を備える位置計測システム。
  10.  請求項1から請求項9のいずれか一項に記載の位置計測システムを備える作業機械。
  11.  作業機械に設けられた第1ステレオカメラの第1カメラで撮影された第1画像データ及び前記第1ステレオカメラの第2カメラで撮影された第2画像データを取得することと、
     前記第1画像データと、前記第2画像データと、前記第1カメラ及び前記第2カメラに関するパラメータとに基づいて、ステレオ計測を実施することと、
     前記パラメータの少なくとも一部を変更して、ステレオ計測された第1視差画像データのステレオ率を調整することと、
     前記パラメータの少なくとも一部を変更して、前記第1視差画像データから求められる3次元データのスケールを調整することと、
    を含む位置計測方法。
PCT/JP2018/004257 2017-02-09 2018-02-07 位置計測システム、作業機械、及び位置計測方法 WO2018147340A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187018968A KR102076631B1 (ko) 2017-02-09 2018-02-07 위치 계측 시스템, 작업 기계, 및 위치 계측 방법
US16/069,560 US11120577B2 (en) 2017-02-09 2018-02-07 Position measurement system, work machine, and position measurement method
DE112018000007.9T DE112018000007T5 (de) 2017-02-09 2018-02-07 Positionsmesssystem, Arbeitsmaschine und Positionsmessverfahren
CN201880000776.XA CN108700402B (zh) 2017-02-09 2018-02-07 位置测量系统、作业机械及位置测量方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-022570 2017-02-09
JP2017022570A JP6925816B2 (ja) 2017-02-09 2017-02-09 位置計測システム、作業機械、及び位置計測方法

Publications (1)

Publication Number Publication Date
WO2018147340A1 true WO2018147340A1 (ja) 2018-08-16

Family

ID=63107538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004257 WO2018147340A1 (ja) 2017-02-09 2018-02-07 位置計測システム、作業機械、及び位置計測方法

Country Status (6)

Country Link
US (1) US11120577B2 (ja)
JP (1) JP6925816B2 (ja)
KR (1) KR102076631B1 (ja)
CN (1) CN108700402B (ja)
DE (1) DE112018000007T5 (ja)
WO (1) WO2018147340A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113280736A (zh) * 2021-06-10 2021-08-20 雷沃工程机械集团有限公司 一种装载机铲斗位置检测方法及设备
US20220002970A1 (en) * 2019-03-27 2022-01-06 Sumitomo Construction Machinery Co., Ltd. Excavator
US11906641B2 (en) 2018-09-21 2024-02-20 Hitachi Construction Machinery Co., Ltd. Work machine
WO2024101392A1 (ja) * 2022-11-11 2024-05-16 株式会社小松製作所 作業機械の校正システム及び作業機械の校正方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7108985B2 (ja) * 2018-08-24 2022-07-29 キヤノン株式会社 画像処理装置、画像処理方法、プログラム
KR102596053B1 (ko) * 2018-08-27 2023-11-01 엘지이노텍 주식회사 영상 처리 장치 및 영상 처리 방법
JP7427370B2 (ja) * 2019-05-17 2024-02-05 キヤノン株式会社 撮像装置、画像処理装置、画像処理方法、撮像装置の校正方法、ロボット装置、ロボット装置を用いた物品の製造方法、制御プログラムおよび記録媒体
JP6697150B1 (ja) * 2019-10-30 2020-05-20 株式会社Qoncept 軌道算出装置、軌道算出方法、軌道算出プログラム
JP7516068B2 (ja) * 2020-02-21 2024-07-16 株式会社小松製作所 作業機械の遠隔操作システム
JP7354972B2 (ja) * 2020-09-16 2023-10-03 コベルコ建機株式会社 操作室内のカメラ設置構造
US20220292801A1 (en) * 2021-03-15 2022-09-15 Plantronics, Inc. Formatting Views of Whiteboards in Conjunction with Presenters
KR20220139031A (ko) * 2021-04-07 2022-10-14 현대두산인프라코어(주) 건설기계의 제어 시스템 및 작업 가이드 라인 제공 방법
US11669956B2 (en) * 2021-06-01 2023-06-06 Caterpillar Inc. Ground engaging tool wear and loss detection system and method
CN114363805B (zh) * 2021-12-29 2024-04-30 北京红山信息科技研究院有限公司 一种纠正背向点的三角定位改进方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133525A (ja) * 1995-11-10 1997-05-20 Nippon Soken Inc 距離計測装置
JPH10341458A (ja) * 1997-06-10 1998-12-22 Toyota Motor Corp 車載ステレオカメラの校正方法、および、その方法を適用した車載ステレオカメラ
JP2008045983A (ja) * 2006-08-15 2008-02-28 Fujifilm Corp ステレオカメラの調整装置
US20080162004A1 (en) * 2006-12-27 2008-07-03 Price Robert J Machine control system and method
WO2009119229A1 (ja) * 2008-03-26 2009-10-01 コニカミノルタホールディングス株式会社 3次元撮像装置及び3次元撮像装置の校正方法
JP2014215039A (ja) * 2013-04-22 2014-11-17 日立建機株式会社 建設機械
WO2016013691A1 (ja) * 2015-10-15 2016-01-28 株式会社小松製作所 位置計測システム及び位置計測方法
WO2016047808A1 (ja) * 2015-09-30 2016-03-31 株式会社小松製作所 撮像装置の校正システム、作業機械及び撮像装置の校正方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288516A (ja) 1992-04-07 1993-11-02 Honda Motor Co Ltd 非接触式位置検出装置
JP3827480B2 (ja) 1999-08-13 2006-09-27 日立建機株式会社 自動運転建設機械およびその位置計測手段の校正方法
CN101577795A (zh) 2009-06-17 2009-11-11 深圳华为通信技术有限公司 一种实现全景图像的实时预览的方法和装置
JP2011223482A (ja) 2010-04-14 2011-11-04 Sony Corp 画像処理装置、画像処理方法、およびプログラム
JP2012233353A (ja) 2011-05-02 2012-11-29 Komatsu Ltd 油圧ショベルの較正システム及び油圧ショベルの較正方法
JP6060525B2 (ja) 2012-05-31 2017-01-18 株式会社ニデック 眼底検査装置
US9142063B2 (en) * 2013-02-15 2015-09-22 Caterpillar Inc. Positioning system utilizing enhanced perception-based localization
DE102014208068A1 (de) * 2014-04-29 2015-10-29 Deere & Company Erntemaschine mit sensorbasierter Einstellung eines Arbeitsparameters
CN104093013B (zh) * 2014-06-25 2016-05-11 中国科学院遥感与数字地球研究所 一种立体视觉三维可视化系统中自动调节图像视差的方法
US20160137125A1 (en) * 2014-11-17 2016-05-19 Caterpillar Inc. Imaging system using virtual projection geometry
JP6552192B2 (ja) * 2014-12-18 2019-07-31 京セラ株式会社 ステレオカメラ装置、移動体、制御方法及び較正装置
JP6515650B2 (ja) * 2015-04-14 2019-05-22 国立大学法人東京工業大学 校正装置、距離計測装置及び校正方法
US9790666B2 (en) 2015-09-30 2017-10-17 Komatsu Ltd. Calibration system, work machine, and calibration method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133525A (ja) * 1995-11-10 1997-05-20 Nippon Soken Inc 距離計測装置
JPH10341458A (ja) * 1997-06-10 1998-12-22 Toyota Motor Corp 車載ステレオカメラの校正方法、および、その方法を適用した車載ステレオカメラ
JP2008045983A (ja) * 2006-08-15 2008-02-28 Fujifilm Corp ステレオカメラの調整装置
US20080162004A1 (en) * 2006-12-27 2008-07-03 Price Robert J Machine control system and method
WO2009119229A1 (ja) * 2008-03-26 2009-10-01 コニカミノルタホールディングス株式会社 3次元撮像装置及び3次元撮像装置の校正方法
JP2014215039A (ja) * 2013-04-22 2014-11-17 日立建機株式会社 建設機械
WO2016047808A1 (ja) * 2015-09-30 2016-03-31 株式会社小松製作所 撮像装置の校正システム、作業機械及び撮像装置の校正方法
WO2016013691A1 (ja) * 2015-10-15 2016-01-28 株式会社小松製作所 位置計測システム及び位置計測方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11906641B2 (en) 2018-09-21 2024-02-20 Hitachi Construction Machinery Co., Ltd. Work machine
US20220002970A1 (en) * 2019-03-27 2022-01-06 Sumitomo Construction Machinery Co., Ltd. Excavator
CN113280736A (zh) * 2021-06-10 2021-08-20 雷沃工程机械集团有限公司 一种装载机铲斗位置检测方法及设备
CN113280736B (zh) * 2021-06-10 2022-07-22 雷沃工程机械集团有限公司 一种装载机铲斗位置检测方法及设备
WO2024101392A1 (ja) * 2022-11-11 2024-05-16 株式会社小松製作所 作業機械の校正システム及び作業機械の校正方法

Also Published As

Publication number Publication date
US11120577B2 (en) 2021-09-14
KR102076631B1 (ko) 2020-02-12
CN108700402A (zh) 2018-10-23
KR20180103868A (ko) 2018-09-19
JP2018128397A (ja) 2018-08-16
US20210209799A1 (en) 2021-07-08
DE112018000007T5 (de) 2018-09-27
JP6925816B2 (ja) 2021-08-25
CN108700402B (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
KR102076631B1 (ko) 위치 계측 시스템, 작업 기계, 및 위치 계측 방법
JP6777375B2 (ja) 作業機械の画像表示システム、作業機械の遠隔操作システム及び作業機械
KR101815269B1 (ko) 위치 계측 시스템 및 위치 계측 방법
CN109661494B (zh) 作业机械的检测处理装置及作业机械的检测处理方法
KR102089454B1 (ko) 계측 시스템, 작업 기계 및 계측 방법
JP6898816B2 (ja) 表示システム、表示方法、及び表示装置
JP2020197431A (ja) マップ生成システム及びマップ生成方法
WO2017119517A1 (ja) 作業機械の制御システム、作業機械及び作業機械の制御方法
KR102248026B1 (ko) 작업 기계의 계측 시스템, 작업 기계, 및 작업 기계의 계측 방법
US20220316188A1 (en) Display system, remote operation system, and display method
JP2022164713A (ja) 作業機械の画像表示システム及び作業機械の画像表示方法
WO2018026019A1 (ja) 施工管理システム
JP6895350B2 (ja) 作業機械の計測システム及び作業機械
JP2018112051A (ja) 作業機械の制御システム、作業機械、作業機械の制御方法及びナビゲーションコントローラ
JP2019183636A (ja) 作業機械の制御システム、作業機械、作業機械の制御方法及びナビゲーションコントローラ
WO2019049527A1 (ja) 作業機械の計測システム、作業機械、及び作業機械の計測方法
WO2023282203A1 (ja) 作業機械の制御システム、作業機械、及び作業機械の制御方法
WO2023282204A1 (ja) 作業機械の制御システム、作業機械、及び作業機械の制御方法
JP7065002B2 (ja) 作業機械
JP2020197045A (ja) 表示システムおよび表示方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187018968

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112018000007

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751153

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18751153

Country of ref document: EP

Kind code of ref document: A1