WO2018147335A1 - Biaxially oriented polypropylene film - Google Patents

Biaxially oriented polypropylene film Download PDF

Info

Publication number
WO2018147335A1
WO2018147335A1 PCT/JP2018/004242 JP2018004242W WO2018147335A1 WO 2018147335 A1 WO2018147335 A1 WO 2018147335A1 JP 2018004242 W JP2018004242 W JP 2018004242W WO 2018147335 A1 WO2018147335 A1 WO 2018147335A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polypropylene
biaxially oriented
less
oriented polypropylene
Prior art date
Application number
PCT/JP2018/004242
Other languages
French (fr)
Japanese (ja)
Inventor
久万 琢也
一馬 岡田
康平 山中
大倉 正寿
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2018544289A priority Critical patent/JP6512374B2/en
Priority to CN201880008950.5A priority patent/CN110248990A/en
Priority to KR1020197017282A priority patent/KR102455837B1/en
Publication of WO2018147335A1 publication Critical patent/WO2018147335A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/24Plastics; Metallised plastics based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/241Polyolefin, e.g.rubber
    • C09J7/243Ethylene or propylene polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/10Polypropylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene

Definitions

  • the present invention relates to a polypropylene film excellent in quality, excellent in surface smoothness, transparency and handling properties.
  • Polypropylene films are excellent in transparency, mechanical properties, electrical properties, etc., and are therefore used in various applications such as packaging, mold release, tape, cable wrapping and electrical applications such as capacitors.
  • it since it has excellent surface releasability and mechanical properties, it is suitably used as a release film or process film for various members such as plastic products, building materials and optical members.
  • the required characteristics for the release film are set as appropriate depending on the intended use, but due to the recent downsizing and higher precision of equipment, products to be protected may be required to be thin and high-grade. If the surface smoothness of the polypropylene film is poor, for example, when used as a release film for an optical member, the surface irregularities of the film may be transferred to the optical member and affect the visibility of the product. In some cases, fine polypropylene (PP) powder of several ⁇ m to several tens of ⁇ m is present on the surface of the axially oriented polypropylene film. PP powder is so small that it cannot be visually confirmed. However, in recent years, due to high precision and miniaturization of products, the irregularities of PP powder may be transferred to the product, leading to deterioration in quality and yield. I came.
  • PP polypropylene
  • PP powder is thought to be generated by scraping the film surface due to a slight speed difference between the transport roll and the film during the film forming process. Examples of suppressing such scraping are disclosed in Patent Documents 1 and 2, for example. It describes the improvement of abrasion resistance of polypropylene terephthalate film and polyester film.
  • An object of the present invention is to solve the above-described problems. That is, an object is to provide a polypropylene film that is excellent in quality, excellent in surface smoothness, and transparency handling properties.
  • the biaxially oriented polypropylene film of the present invention has an elastic modulus in the thickness direction at 23 ° C. of at least one side measured by a nanoindentation method of 2.0 GPa or more, And the sum of the tensile elasticity modulus of MD direction in 23 degreeC and TD direction is 6.6 GPa or less, It is characterized by the above-mentioned.
  • the biaxially oriented polypropylene film of the present invention is excellent in surface smoothness and transparency, and excellent in quality and handling properties, it is suitably used as an industrial film such as a base film for coating, a cover film, and a protective film. can do.
  • the biaxially oriented polypropylene film of the present invention has an elastic modulus in the thickness direction at 23 ° C. of at least one side measured by a nanoindentation method of 2.0 GPa or more.
  • the elastic modulus in the thickness direction is more preferably 2.3 GPa or more, further preferably 2.5 GPa or more, and further preferably 2.7 GPa or more. If the elastic modulus in the thickness direction is less than 2.0 GPa, the film surface may be scraped and PP powder may be generated due to a slight speed difference between the transport roll and the film during the film forming process, or the generation amount may increase. is there.
  • the upper limit is substantially about 5.0 GPa.
  • the raw material composition of the film and the laminated structure of the film are within the ranges described below, and the cast (melt-extruded resin sheeting process) conditions and longitudinal conditions during film formation
  • the stretching conditions are preferably within the range described below.
  • the biaxially oriented polypropylene film of the present invention has a sum of tensile elastic modulus in the MD direction and TD direction at 23 ° C. of 6.6 GPa or less.
  • the sum of the tensile elastic moduli is more preferably 3.0 to 6.6 GPa, still more preferably 3.5 to 6.4 GPa, still more preferably 4.0 to 6.2 GPa.
  • the film surface is scraped due to a slight speed difference between the transport roll and the film in the film transport process after biaxial stretching, or PP powder is generated, or the amount generated is May increase.
  • the stiffness of the film becomes weak and the handling property is lowered, so that it is preferably 3.0 GPa or more.
  • the raw material composition of the film and the laminated structure of the film are within the ranges described later, and the cast (melt-extruded resin sheeting process) conditions and longitudinal The stretching conditions are preferably within the range described below.
  • a direction parallel to the film forming direction is referred to as a film forming direction, a longitudinal direction, or an MD direction, and a direction perpendicular to the film forming direction in the film plane is referred to as a width direction or a TD direction.
  • fine PP powder of several ⁇ m to several tens of ⁇ m may exist on the surface of a conventional biaxially oriented polypropylene film.
  • the PP powder is very small so that it cannot be visually confirmed, in recent years, there has been a case where the PP powder leads to a decrease in quality and yield due to high precision and miniaturization of the product.
  • PP powder is generated by scraping the film surface due to a slight speed difference between the transport roll and the film during the film forming process.
  • the sum of the elastic modulus in the thickness direction and the tensile elastic modulus is within the above range.
  • the surface of the film has a high elastic modulus in the thickness direction and a tensile elastic modulus lower than a certain value. It was found that the film was hard and the film was stretched to follow the speed of the transport roll, and it was possible to reduce rubbing and suppress PP powder.
  • the biaxially oriented polypropylene film of the present invention preferably has a maximum height roughness Sz of 1000 nm or less on both sides.
  • the thickness is more preferably 10 to 800 nm, still more preferably 100 to 700 nm.
  • the thickness is more preferably 5 to 500 nm, further preferably 5 to 300 nm, and further preferably 5 to 200 nm.
  • the maximum height roughness Sz exceeds 1000 nm, the unevenness of the film may be transferred to the surface of the product when used as a base film or a cover film. From the viewpoint of suppressing uneven transfer to a product, the maximum height roughness Sz is preferably as small as possible.
  • the raw material composition of the film and the laminated structure of the film are set in the range described later, and the cast (melt-extruded resin sheeting process) condition and the longitudinal stretching condition in film formation are described later. It is preferable that the ⁇ crystal of the cast sheet is reduced.
  • the cast sheet of polypropylene spherulites derived from ⁇ crystals and spherulites derived from ⁇ crystals are formed.
  • the ⁇ crystal-derived spherulites differ from the ⁇ crystal-derived spherulites in stretchability, and form a coarse crater structure after stretching, which may impair the smoothness of the film.
  • the biaxially oriented polypropylene film of the present invention preferably has a maximum height roughness Sz1 of at least one side of 300 nm or less. More preferably, it is 5 to 250 nm, and still more preferably 5 to 200 nm.
  • Sz1 the maximum height roughness of one surface (smooth surface)
  • Sz2 the maximum height roughness of the other surface (rough surface)
  • Sz1 ⁇ Sz2 the maximum height roughness of both surfaces
  • the maximum height roughness Sz1 of at least one surface is 300 nm or less, when used as a base film or a cover film in applications where the surface smoothness of the film is important, the surface shape unevenness transfer to the product is suppressed. It is possible. From the viewpoint of suppressing uneven transfer to a product, the maximum height roughness Sz is preferably as small as possible. However, if it is too small, the surface of the film is too smooth, and handling properties and winding are difficult when transporting or winding the formed film. In some cases, the take-off property is lowered or PP powder is likely to be generated due to rubbing with the transport roll. In order to make Sz within the above range, the raw material composition of the film and the laminated structure of the film are within the ranges described below, and the casting conditions and longitudinal stretching conditions during film formation are within the ranges described below. Is preferably reduced.
  • the biaxially oriented polypropylene film of the present invention preferably has a static friction coefficient ⁇ s of 0.6 or less. More preferably, it is 0.55 or less, More preferably, it is 0.50 or less. If the static friction coefficient ⁇ s exceeds 0.6, the film surface may be scraped off due to a slight speed difference between the transport roll and the film during the film forming process, and PP powder may be generated or the generation amount may increase. From the viewpoint of PP powder suppression, the static friction coefficient ⁇ s is preferably as small as possible, but the lower limit is substantially about 0.2.
  • the raw material composition of the film and the laminated structure of the film are in the ranges described later, and in particular, at least one surface layer of the laminated structure (hereinafter referred to as surface layer (I)). It is preferable that the raw material composition is within the range described below.
  • the biaxially oriented polypropylene film of the present invention preferably has a haze of 1% or less. More preferably, it is 0.9% or less, More preferably, it is 0.8% or less, More preferably, it is 0.7% or less.
  • the haze exceeds 1%, the surface roughness of the film surface is large, and the surface shape may be transferred to the adherend.
  • defect detection may not be performed in a state of being bonded to the product.
  • the haze is preferably as low as possible from the viewpoint of transparency, but the lower limit is substantially about 0.05%.
  • the raw material composition of the film and the laminated structure of the film are set in a range described later to prevent deterioration of transparency due to particles and the like, and the casting conditions and longitudinal stretching conditions during film formation are described later. It is preferable that the ⁇ crystal of the cast sheet is reduced.
  • the number of fish eyes is preferably 20 / m 2 or less.
  • the number of fish eyes is more preferably 10 / m 2 or less, and still more preferably 5 / m 2 or less. If the number of fish eyes exceeds 20 / m 2 , the yield may decrease when used as a protective film or a base film for production of a product such as a display member that requires high quality.
  • the composition of the raw materials, the adjustment method, and the laminated structure of the film are within the ranges described later, and the additive components in the raw materials and heat deterioration may cause fish eyes. It is effective to reduce the amount of resin used. Moreover, it is effective to set the conditions during film formation within the range described later, and to remove foreign substances by filtration and to reduce the staying part of the resin before the raw material is melted into a sheet.
  • the thickness of the biaxially oriented polypropylene film of the present invention is appropriately adjusted depending on the application and is not particularly limited, but is preferably 5 ⁇ m or more and 100 ⁇ m or less. When the thickness is less than 5 ⁇ m, handling may be difficult, and when it exceeds 100 ⁇ m, the amount of resin may increase and productivity may decrease.
  • the biaxially oriented polypropylene film of the present invention can maintain moderate strength (Young's modulus) and handleability even when the thickness is reduced. In order to make use of such characteristics, the thickness is more preferably 5 ⁇ m or more and 40 ⁇ m or less, further preferably 5 ⁇ m or more and 30 ⁇ m or less, and most preferably 5 ⁇ m or more and 25 ⁇ m or less.
  • the thickness can be adjusted by the screw rotation speed of the extruder, the width of the unstretched sheet, the film forming speed, the stretch ratio, and the like within a range not deteriorating other physical properties.
  • the biaxially oriented polypropylene film of the present invention is a film mainly composed of polypropylene.
  • the “main component” in the present application means that the proportion of the specific component in all the components is 50% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, More preferably, it is 96 mass% or more, More preferably, it is 97 mass% or more, More preferably, it is 98 mass% or more.
  • polypropylene raw material A it is preferable to use at least two types of polypropylene raw materials (polypropylene raw material A and polypropylene raw material B).
  • polypropylene raw material A it is preferable to use a polypropylene material having high crystallinity in order to improve the elastic modulus in the thickness direction of the film.
  • polypropylene raw material B polypropylene having low crystallinity in order to reduce the tensile elastic modulus of the film. It is preferable to use raw materials.
  • the polypropylene raw material A is preferably a polypropylene having a cold xylene soluble part (hereinafter CXS) of 4% by mass or less and a mesopentad fraction of 0.95 or more. If these conditions are not satisfied, the film forming stability may be inferior, or the elastic modulus in the thickness direction of the film may be lowered.
  • CXS cold xylene soluble part
  • the mesopentad fraction of the polypropylene raw material A is preferably 0.93 or more, more preferably 0.97 or more.
  • the mesopentad fraction is an index indicating the stereoregularity of the crystal phase of polypropylene measured by a nuclear magnetic resonance method (NMR method). The higher the numerical value, the higher the crystallinity, the higher the melting point, and the higher the temperature. It is preferable because it is suitable for use.
  • the upper limit of the mesopentad fraction is not particularly specified.
  • the polypropylene raw material A more preferably has a melt flow rate (MFR) of 1 to 10 g / 10 minutes (230 ° C., 21.18 N load), particularly preferably 2 to 5 g / 10 minutes (230 ° C., 21.18 N).
  • MFR melt flow rate
  • the range of (load) is preferable from the viewpoint of improving the film forming property and the elastic modulus in the thickness direction of the film.
  • a method of controlling the average molecular weight or the molecular weight distribution is employed.
  • the polypropylene raw material A is mainly composed of a propylene homopolymer, but may contain other unsaturated hydrocarbon copolymerization components or the like within a range not impairing the object of the present invention.
  • the coalescence may be blended.
  • the copolymerization amount or blend amount is preferably less than 1 mol%
  • the polypropylene raw material B is preferably a polypropylene raw material having good compatibility with the above-mentioned polypropylene raw material A and low crystallinity in order to improve flexibility.
  • a polypropylene raw material B amorphous polypropylene, low stereoregular polypropylene, syndiotactic polypropylene, ⁇ -olefin copolymer, random copolymer, block polypropylene, etc. can be used, but excellent with a small addition amount. Therefore, amorphous polypropylene and low stereoregular polypropylene are particularly preferable.
  • the amorphous polypropylene preferably used as the polypropylene raw material B is preferably mainly composed of a polypropylene polymer having mainly atactic stereoregularity, specifically, a homopolymer or a copolymer with an ⁇ -olefin. Can be mentioned. In particular, the latter, that is, an amorphous polypropylene- ⁇ -olefin copolymer is preferred.
  • the amorphous polypropylene can be produced using a specific metallocene catalyst, or can be produced as a by-product of isotactic polypropylene during homopolypropylene polymerization. Since the glass transition temperature is lower than that of general polypropylene, it can be extracted as a boiling n-heptane (or xylene) soluble component of homopolypropylene. Alternatively, crystalline polypropylene can be polymerized independently by changing the catalyst and polymerization conditions.
  • the amorphous polypropylene preferably used in the present invention can be used without particular limitation as long as it is produced by a conventionally known production method. Commercially available products such as “Tufselen” (registered trademark) manufactured by Sumitomo Chemical Co., Ltd. can be appropriately used as the amorphous polypropylene having the above-described characteristics.
  • Examples of such amorphous polypropylene- ⁇ -olefin copolymers using ⁇ -olefins include propylene / ethylene copolymers, propylene / ethylene / 1-butene copolymers, and propylene-1-butene copolymers. , Propylene / ethylene / cyclic olefin copolymer, propylene / ethylene / butadiene copolymer, and the like.
  • the low stereoregular polypropylene preferably used as the polypropylene raw material B is preferably a propylene homopolymer produced using a metallocene catalyst as a polymerization catalyst.
  • the melting point of the low stereoregular polypropylene is 100 ° C. or less, more preferably 60 to 90 ° C., and particularly preferably 65 to 85 ° C.
  • the weight average molecular weight is preferably 40,000 to 200,000, and the molecular weight distribution Mw / Mn is preferably 1 to 3 (Mw: weight average molecular weight, Mn: number average molecular weight).
  • Commercially available products such as “El Modu” (registered trademark) manufactured by Idemitsu Kosan Co., Ltd. can be appropriately used as the low stereoregular polypropylene having the above-described characteristics.
  • the content of the ethylene component contained in the polymer constituting the film is preferably 10% by mass or less. More preferably, it is 5 mass% or less, More preferably, it is 3 mass% or less.
  • the greater the ethylene component content the lower the crystallinity, and the easier it is to improve flexibility and transparency. However, when the ethylene component content exceeds 10% by mass, the heat resistance decreases and fish eyes May be more likely to occur.
  • the polypropylene raw material includes various additives, for example, a crystal nucleating agent, an antioxidant, a thermal stabilizer, a slipping agent, an antistatic agent, an antiblocking agent, a filler, within a range that does not impair the purpose of the present invention.
  • various additives for example, a crystal nucleating agent, an antioxidant, a thermal stabilizer, a slipping agent, an antistatic agent, an antiblocking agent, a filler, within a range that does not impair the purpose of the present invention.
  • Viscosity modifiers, anti-coloring agents, and the like can also be included.
  • the antioxidant is a phenolic compound having steric hindrance, and at least one of them is preferably a high molecular weight type having a molecular weight of 500 or more.
  • the total content of these antioxidants is preferably in the range of 0.03 to 1.0 mass% with respect to the total amount of polypropylene.
  • a polymer may deteriorate in an extrusion process and a film may color, or it may be inferior to long-term heat resistance.
  • a more preferable content is 0.1 to 0.9% by mass, particularly preferably 0.2 to 0.8% by mass.
  • the biaxially oriented polypropylene film of the present invention is obtained by biaxially stretching using the above-described raw materials.
  • the biaxial stretching method can be obtained by any of the inflation simultaneous biaxial stretching method, the stenter simultaneous biaxial stretching method, and the stenter sequential biaxial stretching method.
  • the biaxially oriented polypropylene film of the present invention preferably has a laminated structure of at least two layers from the viewpoint of suppressing PP powder, and from the viewpoint of achieving both transparency and slipperiness.
  • At least one surface layer (surface layer (I)) of the laminated structure preferably contains 96% by mass or more of polypropylene raw material A from the viewpoint of tensile rigidity.
  • the content of the polypropylene raw material A in the surface layer (I) is more preferably 97% by mass or more, and still more preferably 98% by mass or more.
  • the content of the polypropylene raw material A in the surface layer (I) is less than 96% by mass, the elastic modulus in the thickness direction of the film is lowered, and when there are many additive components having low heat resistance, slipperiness is exhibited. May decrease.
  • the biaxially oriented polypropylene film of the present invention has at least one layer (hereinafter referred to as a base layer (II)) of the laminated structure, from the viewpoint of improving the flexibility by reducing the tensile modulus and the polypropylene raw material B.
  • the content of the polypropylene raw material B in the base layer (II) is preferably 5 to 100% by mass. More preferably, it is 10 to 100% by mass, and further preferably 15 to 100%. If the content of the polypropylene raw material B in the base layer (II) is less than 5% by mass, the tensile elastic modulus of the film becomes too high and PP powder may be easily generated.
  • the thickness d of the surface layer (I) is preferably 0.1 to 2.0 ⁇ m. More preferably, it is 0.2 to 1.5 ⁇ m, more preferably 0.3 to 1.0 ⁇ m, and still more preferably 0.3 to 0.8 ⁇ m. If the thickness d of the surface layer (I) exceeds 2.0 ⁇ m, the tensile elastic modulus of the film becomes too large and PP powder may be easily generated. If the thickness is less than 0.1 ⁇ m, the elastic modulus in the thickness direction of the film is insufficient, PP powder is likely to be generated, lamination accuracy becomes unstable, and thickness unevenness of the surface layer (I) may increase.
  • the thickness d of the surface layer (I) can be adjusted by the screw rotation speed of the extruder, the width of the unstretched sheet, the film forming speed, the stretch ratio, and the like within a range not deteriorating other physical properties.
  • the ratio of the surface layer (I) to the thickness of the entire film is preferably 1 to 15%. More preferably, it is 1 to 10%, and further preferably 1 to 5%. If the ratio of the surface layer (I) exceeds 15%, the tensile elastic modulus of the film becomes too large, and PP powder may be easily generated. If it is less than 1%, the elastic modulus in the thickness direction of the film is insufficient, PP powder is likely to be generated, lamination accuracy becomes unstable, and thickness unevenness of the surface layer (I) may increase.
  • the thickness d of the surface layer (I) can be adjusted by the screw rotation speed of the extruder, the width of the unstretched sheet, the film forming speed, the stretch ratio, and the like within a range not deteriorating other physical properties.
  • the at least one surface layer contains easy-slip particles or a resin having a melting point of 180 ° C. or more, particularly the melting point. More preferably, it contains a resin at 180 ° C. or higher.
  • the content of the easy-slip particles in the raw material of the layer containing the easy-slip particles is preferably 0.01% by mass or more and less than 1.0% by mass. If the content is less than 0.01% by mass, the effect of reducing the friction coefficient may not be obtained. If the content is 1.0% by mass or more, haze may increase and transparency may decrease.
  • the content is more preferably 0.05% by mass or more and less than 0.9% by mass, and further preferably 0.1% by mass or more and less than 0.8% by mass.
  • the biaxially oriented polypropylene film of the present invention preferably contains a resin having a melting point of 180 ° C. or higher from the viewpoint of reducing the friction coefficient.
  • the melting point is more preferably 180 ° C. or higher and 240 ° C. or lower, and further preferably 200 ° C. or higher and 230 ° C. or lower.
  • the film is composed of at least two layers of the surface layer (I) and the base layer (II), and the surface layer (I) preferably contains a resin having a melting point of 180 ° C. or higher.
  • a resin having a melting point of 180 ° C. or higher is present in the surface layer (I)
  • it can be melted and dispersed in polypropylene in the later-described melt extrusion process, and the above-described protrusion can be formed without deformation in the stretching process.
  • Examples of the olefin resin containing 4-methylpentene-1 unit include “TPX” (registered trademark) DX310, “TPX” (registered trademark) DX231, “TPX” (registered trademark) manufactured by Mitsui Chemicals, Inc.
  • TPX registered trademark
  • DX310 TPX
  • TPX231 TPX
  • TPX registered trademark
  • MX004 MX004.
  • the content of the olefin resin comprising 4-methylpentene-1 unit in the resin composition of the surface layer (I) is 0.1 to 5% by mass. It is preferably 0.1 to 4% by mass, more preferably 0.1 to 3% by mass, and still more preferably 0.1 to 2.5% by mass.
  • the protrusions When the content of the olefin-based resin containing 4-methylpentene-1 unit is more than 5% by mass, the protrusions may be mountainous in the longitudinal direction, and when used as a base film or a cover film, When it is difficult to wind up, such as when unevenness is transferred to the surface of the product or when the biaxially oriented polypropylene film of the present invention is coated with an adhesive layer and used as a protective film, there are defects such as air biting May be more likely to occur. When the content is less than 0.1% by mass, the frequency of the formed protrusions becomes too low, which does not contribute to the improvement of slipperiness and the winding property may be lowered.
  • a high melting point resin in the surface layer of the biaxially oriented polypropylene film of the present invention, in order to make the projections formed on the film surface fine, blending conditions of the high melting point resin and the polypropylene resin, and It is very important to control the melt extrusion conditions during film formation.
  • the raw material used for the surface layer of the biaxially oriented polypropylene film of the present invention is a blend of a high melting point resin and a polypropylene resin, but a method of kneading in advance with a biaxial extruder to form a chip is preferred.
  • the kneading temperature is preferably higher than the melting point of the high melting point resin from the viewpoint of dispersion uniformity, more preferably 10 ° C. or higher, and further preferably 20 ° C. or higher.
  • the kneading temperature is lower than the melting point of the high melting point resin, the dispersibility may be lowered and the protrusions may be coarse.
  • the upper limit of the kneading temperature is not particularly defined, but if it is too high, thermal decomposition of the polypropylene resin may occur, and the upper limit is 280 ° C.
  • the extrusion temperature during melt extrusion of the biaxially oriented polypropylene film of the present invention is preferably not higher than the melting point of the high melting point resin. More preferably, it is 10 degrees C or less, and 20 degrees C or less is still more preferable.
  • melt extrusion is performed at a temperature equal to or higher than the melting point of the high-melting resin, the high-melting resin uniformly and finely dispersed in the polypropylene resin may be melted and coalesced, or may be elongated for a long time due to shear flow during extrusion. As a result, the projections on the film surface may become coarse.
  • the lower limit of the melting temperature is not particularly defined, but if it is too low, an increase in the filtration pressure during extrusion or unmelted polypropylene resin may occur, and 200 ° C. is the lower limit.
  • the above-mentioned easy-sliding particles or the resin having a melting point of 180 ° C. or higher preferably contains at least one of them depending on the purpose and application, but may contain both.
  • the lamination thickness ratio is preferably 1/8/1 to 1/50/1.
  • the surface temperature of the casting drum is preferably 10 to 40 ° C. from the viewpoint of transparency. Moreover, it does not matter as a 2 layer laminated structure of A layer / B layer.
  • the lip temperature of the die it is preferable to set the lip temperature of the die to be 20 to 40 ° C. lower than the melt extrusion temperature, and more preferably 30 to 40 ° C. It has been found that by lowering the lip temperature, the shear stress of the molten polymer in contact with the inner wall of the die is increased, the orientation of the film surface layer is particularly increased, and the elastic modulus in the thickness direction is increased.
  • the non-casting drum surface of the film is further forcibly cooled to suppress the formation of ⁇ crystals on the non-casting drum surface, thereby improving the smoothness and transparency of the film.
  • the cooling method of the non-casting drum surface may be any of air cooling, press roll method, underwater casting method, etc., but it is simple as equipment, easy to control surface roughness, and smooth. Air cooling with good air is preferable.
  • the clip is heat-fixed at a temperature of 100 ° C. or more and less than 160 ° C. while being relaxed at a relaxation rate of 2 to 20% in the width direction while holding the tension in the width direction with the clip.
  • the film is guided to the outside of the tenter through a cooling process at 80 to 100 ° C. while being held tightly, the clip at the end of the film is released, the film edge is slit in the winder process, and the film product roll is wound up.
  • the biaxially oriented polypropylene film obtained as described above can be used in various applications such as packaging films, surface protective films, process films, hygiene products, agricultural products, building products, and medical products. Since it is excellent in smoothness and quality, it can be preferably used as a process film such as a surface protective film and a process film for solution casting, and a release film.
  • the process film for solution casting refers to a support when casting a polymer solution. It forms into a film by peeling from a process film through the solution film casted on the process film for solution casting, or a drying or washing process.
  • a release film refers to a film used for the purpose of preventing scratches and preventing contamination in the process of manufacturing and transferring optical films, adhesive films, semiconductors, electronic parts, and the like.
  • acrylic adhesives are preferably used in consideration of excellent transparency, weather resistance, heat resistance, moist heat resistance, substrate adhesion, and the like.
  • Specific examples of the acrylic adhesive include “SK Dyne” (registered trademark) 1310, 1435, SK Dyne 1811L, SK Dyne 1888, SK Dyne 2094, SK Dyne 2096, SK Dyne 2137, SK manufactured by Soken Chemical Co., Ltd.
  • Dyne 3096, SK dyne 1852, and the like are preferable examples.
  • the film of the present invention is bonded to a product, and when the volatile component from the adhesive layer becomes an obstacle to lowering the degree of reduced pressure, such as when used in a process that requires reduced pressure such as vapor deposition or sputtering.
  • a known technique can be used as the method for setting the thickness of the adhesive layer in the above range, and it can be controlled by adjusting the solid content concentration of the solution in the adhesive layer and adjusting the coating thickness in various coating methods. If the thickness of the adhesive layer is too thin, stable coating may be difficult, or the adhesive strength may be too low to adhere to the adherend, so about 0.1 ⁇ m is the lower limit.
  • the composition and thickness of the adhesive layer are set within the ranges described below, and the raw material composition and film forming conditions of the film are set within the ranges described below, and the surface roughness of the base film is controlled. It is effective. If the peel force is less than 0.01 N / 25 mm, the adhesive film may be peeled off during transportation after being bonded to the adherend, so the lower limit is about 0.01 N / 25 mm.
  • the coating agent can be used by dissolving additives such as the above-mentioned adhesive and curing agent in a solvent.
  • the solvent can be appropriately adjusted according to the drying temperature in the coater, the viscosity of the coating, and the like.
  • At least one solvent selected from -methoxy-2-propanol, propylene glycol monomethyl ether, cyclohexanone, toluene, ethyl acetate, butyl acetate, isopropyl acetone, methyl ethyl ketone, methyl isobutyl ketone, diacetyl acetone, and acetyl acetone can be used.
  • the drying temperature is appropriately set depending on the heat resistance of the base film and the boiling point of the solvent, but is preferably 60 to 170 ° C. If the temperature is less than 60 ° C., the adhesive layer may not be sufficiently cured and may be trimmed. When it exceeds 170 degreeC, a base film may deform
  • the drying time is preferably 15 to 60 seconds. If it is less than 15 seconds, curing of the pressure-sensitive adhesive layer may not proceed sufficiently, and the film may be backed up. Exceeding 60 seconds is not preferable because productivity decreases.
  • the adhesive film obtained as described above can be used in various applications such as packaging films, surface protective films, process films, sanitary products, agricultural products, building products, and medical products. Since it is excellent, it can be preferably used as a surface protective film and a process film.
  • EIT Elastic modulus in the thickness direction measured by the nanoindentation method
  • ENT-2100 manufactured by Elionix Co., Ltd.
  • the measurement was performed according to the method defined in ISO 14577 (2002).
  • One drop of “Aron Alpha” (registered trademark) professional impact resistance manufactured by Toagosei Co., Ltd. is applied to the biaxially oriented polypropylene film, and the biaxially oriented polypropylene film is fixed to a dedicated sample fixing base via an instantaneous adhesive. Then, the measurement was performed using the surface layer side as the measurement surface.
  • Measurement mode Load-unloading test Maximum load: 0.5 mN Holding time when the maximum load is reached: 1 second Loading speed, unloading speed: 0.05 mN / sec.
  • the number of PP powders is 3 or less
  • A It is clean and is equivalent to before applying a load.
  • B Weak unevenness is confirmed.
  • C Strong unevenness is confirmed.
  • Example 1 90 parts by mass of crystalline polypropylene (PP (a)) (manufactured by Prime Polymer Co., Ltd., TF850H, MFR: 2.9 g / 10 min, mesopentad fraction: 0.94, melting point: 164 ° C.), 4-methyl- 1-Pentene polymer (Mitsui Chemicals Co., Ltd., MX004) is fed from a measuring hopper to a twin screw extruder so that 10 parts by mass is mixed at this ratio, melt kneaded at 260 ° C., and strand It was discharged from the die in a solid shape, cooled and solidified in a water bath at 25 ° C., and cut into chips to obtain a polypropylene raw material (1) for the A layer.
  • PP (a) crystalline polypropylene
  • MX004 4-methyl- 1-Pentene polymer
  • polypropylene raw material (1) and 80 parts by mass of the crystalline PP (a) as a polypropylene raw material for the surface layer (A) are dry-blended and supplied to a uniaxial melt extruder for the A layer
  • L-MODU (registered trademark) S901 (MFR 50 g / 10 min, melting point: 80 ° C.) and 10 parts by mass are dry-blended and supplied to a uniaxial melt extruder for the B layer, melting temperature 240 ° C. Then, melt extrusion is performed at a lip temperature of 200 ° C., and foreign matter is removed with a 10 ⁇ m cut sintered filter. Then, the feed block type A / B / A composite T-die is 1/28 / The laminated in a thickness ratio, discharged into a casting drum controlled surface temperature of 25 ° C., was brought into close contact with a casting drum by an air knife.
  • the air on the non-cooled drum surface of the sheet on the casting drum was cooled by jetting compressed air at a temperature of 30 ° C. and a pressure of 0.3 MPa to obtain an unstretched sheet.
  • the sheet was preheated to 147 ° C. using a ceramic roll, and stretched 4.0 times in the longitudinal direction of the film between rolls provided with a peripheral speed difference.
  • the temperature of the upstream side roll was 145 ° C.
  • the temperature of the downstream side fast roll was 70 ° C.
  • the end part was introduced into a tenter type stretching machine by holding it with a clip, preheated at 170 ° C.
  • Example 3 a biaxially oriented polypropylene film having a thickness of 24 ⁇ m was obtained in the same manner as in Example 1 except that the thickness ratio during lamination was 1/38/1.
  • the physical properties and evaluation results of the obtained film are shown in Table 1.
  • Example 4 In Example 1, a biaxially oriented polypropylene film having a thickness of 24 ⁇ m was obtained in the same manner as in Example 1 except that the thickness ratio during lamination was 1/10/1. The physical properties and evaluation results of the obtained film are shown in Table 1.
  • Example 5 In Example 1, the temperature of the casting drum was set to 35 ° C., the preheating temperature for longitudinal stretching was set to 142 ° C., and a biaxially oriented polypropylene film having a thickness of 24 ⁇ m was obtained in the same manner as in Example 1. The physical properties and evaluation results of the obtained film are shown in Table 1.
  • Example 2 As a polypropylene raw material for the core layer (B), 100 parts by mass of crystalline polypropylene (PP (a)) was supplied to the single-layer melt extruder for the B layer (the same raw material for the surface layer and the core layer) Otherwise, a biaxially oriented polypropylene film having a thickness of 24 ⁇ m was obtained in the same manner as in Example 2. The physical properties and evaluation results of the obtained film are shown in Table 1.
  • Example 2 In Example 1, 50 parts by mass of Sumitomo Chemical's polypropylene resin FSX20L8 and 50 parts by mass of “L-MODU” S901 made by Idemitsu Kosan Co., Ltd. were dry blended as the polypropylene raw material for the core layer (B). A biaxially oriented polypropylene film having a thickness of 24 ⁇ m was obtained in the same manner as in Example 1 except that it was supplied to a uniaxial melt extruder for the B layer. The physical properties and evaluation results of the obtained film are shown in Table 1.
  • Example 3 (Comparative Example 3)
  • the thickness ratio at the time of lamination was 1/258/1, and a biaxially oriented polypropylene film having a thickness of 24 ⁇ m was obtained in the same manner as in Example 1 except that.
  • the physical properties and evaluation results of the obtained film are shown in Table 1.
  • Example 4 (Comparative Example 4)
  • the thickness ratio at the time of lamination was set to 1 / 7.6 / 1
  • a biaxially oriented polypropylene film having a thickness of 24 ⁇ m was obtained in the same manner as in Example 1 except that.
  • the physical properties and evaluation results of the obtained film are shown in Table 1.
  • Example 5 (Comparative Example 5)
  • the lip temperature at the time of melt extrusion was 240 ° C.
  • the preheating temperature for longitudinal stretching was 135 ° C.
  • a biaxially oriented polypropylene film having a thickness of 24 ⁇ m was obtained in the same manner as in Example 3.
  • the physical properties and evaluation results of the obtained film are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Adhesive Tapes (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

Provided is a biaxially oriented polypropylene film in which the modulus of elasticity of at least one surface in the thickness direction at 23°C is 2.0 GPa or more as measured by nanoindentation and the sum of the tensile modulus of elasticity in the MD direction and the TD direction at 23°C is 6.6 GPa or less. The present invention provides a polypropylene film having excellent surface smoothness, transparency, quality, and handling properties.

Description

二軸配向ポリプロピレンフィルムBiaxially oriented polypropylene film
 本発明は、品位に優れ、表面平滑性、透明性、ハンドリング性に優れたポリプロピレンフィルムに関する。 The present invention relates to a polypropylene film excellent in quality, excellent in surface smoothness, transparency and handling properties.
 ポリプロピレンフィルムは、透明性、機械特性、電気特性等に優れるため、包装用途、離型用途、テープ用途、ケーブルラッピングやコンデンサをはじめとする電気用途等の様々な用途に用いられている。特に、表面の離型性や機械特性に優れることから、プラスチック製品や建材や光学部材など、様々な部材の離型用フィルムや工程フィルムとして好適に用いられる。 Polypropylene films are excellent in transparency, mechanical properties, electrical properties, etc., and are therefore used in various applications such as packaging, mold release, tape, cable wrapping and electrical applications such as capacitors. In particular, since it has excellent surface releasability and mechanical properties, it is suitably used as a release film or process film for various members such as plastic products, building materials and optical members.
 離型用フィルムへの要求特性はその使用用途によって適宜設定されるが、近年の機器の小型化、高精度化により、保護する対象となる製品にも薄膜かつ高品位が求められる場合があり、ポリプロピレンフィルムの表面平滑性が悪いと、たとえば光学用部材の離型フィルムとして用いたときに、フィルムの表面凹凸が光学用部材に転写して製品の視認性に影響を及ぼす場合があるが、二軸配向ポリプロピレンフィルムの表面には、数μm~数十μmの微小なポリプロピレン(PP)粉が存在する場合があった。PP粉は目視では確認できないほど非常に小さいものであるが、近年、製品の高精度化や小型化などにより、該PP粉の凹凸が製品に転写し、品位や歩留まりの低下に繋がる場合が出てきた。 The required characteristics for the release film are set as appropriate depending on the intended use, but due to the recent downsizing and higher precision of equipment, products to be protected may be required to be thin and high-grade. If the surface smoothness of the polypropylene film is poor, for example, when used as a release film for an optical member, the surface irregularities of the film may be transferred to the optical member and affect the visibility of the product. In some cases, fine polypropylene (PP) powder of several μm to several tens of μm is present on the surface of the axially oriented polypropylene film. PP powder is so small that it cannot be visually confirmed. However, in recent years, due to high precision and miniaturization of products, the irregularities of PP powder may be transferred to the product, leading to deterioration in quality and yield. I came.
 PP粉は製膜工程中の搬送ロールとフィルム間のわずかな速度差によりフィルム表面が削れて発生するものと考えられるが、このような削れを抑制する例として、たとえば特許文献1および2には、ポリプロピレンテレフタレート系フィルムやポリエステルフィルムの耐削れ性改善について記載されている。 PP powder is thought to be generated by scraping the film surface due to a slight speed difference between the transport roll and the film during the film forming process. Examples of suppressing such scraping are disclosed in Patent Documents 1 and 2, for example. It describes the improvement of abrasion resistance of polypropylene terephthalate film and polyester film.
特開平11-152351号公報JP-A-11-152351 特開平11-269283号公報JP-A-11-269283
 ポリプロピレン樹脂は他の樹脂に比べ硬度が低く、傷がつきやすいため、特許文献1~2に開示された手法で削れを抑制し品位を改善することは困難であった。本発明の課題は、上記した問題点を解決することにある。すなわち、品位に優れ、表面平滑性、透明性ハンドリング性に優れたポリプロピレンフィルムを提供することにある。 Polypropylene resin has a lower hardness than other resins and is easily scratched. Therefore, it has been difficult to improve the quality by suppressing scraping by the methods disclosed in Patent Documents 1 and 2. An object of the present invention is to solve the above-described problems. That is, an object is to provide a polypropylene film that is excellent in quality, excellent in surface smoothness, and transparency handling properties.
 上述した課題を解決し、目的を達成するために、本発明の二軸配向ポリプロピレンフィルムは、ナノインデンテーション法により測定した少なくとも片面の23℃における厚み方向の弾性率が2.0GPa以上であり、かつ、23℃におけるMD方向とTD方向の引張弾性率の和が6.6GPa以下であることを特徴とする。 In order to solve the above-described problems and achieve the object, the biaxially oriented polypropylene film of the present invention has an elastic modulus in the thickness direction at 23 ° C. of at least one side measured by a nanoindentation method of 2.0 GPa or more, And the sum of the tensile elasticity modulus of MD direction in 23 degreeC and TD direction is 6.6 GPa or less, It is characterized by the above-mentioned.
 本発明の二軸配向ポリプロピレンフィルムは、表面平滑性、透明性に優れ、品位やハンドリング性に優れることから、塗工用の基材フィルム、カバーフィルム、保護フィルムなどの工業用フィルムとして好適に使用することができる。 Since the biaxially oriented polypropylene film of the present invention is excellent in surface smoothness and transparency, and excellent in quality and handling properties, it is suitably used as an industrial film such as a base film for coating, a cover film, and a protective film. can do.
 本発明の二軸配向ポリプロピレンフィルムは、ナノインデンテーション法により測定した少なくとも片面の23℃における厚み方向の弾性率が2.0GPa以上である。厚み方向の弾性率はより好ましくは2.3GPa以上、さらに好ましくは2.5GPa以上、さらに好ましくは2.7GPa以上である。厚み方向の弾性率が2.0GPa未満であると、製膜工程中に搬送ロールとフィルム間のわずかな速度差によりフィルム表面が削れてPP粉が発生する、あるいはその発生量が増加する場合がある。PP粉抑制の観点からは厚み方向の弾性率は高いほど好ましいが、実質的には5.0GPa程度が上限である。厚み方向の弾性率を上記範囲とするためには、フィルムの原料組成やフィルムの積層構成を後述する範囲とし、また、フィルム製膜時のキャスト(溶融押出した樹脂のシート化工程)条件や縦延伸条件を後述する範囲内とすることが好ましい。 The biaxially oriented polypropylene film of the present invention has an elastic modulus in the thickness direction at 23 ° C. of at least one side measured by a nanoindentation method of 2.0 GPa or more. The elastic modulus in the thickness direction is more preferably 2.3 GPa or more, further preferably 2.5 GPa or more, and further preferably 2.7 GPa or more. If the elastic modulus in the thickness direction is less than 2.0 GPa, the film surface may be scraped and PP powder may be generated due to a slight speed difference between the transport roll and the film during the film forming process, or the generation amount may increase. is there. The higher the elastic modulus in the thickness direction, the better from the viewpoint of suppressing PP powder, but the upper limit is substantially about 5.0 GPa. In order to make the elastic modulus in the thickness direction within the above range, the raw material composition of the film and the laminated structure of the film are within the ranges described below, and the cast (melt-extruded resin sheeting process) conditions and longitudinal conditions during film formation The stretching conditions are preferably within the range described below.
 本発明の二軸配向ポリプロピレンフィルムは、23℃におけるMD方向とTD方向の引張弾性率の和が6.6GPa以下である。引張弾性率の和はより好ましくは3.0~6.6GPa、さらに好ましくは3.5~6.4GPa、さらに好ましくは4.0~6.2GPaである。引張弾性率の和が6.6GPaを超えると、二軸延伸後のフィルム搬送工程で、搬送ロールとフィルム間のわずかな速度差によりフィルム表面が削れてPP粉が発生する、あるいはその発生量が増加する場合がある。一方、小さすぎるとフィルムのコシが弱くなってハンドリング性が低下するため、3.0GPa以上であることが好ましい。引張弾性率の和を上記範囲とするためには、フィルムの原料組成やフィルムの積層構成を後述する範囲とし、また、フィルム製膜時のキャスト(溶融押出した樹脂のシート化工程)条件や縦延伸条件を後述する範囲内とすることが好ましい。 The biaxially oriented polypropylene film of the present invention has a sum of tensile elastic modulus in the MD direction and TD direction at 23 ° C. of 6.6 GPa or less. The sum of the tensile elastic moduli is more preferably 3.0 to 6.6 GPa, still more preferably 3.5 to 6.4 GPa, still more preferably 4.0 to 6.2 GPa. When the sum of the tensile elastic modulus exceeds 6.6 GPa, the film surface is scraped due to a slight speed difference between the transport roll and the film in the film transport process after biaxial stretching, or PP powder is generated, or the amount generated is May increase. On the other hand, if it is too small, the stiffness of the film becomes weak and the handling property is lowered, so that it is preferably 3.0 GPa or more. In order to make the sum of the tensile elastic modulus within the above range, the raw material composition of the film and the laminated structure of the film are within the ranges described later, and the cast (melt-extruded resin sheeting process) conditions and longitudinal The stretching conditions are preferably within the range described below.
 なお、本願においては、フィルムの製膜する方向に平行な方向を、製膜方向あるいは長手方向あるいはMD方向と称し、フィルム面内で製膜方向に直交する方向を幅方向あるいはTD方向と称する。 In the present application, a direction parallel to the film forming direction is referred to as a film forming direction, a longitudinal direction, or an MD direction, and a direction perpendicular to the film forming direction in the film plane is referred to as a width direction or a TD direction.
 従来の二軸配向ポリプロピレンフィルムの表面には、数μm~数十μmの微小なPP粉が存在する場合があった。PP粉は目視では確認できないほど非常に小さいものであるが、近年、製品の高精度化や小型化などにより、該PP粉が品位や歩留まりの低下に繋がる場合が出てきた。鋭意検討の結果、PP粉は製膜工程中に搬送ロールとフィルム間のわずかな速度差によりフィルム表面が削れて発生しており、対策として厚み方向の弾性率と引張弾性率の和を上記範囲内とすることにより、つまり、厚み方向の弾性率は高く、引張弾性率はある一定値より低いフィルムとすることにより、搬送ロールとフィルム間のわずかな速度差が生じた場合でも、フィルムの表面は硬く、かつ、フィルムが伸長し搬送ロールの速度に追従することができ、擦れを低減しPP粉を抑制することが可能となることがわかった。 In some cases, fine PP powder of several μm to several tens of μm may exist on the surface of a conventional biaxially oriented polypropylene film. Although the PP powder is very small so that it cannot be visually confirmed, in recent years, there has been a case where the PP powder leads to a decrease in quality and yield due to high precision and miniaturization of the product. As a result of intensive studies, PP powder is generated by scraping the film surface due to a slight speed difference between the transport roll and the film during the film forming process. As a countermeasure, the sum of the elastic modulus in the thickness direction and the tensile elastic modulus is within the above range. Even if a slight speed difference between the transport roll and the film occurs, the surface of the film has a high elastic modulus in the thickness direction and a tensile elastic modulus lower than a certain value. It was found that the film was hard and the film was stretched to follow the speed of the transport roll, and it was possible to reduce rubbing and suppress PP powder.
 本発明の二軸配向ポリプロピレンフィルムは、フィルムの最大高さ粗さSzが両面とも1000nm以下であることが好ましい。フィルムの搬送性が重視される用途では、より好ましくは10~800nm、さらに好ましくは100~700nmである。フィルムの表面平滑性が重視される用途では、より好ましくは5~500nm、さらに好ましくは5~300nm、さらに好ましくは5~200nmである。最大高さ粗さSzが1000nmを超えると、基材フィルムやカバーフィルムとして用いた際、製品の表面にフィルムの凹凸が転写してしまう場合がある。製品への凹凸転写抑制の観点からは、最大高さ粗さSzは小さいほど好ましいが、小さすぎるとフィルム表面が平滑すぎて、製膜したフィルムを搬送したり巻き取る際に、ハンドリング性や巻取性が低下したり、搬送ロールとの擦れによりPP粉が発生しやすくなる場合がある。Szを上記範囲とするためには、フィルムの原料組成やフィルムの積層構成を後述する範囲とし、また、フィルム製膜時のキャスト(溶融押出した樹脂のシート化工程)条件や縦延伸条件を後述する範囲内とし、キャストシートのβ晶を低減させることが好ましい。ポリプロピレンのキャストシートには、α晶由来の球晶、及びβ晶由来の球晶が形成される。β晶由来の球晶は、α晶由来の球晶と延伸性が異なり、延伸後に粗大なクレーター構造を形成し、フィルムの平滑性が損なわれる場合がある。 The biaxially oriented polypropylene film of the present invention preferably has a maximum height roughness Sz of 1000 nm or less on both sides. In applications where the transportability of the film is important, the thickness is more preferably 10 to 800 nm, still more preferably 100 to 700 nm. In applications where the surface smoothness of the film is important, the thickness is more preferably 5 to 500 nm, further preferably 5 to 300 nm, and further preferably 5 to 200 nm. When the maximum height roughness Sz exceeds 1000 nm, the unevenness of the film may be transferred to the surface of the product when used as a base film or a cover film. From the viewpoint of suppressing uneven transfer to a product, the maximum height roughness Sz is preferably as small as possible. However, if it is too small, the surface of the film is too smooth, and handling properties and winding are difficult when transporting or winding the formed film. In some cases, the take-off property is lowered or PP powder is likely to be generated due to rubbing with the transport roll. In order to set Sz in the above range, the raw material composition of the film and the laminated structure of the film are set in the range described later, and the cast (melt-extruded resin sheeting process) condition and the longitudinal stretching condition in film formation are described later. It is preferable that the β crystal of the cast sheet is reduced. In the cast sheet of polypropylene, spherulites derived from α crystals and spherulites derived from β crystals are formed. The β crystal-derived spherulites differ from the α crystal-derived spherulites in stretchability, and form a coarse crater structure after stretching, which may impair the smoothness of the film.
 本発明の二軸配向ポリプロピレンフィルムは、少なくとも片面の最大高さ粗さSz1が300nm以下であることが好ましい。より好ましくは5~250nm、さらに好ましくは5~200nmである。ここで、Szのうち、片面(平滑面)の最大高さ粗さをSz1、もう一方の面(粗面)の最大高さ粗さをSz2(ただしSz1≦Sz2とする)とし、両面の最大高さ粗さの値が等しい場合には、キャスティングドラムとの接触面の最大高さ粗さをSz1とする。少なくとも片面の最大高さ粗さSz1が300nm以下であると、フィルムの表面平滑性が重視される用途において、基材フィルムやカバーフィルムとして用いた際、製品への表面形状の凹凸転写を抑制することが可能である。製品への凹凸転写抑制の観点からは、最大高さ粗さSzは小さいほど好ましいが、小さすぎるとフィルム表面が平滑すぎて、製膜したフィルムを搬送したり巻き取る際に、ハンドリング性や巻取性が低下したり、搬送ロールとの擦れによりPP粉が発生しやすくなる場合がある。Szを上記範囲とするためには、フィルムの原料組成やフィルムの積層構成を後述する範囲とし、また、フィルム製膜時のキャスト条件や縦延伸条件を後述する範囲内とし、キャストシートのβ晶を低減させることが好ましい。 The biaxially oriented polypropylene film of the present invention preferably has a maximum height roughness Sz1 of at least one side of 300 nm or less. More preferably, it is 5 to 250 nm, and still more preferably 5 to 200 nm. Here, among Sz, the maximum height roughness of one surface (smooth surface) is Sz1, the maximum height roughness of the other surface (rough surface) is Sz2 (where Sz1 ≦ Sz2), and the maximum of both surfaces When the height roughness values are equal, the maximum height roughness of the contact surface with the casting drum is Sz1. When the maximum height roughness Sz1 of at least one surface is 300 nm or less, when used as a base film or a cover film in applications where the surface smoothness of the film is important, the surface shape unevenness transfer to the product is suppressed. It is possible. From the viewpoint of suppressing uneven transfer to a product, the maximum height roughness Sz is preferably as small as possible. However, if it is too small, the surface of the film is too smooth, and handling properties and winding are difficult when transporting or winding the formed film. In some cases, the take-off property is lowered or PP powder is likely to be generated due to rubbing with the transport roll. In order to make Sz within the above range, the raw material composition of the film and the laminated structure of the film are within the ranges described below, and the casting conditions and longitudinal stretching conditions during film formation are within the ranges described below. Is preferably reduced.
 本発明の二軸配向ポリプロピレンフィルムは、静摩擦係数μsが0.6以下であることが好ましい。より好ましくは0.55以下、さらに好ましくは0.50以下である。静摩擦係数μsが0.6を超えると、製膜工程中に搬送ロールとフィルム間のわずかな速度差によりフィルム表面が削れてPP粉が発生する、あるいはその発生量が増加する場合がある。PP粉抑制の観点からは静摩擦係数μsは小さいほど好ましいが、実質的には0.2程度が下限である。静摩擦係数μsを上記範囲とするためには、フィルムの原料組成やフィルムの積層構成を後述する範囲とし、特に積層構成の内、少なくとも片面の表層1層(以後、表層(I)とする。)の原料組成を後述する範囲内とすることが好ましい。 The biaxially oriented polypropylene film of the present invention preferably has a static friction coefficient μs of 0.6 or less. More preferably, it is 0.55 or less, More preferably, it is 0.50 or less. If the static friction coefficient μs exceeds 0.6, the film surface may be scraped off due to a slight speed difference between the transport roll and the film during the film forming process, and PP powder may be generated or the generation amount may increase. From the viewpoint of PP powder suppression, the static friction coefficient μs is preferably as small as possible, but the lower limit is substantially about 0.2. In order to set the static friction coefficient μs in the above range, the raw material composition of the film and the laminated structure of the film are in the ranges described later, and in particular, at least one surface layer of the laminated structure (hereinafter referred to as surface layer (I)). It is preferable that the raw material composition is within the range described below.
 本発明の二軸配向ポリプロピレンフィルムは、ヘイズが1%以下であることが好ましい。より好ましくは0.9%以下、さらに好ましくは0.8%以下、さらに好ましくは0.7%以下である。ヘイズが1%を超えると、フィルム表面の表面粗さが大きく、表面形状が被着体に転写する場合がある。また、ディスプレイ部材など高品位が求められる製品の保護フィルムや製造用基材フィルムとして用いた際に製品と貼り合わせた状態で欠点検出を実施できない場合がある。ヘイズは透明性の観点から低いほど好ましいが、実質的には0.05%程度が下限である。ヘイズを上記範囲とするためには、フィルムの原料組成やフィルムの積層構成を後述する範囲とし粒子などによる透明性の悪化を防ぐこと、また、フィルム製膜時のキャスト条件や縦延伸条件を後述する範囲内とし、キャストシートのβ晶を低減させることが好ましい。 The biaxially oriented polypropylene film of the present invention preferably has a haze of 1% or less. More preferably, it is 0.9% or less, More preferably, it is 0.8% or less, More preferably, it is 0.7% or less. When the haze exceeds 1%, the surface roughness of the film surface is large, and the surface shape may be transferred to the adherend. Moreover, when used as a protective film or a base film for production of a product such as a display member that requires high quality, defect detection may not be performed in a state of being bonded to the product. The haze is preferably as low as possible from the viewpoint of transparency, but the lower limit is substantially about 0.05%. In order to set the haze to the above range, the raw material composition of the film and the laminated structure of the film are set in a range described later to prevent deterioration of transparency due to particles and the like, and the casting conditions and longitudinal stretching conditions during film formation are described later. It is preferable that the β crystal of the cast sheet is reduced.
 本発明の二軸配向ポリプロピレンフィルムは、フィッシュアイの個数が20個/m以下であることが好ましい。フィッシュアイの個数はより好ましくは10個/m以下、さらに好ましくは5個/m以下である。フィッシュアイの個数が20個/mを超えると、ディスプレイ部材など高品位が求められる製品の保護フィルムや製造用基材フィルムとして用いた際に歩留まりが低下する場合がある。フィッシュアイの個数を上記範囲とするためには、原料の組成や調整方法、フィルムの積層構成を後述する範囲内とし、原料中の添加剤成分や熱劣化してフィッシュアイの原因となるような樹脂の使用量を低減させることが効果的である。また、フィルム製膜時の条件を後述する範囲内とし、原料を溶融してシート化するまでにろ過により異物を除去することや、樹脂の滞留部を低減させることが効果的である。 In the biaxially oriented polypropylene film of the present invention, the number of fish eyes is preferably 20 / m 2 or less. The number of fish eyes is more preferably 10 / m 2 or less, and still more preferably 5 / m 2 or less. If the number of fish eyes exceeds 20 / m 2 , the yield may decrease when used as a protective film or a base film for production of a product such as a display member that requires high quality. In order to set the number of fish eyes within the above range, the composition of the raw materials, the adjustment method, and the laminated structure of the film are within the ranges described later, and the additive components in the raw materials and heat deterioration may cause fish eyes. It is effective to reduce the amount of resin used. Moreover, it is effective to set the conditions during film formation within the range described later, and to remove foreign substances by filtration and to reduce the staying part of the resin before the raw material is melted into a sheet.
 本発明の二軸配向ポリプロピレンフィルムの厚みは用途によって適宜調整されるものであり特に限定はされないが、5μm以上100μm以下であることが好ましい。厚みが5μm未満であると、ハンドリングが困難になる場合があり、100μmを超えると、樹脂量が増加して生産性が低下する場合がある。本発明の二軸配向ポリプロピレンフィルムは、厚みを薄くしても、適度な強度(ヤング率)を維持しハンドリング性を保つことができる。このような特徴を活かすためには、厚みは、5μm以上40μm以下であることがより好ましく、5μm以上30μm以下であることがさらに好ましく、5μm以上25μm以下であることが最も好ましい。厚みは他の物性を悪化させない範囲内で、押出機のスクリュウ回転数、未延伸シートの幅、製膜速度、延伸倍率などにより調整可能である。 The thickness of the biaxially oriented polypropylene film of the present invention is appropriately adjusted depending on the application and is not particularly limited, but is preferably 5 μm or more and 100 μm or less. When the thickness is less than 5 μm, handling may be difficult, and when it exceeds 100 μm, the amount of resin may increase and productivity may decrease. The biaxially oriented polypropylene film of the present invention can maintain moderate strength (Young's modulus) and handleability even when the thickness is reduced. In order to make use of such characteristics, the thickness is more preferably 5 μm or more and 40 μm or less, further preferably 5 μm or more and 30 μm or less, and most preferably 5 μm or more and 25 μm or less. The thickness can be adjusted by the screw rotation speed of the extruder, the width of the unstretched sheet, the film forming speed, the stretch ratio, and the like within a range not deteriorating other physical properties.
 次に本発明の二軸配向ポリプロピレンフィルムの原料について説明するが、必ずしもこれに限定されるものではない。 Next, the raw material of the biaxially oriented polypropylene film of the present invention will be described, but the present invention is not necessarily limited thereto.
 本発明の二軸配向ポリプロピレンフィルムは、ポリプロピレンを主成分とするフィルムである。ここで、本願において「主成分」とは、特定の成分が全成分中に占める割合が50質量%以上であることを意味し、より好ましくは90質量%以上、さらに好ましくは95質量%以上、さらに好ましくは96質量%以上、さらに好ましくは97質量%以上、さらに好ましくは98質量%以上である。 The biaxially oriented polypropylene film of the present invention is a film mainly composed of polypropylene. Here, the “main component” in the present application means that the proportion of the specific component in all the components is 50% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, More preferably, it is 96 mass% or more, More preferably, it is 97 mass% or more, More preferably, it is 98 mass% or more.
 本発明の二軸配向ポリプロピレンフィルムには、少なくとも2種類のポリプロピレン原料(ポリプロピレン原料A、および、ポリプロピレン原料Bとする)を用いることが好ましい。ポリプロピレン原料Aとしては、フィルムの厚み方向の弾性率を向上させるため、結晶性の高いポリプロピレン原料を用いることが好ましく、ポリプロピレン原料Bとしては、フィルムの引張弾性率を小さくさせるため結晶性の低いポリプロピレン原料を用いることが好ましい。 In the biaxially oriented polypropylene film of the present invention, it is preferable to use at least two types of polypropylene raw materials (polypropylene raw material A and polypropylene raw material B). As the polypropylene raw material A, it is preferable to use a polypropylene material having high crystallinity in order to improve the elastic modulus in the thickness direction of the film. As the polypropylene raw material B, polypropylene having low crystallinity in order to reduce the tensile elastic modulus of the film. It is preferable to use raw materials.
 ポリプロピレン原料Aは、好ましくは冷キシレン可溶部(以下CXS)が4質量%以下でありかつメソペンタッド分率は0.95以上であるポリプロピレンであることが好ましい。これらを満たさないと製膜安定性に劣ったり、フィルムの厚み方向の弾性率が低下する場合がある。 The polypropylene raw material A is preferably a polypropylene having a cold xylene soluble part (hereinafter CXS) of 4% by mass or less and a mesopentad fraction of 0.95 or more. If these conditions are not satisfied, the film forming stability may be inferior, or the elastic modulus in the thickness direction of the film may be lowered.
 ここで冷キシレン可溶部(CXS)とはフィルムをキシレンで完全溶解せしめた後、室温で析出させたときに、キシレン中に溶解しているポリプロピレン成分のことをいい、立体規則性の低い、分子量が低い等の理由で結晶化し難い成分に該当していると考えられる。このような成分が多く樹脂中に含まれているとフイルムの厚み方向の弾性率に劣ることがある。従って、CXSは4質量%以下であることが好ましいが、さらに好ましくは3質量%以下であり、特に好ましくは2質量%以下である。CXSは低いほど好ましいが、0.1質量%程度が下限である。このようなCXSを有するポリプロピレンとするには、樹脂を得る際の触媒活性を高める方法、得られた樹脂を溶媒あるいはプロピレンモノマー自身で洗浄する方法等の方法が使用できる。 Here, the cold xylene-soluble part (CXS) refers to a polypropylene component dissolved in xylene when the film is completely dissolved in xylene and then deposited at room temperature, and has low stereoregularity. It is considered that it corresponds to a component that is difficult to crystallize due to low molecular weight. If many such components are contained in the resin, the elastic modulus in the thickness direction of the film may be inferior. Therefore, CXS is preferably 4% by mass or less, more preferably 3% by mass or less, and particularly preferably 2% by mass or less. CXS is preferably as low as possible, but about 0.1% by mass is the lower limit. In order to obtain such polypropylene having CXS, methods such as a method for increasing the catalytic activity in obtaining a resin and a method for washing the obtained resin with a solvent or propylene monomer itself can be used.
 同様な観点からポリプロピレン原料Aのメソペンタッド分率は0.93以上であることが好ましく、さらに好ましくは0.97以上である。メソペンタッド分率は核磁気共鳴法(NMR法)で測定されるポリプロピレンの結晶相の立体規則性を示す指標であり、該数値が高いものほど結晶化度が高く、融点が高くなり、高温での使用に適するため好ましい。メソペンタッド分率の上限については特に規定するものではない。このように立体規則性の高い樹脂を得るには、n-ヘプタン等の溶媒で得られた樹脂パウダーを洗浄する方法や、触媒および/または助触媒の選定、組成の選定を適宜行う方法等が好ましく採用される。 From the same viewpoint, the mesopentad fraction of the polypropylene raw material A is preferably 0.93 or more, more preferably 0.97 or more. The mesopentad fraction is an index indicating the stereoregularity of the crystal phase of polypropylene measured by a nuclear magnetic resonance method (NMR method). The higher the numerical value, the higher the crystallinity, the higher the melting point, and the higher the temperature. It is preferable because it is suitable for use. The upper limit of the mesopentad fraction is not particularly specified. In order to obtain a resin having such a high stereoregularity, there are a method of washing resin powder obtained with a solvent such as n-heptane, a method of appropriately selecting a catalyst and / or a promoter, and a composition. Preferably employed.
 また、ポリプロピレン原料Aとしては、より好ましくはメルトフローレート(MFR)が1~10g/10分(230℃、21.18N荷重)、特に好ましくは2~5g/10分(230℃、21.18N荷重)の範囲のものが、製膜性やフィルムの厚み方向の弾性率向上の観点から好ましい。MFRを上記の値とするためには、平均分子量や分子量分布を制御する方法などが採用される。 The polypropylene raw material A more preferably has a melt flow rate (MFR) of 1 to 10 g / 10 minutes (230 ° C., 21.18 N load), particularly preferably 2 to 5 g / 10 minutes (230 ° C., 21.18 N). The range of (load) is preferable from the viewpoint of improving the film forming property and the elastic modulus in the thickness direction of the film. In order to set the MFR to the above value, a method of controlling the average molecular weight or the molecular weight distribution is employed.
 ポリプロピレン原料Aとしては、主としてプロピレンの単独重合体からなるが、本発明の目的を損なわない範囲で他の不飽和炭化水素による共重合成分などを含有してもよいし、プロピレンが単独ではない重合体がブレンドされていてもよい。このような共重合成分やブレンド物を構成する単量体成分として例えばエチレン、プロピレン(共重合されたブレンド物の場合)、1-ブテン、1-ペンテン、3-メチルペンテン-1、3-メチルブテン-1、1-ヘキセン、4-メチルペンテン-1、5-エチルヘキセン-1、1-オクテン、1-デセン、1-ドデセン、ビニルシクロヘキセン、スチレン、アリルベンゼン、シクロペンテン、ノルボルネン、5-メチル-2-ノルボルネンなどが挙げられる。共重合量またはブレンド量は、厚み方向の弾性率向上の観点から、共重合量では1mol%未満とし、ブレンド量では10質量%未満とするのが好ましい。 The polypropylene raw material A is mainly composed of a propylene homopolymer, but may contain other unsaturated hydrocarbon copolymerization components or the like within a range not impairing the object of the present invention. The coalescence may be blended. For example, ethylene, propylene (in the case of a copolymerized blend), 1-butene, 1-pentene, 3-methylpentene-1, 3-methylbutene as monomer components constituting such copolymer components and blends -1,1-hexene, 4-methylpentene-1,5-ethylhexene-1,1-octene, 1-decene, 1-dodecene, vinylcyclohexene, styrene, allylbenzene, cyclopentene, norbornene, 5-methyl-2 -Norbornene and the like. From the viewpoint of improving the modulus of elasticity in the thickness direction, the copolymerization amount or blend amount is preferably less than 1 mol% in terms of copolymerization amount and less than 10 mass% in terms of blend amount.
 続いてポリプロピレン原料Bについて説明する。 Subsequently, the polypropylene raw material B will be described.
 ポリプロピレン原料Bとしては、上述したポリプロピレン原料Aとの相溶性が良く、かつ、柔軟性を向上させるために、結晶性の低いポリプロピレン原料であることが好ましい。このようなポリプロピレン原料Bとしては、非晶性ポリプロピレンや低立体規則性ポリプロピレン、シンジオタクチックポリプロピレン、α-オレフィン共重合体、ランダムコポリマー、ブロックポリプロピレンなどを用いることができるが、少ない添加量で優れた透明性を得ることができることから、非晶性ポリプロピレンや低立体規則性ポリプロピレンが特に好ましい。 The polypropylene raw material B is preferably a polypropylene raw material having good compatibility with the above-mentioned polypropylene raw material A and low crystallinity in order to improve flexibility. As such a polypropylene raw material B, amorphous polypropylene, low stereoregular polypropylene, syndiotactic polypropylene, α-olefin copolymer, random copolymer, block polypropylene, etc. can be used, but excellent with a small addition amount. Therefore, amorphous polypropylene and low stereoregular polypropylene are particularly preferable.
 ポリプロピレン原料Bとして、好ましく用いられる非晶性ポリプロピレンとしては、主としてアタクチックな立体規則性を有するポリプロピレンポリマーが主成分であることが好ましく、具体的には、ホモポリマーあるいは、α-オレフィンとのコポリマーが挙げられる。特に後者、即ち、非晶性ポリプロピレン-α-オレフィン共重合体が好ましい。 The amorphous polypropylene preferably used as the polypropylene raw material B is preferably mainly composed of a polypropylene polymer having mainly atactic stereoregularity, specifically, a homopolymer or a copolymer with an α-olefin. Can be mentioned. In particular, the latter, that is, an amorphous polypropylene-α-olefin copolymer is preferred.
 上記非晶性ポリプロピレンは、特定のメタロセン系触媒を用いて製造されたり、ホモポリプロピレン重合の際、アイソタクチックポリプロピレンの副産物として製造することができる。ガラス転移温度が一般のポリプロピレンと比べると低いため、ホモポリプロピレンの沸騰n-ヘプタン(またはキシレン)可溶分として抽出することができる。あるいは、結晶性ポリプロピレンとは、触媒及び重合条件を変えて独立して重合することも可能である。本発明に好ましく用いられる非晶性ポリプロピレンは、従来公知の製造方法により製造されたものであれば特に限定することなく使用することができる。以上のような特徴を有する非晶性ポリプロピレンとしては、住友化学(株)製“タフセレン”(登録商標)などの市販品を適宜選択の上、使用することができる。 The amorphous polypropylene can be produced using a specific metallocene catalyst, or can be produced as a by-product of isotactic polypropylene during homopolypropylene polymerization. Since the glass transition temperature is lower than that of general polypropylene, it can be extracted as a boiling n-heptane (or xylene) soluble component of homopolypropylene. Alternatively, crystalline polypropylene can be polymerized independently by changing the catalyst and polymerization conditions. The amorphous polypropylene preferably used in the present invention can be used without particular limitation as long as it is produced by a conventionally known production method. Commercially available products such as “Tufselen” (registered trademark) manufactured by Sumitomo Chemical Co., Ltd. can be appropriately used as the amorphous polypropylene having the above-described characteristics.
 本発明における非晶性ポリプロピレンとして非晶性ポリプロピレン-α-オレフィン共重合体を用いる場合、該α-オレフィンとしては、例えば1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、4-メチル・1-ペンテン、あるいはプロピレン―エチレン-1-ブテンなどが望ましい。 When an amorphous polypropylene-α-olefin copolymer is used as the amorphous polypropylene in the present invention, examples of the α-olefin include 1-butene, 1-pentene, 1-hexene, 1-octene and 1-decene. 4-methyl / 1-pentene or propylene-ethylene-1-butene is preferred.
 またこのようなα-オレフィンを用いた非晶性ポリプロピレン-α-オレフィン共重合体としては、プロピレン・エチレン共重合体、プロピレン・エチレン・1-ブテン共重合体、プロピレン-1-ブテン共重合体、プロピレン・エチレン・環状オレフィン共重合体、プロピレン・エチレン・ブタジエン共重合体などが挙げられる。 Examples of such amorphous polypropylene-α-olefin copolymers using α-olefins include propylene / ethylene copolymers, propylene / ethylene / 1-butene copolymers, and propylene-1-butene copolymers. , Propylene / ethylene / cyclic olefin copolymer, propylene / ethylene / butadiene copolymer, and the like.
 ポリプロピレン原料Bとして、好ましく用いられる低立体規則性ポリプロピレンとしては、プロピレンの単独重合体であって、重合触媒としてメタロセン触媒を用いて製造されたものが好ましい。低立体規則性ポリプロピレンの融点は、100℃以下であり、60~90℃であることがより好ましく、65~85℃であることが特に好ましい。重量平均分子量は4万~20万であることが好ましく、分子量分布Mw/Mnは1~3であることが好ましい(Mw:重量平均分子量、Mn:数平均分子量)。以上のような特徴を有する低立体規則性ポリプロピレンとしては、出光興産(株)製“エルモーデュ”(登録商標)などの市販品を適宜選択の上、使用することができる。 The low stereoregular polypropylene preferably used as the polypropylene raw material B is preferably a propylene homopolymer produced using a metallocene catalyst as a polymerization catalyst. The melting point of the low stereoregular polypropylene is 100 ° C. or less, more preferably 60 to 90 ° C., and particularly preferably 65 to 85 ° C. The weight average molecular weight is preferably 40,000 to 200,000, and the molecular weight distribution Mw / Mn is preferably 1 to 3 (Mw: weight average molecular weight, Mn: number average molecular weight). Commercially available products such as “El Modu” (registered trademark) manufactured by Idemitsu Kosan Co., Ltd. can be appropriately used as the low stereoregular polypropylene having the above-described characteristics.
 本発明の二軸配向ポリプロピレンフィルムは、フィルムを構成するポリマー中に含まれるエチレン成分の含有量が10質量%以下であることが好ましい。より好ましくは5質量%以下、さらに好ましくは3質量%以下である。エチレン成分の含有量が多いほど、結晶性が低下して、柔軟性や透明性を向上させやすいが、エチレン成分の含有量が10質量%を超えると、耐熱性が低下したり、フィッシュアイが発生しやすくなる場合がある。 In the biaxially oriented polypropylene film of the present invention, the content of the ethylene component contained in the polymer constituting the film is preferably 10% by mass or less. More preferably, it is 5 mass% or less, More preferably, it is 3 mass% or less. The greater the ethylene component content, the lower the crystallinity, and the easier it is to improve flexibility and transparency. However, when the ethylene component content exceeds 10% by mass, the heat resistance decreases and fish eyes May be more likely to occur.
 本発明の二軸配向ポリプロピレンフィルムは、フィルムを構成するポリマー中に含まれる石油樹脂の含有量が5質量%以下であることが好ましい。より好ましくは3質量%以下、さらに好ましくは1質量%以下であり、石油樹脂を含まないことが最も好ましい。石油樹脂を添加することにより、透明性を向上させることができるが、石油樹脂の含有量が5質量%を超えると、引張弾性率が高くなりすぎたり、また、原料コストが高くなる場合がある。 In the biaxially oriented polypropylene film of the present invention, the content of petroleum resin contained in the polymer constituting the film is preferably 5% by mass or less. More preferably, it is 3 mass% or less, More preferably, it is 1 mass% or less, and it is most preferable that petroleum resin is not included. Transparency can be improved by adding a petroleum resin, but if the content of the petroleum resin exceeds 5% by mass, the tensile elastic modulus may be too high or the raw material cost may be increased. .
 本発明の二軸配向ポリプロピレンフィルムは、フィルムを構成するポリマー中に含まれるシクロオレフィンポリマーの含有量が5質量%以下であることが好ましい。より好ましくは3質量%以下、さらに好ましくは1質量%以下であり、シクロオレフィンポリマーを含まないことが最も好ましい。シクロオレフィンポリマーを添加することにより、耐熱性を向上させることができるが、シクロオレフィンポリマーの含有量が5質量%を超えると、引張弾性率が高くなりすぎたり、また、ポリプロピレンとの相溶性の問題から透明性が低下してヘイズが悪化したり、また、原料コストが高くなる場合がある。 In the biaxially oriented polypropylene film of the present invention, the content of the cycloolefin polymer contained in the polymer constituting the film is preferably 5% by mass or less. More preferably, it is 3 mass% or less, More preferably, it is 1 mass% or less, and it is most preferable that a cycloolefin polymer is not included. Heat resistance can be improved by adding a cycloolefin polymer. However, if the content of the cycloolefin polymer exceeds 5% by mass, the tensile elastic modulus becomes too high, and compatibility with polypropylene is increased. Transparency may decrease due to problems, haze may deteriorate, and raw material costs may increase.
 本発明において、ポリプロピレン原料には、本発明の目的を損なわない範囲で種々の添加剤、例えば結晶核剤、酸化防止剤、熱安定剤、すべり剤、帯電防止剤、ブロッキング防止剤、充填剤、粘度調整剤、着色防止剤などを含有せしめることもできる。 In the present invention, the polypropylene raw material includes various additives, for example, a crystal nucleating agent, an antioxidant, a thermal stabilizer, a slipping agent, an antistatic agent, an antiblocking agent, a filler, within a range that does not impair the purpose of the present invention. Viscosity modifiers, anti-coloring agents, and the like can also be included.
 これらの中で、酸化防止剤の種類および添加量の選定は長期安定性の観点から重要である。すなわち、かかる酸化防止剤としては立体障害性を有するフェノール系のもので、そのうち少なくとも1種は分子量500以上の高分子量型のものが好ましい。その具体例としては種々のものが挙げられるが、例えば2,6-ジ-t-ブチル-p-クレゾール(BHT:分子量220.4)とともに1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン(例えばBASF社製“Irganox”(登録商標)1330:分子量775.2)またはテトラキス[メチレン-3(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン(例えばBASF社製“Irganox”(登録商標)1010:分子量1177.7)等を併用することが好ましい。これら酸化防止剤の総含有量はポリプロピレン全量に対して0.03~1.0質量%の範囲が好ましい。酸化防止剤が少なすぎると押出工程でポリマーが劣化してフィルムが着色したり、長期耐熱性に劣る場合がある。酸化防止剤が多すぎるとこれら酸化防止剤のブリードアウトにより透明性が低下する場合がある。より好ましい含有量は0.1~0.9質量%であり、特に好ましくは0.2~0.8質量%である。 Among these, selection of the type and amount of antioxidant is important from the viewpoint of long-term stability. That is, the antioxidant is a phenolic compound having steric hindrance, and at least one of them is preferably a high molecular weight type having a molecular weight of 500 or more. Specific examples thereof include various compounds such as 2,6-di-t-butyl-p-cresol (BHT: molecular weight 220.4) and 1,3,5-trimethyl-2,4,6- Tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene (for example, “Irganox” (registered trademark) 1330: molecular weight 775.2 manufactured by BASF) or tetrakis [methylene-3 (3,5-di- t-butyl-4-hydroxyphenyl) propionate] methane (for example, “Irganox” (registered trademark) 1010: molecular weight 1177.7, manufactured by BASF) is preferably used in combination. The total content of these antioxidants is preferably in the range of 0.03 to 1.0 mass% with respect to the total amount of polypropylene. When there are too few antioxidants, a polymer may deteriorate in an extrusion process and a film may color, or it may be inferior to long-term heat resistance. When there are too many antioxidants, transparency may fall by the bleeding out of these antioxidants. A more preferable content is 0.1 to 0.9% by mass, particularly preferably 0.2 to 0.8% by mass.
 本発明において、ポリプロピレン原料には、本発明の目的に反しない範囲で、結晶核剤を添加することができる。結晶核剤としては、α晶核剤(ジベンジリデンソルビトール類、安息香酸ナトリウム等)、β晶核剤(1,2-ヒドロキシステアリン酸カリウム、安息香酸マグネシウム、N,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキサミド等のアミド系化合物、キナクリドン系化合物等)等が例示される。但し、上記各種核剤の過剰な添加は延伸性の低下やボイド形成等による透明性や強度の低下を引き起こす場合があるため、添加量は通常0.5質量%以下、好ましくは0.1質量%以下、さらに好ましくは0.05質量%以下とすることが好ましい。 In the present invention, a crystal nucleating agent can be added to the polypropylene raw material as long as it does not contradict the purpose of the present invention. Examples of the crystal nucleating agent include α crystal nucleating agents (dibenzylidene sorbitols, sodium benzoate, etc.), β crystal nucleating agents (potassium 1,2-hydroxystearate, magnesium benzoate, N, N′-dicyclohexyl-2,6). -Amide compounds such as naphthalene dicarboxamide, quinacridone compounds and the like). However, excessive addition of the above various nucleating agents may cause a decrease in stretchability, transparency and strength due to void formation, etc., so the addition amount is usually 0.5% by mass or less, preferably 0.1% by mass. % Or less, more preferably 0.05% by mass or less.
 本発明の二軸配向ポリプロピレンフィルムは、上述した原料を用い、二軸延伸されることによって得られる。二軸延伸の方法としては、インフレーション同時二軸延伸法、ステンター同時二軸延伸法、ステンター逐次二軸延伸法のいずれによっても得られるが、その中でも、製膜安定性、厚み均一性、フィルムの高剛性と寸法安定性を制御する点においてステンター逐次二軸延伸法を採用することが好ましい。 The biaxially oriented polypropylene film of the present invention is obtained by biaxially stretching using the above-described raw materials. The biaxial stretching method can be obtained by any of the inflation simultaneous biaxial stretching method, the stenter simultaneous biaxial stretching method, and the stenter sequential biaxial stretching method. Among them, the film forming stability, the thickness uniformity, In terms of controlling high rigidity and dimensional stability, it is preferable to employ a stenter sequential biaxial stretching method.
 次に、上記ポリプロピレン原料を用いたフィルムの構成について説明する。 Next, the structure of the film using the above polypropylene material will be described.
 本発明の二軸配向ポリプロピレンフィルムは、PP粉抑制の観点から、さらには透明性、滑り性との両立の観点から、少なくとも2層の積層構成とすることが好ましい。 The biaxially oriented polypropylene film of the present invention preferably has a laminated structure of at least two layers from the viewpoint of suppressing PP powder, and from the viewpoint of achieving both transparency and slipperiness.
 本発明の二軸配向ポリプロピレンフィルムは、積層構成の内、少なくとも片面の表層1層(表層(I))は、引張剛性の観点からポリプロピレン原料Aを96質量%以上含むことが好ましい。表層(I)中のポリプロピレン原料Aの含有量は、より好ましくは97質量%以上、さらに好ましくは98質量%以上である。表層(I)中のポリプロピレン原料Aの含有量が96質量%未満であると、フィルムの厚み方向の弾性率が低下したり、また、耐熱性の低い添加成分が多い場合には、滑り性が低下する場合がある。 In the biaxially oriented polypropylene film of the present invention, at least one surface layer (surface layer (I)) of the laminated structure preferably contains 96% by mass or more of polypropylene raw material A from the viewpoint of tensile rigidity. The content of the polypropylene raw material A in the surface layer (I) is more preferably 97% by mass or more, and still more preferably 98% by mass or more. When the content of the polypropylene raw material A in the surface layer (I) is less than 96% by mass, the elastic modulus in the thickness direction of the film is lowered, and when there are many additive components having low heat resistance, slipperiness is exhibited. May decrease.
 また、本発明の二軸配向ポリプロピレンフィルムは、積層構成の内、少なくとも1層(以後、基層(II)とする。)は、引張弾性率を低減させて柔軟性を向上させる観点からポリプロピレン原料Bを含有することが好ましく、基層(II)中のポリプロピレン原料Bの含有量は5~100質量%であることが好ましい。より好ましくは10~100質量%、さらに好ましくは15~100%である。基層(II)中のポリプロピレン原料Bの含有量が5質量%未満であるとフィルムの引張弾性率が高くなりすぎPP粉が発生しやすくなる場合がある。 In addition, the biaxially oriented polypropylene film of the present invention has at least one layer (hereinafter referred to as a base layer (II)) of the laminated structure, from the viewpoint of improving the flexibility by reducing the tensile modulus and the polypropylene raw material B. The content of the polypropylene raw material B in the base layer (II) is preferably 5 to 100% by mass. More preferably, it is 10 to 100% by mass, and further preferably 15 to 100%. If the content of the polypropylene raw material B in the base layer (II) is less than 5% by mass, the tensile elastic modulus of the film becomes too high and PP powder may be easily generated.
 本発明の二軸配向ポリプロピレンフィルムは、表層(I)の厚みdが0.1~2.0μmであることが好ましい。より好ましくは0.2~1.5μm、さらに好ましくは0.3~1.0μm、さらに好ましくは0.3~0.8μmである。表層(I)の厚みdが2.0μmを超えると、フィルムの引張弾性率が大きくなりすぎて、PP粉が発生しやすくなる場合がある。0.1μm未満では、フィルムの厚み方向の弾性率が不足し、PP粉が発生しやすくなったり、積層精度が不安定となり、表層(I)の厚みムラが大きくなる場合がある。表層(I)の厚みdは他の物性を悪化させない範囲内で、押出機のスクリュウ回転数、未延伸シートの幅、製膜速度、延伸倍率などにより調整可能である。なお、フィルムの両表面に表層(I)を設ける場合は、それぞれの層について、上記範囲を満たすことが好ましい。 In the biaxially oriented polypropylene film of the present invention, the thickness d of the surface layer (I) is preferably 0.1 to 2.0 μm. More preferably, it is 0.2 to 1.5 μm, more preferably 0.3 to 1.0 μm, and still more preferably 0.3 to 0.8 μm. If the thickness d of the surface layer (I) exceeds 2.0 μm, the tensile elastic modulus of the film becomes too large and PP powder may be easily generated. If the thickness is less than 0.1 μm, the elastic modulus in the thickness direction of the film is insufficient, PP powder is likely to be generated, lamination accuracy becomes unstable, and thickness unevenness of the surface layer (I) may increase. The thickness d of the surface layer (I) can be adjusted by the screw rotation speed of the extruder, the width of the unstretched sheet, the film forming speed, the stretch ratio, and the like within a range not deteriorating other physical properties. In addition, when providing surface layer (I) on both surfaces of a film, it is preferable to satisfy | fill the said range about each layer.
 本発明の二軸配向ポリプロピレンフィルムは、フィルム全体の厚みに対する表層(I)の割合が1~15%であることが好ましい。より好ましくは1~10%、さらに好ましくは1~5%である。表層(I)の割合が15%を超えると、フィルムの引張弾性率が大きくなりすぎて、PP粉が発生しやすくなる場合がある。1%未満では、フィルムの厚み方向の弾性率が不足し、PP粉が発生しやすくなったり、積層精度が不安定となり、表層(I)の厚みムラが大きくなる場合がある。表層(I)の厚みdは他の物性を悪化させない範囲内で、押出機のスクリュウ回転数、未延伸シートの幅、製膜速度、延伸倍率などにより調整可能である。なお、フィルムの両表面に表層(I)を設ける場合が好ましく、その場合は、それぞれの層について、上記範囲を満たすことが好ましい。 In the biaxially oriented polypropylene film of the present invention, the ratio of the surface layer (I) to the thickness of the entire film is preferably 1 to 15%. More preferably, it is 1 to 10%, and further preferably 1 to 5%. If the ratio of the surface layer (I) exceeds 15%, the tensile elastic modulus of the film becomes too large, and PP powder may be easily generated. If it is less than 1%, the elastic modulus in the thickness direction of the film is insufficient, PP powder is likely to be generated, lamination accuracy becomes unstable, and thickness unevenness of the surface layer (I) may increase. The thickness d of the surface layer (I) can be adjusted by the screw rotation speed of the extruder, the width of the unstretched sheet, the film forming speed, the stretch ratio, and the like within a range not deteriorating other physical properties. In addition, it is preferable to provide surface layer (I) on both surfaces of a film, and in that case, it is preferable to satisfy the above range for each layer.
 本発明の二軸配向ポリプロピレンフィルムは、上述した積層構成の内、少なくとも片面の表層に易滑粒子または融点が180℃以上の樹脂を含むことが、摩擦係数低減の観点から好ましく、特に、融点が180℃以上の樹脂を含むことがより好ましい。 In the biaxially oriented polypropylene film of the present invention, it is preferable from the viewpoint of reducing the friction coefficient that the at least one surface layer contains easy-slip particles or a resin having a melting point of 180 ° C. or more, particularly the melting point. More preferably, it contains a resin at 180 ° C. or higher.
 易滑粒子としては、本発明の効果を損なわないものであれば特に限定はされず、例えば無機粒子や有機粒子などが使用できる。無機粒子としては、シリカ、酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カーボンブラック、ゼオライト粒子等、有機粒子としては、アクリル系樹脂粒子、スチレン系樹脂粒子、ポリエステル系樹脂粒子、ポリウレタン系樹脂粒子、ポリカーボネート系樹脂粒子、ポリアミド系樹脂粒子、シリコーン系樹脂粒子、フッ素系樹脂粒子、あるいは上記樹脂の合成に用いられる2種以上のモノマーの共重合樹脂粒子等が挙げられる。ただし、ポリプロピレン樹脂は表面エネルギーが低いために、粒子を添加して延伸すると、延伸時に粒子界面が剥離してボイドが発生し、ヘイズが上昇して透明性が低下する場合がある。透明性向上の観点から、表面にシランカップリング処理をした上記無機粒子または有機粒子を用いることが好ましく、特にシランカップリング処理したシリカ粒子が好ましい。 The easy-slip particles are not particularly limited as long as the effects of the present invention are not impaired. For example, inorganic particles and organic particles can be used. Inorganic particles include silica, titanium oxide, aluminum oxide, zirconium oxide, calcium carbonate, carbon black, zeolite particles, and organic particles include acrylic resin particles, styrene resin particles, polyester resin particles, and polyurethane resin particles. Polycarbonate resin particles, polyamide resin particles, silicone resin particles, fluorine resin particles, or copolymer resin particles of two or more monomers used for synthesizing the resin. However, since the polypropylene resin has low surface energy, when the particles are added and stretched, the particle interface peels off during stretching, voids are generated, haze increases, and transparency may decrease. From the viewpoint of improving transparency, it is preferable to use the above inorganic particles or organic particles having a silane coupling treatment on the surface, and particularly preferred are silica particles having a silane coupling treatment.
 易滑粒子の平均粒子径は、0.01μm以上1.0μm未満であることが好ましい。平均粒子径が0.01μm未満であると、粒子が凝集して粗大粒子となり、透明性が低下する場合がある。平均粒子径が1.0μm以上であると、延伸時に粒子界面にボイドが発生しやすくなり、透明性が低下する場合がある。また、表層に添加した粒子が製膜中に脱落し、表面粗さが大きくなったり、ヘイズが上昇する場合がある。平均粒子径は、0.15μm以上0.9μm未満であることがより好ましく、0.15μm以上0.8μm未満であることがさらに好ましく、0.15μm以上0.3μm未満であることが最も好ましい。また、ハンドリング性向上の観点から、2種類以上の平均粒子径の異なる粒子を併用しても構わない。ここでいう、平均粒子径とは、レーザー回折散乱法にて測定し、重量基準で算出した。 The average particle diameter of the easy-slip particles is preferably 0.01 μm or more and less than 1.0 μm. If the average particle size is less than 0.01 μm, the particles may aggregate to form coarse particles, which may reduce transparency. When the average particle size is 1.0 μm or more, voids are likely to be generated at the particle interface during stretching, and transparency may be lowered. In addition, particles added to the surface layer may fall off during film formation, resulting in increased surface roughness or increased haze. The average particle diameter is more preferably from 0.15 μm to less than 0.9 μm, further preferably from 0.15 μm to less than 0.8 μm, and most preferably from 0.15 μm to less than 0.3 μm. Moreover, you may use together two or more types of particle | grains from which an average particle diameter differs from a viewpoint of handling property improvement. Here, the average particle diameter was measured by a laser diffraction scattering method and calculated on the basis of weight.
 本発明の二軸配向ポリプロピレンフィルムは、表層(I)に易滑粒子を含むことが好ましい。このとき易滑粒子を含む層の厚みは0.2~2.0μmであることが好ましい。0.2μm未満であると、製膜中に易滑粒子が脱落する場合がある。2.0μmを超えると、ヘイズが上昇し透明性が低下する場合がある。易滑粒子を含む層の厚みは0.2~1.6μmであることがより好ましく、0.3~1.4μmであることがさらに好ましい。 The biaxially oriented polypropylene film of the present invention preferably contains easy-slip particles in the surface layer (I). At this time, the thickness of the layer containing easy-slip particles is preferably 0.2 to 2.0 μm. If it is less than 0.2 μm, the slippery particles may fall off during film formation. If it exceeds 2.0 μm, the haze may increase and the transparency may decrease. The thickness of the layer containing easy-slip particles is more preferably 0.2 to 1.6 μm, and further preferably 0.3 to 1.4 μm.
 易滑粒子を含む層の原料における、易滑粒子の含有量は、0.01質量%以上1.0質量%未満であることが好ましい。含有量が0.01質量%未満では、摩擦係数低減の効果が得られない場合がある。含有量が1.0質量%以上では、ヘイズが上昇し透明性が低下する場合がある。含有量は、より好ましくは0.05質量%以上0.9質量%未満であり、さらに好ましくは0.1質量%以上0.8質量%未満である。 The content of the easy-slip particles in the raw material of the layer containing the easy-slip particles is preferably 0.01% by mass or more and less than 1.0% by mass. If the content is less than 0.01% by mass, the effect of reducing the friction coefficient may not be obtained. If the content is 1.0% by mass or more, haze may increase and transparency may decrease. The content is more preferably 0.05% by mass or more and less than 0.9% by mass, and further preferably 0.1% by mass or more and less than 0.8% by mass.
 本発明の二軸配向ポリプロピレンフィルムは、摩擦係数低減の観点から、融点が180℃以上の樹脂を含有することも好ましい。融点はより好ましくは180℃以上240℃以下であり、さらに好ましくは200℃以上230℃以下である。フィルムの表層に融点が180℃以上の樹脂を含有させ、後述する条件でフィルム化することにより、フィルム表面に微細な突起を形成させることが可能となり、滑り性を向上させることができる。このような場合は、表層(I)と基層(II)の少なくとも2層からなるフィルムであって、表層(I)には融点が180℃以上の樹脂が含まれることが好ましい。融点が180℃以上の樹脂を表層(I)に存在させると、後述する溶融押出工程では、融解してポリプロピレン中に分散し、延伸工程では変形せず上述した突起を形成可能となる。形成させる突起を上述したような微細なものにするためには、溶融押出工程において融点が180℃以上の樹脂がポリプロピレン中に微分散することが必要であり、ポリプロピレンとの親和性が高いことが重要である。この観点から融点が180℃以上の樹脂はオレフィン系樹脂であることが好ましいが、オレフィン系樹脂の中でも、特に、4-メチルペンテン-1単位を含んでなるオレフィン系樹脂を主成分とすることが好ましい。4-メチルペンテン-1単位を含む樹脂は非オレフィン系樹脂と比較して、ポリプロピレン樹脂との親和性が高いため、分散性を高めることができる。4-メチルペンテン-1単位を含んでなるオレフィン系樹脂としては、例えば、三井化学株式会社製、“TPX”(登録商標)DX310、“TPX”(登録商標)DX231、“TPX”(登録商標)MX004などが例示できる。 The biaxially oriented polypropylene film of the present invention preferably contains a resin having a melting point of 180 ° C. or higher from the viewpoint of reducing the friction coefficient. The melting point is more preferably 180 ° C. or higher and 240 ° C. or lower, and further preferably 200 ° C. or higher and 230 ° C. or lower. By containing a resin having a melting point of 180 ° C. or more in the surface layer of the film and forming a film under the conditions described later, it is possible to form fine protrusions on the film surface and improve slipperiness. In such a case, the film is composed of at least two layers of the surface layer (I) and the base layer (II), and the surface layer (I) preferably contains a resin having a melting point of 180 ° C. or higher. When a resin having a melting point of 180 ° C. or higher is present in the surface layer (I), it can be melted and dispersed in polypropylene in the later-described melt extrusion process, and the above-described protrusion can be formed without deformation in the stretching process. In order to make the protrusions to be formed as fine as described above, it is necessary that a resin having a melting point of 180 ° C. or higher is finely dispersed in polypropylene in the melt extrusion process, and the affinity with polypropylene is high. is important. From this point of view, the resin having a melting point of 180 ° C. or higher is preferably an olefin resin, but among the olefin resins, an olefin resin containing 4-methylpentene-1 unit as a main component is particularly preferable. preferable. Since the resin containing 4-methylpentene-1 unit has a higher affinity with a polypropylene resin than a non-olefin resin, dispersibility can be improved. Examples of the olefin resin containing 4-methylpentene-1 unit include “TPX” (registered trademark) DX310, “TPX” (registered trademark) DX231, “TPX” (registered trademark) manufactured by Mitsui Chemicals, Inc. An example is MX004.
 本発明の二軸配向ポリプロピレンフィルムにおいて、表層(I)の樹脂組成物のうち、4-メチルペンテン-1単位を含んでなるオレフィン系樹脂の含有量は、0.1~5質量%であることが好ましく、より好ましくは0.1~4質量%、さらに好ましくは0.1~3質量%、さらに好ましくは0.1~2.5質量%である。4-メチルペンテン-1単位を含んでなるオレフィン系樹脂の含有量が5質量%より多い場合、突起が長手方向に長い山脈状になる場合があり、基材フィルムやカバーフィルムとして用いた際、製品の表面に凹凸を転写してしまう場合や、本発明の二軸配向ポリプロピレンフィルムに粘着層を塗工して保護フィルムとして使用する際など、巻取りが困難な場合においてエア噛みなどの欠点が生じやすくなる場合がある。含有量が0.1質量%より少ない場合、形成される突起の頻度が低くなりすぎて、滑り性向上に寄与せず、巻取性が低下する場合がある。 In the biaxially oriented polypropylene film of the present invention, the content of the olefin resin comprising 4-methylpentene-1 unit in the resin composition of the surface layer (I) is 0.1 to 5% by mass. It is preferably 0.1 to 4% by mass, more preferably 0.1 to 3% by mass, and still more preferably 0.1 to 2.5% by mass. When the content of the olefin-based resin containing 4-methylpentene-1 unit is more than 5% by mass, the protrusions may be mountainous in the longitudinal direction, and when used as a base film or a cover film, When it is difficult to wind up, such as when unevenness is transferred to the surface of the product or when the biaxially oriented polypropylene film of the present invention is coated with an adhesive layer and used as a protective film, there are defects such as air biting May be more likely to occur. When the content is less than 0.1% by mass, the frequency of the formed protrusions becomes too low, which does not contribute to the improvement of slipperiness and the winding property may be lowered.
 本発明の二軸配向ポリプロピレンフィルムの表層に高融点樹脂を含有することが好ましいが、フィルム表面に形成させる突起を微細なものにするためには、高融点樹脂とポリプロピレン樹脂のブレンド条件、及び、フィルム製膜時の溶融押出条件を制御することが非常に重要である。 Although it is preferable to contain a high melting point resin in the surface layer of the biaxially oriented polypropylene film of the present invention, in order to make the projections formed on the film surface fine, blending conditions of the high melting point resin and the polypropylene resin, and It is very important to control the melt extrusion conditions during film formation.
 本発明の二軸配向ポリプロピレンフィルムの表層に使用する原料は、高融点樹脂とポリプロピレン樹脂をブレンドするが、あらかじめ二軸押出機で混練させてチップ化しておく手法が好ましい。この際の混練温度は高融点樹脂の融点より高い方が分散均一性の観点から好ましく、10℃以上がより好ましく、20℃以上がさらに好ましい。混練温度が高融点樹脂の融点より低い場合、分散性が低下し、突起が粗大になる場合がある。混練温度の上限は特に定めないが、あまり高い場合、ポリプロピレン樹脂の熱分解が起きる場合があり、280℃が上限である。 The raw material used for the surface layer of the biaxially oriented polypropylene film of the present invention is a blend of a high melting point resin and a polypropylene resin, but a method of kneading in advance with a biaxial extruder to form a chip is preferred. In this case, the kneading temperature is preferably higher than the melting point of the high melting point resin from the viewpoint of dispersion uniformity, more preferably 10 ° C. or higher, and further preferably 20 ° C. or higher. When the kneading temperature is lower than the melting point of the high melting point resin, the dispersibility may be lowered and the protrusions may be coarse. The upper limit of the kneading temperature is not particularly defined, but if it is too high, thermal decomposition of the polypropylene resin may occur, and the upper limit is 280 ° C.
 本発明の二軸配向ポリプロピレンフィルムは、溶融押出する際の押出温度が高融点樹脂の融点以下であることが好ましい。より好ましくは10℃以下であり、20℃以下がさらに好ましい。高融点樹脂の融点以上の温度で溶融押出をした場合、ポリプロピレン樹脂中に均一微細分散した高融点樹脂が溶融し、融合粗大化したり、押出時の剪断流動により長く伸ばされる場合がある。その結果、フィルム表面の突起が粗大になる場合がある。溶融温度の下限は特に定めないが、あまり低い場合、押出時のろ圧上昇やポリプロピレン樹脂の未溶融物が発生する場合があり、200℃が下限である。 The extrusion temperature during melt extrusion of the biaxially oriented polypropylene film of the present invention is preferably not higher than the melting point of the high melting point resin. More preferably, it is 10 degrees C or less, and 20 degrees C or less is still more preferable. When melt extrusion is performed at a temperature equal to or higher than the melting point of the high-melting resin, the high-melting resin uniformly and finely dispersed in the polypropylene resin may be melted and coalesced, or may be elongated for a long time due to shear flow during extrusion. As a result, the projections on the film surface may become coarse. The lower limit of the melting temperature is not particularly defined, but if it is too low, an increase in the filtration pressure during extrusion or unmelted polypropylene resin may occur, and 200 ° C. is the lower limit.
 上述した易滑粒子または融点が180℃以上の樹脂は、目的や用途に応じ少なくともどちらか一方を含んでいることが好ましいが、両方含んでいても構わない。 The above-mentioned easy-sliding particles or the resin having a melting point of 180 ° C. or higher preferably contains at least one of them depending on the purpose and application, but may contain both.
 次に本発明の二軸配向ポリプロピレンフィルムの製造方法を説明するが、必ずしもこれに限定されるものではない。 Next, although the manufacturing method of the biaxially oriented polypropylene film of this invention is demonstrated, it is not necessarily limited to this.
 まず、ポリプロピレン原料Aを90質量部と4-メチル-1-ペンテン系重合体を10質量部、二軸押出機に投入し、マスター原料を作製する。この際の溶融混練温度は、230~280℃、より好ましくは240~280℃、さらに好ましくは250~280℃である。マスター原料、20質量部とポリプロピレン原料A、80質量部をドライブレンドしてA層(表層(I))用の単軸押出機に供給し、ポリプロピレン原料A、60質量部とポリプロピレン原料B、40質量部とをB層(基層(II)))用の単軸押出機に供給し、200~260℃にて溶融押出を行う。そして、ポリマー管の途中に設置したフィルターにて異物や変性ポリマーなどを除去した後、マルチマニホールド型のA層/B層/A層複合Tダイにて積層し、キャスティングドラム上に吐出し、A層/B層/A層の層構成を有する積層未延伸シートを得る。この際、積層厚み比は、1/8/1~1/50/1が好ましい。また、キャスティングドラムは表面温度が10~40℃であることが、透明性の観点から好ましい。また、A層/B層の2層積層構成としても構わない。 First, 90 parts by mass of polypropylene raw material A and 10 parts by mass of 4-methyl-1-pentene polymer are put into a twin-screw extruder to produce a master raw material. The melt kneading temperature at this time is 230 to 280 ° C., more preferably 240 to 280 ° C., and further preferably 250 to 280 ° C. 20 parts by mass of the master raw material and 80 parts by mass of the polypropylene raw material A are dry blended and supplied to the single-screw extruder for layer A (surface layer (I)). Part by mass is supplied to a single-screw extruder for layer B (base layer (II)), and melt extrusion is performed at 200 to 260 ° C. Then, after removing foreign substances and modified polymer with a filter installed in the middle of the polymer tube, it is laminated with a multi-manifold type A layer / B layer / A layer composite T die and discharged onto a casting drum. A laminated unstretched sheet having a layer configuration of layer / B layer / A layer is obtained. At this time, the lamination thickness ratio is preferably 1/8/1 to 1/50/1. The surface temperature of the casting drum is preferably 10 to 40 ° C. from the viewpoint of transparency. Moreover, it does not matter as a 2 layer laminated structure of A layer / B layer.
 この際、口金のリップ温度を溶融押出温度から20~40℃低温に設定することが好ましく、30~40℃がより好ましい。リップ温度を低温化することで、口金内壁に接する溶融ポリマーの剪断応力が高くなり、フィルム表層の配向が特に高まり、厚み方向の弾性率が高くなることを見出した。 At this time, it is preferable to set the lip temperature of the die to be 20 to 40 ° C. lower than the melt extrusion temperature, and more preferably 30 to 40 ° C. It has been found that by lowering the lip temperature, the shear stress of the molten polymer in contact with the inner wall of the die is increased, the orientation of the film surface layer is particularly increased, and the elastic modulus in the thickness direction is increased.
 キャスティングドラムへの密着方法としては静電印加法、水の表面張力を利用した密着方法、エアナイフ法、プレスロール法、水中キャスト法などのうちいずれの手法を用いてもよいが、平面性が良好でかつ表面粗さの制御が可能なエアナイフ法が好ましい。エアナイフのエア温度は、0~50℃、好ましくは0~30℃で、吹き出しエア速度は130~150m/sが好ましい。また、フィルムの振動を生じさせないために製膜下流側にエアが流れるようにエアナイフの位置を適宜調整することが好ましい。 Any method can be used as an adhesion method to the casting drum, such as an electrostatic application method, an adhesion method using the surface tension of water, an air knife method, a press roll method, an underwater casting method, etc. In addition, an air knife method capable of controlling the surface roughness is preferable. The air temperature of the air knife is 0 to 50 ° C., preferably 0 to 30 ° C., and the blowing air speed is preferably 130 to 150 m / s. Further, it is preferable to appropriately adjust the position of the air knife so that air flows on the downstream side of the film formation so as not to cause vibration of the film.
 また、キャスティングドラムへ密着させた後に、フィルムの非キャスティングドラム面をさらに強制的に冷却させることで、非キャスティングドラム面のβ晶生成を抑えることができ、フィルムの平滑性や透明性を向上させることができる。非キャスティングドラム面の冷却方法は、エアによる空冷、プレスロール法、水中キャスト法などのうちいずれの手法を用いてもよいが、設備として簡易で、表面粗さの制御がし易く、平滑性が良好であるエアによる空冷が好ましい。 In addition, after the film is brought into close contact with the casting drum, the non-casting drum surface of the film is further forcibly cooled to suppress the formation of β crystals on the non-casting drum surface, thereby improving the smoothness and transparency of the film. be able to. The cooling method of the non-casting drum surface may be any of air cooling, press roll method, underwater casting method, etc., but it is simple as equipment, easy to control surface roughness, and smooth. Air cooling with good air is preferable.
 得られた未延伸シートは、縦延伸工程に導入される。縦延伸工程ではまず複数の120℃以上150℃未満に保たれた金属ロールに未延伸シートを接触させて予熱し延伸温度まで昇温され、周速差を設けたロール間で長手方向に3~8倍に延伸した後、室温まで冷却する。この際、最も高温の予熱ロールの温度(予熱温度)は140℃以上が好ましく、142℃以上がより好ましく、145℃以上がさらに好ましい。最も高温の予熱ロールの温度を140℃以上とすることにより、厚み方向の弾性率を高めることができ好ましい。また、予熱温度は、ポリプロピレン原料Bの融点より高いことが好ましく、20℃以上高いことがより好ましく、40℃以上がさらに好ましく、60℃以上が最も好ましい。内層に使用されるポリプロピレン原料Bの融点以上の温度で延伸することで、延伸応力が低下し、フィルムの引張弾性率を低下することができる。ただし、150℃以上であると、フィルムの表面が粗れ、透明性が低下する場合がある。また延伸倍率が3倍未満であるとフィルムの表面が粗れ、透明性が低下する場合がある。また、この際、周速差を設けたロールの内、下流側の速度の速いロールの温度は、上流側のロールの温度より10℃以上低いことが摩擦係数低減の観点から好ましい。 The obtained unstretched sheet is introduced into the longitudinal stretching step. In the longitudinal stretching step, first, an unstretched sheet is brought into contact with a plurality of metal rolls maintained at 120 ° C. or more and less than 150 ° C., preheated and heated to the stretching temperature, and 3 to 3 in the longitudinal direction between the rolls having a peripheral speed difference. After stretching 8 times, it is cooled to room temperature. At this time, the temperature of the hottest preheating roll (preheating temperature) is preferably 140 ° C. or higher, more preferably 142 ° C. or higher, and further preferably 145 ° C. or higher. By setting the temperature of the hottest preheating roll to 140 ° C. or higher, the elastic modulus in the thickness direction can be increased, which is preferable. The preheating temperature is preferably higher than the melting point of the polypropylene raw material B, more preferably 20 ° C. or higher, further preferably 40 ° C. or higher, and most preferably 60 ° C. or higher. By stretching at a temperature equal to or higher than the melting point of the polypropylene raw material B used for the inner layer, the stretching stress can be lowered and the tensile modulus of the film can be lowered. However, if it is 150 ° C. or higher, the film surface may be rough, and transparency may be lowered. On the other hand, if the draw ratio is less than 3, the surface of the film becomes rough and the transparency may be lowered. Further, at this time, it is preferable from the viewpoint of reducing the friction coefficient that the temperature of the roll having a high speed on the downstream side is 10 ° C. or more lower than the temperature of the upstream side roll among the rolls provided with the peripheral speed difference.
 次いで縦一軸延伸フィルムをテンターに導いてフィルムの端部をクリップで把持し140~165℃の温度で幅方向に7~13倍に横延伸する。延伸温度が低いと、フィルムが破断したり透明性が低下する場合があり、延伸温度が高すぎると、フィルムの配向が弱く強度が低下する場合がある。また、倍率が高いとフィルムが破断する場合があり、倍率が低いとフィルムの配向が弱く強度が低下する場合がある。 Next, the longitudinally uniaxially stretched film is guided to a tenter, the end of the film is gripped with a clip, and the film is horizontally stretched 7 to 13 times in the width direction at a temperature of 140 to 165 ° C. If the stretching temperature is low, the film may be broken or the transparency may be lowered. If the stretching temperature is too high, the orientation of the film is weak and the strength may be lowered. Further, when the magnification is high, the film may be broken, and when the magnification is low, the orientation of the film is weak and the strength may be lowered.
 続く熱処理および弛緩処理工程ではクリップで幅方向を緊張把持したまま幅方向に2~20%の弛緩率で弛緩を与えつつ、100℃以上160℃度未満の温度で熱固定し、クリップで幅方向を緊張把持したまま80~100℃での冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、ワインダ工程にてフィルムエッジ部をスリットし、フィルム製品ロールを巻き取る。 In the subsequent heat treatment and relaxation treatment process, the clip is heat-fixed at a temperature of 100 ° C. or more and less than 160 ° C. while being relaxed at a relaxation rate of 2 to 20% in the width direction while holding the tension in the width direction with the clip. The film is guided to the outside of the tenter through a cooling process at 80 to 100 ° C. while being held tightly, the clip at the end of the film is released, the film edge is slit in the winder process, and the film product roll is wound up.
 以上のようにして得られた二軸配向ポリプロピレンフィルムは、包装用フィルム、表面保護フィルム、工程フィルム、衛生用品、農業用品、建築用品、医療用品など様々な用途で用いることができるが、特に表面平滑性や品位に優れることから、表面保護フィルム、溶液製膜用工程フィルムなどの工程フィルム、離型フィルムとして好ましく用いることができる。溶液製膜用工程フィルムとは、高分子溶液を流延する際の支持体を指す。溶液製膜用工程フィルム上に流延された、溶液フィルムや、乾燥や洗浄工程などを経て、工程フィルムから剥離することで製膜される。 The biaxially oriented polypropylene film obtained as described above can be used in various applications such as packaging films, surface protective films, process films, hygiene products, agricultural products, building products, and medical products. Since it is excellent in smoothness and quality, it can be preferably used as a process film such as a surface protective film and a process film for solution casting, and a release film. The process film for solution casting refers to a support when casting a polymer solution. It forms into a film by peeling from a process film through the solution film casted on the process film for solution casting, or a drying or washing process.
 離型フィルムとは、光学フィルムや粘着フィルム、半導体、電子部品などを製造、移送する工程での傷付き防止や汚染を防ぐ目的として使用されるフィルムを指す。 A release film refers to a film used for the purpose of preventing scratches and preventing contamination in the process of manufacturing and transferring optical films, adhesive films, semiconductors, electronic parts, and the like.
 次に、本発明の二軸配向ポリプロピレンフィルムを粘着フィルム用の塗工基材として用いる場合の例について説明する。 Next, an example in which the biaxially oriented polypropylene film of the present invention is used as a coating substrate for an adhesive film will be described.
 粘着層に用いる粘着剤は、特に限定されず、ゴム系、ビニル重合系、縮合重合系、熱硬化性樹脂系、シリコーン系などを用いることができる。この中で、ゴム系の粘着剤としては、ブタジエン-スチレン共重合体系、ブタジエン-アクリロニトリル共重合体系、イソブチレン-イソプレン共重合体系などを挙げることができる。ビニル重合系の粘着剤としては、アクリル系、スチレン系、酢酸ビニル-エチレン共重合体系、塩化ビニル-酢酸ビニル共重合体系などを挙げることができる。また、縮合重合系の粘着剤としては、ポリエステル系を挙げることができる。さらに熱硬化樹脂系の粘着剤としては、エポキシ樹脂系、ウレタン樹脂系などを挙げることができる。 The pressure-sensitive adhesive used for the pressure-sensitive adhesive layer is not particularly limited, and rubber, vinyl polymerization, condensation polymerization, thermosetting resin, silicone, and the like can be used. Among these, examples of the rubber-based pressure-sensitive adhesive include butadiene-styrene copolymer system, butadiene-acrylonitrile copolymer system, and isobutylene-isoprene copolymer system. Examples of the vinyl polymerization pressure-sensitive adhesive include acrylic, styrene, vinyl acetate-ethylene copolymer system, and vinyl chloride-vinyl acetate copolymer system. Examples of the condensation polymerization pressure-sensitive adhesive include polyester. Furthermore, examples of the thermosetting resin-based pressure-sensitive adhesive include epoxy resin-based and urethane resin-based adhesives.
 これらの中でも透明性に優れ、耐候性、耐熱性、耐湿熱性、基材密着性等を考慮すると、アクリル系粘着剤が好適に用いられる。かかるアクリル系粘着剤の具体例としては、綜研化学(株)製 「SKダイン」(登録商標)1310、1435、SKダイン1811L、SKダイン1888、SKダイン2094、SKダイン2096、SKダイン2137、SKダイン3096、SKダイン1852等が好適な例として挙げられる。 Among these, acrylic adhesives are preferably used in consideration of excellent transparency, weather resistance, heat resistance, moist heat resistance, substrate adhesion, and the like. Specific examples of the acrylic adhesive include “SK Dyne” (registered trademark) 1310, 1435, SK Dyne 1811L, SK Dyne 1888, SK Dyne 2094, SK Dyne 2096, SK Dyne 2137, SK manufactured by Soken Chemical Co., Ltd. Dyne 3096, SK dyne 1852, and the like are preferable examples.
 また、前記のアクリル系粘着剤には、硬化剤をともに用いることが好ましい。硬化剤の具体例としては、例えばイソシアネートの場合、トルエンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシレンジイソシアネート、ジフェニルメタン-4,4‘-ジイソシアネート、ジフェニルメタン-2-4’-ジイソシアネート、3-メチルジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4―4‘-ジイソシアネート、ジシキウロヘキシルメタン-2-4’-ジイソシアネート、リジンイソシアネートなどがあげられる。硬化剤の混合割合は、粘着剤100質量部に対して、0.1~10質量部、好ましくは0.5~5質量部である。0.1質量部より少ないと乾燥炉内で粘着剤層の硬化が不十分となり、裏取られが生じる場合がある。10質量部を超えると、余剰となった硬化剤が基板に移行したり高温時にガス化して汚染原因となることがある。 Moreover, it is preferable to use a curing agent together with the acrylic pressure-sensitive adhesive. Specific examples of the curing agent include, for example, in the case of isocyanate, toluene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylene diisocyanate, diphenylmethane-4 , 4'-diisocyanate, diphenylmethane-2-4'-diisocyanate, 3-methyldiphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4-4'-diisocyanate, dicyclohexylmethane-2-4'-diisocyanate And lysine isocyanate. The mixing ratio of the curing agent is 0.1 to 10 parts by mass, preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the pressure-sensitive adhesive. If the amount is less than 0.1 parts by mass, curing of the pressure-sensitive adhesive layer may be insufficient in the drying furnace, and the film may be trimmed. If it exceeds 10 parts by mass, the excess curing agent may migrate to the substrate or gasify at a high temperature to cause contamination.
 また、アクリル系粘着剤には、被着体(ガラスや機能フィルム)の材質に応じて、酸化防止剤や紫外線吸収剤、シランカップリング剤、金属不活性剤などを適宜添加配合してもよい。 In addition, an antioxidant, an ultraviolet absorber, a silane coupling agent, a metal deactivator, and the like may be appropriately added to the acrylic pressure-sensitive adhesive depending on the material of the adherend (glass or functional film). .
 本発明の二軸配向ポリプロピレンフィルムを用いた粘着フィルムは、粘着層の厚みdが1.0μm以下であることが好ましい。より好ましくは0.8μm以下、さらに好ましくは0.6μm以下、さらに好ましくは0.4μm以下である。粘着層の厚みdが1.0μmを超えると、基材フィルムの背面と粘着層表面との滑り性が悪化して巻取りが困難となる場合がある。また、粘着層の裏取られが生じる場合がある。裏取られとは、基材フィルムの片面に粘着層の溶液を塗工後、乾燥炉内で乾燥・硬化して本発明の粘着フィルムを、離型フィルムを介することなくロール状に巻き取った後、使用時に粘着フィルムを巻き出す際、基材フィルムの背面に粘着層の一部が移行してしまう現象をさす。粘着層の厚みdが1.0μmを超えると、乾燥炉での粘着層の乾燥が不十分となり、裏取られが生じる場合がある。更に、粘着層の厚みが厚いと本発明のフィルムを製品に貼合し、蒸着やスパッタなど減圧が必要な工程に用いる場合などに、粘着層からの揮発成分が減圧度低下の障害になる場合がある。粘着層の厚みを上記範囲とする方法は公知の技術を用いることができ、粘着層の溶液の固形分濃度や各種塗工方法における塗工厚み調整により制御可能である。粘着層の厚みは薄すぎると安定した塗工が困難であったり、粘着力が低すぎて被着体に粘着しない場合があるため、0.1μm程度が下限である。 In the pressure-sensitive adhesive film using the biaxially oriented polypropylene film of the present invention, the thickness d of the pressure-sensitive adhesive layer is preferably 1.0 μm or less. More preferably, it is 0.8 micrometer or less, More preferably, it is 0.6 micrometer or less, More preferably, it is 0.4 micrometer or less. If the thickness d of the pressure-sensitive adhesive layer exceeds 1.0 μm, the slipping property between the back surface of the base film and the surface of the pressure-sensitive adhesive layer may be deteriorated and winding may be difficult. Further, the back of the adhesive layer may occur. Backlining means that after the adhesive layer solution is applied to one side of the base film, it is dried and cured in a drying furnace, and the adhesive film of the present invention is wound into a roll without using a release film. Then, when unwinding an adhesive film at the time of use, the phenomenon which a part of adhesive layer transfers to the back surface of a base film is pointed out. When the thickness d of the pressure-sensitive adhesive layer exceeds 1.0 μm, drying of the pressure-sensitive adhesive layer in the drying furnace becomes insufficient, and there is a case where the film is clogged. In addition, when the adhesive layer is thick, the film of the present invention is bonded to a product, and when the volatile component from the adhesive layer becomes an obstacle to lowering the degree of reduced pressure, such as when used in a process that requires reduced pressure such as vapor deposition or sputtering. There is. A known technique can be used as the method for setting the thickness of the adhesive layer in the above range, and it can be controlled by adjusting the solid content concentration of the solution in the adhesive layer and adjusting the coating thickness in various coating methods. If the thickness of the adhesive layer is too thin, stable coating may be difficult, or the adhesive strength may be too low to adhere to the adherend, so about 0.1 μm is the lower limit.
 本発明の二軸配向ポリプロピレンフィルムを用いた粘着フィルムは、ガラス板に貼り合わせた後の180℃剥離力が1N/25mm以下であることが好ましい。剥離力はより好ましくは、0.5N/25mm以下、さらに好ましくは0.2N/25mm以下、さらに好ましくは0.05N/25mm以下である。剥離力が1N/25mmを超えると、基材フィルムの背面と粘着層表面との滑り性が悪化して巻取りが困難となる場合や裏取られが生じる場合がある。剥離力を上記範囲とするには、粘着層の組成や厚みを後述する範囲とすること、また、フィルムの原料組成や製膜条件を後述する範囲とし、基材フィルムの表面粗さを制御することが効果的である。剥離力が0.01N/25mm未満であると、被着体との貼り合わせ後、搬送中などに粘着フィルムが剥がれてしまう場合があるため、下限は0.01N/25mm程度である。 The pressure-sensitive adhesive film using the biaxially oriented polypropylene film of the present invention preferably has a 180 ° C. peeling force of 1 N / 25 mm or less after being bonded to a glass plate. The peeling force is more preferably 0.5 N / 25 mm or less, further preferably 0.2 N / 25 mm or less, and still more preferably 0.05 N / 25 mm or less. If the peeling force exceeds 1 N / 25 mm, slipping between the back surface of the base film and the surface of the adhesive layer may be deteriorated, and winding may be difficult or betrayed. In order to set the peeling force within the above range, the composition and thickness of the adhesive layer are set within the ranges described below, and the raw material composition and film forming conditions of the film are set within the ranges described below, and the surface roughness of the base film is controlled. It is effective. If the peel force is less than 0.01 N / 25 mm, the adhesive film may be peeled off during transportation after being bonded to the adherend, so the lower limit is about 0.01 N / 25 mm.
 次に粘着層の製造方法を説明するが、必ずしもこれに限定されるものではない。 Next, although the manufacturing method of an adhesion layer is demonstrated, it is not necessarily limited to this.
 まず、粘着層用の塗剤を準備する。塗剤は、上述した粘着剤や硬化剤などの添加剤を溶媒に溶かし用いることができる。溶剤は、コーターでの乾燥温度や塗剤の粘度などによって適宜調整して用いることができ、具体例としては、メタノールやエタノール、イソプロピルアルコール、n一ブタノール、tert-ブタノール、エチレングリコールモノメチルエーテル、1-メトキシ-2-プロパノール、プロピレングリコールモノメチルエーテル、シクロヘキサノン、トルエン、酢酸エチル、酢酸ブチル、イソプロピルアセトン、メチルエチルケトン、メチルイソブチルケトン、ジアセチルアセトン、アセチルアセトンから選ばれる少なくとも1種以上の溶剤を用いることができる。 First, prepare a coating for the adhesive layer. The coating agent can be used by dissolving additives such as the above-mentioned adhesive and curing agent in a solvent. The solvent can be appropriately adjusted according to the drying temperature in the coater, the viscosity of the coating, and the like. Specific examples include methanol, ethanol, isopropyl alcohol, n-butanol, tert-butanol, ethylene glycol monomethyl ether, 1 At least one solvent selected from -methoxy-2-propanol, propylene glycol monomethyl ether, cyclohexanone, toluene, ethyl acetate, butyl acetate, isopropyl acetone, methyl ethyl ketone, methyl isobutyl ketone, diacetyl acetone, and acetyl acetone can be used.
 塗剤中の固形分濃度は、塗剤の粘度や粘着層の厚みにより適宜選択されるものであるが、5~20質量%であることが好ましい。 The solid content concentration in the coating is appropriately selected depending on the viscosity of the coating and the thickness of the adhesive layer, but is preferably 5 to 20% by mass.
 次に、コーターに上述した基材フィルムを搬送させ、粘着層用の塗剤を塗工する。ここで、粘着層を塗工する面は、基材フィルムのどちらの面でも構わないが、塗工面には予めコロナ処理などの前処理により、塗剤との濡れ性を向上しておくことが好ましい。一方、基材フィルムの背面は離型性を向上させるため、コロナ処理などの前処理を実施しないことが好ましい。塗布方式(塗工方式)は特に限定されず、メタバー方式、ドクターブレード方式、グラビア方式、ダイ方式、ナイフ方式、リバース方式、ディップ方式など既存の塗工方式を採用することができる。ただし、上述したとおり粘着層厚みは、1.0μm以下と薄膜であることが好ましく、薄膜の塗工層を安定して得られる観点から、グラビア方式やリバース方式が好ましい。 Next, the above-mentioned base film is conveyed to the coater, and the adhesive layer coating is applied. Here, the surface on which the adhesive layer is applied may be either surface of the base film, but the wettability with the coating agent may be improved in advance by pretreatment such as corona treatment on the coated surface. preferable. On the other hand, the back surface of the base film is preferably not subjected to pretreatment such as corona treatment in order to improve releasability. The coating method (coating method) is not particularly limited, and an existing coating method such as a metabar method, a doctor blade method, a gravure method, a die method, a knife method, a reverse method, or a dip method can be employed. However, as described above, the adhesive layer thickness is preferably 1.0 μm or less and a thin film, and the gravure method and the reverse method are preferable from the viewpoint of stably obtaining a thin coating layer.
 基材フィルムに粘着層用の塗剤を塗工後、乾燥炉に導き塗剤中の溶媒を除去して粘着フィルムを得る。ここでの乾燥温度は基材フィルムの耐熱性や溶剤の沸点により適宜設定されるものであるが、60~170℃であることが好ましい。60℃未満であると、粘着層の硬化が十分に進まず裏取られが生じる場合がある。170℃を超えると、基材フィルムが変形し平面性が悪化する場合がある。また乾燥時間は、15~60秒であることが好ましい。15秒未満では、粘着層の硬化が十分に進まず裏取られが生じる場合がある。60秒を超えると生産性が低下するため好ましくない。 After coating the adhesive for the adhesive layer on the base film, it is guided to a drying oven to remove the solvent in the coating to obtain an adhesive film. The drying temperature here is appropriately set depending on the heat resistance of the base film and the boiling point of the solvent, but is preferably 60 to 170 ° C. If the temperature is less than 60 ° C., the adhesive layer may not be sufficiently cured and may be trimmed. When it exceeds 170 degreeC, a base film may deform | transform and planarity may deteriorate. The drying time is preferably 15 to 60 seconds. If it is less than 15 seconds, curing of the pressure-sensitive adhesive layer may not proceed sufficiently, and the film may be backed up. Exceeding 60 seconds is not preferable because productivity decreases.
 乾燥後の粘着フィルムを離型フィルム等を用いずに巻取機で巻取り、粘着フィルムロールを得ることができる。本発明の粘着フィルムは、上述した構成とすることにより、粘着層の硬化が十分進み、基材フィルムの背面と粘着層表面との滑り性も良好なことから、離型フィルムを介することなく巻き取っても裏取られや巻取り時のシワ発生などの問題がなく、品位の良い粘着フィルムロールを得ることができる。ただし、必要に応じて離型フィルムを用いて巻き取っても構わない。 The pressure-sensitive adhesive film after drying can be wound with a winder without using a release film or the like to obtain a pressure-sensitive adhesive film roll. Since the adhesive film of the present invention has the above-described structure, the adhesive layer is sufficiently cured, and the sliding property between the back surface of the base film and the adhesive layer surface is good. Even if it is taken, there is no problem such as being backed out or wrinkling at the time of winding, and a high-quality adhesive film roll can be obtained. However, you may wind up using a release film as needed.
 以上のようにして得られた粘着フィルムは、包装用フィルム、表面保護フィルム、工程フィルム、衛生用品、農業用品、建築用品、医療用品など様々な用途で用いることができるが、特に表面平滑性に優れることから、表面保護フィルム、工程フィルムとして好ましく用いることができる。 The adhesive film obtained as described above can be used in various applications such as packaging films, surface protective films, process films, sanitary products, agricultural products, building products, and medical products. Since it is excellent, it can be preferably used as a surface protective film and a process film.
 本発明の二軸配向ポリプロピレンフィルムを離型フィルムとして用いる例を、光学部材用の離型フィルムを例にとって説明する。本発明の二軸配向ポリプロピレンフィルムをコーターから巻き出し、片面に粘着剤を塗工して80~100℃で乾燥し、粘着フィルムを得る。その後、光学用部材の製膜工程や検査工程で、粘着フィルムを貼り合わせて使用することができる。本発明の二軸配向ポリプロピレンフィルムは、表面が平滑であるため、光学部材への表面凹凸転写が少なく、高精細な画像表示素子の部材用離型フィルムとして好ましく用いることができる。 An example in which the biaxially oriented polypropylene film of the present invention is used as a release film will be described taking a release film for an optical member as an example. The biaxially oriented polypropylene film of the present invention is unwound from a coater, coated with an adhesive on one side and dried at 80 to 100 ° C. to obtain an adhesive film. Then, an adhesive film can be bonded together and used in the film forming process and the inspection process of the optical member. Since the biaxially oriented polypropylene film of the present invention has a smooth surface, it can be preferably used as a release film for a member of a high-definition image display element with little surface irregularity transfer to an optical member.
 本発明の二軸配向ポリプロピレンフィルムを溶液製膜用工程フィルムとして用いる例を説明する。本発明の二軸配向ポリプロピレンフィルムをコーターから巻き出し、ポリマー溶液を塗工して80~100℃で乾燥し、その後、工程フィルムから溶液製膜フィルムを剥離して、溶媒が完全に除去されるまで更に乾燥して溶液製膜フィルムを得る。本発明の二軸配向ポリプロピレンフィルムは、表面が平滑であるため、溶液製膜フィルムへの表面凹凸転写が少なく、品位の良いフィルムとして好ましく用いることができる。 An example in which the biaxially oriented polypropylene film of the present invention is used as a process film for forming a solution will be described. The biaxially oriented polypropylene film of the present invention is unwound from a coater, coated with a polymer solution and dried at 80 to 100 ° C., and then the solution film is peeled from the process film to completely remove the solvent. Until the solution is further dried. Since the biaxially oriented polypropylene film of the present invention has a smooth surface, it can be preferably used as a film of good quality with little surface irregularity transfer to a solution film.
 以下、実施例により本発明を詳細に説明する。なお、特性は以下の方法により測定、評価を行った。 Hereinafter, the present invention will be described in detail by way of examples. The characteristics were measured and evaluated by the following methods.
 (1)フィルム厚み
 マイクロ厚み計(アンリツ社製)を用いて測定した。フィルムを10cm四方にサンプリングし、任意に5点測定し、平均値を求めた。
(1) Film thickness It measured using the micro thickness meter (made by Anritsu). The film was sampled in a 10 cm square, arbitrarily measured at five points, and an average value was obtained.
 (2)ナノインデンテーション法により測定した厚み方向の弾性率(EIT)
 測定には(株)エリオニクス製のナノインデンター「ENT-2100」を用いて、ISO 14577(2002)に規定された方法に準じて測定した。二軸配向ポリプロピレンフィルムに、東亞合成株式会社製「“アロンアルファ”(登録商標)プロ用耐衝撃」を1滴塗布し、瞬間接着剤を介して二軸配向ポリプロピレンフィルムを専用のサンプル固定台に固定して、表面層側を測定面として測定を行った。測定には稜間角115°の三角錐ダイヤモンド圧子(Berkovich圧子)を用いた。測定データは「ENT-2100」の専用解析ソフト(version 6.18)により処理され、押込み弾性率EIT(GPa)を測定した。測定は、フィルムの両面について、それぞれn=10で行い、その平均値を求め、表には両面の測定値の平均値の内、大きい方の値を記載した。
(2) Elastic modulus (EIT) in the thickness direction measured by the nanoindentation method
For the measurement, a nanoindenter “ENT-2100” manufactured by Elionix Co., Ltd. was used, and the measurement was performed according to the method defined in ISO 14577 (2002). One drop of “Aron Alpha” (registered trademark) professional impact resistance manufactured by Toagosei Co., Ltd. is applied to the biaxially oriented polypropylene film, and the biaxially oriented polypropylene film is fixed to a dedicated sample fixing base via an instantaneous adhesive. Then, the measurement was performed using the surface layer side as the measurement surface. For the measurement, a triangular pyramid diamond indenter (Berkovich indenter) having a ridge angle of 115 ° was used. The measurement data was processed by “ENT-2100” dedicated analysis software (version 6.18), and the indentation elastic modulus EIT (GPa) was measured. The measurement was performed on each side of the film at n = 10, the average value was obtained, and the larger of the average values of the measured values on both sides was listed in the table.
 測定モード:負荷-除荷試験
 最大荷重:0.5mN
 最大荷重に達した時の保持時間:1秒
 荷重速度、除荷速度:0.05mN/sec 。
Measurement mode: Load-unloading test Maximum load: 0.5 mN
Holding time when the maximum load is reached: 1 second Loading speed, unloading speed: 0.05 mN / sec.
 (3)長手(MD)方向および幅(TD)方向の引張弾性率
 フィルムを試験方向長さ150mm×幅方向長さ10mmの矩形に切り出しサンプルとした。引張試験機(オリエンテック製テンシロンAMF/RTA-100)を用いて、JIS K7161(1994)に規定された方法に準じて、23℃、65%RH雰囲気で5回測定を行い、平均値を求めた。ただし、初期チャック間距離50mmとし、引張速度を300mm/分として、試験を開始してから荷重が1Nを通過した点を伸びの原点とした。
(3) Tensile modulus of elasticity in the longitudinal (MD) direction and width (TD) direction The film was cut into a rectangle having a test direction length of 150 mm and a width direction length of 10 mm as a sample. Using a tensile tester (Orientec Tensilon AMF / RTA-100), the measurement is performed 5 times in an atmosphere of 23 ° C. and 65% RH according to the method defined in JIS K7161 (1994), and the average value is obtained. It was. However, the distance between the initial chucks was set to 50 mm, the tensile speed was set to 300 mm / min, and the point where the load passed 1 N after the start of the test was used as the origin of elongation.
 (4)最大高さ粗さ(Sz)
 測定は(株)菱化システムVertScan2.0 R5300GL-Lite-ACを使用し、付属の解析ソフトにより撮影画面を多項式4次近似にて面補正して表面形状を求めた。測定条件は下記のとおり。測定は、ISO 25178に規定された方法に準じて、フィルムの両面の最大高さ粗さを、それぞれn=3で求め、その平均値を各面のSzとして採用した。
(4) Maximum height roughness (Sz)
For the measurement, Ryoka System VertScan 2.0 R5300GL-Lite-AC was used, and the surface shape was obtained by correcting the surface of the photographic screen by polynomial fourth-order approximation with the attached analysis software. The measurement conditions are as follows. In the measurement, according to the method specified in ISO 25178, the maximum height roughness of both surfaces of the film was determined by n = 3, and the average value was adopted as Sz of each surface.
 製造元 : 株式会社菱化システム
 装置名 : VertScan2.0 R5300GL-Lite-AC
 測定条件 : CCDカメラ SONY HR-57 1/2インチ
 対物レンズ 5x
 中間レンズ 0.5x
 波長フィルタ 530nm white
 測定モード:Wave
 測定ソフトウェア :VS-Measure Version5.5.1
 解析ソフトウェア :VS-Viewer Version5.5.1
 測定面積:1.252×0.939mm 。
Manufacturer: Ryoka System Co., Ltd. Device name: VertScan 2.0 R5300GL-Lite-AC
Measurement conditions: CCD camera SONY HR-57 1/2 inch objective lens 5x
Intermediate lens 0.5x
Wavelength filter 530nm white
Measurement mode: Wave
Measurement software: VS-Measure Version5.5.1
Analysis software: VS-Viewer Version5.5.1
Measurement area: 1.252 × 0.939mm 2.
 (5)フィルムのヘイズ
 フィルムを、ヘイズメーター(日本電色工業社製、NDH-5000)を用いて、JIS K7136(2000)に準じて23℃でのヘイズ値(%)を3回測定し、平均値を用いた。
(5) Haze of film Using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., NDH-5000), the haze value (%) at 23 ° C was measured three times according to JIS K7136 (2000). Average values were used.
 (6)静摩擦係数μs
 東洋テスター工業製摩擦測定器を用い、ASTM D1894に準じて、フィルムの一方の面と他方の面とが接触するように重ねてMD方向同士を摩擦させた時の初期の立ち上がり抵抗値を測定し、最大値を静摩擦係数μsとした。ただし、初期の立ち上がりが大きくて測定値上限(5.0)を超えた場合は測定不能とした。サンプルは、幅80mm、長さ200mmの長方形とし、5セット(10枚)切り出した。5回測定を行い、平均値を求めた。
(6) Coefficient of static friction μs
Using Toyo Tester Industry's friction measuring instrument, according to ASTM D1894, measure the initial rise resistance value when the MD direction is rubbed with one side and the other side of the film in contact with each other. The maximum value was defined as the coefficient of static friction μs. However, when the initial rise was large and the measurement value upper limit (5.0) was exceeded, measurement was impossible. Samples were rectangular with a width of 80 mm and a length of 200 mm, and 5 sets (10 sheets) were cut out. Measurement was performed 5 times, and an average value was obtained.
 (7)フィルム品位評価
 実施例において縦延伸後のフィルムを採取し、微分干渉顕微鏡を用いて反射モード、観察倍率400倍で、フィルム3cm四方についてフィルム表面を観察した。この際、側面からLEDライトを当てた時に明るく見え、PPフィルムと同色の異物をPP粉とし、その中から50μm以上の異物の数をカウントし、以下の基準で評価した。観察はキャスティングドラムが接触した面で実施した。PP粉の数が10個以下である場合、被着体への影響が少なく、離型フィルム、溶液製膜用工程フィルム、粘着フィルムとして好適に用いられる。
(7) Film quality evaluation In the examples, the film after longitudinal stretching was collected, and the film surface was observed on a 3 cm square film in a reflection mode and an observation magnification of 400 times using a differential interference microscope. At this time, when the LED light was applied from the side, it looked bright, and the foreign matter having the same color as the PP film was made into PP powder. The number of foreign matters having a size of 50 μm or more was counted, and evaluated according to the following criteria. The observation was carried out on the surface in contact with the casting drum. When the number of PP powders is 10 or less, there is little influence on the adherend, and it is suitably used as a release film, a solution film-forming process film, and an adhesive film.
 A:PP粉の個数が3個以下
 B:PP粉の個数が4~10個
 C:PP粉の個数が11個以上。
A: The number of PP powders is 3 or less B: The number of PP powders is 4 to 10 C: The number of PP powders is 11 or more.
 (8)被着体への転写評価
 二軸配向ポリプロピレンフィルムおよび厚み40μmの日本ゼオン株式会社製“ゼオノアフィルム”(登録商標)を幅100mm、長さ100mmの正方形にサンプルリングし、二軸配向ポリプロピレンフィルムの粗面と“ゼオノアフィルム”とが接触するように重ねて、それを2枚のアクリル板(幅100mm、長さ100mm)に挟んで、2kgの荷重をかけ、23℃の雰囲気下で24時間静置した。24時間後に、“ゼオノアフィルム”の表面(二軸配向ポリプロピレンフィルムが接していた面)を目視で観察し、以下の基準で評価した。
(8) Evaluation of transfer to adherend Biaxially oriented polypropylene film and “ZEONOR FILM” (registered trademark) made by Nippon Zeon Co., Ltd. having a thickness of 40 μm are sampled into a square having a width of 100 mm and a length of 100 mm to obtain a biaxially oriented polypropylene. The rough surface of the film and the “Zeonor film” are stacked so that they come into contact with each other, sandwiched between two acrylic plates (width 100 mm, length 100 mm), a load of 2 kg is applied, and the atmosphere is 24 ° C. under an atmosphere of 23 ° C. Let stand for hours. After 24 hours, the surface of the “ZEONOR film” (the surface on which the biaxially oriented polypropylene film was in contact) was visually observed and evaluated according to the following criteria.
 A:きれいであり、荷重をかける前と同等
 B:弱い凹凸が確認される
 C:強い凹凸が確認される。
A: It is clean and is equivalent to before applying a load. B: Weak unevenness is confirmed. C: Strong unevenness is confirmed.
 (実施例1)
 結晶性ポリプロピレン(PP(a))(プライムポリマー(株)製、TF850H、MFR:2.9g/10分、メソペンタッド分率:0.94、融点:164℃)を90質量部、4-メチル-1-ペンテン系重合体(三井化学(株)製、MX004)を10質量部がこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、260℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてA層用のポリプロピレン原料(1)を得た。
Example 1
90 parts by mass of crystalline polypropylene (PP (a)) (manufactured by Prime Polymer Co., Ltd., TF850H, MFR: 2.9 g / 10 min, mesopentad fraction: 0.94, melting point: 164 ° C.), 4-methyl- 1-Pentene polymer (Mitsui Chemicals Co., Ltd., MX004) is fed from a measuring hopper to a twin screw extruder so that 10 parts by mass is mixed at this ratio, melt kneaded at 260 ° C., and strand It was discharged from the die in a solid shape, cooled and solidified in a water bath at 25 ° C., and cut into chips to obtain a polypropylene raw material (1) for the A layer.
 表層(A)用のポリプロピレン原料として上記ポリプロピレン原料(1)20質量部と上記結晶性PP(a)80質量部とをドライブレンドして、A層用の単軸の溶融押出機に供給し、コア層(B)用のポリプロピレン原料として、住友化学製ポリプロピレン樹脂FSX20L8(MFR=2.0g/10分、アイソタクチックインデックス(II)=96%)90質量部と出光興産株式会社製“エルモーデュ”(L-MODU)(登録商標)S901(MFRが50g/10min、融点:80℃)10質量部とをドライブレンドして、B層用の単軸の溶融押出機に供給し、溶融温度240℃、リップ温度200℃で溶融押出を行い、10μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B/A複合Tダイにて1/28/1の厚み比で積層し、25℃に表面温度を制御したキャスティングドラムに吐出し、エアナイフによりキャスティングドラムに密着させた。その後、キャスティングドラム上のシートの非冷却ドラム面に、温度30℃、圧力0.3MPaの圧空エアを噴射させて冷却し、未延伸シートを得た。続いて、該シートをセラミックロールを用いて147℃に予熱し、周速差を設けたロール間でフィルムの長手方向に4.0倍延伸を行った。この時、周速差を設けたロールの内、上流側のロールの温度は145℃、下流側の速度の速いロールの温度は、70℃とした。次にテンター式延伸機に端部をクリップで把持させて導入し、170℃で3秒間予熱後、165℃で8.0倍に延伸し、幅方向に10%の弛緩を与えながら150℃で熱処理をおこない、その後100℃の冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、幅800mmのフィルムをコアに巻き取った。この時の巻取り張力は50N/mであった。25℃の雰囲気下で48時間保管後に、両端部100mmずつをスリットして幅600mmとし、100N/mでコアに巻取り、厚み24μmの二軸配向ポリプロピレンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。 20 parts by mass of the polypropylene raw material (1) and 80 parts by mass of the crystalline PP (a) as a polypropylene raw material for the surface layer (A) are dry-blended and supplied to a uniaxial melt extruder for the A layer, As polypropylene raw materials for the core layer (B), 90 parts by mass of polypropylene resin FSX20L8 (MFR = 2.0 g / 10 min, isotactic index (II) = 96%) manufactured by Sumitomo Chemical Co., Ltd. and “El Modu” manufactured by Idemitsu Kosan Co., Ltd. (L-MODU) (registered trademark) S901 (MFR 50 g / 10 min, melting point: 80 ° C.) and 10 parts by mass are dry-blended and supplied to a uniaxial melt extruder for the B layer, melting temperature 240 ° C. Then, melt extrusion is performed at a lip temperature of 200 ° C., and foreign matter is removed with a 10 μm cut sintered filter. Then, the feed block type A / B / A composite T-die is 1/28 / The laminated in a thickness ratio, discharged into a casting drum controlled surface temperature of 25 ° C., was brought into close contact with a casting drum by an air knife. Thereafter, the air on the non-cooled drum surface of the sheet on the casting drum was cooled by jetting compressed air at a temperature of 30 ° C. and a pressure of 0.3 MPa to obtain an unstretched sheet. Subsequently, the sheet was preheated to 147 ° C. using a ceramic roll, and stretched 4.0 times in the longitudinal direction of the film between rolls provided with a peripheral speed difference. At this time, among the rolls provided with the peripheral speed difference, the temperature of the upstream side roll was 145 ° C., and the temperature of the downstream side fast roll was 70 ° C. Next, the end part was introduced into a tenter type stretching machine by holding it with a clip, preheated at 170 ° C. for 3 seconds, stretched 8.0 times at 165 ° C., and relaxed by 10% in the width direction at 150 ° C. A heat treatment was performed, and then a cooling process at 100 ° C. was conducted to the outside of the tenter. A clip at the end of the film was released, and a film having a width of 800 mm was wound around the core. The winding tension at this time was 50 N / m. After storage for 48 hours in an atmosphere at 25 ° C., both ends 100 mm were slit to a width of 600 mm, wound on a core at 100 N / m, and a biaxially oriented polypropylene film having a thickness of 24 μm was obtained. The physical properties and evaluation results of the obtained film are shown in Table 1.
 (実施例2)
 実施例1において、表層(A)用のポリプロピレン原料として、結晶性ポリプロピレン(PP(a))100質量部をA層用の単軸の溶融押出機に供給し、それ以外は実施例1と同様の方法で厚み24μmの二軸配向ポリプロピレンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Example 2)
In Example 1, as a polypropylene raw material for the surface layer (A), 100 parts by mass of crystalline polypropylene (PP (a)) was supplied to a uniaxial melt extruder for the A layer, and the others were the same as in Example 1. Thus, a biaxially oriented polypropylene film having a thickness of 24 μm was obtained. The physical properties and evaluation results of the obtained film are shown in Table 1.
 (実施例3)
 実施例1において、積層時の厚み比を1/38/1とし、それ以外は実施例1と同様の方法で厚み24μmの二軸配向ポリプロピレンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Example 3)
In Example 1, a biaxially oriented polypropylene film having a thickness of 24 μm was obtained in the same manner as in Example 1 except that the thickness ratio during lamination was 1/38/1. The physical properties and evaluation results of the obtained film are shown in Table 1.
 (実施例4)
 実施例1において、積層時の厚み比を1/10/1とし、それ以外は実施例1と同様の方法で厚み24μmの二軸配向ポリプロピレンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
Example 4
In Example 1, a biaxially oriented polypropylene film having a thickness of 24 μm was obtained in the same manner as in Example 1 except that the thickness ratio during lamination was 1/10/1. The physical properties and evaluation results of the obtained film are shown in Table 1.
 (実施例5)
 実施例1において、キャスティングドラムの温度を35℃とし、更に縦延伸の予熱温度を142℃とし、それ以外は実施例1と同様の方法で厚み24μmの二軸配向ポリプロピレンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Example 5)
In Example 1, the temperature of the casting drum was set to 35 ° C., the preheating temperature for longitudinal stretching was set to 142 ° C., and a biaxially oriented polypropylene film having a thickness of 24 μm was obtained in the same manner as in Example 1. The physical properties and evaluation results of the obtained film are shown in Table 1.
 (実施例6)
 実施例1において、キャスティングドラムの温度を40℃とし、更に縦延伸の予熱温度を140℃とし、それ以外は実施例1と同様の方法で厚み24μmの二軸配向ポリプロピレンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Example 6)
In Example 1, the temperature of the casting drum was 40 ° C., the preheating temperature for longitudinal stretching was 140 ° C., and a biaxially oriented polypropylene film having a thickness of 24 μm was obtained in the same manner as in Example 1 except that. The physical properties and evaluation results of the obtained film are shown in Table 1.
 (実施例7)
 実施例1において、表層(A)用のポリプロピレン原料として上記ポリプロピレン原料(1)20質量部と上記結晶性PP(a)80質量部とをドライブレンドして、A層用の単軸の溶融押出機に供給し、コア層(B)用のポリプロピレン原料として、住友化学製ポリプロピレン樹脂FSX20L8(MFR=2.0g/10分、アイソタクチックインデックス(II)=96%)90質量部と住友化学製“タフセレン”H3002(MFR=3.0g/10min、融点:80℃)8質量部とをドライブレンドして、B層用の単軸の溶融押出機に供給し、溶融温度240℃、リップ温度200℃で溶融押出を行い、それ以外は実施例1と同様の方法で厚み24μmの二軸配向ポリプロピレンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Example 7)
In Example 1, 20 parts by mass of the polypropylene raw material (1) and 80 parts by mass of the crystalline PP (a) as a polypropylene raw material for the surface layer (A) were dry blended, and uniaxial melt extrusion for the A layer As a polypropylene raw material for the core layer (B), 90 parts by mass of Sumitomo Chemical polypropylene resin FSX20L8 (MFR = 2.0 g / 10 min, isotactic index (II) = 96%) and Sumitomo Chemical 8 parts by weight of “Tough Selenium” H3002 (MFR = 3.0 g / 10 min, melting point: 80 ° C.) is dry blended and supplied to a single-screw melt extruder for the B layer, melting temperature 240 ° C., lip temperature 200 Except that, melt extrusion was carried out at 0 ° C., and a biaxially oriented polypropylene film having a thickness of 24 μm was obtained in the same manner as Example 1. The physical properties and evaluation results of the obtained film are shown in Table 1.
 (比較例1)
 実施例2において、コア層(B)用のポリプロピレン原料として、結晶性ポリプロピレン(PP(a))100質量部をB層用の単軸の溶融押出機に供給し(表層およびコア層に同じ原料を用いた)、それ以外は実施例2と同様の方法で厚み24μmの二軸配向ポリプロピレンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Comparative Example 1)
In Example 2, as a polypropylene raw material for the core layer (B), 100 parts by mass of crystalline polypropylene (PP (a)) was supplied to the single-layer melt extruder for the B layer (the same raw material for the surface layer and the core layer) Otherwise, a biaxially oriented polypropylene film having a thickness of 24 μm was obtained in the same manner as in Example 2. The physical properties and evaluation results of the obtained film are shown in Table 1.
 (比較例2)
 実施例1において、コア層(B)用のポリプロピレン原料として、住友化学製ポリプロピレン樹脂FSX20L8を50質量部と出光興産株式会社製“エルモーデュ”(L-MODU)S901を50質量部とをドライブレンドして、B層用の単軸の溶融押出機に供給し、それ以外は実施例1と同様の方法で厚み24μmの二軸配向ポリプロピレンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Comparative Example 2)
In Example 1, 50 parts by mass of Sumitomo Chemical's polypropylene resin FSX20L8 and 50 parts by mass of “L-MODU” S901 made by Idemitsu Kosan Co., Ltd. were dry blended as the polypropylene raw material for the core layer (B). A biaxially oriented polypropylene film having a thickness of 24 μm was obtained in the same manner as in Example 1 except that it was supplied to a uniaxial melt extruder for the B layer. The physical properties and evaluation results of the obtained film are shown in Table 1.
 (比較例3)
 実施例1において、積層時の厚み比を1/258/1とし、それ以外は実施例1と同様の方法で厚み24μmの二軸配向ポリプロピレンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Comparative Example 3)
In Example 1, the thickness ratio at the time of lamination was 1/258/1, and a biaxially oriented polypropylene film having a thickness of 24 μm was obtained in the same manner as in Example 1 except that. The physical properties and evaluation results of the obtained film are shown in Table 1.
 (比較例4)
 実施例1において、積層時の厚み比を1/7.6/1とし、それ以外は実施例1と同様の方法で厚み24μmの二軸配向ポリプロピレンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Comparative Example 4)
In Example 1, the thickness ratio at the time of lamination was set to 1 / 7.6 / 1, and a biaxially oriented polypropylene film having a thickness of 24 μm was obtained in the same manner as in Example 1 except that. The physical properties and evaluation results of the obtained film are shown in Table 1.
 (比較例5)
 実施例3において、溶融押出時のリップ温度を240℃、縦延伸の予熱温度を135℃とし、それ以外は実施例3と同様の方法で厚み24μmの二軸配向ポリプロピレンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Comparative Example 5)
In Example 3, the lip temperature at the time of melt extrusion was 240 ° C., the preheating temperature for longitudinal stretching was 135 ° C., and a biaxially oriented polypropylene film having a thickness of 24 μm was obtained in the same manner as in Example 3. The physical properties and evaluation results of the obtained film are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (8)

  1. ナノインデンテーション法により測定した少なくとも片面の23℃における厚み方向の弾性率が2.0GPa以上であり、かつ、23℃におけるMD方向とTD方向の引張弾性率の和が6.6GPa以下である、二軸配向ポリプロピレンフィルム。 The elastic modulus in the thickness direction at 23 ° C. of at least one surface measured by the nanoindentation method is 2.0 GPa or more, and the sum of the tensile elastic modulus in the MD direction and the TD direction at 23 ° C. is 6.6 GPa or less. Biaxially oriented polypropylene film.
  2. フィルムの最大高さ粗さSzが両面とも1000nm以下である、請求項1に記載の二軸配向ポリプロピレンフィルム。 The biaxially oriented polypropylene film according to claim 1, wherein the maximum height roughness Sz of the film is 1000 nm or less on both sides.
  3. 少なくとも片面の最大高さ粗さSz1が300nm以下である、請求項1または2に記載の二軸配向ポリプロピレンフィルム。 The biaxially oriented polypropylene film according to claim 1 or 2, wherein at least one surface has a maximum height roughness Sz1 of 300 nm or less.
  4. 静摩擦係数μsが0.55以下である、請求項1~3のいずれかに記載の二軸配向ポリプロピレンフィルム。 The biaxially oriented polypropylene film according to any one of claims 1 to 3, having a static friction coefficient µs of 0.55 or less.
  5. ヘイズが1%以下である、請求項1~4のいずれかに記載の二軸配向ポリプロピレンフィルム。 The biaxially oriented polypropylene film according to any one of claims 1 to 4, having a haze of 1% or less.
  6. 請求項1~5のいずれかに記載の二軸配向ポリプロピレンフィルムを用いた離型フィルム。 A release film using the biaxially oriented polypropylene film according to any one of claims 1 to 5.
  7. 請求項1~5のいずれかに記載の二軸配向ポリプロピレンフィルムを用いた溶液製膜用工程フィルム。 A process film for forming a solution using the biaxially oriented polypropylene film according to any one of claims 1 to 5.
  8. 請求項1~5のいずれかに記載の二軸配向ポリプロピレンフィルムに粘着剤層を設けた粘着フィルム。
     
    6. An adhesive film comprising a biaxially oriented polypropylene film according to claim 1 provided with an adhesive layer.
PCT/JP2018/004242 2017-02-07 2018-02-07 Biaxially oriented polypropylene film WO2018147335A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018544289A JP6512374B2 (en) 2017-02-07 2018-02-07 Biaxially oriented polypropylene film
CN201880008950.5A CN110248990A (en) 2017-02-07 2018-02-07 Biaxially oriented polypropylene film
KR1020197017282A KR102455837B1 (en) 2017-02-07 2018-02-07 Biaxially Oriented Polypropylene Film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017020185 2017-02-07
JP2017-020185 2017-02-07

Publications (1)

Publication Number Publication Date
WO2018147335A1 true WO2018147335A1 (en) 2018-08-16

Family

ID=63107543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004242 WO2018147335A1 (en) 2017-02-07 2018-02-07 Biaxially oriented polypropylene film

Country Status (4)

Country Link
JP (1) JP6512374B2 (en)
KR (1) KR102455837B1 (en)
CN (1) CN110248990A (en)
WO (1) WO2018147335A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044758A1 (en) * 2017-08-29 2019-03-07 東レ株式会社 Polypropylene film, metallized film, and film capacitor
WO2020071291A1 (en) * 2018-10-05 2020-04-09 東レ株式会社 Polyolefin film and release film
WO2020080483A1 (en) * 2018-10-18 2020-04-23 東レ株式会社 Polypropylene film and release film
WO2020090628A1 (en) * 2018-11-01 2020-05-07 東レ株式会社 Polypropylene film and mold release film
JP2020082480A (en) * 2018-11-22 2020-06-04 住友化学株式会社 Laminate film winding body, laminate with hard coat film, and polarizer
JP2020104513A (en) * 2018-11-22 2020-07-09 住友化学株式会社 Laminate film wound body, laminate having hard coat film, and polarizing plate
WO2021070672A1 (en) * 2019-10-10 2021-04-15 東レ株式会社 Polyolefin film
WO2021199558A1 (en) 2020-04-03 2021-10-07 株式会社Tbm Resin composition for producing stretched sheet, stretched sheet, and method for producing stretched sheet
EP4070945A4 (en) * 2019-12-02 2024-02-21 Kyocera Corporation Metallized film and film capacitor using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112852314B (en) * 2021-02-04 2022-07-26 惠州市浩明科技股份有限公司 Special adhesive tape for protective clothing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111552A (en) * 2009-11-27 2011-06-09 Nitto Denko Corp Coating film protective sheet
JP2014205799A (en) * 2013-04-15 2014-10-30 王子ホールディングス株式会社 Biaxially oriented polypropylene film
WO2015129851A1 (en) * 2014-02-28 2015-09-03 東レ株式会社 Biaxially oriented polypropylene film
JP2015178615A (en) * 2014-02-28 2015-10-08 東レ株式会社 biaxially oriented polypropylene film
JP2016030825A (en) * 2014-07-30 2016-03-07 王子ホールディングス株式会社 Biaxially oriented polypropylene film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11152351A (en) 1997-11-20 1999-06-08 Toyobo Co Ltd Polypropylene terephthalate-based film
JPH11269283A (en) 1998-03-23 1999-10-05 Toray Ind Inc Biaxially oriented polyester film
CN101855080B (en) * 2007-11-08 2013-03-13 琳得科株式会社 Release sheet and adhesive material
WO2015137355A1 (en) * 2014-03-12 2015-09-17 旭化成ケミカルズ株式会社 Resin composition and sheet-shaped molded article of same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111552A (en) * 2009-11-27 2011-06-09 Nitto Denko Corp Coating film protective sheet
JP2014205799A (en) * 2013-04-15 2014-10-30 王子ホールディングス株式会社 Biaxially oriented polypropylene film
WO2015129851A1 (en) * 2014-02-28 2015-09-03 東レ株式会社 Biaxially oriented polypropylene film
JP2015178615A (en) * 2014-02-28 2015-10-08 東レ株式会社 biaxially oriented polypropylene film
JP2016030825A (en) * 2014-07-30 2016-03-07 王子ホールディングス株式会社 Biaxially oriented polypropylene film

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044758A1 (en) * 2017-08-29 2019-03-07 東レ株式会社 Polypropylene film, metallized film, and film capacitor
US11440292B2 (en) 2017-08-29 2022-09-13 Toray Industries, Inc. Polypropylene film, metal layer laminated film, and film capacitor
WO2020071291A1 (en) * 2018-10-05 2020-04-09 東レ株式会社 Polyolefin film and release film
JP7036169B2 (en) 2018-10-18 2022-03-15 東レ株式会社 Polypropylene film and mold release film
WO2020080483A1 (en) * 2018-10-18 2020-04-23 東レ株式会社 Polypropylene film and release film
JP2020192813A (en) * 2018-10-18 2020-12-03 東レ株式会社 Polypropylene film and release film
JP7400851B2 (en) 2018-10-18 2023-12-19 東レ株式会社 Polypropylene film and release film
JP2022075716A (en) * 2018-10-18 2022-05-18 東レ株式会社 Polypropylene film and release film
WO2020090628A1 (en) * 2018-11-01 2020-05-07 東レ株式会社 Polypropylene film and mold release film
TWI835906B (en) * 2018-11-01 2024-03-21 日商東麗股份有限公司 Polypropylene film, and release film
JPWO2020090628A1 (en) * 2018-11-01 2021-02-15 東レ株式会社 Polypropylene film and release film
KR20210086617A (en) 2018-11-01 2021-07-08 도레이 카부시키가이샤 Polypropylene film and release film
JP2020104513A (en) * 2018-11-22 2020-07-09 住友化学株式会社 Laminate film wound body, laminate having hard coat film, and polarizing plate
JP2020082480A (en) * 2018-11-22 2020-06-04 住友化学株式会社 Laminate film winding body, laminate with hard coat film, and polarizer
JPWO2021070672A1 (en) * 2019-10-10 2021-10-21 東レ株式会社 Polyolefin film
JP7107384B2 (en) 2019-10-10 2022-07-27 東レ株式会社 polyolefin film
WO2021070672A1 (en) * 2019-10-10 2021-04-15 東レ株式会社 Polyolefin film
EP4070945A4 (en) * 2019-12-02 2024-02-21 Kyocera Corporation Metallized film and film capacitor using same
WO2021199558A1 (en) 2020-04-03 2021-10-07 株式会社Tbm Resin composition for producing stretched sheet, stretched sheet, and method for producing stretched sheet
KR20220131348A (en) 2020-04-03 2022-09-27 가부시키가이샤 티비엠 Resin composition for manufacturing a stretched sheet, a stretched sheet, and a manufacturing method of a stretched sheet
US11773227B2 (en) 2020-04-03 2023-10-03 Tbm Co., Ltd. Resin composition for producing stretched sheet, stretched sheet, and method for producing stretched sheet

Also Published As

Publication number Publication date
KR20190111905A (en) 2019-10-02
JPWO2018147335A1 (en) 2019-02-14
KR102455837B1 (en) 2022-10-18
JP6512374B2 (en) 2019-05-15
CN110248990A (en) 2019-09-17

Similar Documents

Publication Publication Date Title
JP6512374B2 (en) Biaxially oriented polypropylene film
JP7235151B2 (en) biaxially oriented polypropylene film
JP6828437B2 (en) Adhesive film and adhesive film roll
JP7205611B2 (en) biaxially oriented polypropylene film
JP6795106B2 (en) Polypropylene film and release film
JP7070426B2 (en) Laminated polypropylene film
JP2017035884A (en) Biaxially oriented polypropylene film
WO2020196602A1 (en) Polypropylene film
JP6028661B2 (en) Self-adhesive biaxially oriented polypropylene film
JP6962426B2 (en) Polyolefin film and release film
JP6341049B2 (en) Biaxially stretched film
JP6787520B2 (en) Biaxially stretched polypropylene film
JP6753541B1 (en) Polypropylene film and release film
JP2016064654A (en) Biaxial oriented polypropylene film and surface protective film
JP2024092920A (en) Polypropylene film and release film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018544289

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751155

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197017282

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18751155

Country of ref document: EP

Kind code of ref document: A1