WO2020196602A1 - Polypropylene film - Google Patents

Polypropylene film Download PDF

Info

Publication number
WO2020196602A1
WO2020196602A1 PCT/JP2020/013262 JP2020013262W WO2020196602A1 WO 2020196602 A1 WO2020196602 A1 WO 2020196602A1 JP 2020013262 W JP2020013262 W JP 2020013262W WO 2020196602 A1 WO2020196602 A1 WO 2020196602A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polypropylene
mass
polypropylene film
orientation axis
Prior art date
Application number
PCT/JP2020/013262
Other languages
French (fr)
Japanese (ja)
Inventor
岡田一馬
大倉正寿
山中康平
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020217028005A priority Critical patent/KR20210148096A/en
Priority to JP2020539114A priority patent/JPWO2020196602A1/ja
Priority to CN202080016897.0A priority patent/CN113490704B/en
Publication of WO2020196602A1 publication Critical patent/WO2020196602A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/24Plastics; Metallised plastics based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/40Adhesives in the form of films or foils characterised by release liners

Definitions

  • the present invention relates to a polypropylene film having excellent shrinkage characteristics at high temperatures, mechanical strength at high temperatures, heat resistance, productivity, and quality.
  • Polypropylene film has excellent transparency, mechanical properties, electrical properties, etc., so it is used in various applications such as packaging, mold release, tape, cable wrapping, and electrical applications such as capacitors.
  • it since it has excellent surface releasability and mechanical properties, it is suitably used as a releasable film or process film for various members such as plastic products, building materials, and optical members.
  • the required characteristics of the release film are appropriately set depending on the intended use, but one of the ways to use it is to attach it to an adherend and then heat it to a high temperature of 140 to 150 ° C, such as an oven or an oven. May go through the process. In such cases, PET films with excellent heat resistance have often been used, but PET films have poor mold releasability and may not satisfy the required characteristics, and have excellent heat resistance and releasability. Film may be required.
  • shrinkage force at high temperature is large, it may peel off from the adherend or curl when it is attached to the adherend and passes through the heating process.
  • polypropylene has a low melting point of about 160 ° C., and it is very difficult to suppress a shrinkage force of about 140 to 150 ° C.
  • Patent Document 1 describes an example in which the heat treatment temperature is extremely high and the orientation is relaxed to reduce the shrinkage force at 120 ° C.
  • Patent Documents 3 and 4 describe an example in which the heat shrinkage rate is lowered by raising the heat treatment temperature in the relaxation treatment and relaxing the orientation.
  • Patent Document 2 describes an example in which the heat shrinkage rate is lowered by lowering the molecular weight of the polypropylene raw material.
  • Patent Document 5 describes an example in which the contraction force at 140 ° C. is lowered by making the relaxation rate after lateral stretching extremely large.
  • Patent Document 5 describes an example in which the contraction force at 140 ° C. is lowered by making the relaxation rate after lateral stretching extremely large.
  • Patent Documents 1 and 3 have a problem that the mechanical strength is low and wrinkles are formed when the polypropylene film and the adhesive film are transported at a high temperature.
  • the methods described in Patent Documents 2 and 4 have problems such as high heat shrinkage at high temperature, peeling from the adherend, and curling.
  • the method described in Patent Document 5 has a problem that the rigidity of the film at a high temperature is low, the film stretches in the flow direction when the adhesive film is conveyed at a high temperature, and the width shrinkage becomes large.
  • the subject of the present invention is to solve the above-mentioned problems. That is, it is an object of the present invention to provide a polypropylene film which is excellent in mechanical strength at room temperature and high temperature despite its low heat shrinkage force and can be suitably used as a release film in a high temperature environment.
  • the polypropylene film of the present invention has a heat shrinkage force at 140 ° C. in both the main orientation axis direction and the direction orthogonal to the main orientation axis direction of 400 mN or less, and the main orientation axis.
  • the Young's modulus in both the direction and the direction orthogonal to the direction is 1.8 GPa or more.
  • the polypropylene film of the present invention has excellent mechanical strength at room temperature and high temperature, and can be suitably used as a release film in a high temperature environment.
  • the polypropylene film of the present invention has a heat shrinkage force of 400 mN or less at 140 ° C. in both the main orientation axis direction and the direction orthogonal to the main orientation axis direction, and the Young's modulus in both the main orientation axis direction and the direction orthogonal to the main orientation axis direction is 1. It is 8 GPa or more.
  • the heat shrinkage force at 140 ° C. in the direction of the main orientation axis and in the direction orthogonal to the main orientation axis is more preferably 350 mN or less, further preferably 100 mN or less, still more preferably 95 mN or less, and most preferably 30 mN or less. is there.
  • the heat shrinkage force at 140 ° C. in the main orientation axis direction and the direction orthogonal to it exceeds 400 mN in at least one of them, it may be peeled off from the adherend due to shrinkage when it is bonded to the adherend and passed through the heating step. , Curls may occur.
  • the heat shrinkage force means a heat shrinkage force in a width of 4 mm, and the measurement thereof can be performed by the method shown in the examples.
  • the main orientation axis direction in the present invention is 15 °, 30 °, 45 °, 60 °, 75 °, 90 ° with respect to the longitudinal direction when the longitudinal direction is 0 ° in the film plane. , 105 °, 120 °, 135 °, 150 °, 165 °, the direction showing the highest value when Young's modulus is measured in each direction.
  • the "longitudinal direction” is the direction corresponding to the flow direction in the film manufacturing process (hereinafter, may be referred to as "MD")
  • the "width direction” is the above-mentioned film.
  • TD a direction orthogonal to the flow direction in the manufacturing process
  • the film winding direction can be said to be the longitudinal direction.
  • a line is drawn in 15 ° increments with reference to an arbitrary straight line on the film plane.
  • a slit-shaped film piece is sampled in parallel with each line, the Young ratio is obtained with a tensile tester, and the direction in which the maximum Young ratio is given is regarded as the main orientation axis direction.
  • the crystal orientation of the ⁇ crystal (110) plane of the polypropylene film by wide-angle X-ray is measured as follows.
  • the highest direction is the main orientation axis direction.
  • the Young's modulus in the main orientation axis direction and the direction orthogonal to the main orientation axis direction is more preferably 2.0 GPa or more, and further preferably 2.3 GPa or more.
  • the Young's modulus in the main orientation axis direction and the direction orthogonal to the main orientation axis is less than 1.8 GPa in at least one of them, the polypropylene film is adhesively coated and the adhesive layer is dried in a high temperature oven when wrinkles are formed.
  • the upper limit of Young's modulus in the direction of the main orientation axis and the direction orthogonal to the main orientation axis direction is not particularly limited, but is substantially about 10 GPa.
  • the raw material composition of the film should be in the range described later, and the film forming conditions should be in the range described later.
  • a raw material having high crystallinity, a low cold xylene-soluble portion, and a high melting point was used, and the preheating roll temperature during longitudinal stretching was set within the range described later to make the crystalline state before stretching uniform.
  • highly oriented stretching is effective.
  • the polypropylene film of the present invention preferably has a temperature of 116 ° C. or higher, more preferably 124 ° C. or higher, and even more preferably 124 ° C. or higher when the heat shrinkage force is 20 mN or higher in the main orientation axis direction and the direction orthogonal to the main orientation axis direction. Both are 132 ° C. or higher, most preferably 142 ° C. or higher.
  • the temperature at which the heat shrinkage force is 20 mN or more is less than 116 ° C. in at least one of the main orientation axis direction and the direction orthogonal to the main orientation axis direction, due to shrinkage when the material is bonded to the adherend and passes through the heating step.
  • the upper limit of the temperature when the heat shrinkage force becomes 20 mN or more is not particularly limited, but is substantially about 160 ° C.
  • the raw material composition of the film is set in the range described later, and the film forming conditions are set in the range described later, and in particular, it is highly crystalline and cold.
  • Use a raw material with a low xylene-soluble part and a high melting point set the preheating roll temperature during longitudinal stretching to the range described later, homogenize the crystal state before stretching, and perform the heat treatment step after transverse stretching. It is effective to moderately promote the relaxation of the film.
  • the maximum point stress at 120 ° C. in both the main orientation axis direction and the direction orthogonal to the main orientation axis direction is preferably 80 MPa or more, more preferably both 100 MPa ° C. or higher, and further preferably 120 MPa or higher. ..
  • the polypropylene film is adhesively coated and the adhesive layer is dried in a high temperature oven. Wrinkles may occur.
  • the upper limit of the maximum point stress is not particularly limited, but is substantially about 300 MPa.
  • the raw material composition of the film is set in the range described later, and the film forming conditions are set in the range described later.
  • it is highly crystalline, has a low cold xylene-soluble portion, and has a high melting point.
  • it is preferable to use a raw material set the preheating roll temperature at the time of longitudinal stretching within the range described later, homogenize the crystal state before stretching, and then perform highly oriented stretching. Further, it is preferable that the heat treatment temperature after lateral stretching and the relaxation rate are set in the ranges described later, and the orientation of the film is not relaxed more than necessary.
  • the polypropylene film of the present invention preferably has a maximum protrusion roughness St on at least one side of 2000 nm or more, more preferably 4000 nm or more, and further preferably 6000 nm or more. If the St on both sides of the film is less than 2000 nm, the releasability when peeling from the adherend is insufficient, and the adherend may be deformed or ruptured.
  • the upper limit of St is not particularly limited, but is substantially about 30,000 nm.
  • the raw material composition of the film is set to the range described later, and the film forming conditions are set to the range described later.
  • the casting temperature is raised and ⁇ crystals are formed in the unstretched film in the casting step. It is effective to do.
  • the polypropylene film of the present invention preferably has a thickness unevenness in the main orientation axis direction of less than 6.0%, more preferably less than 4.0%, and further preferably less than 2.0%. If the thickness unevenness in the main orientation axis direction is 6.0% or more, it becomes difficult to attach the adherend to the adherend neatly, and the adherend may be peeled off or air biting may be mixed. ..
  • the lower limit of the thickness unevenness in the main orientation axis direction is not particularly limited, but is substantially about 0.1%.
  • the raw material composition of the film is set to the range described later
  • the film forming conditions are set to the range described later
  • the preheating and stretching temperature during transverse stretching are set to the range described later. It is effective to adjust to and increase the lateral stretching ratio.
  • the polypropylene film of the present invention preferably has a heat shrinkage force of 95 mN or less at 140 ° C. in the direction orthogonal to the main orientation axis direction, more preferably 60 mN or less, still more preferably 30 mN or less, and most preferably 10 mN or less.
  • a heat shrinkage force at 140 ° C. in the direction orthogonal to the main orientation axis direction exceeds 95 mN, the shrinkage causes peeling or curling from the adherend when it is attached to the adherend and passes through the heating step. It may happen.
  • the lower limit of the heat shrinkage force at 140 ° C. in the direction orthogonal to the main orientation axis direction is not particularly limited, but is substantially ⁇ 100 mN.
  • the raw material composition of the film is set to the range described later, and the film forming conditions are set to the range described later, particularly longitudinal stretching. It is effective to set the preheating roll temperature at that time in the range described later, make the crystal state before stretching uniform, and then perform highly oriented stretching. In addition, it is more effective to set the preheating temperature and stretching temperature at the time of lateral stretching within the range described later, raise the preheating temperature to a high temperature, preheat the polypropylene film uniformly, and perform high stress stretching at a temperature lower than the preheating temperature. Is.
  • the polypropylene film of the present invention has a value obtained by multiplying the Young's ratio (GPa) at 120 ° C. in the direction orthogonal to the main orientation axis direction by the film thickness ( ⁇ m) at 1.5 (GPa ⁇ ⁇ m) or more. It is preferably 3.0 (GPa ⁇ ⁇ m) or more, more preferably 4.0 (GPa ⁇ ⁇ m) or more, and most preferably 5.5 or more.
  • the value obtained by multiplying the Young's modulus at 120 ° C. in the direction orthogonal to the main orientation axis direction by the film thickness has a high correlation with the rigidity of the film in a high temperature environment, and the value is less than 1.5.
  • the film being conveyed may stretch in the flow direction and the width of the film may shrink significantly when the film is bonded to the adherend and passed through the heating step.
  • the upper limit of the value obtained by multiplying the Young's modulus at 120 ° C. in the direction orthogonal to the main orientation axis direction by the thickness of the film is not particularly limited, but is substantially about 30.
  • the raw material composition of the film should be in the range described later, and the film forming conditions should be set.
  • the preheating roll temperature at the time of longitudinal stretching is the range to be described later, and after homogenizing the crystal state before stretching, highly oriented stretching, the preheating at the time of transverse stretching, and the stretching temperature are the ranges to be described later. It is effective that the film is uniformly preheated at a high temperature, highly oriented and stretched at a low temperature, the relaxation rate is not too large, and the orientation is not relaxed too much.
  • the polypropylene film of the present invention has a laminated structure of two or more layers, and at least one layer contains 50 polypropylene having a cold xylene-soluble portion (CXS) of 3.5% or less based on 100% by mass of the whole layer. It is preferable that the layer contains by mass% or more and 100% by mass or less, a more preferable content is 70% by mass or more and 100% by mass or less, a further preferable content is 90% by mass or more and 100% by mass or less, and the most preferable content is 95. It is 100% by mass or more and 100% by mass or less.
  • CXS cold xylene-soluble portion
  • CXS refers to a polyolefin component dissolved in xylene when the sample is completely dissolved in xylene and then precipitated at room temperature, for reasons such as low stereoregularity and low molecular weight. It is considered that it corresponds to a component that is difficult to crystallize. If a large amount of such a component is contained in the resin, the thermal dimensional stability of the film may be inferior. Therefore, the CXS of polypropylene contained in the polypropylene film of the present invention is more preferably 2.0% or less, further preferably 1.5% or less.
  • the polypropylene film has a laminated structure of two or more layers and the content of polypropylene having a CXS of 3.5% or less in at least one layer is less than 50% by mass, the mechanical strength of the polypropylene film at a high temperature is insufficient.
  • wrinkles may occur.
  • polypropylene having a CXS of more than 3.5% is contained in 50% by mass or more and 100% by mass or less in at least one layer, the heat shrinkage force becomes large and the polypropylene is bonded to the adherend.
  • the lower limit of CXS of at least one layer is not particularly limited, but is substantially about 0.1%. In order to set CXS in the above range, it is effective to set the raw material composition of the film in the range described later, and in particular, to use a polypropylene raw material having a low CXS.
  • the polypropylene film of the present invention is not particularly limited in whether it has a single-layer structure or a laminated structure as long as it contains polypropylene, but as described above, the polypropylene film of the present invention has a laminated structure of two or more layers. Therefore, at least one layer is preferably a layer containing 50% by mass or more and 100% by mass or less of polypropylene having a CXS of 3.5% or less.
  • the layer containing 50% by mass or more and 100% by mass or less of polypropylene having a CXS of 3.5% or less is preferably the thickest layer among the layers having a laminated structure.
  • the inner layer having a three-layer structure is a layer containing 50% by mass or more and 100% by mass or less of polypropylene having a CXS of 3.5% or less.
  • the polypropylene film of the present invention has a laminated structure of two or more layers, and at least one layer is heated from 25 ° C. to 250 ° C. at 20 ° C./min by a differential scanning calorimeter DSC, and then from 250 ° C. to 25 ° C.
  • the crystallization peak temperature (Tc) when the temperature is lowered at 20 ° C./min is preferably 110 ° C. or higher, more preferably 112 ° C. or higher, and further preferably 114 ° C. or higher.
  • Tc has a correlation with the ease of crystallization, and the higher the Tc, the easier it is to crystallize.
  • the polypropylene film crystallizes to form spherulites when solidified on a cooling drum after melt extrusion.
  • the higher the Tc the more dense spherulites are generated on the unstretched sheet, and the protrusions on the surface shape of the film after biaxial stretching become finer accordingly.
  • the higher the Tc the more preferable, from the viewpoint of obtaining a surface in which the protrusions having good releasability are obtained without dent transfer to the adherend.
  • the upper limit of Tc is not particularly limited, but is substantially about 125 ° C.
  • the raw material composition of the film is set in the range described later, and it is particularly effective to use branched-chain polypropylene or a polypropylene raw material having a high molecular weight.
  • Tc branched-chain polypropylene or a polypropylene raw material having a high molecular weight.
  • the polypropylene film is evaluated as a whole and the value is regarded as a representative value.
  • the thickness of the polypropylene film of the present invention is appropriately adjusted depending on the intended use and is not particularly limited, but it is preferably 0.5 ⁇ m or more and 100 ⁇ m or less from the viewpoint of handleability. In order to take advantage of such characteristics, the thickness is more preferably 1 ⁇ m or more and 40 ⁇ m or less, further preferably 1 ⁇ m or more and 30 ⁇ m or less, and most preferably 6 ⁇ m or more and 30 ⁇ m or less.
  • the thickness can be adjusted by adjusting the screw rotation speed of the extruder, the width of the unstretched sheet, the film forming speed, the stretching ratio, and the like within a range that does not deteriorate other physical properties.
  • the polypropylene film of the present invention is not particularly limited in whether it has a single-layer structure or a laminated structure as long as it contains polypropylene, but as described above, the polypropylene film of the present invention has a laminated structure of two or more layers. Therefore, at least one layer is preferably a layer containing 50% by mass or more and 100% by mass or less of polypropylene having a CXS of 3.5% or less.
  • a raw material having a CXS of 3.5% or less (hereinafter, As a raw material, polypropylene having a CXS of 3.5% or less is preferably used as the polypropylene raw material A).
  • the CXS of the polypolopylene raw material A is more preferably 2.0% or less, still more preferably 1.5% or less.
  • the content of the polypropylene raw material A is preferably 50% by mass or more, more preferably 70% by mass or more, and 90% by mass or more, when the layer containing the polypropylene raw material A is 100% by mass.
  • homopolypropylene is preferably used from the viewpoint of strength and heat resistance.
  • the polypropylene raw material A preferably has a melting point of 155 ° C. or higher, more preferably 160 ° C. or higher, and even more preferably 165 ° C. or higher.
  • the melting point is less than 155 ° C., the heat resistance is poor, and when the product is bonded to the adherend and passed through the heating step, it may be peeled off from the adherend or curled due to shrinkage.
  • the polypropylene raw material A preferably has a mesopentad fraction of 0.94 or more, and more preferably 0.97 or more.
  • the mesopentad fraction is an index showing the stereoregularity of the polypropylene crystal phase measured by nuclear magnetic resonance spectroscopy (NMR method), and the higher the value, the higher the crystallinity, the higher the melting point, and the higher the temperature. This is preferable because it increases dimensional stability.
  • the upper limit of the mesopentad fraction is not specified.
  • a method of washing the resin powder obtained with a solvent such as n-heptane, a method of appropriately selecting a catalyst and / or a cocatalyst, a method of appropriately selecting a composition, and the like are used. It is preferably adopted.
  • the melt flow rate (MFR) is more preferably 1 to 10 g / 10 minutes (230 ° C., 21.18 N load), and more preferably 1 to 8 g / 10 minutes (230 ° C., 21. 18N load), and particularly preferably in the range of 4 to 8g / 10 minutes (230 ° C., 21.18N load) from the viewpoint of film forming property and film strength.
  • a method of controlling the average molecular weight or the molecular weight distribution is adopted.
  • the polypropylene raw material A may contain a copolymerization component of other unsaturated hydrocarbons or the like as long as the object of the present invention is not impaired, or may be blended with a polymer.
  • the monomer components constituting such copolymerization components and blends include ethylene, propylene (in the case of a copolymerized blend), 1-butene, 1-pentene, 3-methylpentene-1,3-methylbutene.
  • the copolymerization amount or the blend amount is preferably less than 1 mol% in the copolymerization amount and less than 10% by mass in the blend amount.
  • the content of the ethylene component contained in the polypropylene raw material A is preferably 10% by mass or less. It is more preferably 5% by mass or less, still more preferably 3% by mass or less.
  • the content of the ethylene component exceeds 10% by mass, the strength is lowered or the heat resistance is lowered to heat. The shrinkage rate may worsen.
  • the resin may easily deteriorate during the extrusion process, and fish eyes may easily occur in the film.
  • the polyolefin raw material used for the polypropylene film of the present invention contains various additives as long as the object of the present invention is not impaired. For example, a crystal nucleating agent, an antioxidant, a heat stabilizer, a slip agent, an antistatic agent, an antiblocking agent, a filler, a viscosity modifier, an antioxidant and the like can be contained.
  • the antioxidant is preferably a phenolic agent having steric hindrance, and at least one of them is a high molecular weight type having a molecular weight of 500 or more. Specific examples thereof include various examples. For example, 1,3,5-trimethyl-2,4,6-with 2,6-di-t-butyl-p-cresol (BHT: molecular weight 220.4).
  • Tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene eg, BASF's "Irganox”® 1330: molecular weight 775.2
  • t-butyl-4-hydroxyphenyl) propionate] methane for example, "Irganox” (registered trademark) 1010 manufactured by BASF, Inc., molecular weight 1177.7 or the like.
  • the total content of these antioxidants is preferably in the range of 0.03 to 1.0% by mass with respect to the total amount of the polyolefin raw material.
  • a more preferable content is 0.05 to 0.9% by mass, and particularly preferably 0.1 to 0.8% by mass.
  • the polypropylene film of the present invention has at least one layer containing branched chain polypropylene.
  • the content of the branched-chain polypropylene in the layer containing the branched-chain polypropylene resin is preferably 0.05 to 10% by mass when the entire layer is 100% by mass.
  • the crystallization peak temperature (Tc) of the polypropylene film is raised, the spherulite size generated in the cooling process of the melt-extruded resin sheet is controlled to be small, and the sharp height difference of the film surface unevenness after biaxial stretching is reduced.
  • the lower limit of the content of the branched polypropylene resin is more preferably 0.5% by mass or more, still more preferably 1% by mass or more.
  • the upper limit of the content of the branched chain polypropylene resin is more preferably 8% by mass or less, still more preferably 5% by mass or less.
  • a crystal nucleating agent can be added to the polypropylene raw material used for the polypropylene film of the present invention within a range not contrary to the object of the present invention.
  • ⁇ -crystal nucleating agents dibenzylideneacetone sorbitols, sodium benzoate, etc.
  • ⁇ -crystal nucleating agents potassium 1,2-hydroxystearate, magnesium benzoate, N, N'-dicyclohexyl-2,6-naphthalenecarboxamide, etc. Amide compounds, quinacridone compounds, etc.) are exemplified.
  • the addition amount is usually 0.5% by mass or less, preferably 0.1. It is preferably mass% or less, more preferably 0.05 mass% or less.
  • the polypropylene film of the present invention is preferably biaxially stretched using the above-mentioned raw materials.
  • the biaxial stretching method can be obtained by any of the simultaneous inflation biaxial stretching method, the simultaneous biaxial stretching method of the stenter, and the sequential biaxial stretching method of the stenter. Among them, the film forming stability, the thickness uniformity, and the film It is preferable to adopt the stenter sequential biaxial stretching method in terms of controlling high rigidity and dimensional stability.
  • 80 parts by mass of the polypropylene raw material A and 20 parts by mass of the branched polypropylene raw material are dry-blended and supplied to a single-screw extruder for the B layer (base layer (II)), and the polypropylene raw material A is supplied to the A layer (surface layer (surface layer (II)). It is supplied to the single-screw extruder for I)), and melt extrusion is performed at 200 to 280 ° C., more preferably 220 to 280 ° C., and even more preferably 240 to 270 ° C.
  • the laminated thickness ratio is preferably in the range of 1/8/1 to 1/60/1. Within the above range, at least one layer having a CXS of 3.5% or less and a layer having a Tc of 112 ° C. or higher is formed, and the film is excellent in heat resistance and mechanical strength at high temperature. Can be obtained.
  • the surface temperature of the casting drum is preferably 40 to 120 ° C., preferably 60 to 120 ° C., and more preferably 80 to 110 ° C.
  • a two-layer laminated structure of A layer / B layer may be used. Any of the electrostatic application method, the adhesion method using the surface tension of water, the air knife method, the press roll method, the underwater casting method, etc. may be used as the adhesion method to the casting drum, but the flatness is good.
  • the air knife method which is capable of controlling the surface roughness, is preferable.
  • the air temperature of the air knife is preferably 40 to 100 ° C., and the blown air speed is preferably 130 to 150 m / s. Further, it is preferable to appropriately adjust the position of the air knife so that air flows to the downstream side of the film formation so as not to cause vibration of the film.
  • the obtained unstretched sheet is introduced into the longitudinal stretching step.
  • the longitudinal stretching step first, the unstretched sheet is brought into contact with a plurality of metal rolls kept at 10 ° C. or higher and 160 ° C. or lower, preferably 140 ° C. or higher and 158 ° C. or lower, and more preferably 145 ° C. or higher and 155 ° C. or lower to preheat them.
  • the mixture is cooled to room temperature.
  • the stretching temperature is 100 ° C. or higher and 150 ° C. or lower, preferably 100 ° C. or higher and 140 ° C. or lower, and more preferably 110 ° C. or higher and 130 ° C. or lower.
  • ⁇ crystals in the unstretched film are transferred to ⁇ crystals, and the crystal state in the polypropylene film can be made uniform. Further, by lowering the stretching temperature to a lower temperature than the preheating temperature, stretching can be performed with high stress. In this way, by making the crystal state in the polypropylene film uniform and stretching with high stress in the longitudinal stretching step, it is possible to obtain a polypropylene film having excellent mechanical strength at high temperature and low heat shrinkage. ..
  • the draw ratio is preferably 3 times or more and 6 times or less, and more preferably 4 times or more and 5.5 times or less.
  • the preheating temperature is raised, the polypropylene film is uniformly preheated, and the polypropylene film is stretched under high stress at a temperature lower than the preheating temperature to obtain a polypropylene film having excellent mechanical strength at high temperatures and low heat shrinkage.
  • the preheating temperature is 165 to 180 ° C, more preferably 170 to 180 ° C, and even more preferably 173 to 180 ° C.
  • the transverse stretching temperature is 155 to 170 ° C, more preferably 155 to 165 ° C, and even more preferably 155 to 160 ° C.
  • relaxation is applied at a relaxation rate of 2 to 20%, more preferably 8 to 18%, still more preferably 10 to 15% in the width direction, and 140 ° C.
  • Heat-fixed at a temperature of 140 ° C. or higher and lower than 160 ° C., and guided to the outside of the tenter through a cooling step at 80 to 100 ° C. while tension-grasping in the width direction with a clip. Release the clip, slit the film edge in the winder process, and wind up the film product roll.
  • the heat treatment is performed at a high temperature of 170 ° C. or higher, the orientation of the polypropylene film is relaxed, which may lead to a decrease in mechanical strength.
  • the decrease in mechanical strength in the high temperature range becomes remarkable. Further, if the relaxation treatment is performed at a relaxation rate of 20% or more, the orientation of the polypropylene film is relaxed, which may lead to a decrease in mechanical strength. In particular, the decrease in mechanical strength in the high temperature range becomes remarkable.
  • the polypropylene film obtained as described above can be used for various purposes such as packaging films, surface protective films, process films, sanitary products, agricultural products, construction products, medical products, etc., but especially for surface smoothness. Since it is excellent, it can be preferably used as a surface protective film, a process film, and a release film, and particularly preferably as a release film.
  • the polypropylene film of the present invention can be an adhesive film having an adhesive layer on at least one side thereof.
  • the pressure-sensitive adhesive used for the pressure-sensitive adhesive layer in the pressure-sensitive adhesive film of the present invention is not particularly limited, and rubber-based, vinyl polymerization-based, condensation polymerization-based, thermosetting resin-based, silicone-based, and the like can be used.
  • examples of the rubber-based pressure-sensitive adhesive include a butadiene-styrene copolymer system, a butadiene-acrylonitrile copolymer system, and an isobutylene-isoprene copolymer system.
  • Examples of the vinyl polymerization type pressure-sensitive adhesive include an acrylic type, a styrene type, a vinyl acetate-ethylene copolymer system, and a vinyl chloride-vinyl acetate copolymer system. Further, as the condensation polymerization type pressure-sensitive adhesive, a polyester type can be mentioned. Further, examples of the thermosetting resin-based adhesive include an epoxy resin-based adhesive and a urethane resin-based adhesive.
  • an acrylic adhesive is preferably used in consideration of excellent transparency, weather resistance, heat resistance, moisture heat resistance, substrate adhesion, and the like.
  • acrylic pressure-sensitive adhesives include "SK Dyne” (registered trademark) 1310, 1435, SK Dyne 1811L, SK Dyne 1888, SK Dyne 2094, SK Dyne 2096, SK Dyne 2137, SK manufactured by Soken Kagaku Co., Ltd.
  • Preferable examples include Dyne 3096 and SK Dyne 1852.
  • a curing agent together with the acrylic pressure-sensitive adhesive.
  • the curing agent include toluene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylene diisocyanate, and diphenylmethane-4 in the case of isocyanate.
  • the mixing ratio of the curing agent is 0.1 to 10 parts by mass, preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the pressure-sensitive adhesive.
  • the pressure-sensitive adhesive layer is not sufficiently cured in the drying furnace, and lining may occur. If it exceeds 10 parts by mass, the excess curing agent may be transferred to the substrate or gasified at a high temperature to cause contamination.
  • the acrylic pressure-sensitive adhesive may be appropriately added with an antioxidant, an ultraviolet absorber, a silane coupling agent, a metal deactivator, etc., depending on the material of the adherend (glass or functional film). ..
  • the pressure-sensitive adhesive film using the polypropylene film of the present invention preferably has a pressure-sensitive adhesive layer thickness d of 2.0 ⁇ m or less. It is more preferably 1.5 ⁇ m or less, still more preferably 1.0 ⁇ m or less. If the thickness d of the adhesive layer exceeds 2.0 ⁇ m, the slipperiness between the back surface of the base film and the surface of the adhesive layer may deteriorate and winding may become difficult. In addition, the adhesive layer may not be sufficiently dried in the drying oven, resulting in lining. “Bleed” means that after applying a solution of an adhesive layer on one side of a base film, it is dried and cured in a drying furnace, and the adhesive film of the present invention is wound into a roll without passing through a release film.
  • the adhesive film is unwound during use, a part of the adhesive layer is transferred to the back surface of the base film.
  • a known technique can be used for the method of setting the thickness of the adhesive layer in the above range, and it can be controlled by adjusting the solid content concentration of the solution of the adhesive layer and the coating thickness in various coating methods. If the thickness of the adhesive layer is too thin, stable coating may be difficult, or the adhesive strength may be too low to adhere to the adherend. Therefore, the lower limit is about 0.1 ⁇ m.
  • the adhesive film using the polypropylene film of the present invention preferably has a 180 ° peeling force of 200 mN / 25 mm or less after being attached to an acrylic plate.
  • the peeling force is more preferably 100 mN / 25 mm or less, still more preferably 80 mN / 25 mm or less. If the peeling force exceeds 200 mN / 25 mm, the slipperiness between the back surface of the base film and the surface of the adhesive layer deteriorates, which may make winding difficult or line-off may occur.
  • the composition and thickness of the adhesive layer are set in the range described later, and the raw material composition and film forming conditions of the film are set in the range described later, and the surface roughness of the base film is controlled. Is effective. If the peeling force is less than 10 mN / 25 mm, the adhesive film may peel off during transportation after bonding with the adherend, so the lower limit is about 10 mN / 25 mm.
  • the coating agent can be used by dissolving the above-mentioned additives such as a pressure-sensitive adhesive and a curing agent in a solvent.
  • the solvent can be appropriately adjusted depending on the drying temperature of the coater, the viscosity of the coating material, and the like.
  • At least one solvent selected from -methoxy-2-propanol, propylene glycol monomethyl ether, cyclohexanone, toluene, ethyl acetate, butyl acetate, isopropyl acetone, methyl ethyl ketone, methyl isobutyl ketone, diacetyl acetone and acetyl acetone can be used.
  • the solid content concentration in the coating material is appropriately selected depending on the viscosity of the coating material and the thickness of the adhesive layer, but is preferably 5 to 20% by mass.
  • the above-mentioned base film is conveyed to the coater, and the coating agent for the adhesive layer is applied.
  • the surface to be coated with the adhesive layer may be either surface of the base film, but the coated surface may be pretreated with a corona treatment or the like in advance to improve the wettability with the coating agent. preferable.
  • the coating method (coating method) is not particularly limited, and existing coating methods such as a metabar method, a doctor blade method, a gravure method, a die method, a knife method, a reverse method, and a dip method can be adopted.
  • the thickness of the adhesive layer is as thin as 2.0 ⁇ m or less, and the gravure method or the reverse method is preferable from the viewpoint of stably obtaining the thin coating layer.
  • the drying temperature is appropriately set depending on the heat resistance of the base film and the boiling point of the solvent, but is preferably 60 to 170 ° C. If the temperature is lower than 60 ° C., the adhesive layer may not be sufficiently cured and betrayed may occur. If it exceeds 170 ° C., the base film may be deformed and the flatness may be deteriorated.
  • the drying time is preferably 15 to 60 seconds. If it is less than 15 seconds, the adhesive layer may not be sufficiently cured and betrayed may occur. If it exceeds 60 seconds, the productivity will decrease, which is not preferable.
  • the dried adhesive film is wound with a winder without attaching a release film or the like to the adhesive surface to obtain an adhesive film roll.
  • the pressure-sensitive adhesive film of the present invention has the above-mentioned structure, so that the pressure-sensitive adhesive layer is sufficiently cured and the slipperiness between the back surface of the base film and the surface of the pressure-sensitive adhesive layer is good. Therefore, the pressure-sensitive adhesive film is wound without a release film. Even if it is taken, there is no problem such as line-up or wrinkles during winding, and a high-quality adhesive film roll can be obtained.
  • the adhesive film of the present invention obtained as described above can be used for various purposes such as packaging film, surface protective film, process film, sanitary product, agricultural product, building product, medical product, etc., but particularly on the surface. Since it is excellent in smoothness, it can be preferably used as a surface protective film or a process film.
  • the polypropylene film of the present invention is excellent in heat resistance and quality, it can be preferably used as a release film that requires extremely high quality in optical members and semiconductor manufacturing processes.
  • the Young's modulus was measured at 23 ° C. and 65% RH using a film strength elongation measuring device (AMF / RTA-100) manufactured by Orientec Co., Ltd.
  • the sample was cut into a size of measurement direction (main orientation axis direction and direction orthogonal to it): 25 cm, direction perpendicular to the measurement direction: 1 cm, stretched at an original length of 100 mm and a tensile speed of 300 mm / min, and the Young ratio was JIS. -Measured according to the method specified in Z1702 (1994).
  • Young's modulus at 120 ° C. Young's modulus at 120 ° C. is chucked into an oven heated to 120 ° C. using a film strength elongation measuring device (AMF / RTA-100) manufactured by Orientec Co., Ltd. After charging for 1 minute, the film was subjected to a tensile test at a tensile speed of 300 mm / min. The sample is cut into a size of 25 cm in the measurement direction (orthogonal direction of the main orientation axis) and 1 cm in the direction perpendicular to the measurement direction, stretched at an original length of 100 mm and a tensile speed of 300 mm / min, and specified in JIS-Z1702 (1994). It was measured according to the above method.
  • Thickness unevenness A polypropylene film was prepared, the film was cut into a width of 10 mm, and 20 points were measured at intervals of 50 mm in the main orientation axis direction. The average value of the obtained 20 points of data is calculated, the difference between the maximum value and the minimum value (absolute value) is calculated, and the value obtained by dividing the absolute value of the difference between the minimum value and the maximum value by the average value is the main component of the film. The thickness was uneven in the axis of orientation. The measurement was carried out in an atmosphere of 23 ° C. and 65% RH using a contact-type electronic micrometer manufactured by Anritsu Co., Ltd. (K-312A type).
  • Crystallization peak temperature (Tc) Using a differential scanning calorimeter (EXSTAR DSC6220 manufactured by Seiko Instruments Inc.), each layer of 3 mg polypropylene film was heated from 25 ° C. to 250 ° C. at 20 ° C./min and held for 5 minutes in a nitrogen atmosphere. Then, the temperature is lowered from 250 ° C. to 25 ° C. at 20 ° C./min. The peak temperature of the heat generation curve obtained at the time of this temperature decrease was defined as the crystallization temperature (Tc) of the polypropylene film. When a plurality of peak temperatures could be observed, the highest temperature in the region of 80 ° C. to 130 ° C. was defined as the crystallization temperature (Tc) of the polypropylene film.
  • the height of the curled bonded sample is less than 5 mm.
  • A The height of the curled bonded sample is 5 mm or more and less than 10 mm.
  • B The height of the curled bonded sample is 10 mm or more and less than 15 mm.
  • C The height of the curled bonded sample is 15 mm or more.
  • Width shrinkage rate (%) (500-adhesive film width) / 500 x 100 Based on the calculated width shrinkage rate, evaluation was made according to the following criteria.
  • the width shrinkage rate is less than 0.5%.
  • Example 1 As a raw material for the surface layer (I), 98.5 parts by mass of a homopolypropylene raw material A (MFR: 7.5 g / 10 minutes, melting point: 163 ° C., CXS: 1.0%) manufactured by Sumitomo Chemical Co., Ltd. 1.5 parts by mass of the nutter-catalyzed branched-chain polypropylene raw material B (Profax PF-814) is dry-blended and supplied to a single-screw extruder for the surface layer (I) as a raw material for the inner layer (II).
  • the end was gripped by a clip and introduced into a tenter type stretching machine, preheated at 180 ° C. for 5 seconds, stretched 9.6 times at 170 ° C., and at 167 ° C. while giving 14% relaxation in the width direction.
  • a heat treatment was performed, and then the film was guided to the outside of the tenter through a cooling step of 100 ° C., the clip at the end of the film was released, and the film was wound around a core to obtain a polypropylene film having a thickness of 25 ⁇ m.
  • Table 1 shows the physical properties of the obtained film and the evaluation results.
  • Example 2 Homopolypropylene raw material D (MFR: 3.0 g / 10 minutes, melting point: 164 ° C, CXS: 3.3%) manufactured by Prime Polymer Co., Ltd. 90 parts by mass, 4-Methyl-1-manufactured by Mitsui Chemicals, Inc. Raw materials are supplied from the measuring hopper to the twin-screw extruder so that 10 parts by mass of the penten-based polymer "MX004" (melting point: 230 ° C.) is mixed at this ratio, melt-kneaded at 260 ° C., and from the die in a strand shape.
  • MFR 3.0 g / 10 minutes, melting point: 164 ° C, CXS: 3.3%) manufactured by Prime Polymer Co., Ltd. 90 parts by mass, 4-Methyl-1-manufactured by Mitsui Chemicals, Inc.
  • Raw materials are supplied from the measuring hopper to the twin-screw extruder so that 10 parts by mass of
  • a polypropylene raw material (1) As a raw material for the surface layer (I), 98 parts by mass of the homopolypropylene raw material C and 2 parts by mass of the polypropylene raw material (1) are dry-blended and supplied to a single-screw extruder for the surface layer (I). As a raw material for the inner layer (II), 98.5 parts by mass of the homopolypropylene raw material C and 1.5 parts by mass of the branched polypropylene raw material B are dry-blended to form a single shaft for the inner layer (II).
  • the end was gripped by a clip and introduced into a tenter type stretching machine, preheated at 179 ° C. for 5 seconds, stretched 9.5 times at 173 ° C., and at 148 ° C. while giving 11% relaxation in the width direction.
  • a heat treatment was performed, and then the film was guided to the outside of the tenter through a cooling step of 100 ° C., the clip at the end of the film was released, and the film was wound around a core to obtain a polypropylene film having a thickness of 25 ⁇ m.
  • Table 1 shows the physical properties of the obtained film and the evaluation results.
  • Example 3 As a raw material for the surface layer (I), 98 parts by mass of the homopolypropylene raw material A and 2 parts by mass of the polypropylene raw material (1) are dry-blended and supplied to a single-screw extruder for the surface layer (I). As a raw material for the inner layer (II), 70 parts by mass of the homopolypropylene raw material C and 30 parts by mass of the homopolypropylene raw material A are dry-blended and supplied to a single-screw extruder for the inner layer (II) layer.
  • Melt extrusion is performed at 250 ° C., foreign matter is removed with a 20 ⁇ m cut sintered filter, and then laminated with a feed block type A / B / A composite T-die at a thickness ratio of 1/8/1, and the surface is heated to 58 ° C.
  • the material was discharged to a temperature-controlled casting drum and brought into close contact with the casting drum with an air knife to obtain an unstretched sheet. Subsequently, the sheet was preheated to 144 ° C. using a ceramic roll, and stretched 4.4 times in the longitudinal direction of the film between rolls at 138 ° C. provided with a peripheral speed difference.
  • the end was gripped with a clip and introduced into a tenter type stretching machine, preheated at 176 ° C for 5 seconds, stretched 8.8 times at 167 ° C, and at 163 ° C while giving 9% relaxation in the width direction.
  • a heat treatment was performed, and then the film was guided to the outside of the tenter through a cooling step of 100 ° C., the clip at the end of the film was released, and the film was wound around a core to obtain a polypropylene film having a thickness of 25 ⁇ m.
  • Table 1 shows the physical properties of the obtained film and the evaluation results.
  • Example 4 As a raw material for the surface layer (I), 95.7 parts by mass of the homopolypropylene raw material D, 2.3 parts by mass of the branched polypropylene raw material B, and 2 parts by mass of the polypropylene raw material (1) are dry-blended. It is supplied to a single-screw extruder for the surface layer (I), and 97.7 parts by mass of the homopolypropylene raw material D and 2.3 parts by mass of the branched polypropylene raw material B as raw materials for the inner layer (II).
  • the parts are dry-blended and supplied to a single-screw extruder for the inner layer (II) layer, melt-extruded at 250 ° C., and after removing foreign matter with a 20 ⁇ m-cut sintering filter, feed block type A / It was laminated with a B / A composite T-die at a thickness ratio of 1/10/1, discharged to a casting drum whose surface temperature was controlled at 110 ° C., and brought into close contact with the casting drum with an air knife to obtain an unstretched sheet. Subsequently, the sheet was preheated to 159 ° C. using a ceramic roll, and stretched 4.1 times in the longitudinal direction of the film between rolls at 125 ° C. provided with a peripheral speed difference.
  • the end was gripped by a clip and introduced into a tenter type stretching machine, preheated at 180 ° C. for 5 seconds, stretched 10.2 times at 175 ° C., and at 140 ° C. while giving 14% relaxation in the width direction.
  • a heat treatment was performed, and then the film was guided to the outside of the tenter through a cooling step of 100 ° C., the clip at the end of the film was released, and the film was wound around a core to obtain a polypropylene film having a thickness of 25 ⁇ m.
  • Table 1 shows the physical properties of the obtained film and the evaluation results.
  • Example 5 As a raw material for the surface layer (I), 98.5 parts by mass of the homopolypropylene raw material C and 1.5 parts by mass of the branched polypropylene raw material B are dry-blended to form a single shaft for the surface layer (I). Supply to a uniaxial extruder, 100 parts by mass of the homopolypropylene raw material C as a raw material for the inner layer (II) is supplied to a uniaxial uniaxial extruder for the inner layer (II) layer, and melt extrusion is performed at 250 ° C.
  • the end was gripped by a clip and introduced into a tenter type stretching machine, preheated at 177 ° C for 5 seconds, stretched 6.8 times at 169 ° C, and at 170 ° C while giving 16% relaxation in the width direction.
  • a heat treatment was performed, and then the film was guided to the outside of the tenter through a cooling step of 100 ° C., the clip at the end of the film was released, and the film was wound around a core to obtain a polypropylene film having a thickness of 25 ⁇ m.
  • Table 1 shows the physical properties of the obtained film and the evaluation results.
  • Example 6 As a raw material for the surface layer (I), 95 parts by mass of the homopolypropylene raw material D and 5 parts by mass of a metallocene catalytically branched branched polypropylene raw material (WAYMAX MFX3 manufactured by Japan Polypropylene Corporation) are dry-blended to form the surface layer (I). 100 parts by mass of the homopolypropylene raw material D as a raw material for the inner layer (II) is supplied to the single-screw extruder for the inner layer (II), and the temperature is 250 ° C.
  • WAYMAX MFX3 metallocene catalytically branched branched polypropylene raw material
  • the end was gripped by a clip and introduced into a tenter type stretching machine, preheated at 176 ° C for 5 seconds, stretched 7.8 times at 166 ° C, and at 153 ° C while giving 11% relaxation in the width direction.
  • a heat treatment was performed, and then the film was guided to the outside of the tenter through a cooling step of 100 ° C., the clip at the end of the film was released, and the film was wound around a core to obtain a polypropylene film having a thickness of 7 ⁇ m.
  • Table 1 shows the physical properties of the obtained film and the evaluation results.
  • a polypropylene resin (MFR: 2.0 g / 10 minutes) having a copolymerization composition of 98.4 parts by mass of a propylene component and 1.6 parts by mass of an ethylene component is supplied to a uniaxial extruder and sheeted from a T die at 280 ° C. After being extruded into a shape and cooled and solidified on a cooling roll at 60 ° C., it was longitudinally stretched 4.4 times by a heating roll stretching machine set at 141 ° C., and then 9.2 times laterally stretched by a tenter stretching machine set at 162 ° C. The film was stretched, transversely stretched, and then heat-treated at 170 ° C. to obtain a 30 ⁇ m polypropylene-based film. Table 1 shows the physical properties of the obtained film and the evaluation results.
  • the homopolypropylene raw material D is supplied to a single-screw melt extruder for the surface layer (I), melt-extruded at 240 ° C., and after removing foreign substances with an 80 ⁇ m-cut sintering filter, a feed block type
  • the particles were laminated with a B / A / B composite T-die at a thickness ratio of 1/50/1, and discharged to a cast drum whose surface temperature was controlled at 30 ° C. to obtain a cast sheet.
  • the film was preheated to 140 ° C. using a plurality of ceramic rolls and stretched 4.6 times in the longitudinal direction of the film.
  • the end portion was gripped by a clip and introduced into a tenter type stretching machine, preheated at 165 ° C. for 3 seconds, and then stretched 8.0 times at 160 ° C.
  • heat treatment is performed at 160 ° C while giving 10% relaxation in the width direction, and then the film is guided to the outside of the tenter through a cooling step at 130 ° C, the clip at the end of the film is released, and the film is wound around the core.
  • a polypropylene film having a thickness of 25 ⁇ m was obtained. Table 1 shows the physical properties of the obtained film and the evaluation results.
  • the raw material was supplied to an extruder, melt-kneaded at 300 ° C., discharged from a die in a strand shape, cooled and solidified in a water tank at 25 ° C., and cut into chips to obtain a polypropylene raw material (2).
  • the homopolypropylene raw material D is supplied to a single-screw melt extruder for the inner layer (II) layer, and the polypropylene raw material (2) is supplied to a single-screw melt extruder for the surface layer (I) layer at 240 ° C.
  • the cast drum is laminated with a feed block type A / B composite T-die at a thickness ratio of 8/1, and the surface temperature is controlled at 90 ° C.
  • a cast sheet was obtained by ejection. Then, the film was preheated to 125 ° C. using a plurality of ceramic rolls and stretched 4.6 times in the longitudinal direction of the film.
  • the end portion was gripped by a clip and introduced into a tenter type stretching machine, preheated at 165 ° C. for 3 seconds, and then stretched 8.0 times at 160 ° C.
  • heat treatment is performed at 160 ° C while giving 10% relaxation in the width direction, and then the film is guided to the outside of the tenter through a cooling step at 130 ° C, the clip at the end of the film is released, and the film is wound around the core.
  • a polypropylene film having a thickness of 15 ⁇ m was obtained. Table 1 shows the physical properties of the obtained film and the evaluation results.
  • the polypropylene was laminated at a thickness ratio of 1/10/1, discharged to a casting drum whose surface temperature was controlled at 35 ° C., and brought into close contact with the casting drum with an air knife to obtain an unstretched sheet. Subsequently, the sheet was preheated to 153 ° C. using a ceramic roll, and stretched 3.7 times in the longitudinal direction of the film between rolls at 148 ° C. provided with a peripheral speed difference. Next, the end was gripped with a clip and introduced into a tenter type stretching machine, preheated at 180 ° C. for 5 seconds, stretched 7.2 times at 178 ° C., and at 170 ° C. while giving 16% relaxation in the width direction.
  • the molten sheet was melt-extruded and solidified by cooling on a casting drum having a diameter of 1 m held at 90 ° C. at an air knife temperature of 90 ° C. and an air speed of 140 m / s.
  • the sheet was gradually preheated to 140 ° C., continuously maintained at a temperature of 145 ° C., passed between rolls provided with a peripheral speed difference, and stretched 4.8 times in the longitudinal direction.
  • a radiation heater output 3.5 kW was used in the stretched portion to supplement the amount of heat and stretch.
  • the film was led to a tenter, stretched 10 times in the width direction at a stretching temperature of 160 ° C., and then relaxed in three stages with a total relaxation rate of 23% in the width direction. (The first stage is 12.0%, the second stage is 9.0%, and the third stage is 3.9%.)
  • the heat treatment is performed at a heat fixing temperature of 150 ° C. and a cooling temperature of 140 ° C., and then at room temperature.
  • the mixture was rapidly cooled for 5 seconds to obtain a biaxially oriented polypropylene film having a film thickness of 3.0 ⁇ m. Table 1 shows the physical properties of the obtained film and the evaluation results.
  • the "direction orthogonal to the main orientation axis" in the table means a direction orthogonal to the direction of the main orientation axis.
  • the polypropylene film of the present invention can be used for various purposes such as packaging films, release films, process films, sanitary products, agricultural products, building products, and medical products.
  • it since it is excellent in heat resistance, mechanical strength, releasability, and quality, it can be preferably used as a releasable film or process film that passes through a high temperature process after being bonded to an adherend.

Abstract

A polypropylene film according to the present invention has a thermal shrinkage force at 140°C of 400 mN or less in both a main orientation axis direction and a direction perpendicular thereto, and a Young's modulus of 1.8 GPa or more in both the main orientation axis direction and the direction perpendicular thereto. Provided is a polypropylene film having excellent thermal resistance and quality.

Description

ポリプロピレンフィルムPolypropylene film
 本発明は、高温での収縮特性、及び高温での機械強度に優れ、耐熱性、生産性、品位に優れたポリプロピレンフィルムに関する。 The present invention relates to a polypropylene film having excellent shrinkage characteristics at high temperatures, mechanical strength at high temperatures, heat resistance, productivity, and quality.
 ポリプロピレンフィルムは、透明性、機械特性、電気特性等に優れるため、包装用途、離型用途、テープ用途、ケーブルラッピングやコンデンサをはじめとする電気用途等の様々な用途に用いられている。特に、表面の離型性や機械特性に優れることから、プラスチック製品や建材や光学部材など、様々な部材の離型フィルムや工程フィルムとして好適に用いられる。 Polypropylene film has excellent transparency, mechanical properties, electrical properties, etc., so it is used in various applications such as packaging, mold release, tape, cable wrapping, and electrical applications such as capacitors. In particular, since it has excellent surface releasability and mechanical properties, it is suitably used as a releasable film or process film for various members such as plastic products, building materials, and optical members.
 離型用フィルムへの要求特性は、その使用用途によって適宜設定されるが、使われ方の一つとして、被着体に貼り合わせた後で、140~150℃の加熱ロールやオーブンなどの高温工程を通過する場合がある。こういった場合、これまで耐熱性に優れるPETフィルムが使用される場合が多かったが、PETフィルムは離型性が乏しく、要求特性を満足できない場合があり、耐熱性に優れ離型性を兼ね備えたフィルムが求められる場合がある。 The required characteristics of the release film are appropriately set depending on the intended use, but one of the ways to use it is to attach it to an adherend and then heat it to a high temperature of 140 to 150 ° C, such as an oven or an oven. May go through the process. In such cases, PET films with excellent heat resistance have often been used, but PET films have poor mold releasability and may not satisfy the required characteristics, and have excellent heat resistance and releasability. Film may be required.
 高温での収縮力が大きい場合、被着体と貼り合わせて加熱工程を通過する際に、収縮により被着体から剥がれたり、カールが生じたりする場合がある。特に、ポリプロピレンは融点が約160℃と低く、140~150℃程度の収縮力を抑えることは非常に困難であった。 If the shrinkage force at high temperature is large, it may peel off from the adherend or curl when it is attached to the adherend and passes through the heating process. In particular, polypropylene has a low melting point of about 160 ° C., and it is very difficult to suppress a shrinkage force of about 140 to 150 ° C.
 耐熱化の手段としては、たとえば特許文献1には、熱処理温度を非常に高くし、配向を緩和させることで、120℃での収縮力を低くした例が記載されている。また、特許文献3、4には、弛緩処理での熱処理温度を高くし、配向を緩和させることで、熱収縮率を低くする例が記載されている。また、特許文献2には、ポリプロピレン原料の分子量を低くすることで、熱収縮率を低くする例が記載されている。また、特許文献5には、横延伸後の弛緩率を非常に大きくすることで、140℃での収縮力を低くした例が記載されている。 As a means for heat resistance, for example, Patent Document 1 describes an example in which the heat treatment temperature is extremely high and the orientation is relaxed to reduce the shrinkage force at 120 ° C. Further, Patent Documents 3 and 4 describe an example in which the heat shrinkage rate is lowered by raising the heat treatment temperature in the relaxation treatment and relaxing the orientation. Further, Patent Document 2 describes an example in which the heat shrinkage rate is lowered by lowering the molecular weight of the polypropylene raw material. Further, Patent Document 5 describes an example in which the contraction force at 140 ° C. is lowered by making the relaxation rate after lateral stretching extremely large.
 一般的に、収縮力を下げるには、ポリプロピレンフィルムの配向を低下させる手法が用いられるが、ポリプロピレンフィルムの高温での機械強度が低いと不具合が発生する場合がある。例えば、ポリプロピレンフィルムに粘着塗工し、高温のオーブン中で粘着層を乾燥する際に、シワが入るなど品位上の問題が起こる場合がある。また、特許文献5には、横延伸後の弛緩率を非常に大きくすることで、140℃での収縮力を低くした例が記載されている。 Generally, in order to reduce the shrinkage force, a method of lowering the orientation of the polypropylene film is used, but if the mechanical strength of the polypropylene film at high temperature is low, a problem may occur. For example, when adhesive coating is applied to a polypropylene film and the adhesive layer is dried in a high-temperature oven, quality problems such as wrinkles may occur. Further, Patent Document 5 describes an example in which the contraction force at 140 ° C. is lowered by making the relaxation rate after lateral stretching extremely large.
 以上のことから、高温での収縮力は低くし、一方で高温での機械強度は維持することが求められるが、一般的に、高温の機械強度を高めようとする場合、ポリプロピレンフィルムの配向を高める必要があり、その配向が緩和する際に収縮力が発生し、収縮力が大きくなってしまう場合がある。つまり、収縮力と機械強度はトレードオフの関係であり、両立することは困難であった。 From the above, it is required to reduce the shrinkage force at high temperature and maintain the mechanical strength at high temperature, but in general, when trying to increase the mechanical strength at high temperature, the orientation of the polypropylene film is adjusted. It is necessary to increase it, and when the orientation is relaxed, a contraction force is generated, and the contraction force may increase. That is, the contraction force and the mechanical strength are in a trade-off relationship, and it is difficult to achieve both.
特開2003-041017号公報Japanese Unexamined Patent Publication No. 2003-041017 特開2014-051657号公報Japanese Unexamined Patent Publication No. 2014-051657 特開2017-125184号公報JP-A-2017-125184 国際公開第2016/006578号International Publication No. 2016/006578 国際公開第2014/148547号International Publication No. 2014/148547
 しかしながら前述の特許文献1、3に記載の方法では、機械強度が低く、ポリプロピレンフィルム、および、粘着フィルムを高温で搬送する際にシワが入る問題があった。また、特許文献2、4に記載の方法では、高温での熱収縮が高く、被着体から剥がれたり、カールが発生するなどの問題があった。また、特許文献5に記載の方法では、高温でのフィルムの剛性が低く、粘着フィルムを高温で搬送する際に流れ方向にフィルムが伸び、幅縮みが大きくなるなどの問題があった。 However, the methods described in Patent Documents 1 and 3 have a problem that the mechanical strength is low and wrinkles are formed when the polypropylene film and the adhesive film are transported at a high temperature. Further, the methods described in Patent Documents 2 and 4 have problems such as high heat shrinkage at high temperature, peeling from the adherend, and curling. Further, the method described in Patent Document 5 has a problem that the rigidity of the film at a high temperature is low, the film stretches in the flow direction when the adhesive film is conveyed at a high temperature, and the width shrinkage becomes large.
 そこで本発明の課題は、上記した問題点を解決することにある。すなわち、熱収縮力が低いにも関わらず、室温および高温での機械強度に優れ、高温環境下で離型フィルムとして好適に使用可能なポリプロピレンフィルムを提供することにある。 Therefore, the subject of the present invention is to solve the above-mentioned problems. That is, it is an object of the present invention to provide a polypropylene film which is excellent in mechanical strength at room temperature and high temperature despite its low heat shrinkage force and can be suitably used as a release film in a high temperature environment.
 上述した課題を解決し、目的を達成するために、本発明のポリプロピレンフィルムは、主配向軸方向及びそれに直交する方向の140℃での熱収縮力が、共に400mN以下であり、前記主配向軸方向およびそれに直交する方向のヤング率が、共に1.8GPa以上であることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the polypropylene film of the present invention has a heat shrinkage force at 140 ° C. in both the main orientation axis direction and the direction orthogonal to the main orientation axis direction of 400 mN or less, and the main orientation axis. The Young's modulus in both the direction and the direction orthogonal to the direction is 1.8 GPa or more.
 本発明のポリプロピレンフィルムは、熱収縮力が低いにも関わらず、室温および高温での機械強度に優れ、高温環境下で離型フィルムとして好適に使用することができる。 Despite its low heat shrinkage, the polypropylene film of the present invention has excellent mechanical strength at room temperature and high temperature, and can be suitably used as a release film in a high temperature environment.
 本発明のポリプロピレンフィルムは、主配向軸方向及びそれに直交する方向の140℃での熱収縮力が、共に400mN以下であり、前記主配向軸方向およびそれに直交する方向のヤング率が、共に1.8GPa以上である。 The polypropylene film of the present invention has a heat shrinkage force of 400 mN or less at 140 ° C. in both the main orientation axis direction and the direction orthogonal to the main orientation axis direction, and the Young's modulus in both the main orientation axis direction and the direction orthogonal to the main orientation axis direction is 1. It is 8 GPa or more.
 主配向軸方向及びそれに直交する方向の140℃での熱収縮力は、より好ましくは共に350mN以下であり、さらに好ましくは共に100mN以下、さらにより好ましくは共に95mN以下、最も好ましくは共に30mN以下である。主配向軸方向及びそれに直交する方向の140℃での熱収縮力が、少なくとも一方において400mNを超える場合、被着体と貼り合わせて加熱工程を通過する際に、収縮により被着体から剥がれたり、カールが生じたりする場合がある。主配向軸方向及びそれに直交する方向の140℃での熱収縮力の下限は、特に限定されないが、実質的には-100mN程度が下限である。なお、ここで熱収縮力とは幅4mmにおける熱収縮力をいい、その測定は実施例に示す方法により行うことができる。 The heat shrinkage force at 140 ° C. in the direction of the main orientation axis and in the direction orthogonal to the main orientation axis is more preferably 350 mN or less, further preferably 100 mN or less, still more preferably 95 mN or less, and most preferably 30 mN or less. is there. When the heat shrinkage force at 140 ° C. in the main orientation axis direction and the direction orthogonal to it exceeds 400 mN in at least one of them, it may be peeled off from the adherend due to shrinkage when it is bonded to the adherend and passed through the heating step. , Curls may occur. The lower limit of the heat shrinkage force at 140 ° C. in the main orientation axis direction and the direction orthogonal to the main orientation axis direction is not particularly limited, but is substantially -100 mN. Here, the heat shrinkage force means a heat shrinkage force in a width of 4 mm, and the measurement thereof can be performed by the method shown in the examples.
 なお、本発明における主配向軸方向とは、フィルム面内において、長手方向を0°とした場合に、該長手方向に対して15°、30°、45°、60°、75°、90°、105°、120°、135°、150°、165°の角度をなす各々の方向でヤング率を測定したとき、最も高い値を示す方向をいう。ここで本発明のポリプロピレンフィルムにおいて、「長手方向」とは、フィルム製造工程における流れ方向に対応する方向(以降、「MD」という場合がある)であり、「幅方向」とは、前記のフィルム製造工程における流れ方向と直交する方向(以降、「TD」という場合がある)である。フィルムサンプルがリール、ロール等の形状の場合はフィルム巻き取り方向が長手方向といえる。一方、フィルムの外観からは何れの方向がフィルム製造工程における流れ方向に対応する方向であるかが不明なフィルムの場合は、例えば、フィルム平面上の任意の直線を基準に15°刻みで線を引き、その各線に平行にスリット状のフィルム片をサンプリングして引張り試験器にてヤング率を求め、最大のヤング率を与える方向を、その主配向軸方向とみなす。詳細は後述するが、サンプルの幅が150mm未満で引張り試験器ではヤング率を求めることができない場合は、広角X線によるポリプロピレンフィルムのα晶(110)面の結晶配向を次のように測定し、下記の判断基準に基づいてフィルム長手および幅方向とする。すなわち、フィルム表面に対して垂直方向にX線を入射し、2θ=約14°(α晶(110)面)における結晶ピークを円周方向にスキャンし、得られた回折強度分布の回折強度が最も高い方向を主配向軸方向とする。 The main orientation axis direction in the present invention is 15 °, 30 °, 45 °, 60 °, 75 °, 90 ° with respect to the longitudinal direction when the longitudinal direction is 0 ° in the film plane. , 105 °, 120 °, 135 °, 150 °, 165 °, the direction showing the highest value when Young's modulus is measured in each direction. Here, in the polypropylene film of the present invention, the "longitudinal direction" is the direction corresponding to the flow direction in the film manufacturing process (hereinafter, may be referred to as "MD"), and the "width direction" is the above-mentioned film. It is a direction orthogonal to the flow direction in the manufacturing process (hereinafter, may be referred to as "TD"). When the film sample has a shape such as a reel or a roll, the film winding direction can be said to be the longitudinal direction. On the other hand, in the case of a film in which it is not clear from the appearance of the film which direction corresponds to the flow direction in the film manufacturing process, for example, a line is drawn in 15 ° increments with reference to an arbitrary straight line on the film plane. A slit-shaped film piece is sampled in parallel with each line, the Young ratio is obtained with a tensile tester, and the direction in which the maximum Young ratio is given is regarded as the main orientation axis direction. Details will be described later, but if the sample width is less than 150 mm and the Young's modulus cannot be determined with a tensile tester, the crystal orientation of the α crystal (110) plane of the polypropylene film by wide-angle X-ray is measured as follows. , The film length and width directions are based on the following criteria. That is, X-rays are incident in the direction perpendicular to the film surface, and the crystal peak at 2θ = about 14 ° (α crystal (110) plane) is scanned in the circumferential direction, and the diffraction intensity of the obtained diffraction intensity distribution is obtained. The highest direction is the main orientation axis direction.
 前記主配向軸方向およびそれに直交する方向のヤング率は、より好ましくは共に2.0GPa以上であり、さらに好ましくは共に2.3GPa以上である。前記主配向軸方向およびそれに直交する方向のヤング率が、少なくとも一方において1.8GPaを下回ると、ポリプロピレンフィルムに粘着塗工し、高温のオーブン中で粘着層を乾燥する際に、シワが入る場合がある。主配向軸方向およびそれに直交する方向のヤング率の上限は、特に限定されないが、実質的には10GPa程度が上限である。 The Young's modulus in the main orientation axis direction and the direction orthogonal to the main orientation axis direction is more preferably 2.0 GPa or more, and further preferably 2.3 GPa or more. When the Young's modulus in the main orientation axis direction and the direction orthogonal to the main orientation axis is less than 1.8 GPa in at least one of them, the polypropylene film is adhesively coated and the adhesive layer is dried in a high temperature oven when wrinkles are formed. There is. The upper limit of Young's modulus in the direction of the main orientation axis and the direction orthogonal to the main orientation axis direction is not particularly limited, but is substantially about 10 GPa.
 主配向軸方向及びそれに直交する方向の140℃での熱収縮力、およびヤング率の値を上記範囲とするには、フィルムの原料組成を後述する範囲とし、また、製膜条件を後述する範囲とし、特に、高結晶性で、冷キシレン可溶部が低く、高融点の原料を使用すること、また、縦延伸時の予熱ロール温度を後述する範囲とし、延伸前の結晶状態を均一化した上で、高配向延伸することが効果的である。 In order to set the values of the heat shrinkage force at 140 ° C. and the Young's modulus in the main orientation axis direction and the direction orthogonal to the main orientation axis direction in the above range, the raw material composition of the film should be in the range described later, and the film forming conditions should be in the range described later. In particular, a raw material having high crystallinity, a low cold xylene-soluble portion, and a high melting point was used, and the preheating roll temperature during longitudinal stretching was set within the range described later to make the crystalline state before stretching uniform. Above, highly oriented stretching is effective.
 本発明のポリプロピレンフィルムは、前記主配向軸方向、およびそれに直交する方向の、熱収縮力が20mN以上となる際の温度が共に116℃以上が好ましく、より好ましくは共に124℃以上、さらに好ましくは共に132℃以上、最も好ましくは共に142℃以上である。主配向軸方向及びそれに直交する方向の少なくとも一方において、熱収縮力が20mN以上となる際の温度が116℃未満である場合、被着体と貼り合わせて加熱工程を通過する際に、収縮により被着体から剥がれたり、カールが生じたりする場合がある。熱収縮力が20mN以上となる際の温度の上限は、特に限定されないが、実質的には160℃程度が上限である。熱収縮力が20mN以上となる際の温度の値を上記範囲とするには、フィルムの原料組成を後述する範囲とし、また、製膜条件を後述する範囲とし、特に、高結晶性で、冷キシレン可溶部が低く、高融点の原料を使用すること、また、縦延伸時の予熱ロール温度を後述する範囲とし、延伸前の結晶状態を均一化すること、横延伸後の熱処理工程で、フィルムの緩和を適度に促進することが効果的である。 The polypropylene film of the present invention preferably has a temperature of 116 ° C. or higher, more preferably 124 ° C. or higher, and even more preferably 124 ° C. or higher when the heat shrinkage force is 20 mN or higher in the main orientation axis direction and the direction orthogonal to the main orientation axis direction. Both are 132 ° C. or higher, most preferably 142 ° C. or higher. When the temperature at which the heat shrinkage force is 20 mN or more is less than 116 ° C. in at least one of the main orientation axis direction and the direction orthogonal to the main orientation axis direction, due to shrinkage when the material is bonded to the adherend and passes through the heating step. It may come off from the adherend or curl. The upper limit of the temperature when the heat shrinkage force becomes 20 mN or more is not particularly limited, but is substantially about 160 ° C. In order to set the temperature value when the heat shrinkage force is 20 mN or more in the above range, the raw material composition of the film is set in the range described later, and the film forming conditions are set in the range described later, and in particular, it is highly crystalline and cold. Use a raw material with a low xylene-soluble part and a high melting point, set the preheating roll temperature during longitudinal stretching to the range described later, homogenize the crystal state before stretching, and perform the heat treatment step after transverse stretching. It is effective to moderately promote the relaxation of the film.
 本発明のポリプロピレンフィルムは、前記主配向軸方向、およびそれに直交する方向の、120℃での最大点応力は共に80MPa以上が好ましく、より好ましくは共に100MPa℃以上、さらに好ましくは共に120MPa以上である。主配向軸方向、およびそれに直交する方向の少なくとも一方において、120℃での最大点応力が80MPa未満である場合、ポリプロピレンフィルムに粘着塗工し、高温のオーブン中で粘着層を乾燥する際に、シワが入る場合がある。最大点応力の上限は、特に限定されないが、実質的には300MPa程度が上限である。最大点応力を上記範囲とするには、フィルムの原料組成を後述する範囲とし、また、製膜条件を後述する範囲とし、特に、高結晶性で、冷キシレン可溶部が低く、高融点の原料を使用すること、また、縦延伸時の予熱ロール温度を後述する範囲とし、延伸前の結晶状態を均一化した上で、高配向延伸することが好ましい。また、横延伸後の熱処理温度、および、弛緩率を後述する範囲とし、必要以上にフィルムの配向を緩和させないことが好ましい。 In the polypropylene film of the present invention, the maximum point stress at 120 ° C. in both the main orientation axis direction and the direction orthogonal to the main orientation axis direction is preferably 80 MPa or more, more preferably both 100 MPa ° C. or higher, and further preferably 120 MPa or higher. .. When the maximum point stress at 120 ° C. is less than 80 MPa in at least one of the main orientation axis direction and the direction orthogonal to it, the polypropylene film is adhesively coated and the adhesive layer is dried in a high temperature oven. Wrinkles may occur. The upper limit of the maximum point stress is not particularly limited, but is substantially about 300 MPa. In order to set the maximum point stress in the above range, the raw material composition of the film is set in the range described later, and the film forming conditions are set in the range described later. In particular, it is highly crystalline, has a low cold xylene-soluble portion, and has a high melting point. It is preferable to use a raw material, set the preheating roll temperature at the time of longitudinal stretching within the range described later, homogenize the crystal state before stretching, and then perform highly oriented stretching. Further, it is preferable that the heat treatment temperature after lateral stretching and the relaxation rate are set in the ranges described later, and the orientation of the film is not relaxed more than necessary.
 本発明のポリプロピレンフィルムは、少なくとも片面の最大突起粗さStは2000nm以上が好ましく、より好ましくは4000nm以上、さらに好ましくは6000nm以上である。フィルム両面のStが2000nm未満である場合、被着体から剥離する際の離型性が不足し、被着体が変形したり破膜したりする場合がある。Stの上限は、特に限定されないが、実質的には30000nm程度が上限である。Stを上記範囲とするには、フィルムの原料組成を後述する範囲とし、また、製膜条件を後述する範囲とし、特に、キャスト温度を高温化し、キャスト工程で未延伸フィルム中にβ晶を形成することが効果的である。 The polypropylene film of the present invention preferably has a maximum protrusion roughness St on at least one side of 2000 nm or more, more preferably 4000 nm or more, and further preferably 6000 nm or more. If the St on both sides of the film is less than 2000 nm, the releasability when peeling from the adherend is insufficient, and the adherend may be deformed or ruptured. The upper limit of St is not particularly limited, but is substantially about 30,000 nm. In order to set St to the above range, the raw material composition of the film is set to the range described later, and the film forming conditions are set to the range described later. In particular, the casting temperature is raised and β crystals are formed in the unstretched film in the casting step. It is effective to do.
 本発明のポリプロピレンフィルムは、前記主配向軸方向の厚みムラが6.0%未満が好ましく、より好ましくは4.0%未満、さらに好ましくは2.0%未満である。主配向軸方向の厚みムラが6.0%以上である場合、被着体と貼り合わせる際にきれいに貼り合わせることが困難となり、被着体から剥がれたり、エア噛みが混入したりする場合がある。主配向軸方向の厚みムラの下限は、特に限定されないが、実質的には0.1%程度が下限である。主配向軸方向の厚みムラを上記範囲とするには、フィルムの原料組成を後述する範囲とし、また、製膜条件を後述する範囲とし、特に、横延伸時の予熱、延伸温度を後述する範囲に調整し、かつ横延伸倍率を大きくすることが効果的である。 The polypropylene film of the present invention preferably has a thickness unevenness in the main orientation axis direction of less than 6.0%, more preferably less than 4.0%, and further preferably less than 2.0%. If the thickness unevenness in the main orientation axis direction is 6.0% or more, it becomes difficult to attach the adherend to the adherend neatly, and the adherend may be peeled off or air biting may be mixed. .. The lower limit of the thickness unevenness in the main orientation axis direction is not particularly limited, but is substantially about 0.1%. In order to set the thickness unevenness in the main orientation axis direction within the above range, the raw material composition of the film is set to the range described later, the film forming conditions are set to the range described later, and in particular, the preheating and stretching temperature during transverse stretching are set to the range described later. It is effective to adjust to and increase the lateral stretching ratio.
 本発明のポリプロピレンフィルムは、前記主配向軸方向に直交する方向の140℃での熱収縮力が95mN以下が好ましく、より好ましくは60mN以下、さらに好ましくは30mN以下、最も好ましくは10mN以下である。前記主配向軸方向に直交する方向の140℃での熱収縮力が95mNを超える場合、被着体と貼り合わせて加熱工程を通過する際に、収縮により被着体から剥がれたり、カールが生じたりする場合がある。前記主配向軸方向に直交する方向の140℃での熱収縮力の下限は特に限定されないが、実質的には-100mN程度が下限である。前記主配向軸方向に直交する方向の140℃での熱収縮力を上記範囲とするには、フィルムの原料組成を後述する範囲とし、また、製膜条件を後述する範囲とし、特に、縦延伸時の予熱ロール温度を後述する範囲とし、延伸前の結晶状態を均一化した上で、高配向延伸することが効果的である。また、併せて横延伸時の予熱温度、延伸温度を後述する範囲とし、予熱温度を高温化し、ポリプロピレンフィルムを均一に予熱し、予熱温度よりも低い温度で高応力延伸することが、さらに効果的である。 The polypropylene film of the present invention preferably has a heat shrinkage force of 95 mN or less at 140 ° C. in the direction orthogonal to the main orientation axis direction, more preferably 60 mN or less, still more preferably 30 mN or less, and most preferably 10 mN or less. When the heat shrinkage force at 140 ° C. in the direction orthogonal to the main orientation axis direction exceeds 95 mN, the shrinkage causes peeling or curling from the adherend when it is attached to the adherend and passes through the heating step. It may happen. The lower limit of the heat shrinkage force at 140 ° C. in the direction orthogonal to the main orientation axis direction is not particularly limited, but is substantially −100 mN. In order to set the heat shrinkage force at 140 ° C. in the direction orthogonal to the main orientation axis direction within the above range, the raw material composition of the film is set to the range described later, and the film forming conditions are set to the range described later, particularly longitudinal stretching. It is effective to set the preheating roll temperature at that time in the range described later, make the crystal state before stretching uniform, and then perform highly oriented stretching. In addition, it is more effective to set the preheating temperature and stretching temperature at the time of lateral stretching within the range described later, raise the preheating temperature to a high temperature, preheat the polypropylene film uniformly, and perform high stress stretching at a temperature lower than the preheating temperature. Is.
 本発明のポリプロピレンフィルムは、主配向軸方向に直交する方向の、120℃でのヤング率(GPa)に、フィルムの厚み(μm)を掛け合わせた値が1.5(GPa・μm)以上であることが好ましく、より好ましくは3.0(GPa・μm)以上、さらに好ましくは4.0(GPa・μm)以上、最も好ましくは5.5以上である。主配向軸方向に直交する方向の、120℃でのヤング率に、フィルムの厚みを掛け合わせた値は、高温環境下でのフィルムの剛性と相関性が高く、該値が1.5未満である場合、被着体と貼り合わせて加熱工程を通過する際に、搬送中のフィルムが流れ方向に伸び、フィルムの幅縮みが大きくなる場合がある。主配向軸方向に直交する方向の、120℃でのヤング率に、フィルムの厚みを掛け合わせた値の上限は特に限定されないが、実質的には30程度が上限である。主配向軸方向に直交する方向の、120℃でのヤング率に、フィルムの厚みを掛け合わせた値を上記範囲とするには、フィルムの原料組成を後述する範囲とし、また、製膜条件を後述する範囲とし、特に、縦延伸時の予熱ロール温度を後述する範囲とし、延伸前の結晶状態を均一化した上で、高配向延伸すること、横延伸時の予熱、延伸温度を後述する範囲に調整し、高温で均一に予熱し、低温で高配向延伸すること、弛緩率を大きく取り過ぎず、配向を緩和させすぎないことが効果的である。 The polypropylene film of the present invention has a value obtained by multiplying the Young's ratio (GPa) at 120 ° C. in the direction orthogonal to the main orientation axis direction by the film thickness (μm) at 1.5 (GPa · μm) or more. It is preferably 3.0 (GPa · μm) or more, more preferably 4.0 (GPa · μm) or more, and most preferably 5.5 or more. The value obtained by multiplying the Young's modulus at 120 ° C. in the direction orthogonal to the main orientation axis direction by the film thickness has a high correlation with the rigidity of the film in a high temperature environment, and the value is less than 1.5. In some cases, the film being conveyed may stretch in the flow direction and the width of the film may shrink significantly when the film is bonded to the adherend and passed through the heating step. The upper limit of the value obtained by multiplying the Young's modulus at 120 ° C. in the direction orthogonal to the main orientation axis direction by the thickness of the film is not particularly limited, but is substantially about 30. In order to set the value obtained by multiplying the Young ratio at 120 ° C. in the direction orthogonal to the main orientation axis direction by the thickness of the film in the above range, the raw material composition of the film should be in the range described later, and the film forming conditions should be set. The range to be described later, in particular, the preheating roll temperature at the time of longitudinal stretching is the range to be described later, and after homogenizing the crystal state before stretching, highly oriented stretching, the preheating at the time of transverse stretching, and the stretching temperature are the ranges to be described later. It is effective that the film is uniformly preheated at a high temperature, highly oriented and stretched at a low temperature, the relaxation rate is not too large, and the orientation is not relaxed too much.
 本発明のポリプロピレンフィルムは、2層以上の積層構成であって、少なくとも1層は、該層の全体100質量%において、冷キシレン可溶部(CXS)が3.5%以下であるポリプロピレンを50質量%以上100質量%以下含有する層であることが好ましく、より好ましい含有量は70質量%以上100質量%以下、さらに好ましい含有量は90質量%以上100質量%以下、最も好ましい含有量は95質量%以上100質量%以下である。ここでCXSとは、試料をキシレンで完全溶解せしめた後、室温で析出させたときに、キシレン中に溶解しているポリオレフィン成分のことをいい、立体規則性の低い、分子量が低い等の理由で結晶化し難い成分に該当しているものと考えられる。このような成分が多く樹脂中に含まれているとフィルムの熱寸法安定性に劣ることがある。従って、本発明のポリプロピレンフィルムに含まれるポリプロピレンのCXSは、2.0%以下がより好ましく、1.5%以下がさらに好ましい。2層以上の積層構成であり、少なくとも1層における、CXSが3.5%以下であるポリプロピレンの含有量が50質量%未満である場合、ポリプロピレンフィルムの高温での機械強度が不足する。その結果、例えばポリプロピレンフィルムに粘着塗工し、高温のオーブン中で粘着層を乾燥する際に、シワが入る場合がある。また、2層以上の積層構成であって少なくとも1層においてCXSが3.5%を超えるポリプロピレンを50質量%以上100質量%以下含む場合、熱収縮力が大きくなり、被着体と貼り合わせて加熱工程を通過する際に、収縮により被着体から剥がれたり、カールが生じたりする場合がある。少なくとも1層のCXSの下限は、特に限定されないが、実質的には0.1%程度が下限である。CXSを上記範囲とするには、フィルムの原料組成を後述する範囲とし、特に、CXSの低いポリプロピレン原料を用いることが効果的である。 The polypropylene film of the present invention has a laminated structure of two or more layers, and at least one layer contains 50 polypropylene having a cold xylene-soluble portion (CXS) of 3.5% or less based on 100% by mass of the whole layer. It is preferable that the layer contains by mass% or more and 100% by mass or less, a more preferable content is 70% by mass or more and 100% by mass or less, a further preferable content is 90% by mass or more and 100% by mass or less, and the most preferable content is 95. It is 100% by mass or more and 100% by mass or less. Here, CXS refers to a polyolefin component dissolved in xylene when the sample is completely dissolved in xylene and then precipitated at room temperature, for reasons such as low stereoregularity and low molecular weight. It is considered that it corresponds to a component that is difficult to crystallize. If a large amount of such a component is contained in the resin, the thermal dimensional stability of the film may be inferior. Therefore, the CXS of polypropylene contained in the polypropylene film of the present invention is more preferably 2.0% or less, further preferably 1.5% or less. When the polypropylene film has a laminated structure of two or more layers and the content of polypropylene having a CXS of 3.5% or less in at least one layer is less than 50% by mass, the mechanical strength of the polypropylene film at a high temperature is insufficient. As a result, for example, when a polypropylene film is adhesively coated and the adhesive layer is dried in a high temperature oven, wrinkles may occur. Further, in a laminated structure of two or more layers, when polypropylene having a CXS of more than 3.5% is contained in 50% by mass or more and 100% by mass or less in at least one layer, the heat shrinkage force becomes large and the polypropylene is bonded to the adherend. When passing through the heating step, it may be peeled off from the adherend or curled due to shrinkage. The lower limit of CXS of at least one layer is not particularly limited, but is substantially about 0.1%. In order to set CXS in the above range, it is effective to set the raw material composition of the film in the range described later, and in particular, to use a polypropylene raw material having a low CXS.
 本発明のポリプロピレンフィルムは、ポリプロピレンを含みさえすれば、単層構成であっても積層構成であっても特に限定されないが、前述のとおり本発明のポリプロピレンフィルムは、2層以上の積層構成であって、少なくとも1層は、CXSが3.5%以下であるポリプロピレンを50質量%以上100質量%以下含有する層であることが好ましい。CXSが3.5%以下であるポリプロピレンを50質量%以上100質量%以下含有する層は、積層構成の各層の中で、最も厚みの大きな層であることが好ましい。特に、3層構成の内層がCXSが3.5%以下であるポリプロピレンを50質量%以上100質量%以下含有する層であることが好ましい。 The polypropylene film of the present invention is not particularly limited in whether it has a single-layer structure or a laminated structure as long as it contains polypropylene, but as described above, the polypropylene film of the present invention has a laminated structure of two or more layers. Therefore, at least one layer is preferably a layer containing 50% by mass or more and 100% by mass or less of polypropylene having a CXS of 3.5% or less. The layer containing 50% by mass or more and 100% by mass or less of polypropylene having a CXS of 3.5% or less is preferably the thickest layer among the layers having a laminated structure. In particular, it is preferable that the inner layer having a three-layer structure is a layer containing 50% by mass or more and 100% by mass or less of polypropylene having a CXS of 3.5% or less.
 本発明のポリプロピレンフィルムは、2層以上の積層構成であって、少なくとも1層は、示差走査熱量計DSCで25℃から250℃まで20℃/minで昇温し、ついで250℃から25℃まで20℃/minで降温したときの、結晶化ピーク温度(Tc)が110℃以上であることが好ましく、より好ましくは112℃以上であり、さらに好ましくは114℃以上である。Tcは、結晶化のしやすさと相関があり、Tcが高いほど結晶化しやすいことを示す。ポリプロピレンフィルムは溶融押出後の冷却ドラム上で固化する際に、結晶化し球晶を形成する。Tcが高いほど、未延伸シートに緻密な球晶が数多く生成し、それに伴い、二軸延伸後のフィルムの表面形状も突起が微細化する。被着体に打痕転写させず、離型性が良好となる突起が微細化した表面を得る観点から、Tcは高いほど好ましい。Tcの上限は特に限定されないが、実質的に125℃程度が上限である。Tcを上記範囲とするには、フィルムの原料組成を後述する範囲とし、特に、分岐鎖状ポリプロピレンや、分子量の高いポリプロピレン原料を使用することが効果的である。Tcの値を求めるに辺り、ポリプロピレンフィルムを各層に分離し、各層について評価する必要があるが、各層に分離することが困難な場合は、フィルム全体として評価し、その値を代表値とみなす。 The polypropylene film of the present invention has a laminated structure of two or more layers, and at least one layer is heated from 25 ° C. to 250 ° C. at 20 ° C./min by a differential scanning calorimeter DSC, and then from 250 ° C. to 25 ° C. The crystallization peak temperature (Tc) when the temperature is lowered at 20 ° C./min is preferably 110 ° C. or higher, more preferably 112 ° C. or higher, and further preferably 114 ° C. or higher. Tc has a correlation with the ease of crystallization, and the higher the Tc, the easier it is to crystallize. The polypropylene film crystallizes to form spherulites when solidified on a cooling drum after melt extrusion. The higher the Tc, the more dense spherulites are generated on the unstretched sheet, and the protrusions on the surface shape of the film after biaxial stretching become finer accordingly. The higher the Tc, the more preferable, from the viewpoint of obtaining a surface in which the protrusions having good releasability are obtained without dent transfer to the adherend. The upper limit of Tc is not particularly limited, but is substantially about 125 ° C. In order to set Tc in the above range, the raw material composition of the film is set in the range described later, and it is particularly effective to use branched-chain polypropylene or a polypropylene raw material having a high molecular weight. In order to obtain the value of Tc, it is necessary to separate the polypropylene film into each layer and evaluate each layer. However, when it is difficult to separate into each layer, the polypropylene film is evaluated as a whole and the value is regarded as a representative value.
 本発明のポリプロピレンフィルムの厚みは用途によって適宜調整されるものであり特に限定はされないが、0.5μm以上100μm以下であることがハンドリング性の観点から好ましい。このような特徴を活かすためには、厚みは、1μm以上40μm以下であることがより好ましく、1μm以上30μm以下であることがさらに好ましく、6μm以上30μm以下であることが最も好ましい。厚みは他の物性を低下させない範囲内で、押出機のスクリュー回転数、未延伸シートの幅、製膜速度、延伸倍率などにより調整可能である。 The thickness of the polypropylene film of the present invention is appropriately adjusted depending on the intended use and is not particularly limited, but it is preferably 0.5 μm or more and 100 μm or less from the viewpoint of handleability. In order to take advantage of such characteristics, the thickness is more preferably 1 μm or more and 40 μm or less, further preferably 1 μm or more and 30 μm or less, and most preferably 6 μm or more and 30 μm or less. The thickness can be adjusted by adjusting the screw rotation speed of the extruder, the width of the unstretched sheet, the film forming speed, the stretching ratio, and the like within a range that does not deteriorate other physical properties.
 次に本発明のポリプロピレンフィルムの原料について説明するが、必ずしもこれに限定されるものではない。 Next, the raw material of the polypropylene film of the present invention will be described, but the present invention is not necessarily limited to this.
 本発明のポリプロピレンフィルムは、ポリプロピレンを含みさえすれば、単層構成であっても積層構成であっても特に限定されないが、前述のとおり本発明のポリプロピレンフィルムは、2層以上の積層構成であって、少なくとも1層は、CXSが3.5%以下であるポリプロピレンを50質量%以上100質量%以下含有する層であることが好ましい。このような層(CXSが3.5%以下であるポリプロピレンを50質量%以上100質量%以下含有する層)を有するポリプロピレンフィルムを得るためには、CXSが3.5%以下の原料(以下、原料として、CXSが3.5%以下のポリプロピレンを、ポリプロピレン原料Aとする)を用いることが好ましい。ポリポロピレン原料AのCXSは、より好ましくは2.0%以下、さらに好ましくは1.5%以下である。ポリプロピレン原料Aの含有量は、ポリプロピレン原料Aが含まれる層を100質量%とした際に、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが最も好ましい。このようなCXSを満たすポリプロピレン原料とするには、樹脂を得る際の触媒活性を高める方法、得られた樹脂を溶媒あるいはオレフィンモノマー自身で洗浄する方法が使用できる。 The polypropylene film of the present invention is not particularly limited in whether it has a single-layer structure or a laminated structure as long as it contains polypropylene, but as described above, the polypropylene film of the present invention has a laminated structure of two or more layers. Therefore, at least one layer is preferably a layer containing 50% by mass or more and 100% by mass or less of polypropylene having a CXS of 3.5% or less. In order to obtain a polypropylene film having such a layer (a layer containing 50% by mass or more and 100% by mass or less of polypropylene having a CXS of 3.5% or less), a raw material having a CXS of 3.5% or less (hereinafter, As a raw material, polypropylene having a CXS of 3.5% or less is preferably used as the polypropylene raw material A). The CXS of the polypolopylene raw material A is more preferably 2.0% or less, still more preferably 1.5% or less. The content of the polypropylene raw material A is preferably 50% by mass or more, more preferably 70% by mass or more, and 90% by mass or more, when the layer containing the polypropylene raw material A is 100% by mass. It is more preferably 95% by mass or more, and most preferably 95% by mass or more. In order to obtain a polypropylene raw material satisfying such CXS, a method of increasing the catalytic activity when obtaining the resin and a method of washing the obtained resin with a solvent or the olefin monomer itself can be used.
 また、ポリプロピレン原料Aは、強度や耐熱性の観点から、ホモポリプロピレンが好ましく用いられる。 Further, as the polypropylene raw material A, homopolypropylene is preferably used from the viewpoint of strength and heat resistance.
 ポリプロピレン原料Aは、融点が155℃以上であることが好ましく、より好ましくは160℃以上、165℃以上がさらに好ましい。融点が155℃未満である場合、耐熱性に乏しく、被着体と貼り合わせて加熱工程を通過する際に、収縮により被着体から剥がれたり、カールが生じたりする場合がある。 The polypropylene raw material A preferably has a melting point of 155 ° C. or higher, more preferably 160 ° C. or higher, and even more preferably 165 ° C. or higher. When the melting point is less than 155 ° C., the heat resistance is poor, and when the product is bonded to the adherend and passed through the heating step, it may be peeled off from the adherend or curled due to shrinkage.
 ポリプロピレン原料Aは、メソペンタッド分率が0.94以上であることが好ましく、更に好ましくは0.97以上である。メソペンタッド分率は核磁気共鳴法(NMR法)で測定されるポリプロピレンの結晶相の立体規則性を示す指標であり、該数値が高いものほど結晶化度が高く、融点が高くなり、高温での寸法安定性が高くなるので好ましい。メソペンタッド分率の上限については特に規定するものではない。このように立体規則性の高い樹脂を得るには、n-ヘプタン等の溶媒で得られた樹脂パウダーを洗浄する方法や、触媒および/または助触媒の選定、組成の選定を適宜行う方法等が好ましく採用される。 The polypropylene raw material A preferably has a mesopentad fraction of 0.94 or more, and more preferably 0.97 or more. The mesopentad fraction is an index showing the stereoregularity of the polypropylene crystal phase measured by nuclear magnetic resonance spectroscopy (NMR method), and the higher the value, the higher the crystallinity, the higher the melting point, and the higher the temperature. This is preferable because it increases dimensional stability. The upper limit of the mesopentad fraction is not specified. In order to obtain a resin having such high stereoregularity, a method of washing the resin powder obtained with a solvent such as n-heptane, a method of appropriately selecting a catalyst and / or a cocatalyst, a method of appropriately selecting a composition, and the like are used. It is preferably adopted.
 また、ポリプロピレン原料Aとしては、より好ましくはメルトフローレート(MFR)が1~10g/10分(230℃、21.18N荷重)、より好ましくは、1~8g/10分(230℃、21.18N荷重)であり、特に好ましくは4~8g/10分(230℃、21.18N荷重)の範囲のものが、製膜性やフィルム強度の観点から好ましい。メルトフローレート(MFR)を上記の値とするためには、平均分子量や分子量分布を制御する方法などが採用される。 Further, as the polypropylene raw material A, the melt flow rate (MFR) is more preferably 1 to 10 g / 10 minutes (230 ° C., 21.18 N load), and more preferably 1 to 8 g / 10 minutes (230 ° C., 21. 18N load), and particularly preferably in the range of 4 to 8g / 10 minutes (230 ° C., 21.18N load) from the viewpoint of film forming property and film strength. In order to set the melt flow rate (MFR) to the above value, a method of controlling the average molecular weight or the molecular weight distribution is adopted.
 ポリプロピレン原料Aとしては、本発明の目的を損なわない範囲で他の不飽和炭化水素による共重合成分などを含有してもよいし、重合体がブレンドされていてもよい。このような共重合成分やブレンド物を構成する単量体成分として例えばエチレン、プロピレン(共重合されたブレンド物の場合)、1-ブテン、1-ペンテン、3-メチルペンテン-1、3-メチルブテンー1、1-ヘキセン、4-メチルペンテン-1、5-エチルヘキセン-1、1-オクテン、1-デセン、1-ドデセン、ビニルシクロヘキセン、スチレン、アリルベンゼン、シクロペンテン、ノルボルネン、5-メチル-2-ノルボルネンなどが挙げられる。共重合量またはブレンド量は、寸法安定性の点から、共重合量では1mol%未満とし、ブレンド量では10質量%未満とするのが好ましい。 The polypropylene raw material A may contain a copolymerization component of other unsaturated hydrocarbons or the like as long as the object of the present invention is not impaired, or may be blended with a polymer. Examples of the monomer components constituting such copolymerization components and blends include ethylene, propylene (in the case of a copolymerized blend), 1-butene, 1-pentene, 3-methylpentene-1,3-methylbutene. 1,1-Hexene, 4-methylpentene-1,5-ethylhexene-1,1-octene, 1-decene, 1-dodecene, vinylcyclohexene, styrene, allylbenzene, cyclopentene, norbornene, 5-methyl-2- Norbornene and the like can be mentioned. From the viewpoint of dimensional stability, the copolymerization amount or the blend amount is preferably less than 1 mol% in the copolymerization amount and less than 10% by mass in the blend amount.
 ポリプロピレン原料A中に含まれるエチレン成分の含有量は、10質量%以下であることが好ましい。より好ましくは5質量%以下、更に好ましくは3質量%以下である。エチレン成分の含有量が多いほど、結晶性が低下して、透明性を向上させやすいが、エチレン成分の含有量が10質量%を超えると、強度が低下したり、耐熱性が低下して熱収縮率が悪化したりする場合がある。また、押出工程中で樹脂が劣化しやすくなり、フィルム中のフィッシュアイが生じやすくなる場合がある
 本発明のポリプロピレンフィルムに用いるポリオレフィン原料には、本発明の目的を損なわない範囲で種々の添加剤、例えば結晶核剤、酸化防止剤、熱安定剤、すべり剤、帯電防止剤、ブロッキング防止剤、充填剤、粘度調整剤、着色防止剤などを含有せしめることもできる。
The content of the ethylene component contained in the polypropylene raw material A is preferably 10% by mass or less. It is more preferably 5% by mass or less, still more preferably 3% by mass or less. The higher the content of the ethylene component, the lower the crystallinity and the easier it is to improve the transparency. However, if the content of the ethylene component exceeds 10% by mass, the strength is lowered or the heat resistance is lowered to heat. The shrinkage rate may worsen. In addition, the resin may easily deteriorate during the extrusion process, and fish eyes may easily occur in the film. The polyolefin raw material used for the polypropylene film of the present invention contains various additives as long as the object of the present invention is not impaired. For example, a crystal nucleating agent, an antioxidant, a heat stabilizer, a slip agent, an antistatic agent, an antiblocking agent, a filler, a viscosity modifier, an antioxidant and the like can be contained.
 これらの中で、酸化防止剤の種類および添加量の選定は酸化防止剤のブリードアウトの観点から重要である。すなわち、かかる酸化防止剤としては立体障害性を有するフェノール系のもので、そのうち少なくとも1種は分子量500以上の高分子量型のものが好ましい。その具体例としては種々のものが挙げられるが、例えば2,6-ジ-t-ブチル-p-クレゾール(BHT:分子量220.4)とともに1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン(例えばBASF社製“Irganox”(登録商標)1330:分子量775.2)またはテトラキス[メチレン-3(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン(例えばBASF社製“Irganox”(登録商標)1010:分子量1177.7)等を併用することが好ましい。これら酸化防止剤の総含有量はポリオレフィン原料全量に対して0.03~1.0質量%の範囲が好ましい。酸化防止剤が少なすぎると押出工程でポリマーが劣化してフィルムが着色したり、長期耐熱性に劣る場合がある。酸化防止剤が多すぎるとこれら酸化防止剤のブリードアウトにより透明性が低下する場合が
ある。より好ましい含有量は0.05~0.9質量%であり、特に好ましくは0.1~0.8質量%である。
Among these, selection of the type and amount of antioxidant is important from the viewpoint of bleed-out of antioxidant. That is, the antioxidant is preferably a phenolic agent having steric hindrance, and at least one of them is a high molecular weight type having a molecular weight of 500 or more. Specific examples thereof include various examples. For example, 1,3,5-trimethyl-2,4,6-with 2,6-di-t-butyl-p-cresol (BHT: molecular weight 220.4). Tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene (eg, BASF's "Irganox"® 1330: molecular weight 775.2) or tetrakis [methylene-3 (3,5-di-) It is preferable to use t-butyl-4-hydroxyphenyl) propionate] methane (for example, "Irganox" (registered trademark) 1010 manufactured by BASF, Inc., molecular weight 1177.7) or the like. The total content of these antioxidants is preferably in the range of 0.03 to 1.0% by mass with respect to the total amount of the polyolefin raw material. If the amount of antioxidant is too small, the polymer may deteriorate in the extrusion process, the film may be colored, or the long-term heat resistance may be poor. If too much antioxidant is used, bleed-out of these antioxidants may reduce transparency. A more preferable content is 0.05 to 0.9% by mass, and particularly preferably 0.1 to 0.8% by mass.
 また、本発明のポリプロピレンフィルムには、分岐鎖状ポリプロピレンを含有する層が少なくとも1層以上あることが好ましい。分岐鎖状ポリプロピレン樹脂を含有する層中の分岐鎖状ポリプロピレンの含有量は、層全体を100質量%としたときに0.05~10質量%が好ましい。ポリプロピレンフィルムの結晶化ピーク温度(Tc)を高温化し、溶融押出した樹脂シートの冷却工程で生成する球晶サイズを小さく制御し、二軸延伸後のフィルム表面凹凸の急峻な高低差を低減した緻密で微細な表面凹凸を形成する観点から、分岐鎖状ポリプロピレン樹脂の含有量の下限はより好ましくは0.5質量%以上、さらに好ましくは1質量%以上である。他方、分岐鎖状ポリプロピレン樹脂の含有量の上限はより好ましくは8質量%以下、さらに好ましくは5質量%以下である。 Further, it is preferable that the polypropylene film of the present invention has at least one layer containing branched chain polypropylene. The content of the branched-chain polypropylene in the layer containing the branched-chain polypropylene resin is preferably 0.05 to 10% by mass when the entire layer is 100% by mass. The crystallization peak temperature (Tc) of the polypropylene film is raised, the spherulite size generated in the cooling process of the melt-extruded resin sheet is controlled to be small, and the sharp height difference of the film surface unevenness after biaxial stretching is reduced. From the viewpoint of forming fine surface irregularities, the lower limit of the content of the branched polypropylene resin is more preferably 0.5% by mass or more, still more preferably 1% by mass or more. On the other hand, the upper limit of the content of the branched chain polypropylene resin is more preferably 8% by mass or less, still more preferably 5% by mass or less.
 また、本発明のポリプロピレンフィルムに用いるポリプロピレン原料には、本発明の目的に反しない範囲で、結晶核剤を添加することができる。α晶核剤(ジベンジリデンソルビトール類、安息香酸ナトリウム等)、β晶核剤(1,2-ヒドロキシステアリン酸カリウム、安息香酸マグネシウム、N,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキサミド等のアミド系化合物、キナクリドン系化合物等)等が例示される。但し、上記別種の核剤の過剰な添加は延伸性の低下やボイド形成等による透明性や強度の低下を引き起こす場合があるため、添加量は通常0.5質量%以下、好ましくは0.1質量%以下、更に好ましくは0.05質量%以下とすることが好ましい。 Further, a crystal nucleating agent can be added to the polypropylene raw material used for the polypropylene film of the present invention within a range not contrary to the object of the present invention. α-crystal nucleating agents (dibenzylideneacetone sorbitols, sodium benzoate, etc.), β-crystal nucleating agents (potassium 1,2-hydroxystearate, magnesium benzoate, N, N'-dicyclohexyl-2,6-naphthalenecarboxamide, etc. Amide compounds, quinacridone compounds, etc.) are exemplified. However, since excessive addition of the above-mentioned other type of nucleating agent may cause a decrease in stretchability and a decrease in transparency and strength due to void formation, etc., the addition amount is usually 0.5% by mass or less, preferably 0.1. It is preferably mass% or less, more preferably 0.05 mass% or less.
 本発明のポリプロピレンフィルムは、上述した原料を用い、二軸延伸することが好ましい。二軸延伸の方法としては、インフレーション同時二軸延伸法、ステンター同時二軸延伸法、ステンター逐次二軸延伸法のいずれによっても得られるが、その中でも、製膜安定性、厚み均一性、フィルムの高剛性と寸法安定性を制御する点においてステンター逐次二軸延伸法を採用することが好ましい。 The polypropylene film of the present invention is preferably biaxially stretched using the above-mentioned raw materials. The biaxial stretching method can be obtained by any of the simultaneous inflation biaxial stretching method, the simultaneous biaxial stretching method of the stenter, and the sequential biaxial stretching method of the stenter. Among them, the film forming stability, the thickness uniformity, and the film It is preferable to adopt the stenter sequential biaxial stretching method in terms of controlling high rigidity and dimensional stability.
 次に本発明のポリプロピレンフィルムの製造方法の一態様を、例として説明するが、必ずしもこれに限定されるものではない。 Next, one aspect of the method for producing a polypropylene film of the present invention will be described as an example, but the present invention is not necessarily limited thereto.
 まず、ポリプロピレン原料Aを80質量部と分岐鎖状ポリプロピレン原料20質量部をドライブレンドしてB層(基層(II))用の単軸押出機に供給し、ポリプロピレン原料AをA層(表層(I))用の単軸押出機に供給し、200~280℃、より好ましくは220~280℃、更に好ましくは240~270℃にて溶融押出を行う。そして、ポリマー管の途中に設置したフィルターにて異物や変性ポリマーなどを除去した後、マルチマニホールド型のA層/B層/A層複合Tダイにて積層し、キャスティングドラム上に吐出し、A層/B層/A層の層構成を有する積層未延伸シートを得る。この際、積層厚み比は、1/8/1~1/60/1の範囲が好ましい。上記範囲とすることで、少なくとも1層のCXSが3.5%以下である層やTcが112℃以上である層が少なくとも1層が形成され、耐熱性、および高温での機械強度に優れるフィルムを得ることができる。 First, 80 parts by mass of the polypropylene raw material A and 20 parts by mass of the branched polypropylene raw material are dry-blended and supplied to a single-screw extruder for the B layer (base layer (II)), and the polypropylene raw material A is supplied to the A layer (surface layer (surface layer (II)). It is supplied to the single-screw extruder for I)), and melt extrusion is performed at 200 to 280 ° C., more preferably 220 to 280 ° C., and even more preferably 240 to 270 ° C. Then, after removing foreign substances and modified polymers with a filter installed in the middle of the polymer tube, they are laminated with a multi-manifold type A layer / B layer / A layer composite T-die, discharged onto a casting drum, and A. A laminated unstretched sheet having a layer structure of a layer / B layer / A layer is obtained. At this time, the laminated thickness ratio is preferably in the range of 1/8/1 to 1/60/1. Within the above range, at least one layer having a CXS of 3.5% or less and a layer having a Tc of 112 ° C. or higher is formed, and the film is excellent in heat resistance and mechanical strength at high temperature. Can be obtained.
 また、キャスティングドラムは表面温度が40~120℃、好ましくは60~120℃、更に好ましくは80~110℃であることが好ましい。また、A層/B層の2層積層構成としても構わない。キャスティングドラムへの密着方法としては静電印加法、水の表面張力を利用した密着方法、エアナイフ法、プレスロール法、水中キャスト法などのうちいずれの手法を用いてもよいが、平面性が良好でかつ表面粗さの制御が可能なエアナイフ法が好ましい。エアナイフのエア温度は、40~100℃で、吹き出しエア速度は130~150m/sが好ましい。また、フィルムの振動を生じさせないために製膜下流側にエアが流れるようにエアナイフの位置を適宜調整することが好ましい。 Further, the surface temperature of the casting drum is preferably 40 to 120 ° C., preferably 60 to 120 ° C., and more preferably 80 to 110 ° C. Further, a two-layer laminated structure of A layer / B layer may be used. Any of the electrostatic application method, the adhesion method using the surface tension of water, the air knife method, the press roll method, the underwater casting method, etc. may be used as the adhesion method to the casting drum, but the flatness is good. The air knife method, which is capable of controlling the surface roughness, is preferable. The air temperature of the air knife is preferably 40 to 100 ° C., and the blown air speed is preferably 130 to 150 m / s. Further, it is preferable to appropriately adjust the position of the air knife so that air flows to the downstream side of the film formation so as not to cause vibration of the film.
 得られた未延伸シートは、縦延伸工程に導入される。縦延伸工程では、まず複数の10℃以上160℃以下、好ましくは140℃以上158℃以下、更に好ましくは145℃以上155℃以下に保たれた金属ロールに未延伸シートを接触させて予熱させ、周速差を設けたロール間で長手方向に4~8倍に延伸した後、室温まで冷却する。延伸温度は100℃以上150℃以下、好ましくは100℃以上140℃以下、更に好ましくは110℃以上130℃以下である。縦延伸の予熱工程で高温に加熱することで、未延伸フィルム中のβ晶がα晶に転移し、ポリプロピレンフィルム中の結晶状態を均一化することができる。また、延伸温度は予熱温度と比較して低温にすることで、高応力で延伸することができる。このように、縦延伸工程で、ポリプロピレンフィルム中の結晶状態を均一化、かつ高応力で延伸することで、高温での機械強度に優れ、また、熱収縮力が低いポリプロピレンフィルムを得ることができる。延伸倍率は3倍以上6倍以下が好ましく、4倍以上5.5倍以下が更に好ましい。 The obtained unstretched sheet is introduced into the longitudinal stretching step. In the longitudinal stretching step, first, the unstretched sheet is brought into contact with a plurality of metal rolls kept at 10 ° C. or higher and 160 ° C. or lower, preferably 140 ° C. or higher and 158 ° C. or lower, and more preferably 145 ° C. or higher and 155 ° C. or lower to preheat them. After stretching 4 to 8 times in the longitudinal direction between the rolls provided with the peripheral speed difference, the mixture is cooled to room temperature. The stretching temperature is 100 ° C. or higher and 150 ° C. or lower, preferably 100 ° C. or higher and 140 ° C. or lower, and more preferably 110 ° C. or higher and 130 ° C. or lower. By heating to a high temperature in the preheating step of longitudinal stretching, β crystals in the unstretched film are transferred to α crystals, and the crystal state in the polypropylene film can be made uniform. Further, by lowering the stretching temperature to a lower temperature than the preheating temperature, stretching can be performed with high stress. In this way, by making the crystal state in the polypropylene film uniform and stretching with high stress in the longitudinal stretching step, it is possible to obtain a polypropylene film having excellent mechanical strength at high temperature and low heat shrinkage. .. The draw ratio is preferably 3 times or more and 6 times or less, and more preferably 4 times or more and 5.5 times or less.
 次いで縦一軸延伸フィルムをテンターに導いてフィルムの端部をクリップで把持し予熱後、幅方向に7~13倍に横延伸する。この際、予熱温度を高温化し、ポリプロピレンフィルムを均一に予熱し、予熱温度よりも低い温度で高応力延伸することで、高温での機械強度に優れ、また、熱収縮力が低いポリプロピレンフィルムを得ることができる。このことから、予熱温度は、165~180℃であり、より好ましくは170~180℃、更に好ましくは173~180℃である。また、横延伸温度は、155~170℃であり、より好ましくは155~165℃、更に好ましくは155~160℃である。 Next, guide the longitudinally uniaxially stretched film to the tenter, grasp the end of the film with a clip, preheat it, and then laterally stretch it 7 to 13 times in the width direction. At this time, the preheating temperature is raised, the polypropylene film is uniformly preheated, and the polypropylene film is stretched under high stress at a temperature lower than the preheating temperature to obtain a polypropylene film having excellent mechanical strength at high temperatures and low heat shrinkage. be able to. From this, the preheating temperature is 165 to 180 ° C, more preferably 170 to 180 ° C, and even more preferably 173 to 180 ° C. The transverse stretching temperature is 155 to 170 ° C, more preferably 155 to 165 ° C, and even more preferably 155 to 160 ° C.
 続く熱処理および弛緩処理工程ではクリップで幅方向を緊張把持したまま幅方向に2~20%、より好ましくは8~18%、さらに好ましくは10~15%の弛緩率で弛緩を与えつつ、140℃以上170℃未満、より好ましくは、140℃以上160℃未満の温度で熱固定し、クリップで幅方向を緊張把持したまま80~100℃での冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、ワインダ工程にてフィルムエッジ部をスリットし、フィルム製品ロールを巻き取る。170℃以上の高温で熱処理を行うと、ポリプロピレンフィルムの配向が緩和してしまい、機械強度の低下を招く場合がある。特に、高温域での機械強度の低下が顕著になる。また、20%以上の弛緩率で弛緩処理を行うと、ポリプロピレンフィルムの配向が緩和してしまい、機械強度の低下を招く場合がある。特に、高温域での機械強度の低下が顕著になる。 In the subsequent heat treatment and relaxation treatment step, while tension-grasping the width direction with a clip, relaxation is applied at a relaxation rate of 2 to 20%, more preferably 8 to 18%, still more preferably 10 to 15% in the width direction, and 140 ° C. Heat-fixed at a temperature of 140 ° C. or higher and lower than 160 ° C., and guided to the outside of the tenter through a cooling step at 80 to 100 ° C. while tension-grasping in the width direction with a clip. Release the clip, slit the film edge in the winder process, and wind up the film product roll. When the heat treatment is performed at a high temperature of 170 ° C. or higher, the orientation of the polypropylene film is relaxed, which may lead to a decrease in mechanical strength. In particular, the decrease in mechanical strength in the high temperature range becomes remarkable. Further, if the relaxation treatment is performed at a relaxation rate of 20% or more, the orientation of the polypropylene film is relaxed, which may lead to a decrease in mechanical strength. In particular, the decrease in mechanical strength in the high temperature range becomes remarkable.
 以上のようにして得られたポリプロピレンフィルムは、包装用フィルム、表面保護フィルム、工程フィルム、衛生用品、農業用品、建築用品、医療用品など様々な用途で用いることができるが、特に表面平滑性に優れることから、表面保護フィルム、工程フィルム、離型フィルムとして好ましく用いることができ、特に好ましくは離型フィルムとして用いることができる。 The polypropylene film obtained as described above can be used for various purposes such as packaging films, surface protective films, process films, sanitary products, agricultural products, construction products, medical products, etc., but especially for surface smoothness. Since it is excellent, it can be preferably used as a surface protective film, a process film, and a release film, and particularly preferably as a release film.
 次に、本発明のポリプロピレンフィルムを粘着フィルム用の塗工基材(基材フィルム)として用いる場合の例について説明する。本発明のポリプロピレンフィルムは、その少なくとも片面に粘着層を有する粘着フィルムとすることが可能である。 Next, an example in which the polypropylene film of the present invention is used as a coating base material (base material film) for an adhesive film will be described. The polypropylene film of the present invention can be an adhesive film having an adhesive layer on at least one side thereof.
 本発明の粘着フィルム中の粘着層に用いる粘着剤は、特に限定されず、ゴム系、ビニル重合系、縮合重合系、熱硬化性樹脂系、シリコーン系などを用いることができる。この中で、ゴム系の粘着剤としては、ブタジエン-スチレン共重合体系、ブタジエン-アクリロニトリル共重合体系、イソブチレン-イソプレン共重合体系などを挙げることができる。ビニル重合系の粘着剤としては、アクリル系、スチレン系、酢酸ビニル-エチレン共重合体系、塩化ビニル-酢酸ビニル共重合体系などを挙げることができる。また、縮合重合系の粘着剤としては、ポリエステル系を挙げることができる。さらに熱硬化樹脂系の粘着剤としては、エポキシ樹脂系、ウレタン樹脂系などを挙げることができる。 The pressure-sensitive adhesive used for the pressure-sensitive adhesive layer in the pressure-sensitive adhesive film of the present invention is not particularly limited, and rubber-based, vinyl polymerization-based, condensation polymerization-based, thermosetting resin-based, silicone-based, and the like can be used. Among these, examples of the rubber-based pressure-sensitive adhesive include a butadiene-styrene copolymer system, a butadiene-acrylonitrile copolymer system, and an isobutylene-isoprene copolymer system. Examples of the vinyl polymerization type pressure-sensitive adhesive include an acrylic type, a styrene type, a vinyl acetate-ethylene copolymer system, and a vinyl chloride-vinyl acetate copolymer system. Further, as the condensation polymerization type pressure-sensitive adhesive, a polyester type can be mentioned. Further, examples of the thermosetting resin-based adhesive include an epoxy resin-based adhesive and a urethane resin-based adhesive.
 これらの中でも透明性に優れ、耐候性、耐熱性、耐湿熱性、基材密着性等を考慮すると、アクリル系粘着剤が好適に用いられる。かかるアクリル系粘着剤の具体例としては、綜研化学(株)製 “SKダイン”(登録商標)1310、1435、SKダイン1811L、SKダイン1888、SKダイン2094、SKダイン2096、SKダイン2137、SKダイン3096、SKダイン1852等が好適な例として挙げられる。 Among these, an acrylic adhesive is preferably used in consideration of excellent transparency, weather resistance, heat resistance, moisture heat resistance, substrate adhesion, and the like. Specific examples of such acrylic pressure-sensitive adhesives include "SK Dyne" (registered trademark) 1310, 1435, SK Dyne 1811L, SK Dyne 1888, SK Dyne 2094, SK Dyne 2096, SK Dyne 2137, SK manufactured by Soken Kagaku Co., Ltd. Preferable examples include Dyne 3096 and SK Dyne 1852.
 また、前記のアクリル系粘着剤には、硬化剤をともに用いることが好ましい。硬化剤の具体例としては、例えばイソシアネートの場合、トルエンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシレンジイソシアネート、ジフェニルメタン-4-4’-ジイソシアネート、ジフェニルメタン-2-4’-ジイソシアネート、3-メチルジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4-4’―ジイソシアネート、ジシキウロヘキシルメタン-2-4’-ジイソシアネート、リジンイソシアネートなどがあげられる。硬化剤の混合割合は、粘着剤100質量部に対して、0.1~10質量部、好ましくは0.5~5質量部である。0.1質量部より少ないと乾燥炉内で粘着剤層の硬化が不十分となり、裏取られが生じる場合がある。10質量部を超えると、余剰となった硬化剤が基板に移行したり高温時にガス化して汚染原因となることがある。 Further, it is preferable to use a curing agent together with the acrylic pressure-sensitive adhesive. Specific examples of the curing agent include toluene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylene diisocyanate, and diphenylmethane-4 in the case of isocyanate. -4'-diisocyanate, diphenylmethane-2-4'-diisocyanate, 3-methyldiphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4-4'-diisocyanate, dishikiurohexylmethane-2-4'-diisocyanate , Lysine isocyanate and the like. The mixing ratio of the curing agent is 0.1 to 10 parts by mass, preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the pressure-sensitive adhesive. If it is less than 0.1 parts by mass, the pressure-sensitive adhesive layer is not sufficiently cured in the drying furnace, and lining may occur. If it exceeds 10 parts by mass, the excess curing agent may be transferred to the substrate or gasified at a high temperature to cause contamination.
 また、アクリル系粘着剤には、被着体(ガラスや機能フィルム)の材質に応じて、酸化防止剤や紫外線吸収剤、シランカップリング剤、金属不活性剤などを適宜添加配合してもよい。 Further, the acrylic pressure-sensitive adhesive may be appropriately added with an antioxidant, an ultraviolet absorber, a silane coupling agent, a metal deactivator, etc., depending on the material of the adherend (glass or functional film). ..
 本発明のポリプロピレンフィルムを用いた粘着フィルムは、粘着層の厚みdが2.0μm以下であることが好ましい。より好ましくは1.5μm以下、更に好ましくは1.0μm以下である。粘着層の厚みdが2.0μmを超えると、基材フィルムの背面と粘着層表面との滑り性が悪化して巻取りが困難となる場合がある。また、乾燥炉での粘着層の乾燥が不十分となり、裏取られが生じる場合がある。裏取られとは、基材フィルムの片面に粘着層の溶液を塗工後、乾燥炉内で乾燥・硬化して本発明の粘着フィルムを、離型フィルムを介することなくロール状に巻き取った後、使用時に粘着フィルムを巻き出す際、基材フィルムの背面に粘着層の一部が移行してしまう現象をさす。粘着層の厚みを上記範囲とする方法は公知の技術を用いることができ、粘着層の溶液の固形分濃度や各種塗工方法における塗工厚み調整により制御可能である。粘着層の厚みは薄すぎると安定した塗工が困難であったり、粘着力が低すぎて被着体に粘着しない場合があるため、0.1μm程度が下限である。 The pressure-sensitive adhesive film using the polypropylene film of the present invention preferably has a pressure-sensitive adhesive layer thickness d of 2.0 μm or less. It is more preferably 1.5 μm or less, still more preferably 1.0 μm or less. If the thickness d of the adhesive layer exceeds 2.0 μm, the slipperiness between the back surface of the base film and the surface of the adhesive layer may deteriorate and winding may become difficult. In addition, the adhesive layer may not be sufficiently dried in the drying oven, resulting in lining. “Bleed” means that after applying a solution of an adhesive layer on one side of a base film, it is dried and cured in a drying furnace, and the adhesive film of the present invention is wound into a roll without passing through a release film. Later, when the adhesive film is unwound during use, a part of the adhesive layer is transferred to the back surface of the base film. A known technique can be used for the method of setting the thickness of the adhesive layer in the above range, and it can be controlled by adjusting the solid content concentration of the solution of the adhesive layer and the coating thickness in various coating methods. If the thickness of the adhesive layer is too thin, stable coating may be difficult, or the adhesive strength may be too low to adhere to the adherend. Therefore, the lower limit is about 0.1 μm.
 本発明のポリプロピレンフィルムを用いた粘着フィルムは、アクリル板に貼り合わせた後の180°剥離力が200mN/25mm以下であることが好ましい。剥離力はより好ましくは、100mN/25mm以下、更に好ましくは80mN/25mm以下である。剥離力が200mN/25mmを超えると、基材フィルムの背面と粘着層表面との滑り性が悪化して巻取りが困難となる場合や裏取られが生じる場合がある。剥離力を上記範囲とするには、粘着層の組成や厚みを後述する範囲とすること、また、フィルムの原料組成や製膜条件を後述する範囲とし、基材フィルムの表面粗さを制御することが効果的である。剥離力が10mN/25mm未満であると、被着体との貼り合わせ後、搬送中などに粘着フィルムが剥がれてしまう場合があるため、下限は10mN/25mm程度である。 The adhesive film using the polypropylene film of the present invention preferably has a 180 ° peeling force of 200 mN / 25 mm or less after being attached to an acrylic plate. The peeling force is more preferably 100 mN / 25 mm or less, still more preferably 80 mN / 25 mm or less. If the peeling force exceeds 200 mN / 25 mm, the slipperiness between the back surface of the base film and the surface of the adhesive layer deteriorates, which may make winding difficult or line-off may occur. In order to set the peeling force in the above range, the composition and thickness of the adhesive layer are set in the range described later, and the raw material composition and film forming conditions of the film are set in the range described later, and the surface roughness of the base film is controlled. Is effective. If the peeling force is less than 10 mN / 25 mm, the adhesive film may peel off during transportation after bonding with the adherend, so the lower limit is about 10 mN / 25 mm.
 次に粘着層の製造方法を説明するが、必ずしもこれに限定されるものではない。 Next, the method for manufacturing the adhesive layer will be described, but the method is not necessarily limited to this.
 まず、粘着層用の塗剤を準備する。塗剤は、上述した粘着剤や硬化剤などの添加剤を溶媒に溶かし用いることができる。溶剤は、コーターでの乾燥温度や塗剤の粘度などによって適宜調整して用いることができ、具体例としては、メタノールやエタノール、イソプロピルアルコール、n一ブタノール、tert-ブタノール、エチレングリコールモノメチルエーテル、1-メトキシ-2-プロパノール、プロピレングリコールモノメチルエーテル、シクロヘキサノン、トルエン、酢酸エチル、酢酸ブチル、イソプロピルアセトン、メチルエチルケトン、メチルイソブチルケトン、ジアセチルアセトン、アセチルアセトンから選ばれる少なくとも1種以上の溶剤を用いることができる。 First, prepare a coating agent for the adhesive layer. The coating agent can be used by dissolving the above-mentioned additives such as a pressure-sensitive adhesive and a curing agent in a solvent. The solvent can be appropriately adjusted depending on the drying temperature of the coater, the viscosity of the coating material, and the like. Specific examples thereof include methanol, ethanol, isopropyl alcohol, n-butanol, tert-butanol, ethylene glycol monomethyl ether, and 1 At least one solvent selected from -methoxy-2-propanol, propylene glycol monomethyl ether, cyclohexanone, toluene, ethyl acetate, butyl acetate, isopropyl acetone, methyl ethyl ketone, methyl isobutyl ketone, diacetyl acetone and acetyl acetone can be used.
 塗剤中の固形分濃度は、塗剤の粘度や粘着層の厚みにより適宜選択されるものであるが、5~20質量%であることが好ましい。 The solid content concentration in the coating material is appropriately selected depending on the viscosity of the coating material and the thickness of the adhesive layer, but is preferably 5 to 20% by mass.
 次に、コーターに上述した基材フィルムを搬送させ、粘着層用の塗剤を塗工する。ここで、粘着層を塗工する面は、基材フィルムのどちらの面でも構わないが、塗工面には予めコロナ処理などの前処理により、塗剤との濡れ性を向上しておくことが好ましい。一方、基材フィルムの背面は離型性を向上させるため、コロナ処理などの前処理を実施しないことが好ましい。塗布方式(塗工方式)は特に限定されず、メタバー方式、ドクターブレード方式、グラビア方式、ダイ方式、ナイフ方式、リバース方式、ディップ方式など既存の塗工方式を採用することができる。ただし、上述したとおり粘着層厚みは、2.0μm以下と薄膜であり、薄膜の塗工層を安定して得られる観点から、グラビア方式やリバース方式が好ましい。 Next, the above-mentioned base film is conveyed to the coater, and the coating agent for the adhesive layer is applied. Here, the surface to be coated with the adhesive layer may be either surface of the base film, but the coated surface may be pretreated with a corona treatment or the like in advance to improve the wettability with the coating agent. preferable. On the other hand, it is preferable not to perform pretreatment such as corona treatment on the back surface of the base film in order to improve releasability. The coating method (coating method) is not particularly limited, and existing coating methods such as a metabar method, a doctor blade method, a gravure method, a die method, a knife method, a reverse method, and a dip method can be adopted. However, as described above, the thickness of the adhesive layer is as thin as 2.0 μm or less, and the gravure method or the reverse method is preferable from the viewpoint of stably obtaining the thin coating layer.
 基材フィルムに粘着層用の塗剤を塗工後、乾燥炉に導き塗剤中の溶媒を除去して粘着フィルムを得る。ここでの乾燥温度は基材フィルムの耐熱性や溶剤の沸点により適宜設定されるものであるが、60~170℃であることが好ましい。60℃未満であると、粘着層の硬化が十分に進まず裏取られが生じる場合がある。170℃を超えると、基材フィルムが変形し平面性が悪化する場合がある。また乾燥時間は、15~60秒であることが好ましい。15秒未満では、粘着層の硬化が十分に進まず裏取られが生じる場合がある。60秒を超えると生産性が低下するため好ましくない。 After applying the coating agent for the adhesive layer to the base film, guide it to a drying furnace and remove the solvent in the coating agent to obtain an adhesive film. The drying temperature here is appropriately set depending on the heat resistance of the base film and the boiling point of the solvent, but is preferably 60 to 170 ° C. If the temperature is lower than 60 ° C., the adhesive layer may not be sufficiently cured and betrayed may occur. If it exceeds 170 ° C., the base film may be deformed and the flatness may be deteriorated. The drying time is preferably 15 to 60 seconds. If it is less than 15 seconds, the adhesive layer may not be sufficiently cured and betrayed may occur. If it exceeds 60 seconds, the productivity will decrease, which is not preferable.
 乾燥後の粘着フィルムを、その粘着面に離型フィルム等を貼り合わせずに巻取機で巻取り、粘着フィルムロールを得る。本発明の粘着フィルムは、上述した構成とすることにより、粘着層の硬化が十分進み、基材フィルムの背面と粘着層表面との滑り性も良好なことから、離型フィルムを介することなく巻き取っても裏取られや巻取り時のシワ発生などの問題がなく、品位の良い粘着フィルムロールを得ることができる。 The dried adhesive film is wound with a winder without attaching a release film or the like to the adhesive surface to obtain an adhesive film roll. The pressure-sensitive adhesive film of the present invention has the above-mentioned structure, so that the pressure-sensitive adhesive layer is sufficiently cured and the slipperiness between the back surface of the base film and the surface of the pressure-sensitive adhesive layer is good. Therefore, the pressure-sensitive adhesive film is wound without a release film. Even if it is taken, there is no problem such as line-up or wrinkles during winding, and a high-quality adhesive film roll can be obtained.
 以上のようにして得られた本発明の粘着フィルムは、包装用フィルム、表面保護フィルム、工程フィルム、衛生用品、農業用品、建築用品、医療用品など様々な用途で用いることができるが、特に表面平滑性に優れることから、表面保護フィルム、工程フィルムとして好ましく用いることができる。 The adhesive film of the present invention obtained as described above can be used for various purposes such as packaging film, surface protective film, process film, sanitary product, agricultural product, building product, medical product, etc., but particularly on the surface. Since it is excellent in smoothness, it can be preferably used as a surface protective film or a process film.
 また、本発明のポリプロピレンフィルムは、耐熱性、品位に優れることから、光学部材や半導体製造工程など、非常に高い品位を求められる離型フィルムとして好ましく用いることができる。 Further, since the polypropylene film of the present invention is excellent in heat resistance and quality, it can be preferably used as a release film that requires extremely high quality in optical members and semiconductor manufacturing processes.
 以下、実施例により本発明を詳細に説明する。なお、特性は以下の方法により測定、評価を行った。 Hereinafter, the present invention will be described in detail with reference to Examples. The characteristics were measured and evaluated by the following methods.
 (1)フィルム厚み
 マイクロ厚み計(アンリツ社製)を用いて測定した。フィルムを10cm四方にサンプリングし、任意に5点測定し、平均値を求めた。
(1) Film thickness Measured using a micro-thickness meter (manufactured by Anritsu). The film was sampled in a 10 cm square, and 5 points were arbitrarily measured to obtain an average value.
 (2)熱収縮力、熱収縮力が20mN以上となる際の温度
TMA(SII・ナノテクノロジー(株)社製/型式TMA/SS6100)を用いて、以下の条件で測定方向(主配向軸方向及びそれに直交する方向)の熱収縮力曲線を測定した。
(2) Using the temperature TMA (manufactured by SII Nanotechnology Co., Ltd./model TMA / SS6100) when the heat shrinkage force and heat shrinkage force are 20 mN or more, the measurement direction (main orientation axis direction) under the following conditions. And the direction perpendicular to it) the heat shrinkage curve was measured.
 (a)サンプル:幅4mm×長さ20mm
 (b)温度プログラム:30℃から加熱レート10℃/minにて昇温
 <熱収縮力>
 該熱収縮力曲線から140℃の熱収縮力(mN)を読みとった。測定は3回行い、平均を求めた。
(A) Sample: Width 4 mm x length 20 mm
(B) Temperature program: Temperature rise from 30 ° C at a heating rate of 10 ° C / min <heat shrinkage force>
The heat shrinkage force (mN) at 140 ° C. was read from the heat shrinkage force curve. The measurement was performed 3 times and the average was calculated.
 <熱収縮開始温度>
 上記熱収縮力曲線において、昇温過程で熱収縮力が20mNとなる際の温度を読み取った。測定は3回行い、平均を求めた。
<Heat shrinkage start temperature>
In the above heat shrinkage curve, the temperature at which the heat shrinkage becomes 20 mN in the heating process was read. The measurement was performed 3 times and the average was calculated.
 (3)ヤング率
 ヤング率は、株式会社オリエンテック社製フィルム強伸度測定装置(AMF/RTA-100)を用いて、23℃、65%RHにて測定した。サンプルを測定方向(主配向軸方向およびそれに直交する方向):25cm、測定方向と直角の方向:1cmのサイズに切り出し、原長100mm、引張り速度300mm/分で伸張して、ヤング率は、JIS-Z1702(1994)に規定された方法に従い測定した。
(3) Young's modulus The Young's modulus was measured at 23 ° C. and 65% RH using a film strength elongation measuring device (AMF / RTA-100) manufactured by Orientec Co., Ltd. The sample was cut into a size of measurement direction (main orientation axis direction and direction orthogonal to it): 25 cm, direction perpendicular to the measurement direction: 1 cm, stretched at an original length of 100 mm and a tensile speed of 300 mm / min, and the Young ratio was JIS. -Measured according to the method specified in Z1702 (1994).
 (4)120℃でのヤング率
 120℃でのヤング率は、株式会社オリエンテック社製フィルム強伸度測定装置(AMF/RTA-100)を用いて、120℃に加熱されたオーブン中へチャックごと投入し、1分間加熱した後、引張速度を300mm/分としてフィルムの引張試験を行った。サンプルを測定方向(主配向軸直交方向):25cm、測定方向と直角の方向:1cmのサイズに切り出し、原長100mm、引張り速度300mm/分で伸張して、JIS-Z1702(1994)に規定された方法に従い測定した。
(4) Young's modulus at 120 ° C. Young's modulus at 120 ° C. is chucked into an oven heated to 120 ° C. using a film strength elongation measuring device (AMF / RTA-100) manufactured by Orientec Co., Ltd. After charging for 1 minute, the film was subjected to a tensile test at a tensile speed of 300 mm / min. The sample is cut into a size of 25 cm in the measurement direction (orthogonal direction of the main orientation axis) and 1 cm in the direction perpendicular to the measurement direction, stretched at an original length of 100 mm and a tensile speed of 300 mm / min, and specified in JIS-Z1702 (1994). It was measured according to the above method.
 (5)120℃での最大点応力
 120℃での最大点応力は、株式会社オリエンテック社製フィルム強伸度測定装置(AMF/RTA-100)を用いて、120℃に加熱されたオーブン中へチャックごと投入し、1分間加熱した後、引張速度を300mm/分としてフィルムの引張試験を行った。サンプル破断時の荷重値を読み取り、試験前の試料の断面積(フィルム厚み×幅(10mm))で除した値を破断強度の応力として算出し、測定は各サンプル5回ずつ行い、その平均値で評価を行った。なお、破断強度算出の為に用いるフィルム厚みは上記(1)で測定した値を用いた。
(5) Maximum point stress at 120 ° C The maximum point stress at 120 ° C is determined in an oven heated to 120 ° C using a film strength elongation measuring device (AMF / RTA-100) manufactured by Orientec Co., Ltd. The film was subjected to a tensile test at a tensile speed of 300 mm / min after being charged together with the chuck and heated for 1 minute. The load value at the time of sample breakage is read, and the value obtained by dividing by the cross-sectional area (film thickness x width (10 mm)) of the sample before the test is calculated as the stress of breaking strength, and the measurement is performed 5 times for each sample, and the average value thereof. It was evaluated in. The value measured in (1) above was used as the film thickness used for calculating the breaking strength.
 (6)最大突起粗さ(St)
 測定は(株)菱化システムVertScan2.0 R5300GL-Lite-ACを使用して行い、付属の解析ソフトにより撮影画面を多項式4次近似にて面補正して表面形状を求めた。なお、最大突起粗さ(St)とは、測定領域内の高さ最大値(Peak)と高さ最小値(Valley)との差を示す。測定条件は下記のとおり。測定は、フィルムの両面について、それぞれn=3(測定回数=3回)で行い、それぞれの面の平均値を求めることにより、各面のStとして採用した。なお、フィルムの両面のStの値のうち、大きい方の値を表には記載する。
製造元 :株式会社菱化システム
装置名 :VertScan2.0 R5300GL-Lite-AC
測定条件:CCDカメラ SONY HR-57 1/2インチ
対物レンズ:5x
中間レンズ:0.5x
波長フィルタ:530nm white
測定モード:Wave
測定ソフトウェア:VS-Measure Version5.5.1
解析ソフトウェア:VS-Viewer Version5.5.1
測定領域:1.252mm×0.939mm  。
(6) Maximum protrusion roughness (St)
The measurement was performed using Ryoka System Co., Ltd. VertScan2.0 R5300GL-Lite-AC, and the surface shape was obtained by surface-correcting the photographed screen by polynomial fourth-order approximation using the attached analysis software. The maximum protrusion roughness (St) indicates the difference between the maximum height value (Peek) and the minimum height value (Valley) in the measurement region. The measurement conditions are as follows. The measurement was performed on both sides of the film at n = 3 (number of measurements = 3 times), and the average value of each surface was obtained and adopted as St on each surface. The larger value of the St values on both sides of the film is shown in the table.
Manufacturer: Ryoka System Co., Ltd. Device name: VertScan2.0 R5300GL-Lite-AC
Measurement conditions: CCD camera SONY HR-57 1/2 inch objective lens: 5x
Intermediate lens: 0.5x
Wavelength filter: 530nm white
Measurement mode: Wave
Measurement software: VS-Measure Version 5.5.1
Analysis software: VS-Viewer Version 5.5.1
Measurement area: 1.252 mm x 0.939 mm.
 (7)厚みムラ
 ポリプロピレンフィルムを準備し、フィルムを10mm幅に切り取り、主配向軸方向に50mm間隔で20点測定した。得られた20点のデータの平均値を求め、また、最大値と最小値の差(絶対値)を求め、最小値と最大値の差の絶対値を平均値で除した値をフィルムの主配向軸方向の厚みムラとした。また、測定は23℃65%RHの雰囲気下で接触式のアンリツ(株)製電子マイクロメータ(K-312A型)を用いて実施した。
(7) Thickness unevenness A polypropylene film was prepared, the film was cut into a width of 10 mm, and 20 points were measured at intervals of 50 mm in the main orientation axis direction. The average value of the obtained 20 points of data is calculated, the difference between the maximum value and the minimum value (absolute value) is calculated, and the value obtained by dividing the absolute value of the difference between the minimum value and the maximum value by the average value is the main component of the film. The thickness was uneven in the axis of orientation. The measurement was carried out in an atmosphere of 23 ° C. and 65% RH using a contact-type electronic micrometer manufactured by Anritsu Co., Ltd. (K-312A type).
 (8)結晶化ピーク温度(Tc)
 示差走査熱量計(セイコーインスツル(株)製EXSTAR DSC6220)を用いて、窒素雰囲気中で3mgのポリプロピレンフィルムの各層について25℃から250℃まで20℃/minで昇温し、5分間保持した。ついで250℃から25℃まで20℃/minで降温する。この降温時に得られる発熱カーブのピーク温度を、ポリプロピレンフィルムの結晶化温度(Tc)とした。なお複数のピーク温度が観測できる場合には80℃から130℃の領域で最も高温の温度をポリプロピレンフィルムの結晶化温度(Tc)とした。
(8) Crystallization peak temperature (Tc)
Using a differential scanning calorimeter (EXSTAR DSC6220 manufactured by Seiko Instruments Inc.), each layer of 3 mg polypropylene film was heated from 25 ° C. to 250 ° C. at 20 ° C./min and held for 5 minutes in a nitrogen atmosphere. Then, the temperature is lowered from 250 ° C. to 25 ° C. at 20 ° C./min. The peak temperature of the heat generation curve obtained at the time of this temperature decrease was defined as the crystallization temperature (Tc) of the polypropylene film. When a plurality of peak temperatures could be observed, the highest temperature in the region of 80 ° C. to 130 ° C. was defined as the crystallization temperature (Tc) of the polypropylene film.
 (9)加熱後のカール評価
 ポリプロピレンフィルムおよび厚み40μmの日本ゼオン株式会社製“ゼオノアフィルム”(登録商標)を幅100mm、長さ100mmの正方形にサンプリングし、ポリプロピレンフィルムのA面と“ゼオノアフィルム”とが接触するように重ねて、それを2枚のアクリル板(幅100mm、長さ100mm)に挟んで、2kgの荷重をかけ、23℃の雰囲気下で1時間静置後、120℃のオーブン中で1時間加熱し、貼り合わせサンプルを取り出した。ゼオノアフィルム側を下にして床に置き、カールした貼り合わせサンプルの高さを定規で測定し、以下の基準で評価した。
(9) Curl evaluation after heating Polypropylene film and "Zeonoa film" (registered trademark) manufactured by Nippon Zeon Co., Ltd. with a thickness of 40 μm were sampled into a square with a width of 100 mm and a length of 100 mm, and the A side of the polypropylene film and the "Zeonoa film" were sampled. Put them in contact with each other, sandwich them between two acrylic plates (width 100 mm, length 100 mm), apply a load of 2 kg, let stand for 1 hour in an atmosphere of 23 ° C, and then oven at 120 ° C. After heating for 1 hour in the film, the bonded sample was taken out. The Zeonoa film side was placed on the floor, and the height of the curled bonded sample was measured with a ruler and evaluated according to the following criteria.
 S:カールした貼り合わせサンプルの高さが5mm未満である。
A:カールした貼り合わせサンプルの高さが5mm以上10mm未満である。
B:カールした貼り合わせサンプルの高さが10mm以上15mm未満である。
C:カールした貼り合わせサンプルの高さが15mm以上である。
S: The height of the curled bonded sample is less than 5 mm.
A: The height of the curled bonded sample is 5 mm or more and less than 10 mm.
B: The height of the curled bonded sample is 10 mm or more and less than 15 mm.
C: The height of the curled bonded sample is 15 mm or more.
 (10)粘着層を有する粘着フィルムの平面性
 コアに巻き取った500mm幅の粘着層を有する粘着フィルムを1mだけ巻き出し、フリーテンション(フィルムの自重により垂直方向に垂らした状態)および、フィルム幅全体にムラ無く一様に1kg/m、及び3kg/mのテンションを付加し、シワやヘコミといった平面性不良箇所の有無を目視にて確認した。
(10) Flatness of Adhesive Film with Adhesive Layer An adhesive film having an adhesive layer with a width of 500 mm wound around a core is unwound by 1 m, and free tension (a state in which the film hangs vertically due to its own weight) and a film width. Tensions of 1 kg / m and 3 kg / m were uniformly applied to the entire surface, and the presence or absence of poor flatness such as wrinkles and dents was visually confirmed.
 S:フリーテンションで平面性不良の箇所がない。
A:フリーテンションでは平面性不良の箇所が見られ、1kg/m幅のテンションでは消えるもの。
B:1kg/m幅のテンションでは平面性不良の箇所が見られ、3kg/m幅のテンションでは消えるもの。
C:3kg/m幅のテンションでも平面性不良の箇所が消えないもの。
S: There is no part with poor flatness due to free tension.
A: With free tension, there are spots with poor flatness, and with tension of 1 kg / m width, it disappears.
B: With a tension of 1 kg / m width, there are some areas with poor flatness, and with a tension of 3 kg / m width, it disappears.
C: A part with poor flatness does not disappear even with a tension of 3 kg / m width.
 (9)粘着層を有する粘着フィルムの幅縮み性
 500mm幅のポリプロピレンフィルムに粘着層用の塗剤を塗工後、100℃の乾燥炉に導き、30秒間200Nの張力で搬送し、塗剤中の溶媒を除去して粘着フィルムを得た。ポリプロピレンフィルムの幅と粘着フィルムの幅をメジャーで測定し、以下の式を元に幅縮み率を算出した。
(9) Width shrinkage of adhesive film having an adhesive layer After applying a coating agent for an adhesive layer to a polypropylene film having a width of 500 mm, it is guided to a drying furnace at 100 ° C. and conveyed at a tension of 200 N for 30 seconds during the coating. The solvent was removed to obtain an adhesive film. The width of the polypropylene film and the width of the adhesive film were measured with a measure, and the width shrinkage ratio was calculated based on the following formula.
 幅縮み率(%)=(500―粘着フィルム幅)/500×100
算出した幅縮み率を元に、以下の基準で評価した。
Width shrinkage rate (%) = (500-adhesive film width) / 500 x 100
Based on the calculated width shrinkage rate, evaluation was made according to the following criteria.
 S:幅縮み率が0.5%未満である。
A:幅縮み率が0.5%以上1.0%未満である。
B:幅縮み率が1.0%以上2.0%未満である。
C:幅縮み率が2.0%以上である。
S: The width shrinkage rate is less than 0.5%.
A: The width shrinkage rate is 0.5% or more and less than 1.0%.
B: The width shrinkage rate is 1.0% or more and less than 2.0%.
C: The width shrinkage rate is 2.0% or more.
 (実施例1)
 表層(I)用の原料として、住友化学(株)社製ホモポリプロピレン原料A(MFR:7.5g/10分、融点:163℃、CXS:1.0%)98.5質量部と、チーグラーナッタ触媒系分岐鎖状ポリプロピレン原料B(Profax PF-814)を1.5質量部ドライブレンドして表層(I)層用の単軸の一軸押出機に供給し、内層(II)用の原料として、(株)プライムポリマー社製ホモポリプロピレン原料C(MFR:4.0g/10分、融点:166℃、CXS:1.7%)98.5質量部と、上記分岐鎖状ポリプロピレンBを1.5質量部ドライブレンドして内層(II)層用の単軸の一軸押出機に供給し、260℃で溶融押出を行い、20μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B/A複合Tダイにて1/10/1の厚み比で積層し、102℃に表面温度を制御したキャスティングドラムに吐出し、エアナイフによりキャスティングドラムに密着させ、未延伸シートを得た。続いて、該シートをセラミックロールを用いて155℃に予熱し、周速差を設けた148℃のロール間でフィルムの長手方向に4.0倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、180℃で5秒間予熱後、170℃で9.6倍に延伸し、幅方向に14%の弛緩を与えながら167℃で熱処理をおこない、その後100℃の冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、フィルムをコアに巻き取り、厚み25μmのポリプロピレンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Example 1)
As a raw material for the surface layer (I), 98.5 parts by mass of a homopolypropylene raw material A (MFR: 7.5 g / 10 minutes, melting point: 163 ° C., CXS: 1.0%) manufactured by Sumitomo Chemical Co., Ltd. 1.5 parts by mass of the nutter-catalyzed branched-chain polypropylene raw material B (Profax PF-814) is dry-blended and supplied to a single-screw extruder for the surface layer (I) as a raw material for the inner layer (II). , 98.5 parts by mass of homopolypropylene raw material C (MFR: 4.0 g / 10 minutes, melting point: 166 ° C., CXS: 1.7%) manufactured by Prime Polymer Co., Ltd., and the above-mentioned branched polypropylene B. 5 parts by mass dry blended and supplied to a single-screw extruder for the inner layer (II) layer, melt-extruded at 260 ° C., and after removing foreign matter with a 20 μm cut sintering filter, feed block type A / It was laminated with a B / A composite T-die at a thickness ratio of 1/10/1, discharged to a casting drum whose surface temperature was controlled at 102 ° C., and brought into close contact with the casting drum with an air knife to obtain an unstretched sheet. Subsequently, the sheet was preheated to 155 ° C. using a ceramic roll, and stretched 4.0 times in the longitudinal direction of the film between rolls at 148 ° C. provided with a peripheral speed difference. Next, the end was gripped by a clip and introduced into a tenter type stretching machine, preheated at 180 ° C. for 5 seconds, stretched 9.6 times at 170 ° C., and at 167 ° C. while giving 14% relaxation in the width direction. A heat treatment was performed, and then the film was guided to the outside of the tenter through a cooling step of 100 ° C., the clip at the end of the film was released, and the film was wound around a core to obtain a polypropylene film having a thickness of 25 μm. Table 1 shows the physical properties of the obtained film and the evaluation results.
 (実施例2)
 プライムポリマー(株)社製ホモポリプロピレン原料D(MFR:3.0g/10分、融点:164℃、CXS:3.3%)90質量部、三井化学(株)社製4-メチル-1-ペンテン系重合体「MX004」(融点:230℃)10質量部がこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、260℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン原料(1)を得た。表層(I)用の原料として、上記ホモポリプロピレン原料Cを98質量部、上記ポリプロピレン原料(1)2質量部とをドライブレンドして表層(I)層用の単軸の一軸押出機に供給し、内層(II)用の原料として、上記ホモポリプロピレン原料Cを98.5質量部、上記分岐鎖状ポリプロピレン原料Bを1.5質量部とをドライブレンドして内層(II)層用の単軸の一軸押出機に供給し、260℃で溶融押出を行い、20μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B/A複合Tダイにて1/12/1の厚み比で積層し、93℃に表面温度を制御したキャスティングドラムに吐出し、エアナイフによりキャスティングドラムに密着させ、未延伸シートを得た。続いて、該シートをセラミックロールを用いて153℃に予熱し、周速差を設けた128℃のロール間でフィルムの長手方向に4.9倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、179℃で5秒間予熱後、173℃で9.5倍に延伸し、幅方向に11%の弛緩を与えながら148℃で熱処理をおこない、その後100℃の冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、フィルムをコアに巻き取り、厚み25μmのポリプロピレンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Example 2)
Homopolypropylene raw material D (MFR: 3.0 g / 10 minutes, melting point: 164 ° C, CXS: 3.3%) manufactured by Prime Polymer Co., Ltd. 90 parts by mass, 4-Methyl-1-manufactured by Mitsui Chemicals, Inc. Raw materials are supplied from the measuring hopper to the twin-screw extruder so that 10 parts by mass of the penten-based polymer "MX004" (melting point: 230 ° C.) is mixed at this ratio, melt-kneaded at 260 ° C., and from the die in a strand shape. It was discharged, cooled and solidified in a water tank at 25 ° C., and cut into chips to obtain a polypropylene raw material (1). As a raw material for the surface layer (I), 98 parts by mass of the homopolypropylene raw material C and 2 parts by mass of the polypropylene raw material (1) are dry-blended and supplied to a single-screw extruder for the surface layer (I). As a raw material for the inner layer (II), 98.5 parts by mass of the homopolypropylene raw material C and 1.5 parts by mass of the branched polypropylene raw material B are dry-blended to form a single shaft for the inner layer (II). It is supplied to a uniaxial extruder, melt-extruded at 260 ° C., foreign matter is removed with a 20 μm cut sintering filter, and then a 1/12/1 thickness ratio is used with a feed block type A / B / A composite T-die. And discharged to a casting drum whose surface temperature was controlled at 93 ° C., and brought into close contact with the casting drum with an air knife to obtain an unstretched sheet. Subsequently, the sheet was preheated to 153 ° C. using a ceramic roll, and stretched 4.9 times in the longitudinal direction of the film between the rolls at 128 ° C. provided with a peripheral speed difference. Next, the end was gripped by a clip and introduced into a tenter type stretching machine, preheated at 179 ° C. for 5 seconds, stretched 9.5 times at 173 ° C., and at 148 ° C. while giving 11% relaxation in the width direction. A heat treatment was performed, and then the film was guided to the outside of the tenter through a cooling step of 100 ° C., the clip at the end of the film was released, and the film was wound around a core to obtain a polypropylene film having a thickness of 25 μm. Table 1 shows the physical properties of the obtained film and the evaluation results.
 (実施例3)
 表層(I)用の原料として、上記ホモポリプロピレン原料Aを98質量部、上記ポリプロピレン原料(1)2質量部とをドライブレンドして表層(I)層用の単軸の一軸押出機に供給し、内層(II)用の原料として、上記ホモポリプロピレン原料Cを70質量部、上記ホモポリプロピレン原料Aを30質量部ドライブレンドして内層(II)層用の単軸の一軸押出機に供給し、250℃で溶融押出を行い、20μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B/A複合Tダイにて1/8/1の厚み比で積層し、58℃に表面温度を制御したキャスティングドラムに吐出し、エアナイフによりキャスティングドラムに密着させ、未延伸シートを得た。続いて、該シートをセラミックロールを用いて144℃に予熱し、周速差を設けた138℃のロール間でフィルムの長手方向に4.4倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、176℃で5秒間予熱後、167℃で8.8倍に延伸し、幅方向に9%の弛緩を与えながら163℃で熱処理をおこない、その後100℃の冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、フィルムをコアに巻き取り、厚み25μmのポリプロピレンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Example 3)
As a raw material for the surface layer (I), 98 parts by mass of the homopolypropylene raw material A and 2 parts by mass of the polypropylene raw material (1) are dry-blended and supplied to a single-screw extruder for the surface layer (I). As a raw material for the inner layer (II), 70 parts by mass of the homopolypropylene raw material C and 30 parts by mass of the homopolypropylene raw material A are dry-blended and supplied to a single-screw extruder for the inner layer (II) layer. Melt extrusion is performed at 250 ° C., foreign matter is removed with a 20 μm cut sintered filter, and then laminated with a feed block type A / B / A composite T-die at a thickness ratio of 1/8/1, and the surface is heated to 58 ° C. The material was discharged to a temperature-controlled casting drum and brought into close contact with the casting drum with an air knife to obtain an unstretched sheet. Subsequently, the sheet was preheated to 144 ° C. using a ceramic roll, and stretched 4.4 times in the longitudinal direction of the film between rolls at 138 ° C. provided with a peripheral speed difference. Next, the end was gripped with a clip and introduced into a tenter type stretching machine, preheated at 176 ° C for 5 seconds, stretched 8.8 times at 167 ° C, and at 163 ° C while giving 9% relaxation in the width direction. A heat treatment was performed, and then the film was guided to the outside of the tenter through a cooling step of 100 ° C., the clip at the end of the film was released, and the film was wound around a core to obtain a polypropylene film having a thickness of 25 μm. Table 1 shows the physical properties of the obtained film and the evaluation results.
 (実施例4)
 表層(I)用の原料として、上記ホモポリプロピレン原料Dを95.7質量部、上記分岐鎖状ポリプロピレン原料Bを2.3質量部、上記ポリプロピレン原料(1)2質量部とをドライブレンドして表層(I)層用の単軸の一軸押出機に供給し、内層(II)用の原料として、上記ホモポリプロピレン原料Dを97.7質量部、上記分岐鎖状ポリプロピレン原料Bを2.3質量部とをドライブレンドして内層(II)層用の単軸の一軸押出機に供給し、250℃で溶融押出を行い、20μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B/A複合Tダイにて1/10/1の厚み比で積層し、110℃に表面温度を制御したキャスティングドラムに吐出し、エアナイフによりキャスティングドラムに密着させ、未延伸シートを得た。続いて、該シートをセラミックロールを用いて159℃に予熱し、周速差を設けた125℃のロール間でフィルムの長手方向に4.1倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、180℃で5秒間予熱後、175℃で10.2倍に延伸し、幅方向に14%の弛緩を与えながら140℃で熱処理をおこない、その後100℃の冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、フィルムをコアに巻き取り、厚み25μmのポリプロピレンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Example 4)
As a raw material for the surface layer (I), 95.7 parts by mass of the homopolypropylene raw material D, 2.3 parts by mass of the branched polypropylene raw material B, and 2 parts by mass of the polypropylene raw material (1) are dry-blended. It is supplied to a single-screw extruder for the surface layer (I), and 97.7 parts by mass of the homopolypropylene raw material D and 2.3 parts by mass of the branched polypropylene raw material B as raw materials for the inner layer (II). The parts are dry-blended and supplied to a single-screw extruder for the inner layer (II) layer, melt-extruded at 250 ° C., and after removing foreign matter with a 20 μm-cut sintering filter, feed block type A / It was laminated with a B / A composite T-die at a thickness ratio of 1/10/1, discharged to a casting drum whose surface temperature was controlled at 110 ° C., and brought into close contact with the casting drum with an air knife to obtain an unstretched sheet. Subsequently, the sheet was preheated to 159 ° C. using a ceramic roll, and stretched 4.1 times in the longitudinal direction of the film between rolls at 125 ° C. provided with a peripheral speed difference. Next, the end was gripped by a clip and introduced into a tenter type stretching machine, preheated at 180 ° C. for 5 seconds, stretched 10.2 times at 175 ° C., and at 140 ° C. while giving 14% relaxation in the width direction. A heat treatment was performed, and then the film was guided to the outside of the tenter through a cooling step of 100 ° C., the clip at the end of the film was released, and the film was wound around a core to obtain a polypropylene film having a thickness of 25 μm. Table 1 shows the physical properties of the obtained film and the evaluation results.
 (実施例5)
 表層(I)用の原料として、上記ホモポリプロピレン原料Cを98.5質量部、上記分岐鎖状ポリプロピレン原料Bを1.5質量部とをドライブレンドして表層(I)層用の単軸の一軸押出機に供給し、内層(II)用の原料として、上記ホモポリプロピレン原料Cを100質量部を内層(II)層用の単軸の一軸押出機に供給し、250℃で溶融押出を行い、20μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B/A複合Tダイにて1/10/1の厚み比で積層し、65℃に表面温度を制御したキャスティングドラムに吐出し、エアナイフによりキャスティングドラムに密着させ、未延伸シートを得た。続いて、該シートをセラミックロールを用いて152℃に予熱し、周速差を設けた132℃のロール間でフィルムの長手方向に4.6倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、177℃で5秒間予熱後、169℃で6.8倍に延伸し、幅方向に16%の弛緩を与えながら170℃で熱処理をおこない、その後100℃の冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、フィルムをコアに巻き取り、厚み25μmのポリプロピレンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Example 5)
As a raw material for the surface layer (I), 98.5 parts by mass of the homopolypropylene raw material C and 1.5 parts by mass of the branched polypropylene raw material B are dry-blended to form a single shaft for the surface layer (I). Supply to a uniaxial extruder, 100 parts by mass of the homopolypropylene raw material C as a raw material for the inner layer (II) is supplied to a uniaxial uniaxial extruder for the inner layer (II) layer, and melt extrusion is performed at 250 ° C. After removing foreign matter with a 20 μm cut sintered filter, laminate with a feed block type A / B / A composite T-die at a thickness ratio of 1/10/1 to make a casting drum whose surface temperature is controlled at 65 ° C. It was discharged and brought into close contact with the casting drum with an air knife to obtain an unstretched sheet. Subsequently, the sheet was preheated to 152 ° C. using a ceramic roll, and stretched 4.6 times in the longitudinal direction of the film between rolls at 132 ° C. provided with a peripheral speed difference. Next, the end was gripped by a clip and introduced into a tenter type stretching machine, preheated at 177 ° C for 5 seconds, stretched 6.8 times at 169 ° C, and at 170 ° C while giving 16% relaxation in the width direction. A heat treatment was performed, and then the film was guided to the outside of the tenter through a cooling step of 100 ° C., the clip at the end of the film was released, and the film was wound around a core to obtain a polypropylene film having a thickness of 25 μm. Table 1 shows the physical properties of the obtained film and the evaluation results.
 (実施例6)
 表層(I)用の原料として、上記ホモポリプロピレン原料Dを95質量部、メタロセン触媒系分岐鎖状ポリプロピレン原料(日本ポリプロ社製WAYMAX MFX3)を5質量部とをドライブレンドして表層(I)層用の単軸の一軸押出機に供給し、内層(II)用の原料として、上記ホモポリプロピレン原料Dを100質量部を内層(II)層用の単軸の一軸押出機に供給し、250℃で溶融押出を行い、20μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B/A複合Tダイにて1/10/1の厚み比で積層し、55℃に表面温度を制御したキャスティングドラムに吐出し、エアナイフによりキャスティングドラムに密着させ、未延伸シートを得た。続いて、該シートをセラミックロールを用いて146℃に予熱し、周速差を設けた133℃のロール間でフィルムの長手方向に4.4倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、176℃で5秒間予熱後、166℃で7.8倍に延伸し、幅方向に11%の弛緩を与えながら153℃で熱処理をおこない、その後100℃の冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、フィルムをコアに巻き取り、厚み7μmのポリプロピレンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Example 6)
As a raw material for the surface layer (I), 95 parts by mass of the homopolypropylene raw material D and 5 parts by mass of a metallocene catalytically branched branched polypropylene raw material (WAYMAX MFX3 manufactured by Japan Polypropylene Corporation) are dry-blended to form the surface layer (I). 100 parts by mass of the homopolypropylene raw material D as a raw material for the inner layer (II) is supplied to the single-screw extruder for the inner layer (II), and the temperature is 250 ° C. After removing foreign matter with a 20 μm-cut sintered filter, laminate with a feed block type A / B / A composite T-die at a thickness ratio of 1/10/1, and set the surface temperature to 55 ° C. It was discharged to a controlled casting drum and brought into close contact with the casting drum with an air knife to obtain an unstretched sheet. Subsequently, the sheet was preheated to 146 ° C. using a ceramic roll, and stretched 4.4 times in the longitudinal direction of the film between the rolls at 133 ° C. provided with a peripheral speed difference. Next, the end was gripped by a clip and introduced into a tenter type stretching machine, preheated at 176 ° C for 5 seconds, stretched 7.8 times at 166 ° C, and at 153 ° C while giving 11% relaxation in the width direction. A heat treatment was performed, and then the film was guided to the outside of the tenter through a cooling step of 100 ° C., the clip at the end of the film was released, and the film was wound around a core to obtain a polypropylene film having a thickness of 7 μm. Table 1 shows the physical properties of the obtained film and the evaluation results.
 (比較例1)
 共重合組成が、プロピレン成分98.4質量部、エチレン成分1.6質量部であるポリプロピレン系樹脂(MFR:2.0g/10分)を一軸押出機に供給し、280℃でTダイよりシート状に押出し、60℃の冷却ロール上で冷却固化した後、141℃に設定した加熱ロール延伸機により4.4倍縦延伸し、続いて162℃に設定したテンター延伸機で9.2倍横延伸し、横延伸後に170℃で熱処理し、30μmのポリプロピレン系フィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Comparative Example 1)
A polypropylene resin (MFR: 2.0 g / 10 minutes) having a copolymerization composition of 98.4 parts by mass of a propylene component and 1.6 parts by mass of an ethylene component is supplied to a uniaxial extruder and sheeted from a T die at 280 ° C. After being extruded into a shape and cooled and solidified on a cooling roll at 60 ° C., it was longitudinally stretched 4.4 times by a heating roll stretching machine set at 141 ° C., and then 9.2 times laterally stretched by a tenter stretching machine set at 162 ° C. The film was stretched, transversely stretched, and then heat-treated at 170 ° C. to obtain a 30 μm polypropylene-based film. Table 1 shows the physical properties of the obtained film and the evaluation results.
 (比較例2)
 日本ポリプロ(株)社製「ノバテック SA4L」(MFR=5.0/10分)を単軸の一軸押出機に供給し、250℃でTダイよりシート状に押出し、30℃の冷却ロールで冷却固化した後、135℃で4.5倍に縦延伸し、ついで両端をクリップで挟み、熱風オーブン中に導いて、169℃で予熱後、160℃で8.2倍に横延伸し、ついで6.7%の緩和率で緩和させながら168℃で熱処理し4μmのポリプロピレンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Comparative Example 2)
"Novatec SA4L" (MFR = 5.0 / 10 minutes) manufactured by Japan Polypropylene Corporation is supplied to a single-screw single-screw extruder, extruded into a sheet from a T-die at 250 ° C, and cooled with a cooling roll at 30 ° C. After solidification, it is vertically stretched 4.5 times at 135 ° C., then both ends are clipped, guided into a hot air oven, preheated at 169 ° C., stretched 8.2 times at 160 ° C., and then 6 Heat treatment was performed at 168 ° C. while relaxing at a relaxation rate of 0.7% to obtain a 4 μm polypropylene film. Table 1 shows the physical properties of the obtained film and the evaluation results.
 (比較例3)
 上記ホモポリプロピレン原料Dを75質量部、炭酸カルシウム粒子(三共製粉(株)製、2480K、粒子径:6μm)25質量部とをドライブレンドして、内層(II)用の単軸の溶融押出機に供給し、上記ホモポリプロピレン原料Dを表層(I)用の単軸の溶融押出機に供給し、240℃で溶融押出を行い、80μmカットの焼結フィルターで異物を除去後、フィードブロック型のB/A/B複合Tダイにて1/50/1の厚み比で積層し、30℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。次いで、複数のセラミックロールを用いて140℃に予熱を行いフィルムの長手方向に4.6倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、165℃で3秒間予熱後、160℃で8.0倍に延伸した。続く熱処理工程で、幅方向に10%の弛緩を与えながら160℃で熱処理を行ない、その後130℃で冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、フィルムをコアに巻き取り、厚み25μmのポリプロピレンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Comparative Example 3)
75 parts by mass of the homopolypropylene raw material D and 25 parts by mass of calcium carbonate particles (manufactured by Sankyo Flour Milling Co., Ltd., 2480K, particle diameter: 6 μm) are dry-blended to create a single-screw melt extruder for the inner layer (II). The homopolypropylene raw material D is supplied to a single-screw melt extruder for the surface layer (I), melt-extruded at 240 ° C., and after removing foreign substances with an 80 μm-cut sintering filter, a feed block type The particles were laminated with a B / A / B composite T-die at a thickness ratio of 1/50/1, and discharged to a cast drum whose surface temperature was controlled at 30 ° C. to obtain a cast sheet. Next, the film was preheated to 140 ° C. using a plurality of ceramic rolls and stretched 4.6 times in the longitudinal direction of the film. Next, the end portion was gripped by a clip and introduced into a tenter type stretching machine, preheated at 165 ° C. for 3 seconds, and then stretched 8.0 times at 160 ° C. In the subsequent heat treatment step, heat treatment is performed at 160 ° C while giving 10% relaxation in the width direction, and then the film is guided to the outside of the tenter through a cooling step at 130 ° C, the clip at the end of the film is released, and the film is wound around the core. A polypropylene film having a thickness of 25 μm was obtained. Table 1 shows the physical properties of the obtained film and the evaluation results.
 (比較例4)
 上記ホモポリプロピレン原料Aを99.7質量部、β晶核剤であるN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製、NU-100)を0.3質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製IRGANOX(登録商標)1010、IRGAFOS(登録商標)168を各々0.1質量部ずつがこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、300℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン原料(2)を得た。
(Comparative Example 4)
99.7 parts by mass of the homopolypropylene raw material A, and 0.3 of N, N'-dicyclohexyl-2,6-naphthalene dicarboxyamide (NU-100, manufactured by Shin Nihon Rika Co., Ltd.), which is a β crystal nucleating agent. Biaxial from the measuring hopper so that 0.1 parts by mass of each of IRGANOX (registered trademark) 1010 and IRGAFOS (registered trademark) 168 manufactured by Ciba Specialty Chemicals, which are antioxidants, are mixed in this ratio by mass. The raw material was supplied to an extruder, melt-kneaded at 300 ° C., discharged from a die in a strand shape, cooled and solidified in a water tank at 25 ° C., and cut into chips to obtain a polypropylene raw material (2).
 上記ホモポリプロピレン原料Dを内層(II)層用の単軸の溶融押出機に供給し、上記ポリプロピレン原料(2)を表層(I)層用の単軸の溶融押出機に供給し、240℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B複合Tダイにて8/1の厚み比で積層し、90℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。ついで、複数のセラミックロールを用いて125℃に予熱を行いフィルムの長手方向に4.6倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、165℃で3秒間予熱後、160℃で8.0倍に延伸した。続く熱処理工程で、幅方向に10%の弛緩を与えながら160℃で熱処理を行ない、その後130℃で冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、フィルムをコアに巻き取り、厚み15μmのポリプロピレンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。 The homopolypropylene raw material D is supplied to a single-screw melt extruder for the inner layer (II) layer, and the polypropylene raw material (2) is supplied to a single-screw melt extruder for the surface layer (I) layer at 240 ° C. After melt extrusion and removing foreign matter with a 60 μm cut sintered filter, the cast drum is laminated with a feed block type A / B composite T-die at a thickness ratio of 8/1, and the surface temperature is controlled at 90 ° C. A cast sheet was obtained by ejection. Then, the film was preheated to 125 ° C. using a plurality of ceramic rolls and stretched 4.6 times in the longitudinal direction of the film. Next, the end portion was gripped by a clip and introduced into a tenter type stretching machine, preheated at 165 ° C. for 3 seconds, and then stretched 8.0 times at 160 ° C. In the subsequent heat treatment step, heat treatment is performed at 160 ° C while giving 10% relaxation in the width direction, and then the film is guided to the outside of the tenter through a cooling step at 130 ° C, the clip at the end of the film is released, and the film is wound around the core. A polypropylene film having a thickness of 15 μm was obtained. Table 1 shows the physical properties of the obtained film and the evaluation results.
 (比較例5)
 表層(I)用の原料として、上記ホモポリプロピレン原料Aを98.5質量部、上記分岐鎖状ポリプロピレン原料Bを1.5質量部とをドライブレンドして表層(I)層用の単軸の一軸押出機に供給し、内層(II)用の原料として、上記ホモポリプロピレン原料Cを98.5質量部、上記分岐鎖状ポリプロピレン原料Bを1.5質量部とをドライブレンドして、内層(II)層用の単軸の一軸押出機に供給し、250℃で溶融押出を行い、20μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B/A複合Tダイにて1/10/1の厚み比で積層し、35℃に表面温度を制御したキャスティングドラムに吐出し、エアナイフによりキャスティングドラムに密着させ、未延伸シートを得た。続いて、該シートをセラミックロールを用いて153℃に予熱し、周速差を設けた148℃のロール間でフィルムの長手方向に3.7倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、180℃で5秒間予熱後、178℃で7.2倍に延伸し、幅方向に16%の弛緩を与えながら170℃で熱処理をおこない、その後100℃の冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、フィルムをコアに巻き取り、厚み25μmのポリプロピレンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Comparative Example 5)
As a raw material for the surface layer (I), 98.5 parts by mass of the homopolypropylene raw material A and 1.5 parts by mass of the branched polypropylene raw material B are dry-blended to form a single shaft for the surface layer (I). It is supplied to a uniaxial extruder, and 98.5 parts by mass of the homopolypropylene raw material C and 1.5 parts by mass of the branched polypropylene raw material B are dry-blended as raw materials for the inner layer (II), and the inner layer ( II) Supply to a single-screw single-screw extruder for layers, melt-extrude at 250 ° C., remove foreign matter with a 20 μm-cut sintering filter, and then use a feed block type A / B / A composite T-die. The polypropylene was laminated at a thickness ratio of 1/10/1, discharged to a casting drum whose surface temperature was controlled at 35 ° C., and brought into close contact with the casting drum with an air knife to obtain an unstretched sheet. Subsequently, the sheet was preheated to 153 ° C. using a ceramic roll, and stretched 3.7 times in the longitudinal direction of the film between rolls at 148 ° C. provided with a peripheral speed difference. Next, the end was gripped with a clip and introduced into a tenter type stretching machine, preheated at 180 ° C. for 5 seconds, stretched 7.2 times at 178 ° C., and at 170 ° C. while giving 16% relaxation in the width direction. A heat treatment was performed, and then the film was guided to the outside of the tenter through a cooling step of 100 ° C., the clip at the end of the film was released, and the film was wound around a core to obtain a polypropylene film having a thickness of 25 μm. Table 1 shows the physical properties of the obtained film and the evaluation results.
 (比較例6)
 直鎖状ポリプロピレンとしてメソペンタッド分率が98.5%で、メルトマスフローレート(MFR)が2.6g/10分であるプライムポリマー(株)製ポリプロピレン樹脂100質量部に、Basell社製分岐鎖状ポリプロピレン樹脂(高溶融張力ポリプロピレンProfax PF-814 メソペンタッド分率91.0%)を0.5質量部ブレンドし、温度250℃の押出機に供給し、樹脂温度を250℃でT型スリットダイよりシート状に溶融押出し、該溶融シートを90℃に保持された直径1mのキャスティングドラム上で、エアーナイフ温度90℃、エアー速度140m/sで冷却固化した。次いで、該シートを徐々に140℃に予熱し、引き続き145℃の温度に保ち周速差を設けたロール間に通し、長手方向に4.8倍に延伸した。その際、延伸部でラジエーションヒーター(出力3.5kW)を用い熱量を補い延伸した。引き続き該フィルムをテンターに導き、延伸温度160℃で幅方向に10倍延伸し、次いで幅方向にトータル23%の弛緩率で3段階に弛緩した。(第1段階は12.0%、第2段階は9.0%、第3段階は3.9%である。)、熱固定温度150℃、冷却温度140℃で熱処理を行い、その後室温で5秒間急冷して、フィルム厚みが3.0μmの二軸配向ポリプロピレンフィルムを得た。得られたフィルムの物性および評価結果を表1に示す。
(Comparative Example 6)
As a linear polypropylene, 100 parts by mass of a polypropylene resin manufactured by Prime Polymer Co., Ltd., which has a mesopentad fraction of 98.5% and a melt mass flow rate (MFR) of 2.6 g / 10 minutes, and a branched polypropylene made by Basell Co., Ltd. 0.5 parts by mass of resin (high melt tension polypropylene Profax PF-814 mesopentad fraction 91.0%) is blended and supplied to an extruder at a temperature of 250 ° C., and the resin temperature is 250 ° C. from a T-shaped slit die to form a sheet. The molten sheet was melt-extruded and solidified by cooling on a casting drum having a diameter of 1 m held at 90 ° C. at an air knife temperature of 90 ° C. and an air speed of 140 m / s. Next, the sheet was gradually preheated to 140 ° C., continuously maintained at a temperature of 145 ° C., passed between rolls provided with a peripheral speed difference, and stretched 4.8 times in the longitudinal direction. At that time, a radiation heater (output 3.5 kW) was used in the stretched portion to supplement the amount of heat and stretch. Subsequently, the film was led to a tenter, stretched 10 times in the width direction at a stretching temperature of 160 ° C., and then relaxed in three stages with a total relaxation rate of 23% in the width direction. (The first stage is 12.0%, the second stage is 9.0%, and the third stage is 3.9%.) The heat treatment is performed at a heat fixing temperature of 150 ° C. and a cooling temperature of 140 ° C., and then at room temperature. The mixture was rapidly cooled for 5 seconds to obtain a biaxially oriented polypropylene film having a film thickness of 3.0 μm. Table 1 shows the physical properties of the obtained film and the evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、表中の「主配向軸直交方向」とは、主配向軸方向に直交する方向を意味する。 Note that the "direction orthogonal to the main orientation axis" in the table means a direction orthogonal to the direction of the main orientation axis.
 上述のとおり、本発明のポリプロピレンフィルムは、包装用フィルム、離型フィルム、工程フィルム、衛生用品、農業用品、建築用品、医療用品など様々な用途で用いることができる。特に、耐熱性、機械強度、離型性、品位に優れることから、被着体と貼り合わせた後、高温の工程を通過する離型フィルム、工程フィルムとして好ましく用いることができる。 As described above, the polypropylene film of the present invention can be used for various purposes such as packaging films, release films, process films, sanitary products, agricultural products, building products, and medical products. In particular, since it is excellent in heat resistance, mechanical strength, releasability, and quality, it can be preferably used as a releasable film or process film that passes through a high temperature process after being bonded to an adherend.

Claims (12)

  1.  主配向軸方向及びそれに直交する方向の140℃での熱収縮力が、共に400mN以下であり、前記主配向軸方向およびそれに直交する方向のヤング率が、共に1.8GPa以上である、ポリプロピレンフィルム。 A polypropylene film in which the heat shrinkage force at 140 ° C. in the main orientation axis direction and the direction orthogonal to the main orientation axis direction is 400 mN or less, and the Young's modulus in the main orientation axis direction and the direction orthogonal to the main orientation axis direction is 1.8 GPa or more. ..
  2.  前記主配向軸方向及びそれに直交する方向の、熱収縮力が20mN以上となる際の温度が、共に116℃以上である、請求項1に記載のポリプロピレンフィルム。 The polypropylene film according to claim 1, wherein the temperature at which the heat shrinkage force is 20 mN or more in the main orientation axis direction and the direction orthogonal to the main orientation axis direction is 116 ° C. or more.
  3.  前記主配向軸方向及びそれに直交する方向の、120℃での最大点応力が、共に80MPa以上である、請求項1~2のいずれかに記載のポリプロピレンフィルム。 The polypropylene film according to any one of claims 1 and 2, wherein the maximum point stress at 120 ° C. in the main orientation axis direction and the direction orthogonal to the main orientation axis direction is 80 MPa or more.
  4.  少なくとも片面の最大突起粗さStが2000nm以上である、請求項1~3のいずれかに記載のポリプロピレンフィルム。 The polypropylene film according to any one of claims 1 to 3, wherein the maximum protrusion roughness St on at least one side is 2000 nm or more.
  5.  前記主配向軸方向の厚みムラが6.0%未満である、請求項1~4のいずれかに記載のポリプロピレンフィルム。 The polypropylene film according to any one of claims 1 to 4, wherein the thickness unevenness in the main orientation axis direction is less than 6.0%.
  6. 前記主配向軸方向に直交する方向の140℃での熱収縮力が95mN以下である、請求項1~5のいずれかに記載のポリプロピレンフィルム。 The polypropylene film according to any one of claims 1 to 5, wherein the heat shrinkage force at 140 ° C. in the direction orthogonal to the main orientation axis direction is 95 mN or less.
  7.  前記主配向軸方向に直交する方向の、120℃でのヤング率(GPa)に、フィルムの厚み(μm)を掛け合わせた値が1.5(GPa・μm)以上である、請求項1~6のいずれかに記載のポリプロピレンフィルム。 Claims 1 to 1, wherein the value obtained by multiplying the Young's modulus (GPa) at 120 ° C. in the direction orthogonal to the main orientation axis direction by the film thickness (μm) is 1.5 (GPa · μm) or more. The polypropylene film according to any one of 6.
  8. フィルムの厚みが6μm以上である、請求項1~7のいずれかに記載のポリプロピレンフィルム。 The polypropylene film according to any one of claims 1 to 7, wherein the thickness of the film is 6 μm or more.
  9.  2層以上の積層構成であって、少なくとも1層は、冷キシレン可溶部(CXS)が3.5%以下であるポリプロピレンを50質量%以上100質量%以下含有する層である、請求項1~8のいずれかに記載のポリプロピレンフィルム。 Claim 1 is a laminated structure of two or more layers, wherein at least one layer contains 50% by mass or more and 100% by mass or less of polypropylene having a cold xylene soluble portion (CXS) of 3.5% or less. 8. The polypropylene film according to any one of 8.
  10.  2層以上の積層構成であって、少なくとも1層は、示差走査熱量計DSCで25℃から250℃まで20℃/minで昇温し、ついで250℃から25℃まで20℃/minで降温したときの、結晶化ピーク温度(Tc)が110℃以上である、請求項1~9のいずれかに記載のポリプロピレンフィルム。 In a laminated structure of two or more layers, at least one layer was heated at 20 ° C./min from 25 ° C. to 250 ° C. by a differential scanning calorimeter DSC, and then lowered at 20 ° C./min from 250 ° C. to 25 ° C. The polypropylene film according to any one of claims 1 to 9, wherein the crystallization peak temperature (Tc) is 110 ° C. or higher.
  11.  請求項1~10のいずれかに記載のポリプロピレンフィルムの少なくとも片面に、粘着層を有する、粘着フィルム。 An adhesive film having an adhesive layer on at least one side of the polypropylene film according to any one of claims 1 to 10.
  12.  請求項1~10のいずれかに記載のポリプロピレンフィルムを用いた離型フィルム。 A release film using the polypropylene film according to any one of claims 1 to 10.
PCT/JP2020/013262 2019-03-28 2020-03-25 Polypropylene film WO2020196602A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217028005A KR20210148096A (en) 2019-03-28 2020-03-25 polypropylene film
JP2020539114A JPWO2020196602A1 (en) 2019-03-28 2020-03-25
CN202080016897.0A CN113490704B (en) 2019-03-28 2020-03-25 polypropylene film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-063195 2019-03-28
JP2019063195 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020196602A1 true WO2020196602A1 (en) 2020-10-01

Family

ID=72609893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013262 WO2020196602A1 (en) 2019-03-28 2020-03-25 Polypropylene film

Country Status (5)

Country Link
JP (1) JPWO2020196602A1 (en)
KR (1) KR20210148096A (en)
CN (1) CN113490704B (en)
TW (1) TWI824130B (en)
WO (1) WO2020196602A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210688A1 (en) 2021-03-31 2022-10-06 東レ株式会社 Polypropylene film
KR20230164012A (en) 2021-03-31 2023-12-01 도레이 카부시키가이샤 polypropylene film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014051657A (en) * 2012-08-09 2014-03-20 Toyobo Co Ltd Polypropylene film
WO2014148547A1 (en) * 2013-03-22 2014-09-25 東レ株式会社 Biaxially oriented polypropylene film, metallized film and film capacitor
WO2016006578A1 (en) * 2014-07-09 2016-01-14 東レ株式会社 Polypropylene film and release film
JP2016187959A (en) * 2015-03-27 2016-11-04 東レ株式会社 Biaxially oriented polypropylene film, metal film laminated film, and film capacitor
WO2017022786A1 (en) * 2015-08-06 2017-02-09 東レ株式会社 Pressure-sensitive adhesive film and roll of pressure-sensitive adhesive film
JP2017125184A (en) * 2016-01-07 2017-07-20 東レ株式会社 Polypropylene film and mold release film
JP2018028075A (en) * 2016-08-10 2018-02-22 東レ株式会社 Polypropylene film roll

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3550557B2 (en) 2001-07-31 2004-08-04 株式会社トクヤマ Polypropylene thermoformed sheet laminating film
DE602005026121D1 (en) * 2004-04-22 2011-03-10 Toray Industries MICROPOROUS POLYPROPYLENE FILM AND METHOD OF MANUFACTURING THEREOF

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014051657A (en) * 2012-08-09 2014-03-20 Toyobo Co Ltd Polypropylene film
WO2014148547A1 (en) * 2013-03-22 2014-09-25 東レ株式会社 Biaxially oriented polypropylene film, metallized film and film capacitor
WO2016006578A1 (en) * 2014-07-09 2016-01-14 東レ株式会社 Polypropylene film and release film
JP2016187959A (en) * 2015-03-27 2016-11-04 東レ株式会社 Biaxially oriented polypropylene film, metal film laminated film, and film capacitor
WO2017022786A1 (en) * 2015-08-06 2017-02-09 東レ株式会社 Pressure-sensitive adhesive film and roll of pressure-sensitive adhesive film
JP2017125184A (en) * 2016-01-07 2017-07-20 東レ株式会社 Polypropylene film and mold release film
JP2018028075A (en) * 2016-08-10 2018-02-22 東レ株式会社 Polypropylene film roll

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210688A1 (en) 2021-03-31 2022-10-06 東レ株式会社 Polypropylene film
KR20230164012A (en) 2021-03-31 2023-12-01 도레이 카부시키가이샤 polypropylene film
KR20230164014A (en) 2021-03-31 2023-12-01 도레이 카부시키가이샤 polypropylene film

Also Published As

Publication number Publication date
CN113490704A (en) 2021-10-08
CN113490704B (en) 2023-10-31
JPWO2020196602A1 (en) 2020-10-01
TW202102592A (en) 2021-01-16
KR20210148096A (en) 2021-12-07
TWI824130B (en) 2023-12-01

Similar Documents

Publication Publication Date Title
JP6828437B2 (en) Adhesive film and adhesive film roll
JP7205611B2 (en) biaxially oriented polypropylene film
JP7047428B2 (en) Biaxially oriented polypropylene film
JP6512374B2 (en) Biaxially oriented polypropylene film
JP6795106B2 (en) Polypropylene film and release film
WO2020196602A1 (en) Polypropylene film
JP7070426B2 (en) Laminated polypropylene film
WO2022210688A1 (en) Polypropylene film
WO2022210693A1 (en) Polypropylene film
JP7355172B2 (en) polyolefin film
JP6962426B2 (en) Polyolefin film and release film
JP6753541B1 (en) Polypropylene film and release film
JP2016064654A (en) Biaxial oriented polypropylene film and surface protective film
JP2023095426A (en) Release biaxially oriented polypropylene film and release film
JP2023095425A (en) Release biaxially oriented polypropylene film and release film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020539114

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20777862

Country of ref document: EP

Kind code of ref document: A1