WO2018147299A1 - 電磁波シールドフィルム、シールドプリント配線板及び電子機器 - Google Patents

電磁波シールドフィルム、シールドプリント配線板及び電子機器 Download PDF

Info

Publication number
WO2018147299A1
WO2018147299A1 PCT/JP2018/004109 JP2018004109W WO2018147299A1 WO 2018147299 A1 WO2018147299 A1 WO 2018147299A1 JP 2018004109 W JP2018004109 W JP 2018004109W WO 2018147299 A1 WO2018147299 A1 WO 2018147299A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
wave shielding
shielding film
layer
wiring board
Prior art date
Application number
PCT/JP2018/004109
Other languages
English (en)
French (fr)
Inventor
上農 憲治
志朗 山内
白髪 潤
村川 昭
Original Assignee
タツタ電線株式会社
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タツタ電線株式会社, Dic株式会社 filed Critical タツタ電線株式会社
Priority to KR1020197015178A priority Critical patent/KR102231053B1/ko
Priority to JP2018535439A priority patent/JP6404533B1/ja
Priority to CN201880009044.7A priority patent/CN110199584B/zh
Publication of WO2018147299A1 publication Critical patent/WO2018147299A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0084Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single continuous metallic layer on an electrically insulating supporting structure, e.g. metal foil, film, plating coating, electro-deposition, vapour-deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/18Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure

Definitions

  • the present invention relates to an electromagnetic wave shielding film, a shield printed wiring board, and an electronic device.
  • an electromagnetic wave shielding film is attached to a printed wiring board such as a flexible printed wiring board (FPC) to shield electromagnetic waves from the outside.
  • a printed wiring board such as a flexible printed wiring board (FPC)
  • the electromagnetic wave shielding film of Patent Document 1 has a configuration in which an adhesive layer, a metal thin film (shield layer), and an insulating layer are sequentially laminated.
  • the electromagnetic wave shielding film is adhered to the printed wiring board by the adhesive layer, and a shield printed wiring board is produced. After this bonding, components are mounted on the printed wiring board by solder reflow.
  • the flexible printed wiring board has a configuration in which a printed pattern on a base film is covered with an insulating film.
  • a shield printed wiring board such as Patent Document 1
  • gas is generated from an adhesive layer of an electromagnetic wave shielding film, an insulating film of a printed wiring board, or the like.
  • the base film of the printed wiring board is formed of a highly hygroscopic resin such as polyimide, water vapor may be generated from the base film by heating. Since these volatile components generated from the adhesive layer, the insulating film, and the base film cannot pass through the metal thin film, they accumulate between the metal thin film and the adhesive layer.
  • the interlayer adhesion between the metal thin film and the adhesive layer may be destroyed by a volatile component accumulated between the metal thin film and the adhesive layer.
  • the electromagnetic wave shielding characteristics of the electromagnetic wave shielding film may be deteriorated.
  • the present invention has been made in view of the above problems, and the object of the present invention is to prevent the interlaminar adhesion between the shield layer and the conductive adhesive layer from being destroyed when manufacturing a shield printed wiring board, and to provide electromagnetic shielding characteristics. Is to provide a sufficiently high electromagnetic shielding film.
  • the electromagnetic wave shielding film of the present invention is an electromagnetic wave shielding film comprising a conductive adhesive layer, a shield layer laminated on the conductive adhesive layer, and an insulating layer laminated on the shield layer.
  • the shield layer a plurality of openings are formed.
  • the electromagnetic wave shielding characteristic of the electromagnetic wave shielding film at 200 MHz measured by the KEC method is 85 dB or more. It is characterized by being.
  • Evaluation of delamination An electromagnetic wave shielding film was attached to a printed wiring board by hot pressing, and the obtained shield printed wiring board was heated to 265 ° C. and then cooled to room temperature, and this heating and cooling were performed a total of 5 times. Thereafter, it is visually observed whether or not the electromagnetic wave shielding film is swollen.
  • the shield layer has a plurality of openings. Therefore, even when a volatile component is generated between the shield layer and the conductive adhesive layer in the heating press process or the solder reflow process when the shield printed wiring board is manufactured using the electromagnetic wave shielding film of the present invention, Volatile components can pass through the opening of the shield layer. Therefore, it is difficult for volatile components to accumulate between the shield layer and the conductive adhesive layer. As a result, it is possible to prevent the interlayer adhesion from being broken. Therefore, no swelling occurs in the delamination evaluation described later, and the electromagnetic wave shielding characteristics at 200 MHz measured by the KEC method described later are enhanced.
  • the electromagnetic wave shielding film of the present invention does not swell in the delamination evaluation. That is, the interlayer adhesion between the shield layer and the conductive adhesive layer is not easily destroyed.
  • delamination evaluation means the following evaluation.
  • the electromagnetic wave shielding film was attached on a printed wiring board by hot pressing, and the obtained shield printed wiring board was heated to 265 ° C., then cooled to room temperature, and this heating and cooling were performed a total of 5 times. Whether or not the electromagnetic wave shielding film is swollen is visually observed.
  • the electromagnetic wave shielding film of the present invention has an electromagnetic wave shielding characteristic at 200 MHz measured by the KEC method of 85 dB or more. That is, it has a sufficiently high shield characteristic.
  • FIG. 1 is a schematic diagram schematically showing the configuration of a system used in the KEC method.
  • the system used in the KEC method includes an electromagnetic wave shielding effect measuring device 80, a spectrum analyzer 91, an attenuator 92 that attenuates 10 dB, an attenuator 93 that attenuates 3 dB, and a preamplifier 94.
  • the electromagnetic wave shielding effect measuring device 80 is provided with two measuring jigs 83 facing each other.
  • An electromagnetic wave shielding film (indicated by reference numeral 110 in FIG. 1) is sandwiched between the measuring jigs 83.
  • the measurement jig 83 has a structure in which a TEM cell (Transverse Electro Magnetic Cell) size distribution is incorporated and is divided symmetrically in a plane perpendicular to the transmission axis direction.
  • the flat plate-shaped center conductor 84 is disposed with a gap between each measurement jig 83.
  • a signal output from the spectrum analyzer 91 is input to the transmission side measurement jig 83 via the attenuator 92. Then, the signal is received by the measuring jig 83 on the receiving side and the signal via the attenuator 93 is amplified by the preamplifier 94, and then the signal level is measured by the spectrum analyzer 91.
  • the spectrum analyzer 91 outputs the attenuation when the electromagnetic wave shielding film 110 is installed in the electromagnetic wave shielding effect measuring device 80 with reference to the state where the electromagnetic wave shielding film 110 is not installed in the electromagnetic wave shielding effect measuring device 80. .
  • the electromagnetic wave shielding film of the present invention has an electromagnetic wave shielding characteristic at 200 MHz measured using such an apparatus of 85 dB or more.
  • the electromagnetic wave shielding film of the present invention desirably has no breakage when the number of bendings is 600 in the MIT folding fatigue test specified in JIS P8115: 2001.
  • the electromagnetic wave shielding film of the present invention has such high bending resistance, even if the electromagnetic wave shielding film of the present invention is used for a flexible printed wiring board or the like, disconnection hardly occurs.
  • the opening area of the opening and the opening pitch satisfy the relationship of the following formulas (1) and (2).
  • y represents the square root of the opening area ( ⁇ m 2 )
  • x represents the opening pitch ( ⁇ m).
  • the opening area of the opening is preferably 70 to 71000 ⁇ m 2 and the opening ratio of the opening is preferably 0.05 to 3.6%. If the opening area and the opening ratio of the opening formed in the shield layer are within this range, the bending resistance is sufficient, and the accumulation of volatile components between the shield layer and the conductive adhesive layer is prevented. can do.
  • the opening area of the opening is less than 70 ⁇ m 2 , the opening is too narrow and the volatile component is difficult to pass through the shield layer. As a result, volatile components tend to accumulate between the shield layer and the conductive adhesive layer. Therefore, when manufacturing a shield printed wiring board using the electromagnetic wave shielding film, interlayer adhesion between the shield layer and the conductive adhesive layer is easily broken.
  • the shield characteristics are degraded. If the opening area of the opening exceeds 71000 ⁇ m 2 , the opening is too wide, the shield layer becomes weak, and the bending resistance decreases. When the opening ratio of the opening is less than 0.05%, the ratio of the opening is too small, and the volatile component is difficult to pass through the shield layer. As a result, volatile components tend to accumulate between the shield layer and the conductive adhesive layer. When the opening ratio of the opening exceeds 3.6%, the ratio of the opening is too large, the shield layer becomes weak, and the bending resistance is lowered.
  • aperture ratio means the total opening area of a plurality of openings with respect to the area of the entire main surface of the shield layer.
  • the opening pitch of the openings is preferably 10 to 10,000 ⁇ m.
  • the opening pitch of the openings is less than 10 ⁇ m, the ratio of the openings increases in the entire shield layer. As a result, the shield layer becomes weak and the bending resistance is lowered.
  • the opening pitch of the openings exceeds 10,000 ⁇ m, the ratio of the openings is reduced in the entire shield layer. As a result, it becomes difficult for the volatile component to pass through the shield layer, and the volatile component tends to accumulate between the shield layer and the conductive adhesive layer.
  • the “opening pitch of openings” refers to the distance between the centers of gravity of the adjacent openings.
  • the thickness of the shield layer is preferably 0.5 ⁇ m or more.
  • the thickness of the shield layer is less than 0.5 ⁇ m, the shield layer is too thin, and the shield characteristics are lowered.
  • the shielding layer preferably includes a copper layer. Copper is a suitable material for the shield layer from the viewpoint of conductivity and economy.
  • the shield layer further includes a silver layer, the silver layer is disposed on the insulating layer side, and the copper layer is disposed on the conductive adhesive layer side. It is desirable.
  • the electromagnetic wave shielding film having such a configuration can be easily produced by applying a silver paste to the insulating layer so that an opening is formed to form a silver layer and plating the silver layer with copper.
  • the electromagnetic wave shielding film of the present invention is preferably for a flexible printed wiring board.
  • the electromagnetic wave shielding film of the present invention hardly accumulates volatile components between the shield layer and the conductive adhesive layer when producing a shield printed wiring board.
  • the electromagnetic wave shielding film of the present invention has sufficient bending resistance. Therefore, even if the electromagnetic wave shielding film of this invention is used for a flexible printed wiring board and it is repeatedly bent, it is hard to be damaged. Therefore, the electromagnetic wave shielding film of the present invention can be suitably used as an electromagnetic wave shielding film for flexible printed wiring boards.
  • the shield printed wiring board of the present invention is provided on a base member on which a printed circuit is formed, a printed wiring board having an insulating film provided on the base member so as to cover the printed circuit, and the printed wiring board.
  • the electromagnetic wave shielding film is the electromagnetic wave shielding film of the present invention.
  • the printed wiring board is a flexible printed wiring board.
  • the shield printed wiring board of the present invention has the electromagnetic wave shielding film of the present invention having sufficient bending resistance. Therefore, the shield printed wiring board of the present invention also has sufficient bending resistance.
  • the electronic device of the present invention is characterized in that the shield printed wiring board of the present invention is incorporated in a folded state.
  • the shield printed wiring board of the present invention has sufficient bending resistance. Therefore, even if it is incorporated in an electronic device in a bent state, it is not easily damaged. Therefore, the electronic device of the present invention can narrow the space for arranging the shield printed wiring board. Therefore, the electronic device of the present invention can be thinned.
  • the electromagnetic wave shielding film of the present invention a plurality of openings are formed in the shielding layer, and no delamination occurs in the delamination evaluation, and the electromagnetic wave shielding characteristics of the electromagnetic wave shielding film at 200 MHz measured by the KEC method are 85 dB or more. It is. Therefore, even when a volatile component is generated between the shield layer and the conductive adhesive layer in the heating press process or the solder reflow process when the shield printed wiring board is manufactured using the electromagnetic wave shielding film of the present invention, Volatile components can pass through the opening of the shield layer. Therefore, it is difficult for volatile components to accumulate between the shield layer and the conductive adhesive layer. As a result, it is possible to prevent the interlayer adhesion from being broken. Moreover, the electromagnetic wave shielding film of the present invention has high shielding properties.
  • FIG. 1 is a schematic diagram schematically showing the configuration of a system used in the KEC method.
  • FIG. 2 is a cross-sectional view schematically showing an example of the electromagnetic wave shielding film of the present invention.
  • 3A and 3B are schematic views schematically showing a case where a shield printed wiring board is manufactured using an electromagnetic wave shielding film in which no opening is formed in the shield layer.
  • 4 (a) to 4 (c) are plan views schematically showing an example of an arrangement pattern of openings in the shield layer constituting the electromagnetic wave shielding film of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing an example of the electromagnetic wave shielding film of the present invention in which the shield layer is composed of a copper layer and a silver layer.
  • FIGS. 6 (a) to 6 (c) are process diagrams schematically showing an example of the method for producing an electromagnetic wave shielding film of the present invention in order.
  • FIG. 7 is a process diagram schematically showing an example of an insulating layer preparation process in the method for producing an electromagnetic wave shielding film of the present invention.
  • FIG. 8 is a process diagram schematically showing an example of a silver paste printing process in the method for producing an electromagnetic wave shielding film of the present invention.
  • FIG. 9 is a process diagram schematically showing an example of a silver paste printing process in the method for producing an electromagnetic wave shielding film of the present invention.
  • FIG. 10 is a process diagram schematically showing an example of a silver paste printing process in the method for producing an electromagnetic wave shielding film of the present invention.
  • FIG. 11A and 11B are process diagrams schematically showing an example of a copper plating process in the method for producing an electromagnetic wave shielding film of the present invention.
  • 12 (a) and 12 (b) are process diagrams schematically showing an example of a conductive adhesive layer forming step in the method for producing an electromagnetic wave shielding film of the present invention.
  • FIG. 13 is a scatter diagram of the electromagnetic shielding film in which the vertical axis is the square root of the opening area and the horizontal axis is the opening pitch, and is a diagram showing the delamination evaluation of the electromagnetic shielding film.
  • FIG. 13 is a scatter diagram of the electromagnetic shielding film in which the vertical axis is the square root of the opening area and the horizontal axis is the opening pitch, and is a diagram showing the delamination evaluation of the electromagnetic shielding film.
  • FIG. 14 is a scatter diagram of the electromagnetic shielding film in which the vertical axis represents the square root of the opening area and the horizontal axis represents the opening pitch, and shows the evaluation of the electromagnetic shielding characteristics of the electromagnetic shielding film.
  • FIG. 15 is a scatter diagram of an electromagnetic wave shielding film having the vertical axis as the square root of the opening area and the horizontal axis as the opening pitch, and shows a comprehensive evaluation of the delamination evaluation and the electromagnetic wave shielding characteristics evaluation of the electromagnetic wave shielding film. It is.
  • FIG. 16 is a scatter diagram of the electromagnetic shielding film in which the vertical axis is the square root of the opening area and the horizontal axis is the opening pitch, and shows the evaluation of the bending resistance of the electromagnetic shielding film.
  • FIG. 17 is a scatter diagram of an electromagnetic wave shielding film in which the vertical axis is the square root of the opening area and the horizontal axis is the opening pitch. Evaluation of delamination of the electromagnetic wave shielding film, evaluation of electromagnetic wave shielding characteristics, and evaluation of bending resistance It is a figure which shows comprehensive evaluation of.
  • FIG. 2 is a cross-sectional view schematically showing an example of the electromagnetic wave shielding film of the present invention.
  • the electromagnetic wave shielding film 10 includes a conductive adhesive layer 20, a shield layer 30 laminated on the conductive adhesive layer 20, and an insulating layer 40 laminated on the shield layer 30. It consists of. A plurality of openings 50 are formed in the shield layer 30.
  • the conductive adhesive layer 20 may be made of any material as long as it has conductivity and can function as an adhesive.
  • the conductive adhesive layer 20 may be composed of conductive particles and an adhesive resin composition.
  • a metal microparticle, a carbon nanotube, carbon fiber, a metal fiber, etc. may be sufficient.
  • the metal fine particles are not particularly limited, but silver powder, copper powder, nickel powder, solder powder, aluminum powder, silver-coated copper powder obtained by silver plating on copper powder, polymer fine particles Or fine particles in which glass beads or the like are coated with a metal. In these, it is desirable that it is the copper powder or silver coat copper powder which can be obtained cheaply from an economical viewpoint.
  • the average particle size of the conductive particles is not particularly limited, but is desirably 0.5 to 15.0 ⁇ m. When the average particle diameter of the conductive particles is 0.5 ⁇ m or more, the conductivity of the conductive adhesive layer is improved. When the average particle size of the conductive particles is 15.0 ⁇ m or less, the conductive adhesive layer can be thinned.
  • the shape of the conductive particles is not particularly limited, but can be appropriately selected from spherical, flat, flakes, dendrites, rods, fibers, and the like.
  • the material of the adhesive resin composition is not particularly limited, but a styrene resin composition, a vinyl acetate resin composition, a polyester resin composition, a polyethylene resin composition, a polypropylene resin composition, and an imide resin composition. Products, amide resin compositions, acrylic resin compositions, etc., phenol resin compositions, epoxy resin compositions, urethane resin compositions, melamine resin compositions, alkyd resin compositions A thermosetting resin composition such as a product can be used.
  • the material of the adhesive resin composition may be one of these alone or a combination of two or more.
  • a curing accelerator for the conductive adhesive layer 20, a curing accelerator, a tackifier, an antioxidant, a pigment, a dye, a plasticizer, an ultraviolet absorber, an antifoaming agent, a leveling agent, a filler, a flame retardant, if necessary. Further, a viscosity modifier or the like may be contained.
  • the blending amount of the conductive particles in the conductive adhesive layer 20 is not particularly limited, but is preferably 15 to 80% by mass, and more preferably 15 to 60% by mass.
  • the adhesiveness to the printed wiring board of a conductive adhesive layer improves that it is the said range.
  • the thickness of the conductive adhesive layer 20 is not particularly limited and can be appropriately set as necessary, but is desirably 0.5 to 20.0 ⁇ m. When the thickness of the conductive adhesive layer is less than 0.5 ⁇ m, it is difficult to obtain good conductivity. If the thickness of the conductive adhesive layer exceeds 20.0 ⁇ m, the thickness of the entire electromagnetic wave shielding film becomes thick and difficult to handle.
  • the conductive adhesive layer 20 has anisotropic conductivity.
  • the transmission characteristics of the high-frequency signal transmitted by the signal circuit of the printed wiring board are improved as compared with the case of having isotropic conductivity.
  • the insulating layer 40 has sufficient insulating properties, and is not particularly limited as long as the conductive adhesive layer 20 and the shield layer 30 can be protected.
  • a thermoplastic resin composition for example, a thermoplastic resin composition, a thermosetting resin composition, and the like. It is desirable that the composition is composed of an active energy ray-curable composition or the like.
  • the thermoplastic resin composition is not particularly limited, but a styrene resin composition, a vinyl acetate resin composition, a polyester resin composition, a polyethylene resin composition, a polypropylene resin composition, and an imide resin composition. And acrylic resin compositions.
  • thermosetting resin composition A phenol-type resin composition, an epoxy-type resin composition, a urethane-type resin composition, a melamine-type resin composition, an alkyd-type resin composition etc. are mentioned.
  • the active energy ray curable composition for example, the polymeric compound etc. which have at least 2 (meth) acryloyloxy group in a molecule
  • the insulating layer 40 may be composed of a single material, or may be composed of two or more materials.
  • a curing accelerator for the insulating layer 40, a curing accelerator, a tackifier, an antioxidant, a pigment, a dye, a plasticizer, an ultraviolet absorber, an antifoaming agent, a leveling agent, a filler, a flame retardant, and a viscosity adjuster, if necessary.
  • An agent, an antiblocking agent and the like may be contained.
  • the thickness of the insulating layer 40 is not particularly limited and can be appropriately set as necessary, but is preferably 1 to 15 ⁇ m, and more preferably 3 to 10 ⁇ m. If the thickness of the insulating layer 40 is less than 1 ⁇ m, the conductive adhesive layer 20 and the shield layer 30 are not easily protected sufficiently because they are too thin. When the thickness of the insulating layer 40 exceeds 15 ⁇ m, the electromagnetic wave shielding film 10 is difficult to bend because it is too thick, and the insulating layer 40 itself is easily damaged. Therefore, it becomes difficult to apply to members that require bending resistance.
  • 3A and 3B are schematic views schematically showing a case where a shield printed wiring board is manufactured using an electromagnetic wave shielding film in which no opening is formed in the shield layer.
  • the shield printed wiring board on which the electromagnetic wave shielding film 510 is arranged is heated by a heating press or solder reflow.
  • a volatile component 560 is generated from the conductive adhesive layer 520 of the electromagnetic wave shielding film 510, the insulating film of the printed wiring board, the base film, and the like.
  • the volatile component accumulated between the shield layer 530 and the conductive adhesive layer 520 causes the shield layer 530 to adhere to the conductive adhesive. Interlayer adhesion with the agent layer 520 may be destroyed.
  • the electromagnetic wave shielding film 10 shown in FIG. 2 a plurality of openings 50 are formed in the shield layer 30. Therefore, even when a volatile component is generated between the shield layer 30 and the conductive adhesive layer 20 due to heating when a shield printed wiring board is manufactured using the electromagnetic wave shield film 10, the volatile component is It can pass through the opening 50. Therefore, it is difficult for volatile components to accumulate between the shield layer 30 and the conductive adhesive layer 20. As a result, it is possible to prevent the interlayer adhesion from being broken.
  • the electromagnetic wave shielding film 10 does not swell in the above delamination evaluation, and the electromagnetic wave shielding characteristics at 200 MHz measured by the KEC method can be 85 dB or more.
  • the opening area of the opening 50 is desirably 70 to 71000 ⁇ m 2 , and the opening ratio of the opening 50 is desirably 0.05 to 3.6%. Area of the opening 50 is more preferably to be 70 ⁇ 32000 ⁇ m 2, more desirably 70 ⁇ 10000 2, more desirably more is 80 ⁇ 8000 ⁇ m 2. Further, the opening ratio of the opening 50 is more preferably 0.1 to 3.6%. If the opening area and the opening ratio of the opening 50 formed in the shield layer 30 are within this range, the bending resistance is sufficient, and a volatile component is present between the shield layer 30 and the conductive adhesive layer 20. Accumulation can be prevented. Therefore, the electromagnetic wave shielding characteristics of the electromagnetic wave shielding film at 200 MHz measured by delamination evaluation and the KEC method are improved.
  • the opening area of the opening of the shield layer is less than 70 ⁇ m 2 , the opening is too narrow and volatile components are difficult to pass through the shield layer. As a result, volatile components tend to accumulate between the shield layer and the conductive adhesive layer. If the opening area of the opening of the shield layer exceeds 71000 ⁇ m 2 , the opening is too wide, the shield layer becomes weak, and the bending resistance decreases.
  • the opening ratio of the opening of the shield layer is less than 0.05%, the ratio of the opening is too small, and the volatile component hardly passes through the shield layer. As a result, volatile components tend to accumulate between the shield layer and the conductive adhesive layer.
  • the aperture ratio of the opening part of a shield layer exceeds 3.6%, there are too many ratios of an opening part, a shield layer will become weak and bending resistance will fall.
  • the shape of the opening 50 is not particularly limited, and may be a circle, an ellipse, a racetrack, a triangle, a quadrangle, a pentagon, a hexagon, an octagon, a star, or the like. Among these, a circular shape is desirable for ease of formation of the opening 50. Moreover, the shape of the plurality of openings 50 may be one type alone, or a plurality of types may be combined.
  • the opening pitch of the openings 50 is desirably 10 to 10,000 ⁇ m, more desirably 25 to 2000 ⁇ m, and further desirably 250 to 2000 ⁇ m.
  • the opening pitch of the openings is less than 10 ⁇ m, the ratio of the openings increases in the entire shield layer. As a result, the shield layer becomes weak and the bending resistance is lowered.
  • the opening pitch of the openings exceeds 10,000 ⁇ m, the ratio of the openings is reduced in the entire shield layer. As a result, it becomes difficult for the volatile component to pass through the shield layer, and the volatile component tends to accumulate between the shield layer and the conductive adhesive layer. As a result, the interlayer adhesion between the shield layer and the conductive adhesive layer is likely to be broken, and the shield characteristics are also easily deteriorated.
  • the opening area of the opening 50 and the opening pitch satisfy the relationship of the following formulas (1) and (2).
  • y represents the square root of the opening area ( ⁇ m 2 ), and x represents the opening pitch ( ⁇ m).
  • the electromagnetic wave of the electromagnetic wave shielding film 10 when the opening area of the opening and the opening pitch satisfy the above formulas (1) and (2), the electromagnetic wave of the electromagnetic wave shielding film at 200 MHz measured by delamination evaluation and the KEC method. Good shielding characteristics.
  • the arrangement pattern of the openings 50 is not particularly limited.
  • the arrangement pattern shown below may be used.
  • 4 (a) to 4 (c) are plan views schematically showing an example of an arrangement pattern of openings in the shield layer constituting the electromagnetic wave shielding film of the present invention.
  • the arrangement pattern of the openings 50 is an arrangement pattern in which the center of each opening 50 is located at the apex of the equilateral triangle on a plane in which equilateral triangles are continuously arranged vertically and horizontally. There may be.
  • the array pattern of the openings 50 is an array pattern in which the center of the openings 50 is located at the apex of the square in a plane in which squares are continuously arranged vertically and horizontally. May be.
  • the arrangement pattern of the openings 50 is an arrangement pattern in which the center of the openings 50 is positioned at the apex of the regular hexagons on a plane in which regular hexagons are continuously arranged vertically and horizontally. It may be.
  • the thickness of the shielding layer 30 is desirably 0.5 ⁇ m or more, and more desirably 1.0 ⁇ m or more.
  • the thickness of the shield layer 30 is desirably 10 ⁇ m or less. When the thickness of the shield layer is less than 0.5 ⁇ m, the shield layer is too thin, and the shield characteristics are lowered.
  • the thickness of the shield layer 30 is 1.0 ⁇ m or more, the transmission characteristics are good in a signal transmission system that transmits a high-frequency signal having a frequency of 0.01 to 10 GHz.
  • the opening is not formed in the shield layer, when the shield layer becomes thick, when the shield printed wiring board is manufactured, the interlayer adhesion between the shield layer and the conductive adhesive layer is easily broken. .
  • the thickness of the shield layer 30 exceeds 1.0 ⁇ m, the interlaminar adhesion is significantly broken.
  • the opening 50 since the opening 50 is formed in the shield layer 30, it is possible to prevent the interlayer adhesion between the shield layer 30 and the conductive adhesive layer 20 from being broken. .
  • the electromagnetic wave shielding film of the present invention is preferably used in a signal transmission system that transmits a signal having a frequency of 0.01 to 10 GHz.
  • the shielding layer may be made of any material as long as it has electromagnetic wave shielding properties, for example, a metallic layer.
  • the shield layer may include a layer made of a material such as gold, silver, copper, aluminum, nickel, tin, palladium, chromium, titanium, or zinc, and preferably includes a copper layer. Copper is a suitable material for the shield layer from the viewpoint of conductivity and economy.
  • the shield layer may include a layer made of the metal alloy.
  • the shield layer may be formed by laminating a plurality of metal layers.
  • the shield layer preferably includes a copper layer and a silver layer.
  • FIG. 5 is a cross-sectional view schematically showing an example of the electromagnetic wave shielding film of the present invention in which the shield layer is composed of a copper layer and a silver layer.
  • An electromagnetic wave shielding film 110 shown in FIG. 5 includes a conductive adhesive layer 120, a shield layer 130 laminated on the conductive adhesive layer 120, and an insulating layer 140 laminated on the shield layer 130.
  • the shield layer 130 includes a copper layer 132 and a silver layer 131.
  • the silver layer 131 is disposed on the insulating layer 140 side, and the copper layer 132 is disposed on the conductive adhesive layer 120 side.
  • the electromagnetic wave shielding film 110 having such a configuration can be easily manufactured by applying a silver paste to the insulating layer 140 so that the opening 150 is formed, forming a silver layer, and plating the silver layer with copper.
  • an anchor coat layer may be formed between the insulating layer and the shield layer.
  • Anchor coat layer materials include urethane resin, acrylic resin, core-shell type composite resin with urethane resin as shell and acrylic resin as core, epoxy resin, imide resin, amide resin, melamine resin, phenol resin, urea formaldehyde resin And blocked isocyanates obtained by reacting a polyisocyanate with a blocking agent such as phenol, polyvinyl alcohol, polyvinylpyrrolidone and the like.
  • a support film may be provided on the insulating layer side, and a peelable film may be provided on the conductive adhesive layer side.
  • a support film or a peelable film in the operation of transporting the electromagnetic wave shielding film of the present invention or manufacturing a shield printed wiring board using the electromagnetic wave shielding film of the present invention.
  • the electromagnetic wave shielding film of the present invention is easy to handle. Moreover, when arrange
  • the electromagnetic wave shielding film of the present invention it is desirable that the electromagnetic wave shielding film of the present invention has a folding number of 600 and does not break in the MIT folding fatigue test specified in JIS P8115: 2001. It is more desirable that the disconnection does not occur at the time.
  • the electromagnetic wave shielding film of the present invention has such high bending resistance, even if the electromagnetic wave shielding film of the present invention is used for a flexible printed wiring board or the like, disconnection hardly occurs.
  • the electromagnetic wave shielding film of the present invention may be used for any application as long as it aims to block electromagnetic waves.
  • the electromagnetic wave shielding film of the present invention is desirably used for a printed wiring board, particularly a flexible printed wiring board.
  • the electromagnetic wave shielding film of the present invention hardly accumulates volatile components between the shield layer and the conductive adhesive layer when producing a shield printed wiring board.
  • the electromagnetic wave shielding film of the present invention has sufficient bending resistance. Therefore, even if the electromagnetic wave shielding film of this invention is used for a flexible printed wiring board and it is repeatedly bent, it is hard to be damaged. Therefore, the electromagnetic wave shielding film of the present invention can be suitably used as an electromagnetic wave shielding film for flexible printed wiring boards.
  • the shield printed wiring board having the electromagnetic wave shielding film of the present invention is the shield printed wiring board of the present invention. That is, the shield printed wiring board of the present invention includes a base member on which a printed circuit is formed, a printed wiring board having an insulating film provided on the base member so as to cover the printed circuit, and the printed wiring board. A shield printed wiring board having an electromagnetic wave shielding film provided on the electromagnetic wave shielding film, wherein the electromagnetic wave shielding film is the electromagnetic wave shielding film of the present invention.
  • the printed wiring board is preferably a flexible printed wiring board.
  • the shield printed wiring board of the present invention has the electromagnetic wave shielding film of the present invention having sufficient bending resistance. Therefore, the shield printed wiring board of the present invention also has sufficient bending resistance.
  • the shield printed wiring board of the present invention is used by being incorporated in an electronic device.
  • the electronic device in which the shield printed wiring board of the present invention is incorporated in a folded state is the electronic device of the present invention.
  • the shield printed wiring board of the present invention has sufficient bending resistance. Therefore, even if it is incorporated in an electronic device in a bent state, it is not easily damaged. Therefore, the electronic device of the present invention can narrow the space for arranging the shield printed wiring board. Therefore, the electronic device of the present invention can be thinned.
  • the method for producing the electromagnetic wave shielding film 10 includes (1) a shield layer forming step, (2) an insulating layer forming step, and (3) a conductive adhesive layer forming step.
  • 6 (a) to 6 (c) are process diagrams schematically showing an example of the method for producing an electromagnetic wave shielding film of the present invention in order.
  • the opening 50 can be formed by punching, laser irradiation, or the like.
  • a resist having a pattern that forms the opening 50 may be disposed on the surface of the sheet 35 and the opening 50 may be formed by etching.
  • a conductive paste or a paste that functions as a plating catalyst may be printed on the surface of the sheet 35.
  • the opening 50 may be formed by printing with a predetermined pattern.
  • a fluid containing a metal composed of nickel, copper, chromium, zinc, gold, silver, aluminum, tin, cobalt, palladium, lead, platinum, cadmium, rhodium, or the like is used. it can.
  • the insulating layer 40 is formed by coating and curing the insulating layer resin composition 45 on one surface of the shield layer 30.
  • a method for coating the resin composition for the insulating layer conventionally known coating methods such as gravure coating method, kiss coating method, die coating method, lip coating method, comma coating method, blade coating method, roll coating method, knife coating method , Spray coating method, bar coating method, spin coating method, dip coating method and the like.
  • a method for curing the resin composition for an insulating layer various conventionally known methods can be employed depending on the type of the resin composition for the insulating layer.
  • the conductive adhesive layer composition 25 is formed on the surface of the shield layer 30 opposite to the surface on which the insulating layer 40 is formed.
  • the conductive adhesive layer 20 is formed by coating.
  • a conventionally known coating method such as a gravure coating method, a kiss coating method, a die coating method, a lip coating method, a comma coating method, a blade coating method, a roll coating method, Examples include knife coating, spray coating, bar coating, spin coating, and dip coating.
  • the electromagnetic wave shielding film 10 which is an example of the electromagnetic wave shielding film of this invention can be manufactured through the above process.
  • the method of manufacturing the electromagnetic wave shielding film 110 includes (1) an insulating layer preparation step, (2) a silver paste printing step, (3) a copper plating step, and (4) a conductive adhesive layer forming step.
  • FIG. 7 is process drawing which shows typically an example of the insulating layer preparatory process in the manufacturing method of the electromagnetic wave shield film of this invention.
  • an insulating layer 140 is prepared.
  • the insulating layer 140 can be prepared by a conventional method.
  • the silver paste can be printed by intaglio printing such as gravure printing, by relief printing such as flexographic printing, by screen printing, by offset printing by transferring a pattern formed on the intaglio, relief printing, or screen. Examples thereof include a method and a method by ink jet printing which does not require a plate. A method for printing a silver paste by gravure printing will be described below.
  • FIG. 8 to 10 are process diagrams schematically showing an example of a silver paste printing process in the method for producing an electromagnetic wave shielding film of the present invention.
  • a roll-shaped plate cylinder 70 having a plurality of columnar protrusions 72 formed on the surface is prepared.
  • the surface of the plate cylinder on which the protrusions 72 are not formed is a protrusion non-formation region 71.
  • the silver paste 133 is taken into the protrusion non-formation region 71. At this time, the silver paste 133 is prevented from being applied to the upper surface 73 of the protrusion 72.
  • the silver paste 133 is printed on one main surface of the insulating layer 140 by passing the insulating layer 140 between the impression cylinder 75 and the plate cylinder 70 into which the silver paste 133 is taken. .
  • the silver paste 133 is not printed on the portion of the insulating layer 140 where the protrusion 72 hits, and the opening 150 can be formed.
  • the silver paste 133 printed on the insulating layer 140 becomes the silver layer 131.
  • the silver paste 133 may contain various additives such as a dispersant, a thickener, a leveling agent, and an antifoaming agent.
  • the shape of the silver particles is not particularly limited, and a material having an arbitrary shape such as a spherical shape, a flake shape, a dendritic shape, a needle shape, or a fibrous shape can be used.
  • nano-sized particles are desirable. Specifically, silver particles having an average particle diameter in the range of 1 to 100 nm are desirable, and silver particles in the range of 1 to 50 nm are more desirable.
  • the “average particle diameter” means a volume average value obtained by diluting silver particles with a dispersion solvent and measuring by a dynamic light scattering method.
  • “Nanotrack UPA-150” manufactured by Microtrack Co. can be used.
  • the thickness of the silver layer formed by the silver paste to be printed is preferably 5 to 200 nm.
  • FIGS. 11A and 11B are process diagrams schematically showing an example of a copper plating process in the method for producing an electromagnetic wave shielding film of the present invention.
  • a copper layer 132 is formed on the silver layer 131 by plating copper on the silver layer 131.
  • the copper plating method is not particularly limited, and conventional electroless plating and electrolytic plating can be used.
  • a plating solution containing copper sulfate, a reducing agent, and a solvent such as an aqueous medium or an organic solvent When copper is plated by the electrolytic plating method, a plating solution containing copper sulfate, sulfuric acid, and an aqueous medium is used, and the plating processing time, current density, and plating are adjusted so that the desired copper thickness is obtained. It is desirable to adjust by controlling the amount of additives used.
  • the thickness of the copper to be plated is preferably 0.1 to 10 ⁇ m.
  • the shield layer 130 composed of the silver layer 131 and the copper layer 132 can be formed.
  • FIGS. 12A and 12B are process diagrams schematically showing an example of the conductive adhesive layer forming process in the method for producing an electromagnetic wave shielding film of the present invention.
  • FIGS. 12A and 12B FIG. 11B is turned upside down and the subsequent steps are illustrated.
  • a conductive adhesive layer 120 is formed by coating a conductive adhesive layer composition 125 on the copper layer 132.
  • a conventionally known coating method such as gravure coating method, kiss coating method, die coating method, lip coating method, comma coating method, blade coating method, roll coating method, Examples include knife coating, spray coating, bar coating, spin coating, and dip coating.
  • the electromagnetic wave shielding film 110 which is an example of the electromagnetic wave shielding film of this invention can be manufactured through the above process.
  • the area of the opening of the shield layer (square root of the area of the opening) is 79 ⁇ m 2 (8.89 ⁇ m), 1963 ⁇ m 2 (44.30 ⁇ m), 4418 ⁇ m 2 (66.47 ⁇ m), 7854 ⁇ m 2 (88.62 ⁇ m), 12272 ⁇ m.
  • the opening pitch is 10 ⁇ m, 50 ⁇ m, 100 ⁇ m
  • a total of 126 kinds of electromagnetic wave shielding films of 200 ⁇ m, 500 ⁇ m, 750 ⁇ m, 1000 ⁇ m, 1500 ⁇ m, 2000 ⁇ m, 3000 ⁇ m, 4000 ⁇ m, 5000 ⁇ m, 7500 ⁇ m, or 10,000 ⁇ m were produced by the following method.
  • the shape of the opening part of a shield layer is circular.
  • Insulating layer preparation step An insulating layer made of an epoxy resin having a thickness of 5 ⁇ m was prepared.
  • the thickness of the silver layer was 50 nm.
  • the silver paste obtained in Preparation Example 1 was used.
  • the shape of the openings is circular, and the arrangement pattern of the openings is an arrangement pattern in which the center of each opening is positioned at the apex of the equilateral triangle on a plane in which equilateral triangles are continuously arranged vertically and horizontally. .
  • the electroplating solution a solution of copper sulfate 70 g / liter, sulfuric acid 200 g / liter, chloride ion 50 mg / liter, Top Lucina SF (brightener manufactured by Okuno Pharmaceutical Co., Ltd.) 5 g / liter was used.
  • Conductive adhesive layer forming step On the copper layer, a conductive adhesive layer obtained by adding 20% by mass of Ag-coated Cu powder to a phosphorus-containing epoxy resin so as to have a thickness of 15 ⁇ m is coated, An electromagnetic shielding film was produced. As a coating method, a lip coat method was used.
  • the delamination evaluation of the electromagnetic wave shielding film was performed by the following method. First, each electromagnetic wave shielding film was affixed on the printed wiring board by hot press. Next, this shield printed wiring board was left in a clean room at 23 ° C. and 63% RH for 7 days, and then exposed to the temperature conditions during reflow for 30 seconds to evaluate the presence or absence of delamination. As the temperature condition at the time of reflow, a temperature profile of 265 ° C. at maximum was set assuming lead-free solder. Further, the presence or absence of delamination was observed by visually observing the presence or absence of swelling by passing the shield printed wiring board through atmospheric reflow five times. The results are shown in FIG. FIG.
  • FIG. 13 is a scatter diagram of the electromagnetic shielding film in which the vertical axis is the square root of the opening area and the horizontal axis is the opening pitch, and is a diagram showing the delamination evaluation of the electromagnetic shielding film.
  • “O” indicates an electromagnetic wave shielding film in which no swelling occurs in the delamination evaluation.
  • “X” indicates an electromagnetic wave shielding film in which swelling occurs in the delamination evaluation.
  • each electromagnetic wave shielding film was measured under the conditions of a temperature of 25 ° C. and a relative humidity of 30 to 50% using an electromagnetic wave shielding effect measuring device developed at the KEC Kansai Electronics Industry Promotion Center. It cut
  • FIG. FIG. 14 is a scatter diagram of the electromagnetic shielding film in which the vertical axis represents the square root of the opening area and the horizontal axis represents the opening pitch, and shows the evaluation of the electromagnetic shielding characteristics of the electromagnetic shielding film.
  • FIG. 14 is a scatter diagram of the electromagnetic shielding film in which the vertical axis represents the square root of the opening area and the horizontal axis represents the opening pitch, and shows the evaluation of the electromagnetic shielding characteristics of the electromagnetic shielding film.
  • the symbol “ ⁇ ” indicates an electromagnetic wave shielding film having an electromagnetic wave shielding characteristic at 200 MHz measured by the KEC method of 85 dB or more.
  • “X” indicates an electromagnetic wave shielding film having an electromagnetic wave shielding characteristic at 200 MHz measured by the KEC method of less than 85 dB.
  • the electromagnetic shielding characteristics of the electromagnetic shielding film are evaluated by the KEC method. Will be better. y ⁇ 0.38x (2)
  • FIG. 15 is a scatter diagram of an electromagnetic wave shielding film having the vertical axis as the square root of the opening area and the horizontal axis as the opening pitch, and shows a comprehensive evaluation of the delamination evaluation and the electromagnetic wave shielding characteristics evaluation of the electromagnetic wave shielding film. It is.
  • “ ⁇ ” indicates an electromagnetic wave shielding film in which no swelling occurs in the delamination evaluation and the electromagnetic wave shielding characteristic at 200 MHz measured by the KEC method is 85 dB or more.
  • the symbol “x” indicates an electromagnetic wave shielding film in which swelling occurs in the delamination evaluation and / or the electromagnetic wave shielding characteristic at 200 MHz measured by the KEC method is less than 85 dB.
  • the electromagnetic wave shielding film indicated by a symbol “ ⁇ ” is an electromagnetic wave shielding film according to an example of the present invention
  • the electromagnetic wave shielding film indicated by a symbol “x” is an electromagnetic wave shielding film according to a comparative example of the present invention. It is.
  • the electromagnetic wave shielding film satisfying the relationship of the following formulas (1) and (2) is satisfied. It is an electromagnetic wave shielding film which concerns on the Example of invention.
  • MIT Folding Fatigue Tester manufactured by Yasuda Seiki Seisakusho Co., Ltd.
  • No. 307 MIT type folding resistance tester No. 307 MIT type folding resistance tester
  • the test conditions are as follows. Bending clamp tip R: 0.38mm Bending angle: ⁇ 135 ° Bending speed: 175 cpm
  • Load 500gf Detection method: Detects disconnection of shield film with built-in Dentsu device
  • FIG. 16 is a scatter diagram of the electromagnetic shielding film in which the vertical axis is the square root of the opening area and the horizontal axis is the opening pitch, and shows the evaluation of the bending resistance of the electromagnetic shielding film.
  • the symbol “ ⁇ ” indicates an electromagnetic wave shielding film in which no breakage occurs when the number of bendings is 600 in the evaluation of bending resistance.
  • “X” indicates an electromagnetic wave shielding film in which disconnection occurs when the number of bendings is less than 600 in the evaluation of bending resistance.
  • the bending resistance of the electromagnetic wave shielding film is improved when the relationship between y and x satisfies the following formula (3). y ⁇ 0.135x (3)
  • FIG. 17 is a scatter diagram of an electromagnetic wave shielding film in which the vertical axis is the square root of the opening area and the horizontal axis is the opening pitch. Evaluation of delamination of the electromagnetic wave shielding film, evaluation of electromagnetic wave shielding characteristics, and evaluation of bending resistance It is a figure which shows comprehensive evaluation of.
  • the symbol “ ⁇ ” indicates that no swelling occurs in the delamination evaluation
  • the electromagnetic wave shielding characteristic at 200 MHz measured by the KEC method is 85 dB or more, and the number of bendings is 600 in the evaluation of bending resistance.
  • produce a disconnection is shown.
  • the symbol “ ⁇ ” indicates that no swelling occurs in the delamination evaluation
  • the electromagnetic wave shielding characteristic at 200 MHz measured by the KEC method is 85 dB or more, and the number of bendings is less than 600 in the evaluation of bending resistance.
  • produced is shown.
  • the symbol “x” indicates an electromagnetic wave shielding film in which swelling occurs in the delamination evaluation and / or the electromagnetic wave shielding characteristic at 200 MHz measured by the KEC method is less than 85 dB.
  • Electromagnetic wave shielding film 10, 110 Electromagnetic wave shielding film 20, 120 Conductive adhesive layer 25, 125 Conductive adhesive layer composition 30, 130 Shield layer 40, 140 Insulating layer 45 Insulating layer resin composition 50, 150 Opening 70 Plate cylinder 71 Protruding part non-formation region 72 Protruding part 73 Upper surface 75 of the projecting part Pressure drum 80 Electromagnetic wave shielding effect measuring device 83 Measuring jig 84 Center conductor 91 Spectrum analyzer 92, 93 Attenuator 94 Preamplifier 131 Silver layer 132 Copper layer 133 Silver paste

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、シールドプリント配線板を製造する際にシールド層と導電性接着剤層との層間密着が破壊されにくく、電磁波シールド特性が充分に高い電磁波シールドフィルムを提供することを目的とする。 本発明の電磁波シールドフィルムは、導電性接着剤層と、上記導電性接着剤層の上に積層されたシールド層と、上記シールド層の上に積層された絶縁層とからなる電磁波シールドフィルムであって、上記シールド層には、複数の開口部が形成されており、下記層間剥離評価において、膨れが生じず、KEC法で測定した200MHzにおける上記電磁波シールドフィルムの電磁波シールド特性が、85dB以上であることを特徴とする。 層間剥離評価:電磁波シールドフィルムを熱プレスによりプリント配線板上に貼り付け、得られたシールドプリント配線板を、265℃に加熱し、その後、室温まで冷却し、この加熱及び冷却を合計5回行った後、上記電磁波シールドフィルムに膨れが生じているか否かを目視により観察する。

Description

電磁波シールドフィルム、シールドプリント配線板及び電子機器
本発明は、電磁波シールドフィルム、シールドプリント配線板及び電子機器に関する。
従来から、例えばフレキシブルプリント配線板(FPC)などのプリント配線板に電磁波シールドフィルムを貼り付けて、外部からの電磁波をシールドすることが行われている。
例えば特許文献1の電磁波シールドフィルムは、接着剤層と、金属薄膜(シールド層)と、絶縁層とが順に積層された構成を有する。この電磁波シールドフィルムをフレキシブルプリント配線板に重ね合わせた状態で加熱プレスすることにより、電磁波シールドフィルムは接着剤層によってプリント配線板に接着されて、シールドプリント配線板が作製される。この接着後、はんだリフローによってプリント配線板に部品が実装される。また、フレキシブルプリント配線板は、ベースフィルム上のプリントパターンが絶縁フィルムで被覆された構成となっている。
特開2004-095566号公報
特許文献1のようなシールドプリント配線板は、加熱プレス工程やはんだリフロー工程において加熱されると、電磁波シールドフィルムの接着剤層やプリント配線板の絶縁フィルム等からガスが発生する。また、プリント配線板のベースフィルムがポリイミドなど吸湿性の高い樹脂で形成されている場合には、加熱によりベースフィルムから水蒸気が発生する場合がある。接着剤層や絶縁フィルムやベースフィルムから生じたこれらの揮発成分は、金属薄膜を通過することができないため、金属薄膜と接着剤層との間に溜まってしまう。そのため、はんだリフロー工程で急激な加熱を行うと、金属薄膜と接着剤層との間に溜まった揮発成分によって、金属薄膜と接着剤層との層間密着が破壊されてしまう場合がある。
その結果、電磁波シールドフィルムの電磁波シールド特性が悪くなってしまうことがある。
本発明は、上記問題を鑑みてなされたものであり、本発明の目的は、シールドプリント配線板を製造する際にシールド層と導電性接着剤層との層間密着が破壊されにくく、電磁波シールド特性が充分に高い電磁波シールドフィルムを提供することである。
すなわち、本発明の電磁波シールドフィルムは、導電性接着剤層と、上記導電性接着剤層の上に積層されたシールド層と、上記シールド層の上に積層された絶縁層とからなる電磁波シールドフィルムであって、上記シールド層には、複数の開口部が形成されており、下記層間剥離評価において、膨れが生じず、KEC法で測定した200MHzにおける上記電磁波シールドフィルムの電磁波シールド特性が、85dB以上であることを特徴とする。
層間剥離評価:電磁波シールドフィルムを熱プレスによりプリント配線板上に貼り付け、得られたシールドプリント配線板を、265℃に加熱し、その後、室温まで冷却し、この加熱及び冷却を合計5回行った後、上記電磁波シールドフィルムに膨れが生じているか否かを目視により観察する。
本発明の電磁波シールドフィルムでは、シールド層には、複数の開口部が形成されている。
そのため、本発明の電磁波シールドフィルムを用いてシールドプリント配線板を製造する際の、加熱プレス工程やはんだリフロー工程等においてシールド層と導電性接着剤層との間に揮発成分が発生したとしても、揮発成分は、シールド層の開口部を通過することができる。
従って、シールド層と導電性接着剤層との間に揮発成分が溜まりにくくなる。その結果、層間密着が破壊されることを防止することができる。
そのため、後述する層間剥離評価において膨れが生じず、後述するKEC法で測定した200MHzにおける電磁波シールド特性が高くなる。
本発明の電磁波シールドフィルムは、層間剥離評価において、膨れが生じない。すなわち、シールド層と導電性接着剤層との間の層間密着が破壊されにくい。
なお、層間剥離評価とは以下の評価を意味する。
電磁波シールドフィルムを熱プレスによりプリント配線板上に貼り付け、得られたシールドプリント配線板を、265℃に加熱し、その後、室温まで冷却し、この加熱及び冷却を合計5回行った後、上記電磁波シールドフィルムに膨れが生じているか否かを目視により観察する。
本発明の電磁波シールドフィルムは、KEC法で測定した200MHzにおける電磁波シールド特性が、85dB以上である。すなわち、充分に高いシールド特性を有する。
なお、「KEC法」とは以下の方法を意味する。
図1は、KEC法で用いられるシステムの構成を模式的に示す模式図である。
KEC法で用いられるシステムは、電磁波シールド効果測定装置80と、スペクトラム・アナライザ91と、10dBの減衰を行うアッテネータ92と、3dBの減衰を行うアッテネータ93と、プリアンプ94とで構成される。
図1に示すように、電磁波シールド効果測定装置80には、2つの測定治具83が対向して設けられている。この測定治具83の間に、電磁波シールドフィルム(図1中、符号110で示す)が挟持されるように設置する。測定治具83には、TEMセル(Transverse Electro Magnetic Cell)の寸法配分が取り入れられ、その伝送軸方向に垂直な面内で左右対称に分割した構造になっている。但し、電磁波シールドフィルム110の挿入によって短絡回路が形成されることを防止するために、平板状の中心導体84は各測定治具83との間に隙間を設けて配置されている。
KEC法では、先ず、スペクトラム・アナライザ91から出力した信号を、アッテネータ92を介して送信側の測定治具83に入力する。そして、受信側の測定治具83で受けてアッテネータ93を介した信号をプリアンプ94で増幅してから、スペクトラム・アナライザ91により信号レベルを測定する。なお、スペクトラム・アナライザ91は、電磁波シールドフィルム110を電磁波シールド効果測定装置80に設置していない状態を基準として、電磁波シールドフィルム110を電磁波シールド効果測定装置80に設置した場合の減衰量を出力する。
本発明の電磁波シールドフィルムは、このような装置を用いて測定した200MHzにおける電磁波シールド特性が、85dB以上である。
本発明の電磁波シールドフィルムは、JIS P8115:2001に規定されるMIT耐折疲労試験において折り曲げ回数が600回で断線が発生しないことが望ましい。
本発明の電磁波シールドフィルムがこの様に高い耐折り曲げ性を有する場合、本発明の電磁波シールドフィルムをフレキシブルプリント配線板等に用いたとしても、断線が生じにくい。
本発明の電磁波シールドフィルムでは、上記開口部の開口面積と、開口ピッチとが、下記式(1)及び式(2)の関係を満たすことが望ましい。
y≧0.02x+3・・・(1)
y≦0.38x・・・・・(2)
(式(1)及び式(2)中、yは開口面積(μm)の平方根を示し、xは開口ピッチ(μm)を示す。)
開口部の開口面積と、開口ピッチとが、上記式(1)及び式(2)の関係を満たす場合、層間剥離評価、及び、KEC法で測定した200MHzにおける電磁波シールドフィルムの電磁波シールド特性が良好になる。
本発明の電磁波シールドフィルムでは、上記開口部の開口面積は、70~71000μmであり、かつ、上記開口部の開口率は、0.05~3.6%であることが望ましい。
シールド層に形成された開口部の開口面積及び開口率がこの範囲であれば、耐折り曲げ性が充分であり、かつ、シールド層と導電性接着剤層との間に揮発成分が溜まることを防止することができる。
開口部の開口面積が、70μm未満であると、開口部が狭すぎ、揮発成分がシールド層を通過しにくくなる。その結果、シールド層と導電性接着剤層との間に揮発成分が溜まりやすくなる。そのため、該電磁波シールドフィルムを用いてシールドプリント配線板を製造時する際に、シールド層と導電性接着剤層との層間密着が破壊されやすくなる。その結果、シールド特性が低下する。
開口部の開口面積が、71000μmを超えると、開口部が広すぎ、シールド層が弱くなり、耐折り曲げ性が低下する。
開口部の開口率が、0.05%未満であると、開口部の割合が少なすぎ、揮発成分がシールド層を通過しにくくなる。その結果、シールド層と導電性接着剤層との間に揮発成分が溜まりやすくなる。
開口部の開口率が、3.6%を超えると、開口部の割合が多すぎ、シールド層が弱くなり、耐折り曲げ性が低下する。
なお、本明細書において、「開口率」とは、シールド層の主面全体の面積に対する、複数の開口部の総開口面積のことを意味する。
本発明の電磁波シールドフィルムでは、上記開口部の開口ピッチは、10~10000μmであることが望ましい。
開口部の開口ピッチが10μm未満であると、シールド層全体で開口部の割合が多くなる。その結果、シールド層が弱くなり、耐折り曲げ性が低下する。
開口部の開口ピッチが10000μmを超えると、シールド層全体で開口部の割合が少なくなる。その結果、揮発成分がシールド層を通過しにくくなり、シールド層と導電性接着剤層との間に揮発成分が溜まりやすくなる。
なお、本明細書において、「開口部の開口ピッチ」とは、最も近く隣り合う開口部同士の重心間の距離のことをいう。
本発明の電磁波シールドフィルムでは、上記シールド層の厚さは、0.5μm以上であることが望ましい。
シールド層の厚さが0.5μm未満であると、シールド層が薄すぎるので、シールド特性が低くなる。
本発明の電磁波シールドフィルムでは、上記シールド層は、銅層を含むことが望ましい。
銅は、導電性及び経済性の観点からシールド層にとって好適な材料である。
本発明の電磁波シールドフィルムでは、上記シールド層は、さらに銀層を含み、上記銀層は、上記絶縁層側に配置されており、上記銅層は、上記導電性接着剤層側に配置されていることが望ましい。
このような構成の電磁波シールドフィルムは、絶縁層に、開口部が形成されるように銀ペーストを塗り銀層とし、銀層に銅をめっきすることにより容易に作製することができる。
本発明の電磁波シールドフィルムは、フレキシブルプリント配線板用であることが望ましい。
本発明の電磁波シールドフィルムは、上記の通り、シールドプリント配線板を製造する際にシールド層と導電性接着剤層との間に揮発成分が溜まりにくい。また、本発明の電磁波シールドフィルムは、充分な耐折り曲げ性を有する。そのため、本発明の電磁波シールドフィルムは、フレキシブルプリント配線板に用いられ繰り返し折り曲げられたとしても、破損しにくい。
従って、本発明の電磁波シールドフィルムは、フレキシブルプリント配線板用の電磁波シールドフィルムとして、好適に用いることができる。
本発明のシールドプリント配線板は、プリント回路が形成されたベース部材と、上記プリント回路を覆うように上記ベース部材上に設けられた絶縁フィルムを有するプリント配線板と、上記プリント配線板上に設けられた電磁波シールドフィルムとを有するシールドプリント配線板であって、上記電磁波シールドフィルムは、上記本発明の電磁波シールドフィルムであることを特徴とする。
また、本発明のシールドプリント配線板では、上記プリント配線板は、フレキシブルプリント配線板であることが望ましい。
本発明のシールドプリント配線板は、充分な耐折り曲げ性を有する本発明の電磁波シールドフィルムを有する。そのため、本発明のシールドプリント配線板も充分な耐折り曲げ性を有する。
本発明の電子機器は、上記本発明のシールドプリント配線板が折り曲げられた状態で組み込まれていることを特徴とする。
上記の通り、本発明のシールドプリント配線板は、充分な耐折り曲げ性を有する。そのため、折り曲げられた状態で電子機器に組み込まれたとしても破損しにくい。従って、本発明の電子機器は、シールドプリント配線板を配置するための空間を狭くすることができる。
そのため、本発明の電子機器は薄型にすることができる。
本発明の電磁波シールドフィルムでは、シールド層に複数の開口部が形成されており、層間剥離評価において、膨れが生じず、KEC法で測定した200MHzにおける上記電磁波シールドフィルムの電磁波シールド特性が、85dB以上である。
そのため、本発明の電磁波シールドフィルムを用いてシールドプリント配線板を製造する際の、加熱プレス工程やはんだリフロー工程等においてシールド層と導電性接着剤層との間に揮発成分が発生したとしても、揮発成分は、シールド層の開口部を通過することができる。従って、シールド層と導電性接着剤層との間に揮発成分が溜まりにくくなる。その結果、層間密着が破壊されることを防止することができる。
また、本発明の電磁波シールドフィルムは高いシールド特性を有する。
図1は、KEC法で用いられるシステムの構成を模式的に示す模式図である。 図2は、本発明の電磁波シールドフィルムの一例を模式的に示す断面図である。 図3(a)及び(b)は、シールド層に開口部が形成されていない電磁波シールドフィルムを用いてシールドプリント配線板を製造する場合を模式的に示す模式図である。 図4(a)~(c)は、本発明の電磁波シールドフィルムを構成するシールド層における開口部の配列パターンの一例を模式的に示す平面図である。 図5は、シールド層が銅層及び銀層からなる本発明の電磁波シールドフィルムの一例を模式的に示す断面図である。 図6(a)~(c)は、本発明の電磁波シールドフィルムの製造方法の一例を模式的に順に示す工程図である。 図7は、本発明の電磁波シールドフィルムの製造方法における絶縁層準備工程の一例を模式的に示す工程図である。 図8は、本発明の電磁波シールドフィルムの製造方法における銀ペースト印刷工程の一例を模式的に示す工程図である。 図9は、本発明の電磁波シールドフィルムの製造方法における銀ペースト印刷工程の一例を模式的に示す工程図である。 図10は、本発明の電磁波シールドフィルムの製造方法における銀ペースト印刷工程の一例を模式的に示す工程図である。 図11(a)及び(b)は、本発明の電磁波シールドフィルムの製造方法における銅めっき工程の一例を模式的に示す工程図である。 図12(a)及び(b)は、本発明の電磁波シールドフィルムの製造方法における導電性接着剤層形成工程の一例を模式的に示す工程図である。 図13は、縦軸を開口面積の平方根とし、横軸を開口ピッチとする電磁波シールドフィルムの散布図であり、電磁波シールドフィルムの層間剥離評価を示している図である。 図14は、縦軸を開口面積の平方根とし、横軸を開口ピッチとする電磁波シールドフィルムの散布図であり、電磁波シールドフィルムの電磁波シールド特性の評価を示している図である。 図15は、縦軸を開口面積の平方根とし、横軸を開口ピッチとする電磁波シールドフィルムの散布図であり、電磁波シールドフィルムの層間剥離評価及び電磁波シールド特性の評価の総合評価を示している図である。 図16は、縦軸を開口面積の平方根とし、横軸を開口ピッチとする電磁波シールドフィルムの散布図であり、電磁波シールドフィルムの耐折り曲げ性の評価を示している図である。 図17は、縦軸を開口面積の平方根とし、横軸を開口ピッチとする電磁波シールドフィルムの散布図であり、電磁波シールドフィルムの層間剥離評価、電磁波シールド特性の評価、及び、耐折り曲げ性の評価の総合評価を示している図である。
以下、本発明の電磁波シールドフィルムについて具体的に説明する。しかしながら、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。
図2は、本発明の電磁波シールドフィルムの一例を模式的に示す断面図である。
図2に示すように、電磁波シールドフィルム10は、導電性接着剤層20と、導電性接着剤層20の上に積層されたシールド層30と、シールド層30の上に積層された絶縁層40とからなる。
また、シールド層30には、複数の開口部50が形成されている。
(導電性接着剤層)
電磁波シールドフィルム10では、導電性接着剤層20は、導電性を有し接着剤として機能できればどのような材料から構成されていてもよい。
例えば、導電性接着剤層20は、導電性粒子と、接着性樹脂組成物とから構成されていてもよい。
導電性粒子としては、特に限定されないが、金属微粒子、カーボンナノチューブ、炭素繊維、金属繊維等であってもよい。
導電性粒子が金属微粒子である場合、金属微粒子としては、特に限定されないが、銀粉、銅粉、ニッケル粉、ハンダ粉、アルミニウム粉、銅粉に銀めっきを施した銀コート銅粉、高分子微粒子やガラスビーズ等を金属で被覆した微粒子等であってもよい。
これらの中では、経済性の観点から、安価に入手できる銅粉又は銀コート銅粉であることが望ましい。
導電性粒子の平均粒子径は、特に限定されないが、0.5~15.0μmであることが望ましい。導電性粒子の平均粒子径が0.5μm以上であると、導電性接着剤層の導電性が良好となる。導電性粒子の平均粒子径が15.0μm以下であると、導電性接着剤層を薄くすることができる。
導電性粒子の形状は、特に限定されないが、球状、扁平状、リン片状、デンドライト状、棒状、繊維状等から適宜選択することができる。
接着性樹脂組成物の材料としては、特に限定されないが、スチレン系樹脂組成物、酢酸ビニル系樹脂組成物、ポリエステル系樹脂組成物、ポリエチレン系樹脂組成物、ポリプロピレン系樹脂組成物、イミド系樹脂組成物、アミド系樹脂組成物、アクリル系樹脂組成物等の熱可塑性樹脂組成物や、フェノール系樹脂組成物、エポキシ系樹脂組成物、ウレタン系樹脂組成物、メラミン系樹脂組成物、アルキッド系樹脂組成物等の熱硬化性樹脂組成物等を用いることができる。
接着性樹脂組成物の材料はこれらの1種単独であってもよく、2種以上の組み合わせであってもよい。
導電性接着剤層20には、必要に応じて、硬化促進剤、粘着性付与剤、酸化防止剤、顔料、染料、可塑剤、紫外線吸収剤、消泡剤、レベリング剤、充填剤、難燃剤、粘度調節剤等が含まれていてもよい。
導電性接着剤層20における導電性粒子の配合量は、特に限定されないが、15~80質量%であることが好ましく、15~60質量%であることがより望ましい。
上記範囲であると、導電性接着剤層のプリント配線板への接着性が向上する。
導電性接着剤層20の厚さは、特に限定されず、必要に応じ適宜設定することができるが、0.5~20.0μmであることが望ましい。
導電性接着剤層の厚さが0.5μm未満であると、良好な導電性が得られにくくなる。導電性接着剤層の厚さが20.0μmを超えると、電磁波シールドフィルム全体の厚さが厚くなり扱いにくくなる。
また、導電性接着剤層20は、異方導電性を有することが望ましい。
導電性接着剤層20が異方導電性を有すると、等方導電性を有する場合に比べて、プリント配線板の信号回路で伝送される高周波信号の伝送特性が向上する。
(絶縁層)
電磁波シールドフィルム10では、絶縁層40は充分な絶縁性を有し、導電性接着剤層20及びシールド層30を保護できれば特に限定されないが、例えば、熱可塑性樹脂組成物、熱硬化性樹脂組成物、活性エネルギー線硬化性組成物等から構成されていることが望ましい。
上記熱可塑性樹脂組成物としては、特に限定されないが、スチレン系樹脂組成物、酢酸ビニル系樹脂組成物、ポリエステル系樹脂組成物、ポリエチレン系樹脂組成物、ポリプロピレン系樹脂組成物、イミド系樹脂組成物、アクリル系樹脂組成物等が挙げられる。
上記熱硬化性樹脂組成物としては、特に限定されないが、フェノール系樹脂組成物、エポキシ系樹脂組成物、ウレタン系樹脂組成物、メラミン系樹脂組成物、アルキッド系樹脂組成物等が挙げられる。
上記活性エネルギー線硬化性組成物としては、特に限定されないが、例えば、分子中に少なくとも2個の(メタ)アクリロイルオキシ基を有する重合性化合物等が挙げられる。
絶縁層40は、1種単独の材料から構成されていてもよく、2種以上の材料から構成されていてもよい。
絶縁層40には、必要に応じて、硬化促進剤、粘着性付与剤、酸化防止剤、顔料、染料、可塑剤、紫外線吸収剤、消泡剤、レベリング剤、充填剤、難燃剤、粘度調節剤、ブロッキング防止剤等が含まれていてもよい。
絶縁層40の厚さは、特に限定されず、必要に応じて適宜設定することができるが、1~15μmであることが望ましく、3~10μmであることがより望ましい。
絶縁層40の厚さが1μm未満であると、薄すぎるので導電性接着剤層20及びシールド層30を充分に保護しにくくなる。
絶縁層40の厚さが15μmを超えると、厚すぎるので電磁波シールドフィルム10が折り曲りにくくなり、また、絶縁層40自身が破損しやすくなる。そのため、耐折り曲げ性が要求される部材へ適用しにくくなる。
(シールド層)
本発明の電磁波シールドフィルムのシールド層を説明する前に、シールド層に開口部が形成されていない電磁波シールドフィルムを用いてシールドプリント配線板を製造する場合について図面を用いて説明する。
図3(a)及び(b)は、シールド層に開口部が形成されていない電磁波シールドフィルムを用いてシールドプリント配線板を製造する場合を模式的に示す模式図である。
図3(a)に示すように、シールドプリント配線板を製造する際に、電磁波シールドフィルム510を配置したシールドプリント配線板は、加熱プレスやはんだリフローにより加熱されることになる。
この加熱により、電磁波シールドフィルム510の導電性接着剤層520、プリント配線板の絶縁フィルム、ベースフィルム等から揮発成分560が発生する。
このような状態で急激な加熱が行われると、図3(b)に示すように、シールド層530と導電性接着剤層520との間に溜まった揮発成分によって、シールド層530と導電性接着剤層520との層間密着が破壊されてしまう場合がある。
しかし、図2に示す電磁波シールドフィルム10では、シールド層30に、複数の開口部50が形成されている。
そのため、電磁波シールドフィルム10を用いてシールドプリント配線板を製造する際、加熱によりシールド層30と導電性接着剤層20との間に揮発成分が発生したとしても、揮発成分は、シールド層30の開口部50を通過することができる。
従って、シールド層30と導電性接着剤層20との間に揮発成分が溜まりにくくなる。その結果、層間密着が破壊されることを防止することができる。
そのため、電磁波シールドフィルム10は、上記層間剥離評価において膨れが生じず、上記KEC法で測定した200MHzにおける電磁波シールド特性を85dB以上とすることができる。
電磁波シールドフィルム10では、開口部50の開口面積は、70~71000μmであることが望ましく、かつ、開口部50の開口率は、0.05~3.6%であることが望ましい。
開口部50の開口面積は、70~32000μmであることがより望ましく、70~10000μmであることがさらに望ましく、80~8000μmであることがよりさらに望ましい。
また、開口部50の開口率は、0.1~3.6%であることがより望ましい。
シールド層30に形成された開口部50の開口面積及び開口率がこの範囲であれば、耐折り曲げ性が充分であり、かつ、シールド層30と導電性接着剤層20との間に揮発成分が溜まることを防止することができる。
そのため、層間剥離評価及びKEC法で測定した200MHzにおける電磁波シールドフィルムの電磁波シールド特性が良好になる。
シールド層の開口部の開口面積が、70μm未満であると、開口部が狭すぎ、揮発成分がシールド層を通過しにくくなる。その結果、シールド層と導電性接着剤層との間に揮発成分が溜まりやすくなる。
シールド層の開口部の開口面積が、71000μmを超えると、開口部が広すぎ、シールド層が弱くなり、耐折り曲げ性が低下する。
シールド層の開口部の開口率が、0.05%未満であると、開口部の割合が少なすぎ、揮発成分がシールド層を通過しにくくなる。その結果、シールド層と導電性接着剤層との間に揮発成分が溜まりやすくなる。
シールド層の開口部の開口率が、3.6%を超えると、開口部の割合が多すぎ、シールド層が弱くなり、耐折り曲げ性が低下する。
電磁波シールドフィルム10では、開口部50の形状は、特に限定されず、円形、楕円形、レーストラック形、三角形、四角形、五角形、六角形、八角形、星形等であってもよい。
これらの中では、開口部50の形成のしやすさから、円形であることが望ましい。
また、複数の開口部50の形状は、1種単独であってもよく、複数種類が組み合わされていてもよい。
電磁波シールドフィルム10では、開口部50の開口ピッチは、10~10000μmであることが望ましく、25~2000μmであることがより望ましく、250~2000μmであることがさらに望ましい。
開口部の開口ピッチが10μm未満であると、シールド層全体で開口部の割合が多くなる。その結果、シールド層が弱くなり、耐折り曲げ性が低下する。
開口部の開口ピッチが10000μmを超えると、シールド層全体で開口部の割合が少なくなる。その結果、揮発成分がシールド層を通過しにくくなり、シールド層と導電性接着剤層との間に揮発成分が溜まりやすくなる。その結果、シールド層と導電性接着剤層との層間密着が破壊されやすくなり、シールド特性も低下しやすくなる。
電磁波シールドフィルム10において、開口部50の開口面積と、開口ピッチとは、下記式(1)及び式(2)の関係を満たすことが望ましい。
y≧0.02x+3・・・(1)
y≦0.38x・・・・・(2)
(式(1)及び式(2)中、yは開口面積(μm)の平方根を示し、xは開口ピッチ(μm)を示す。)
電磁波シールドフィルム10において、開口部の開口面積と、開口ピッチとが、上記式(1)及び式(2)を満たす場合、層間剥離評価、及び、KEC法で測定した200MHzにおける電磁波シールドフィルムの電磁波シールド特性が良好になる。
電磁波シールドフィルム10において、開口部50の配列パターンは、特に限定されないが、例えば、以下に示す配列パターンであってもよい。
図4(a)~(c)は、本発明の電磁波シールドフィルムを構成するシールド層における開口部の配列パターンの一例を模式的に示す平面図である。
図4(a)に示すように、開口部50の配列パターンは、正三角形を縦横に連続的に並べた平面において、各開口部50の中心が正三角形の頂点に位置するような配列パターンであってもよい。
また、図4(b)に示すように、開口部50の配列パターンは、正方形を縦横に連続的に並べた平面において、開口部50の中心が正方形の頂点に位置するような配列パターンであってもよい。
また、図4(c)に示すように、開口部50の配列パターンは、正六角形を縦横に連続的に並べた平面において、開口部50の中心が正六角形の頂点に位置するような配列パターンであってもよい。
電磁波シールドフィルム10では、シールド層30の厚さは、0.5μm以上であることが望ましく、1.0μm以上であることがより望ましい。また、シールド層30の厚さは、10μm以下であることが望ましい。
シールド層の厚さが0.5μm未満であると、シールド層が薄すぎるので、シールド特性が低くなる。
また、シールド層30の厚さが1.0μm以上であると、周波数が0.01~10GHzである高周波の信号を伝送する信号伝達系において伝送特性が良好になる。
なお、シールド層に開口部が形成されていない場合、シールド層が厚くなると、シールドプリント配線板を製造する際に、シールド層と導電性接着剤層との間における層間密着の破壊が生じやすくなる。特に、シールド層30の厚さが、1.0μmを超えると、層間密着の破壊が顕著に生じる。しかし、電磁波シールドフィルム10では、シールド層30には開口部50が形成されているので、シールド層30と導電性接着剤層20との間の層間密着が破壊されることを防止することができる。
本発明の電磁波シールドフィルムは、周波数が0.01~10GHzの信号を伝送する信号伝達系に用いられることが望ましい。
本発明の電磁波シールドフィルムにおいて、シールド層は、電磁波シールド性を有すればどのような材料からなっていてもよく、例えば、金属層からなっていてもよい。
シールド層は、金、銀、銅、アルミニウム、ニッケル、スズ、パラジウム、クロム、チタン、亜鉛等の材料からなる層を含んでいてもよく、銅層を含むことが望ましい。
銅は、導電性及び経済性の観点からシールド層にとって好適な材料である。
なお、上記シールド層は、上記金属の合金からなる層を含んでいてもよい。
また、シールド層は、複数の金属の層が積層されてなっていてもよい。
特に、シールド層は、銅層及び銀層を含むことが望ましい。
シールド層が、銅層及び銀層を含む場合について図面を用いて説明する。
図5は、シールド層が銅層及び銀層からなる本発明の電磁波シールドフィルムの一例を模式的に示す断面図である。
図5に示す電磁波シールドフィルム110は、導電性接着剤層120と、導電性接着剤層120の上に積層されたシールド層130と、シールド層130の上に積層された絶縁層140とからなる。
また、シールド層130は、銅層132及び銀層131からなり、銀層131は、絶縁層140側に配置されており、銅層132は、導電性接着剤層120側に配置されている。
このような構成の電磁波シールドフィルム110は、絶縁層140に、開口部150が形成されるように銀ペーストを塗り銀層とし、銀層に銅をめっきすることにより容易に作製することができる。
(その他の構成)
本発明の電磁波シールドフィルムでは、絶縁層とシールド層の間にアンカーコート層が形成されていてもよい。
アンカーコート層の材料としては、ウレタン樹脂、アクリル樹脂、ウレタン樹脂をシェルとしアクリル樹脂をコアとするコア・シェル型複合樹脂、エポキシ樹脂、イミド樹脂、アミド樹脂、メラミン樹脂、フェノール樹脂、尿素ホルムアルデヒド樹脂、ポリイソシアネートにフェノール等のブロック化剤を反応させて得られたブロックイソシアネート、ポリビニルアルコール、ポリビニルピロリドン等が挙げられる。
また、本発明の電磁波シールドフィルムでは、絶縁層側に支持体フィルムを備えていてもよく、導電性接着剤層側に剥離性フィルムを有していてもよい。電磁波シールドフィルムが、支持体フィルムや剥離性フィルムを有していると、本発明の電磁波シールドフィルムの輸送や、本発明の電磁波シールドフィルムを用いたシールドプリント配線板等を製造する際の作業において、本発明の電磁波シールドフィルムが扱いやすくなる。
また、シールドプリント配線板等に本発明の電磁波シールドフィルムを配置する際に、このような支持体フィルムや剥離性フィルムは剥がされることになる。
また、本発明の電磁波シールドフィルムでは、本発明の電磁波シールドフィルムは、JIS P8115:2001に規定されるMIT耐折疲労試験において折り曲げ回数が600回で断線が発生しないことが望ましく、折り曲げ回数が2000回で断線が発生しないことがより望ましい。
本発明の電磁波シールドフィルムがこの様に高い耐折り曲げ性を有する場合、本発明の電磁波シールドフィルムをフレキシブルプリント配線板等に用いたとしても、断線が生じにくい。
本発明の電磁波シールドフィルムは、電磁波を遮断する目的であればどのような用途で用いてもよい。
特に、本発明の電磁波シールドフィルムは、プリント配線板、特に、フレキシブルプリント配線板に用いることが望ましい。
本発明の電磁波シールドフィルムは、上記の通り、シールドプリント配線板を製造する際にシールド層と導電性接着剤層との間に揮発成分が溜まりにくい。また、本発明の電磁波シールドフィルムは、充分な耐折り曲げ性を有する。そのため、本発明の電磁波シールドフィルムは、フレキシブルプリント配線板に用いられ繰り返し折り曲げられたとしても、破損しにくい。
従って、本発明の電磁波シールドフィルムは、フレキシブルプリント配線板用の電磁波シールドフィルムとして、好適に用いることができる。
このように本発明の電磁波シールドフィルムを有するシールドプリント配線板は、本発明のシールドプリント配線板である。
すなわち、本発明のシールドプリント配線板は、プリント回路が形成されたベース部材と、上記プリント回路を覆うように上記ベース部材上に設けられた絶縁フィルムを有するプリント配線板と、上記プリント配線板上に設けられた電磁波シールドフィルムとを有するシールドプリント配線板であって、上記電磁波シールドフィルムは、上記本発明の電磁波シールドフィルムであることを特徴とする。
また、上記プリント配線板は、フレキシブルプリント配線板であることが望ましい。
本発明のシールドプリント配線板は、充分な耐折り曲げ性を有する本発明の電磁波シールドフィルムを有する。そのため、本発明のシールドプリント配線板も充分な耐折り曲げ性を有する。
本発明のシールドプリント配線板は、電子機器に組み込まれて使用されることになる。
特に、上記本発明のシールドプリント配線板が折り曲げられた状態で組み込まれている電子機器は、本発明の電子機器である。
上記の通り、本発明のシールドプリント配線板は、充分な耐折り曲げ性を有する。そのため、折り曲げられた状態で電子機器に組み込まれたとしても破損しにくい。従って、本発明の電子機器は、シールドプリント配線板を配置するための空間を狭くすることができる。
そのため、本発明の電子機器は薄型にすることができる。
(電磁波シールドフィルムの製造方法)
次に、本発明の電磁波シールドフィルムの製造方法について説明する。なお、本発明の電磁波シールドフィルムは、以下に示す方法で製造されたものに限定されない。
まず、本発明の電磁波シールドフィルムの一例である電磁波シールドフィルム10の製造方法の一例を説明する。
電磁波シールドフィルム10を製造する方法は、(1)シールド層形成工程、(2)絶縁層形成工程、及び、(3)導電性接着剤層形成工程を含む。
これらの工程を、図面を用いて以下に詳述する。
図6(a)~(c)は、本発明の電磁波シールドフィルムの製造方法の一例を模式的に順に示す工程図である。
(1)シールド層形成工程
まず、図6(a)に示すように、電磁波シールド性を有するシート35を準備し、シート35に、開口部50を形成しシールド層30を作製する。
この際、開口部50の開口面積と、開口ピッチとが、下記式(1)及び式(2)の関係を満たすように開口部を形成することが望ましい。
y≧0.02x+3・・・(1)
y≦0.38x・・・・・(2)
(式(1)及び式(2)中、yは開口面積(μm)の平方根を示し、xは開口ピッチ(μm)を示す。)
開口部50は、パンチングや、レーザー照射等により形成することができる。
また、シート35が銅等のエッチング可能な材料からなる場合、シート35の表面に開口部50が形成されるようなパターンのレジストを配置し、エッチングにより開口部50を形成してもよい。
また、導電性ペーストや、めっき触媒として機能するペーストを、シート35の表面に印刷してもよい。この印刷において、所定のパターンで印刷することにより開口部50を形成してもよい。
上記めっき触媒として機能するペーストを印刷する場合、ペーストを印刷して開口部50を形成した後、無電解めっき法や電解めっき法により金属膜を形成することによりシールド層を形成することが望ましい。
上記めっき触媒として機能するペーストとしては、ニッケル、銅、クロム、亜鉛、金、銀、アルミニウム、錫、コバルト、パラジウム、鉛、白金、カドミウム及びロジウム等からなる金属を含有する流動体を用いることができる。
(2)絶縁層形成工程
次に、図6(b)に示すように、シールド層30の一方の面に、絶縁層用樹脂組成物45をコーティングし硬化させて絶縁層40を形成する。
絶縁層用樹脂組成物をコーティングする方法としては、従来公知のコーティング方法、例えば、グラビアコート方式、キスコート方式、ダイコート方式、リップコート方式、コンマコート方式、ブレードコート方式、ロールコート方式、ナイフコート方式、スプレーコート方式、バーコート方式、スピンコート方式、ディップコート方式等が挙げられる。
絶縁層用樹脂組成物を硬化させる方法としては、絶縁層用樹脂組成物の種類に応じ、従来公知の種々の方法を採用することができる。
(3)導電性接着剤層形成工程
次に、図6(c)に示すように、シールド層30の絶縁層40が形成された面と反対の面に導電性接着剤層用組成物25をコーティングして導電性接着剤層20を形成する。
導電性接着剤層用組成物25をコーティングする方法としては、従来公知のコーティング方法、例えば、グラビアコート方式、キスコート方式、ダイコート方式、リップコート方式、コンマコート方式、ブレードコート方式、ロールコート方式、ナイフコート方式、スプレーコート方式、バーコート方式、スピンコート方式、ディップコート方式等が挙げられる。
以上の工程を経て、本発明の電磁波シールドフィルムの一例である、電磁波シールドフィルム10を製造することができる。
次に、本発明の電磁波シールドフィルムの一例であり、シールド層が銅層及び銀層からなる電磁波シールドフィルム110を製造する方法の一例を説明する。
電磁波シールドフィルム110を製造する方法は、(1)絶縁層準備工程、(2)銀ペースト印刷工程、(3)銅めっき工程及び(4)導電性接着剤層形成工程を含む。
これらの工程を、図7~図12を用いて以下に詳述する。
(1)絶縁層準備工程
図7は、本発明の電磁波シールドフィルムの製造方法における絶縁層準備工程の一例を模式的に示す工程図である。
まず、図7に示すように、絶縁層140を準備する。
絶縁層140は、従来の方法により準備することができる。
(2)めっき触媒として金属を含有する流動体の印刷工程(銀ペースト印刷工程)
次に、絶縁層の一方の主面に、銀ペーストをめっき触媒として印刷する。この際、銀ペーストに開口部が形成されるようにする。
銀ペーストを印刷する方法としては、グラビア印刷などの凹版印刷や、フレキソ印刷など凸版印刷による方法、スクリーン印刷による方法、凹版や凸版、スクリーン等でパターンを形成したものを転写して行うオフセット印刷による方法、版が不要なインクジェット印刷による方法等が挙げられる。
以下にグラビア印刷により銀ペーストを印刷する方法を説明する。
図8~図10は、本発明の電磁波シールドフィルムの製造方法における銀ペースト印刷工程の一例を模式的に示す工程図である。
まず、図8に示すように、複数の柱状の突起部72が、表面に形成されたロール状の版胴70を準備する。なお、突起部72が形成されていない版胴の表面は、突起部非形成領域71である。
次に、図9に示すように、突起部非形成領域71に銀ペースト133を取り込ませる。この際、突起部72の上面73に銀ペースト133が塗布されないようにする。
そして、図10に示すように、圧胴75と、銀ペースト133を取り込んだ版胴70との間に絶縁層140を通すことにより、絶縁層140の一方の主面に銀ペースト133を印刷する。
この印刷において、突起部72が当たる絶縁層140の部分には、銀ペースト133が印刷されず、開口部150とすることができる。
絶縁層140に印刷された銀ペースト133は、銀層131となる。
銀ペースト133は、銀粒子を含んでいれば、他に分散剤、増粘剤、レベリング剤、消泡剤等の各種添加剤を含んでいてもよい。
銀粒子の形状は特に限定されず、球状、フレーク状、樹枝状、針状、繊維状等、任意の形状の材料を使用することができる。
上記銀粒子が粒子状のものの場合、ナノサイズのものが望ましい。具体的には、平均粒子径が1~100nmの範囲である銀粒子が望ましく、1~50nmの範囲である銀粒子がより望ましい。
なお、本明細書において「平均粒子径」とは、銀粒子を分散用溶媒にて希釈し、動的光散乱法により測定した体積平均値のことを意味する。
この測定にはマイクロトラック社製「ナノトラックUPA-150」を用いることができる。
また、印刷する銀ペーストにより形成される銀層の厚さは、5~200nmであることが望ましい。
(3)銅めっき工程
図11(a)及び(b)は、本発明の電磁波シールドフィルムの製造方法における銅めっき工程の一例を模式的に示す工程図である。
次に、図11(a)及び(b)に示すように、銀層131の上に銅をめっきすることにより、銀層131の上に銅層132を形成する。
銅のめっき方法は、特に限定されず、従来の無電解めっき、電解めっきを用いることができる。
無電解めっきにより銅をめっきする場合、めっき液としては、硫酸銅と、還元剤と、水性媒体、有機溶剤等の溶媒とを含有するものを用いることが望ましい。
電解めっき法により銅をめっきする場合、めっき液として硫酸銅と、硫酸と、水性媒体とを含有するものを用い、所望とする銅の厚さになるように、めっき処理時間、電流密度、めっき用添加剤の使用量等を制御することによって調整することが望ましい。
めっきする銅の厚さは、0.1~10μmであることが望ましい。
以上の工程を経て、銀層131及び銅層132からなるシールド層130を形成することができる。
(4)導電性接着剤層形成工程
図12(a)及び(b)は、本発明の電磁波シールドフィルムの製造方法における導電性接着剤層形成工程の一例を模式的に示す工程図である。なお、図12(a)及び(b)では、図11(b)を上下に反転させて、その後の工程を図示している。
次に、図12(a)及び(b)に示すように、銅層132の上に導電性接着剤層用組成物125をコーティングして導電性接着剤層120を形成する。
導電性接着剤層用組成物125をコーティングする方法としては、従来公知のコーティング方法、例えば、グラビアコート方式、キスコート方式、ダイコート方式、リップコート方式、コンマコート方式、ブレードコート方式、ロールコート方式、ナイフコート方式、スプレーコート方式、バーコート方式、スピンコート方式、ディップコート方式等が挙げられる。
以上の工程を経て、本発明の電磁波シールドフィルムの一例である、電磁波シールドフィルム110を製造することができる。
シールド層の開口部の面積(開口部の面積の平方根)が、79μm(8.89μm)、1963μm(44.30μm)、4418μm(66.47μm)、7854μm(88.62μm)、12272μm(110.78μm)、17671μm(132.93μm)、31416μm(177.25μm)、49087μm(221.56μm)又は70686μm(265.87μm)であり、開口ピッチが、10μm、50μm、100μm、200μm、500μm、750μm、1000μm、1500μm、2000μm、3000μm、4000μm、5000μm、7500μm又は10000μmである合計126種の電磁波シールドフィルムを、以下の方法により製造した。
なお、シールド層の開口部の形状は円形である。
(調製例1:銀ペーストの調製例)
エタノール35質量部と、イオン交換水65質量部との混合溶媒に、分散剤としてポリエチレンイミン化合物を用いて平均粒子径30nmの銀粒子を分散させることにより、銀濃度が15質量%の銀ペーストを得た。
(電磁波シールドフィルムの製造)
(1)絶縁層準備工程
厚さが5μmのエポキシ樹脂からなる絶縁層を準備した。
(2)銀ペースト印刷工程
次に、図8~図10に示すような方法で、ロール状の版胴を用い、絶縁層の一方の主面に、複数の開口部が形成されるように、銀ペーストを印刷して銀層を形成した。
開口部の開口面積及び開口ピッチの組み合わせは上記の通りである。
また、銀層の厚さは、50nmとした。
銀ペーストとしては、調製例1で得られた銀ペーストを用いた。
また、開口部の形状は円形であり、開口部の配列パターンは、正三角形を縦横に連続的に並べた平面において、各開口部の中心が正三角形の頂点に位置するような配列パターンとした。
(3)銅めっき工程
次に、銀ペースト印刷後の絶縁層を無電解銅めっき液(奥野製薬株式会社製「ARGカッパー」、pH12.5)中に55℃で20分間浸漬し、銀層の上に無電解銅めっき膜(厚さ0.5μm)を形成した。
次いで、上記で得られた無電解銅めっき膜の表面をカソードに設置し、含リン銅をアノードに設置し、硫酸銅を含む電気めっき液を用いて電流密度2.5A/dmで30分間電気めっきを行うことによって、銀層の上に、合計の厚さが1μmの銅めっき層を積層した。電気めっき液としては、硫酸銅70g/リットル、硫酸200g/リットル、塩素イオン50mg/リットル、トップルチナSF(奥野製薬工業株式会社製の光沢剤)5g/リットルの溶液を用いた。
(4)導電性接着剤層形成工程
銅層の上に、厚さが15μmとなるように、リン含有エポキシ樹脂に、AgコートCu粉末を20質量%添加した導電性接着剤層をコーティングし、電磁波シールドフィルムを製造した。
なお、コーティング方法としては、リップコート方式を用いた。
(層間剥離評価)
以下の方法により、電磁波シールドフィルムの層間剥離評価を行った。
まず、各電磁波シールドフィルムを熱プレスによりプリント配線板上に貼り付けた。
次いで、このシールドプリント配線板を、23℃、63%RHのクリーンルーム内に7日間放置した後、リフロー時の温度条件に30秒間曝して層間剥離の有無を評価した。なお、リフロー時の温度条件としては、鉛フリーハンダを想定し、最高265℃の温度プロファイルを設定した。また、層間剥離の有無は、シールドプリント配線板を大気リフローに5回通過させ、膨れの有無を目視により観察した。
結果を図13に示す。
図13は、縦軸を開口面積の平方根とし、横軸を開口ピッチとする電磁波シールドフィルムの散布図であり、電磁波シールドフィルムの層間剥離評価を示している図である。
図13において符号「○」は、層間剥離評価において膨れが生じていない電磁波シールドフィルムを示す。
図13において符号「×」は、層間剥離評価において膨れが生じている電磁波シールドフィルムを示す。
図13に示すように、開口面積の平方根をyとし、開口ピッチをxとすると、yとxとの関係が、下記式(1)を満たすと電磁波シールドフィルムの層間剥離評価が良好になる。
y≧0.02x+3・・・(1)
(KEC法による電磁波シールド特性の評価)
各電磁波シールドフィルムの電磁波シールド特性について、一般社団法人KEC関西電子工業振興センターで開発された電磁波シールド効果測定装置を用い、温度25℃、相対湿度30~50%の条件で、各電磁波シールドフィルムを15cm四方に裁断し、200MHzにおける電磁波シールド特性の測定を行い評価した。
結果を図14に示す。
図14は、縦軸を開口面積の平方根とし、横軸を開口ピッチとする電磁波シールドフィルムの散布図であり、電磁波シールドフィルムの電磁波シールド特性の評価を示している図である。
図14において符号「○」は、KEC法で測定した200MHzにおける電磁波シールド特性が85dB以上である電磁波シールドフィルムを示す。
図14において符号「×」は、KEC法で測定した200MHzにおける電磁波シールド特性が85dB未満である電磁波シールドフィルムを示す。
図14に示すように、開口面積の平方根をyとし、開口ピッチをxとすると、yとxとの関係が、下記式(2)を満たすと電磁波シールドフィルムのKEC法による電磁波シールド特性の評価が良好になる。
y≦0.38x・・・(2)
(層間剥離評価及びKEC法による電磁波シールド特性の評価の総合評価)
図15は、縦軸を開口面積の平方根とし、横軸を開口ピッチとする電磁波シールドフィルムの散布図であり、電磁波シールドフィルムの層間剥離評価及び電磁波シールド特性の評価の総合評価を示している図である。
図15において符号「○」は、層間剥離評価において膨れが生じておらず、かつ、KEC法で測定した200MHzにおける電磁波シールド特性が85dB以上である電磁波シールドフィルムを示す。
図15において符号「×」は、層間剥離評価において膨れが生じている、及び/又は、KEC法で測定した200MHzにおける電磁波シールド特性が85dB未満である電磁波シールドフィルムを示す。
図15において符号「○」で示される電磁波シールドフィルムは、本発明の実施例に係る電磁波シールドフィルムであり、符号「×」で示される電磁波シールドフィルムは、本発明の比較例に係る電磁波シールドフィルムである。
図15に示すように、開口面積の平方根をyとし、開口ピッチをxとすると、yとxとの関係が、下記式(1)及び式(2)の関係を満たす電磁波シールドフィルムが、本発明の実施例に係る電磁波シールドフィルムである。
y≧0.02x+3・・・(1)
y≦0.38x・・・・・(2)
(耐折り曲げ性の評価)
各電磁波シールドフィルムを以下の方法で評価した。
各電磁波シールドフィルムを熱プレスにより50μm厚みのポリイミドフィルムの両面に貼り付け、縦×横=130mm×15mmの大きさにカットして試験片とし、MIT耐折疲労試験機(株式会社安田精機製作所製、No.307 MIT形耐折度試験機)を用い、JIS P8115:2001に規定される方法に基づき耐折り曲げ性を測定した。
試験条件は、以下の通りである。
折曲げクランプ先端R:0.38mm
折曲げ角度     :±135°
折曲げ速度     :175cpm
荷重        :500gf
検出方法      :内蔵電通装置にて、シールドフィルムの断線を感知
結果を図16に示す。
図16は、縦軸を開口面積の平方根とし、横軸を開口ピッチとする電磁波シールドフィルムの散布図であり、電磁波シールドフィルムの耐折り曲げ性の評価を示している図である。
図16において符号「○」は、耐折り曲げ性の評価において折り曲げ回数が600回で断線が発生しない電磁波シールドフィルムを示す。
図16において符号「×」は、耐折り曲げ性の評価において折り曲げ回数が600回未満で断線が発生した電磁波シールドフィルムを示す。
図16に示すように、開口面積の平方根をyとし、開口ピッチをxとすると、yとxとの関係が、下記式(3)を満たすと電磁波シールドフィルムの耐折り曲げ性が良好になる。
y≦0.135x・・・(3)
(層間剥離評価、KEC法による電磁波シールド特性の評価及び耐折り曲げ性の評価の総合評価)
図17は、縦軸を開口面積の平方根とし、横軸を開口ピッチとする電磁波シールドフィルムの散布図であり、電磁波シールドフィルムの層間剥離評価、電磁波シールド特性の評価、及び、耐折り曲げ性の評価の総合評価を示している図である。
図17において符号「◎」は、層間剥離評価において膨れが生じておらず、KEC法で測定した200MHzにおける電磁波シールド特性が85dB以上であり、かつ、耐折り曲げ性の評価において折り曲げ回数が600回で断線が発生しない電磁波シールドフィルムを示す。
図17において符号「○」は、層間剥離評価において膨れが生じておらず、KEC法で測定した200MHzにおける電磁波シールド特性が85dB以上であり、かつ、耐折り曲げ性の評価において折り曲げ回数が600回未満で断線が発生した電磁波シールドフィルムを示す。
図17において符号「×」は、層間剥離評価において膨れが生じている、及び/又は、KEC法で測定した200MHzにおける電磁波シールド特性が、85dB未満である電磁波シールドフィルムを示す。
10、110 電磁波シールドフィルム
20、120 導電性接着剤層
25、125 導電性接着剤層用組成物
30、130 シールド層
40、140 絶縁層
45 絶縁層用樹脂組成物
50、150 開口部
70 版胴
71 突起部非形成領域
72 突起部
73 突起部の上面
75 圧胴
80 電磁波シールド効果測定装置
83 測定治具
84 中心導体
91 スペクトラム・アナライザ
92、93 アッテネータ
94 プリアンプ
131 銀層
132 銅層
133 銀ペースト
 

Claims (12)

  1. 導電性接着剤層と、前記導電性接着剤層の上に積層されたシールド層と、前記シールド層の上に積層された絶縁層とからなる電磁波シールドフィルムであって、
    前記シールド層には、複数の開口部が形成されており、
    下記層間剥離評価において、膨れが生じず、
    KEC法で測定した200MHzにおける前記電磁波シールドフィルムの電磁波シールド特性が、85dB以上であることを特徴とする電磁波シールドフィルム。
    層間剥離評価:電磁波シールドフィルムを熱プレスによりプリント配線板上に貼り付け、得られたシールドプリント配線板を、265℃に加熱し、その後、室温まで冷却し、この加熱及び冷却を合計5回行った後、前記電磁波シールドフィルムに膨れが生じているか否かを目視により観察する。
  2. JIS P8115:2001に規定されるMIT耐折疲労試験において折り曲げ回数が600回で断線が発生しない請求項1に記載の電磁波シールドフィルム。
  3. 前記開口部の開口面積と、開口ピッチとが、下記式(1)及び式(2)の関係を満たす請求項1又は2に記載の電磁波シールドフィルム。
    y≧0.02x+3・・・(1)
    y≦0.38x・・・・・(2)
    (式(1)及び式(2)中、yは開口面積(μm)の平方根を示し、xは開口ピッチ(μm)を示す。)
  4. 前記開口部の開口面積は、70~71000μmであり、かつ、
    前記開口部の開口率は、0.05~3.6%である請求項1~3のいずれかに記載の電磁波シールドフィルム。
  5. 前記開口部の開口ピッチは、10~10000μmである請求項1~4のいずれかに記載の電磁波シールドフィルム。
  6. 前記シールド層の厚さは、0.5μm以上である請求項1~5のいずれかに記載の電磁波シールドフィルム。
  7. 前記シールド層は、銅層を含む請求項1~6のいずれかに記載の電磁波シールドフィルム。
  8. 前記シールド層は、さらに銀層を含み、
    前記銀層は、前記絶縁層側に配置されており、
    前記銅層は、前記導電性接着剤層側に配置されている請求項7に記載の電磁波シールドフィルム。
  9. フレキシブルプリント配線板用である請求項1~8のいずれかに記載の電磁波シールドフィルム。
  10. プリント回路が形成されたベース部材と、
    前記プリント回路を覆うように前記ベース部材上に設けられた絶縁フィルムを有するプリント配線板と、
    前記プリント配線板上に設けられた電磁波シールドフィルムとを有するシールドプリント配線板であって、
    前記電磁波シールドフィルムは、請求項1~9のいずれかに記載の電磁波シールドフィルムであることを特徴とするシールドプリント配線板。
  11. 前記プリント配線板は、フレキシブルプリント配線板である請求項10に記載のシールドプリント配線板。
  12. 請求項10又は11に記載のシールドプリント配線板が折り曲げられた状態で組み込まれていることを特徴とする電子機器。
PCT/JP2018/004109 2017-02-08 2018-02-07 電磁波シールドフィルム、シールドプリント配線板及び電子機器 WO2018147299A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197015178A KR102231053B1 (ko) 2017-02-08 2018-02-07 전자파 차폐 필름, 차폐 프린트 배선판 및 전자 기기
JP2018535439A JP6404533B1 (ja) 2017-02-08 2018-02-07 電磁波シールドフィルム、シールドプリント配線板及び電子機器
CN201880009044.7A CN110199584B (zh) 2017-02-08 2018-02-07 电磁波屏蔽膜、屏蔽印制线路板及电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017021649 2017-02-08
JP2017-021649 2017-02-08

Publications (1)

Publication Number Publication Date
WO2018147299A1 true WO2018147299A1 (ja) 2018-08-16

Family

ID=63108320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004109 WO2018147299A1 (ja) 2017-02-08 2018-02-07 電磁波シールドフィルム、シールドプリント配線板及び電子機器

Country Status (5)

Country Link
JP (1) JP6404533B1 (ja)
KR (1) KR102231053B1 (ja)
CN (1) CN110199584B (ja)
TW (1) TWI761445B (ja)
WO (1) WO2018147299A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210142643A (ko) * 2019-03-22 2021-11-25 타츠타 전선 주식회사 전자파 차폐 필름

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6690773B1 (ja) * 2019-12-18 2020-04-28 東洋インキScホールディングス株式会社 電磁波シールドシート、および電磁波シールド性配線回路基板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000196285A (ja) * 1998-12-25 2000-07-14 Sumitomo Rubber Ind Ltd 透光性電磁波シ―ルド部材およびその製造方法
JP2004273577A (ja) * 2003-03-06 2004-09-30 Sumitomo Electric Printed Circuit Inc シールドフィルムおよびその製造方法
WO2014192494A1 (ja) * 2013-05-29 2014-12-04 タツタ電線株式会社 電磁波シールドフィルム、それを用いたプリント配線板、及び圧延銅箔

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4201548B2 (ja) 2002-07-08 2008-12-24 タツタ電線株式会社 シールドフィルム、シールドフレキシブルプリント配線板及びそれらの製造方法
JP4647924B2 (ja) * 2004-03-23 2011-03-09 タツタ電線株式会社 プリント配線板用シールドフィルム及びその製造方法
JP5498032B2 (ja) * 2009-02-17 2014-05-21 富士フイルム株式会社 微細構造体の製造方法および微細構造体
TWI444132B (zh) * 2011-12-08 2014-07-01 Ind Tech Res Inst 電磁波屏蔽複合膜及具有該複合膜之軟性印刷電路板
TWI488280B (zh) * 2012-11-21 2015-06-11 Ind Tech Res Inst 電磁波屏蔽結構及其製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000196285A (ja) * 1998-12-25 2000-07-14 Sumitomo Rubber Ind Ltd 透光性電磁波シ―ルド部材およびその製造方法
JP2004273577A (ja) * 2003-03-06 2004-09-30 Sumitomo Electric Printed Circuit Inc シールドフィルムおよびその製造方法
WO2014192494A1 (ja) * 2013-05-29 2014-12-04 タツタ電線株式会社 電磁波シールドフィルム、それを用いたプリント配線板、及び圧延銅箔

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210142643A (ko) * 2019-03-22 2021-11-25 타츠타 전선 주식회사 전자파 차폐 필름
KR102585009B1 (ko) * 2019-03-22 2023-10-04 타츠타 전선 주식회사 전자파 차폐 필름

Also Published As

Publication number Publication date
KR20190116971A (ko) 2019-10-15
JP6404533B1 (ja) 2018-10-10
JPWO2018147299A1 (ja) 2019-02-14
KR102231053B1 (ko) 2021-03-22
TW201841564A (zh) 2018-11-16
TWI761445B (zh) 2022-04-21
CN110199584A (zh) 2019-09-03
CN110199584B (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
JP6564534B2 (ja) 電磁波シールドフィルム、シールドプリント配線板及び電子機器
JP6404535B1 (ja) 電磁波シールドフィルム、シールドプリント配線板及び電子機器
JP6404534B1 (ja) 電磁波シールドフィルム、シールドプリント配線板及び電子機器
JP6404533B1 (ja) 電磁波シールドフィルム、シールドプリント配線板及び電子機器
TWI812913B (zh) 金屬箔及電磁波屏蔽膜
WO2022210631A1 (ja) 電磁波シールドフィルム及びシールドプリント配線板
WO2023038097A1 (ja) 電磁波シールドフィルム
KR20240153971A (ko) 전자파 실드 필름

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018535439

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751337

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197015178

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18751337

Country of ref document: EP

Kind code of ref document: A1