WO2018147176A1 - Containment-performance inspection system - Google Patents

Containment-performance inspection system Download PDF

Info

Publication number
WO2018147176A1
WO2018147176A1 PCT/JP2018/003558 JP2018003558W WO2018147176A1 WO 2018147176 A1 WO2018147176 A1 WO 2018147176A1 JP 2018003558 W JP2018003558 W JP 2018003558W WO 2018147176 A1 WO2018147176 A1 WO 2018147176A1
Authority
WO
WIPO (PCT)
Prior art keywords
simulated
inspection system
containment
aqueous solution
mist
Prior art date
Application number
PCT/JP2018/003558
Other languages
French (fr)
Japanese (ja)
Inventor
川崎 康司
はるか 二村
至洋 矢崎
志強 郭
司 北野
Original Assignee
株式会社エアレックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エアレックス filed Critical 株式会社エアレックス
Publication of WO2018147176A1 publication Critical patent/WO2018147176A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • the present invention relates to a containment performance inspection system for confirming the containment performance of a manufacturing facility or the like so that substances such as highly pharmacologically active pharmaceutical agents that affect the human body and the environment do not leak to the external environment.
  • This system can also be used to monitor the scattering status of suspended solids in a clean environment.
  • Non-Patent Document 1 relates to leak risk management of an isolator using a particle visualization technology.
  • lactose powder that is harmless to the human body, easily soluble in water, and has good stability is used as a simulated contaminant. Then, lactose is scattered and the scattered light of the particles in the light film (laser sheet) in the space is captured by a camera to observe the scattering and leakage of the simulated contaminants.
  • the scattering state at a specific position can be visualized, but this requires a large-scale device such as a laser light source system, an imaging system, or an image processing system.
  • Non-patent document 1 also describes a method of quantification.
  • the amount of lactose supplemented by the sampler at the inspection position is analyzed by a high-performance liquid chromatograph, and the relationship between the position and the amount of scattering. Is evaluated quantitatively.
  • lactose is used as a simulated pollutant, an expensive and large-scale apparatus is required for quantitative analysis, and there is a disadvantage that evaluation cannot be performed in a short time.
  • Patent Document 1 proposes a method for evaluating the scattering state of a pharmaceutical powder and a simulated powder for evaluating the scattering state used in the method.
  • a simulated powder in which hollow or porous particles, metal oxide fine particles, or the like are used as core particles and a fluorescent material is provided on the surface thereof is used.
  • the simulated powder is scattered, supplemented by a sampler at the inspection position, and the fluorescence emission amount is directly measured by a fluorescence detection device. This fluorescence emission amount is compared with a calibration curve prepared in advance to determine the concentration of the simulated powder in the air.
  • Patent Document 1 it is possible to obtain in real time a quantitative value of the state of scattering and leakage of simulated contaminants.
  • a special simulated powder in which a fluorescent material is provided on the surface of the core particles must be prepared, and a complicated manufacturing operation is required.
  • the simulated powder adhering to the inner wall of an apparatus such as an isolator has to be completely removed after the inspection, and labor is required for the cleaning work.
  • the present invention addresses the above-mentioned problems, uses simulated contaminants that do not require complicated manufacturing operations and can be easily removed from the apparatus after inspection, and the simulated contaminants are scattered or leaked. It is an object of the present invention to provide a containment performance inspection system that can obtain a quantitative value in real time.
  • the present inventors In solving the above-mentioned problems, the present inventors, as a result of diligent research, adopted a liquid mist instead of powder as a simulated contaminant, and previously dissolved a fluorescent light-emitting substance having a predetermined concentration in the mist. Thus, the present inventors have found that the mist can be detected as simulated contaminant particles using the fluorescent light emitting particle detection means, and the present invention has been completed.
  • the containment performance inspection system according to the present invention, according to claim 1,
  • detecting means (25) for detecting the simulated contaminant contained in the inspection air collected by the collecting means.
  • this invention is the containment performance test
  • the detection means includes a fine particle detection unit and a fluorescence detection unit, In the fine particle detection unit, while detecting the total particle concentration of the simulated contaminant in the inspection air, In the fluorescence detection unit, by detecting the positive particle concentration in the test air, A positive particle ratio is calculated from the total particle concentration and the positive particle concentration, and leakage of the simulated contaminant is confirmed.
  • this invention is the containment performance test
  • the fluorescence detection unit detects the simulated contaminant in the inspection air by a laser excitation fluorescence method.
  • the present invention is the containment performance inspection system according to any one of claims 1 to 3,
  • the mist generating means is an ultrasonic atomizer.
  • the present invention is the containment performance inspection system according to any one of claims 1 to 4,
  • the simulated contaminant is an aqueous solution of a fluorescent material.
  • this invention is the containment performance test
  • the aqueous solution of the fluorescent substance is an aqueous solution in which riboflavin or a derivative thereof is dissolved.
  • this invention is the containment performance test
  • the aqueous solution of the fluorescent light-emitting substance is a 0.1% by mass to 5.0% by mass aqueous solution of sodium riboflavin phosphate.
  • the containment performance inspection system includes the mist generating means, the collecting means, and the detecting means.
  • the mist generating means generates mist of simulated contaminants inside the work chamber.
  • the collecting means collects the inspection air at a position where the leakage of the simulated contaminant is confirmed in the external environment.
  • the detection means detects the simulated contaminant contained in the inspection air collected by the collection means.
  • the detection means includes the fine particle detection unit and the fluorescence detection unit.
  • the fine particle detection unit instantaneously detects the total particle concentration of the simulated contaminants in the inspection air.
  • the fluorescence detection unit instantaneously detects the positive particle concentration in the test air.
  • the positive particle ratio is calculated from the total particle concentration and the positive particle concentration. Therefore, according to the structure of the said Claim 2, the effect similar to Claim 1 can be exhibited more concretely.
  • the fluorescence detection unit detects the simulated contaminant in the inspection air by a laser excitation fluorescence method. Therefore, according to the structure of the said Claim 3, the effect similar to Claim 2 can be exhibited more concretely.
  • the mist generating means is an ultrasonic atomizer. Therefore, according to the configuration of the fourth aspect, the same effect as any one of the first to third aspects can be more specifically exhibited.
  • the simulated contaminant is an aqueous solution of a fluorescent luminescent material. Therefore, according to the configuration of the fifth aspect, the same effect as that of any one of the first to fourth aspects can be more specifically exhibited.
  • the aqueous solution of the fluorescent light-emitting substance is an aqueous solution in which riboflavin or a derivative thereof is dissolved. Therefore, according to the structure of the said Claim 6, the effect similar to Claim 5 can be exhibited more concretely.
  • the aqueous solution of the fluorescent light-emitting substance is a 0.1% by mass to 5.0% by mass aqueous solution of sodium riboflavin phosphate. Therefore, according to the structure of the said Claim 7, the effect similar to Claim 6 can be exhibited more concretely.
  • FIG. 2 is a front view and a left side view illustrating a sampling point in the isolator of FIG. 1. It is the schematic which shows a mode that a simulated contaminant is scattered inside the chamber of the isolator of FIG. 1, and the containment performance is test
  • the present embodiment relates to a test of the containment performance of a containment isolator used in a manufacturing facility or a research and development facility of a highly pharmacologically active pharmaceutical agent that has a strong medicinal effect on the human body in a small amount such as an anticancer agent.
  • the present invention is not limited to containment of highly pharmacologically active pharmaceuticals, but can be applied to evaluate the scattering and leakage of all contaminants.
  • FIG. 1 is a front view A and a left side view B of an isolator 10 for inspecting containment performance according to this embodiment.
  • an isolator 10 is joined to a gantry 11 placed on a floor surface, a working chamber (chamber) 12 placed on the gantry 11, and a wall portion on the upper surface of the chamber 12. It is comprised by the control part 13.
  • FIG. 1 is a front view A and a left side view B of an isolator 10 for inspecting containment performance according to this embodiment.
  • an isolator 10 is joined to a gantry 11 placed on a floor surface, a working chamber (chamber) 12 placed on the gantry 11, and a wall portion on the upper surface of the chamber 12. It is comprised by the control part 13.
  • FIG. 1 is a front view A and a left side view B of an isolator 10 for inspecting containment performance according to this embodiment.
  • an isolator 10 is joined to a gantry 11 placed on a floor surface,
  • the chamber 12 is made of a stainless steel box that is airtightly shielded from the outside environment, and the filter units 14a, 14b, and 14c for intake and exhaust and the air inside the chamber 12 are filtered by the filter unit. After that, a blower 15 for exhausting to the outside is provided. Further, a pass box 16 disposed on the left side wall portion of the chamber 12 and a bag-out port 17 disposed on the right side wall portion are provided.
  • An opening / closing door 12 a is provided on the front wall of the chamber 12.
  • the open / close door 12 a has three circular glove ports 12 b that communicate the outside with the inside of the chamber 12.
  • a work glove is airtightly attached to each of these glove ports 12b.
  • FIG. 2 is a front view A and a left side view B illustrating the sampling point P in the isolator 10. Note that the sampling points in FIG. 2 are merely examples, and it is necessary to inspect many points having a leakage risk without being limited thereto.
  • FIG. 3 is a schematic view showing a state in which a simulated contaminant is scattered inside the chamber 12 and its containment performance is inspected.
  • the containment performance inspection system 20 includes an aqueous solution of a fluorescent luminescent material (described later), a container 21 that accommodates the solution, an ultrasonic atomizer 23 that generates mist by applying ultrasonic vibration thereto, A collector 24 that collects the generated mist, a detection device 25 that detects the collected mist, and a suction pipe 25 a that communicates between the collector 24 and the detection device 25 are provided.
  • a mist 22 of a simulated pollutant is generated in place of the spray (mist) or powder of the highly pharmacologically active drug in the chamber 12.
  • the simulated contaminant is an aqueous solution of a fluorescent luminescent material
  • the mist 22 is generated by applying ultrasonic vibration by the ultrasonic atomizer 23 to the aqueous solution contained in the container 21 (see FIG. 3).
  • a water-soluble fluorescent substance is used, and an aqueous mist 22 diluted with water is used as a simulated contaminant.
  • the mist 22 of the aqueous solution of the fluorescent substance is similar in scattering behavior to the mist 22 when the actual highly pharmacologically active pharmaceutical agent (liquid agent before lyophilization) is scattered.
  • the inventors of the present invention have confirmed that mist 22 exhibits a scattering behavior similar to that of an actual highly pharmacologically active pharmaceutical product (powder after lyophilization).
  • the fluorescent substance used in the present embodiment is not particularly limited as long as it is a substance that emits fluorescence.
  • the substance is safe for the human body and has no environmental pollution, and is water-soluble. Since the fluorescent light-emitting substance is water-soluble, an aqueous solution can be easily prepared without using any other solvent to make a mist. As a result, the actual amount of scattered fluorescent light-emitting substance is very small compared to the amount of scattered mist, which not only reduces the chemical cost, but also facilitates a cleaning operation for removing the fluorescent light-emitting substance attached to the inner wall of the isolator.
  • riboflavin vitamin B2
  • riboflavin phosphate sodium was employed.
  • the solubility of this riboflavin phosphate sodium in water is 50 g / L, and it has sufficient water solubility.
  • the concentration of the aqueous solution of the fluorescent luminescent substance to be used must be less than the solubility of the fluorescent luminescent substance. Moreover, in the combination of the ultrasonic atomization apparatus and detection apparatus which are actually used, if it is the density
  • sodium riboflavin phosphate is used as the fluorescent substance, it is preferably used in the range of 0.1% by mass to 5.0% by mass aqueous solution (described later). This is because the detection sensitivity is good when the concentration of sodium riboflavin phosphate is 0.1% by mass or more, and the dissolution of sodium riboflavin phosphate is easy when the concentration is 5.0% by mass or less. In this embodiment, a 0.2% aqueous solution of sodium riboflavin phosphate is used.
  • mist generating means using an aqueous solution of a fluorescent light-emitting substance as mist will be described.
  • a container 21 containing an aqueous solution of a fluorescent luminescent substance (0.2% aqueous solution of riboflavin phosphate sodium) is placed on the vibration surface of an ultrasonic atomizer 23 serving as a mist generating means to fluoresce.
  • a mist 22 of material is generated.
  • the ultrasonic atomizer 23 it does not specifically limit. However, it is preferable to use an aqueous solution of a fluorescent light-emitting substance as a simulated contaminant and a mist having an appropriate droplet diameter.
  • An appropriate droplet size as a simulated contaminant means that it exhibits a scattering behavior similar to that of an actual highly pharmacologically active pharmaceutical mist (liquid agent before freeze-drying) or powder (powder after freeze-drying).
  • the frequency and output of the ultrasonic atomizer 23 are adjusted in consideration of the specific gravity of the mist 22 of simulated contaminants and the droplet diameter.
  • the aqueous solution of the fluorescent light-emitting substance becomes the mist 22
  • the simulated contaminant is scattered as mist in the air throughout the interior of the chamber 12.
  • the inside of the chamber 12 is managed at a positive pressure in the same manner as when actually used as a containment isolator.
  • the containment performance is confirmed for the bug out port 17 among the sampling points shown in FIG.
  • the bag-out port 17 disposed on the right side wall of the chamber 12 is covered with a collector 24 as a collecting means from the outside environment side.
  • the collector 24 is in communication with the detection device 25 and the suction pipe 25a.
  • the mist 22 of the simulated pollutant leaks from the vicinity of the bag-out port 17, the mist 22 is collected by the collector 24 as the inspection air together with the ambient air.
  • the inspection air collected by the collector 24 is sent to the detection device 25 as detection means via the suction pipe 25a.
  • the detection device 25 has a built-in pump (not shown) that sucks the inspection air.
  • a rapid microorganism testing apparatus used in the rapid microorganism testing method can be used as the detection device 25.
  • This rapid microorganism testing apparatus generally includes a particle counter and a floating bacteria counter. These counters draw a certain amount of test air sent from the suction pipe as a sample from the collection port, and detect particles (microparticles) and airborne microbes (microorganism microparticles) in the sample using an optical instrument. Is.
  • a rapid microorganism testing apparatus using an optical measuring instrument can greatly improve the working efficiency as compared with a conventional culture method as a method capable of instantaneously distinguishing microorganism-derived microparticles.
  • airborne bacteria microorganism microparticles
  • a microorganism rapid inspection apparatus is used to detect mist that emits fluorescence.
  • a particle counter using particle size sorting by a light scattering method is employed as the particle detection unit of the detection device 25.
  • This particle counter instantaneously detects the total number of fine particles in the inspection air.
  • the total number of fine particles detected by the particle counter is defined as “total particle concentration (number / L)” in the inspection air.
  • a floating bacteria counter using fluorescence identification by a laser excitation fluorescence method was adopted as a fluorescence detection part of the detection device 25.
  • the laser-excited fluorescence method utilizes the fact that among microparticles floating in test air, microparticles related to microorganisms and cell viability emit fluorescence when excited by ultraviolet rays.
  • This airborne microbe counter instantaneously detects the total number of fluorescent luminescent particles in the test air.
  • the total number of fluorescent light-emitting fine particles detected by the airborne microbe counter is defined as “positive particle concentration (number / L)” in the test air.
  • the positive particle ratio (%) is calculated from the total particle concentration (number / L) detected by the particle counter and the positive particle concentration (number / L) detected by the floating bacteria counter.
  • this positive particle ratio (%) is clearly distinguishable from the positive particle ratio (%) of the background (water mist that does not contain fluorescent substances), it is determined that simulated contaminants are present in the test air. can do.
  • mist 22 the detection of the mist 22 by the detection device 25 and the criteria for judging the presence of the simulated contaminant leaked into the inspection air will be described.
  • mist of sodium riboflavin phosphate aqueous solution will be described as a simulated contaminant.
  • the present inventors prepared several types of sodium riboflavin phosphate aqueous solutions (samples) with different concentrations and water not containing a fluorescent substance (comparative sample).
  • samples sodium riboflavin phosphate aqueous solutions
  • water not containing a fluorescent substance comparative sample
  • the mist 22 of each sample was generated using the container 21 and the ultrasonic atomizer 23 described in FIG.
  • the air containing the generated mist 22 was collected by the collector 24 as inspection air.
  • the inspection air collected by the collector 24 was supplied to the detection device 25 via the suction pipe 25a, and the fluorescent light emitting material was detected.
  • the total particle concentration (number / L), the positive particle concentration (number / L), and the calculated positive particle ratio (%) for each sample were obtained.
  • the present inventors have determined that when sodium riboflavin phosphate is used as a simulated contaminant, it is preferably used in the range of 0.1% by mass to 5.0% by mass aqueous solution. .
  • the concentration of the fluorescent light-emitting substance to be used is determined by conducting the preliminary test as described above for the type of the fluorescent light-emitting substance actually used and the combination of the ultrasonic atomizer and the detection device. It is preferable to confirm.
  • a simulated contaminant that does not require a complicated manufacturing operation and can be easily removed from the apparatus after the inspection is used, and the state of scattering and leakage of the simulated contaminant is a quantitative value. It is possible to provide a containment performance inspection system that can be obtained in real time.

Abstract

Provided is a containment-performance inspection system that: uses a mock contaminant that, without the need for complicated production work, can be easily removed from a device after inspections; and can determine the scattering/leakage state of the mock contaminant in real time as a quantitative value. The present invention has: a mist generation means that generates a mist of a mock contaminant inside a work chamber; a collection means that collects inspection air in an external environment at a location for confirming leakage of the mock contaminant; and a detection means that detects mock contaminant included in the inspection air collected by the collection means. The present invention detects leakage of the mock contaminant from the inside of the work chamber to the outside environment and thereby inspects the containment-performance of the work chamber.

Description

封じ込め性能検査システムContainment performance inspection system
 本発明は、人体や環境に影響を及ぼす高薬理活性医薬品などの物質が外部環境に漏洩することのないように、製造設備などの封じ込め性能を確認するための封じ込め性能検査システムに関するものである。なお、本システムは、クリーン環境内の浮遊物質の飛散状況をモニタリングする際にも使用することができる。 The present invention relates to a containment performance inspection system for confirming the containment performance of a manufacturing facility or the like so that substances such as highly pharmacologically active pharmaceutical agents that affect the human body and the environment do not leak to the external environment. This system can also be used to monitor the scattering status of suspended solids in a clean environment.
 抗がん剤や免疫抑制剤のような高薬理活性医薬品などの製造・取扱い設備では、例えば、封じ込めアイソレーターなどの装置を使用して当該薬品が作業者や外部環境を汚染しないように管理することが必要である。通常、非無菌製剤などを取り扱う封じ込めアイソレーターにおいては、アイソレーター内を外部環境より陰圧にして管理することが行われる。しかし、陰圧管理においては、外部環境からの誘引物質でアイソレーター内が汚染される懸念がある。従って、無菌製剤用アイソレーターなどにおいては、陰圧管理を採用することが難しい。そして、厚生労働省の「無菌操作法による無菌医薬品の製造に関する指針(2011年改正版)」においては、アイソレーター内の差圧は設置室に対して最低17.5Pa程度の陽圧管理を求めている。 In production and handling facilities for highly pharmacologically active pharmaceuticals such as anticancer drugs and immunosuppressive drugs, for example, devices such as containment isolators should be used so that the chemicals do not contaminate workers or the external environment. is required. Usually, in a containment isolator that handles non-sterile preparations, the inside of the isolator is managed under a negative pressure from the external environment. However, in negative pressure management, there is a concern that the inside of the isolator may be contaminated with attractants from the external environment. Therefore, it is difficult to employ negative pressure management in an isolator for aseptic preparations. In the Ministry of Health, Labor and Welfare's “Guidelines for the production of aseptic medicines by aseptic operation method (2011 revised edition)”, the differential pressure in the isolator requires a positive pressure control of at least about 17.5 Pa for the installation room. .
 例えば、注射液剤などを凍結乾燥製剤とする操作においては、注射液剤を凍結乾燥用バイアルに充填する場合には、高度な無菌環境が要求され、アイソレーター内の陽圧管理は有効である。ところが、このような操作において注射液剤がこぼれ、またバイアルが破損した場合には、飛散した注射液剤が飛沫(ミスト)となってアイソレーター内に広がると共に、陽圧状態のアイソレーター内から外部環境に漏洩するというリスクがある。一方、凍結乾燥後の粉末薬剤がバイアルの破損によって、陽圧状態のアイソレーター内から外部環境に漏洩するというリスクがある。 For example, in an operation in which an injection solution or the like is used as a lyophilized preparation, when an injection solution is filled in a freeze-drying vial, a highly sterile environment is required, and positive pressure management in an isolator is effective. However, when injection solution spills in such an operation and the vial is broken, the injected injection solution spreads in the isolator as a mist and leaks from the positive pressure isolator to the external environment. There is a risk of doing. On the other hand, there is a risk that the powder drug after lyophilization leaks from the inside of the positive pressure isolator to the external environment due to the breakage of the vial.
 このように、高薬理活性医薬品などの製造・取扱い設備においては、アイソレーターなどの装置内を陽圧管理すると共に、封じ込め管理を徹底することが求められる。これらの背景から、アイソレーターなどの装置の封じ込め性能を予め評価することが重要となる。例えば、封じ込めアイソレーターの場合には、その封じ込め性能を予め検査することにより、事前に漏洩を確認して修復することができる。また、何処から漏洩が生じる可能性が高いのかを把握でき、その位置にサンプラーを設置するなどの事前対処が可能となる。 Thus, in manufacturing and handling facilities such as highly pharmacologically active pharmaceuticals, it is required to manage the positive pressure inside the device such as an isolator and to thoroughly control containment. From these backgrounds, it is important to evaluate in advance the containment performance of an apparatus such as an isolator. For example, in the case of a containment isolator, leakage can be confirmed and repaired in advance by inspecting its containment performance in advance. In addition, it is possible to grasp where leakage is likely to occur, and it is possible to take precautions such as installing a sampler at that position.
 アイソレーターなどの装置の封じ込め性能を予め評価する際に、薬理活性の高い医薬品そのものを使用すると、皮膚への付着や吸引などによって作業者に悪影響が生じるおそれがある。このため、通常、安全性の高い代替物質を模擬汚染物質とし、この模擬汚染物質を使用することによって封じ込め性能を検査することが行われる。 When evaluating the containment performance of a device such as an isolator in advance, if a pharmaceutical product with high pharmacological activity is used, there is a risk that the operator may be adversely affected by adhesion to the skin or suction. For this reason, usually, a safe alternative substance is used as a simulated contaminant, and the containment performance is inspected by using this simulated contaminant.
 例えば、下記非特許文献1は、微粒子可視化技術を用いたアイソレーターのリークリスクマネジメントに関するものである。これによると、人体に無害で、水に溶けやすく、安定性が良好なラクトース(乳糖)の粉体を模擬汚染物質として使用する。そして、ラクトースの飛散を生じさせ、空間中の光の膜(レーザーシート)にある粒子の散乱光をカメラで捉えることで、模擬汚染物質の飛散・漏洩の様子を観察する。しかし、下記非特許文献1においては、特定の位置の飛散状態は可視化することができるが、その為にはレーザー光源システム、撮像システム、画像処理システムなどの大掛かりな装置を必要とする。 For example, Non-Patent Document 1 below relates to leak risk management of an isolator using a particle visualization technology. According to this, lactose powder that is harmless to the human body, easily soluble in water, and has good stability is used as a simulated contaminant. Then, lactose is scattered and the scattered light of the particles in the light film (laser sheet) in the space is captured by a camera to observe the scattering and leakage of the simulated contaminants. However, in Non-Patent Document 1 below, the scattering state at a specific position can be visualized, but this requires a large-scale device such as a laser light source system, an imaging system, or an image processing system.
 なお、上記各システムを使用するだけでは可視化はできるが、模擬汚染物質を定量化することができない。なお、下記非特許文献1においても定量化する方法が説明されており、その為には、検査位置のサンプラーで補足したラクトースの量を高速液体クロマトグラフで分析して、位置と飛散量の関係を定量的に評価する。しかし、ラクトースを模擬汚染物質とした場合には、定量分析に高価で大がかりな装置が必要になり、短時間で評価が行えないという不都合があった。 It should be noted that visualization is possible only by using each of the above systems, but the simulated contaminant cannot be quantified. Non-patent document 1 below also describes a method of quantification. For this purpose, the amount of lactose supplemented by the sampler at the inspection position is analyzed by a high-performance liquid chromatograph, and the relationship between the position and the amount of scattering. Is evaluated quantitatively. However, when lactose is used as a simulated pollutant, an expensive and large-scale apparatus is required for quantitative analysis, and there is a disadvantage that evaluation cannot be performed in a short time.
 これに対し、下記特許文献1においては、医薬品粉体の飛散状態評価方法及び当該方法に用いる飛散状態評価用模擬粉体が提案されている。この評価方法によると、中空や多孔質の粒子、又は金属酸化物微粒子などを核粒子として、その表面に蛍光発光物質を設けた模擬粉体を使用する。この模擬粉体を飛散させ、これを検査位置のサンプラーで補足して蛍光検出装置で蛍光発光量を直接測定する。この蛍光発光量を予め作成した検量線と対比して模擬粉体の空気中濃度を求めるというものである。 On the other hand, Patent Document 1 below proposes a method for evaluating the scattering state of a pharmaceutical powder and a simulated powder for evaluating the scattering state used in the method. According to this evaluation method, a simulated powder in which hollow or porous particles, metal oxide fine particles, or the like are used as core particles and a fluorescent material is provided on the surface thereof is used. The simulated powder is scattered, supplemented by a sampler at the inspection position, and the fluorescence emission amount is directly measured by a fluorescence detection device. This fluorescence emission amount is compared with a calibration curve prepared in advance to determine the concentration of the simulated powder in the air.
特許第5861863号公報Japanese Patent No. 5618863
 ところで、上記特許文献1の評価方法においては、模擬汚染物質の飛散・漏洩の様子を定量的な値でリアルタイムに求めることができる。しかし、上記特許文献1の評価方法では、核粒子の表面に蛍光発光物質を設けた特殊な模擬粉体を準備しなければならず、煩雑な製造作業を必要とする。また、検査後にアイソレーターなどの装置の内壁に付着した模擬粉体を完全に除去しなければならず、洗浄作業に労力を要するという問題があった。 By the way, in the evaluation method of the above-mentioned Patent Document 1, it is possible to obtain in real time a quantitative value of the state of scattering and leakage of simulated contaminants. However, in the evaluation method described in Patent Document 1, a special simulated powder in which a fluorescent material is provided on the surface of the core particles must be prepared, and a complicated manufacturing operation is required. In addition, there has been a problem that the simulated powder adhering to the inner wall of an apparatus such as an isolator has to be completely removed after the inspection, and labor is required for the cleaning work.
 そこで、本発明は、上記の諸問題に対処して、煩雑な製造作業を必要とせず検査後の装置からの除去が容易な模擬汚染物質を使用し、当該模擬汚染物質の飛散・漏洩の様子を定量的な値でリアルタイムに求めることができる封じ込め性能検査システムを提供することを目的とする。 Therefore, the present invention addresses the above-mentioned problems, uses simulated contaminants that do not require complicated manufacturing operations and can be easily removed from the apparatus after inspection, and the simulated contaminants are scattered or leaked. It is an object of the present invention to provide a containment performance inspection system that can obtain a quantitative value in real time.
 上記課題の解決にあたり、本発明者らは、鋭意研究の結果、模擬汚染物質として粉体ではなく液体のミストを採用し、このミストの中に所定濃度の蛍光発光物質を予め溶解しておくことにより、蛍光発光粒子の検知手段を用いて当該ミストを模擬汚染物質の粒子として検知できることを見出して本発明の完成に至った。 In solving the above-mentioned problems, the present inventors, as a result of diligent research, adopted a liquid mist instead of powder as a simulated contaminant, and previously dissolved a fluorescent light-emitting substance having a predetermined concentration in the mist. Thus, the present inventors have found that the mist can be detected as simulated contaminant particles using the fluorescent light emitting particle detection means, and the present invention has been completed.
 即ち、本発明に係る封じ込め性能検査システムは、請求項1の記載によれば、
 作業室(12)の内部から外部環境への模擬汚染物質の漏洩を検知して、当該作業室の封じ込め性能を検査するための検査システム(20)であって、
 前記作業室の内部に前記模擬汚染物質のミスト(22)を発生させるミスト発生手段(23)と、 
 前記外部環境において、前記模擬汚染物質の漏洩を確認する位置の検査空気を捕集する捕集手段(24)と、
 前記捕集手段で捕集された検査空気に含まれる前記模擬汚染物質を検出する検出手段(25)とを有することを特徴とする。
That is, the containment performance inspection system according to the present invention, according to claim 1,
An inspection system (20) for detecting leakage of simulated contaminants from the inside of a work room (12) to the outside environment and inspecting the containment performance of the work room,
A mist generating means (23) for generating a mist (22) of the simulated pollutant inside the working chamber;
In the external environment, a collecting means (24) for collecting inspection air at a position where the leakage of the simulated contaminant is confirmed.
And detecting means (25) for detecting the simulated contaminant contained in the inspection air collected by the collecting means.
 また、本発明は、請求項2の記載によれば、請求項1に記載の封じ込め性能検査システムであって、
 前記検出手段は、微粒子検出部と蛍光検出部とを有し、
 前記微粒子検出部において、前記検査空気中の前記模擬汚染物質の総粒子濃度を検出すると共に、
 前記蛍光検出部において、前記検査空気中の陽性粒子濃度を検出することにより、
 前記総粒子濃度と陽性粒子濃度とから陽性粒子比率を算出して、前記模擬汚染物質の漏洩を確認することを特徴とする。
Moreover, according to the description of Claim 2, this invention is the containment performance test | inspection system of Claim 1, Comprising:
The detection means includes a fine particle detection unit and a fluorescence detection unit,
In the fine particle detection unit, while detecting the total particle concentration of the simulated contaminant in the inspection air,
In the fluorescence detection unit, by detecting the positive particle concentration in the test air,
A positive particle ratio is calculated from the total particle concentration and the positive particle concentration, and leakage of the simulated contaminant is confirmed.
 また、本発明は、請求項3の記載によれば、請求項2に記載の封じ込め性能検査システムであって、
 前記蛍光検出部は、レーザー励起蛍光法によって前記検査空気中の前記模擬汚染物質を検出することを特徴とする。
Moreover, according to the description of Claim 3, this invention is the containment performance test | inspection system of Claim 2, Comprising:
The fluorescence detection unit detects the simulated contaminant in the inspection air by a laser excitation fluorescence method.
 また、本発明は、請求項4の記載によれば、請求項1~3のいずれか1つに記載の封じ込め性能検査システムであって、
 前記ミスト発生手段は、超音波霧化装置であることを特徴とする。
According to the description of claim 4, the present invention is the containment performance inspection system according to any one of claims 1 to 3,
The mist generating means is an ultrasonic atomizer.
 また、本発明は、請求項5の記載によれば、請求項1~4のいずれか1つに記載の封じ込め性能検査システムであって、
 前記模擬汚染物質は、蛍光発光物質の水溶液であることを特徴とする。
According to the description of claim 5, the present invention is the containment performance inspection system according to any one of claims 1 to 4,
The simulated contaminant is an aqueous solution of a fluorescent material.
 また、本発明は、請求項6の記載によれば、請求項5に記載の封じ込め性能検査システムであって、
 前記蛍光発光物質の水溶液は、リボフラビン又はその誘導体を溶解した水溶液であることを特徴とする。
Moreover, according to the description of Claim 6, this invention is the containment performance test | inspection system of Claim 5, Comprising:
The aqueous solution of the fluorescent substance is an aqueous solution in which riboflavin or a derivative thereof is dissolved.
 また、本発明は、請求項7の記載によれば、請求項6に記載の封じ込め性能検査システムであって、
 前記蛍光発光物質の水溶液は、リボフラビンリン酸エステルナトリウムの0.1質量%~5.0質量%水溶液であることを特徴とする。
Moreover, according to the description of Claim 7, this invention is the containment performance test | inspection system of Claim 6, Comprising:
The aqueous solution of the fluorescent light-emitting substance is a 0.1% by mass to 5.0% by mass aqueous solution of sodium riboflavin phosphate.
 上記請求項1の構成によれば、本発明に係る封じ込め性能検査システムは、ミスト発生手段と捕集手段と検出手段とを有している。ミスト発生手段は、作業室の内部に模擬汚染物質のミストを発生させる。捕集手段は、外部環境において模擬汚染物質の漏洩を確認する位置の検査空気を捕集する。検出手段は、捕集手段で捕集された検査空気に含まれる模擬汚染物質を検出する。 According to the configuration of the first aspect, the containment performance inspection system according to the present invention includes the mist generating means, the collecting means, and the detecting means. The mist generating means generates mist of simulated contaminants inside the work chamber. The collecting means collects the inspection air at a position where the leakage of the simulated contaminant is confirmed in the external environment. The detection means detects the simulated contaminant contained in the inspection air collected by the collection means.
 これらのことにより、模擬汚染物質の飛散・漏洩の様子を定量的な値でリアルタイムに求めることができる。また、模擬汚染物質として液体のミストを使用することにより、煩雑な製造作業を必要としない。また、この模擬汚染物質は、検査後の装置からの除去が容易であって検査作業の労力を軽減できる。 By these things, it is possible to obtain in real time a quantitative value of the state of scattering / leakage of simulated contaminants. In addition, the use of liquid mist as a simulated contaminant eliminates the need for complicated manufacturing operations. Further, the simulated contaminant can be easily removed from the apparatus after the inspection, and the labor of the inspection work can be reduced.
 また、上記請求項2の構成によれば、検出手段は、微粒子検出部と蛍光検出部とを有している。微粒子検出部においては、検査空気中の模擬汚染物質の総粒子濃度を瞬時に検出する。また、蛍光検出部においては、検査空気中の陽性粒子濃度を瞬時に検出する。更に、総粒子濃度と陽性粒子濃度とから陽性粒子比率を算出する。よって、上記請求項2の構成によれば、請求項1と同様の効果をより具体的に発揮することができる。 Further, according to the configuration of claim 2, the detection means includes the fine particle detection unit and the fluorescence detection unit. The fine particle detection unit instantaneously detects the total particle concentration of the simulated contaminants in the inspection air. Further, the fluorescence detection unit instantaneously detects the positive particle concentration in the test air. Further, the positive particle ratio is calculated from the total particle concentration and the positive particle concentration. Therefore, according to the structure of the said Claim 2, the effect similar to Claim 1 can be exhibited more concretely.
 また、上記請求項3の構成によれば、蛍光検出部は、レーザー励起蛍光法によって検査空気中の模擬汚染物質を検出する。よって、上記請求項3の構成によれば、請求項2と同様の効果をより具体的に発揮することができる。 Further, according to the configuration of claim 3, the fluorescence detection unit detects the simulated contaminant in the inspection air by a laser excitation fluorescence method. Therefore, according to the structure of the said Claim 3, the effect similar to Claim 2 can be exhibited more concretely.
 また、上記請求項4の構成によれば、ミスト発生手段は、超音波霧化装置である。よって、上記請求項4の構成によれば、請求項1~3のいずれか1つと同様の効果をより具体的に発揮することができる。 Further, according to the configuration of claim 4, the mist generating means is an ultrasonic atomizer. Therefore, according to the configuration of the fourth aspect, the same effect as any one of the first to third aspects can be more specifically exhibited.
 また、上記請求項5の構成によれば、模擬汚染物質は、蛍光発光物質の水溶液である。よって、上記請求項5の構成によれば、請求項1~4のいずれか1つと同様の効果をより具体的に発揮することができる。 Further, according to the configuration of claim 5, the simulated contaminant is an aqueous solution of a fluorescent luminescent material. Therefore, according to the configuration of the fifth aspect, the same effect as that of any one of the first to fourth aspects can be more specifically exhibited.
 また、上記請求項6の構成によれば、蛍光発光物質の水溶液は、リボフラビン又はその誘導体を溶解した水溶液である。よって、上記請求項6の構成によれば、請求項5と同様の効果をより具体的に発揮することができる。 Further, according to the configuration of claim 6, the aqueous solution of the fluorescent light-emitting substance is an aqueous solution in which riboflavin or a derivative thereof is dissolved. Therefore, according to the structure of the said Claim 6, the effect similar to Claim 5 can be exhibited more concretely.
 また、上記請求項7の構成によれば、蛍光発光物質の水溶液は、リボフラビンリン酸エステルナトリウムの0.1質量%~5.0質量%水溶液である。よって、上記請求項7の構成によれば、請求項6と同様の効果をより具体的に発揮することができる。 Further, according to the configuration of claim 7, the aqueous solution of the fluorescent light-emitting substance is a 0.1% by mass to 5.0% by mass aqueous solution of sodium riboflavin phosphate. Therefore, according to the structure of the said Claim 7, the effect similar to Claim 6 can be exhibited more concretely.
本発明の一実施形態により封じ込め性能を検査するアイソレーターの正面図及び左側面図である。It is the front view and left view of the isolator which test | inspects the containment performance by one Embodiment of this invention. 図1のアイソレーターにおけるサンプリングポイントを例示する正面図及び左側面図である。FIG. 2 is a front view and a left side view illustrating a sampling point in the isolator of FIG. 1. 図1のアイソレーターのチャンバー内部に模擬汚染物質を飛散させ、その封じ込め性能を検査する様子を示す概略図である。It is the schematic which shows a mode that a simulated contaminant is scattered inside the chamber of the isolator of FIG. 1, and the containment performance is test | inspected.
  以下、本発明を詳細に説明する。本実施形態は、抗がん剤などの少量で人体に強い薬効作用を与える高薬理活性医薬品の製造施設や研究開発施設などで使用される封じ込めアイソレーターの封じ込め性能の検査に関するものである。なお、本発明は、高薬理活性医薬品の封じ込めに限らず、あらゆる汚染物質の飛散・漏洩を評価するために適用することができる。 Hereinafter, the present invention will be described in detail. The present embodiment relates to a test of the containment performance of a containment isolator used in a manufacturing facility or a research and development facility of a highly pharmacologically active pharmaceutical agent that has a strong medicinal effect on the human body in a small amount such as an anticancer agent. The present invention is not limited to containment of highly pharmacologically active pharmaceuticals, but can be applied to evaluate the scattering and leakage of all contaminants.
 図1は、本実施形態により封じ込め性能を検査するアイソレーター10の正面図A及び左側面図Bである。図1において、アイソレーター10は、床面上に載置される架台11と、この架台11の上に乗載される作業室(チャンバー)12と、このチャンバー12の上面の壁部に接合された制御部13とにより構成されている。 FIG. 1 is a front view A and a left side view B of an isolator 10 for inspecting containment performance according to this embodiment. In FIG. 1, an isolator 10 is joined to a gantry 11 placed on a floor surface, a working chamber (chamber) 12 placed on the gantry 11, and a wall portion on the upper surface of the chamber 12. It is comprised by the control part 13. FIG.
 チャンバー12は、外部環境とは気密的に遮蔽されたステンレススチール製の箱体からなり、吸気用及び排気用のフィルタユニット14a、14b、14c、並びに、チャンバー12の内部の空気をフィルタユニットで濾過したのち外部に排気するためのブロワー15を備えている。また、チャンバー12の左側面の壁部に配設されたパスボックス16、及び、右側面の壁部に配設されたバグアウトポート17を備えている。 The chamber 12 is made of a stainless steel box that is airtightly shielded from the outside environment, and the filter units 14a, 14b, and 14c for intake and exhaust and the air inside the chamber 12 are filtered by the filter unit. After that, a blower 15 for exhausting to the outside is provided. Further, a pass box 16 disposed on the left side wall portion of the chamber 12 and a bag-out port 17 disposed on the right side wall portion are provided.
 チャンバー12の正面の壁部には、開閉扉12aが設けられている。この開閉扉12aは、外部とチャンバー12の内部とを連通させる3つの円形のグローブポート12bを有する。これらのグローブポート12bには、それぞれ作業用グローブが気密的に装着されている。 An opening / closing door 12 a is provided on the front wall of the chamber 12. The open / close door 12 a has three circular glove ports 12 b that communicate the outside with the inside of the chamber 12. A work glove is airtightly attached to each of these glove ports 12b.
 本実施形態においては、このチャンバー12の封じ込め性能を検査する。なお、チャンバー12には、開閉扉12a、パスボックス16、バグアウトポート17など複数の箇所で、その封じ込め性能にリスクを有している。そこで、アイソレーター10を封じ込めアイソレーターとして使用する前に、これらの箇所を中心にして封じ込め性能を検査することが重要である。図2は、アイソレーター10におけるサンプリングポイントPを例示する正面図A及び左側面図Bである。なお、図2のサンプリングポイントは一例であって、これらに限定されることなく漏洩リスクを有する多くのポイントを検査する必要がある。 In this embodiment, the containment performance of the chamber 12 is inspected. The chamber 12 has a risk in its containment performance at a plurality of locations such as the opening / closing door 12a, the pass box 16, and the bag-out port 17. Therefore, before using the isolator 10 as a containment isolator, it is important to inspect the containment performance centering on these locations. FIG. 2 is a front view A and a left side view B illustrating the sampling point P in the isolator 10. Note that the sampling points in FIG. 2 are merely examples, and it is necessary to inspect many points having a leakage risk without being limited thereto.
 ここで、アイソレーター10のチャンバー12の封じ込め性能の検査について概要を説明する。図3は、チャンバー12の内部に模擬汚染物質を飛散させ、その封じ込め性能を検査する様子を示す概略図である。図3において、封じ込め性能検査システム20は、蛍光発光物質の水溶液(後述する)と、これを収容する容器21と、これらに超音波振動を与えてミストを発生させる超音波霧化装置23と、発生したミストを捕集する捕集器24と、捕集したミストを検出する検出装置25と、捕集器24と検出装置25との間を連通させる吸引配管25aとを備えている。 Here, an outline of the inspection of the containment performance of the chamber 12 of the isolator 10 will be described. FIG. 3 is a schematic view showing a state in which a simulated contaminant is scattered inside the chamber 12 and its containment performance is inspected. In FIG. 3, the containment performance inspection system 20 includes an aqueous solution of a fluorescent luminescent material (described later), a container 21 that accommodates the solution, an ultrasonic atomizer 23 that generates mist by applying ultrasonic vibration thereto, A collector 24 that collects the generated mist, a detection device 25 that detects the collected mist, and a suction pipe 25 a that communicates between the collector 24 and the detection device 25 are provided.
 本実施形態においては、チャンバー12の内部で高薬理活性医薬品の飛沫(ミスト)又は紛体に替えて、模擬汚染物質のミスト22を発生させる。具体的には、模擬汚染物質は蛍光発光物質の水溶液であって、容器21に収容された水溶液に超音波霧化装置23による超音波振動を与えてミスト22を発生させる(図3参照)。 In the present embodiment, a mist 22 of a simulated pollutant is generated in place of the spray (mist) or powder of the highly pharmacologically active drug in the chamber 12. Specifically, the simulated contaminant is an aqueous solution of a fluorescent luminescent material, and the mist 22 is generated by applying ultrasonic vibration by the ultrasonic atomizer 23 to the aqueous solution contained in the container 21 (see FIG. 3).
 ここで、本実施形態で採用する蛍光発光物質の水溶液について説明する。上記特許文献1で採用した特殊な模擬粉体、或いは蛍光物質の粉体をそのまま模擬汚染物質として飛散させると、飛散粉体量が多く薬品コストが高くなるだけでなく、上述のように、アイソレーターの内壁に付着した粉体を完全に除去する洗浄作業に過大な労力を必要とする。 Here, an aqueous solution of the fluorescent light-emitting substance employed in this embodiment will be described. When the special simulated powder or phosphor powder used in Patent Document 1 is directly scattered as simulated contaminants, not only does the amount of scattered powder increase and the chemical cost increases, but also the isolator as described above. The cleaning work to completely remove the powder adhering to the inner wall of the steel requires excessive labor.
 そこで、本実施形態においては、水溶性の蛍光物質を使用し、これを水で希釈した水溶液のミスト22を模擬汚染物質として採用する。なお、蛍光物質の水溶液のミスト22は、実際の高薬理活性医薬品(凍結乾燥前の液剤)が飛散した際のミスト22と飛散挙動が類似する。なお、本発明者らは、ミスト22が実際の高薬理活性医薬品(凍結乾燥後の粉剤)とも類似した飛散挙動を示すことを確認した。 Therefore, in the present embodiment, a water-soluble fluorescent substance is used, and an aqueous mist 22 diluted with water is used as a simulated contaminant. In addition, the mist 22 of the aqueous solution of the fluorescent substance is similar in scattering behavior to the mist 22 when the actual highly pharmacologically active pharmaceutical agent (liquid agent before lyophilization) is scattered. The inventors of the present invention have confirmed that mist 22 exhibits a scattering behavior similar to that of an actual highly pharmacologically active pharmaceutical product (powder after lyophilization).
 ここで、本実施形態で採用する蛍光発光物質について説明する。本発明で使用する蛍光発光物質については、蛍光を発する物質であれば特に限定するものではない。なお、本実施形態においては、人体に安全で環境汚染性のない物質であって、水溶性であることが好ましい。蛍光発光物質が水溶性であることにより、他の溶媒を使用することなく容易に水溶液を調整できてミストにすることができる。そのことにより、飛散ミスト量に比べ実際の蛍光発光物質の飛散量が非常に少なくなり、薬品コストが低減できるだけでなく、アイソレーターの内壁に付着した蛍光発光物質を除去する洗浄作業が容易になる。 Here, the fluorescent substance used in the present embodiment will be described. The fluorescent substance used in the present invention is not particularly limited as long as it is a substance that emits fluorescence. In the present embodiment, it is preferable that the substance is safe for the human body and has no environmental pollution, and is water-soluble. Since the fluorescent light-emitting substance is water-soluble, an aqueous solution can be easily prepared without using any other solvent to make a mist. As a result, the actual amount of scattered fluorescent light-emitting substance is very small compared to the amount of scattered mist, which not only reduces the chemical cost, but also facilitates a cleaning operation for removing the fluorescent light-emitting substance attached to the inner wall of the isolator.
 なお、人体に安全で環境汚染性がなく水溶性である蛍光発光物質としては、種々のものを採用することができる。なお、本実施形態においては、本技術領域において実績のあるリボフラビン(ビタミンB2)又はその誘導体を採用する。具体的には、リボフラビンリン酸エステルナトリウムを採用した。このリボフラビンリン酸エステルナトリウムの水に対する溶解性は50g/Lであり、十分な水溶解性を有している。 It should be noted that various fluorescent light-emitting substances that are safe for the human body, have no environmental pollution, and are water-soluble can be used. In this embodiment, riboflavin (vitamin B2) or a derivative thereof that has a proven record in this technical field is employed. Specifically, riboflavin phosphate sodium was employed. The solubility of this riboflavin phosphate sodium in water is 50 g / L, and it has sufficient water solubility.
 使用する蛍光発光物質の水溶液の濃度は、その蛍光発光物質の溶解度以下であることが必要である。また、実際に使用する超音波霧化装置と検出装置との組合せにおいて、その蛍光発光物質の存在を明確に検出できる濃度以上であれば、特に限定するものではない。なお、蛍光発光物質としてリボフラビンリン酸エステルナトリウムを使用する場合には、0.1質量%~5.0質量%水溶液の範囲で使用することが好ましい(後述する)。リボフラビンリン酸エステルナトリウムの濃度が0.1質量%以上であれば、検出感度が良好であり、5.0質量%以下であればリボフラビンリン酸エステルナトリウムの溶解が容易となるからである。なお、本実施形態においては、リボフラビンリン酸エステルナトリウムの0.2%水溶液を使用した。 The concentration of the aqueous solution of the fluorescent luminescent substance to be used must be less than the solubility of the fluorescent luminescent substance. Moreover, in the combination of the ultrasonic atomization apparatus and detection apparatus which are actually used, if it is the density | concentration beyond which the presence of the fluorescent luminescent substance can be detected clearly, it will not specifically limit. When sodium riboflavin phosphate is used as the fluorescent substance, it is preferably used in the range of 0.1% by mass to 5.0% by mass aqueous solution (described later). This is because the detection sensitivity is good when the concentration of sodium riboflavin phosphate is 0.1% by mass or more, and the dissolution of sodium riboflavin phosphate is easy when the concentration is 5.0% by mass or less. In this embodiment, a 0.2% aqueous solution of sodium riboflavin phosphate is used.
 次に、蛍光発光物質の水溶液をミストとするミスト発生手段について説明する。図3において、蛍光発光物質の水溶液(リボフラビンリン酸エステルナトリウムの0.2%水溶液)を収容した容器21をミスト発生手段としての超音波霧化装置23の震動面に載置して、蛍光発光物質のミスト22を発生させる。なお、超音波霧化装置23の構造と性能については、特に限定するものではない。但し、蛍光発光物質の水溶液を模擬汚染物質として適正な液滴径を有するミストとすることが好ましい。模擬汚染物質として適正な液滴径とは、実際の高薬理活性医薬品のミスト(凍結乾燥前の液剤)又は紛体(凍結乾燥後の粉剤)と類似した飛散挙動を示すことをいう。そのために、模擬汚染物質のミスト22の比重と液滴径を考慮して超音波霧化装置23の周波数と出力を調整する。 Next, mist generating means using an aqueous solution of a fluorescent light-emitting substance as mist will be described. In FIG. 3, a container 21 containing an aqueous solution of a fluorescent luminescent substance (0.2% aqueous solution of riboflavin phosphate sodium) is placed on the vibration surface of an ultrasonic atomizer 23 serving as a mist generating means to fluoresce. A mist 22 of material is generated. In addition, about the structure and performance of the ultrasonic atomizer 23, it does not specifically limit. However, it is preferable to use an aqueous solution of a fluorescent light-emitting substance as a simulated contaminant and a mist having an appropriate droplet diameter. An appropriate droplet size as a simulated contaminant means that it exhibits a scattering behavior similar to that of an actual highly pharmacologically active pharmaceutical mist (liquid agent before freeze-drying) or powder (powder after freeze-drying). For this purpose, the frequency and output of the ultrasonic atomizer 23 are adjusted in consideration of the specific gravity of the mist 22 of simulated contaminants and the droplet diameter.
 蛍光発光物質の水溶液がミスト22となることにより、チャンバー12の内部全体に模擬汚染物質が空気中にミストとして飛散する。なお、チャンバー12の内部は、実際に封じ込めアイソレーターとしての使用時と同様に陽圧に管理されている。図3においては、図2に示したサンプリングポイントのうち、バグアウトポート17を対象として封じ込め性能を確認する。図3において、チャンバー12の右側面の壁部に配設されたバグアウトポート17が、外部環境側から捕集手段としての捕集器24によって被覆されている。また、捕集器24は、検出装置25と吸引配管25aによって連通している。 When the aqueous solution of the fluorescent light-emitting substance becomes the mist 22, the simulated contaminant is scattered as mist in the air throughout the interior of the chamber 12. The inside of the chamber 12 is managed at a positive pressure in the same manner as when actually used as a containment isolator. In FIG. 3, the containment performance is confirmed for the bug out port 17 among the sampling points shown in FIG. In FIG. 3, the bag-out port 17 disposed on the right side wall of the chamber 12 is covered with a collector 24 as a collecting means from the outside environment side. The collector 24 is in communication with the detection device 25 and the suction pipe 25a.
 この状態において、バグアウトポート17周辺から模擬汚染物質のミスト22が漏洩した場合には、ミスト22は周辺空気と共に検査空気として捕集器24によって捕集される。捕集器24によって捕集された検査空気は、吸引配管25aを介して検出手段としての検出装置25に送られる。なお、検出装置25には、検査空気を吸引するポンプ(図示せず)が内蔵されている。 In this state, when the mist 22 of the simulated pollutant leaks from the vicinity of the bag-out port 17, the mist 22 is collected by the collector 24 as the inspection air together with the ambient air. The inspection air collected by the collector 24 is sent to the detection device 25 as detection means via the suction pipe 25a. The detection device 25 has a built-in pump (not shown) that sucks the inspection air.
 ここで、検出装置25について説明する。本実施形態においては、検出装置25として微生物迅速検査法(RMM)で使用される微生物迅速検査装置を利用することができる。この微生物迅速検査装置は、一般にパーティクルカウンタと浮遊菌カウンタとを備えている。これらのカウンタは、吸引配管から送られてくる検査空気の一定量をサンプルとして捕集口から吸引し、その中のパーティクル(微粒子)や浮遊菌(微生物微粒子)を光学系計測器などで検出するものである。特に近年、光学系計測器を利用した微生物迅速検査装置は、瞬時に微生物由来の微粒子を判別できる方法として、従来の培養法に比べ大幅に作業効率を図ることができるとされている。本実施形態においては、浮遊菌(微生物微粒子)を測定するわけではないが、蛍光発光するミストを検出するために微生物迅速検査装置を利用するものである。 Here, the detection device 25 will be described. In the present embodiment, a rapid microorganism testing apparatus used in the rapid microorganism testing method (RMM) can be used as the detection device 25. This rapid microorganism testing apparatus generally includes a particle counter and a floating bacteria counter. These counters draw a certain amount of test air sent from the suction pipe as a sample from the collection port, and detect particles (microparticles) and airborne microbes (microorganism microparticles) in the sample using an optical instrument. Is. Particularly in recent years, it has been said that a rapid microorganism testing apparatus using an optical measuring instrument can greatly improve the working efficiency as compared with a conventional culture method as a method capable of instantaneously distinguishing microorganism-derived microparticles. In this embodiment, airborne bacteria (microorganism microparticles) are not measured, but a microorganism rapid inspection apparatus is used to detect mist that emits fluorescence.
 本実施形態においては、検出装置25の微粒子検出部として、光散乱法による粒径選別を利用したパーティクルカウンタを採用した。このパーティクルカウンタは、検査空気中の微粒子の総数を瞬時に検出するものである。なお、本実施形態においては、パーティクルカウンタの検出した微粒子の総数を検査空気中の「総粒子濃度(個/L)」とする。 In the present embodiment, a particle counter using particle size sorting by a light scattering method is employed as the particle detection unit of the detection device 25. This particle counter instantaneously detects the total number of fine particles in the inspection air. In the present embodiment, the total number of fine particles detected by the particle counter is defined as “total particle concentration (number / L)” in the inspection air.
 一方、検出装置25の蛍光検出部として、レーザー励起蛍光法による蛍光識別を利用した浮遊菌カウンタを採用した。レーザー励起蛍光法とは、検査空気中に浮遊する微粒子のうち微生物や細胞生存性と関係する微粒子が、紫外線に励起されて蛍光を発することを利用するものである。この浮遊菌カウンタは、検査空気中の蛍光発光微粒子の総数を瞬時に検出するものである。なお、本実施形態においては、浮遊菌カウンタの検出した蛍光発光微粒子の総数を検査空気中の「陽性粒子濃度(個/L)」とする。 On the other hand, as a fluorescence detection part of the detection device 25, a floating bacteria counter using fluorescence identification by a laser excitation fluorescence method was adopted. The laser-excited fluorescence method utilizes the fact that among microparticles floating in test air, microparticles related to microorganisms and cell viability emit fluorescence when excited by ultraviolet rays. This airborne microbe counter instantaneously detects the total number of fluorescent luminescent particles in the test air. In the present embodiment, the total number of fluorescent light-emitting fine particles detected by the airborne microbe counter is defined as “positive particle concentration (number / L)” in the test air.
 次に、本実施形態においては、パーティクルカウンタが検出した総粒子濃度(個/L)と浮遊菌カウンタが検出した陽性粒子濃度(個/L)とから陽性粒子比率(%)を算出する。そして、この陽性粒子比率(%)がバックグラウンド(蛍光発光物質を含まない水のミスト)の陽性粒子比率(%)と明らかに識別ができるときに、検査空気中に模擬汚染物質が存在すると判断することができる。 Next, in the present embodiment, the positive particle ratio (%) is calculated from the total particle concentration (number / L) detected by the particle counter and the positive particle concentration (number / L) detected by the floating bacteria counter. When this positive particle ratio (%) is clearly distinguishable from the positive particle ratio (%) of the background (water mist that does not contain fluorescent substances), it is determined that simulated contaminants are present in the test air. can do.
 ここで、検出装置25によるミスト22の検出と、検査空気中に漏洩した模擬汚染物質の存在を判断する基準について説明する。なお、ここでは模擬汚染物質としてリボフラビンリン酸エステルナトリウム水溶液のミストについて説明する。 Here, the detection of the mist 22 by the detection device 25 and the criteria for judging the presence of the simulated contaminant leaked into the inspection air will be described. Here, mist of sodium riboflavin phosphate aqueous solution will be described as a simulated contaminant.
 まず、本発明者らは、濃度を変化させた数種類のリボフラビンリン酸エステルナトリウム水溶液(サンプル)、及び、蛍光発光物質を含まない水(比較サンプル)を準備した。次に、これらのサンプルに対して、図3において説明した容器21及び超音波霧化装置23を用いて、各サンプルのミスト22を発生させた。次に、発生したミスト22を含む空気を検査空気として捕集器24で捕集した。この捕集器24で捕集した検査空気は、吸引配管25aを介して検出装置25に供給し、蛍光発光物質の検出を行った。その結果、各サンプルに対する総粒子濃度(個/L)、陽性粒子濃度(個/L)、及び算出した陽性粒子比率(%)を得た。 First, the present inventors prepared several types of sodium riboflavin phosphate aqueous solutions (samples) with different concentrations and water not containing a fluorescent substance (comparative sample). Next, with respect to these samples, the mist 22 of each sample was generated using the container 21 and the ultrasonic atomizer 23 described in FIG. Next, the air containing the generated mist 22 was collected by the collector 24 as inspection air. The inspection air collected by the collector 24 was supplied to the detection device 25 via the suction pipe 25a, and the fluorescent light emitting material was detected. As a result, the total particle concentration (number / L), the positive particle concentration (number / L), and the calculated positive particle ratio (%) for each sample were obtained.
 その結果、蛍光発光物質の濃度の異なる各サンプルに対する陽性粒子比率(%)が、濃度に依存して変化することを確認した。また、蛍光発光物質の濃度が高い場合には、蛍光発光物質を含まない水(比較サンプル)に比べ明瞭な差異を確認した。その結果、検査空気の陽性粒子比率(%)から模擬汚染物質の漏洩を検出できることを確認した。 As a result, it was confirmed that the positive particle ratio (%) for each sample having a different concentration of the fluorescent substance changed depending on the concentration. In addition, when the concentration of the fluorescent light-emitting substance was high, a clear difference was confirmed as compared with water not containing the fluorescent light-emitting substance (comparative sample). As a result, it was confirmed that leakage of simulated contaminants could be detected from the positive particle ratio (%) in the test air.
 これらのことから、本発明者らは、模擬汚染物質としてリボフラビンリン酸エステルナトリウムを使用する場合には、0.1質量%~5.0質量%水溶液の範囲で使用することが好ましいと判断した。なお、本実施形態においては、実際に使用する蛍光発光物質の種類及び超音波霧化装置と検出装置との組合せに対して、上述のような予備試験を行って使用する蛍光発光物質の濃度を確認することが好ましい。 From these facts, the present inventors have determined that when sodium riboflavin phosphate is used as a simulated contaminant, it is preferably used in the range of 0.1% by mass to 5.0% by mass aqueous solution. . In the present embodiment, the concentration of the fluorescent light-emitting substance to be used is determined by conducting the preliminary test as described above for the type of the fluorescent light-emitting substance actually used and the combination of the ultrasonic atomizer and the detection device. It is preferable to confirm.
 以上のことから、本発明においては、煩雑な製造作業を必要とせず検査後の装置からの除去が容易な模擬汚染物質を使用し、当該模擬汚染物質の飛散・漏洩の様子を定量的な値でリアルタイムに求めることができる封じ込め性能検査システムを提供することができる。 From the above, in the present invention, a simulated contaminant that does not require a complicated manufacturing operation and can be easily removed from the apparatus after the inspection is used, and the state of scattering and leakage of the simulated contaminant is a quantitative value. It is possible to provide a containment performance inspection system that can be obtained in real time.
 なお、本発明の実施にあたり、上記実施形態に限らず、次のような種々の変形例が挙げられる。
(1)上記実施形態においては、蛍光発光物質としてリボフラビンリン酸エステルナトリウムを採用するが、これに限定するものではなく、リボフラビンそのものや他の水溶性の蛍光発光物質を使用するようにしてもよい。
(2)上記実施形態においては、封じ込めアイソレーターのチャンバーについて封じ込め性能を検査するものであるが、これに限定するものではなく、クリーンルームやRABS(アクセス制限バリアシステム)などの内部の各位置における汚染物質の飛散状況の把握(モニタリング)に本システムを使用するようにしてもよい。
In carrying out the present invention, not only the above-described embodiment but also the following various modifications can be mentioned.
(1) In the above embodiment, sodium riboflavin phosphate is adopted as the fluorescent light-emitting substance, but the present invention is not limited to this, and riboflavin itself or other water-soluble fluorescent light-emitting substances may be used. .
(2) In the above-described embodiment, the containment performance of the containment isolator chamber is inspected. However, the present invention is not limited to this. Contaminants at various positions inside a clean room, RABS (access restriction barrier system), etc. You may make it use this system for grasping (monitoring) of the scattering situation of a.
10…アイソレーター、11…架台、
12…チャンバー、12a…開閉扉、12b…グローブポート、
13…制御部、14a、14b、14c…フィルタユニット、15…ブロワー、
16…パスボックス、17…バグアウトポート、
20…封じ込め性能検査システム、21…容器、22…ミスト、23…超音波霧化装置、24…捕集器、
25…検出装置、25a…吸引配管、
P…サンプリングポイント。
10 ... Isolator, 11 ... Stand,
12 ... Chamber, 12a ... Open / close door, 12b ... Globe port,
13 ... Control unit, 14a, 14b, 14c ... Filter unit, 15 ... Blower,
16 ... pass box, 17 ... bug out port,
20 ... containment performance inspection system, 21 ... container, 22 ... mist, 23 ... ultrasonic atomizer, 24 ... collector
25 ... Detection device, 25a ... Suction piping,
P: Sampling point.

Claims (7)

  1.  作業室の内部から外部環境への模擬汚染物質の漏洩を検知して、当該作業室の封じ込め性能を検査するための検査システムであって、
     前記作業室の内部に前記模擬汚染物質のミストを発生させるミスト発生手段と、 
     前記外部環境において、前記模擬汚染物質の漏洩を確認する位置の検査空気を捕集する捕集手段と、
     前記捕集手段で捕集された検査空気に含まれる前記模擬汚染物質を検出する検出手段とを有することを特徴とする封じ込め性能検査システム。
    An inspection system for detecting leakage of simulated pollutants from the inside of a work room to the outside environment and checking the containment performance of the work room,
    Mist generating means for generating a mist of the simulated contaminant inside the working chamber;
    In the external environment, collecting means for collecting inspection air at a position for confirming leakage of the simulated contaminants;
    A containment performance inspection system comprising: detection means for detecting the simulated contaminant contained in the inspection air collected by the collection means.
  2.  前記検出手段は、微粒子検出部と蛍光検出部とを有し、
     前記微粒子検出部において、前記検査空気中の前記模擬汚染物質の総粒子濃度を検出すると共に、
     前記蛍光検出部において、前記検査空気中の陽性粒子濃度を検出することにより、
     前記総粒子濃度と陽性粒子濃度とから陽性粒子比率を算出して、前記模擬汚染物質の漏洩を確認することを特徴とする請求項1に記載の封じ込め性能検査システム。
    The detection means includes a fine particle detection unit and a fluorescence detection unit,
    In the fine particle detection unit, while detecting the total particle concentration of the simulated contaminant in the inspection air,
    In the fluorescence detection unit, by detecting the positive particle concentration in the test air,
    The containment performance inspection system according to claim 1, wherein a leakage ratio of the simulated contaminant is confirmed by calculating a positive particle ratio from the total particle concentration and the positive particle concentration.
  3.  前記蛍光検出部は、レーザー励起蛍光法によって前記検査空気中の前記模擬汚染物質を検出することを特徴とする請求項2に記載の封じ込め性能検査システム。 3. The containment performance inspection system according to claim 2, wherein the fluorescence detection unit detects the simulated contaminant in the inspection air by a laser excitation fluorescence method.
  4.  前記ミスト発生手段は、超音波霧化装置であることを特徴とする請求項1~3のいずれか1つに記載の封じ込め性能検査システム。 The containment performance inspection system according to any one of claims 1 to 3, wherein the mist generating means is an ultrasonic atomizer.
  5.  前記模擬汚染物質は、蛍光発光物質の水溶液であることを特徴とする請求項1~4のいずれか1つに記載の封じ込め性能検査システム。 The containment performance inspection system according to any one of claims 1 to 4, wherein the simulated contaminant is an aqueous solution of a fluorescent luminescent material.
  6.  前記蛍光発光物質の水溶液は、リボフラビン又はその誘導体を溶解した水溶液であることを特徴とする請求項5に記載の封じ込め性能検査システム。 6. The containment performance inspection system according to claim 5, wherein the aqueous solution of the fluorescent light-emitting substance is an aqueous solution in which riboflavin or a derivative thereof is dissolved.
  7.  前記蛍光発光物質の水溶液は、リボフラビンリン酸エステルナトリウムの0.1質量%~5.0質量%水溶液であることを特徴とする請求項6に記載の封じ込め性能検査システム。 The containment performance inspection system according to claim 6, wherein the aqueous solution of the fluorescent light-emitting substance is a 0.1% by mass to 5.0% by mass aqueous solution of sodium riboflavin phosphate.
PCT/JP2018/003558 2017-02-13 2018-02-02 Containment-performance inspection system WO2018147176A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-023779 2017-02-13
JP2017023779A JP6779524B2 (en) 2017-02-13 2017-02-13 Containment performance inspection system

Publications (1)

Publication Number Publication Date
WO2018147176A1 true WO2018147176A1 (en) 2018-08-16

Family

ID=63108198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003558 WO2018147176A1 (en) 2017-02-13 2018-02-02 Containment-performance inspection system

Country Status (2)

Country Link
JP (1) JP6779524B2 (en)
WO (1) WO2018147176A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7356837B2 (en) * 2019-07-26 2023-10-05 シオノギファーマ株式会社 Hazardous drug exposure assessment method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141639U (en) * 1977-04-14 1978-11-09
JPH07174660A (en) * 1993-12-17 1995-07-14 Toyota Motor Corp Method and apparatus for detection of leak part
JPH10132694A (en) * 1996-11-01 1998-05-22 Ruiro Internatl:Kk Device for discovering coming-in portion of rain leakage and water leakage
US20040074286A1 (en) * 2002-10-03 2004-04-22 Olmsted Clifford C. Air leak detection system and method
JP2004309160A (en) * 2003-04-02 2004-11-04 Shimizu Corp Clean room airtightness performance testing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141639U (en) * 1977-04-14 1978-11-09
JPH07174660A (en) * 1993-12-17 1995-07-14 Toyota Motor Corp Method and apparatus for detection of leak part
JPH10132694A (en) * 1996-11-01 1998-05-22 Ruiro Internatl:Kk Device for discovering coming-in portion of rain leakage and water leakage
US20040074286A1 (en) * 2002-10-03 2004-04-22 Olmsted Clifford C. Air leak detection system and method
JP2004309160A (en) * 2003-04-02 2004-11-04 Shimizu Corp Clean room airtightness performance testing method

Also Published As

Publication number Publication date
JP2018132305A (en) 2018-08-23
JP6779524B2 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
WO2018147178A1 (en) Cleaning-performance evaluation system
JP5245379B2 (en) Collection device and analysis system using the same
US8647860B2 (en) Pathogen detection by simultaneous size/fluorescence measurement
US8254696B2 (en) Systems and methods for detection of an airborne contaminant
JP2022545168A (en) Triggered sampling system and method
US11273438B2 (en) Safety cabinet
US7343782B2 (en) System and method for performing quantifiable release spore testing on bioaerosol detection technologies
TWI447394B (en) Pathogen detection by simultaneous size/fluorescence measurement
JP2011506977A (en) Pathogen detection by simultaneous size / fluorescence measurement
WO2018147176A1 (en) Containment-performance inspection system
Duquenne et al. Performances of the BC-112 NIOSH cyclone for the measurement of endotoxins in bioaerosols: A study in laboratory conditions
KR101523658B1 (en) Particles Transmitting Capacity Evaluation Method and Apparatus for Filter using Fluorescent Aerosol
Clark Safety cabinets, fume cupboards and other containment systems
CN205506642U (en) Performance detection device of real -time airborne viable particles calculating instrument
US20080124248A1 (en) Endotoxins and glucans quantification in indoor air
JP2014221012A (en) Simulated powder, method for evaluating scattered state of powder, and powder handling facility
Xie et al. Evaluation of cell sorting aerosols and containment by an optical airborne particle counter
Rydock A simple method for tracer containment testing of hospital isolation rooms
Gopalakrishnan et al. Comparison and evaluation of enumeration methods for measurement of fungal spore emission
Calfee et al. Evaluation of sampling methods for Bacillus spore-contaminated HVAC filters
Birrer et al. Parenteral dosage forms
Sandle Real-time counting of airborne particles and microorganisms: A new technological wave?
KR102415081B1 (en) Saliva treatment kit for testing the degree of damage from exposure to harmful gases
Iida et al. Verifying the viable particle counts of biofluorescent particle counters by using inkjet aerosol generators
Da et al. Performance of the original workstation for aerosol tests under controlled conditions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18751693

Country of ref document: EP

Kind code of ref document: A1