WO2018146980A1 - 電力供給システム、電力供給システムの制御方法、及び回路基板 - Google Patents

電力供給システム、電力供給システムの制御方法、及び回路基板 Download PDF

Info

Publication number
WO2018146980A1
WO2018146980A1 PCT/JP2018/000011 JP2018000011W WO2018146980A1 WO 2018146980 A1 WO2018146980 A1 WO 2018146980A1 JP 2018000011 W JP2018000011 W JP 2018000011W WO 2018146980 A1 WO2018146980 A1 WO 2018146980A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power supply
electronic fuse
power
terminal
Prior art date
Application number
PCT/JP2018/000011
Other languages
English (en)
French (fr)
Inventor
真章 北野
Original Assignee
Necプラットフォームズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necプラットフォームズ株式会社 filed Critical Necプラットフォームズ株式会社
Priority to US16/482,729 priority Critical patent/US11394193B2/en
Publication of WO2018146980A1 publication Critical patent/WO2018146980A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications

Definitions

  • the present invention relates to a power supply system, a control method for the power supply system, and a circuit board applied to the power supply system.
  • Patent Document 1 discloses a power supply circuit including an overcurrent protection circuit for supplying power to an electric device such as a television receiver.
  • a recovery type fuse is used as a protection device for dealing with an excessive current at the time of abnormal operation of the load, thereby realizing recovery from the abnormality of the power supply circuit.
  • Patent Document 2 discloses a vehicle power supply system that supplies power to electrical components from a generator or a battery provided in the vehicle.
  • the semiconductor switching device is equipped with an electronic fuse that cuts off the output current when an abnormality occurs.
  • a large current may flow from the power supply circuit to the power consumption circuit where the failure has occurred. is there.
  • the large current flowing in the power consumption circuit is immediately cut off, and the malfunctioning power consumption circuit is normally operated while the malfunctioning power consumption circuit is operating. It is desired to replace the power consumption circuit to operate.
  • An object of this invention is to provide the electric power supply system which can solve said subject, the control method of an electric power supply system, and a circuit board.
  • the power supplied from the power supply circuit according to the power supply circuit and the voltage applied to the first terminal is output, and the magnitude of the current generated based on the power of the power supply circuit is output.
  • An electronic fuse that generates a predetermined signal at the second terminal in response to the power, a power consuming circuit that consumes power supplied from the power supply circuit via the electronic fuse, and a predetermined generated at the second terminal of the electronic fuse And a switch that changes a connection state with the electronic fuse according to the signal.
  • the power supply circuit and the electronic fuse are provided on the first circuit board, the power consuming circuit and the switch are provided on the second circuit board, and the first circuit board and the second circuit board are Connected via connector.
  • connection state between the power consuming circuit that consumes the power supplied from the power supply circuit via the electronic fuse and the electronic fuse changes according to a predetermined signal output from the electronic fuse. And a switch.
  • a third aspect of the present invention is a control method applied to a power supply system including a power supply circuit, an electronic fuse, a power consumption circuit, and a switch.
  • power is supplied from the power supply circuit to the power consumption circuit via the electronic fuse in accordance with the voltage applied to the first terminal of the electronic fuse, and the magnitude of the current generated based on the power of the power supply circuit Accordingly, a predetermined signal is generated at the second terminal of the electronic fuse, and the connection state of the switch is changed according to the predetermined signal generated at the second terminal of the electronic fuse.
  • the power consumption circuit when a malfunction occurs in any of a plurality of power consumption circuits (loads) that consume power supplied from a power supply circuit and an overcurrent flows through the power consumption circuit, the power consumption circuit immediately enters the power consumption circuit. While interrupting the flowing overcurrent, it is possible to replace the power consuming circuit in which the problem has occurred with a power consuming circuit that operates normally while operating the power consuming circuit without any problem.
  • 1 is a block diagram of a power supply system according to an embodiment of the present invention. It is the flowchart which showed the process sequence of the electric power supply system which concerns on one Example of this invention. It is a block diagram which shows the minimum structure of the electric power supply system which concerns on this invention. It is a block diagram of the electric power supply system which concerns on the 1st modification of one Example of this invention. It is a block diagram of the electric power supply system which concerns on the 2nd modification of one Example of this invention.
  • FIG. 1 is a block diagram of a power supply system 1 according to an embodiment of the present invention.
  • the power supply system 1 includes connectors 10a, 10b, and 10c, a module 20, and modules 30a, 30b, and 30c.
  • the connectors 10a, 10b, and 10c are collectively referred to as a connector 10.
  • the modules 30a, 30b, and 30c are collectively referred to as a module 30.
  • the connector 10a connects the module 20 and the module 30a.
  • the electric power PWa generated by the module 20 is supplied to the module 30a via the connector 10a.
  • the enable signal SGena from the enable terminal EN in the module 20 is supplied to the module 30a via the connector 10a.
  • a fault signal SGfault from a fault terminal “Fault” in the module 20 is supplied to the module 30a via the connector 10a.
  • Connector 10b connects module 20 and module 30b.
  • the electric power PWb generated by the module 20 is supplied to the module 30b via the connector 10b.
  • the enable signal SGenb output from the enable terminal EN in the module 20 is supplied to the module 30b via the connector 10b.
  • the fault signal SGfaultb output from the fault terminal “Fault” in the module 20 is supplied to the module 30b via the connector 10b.
  • the connector 10c connects the module 20 and the module 30c.
  • the electric power PWc generated in the module 20 is supplied to the module 30c via the connector 10c.
  • the enable signal SGenc output from the enable terminal EN in the module 20 is supplied to the module 30c via the connector 10c.
  • the fault signal SGfaultc output from the fault terminal “Fault” in the module 20 is supplied to the module 30c via the connector 10c.
  • the module 20 includes a first circuit board 201, a power supply circuit 202, electronic fuses 203a, 203b, and 203c, and resistors 204a, 204b, and 204c.
  • the electronic fuses 203a, 203b, and 203c are collectively referred to as an electronic fuse 203.
  • the resistors 204a, 204b, and 204c are collectively referred to as a resistor 204.
  • the first circuit board 201 includes a power circuit 202, a plurality of electronic fuses 203, and a plurality of resistors 204.
  • the power supply circuit 202 supplies power to the second circuit board 301a via the electronic fuse 203a and the connector 10a.
  • the power supply circuit 202 supplies power to the second circuit board 301b through the electronic fuse 203b and the connector 10b.
  • the power supply circuit 202 supplies power to the second circuit board 301c through the electronic fuse 203c and the connector 10c.
  • Each of the electronic fuses 203 electrically cuts off the internal circuit of the own electronic fuse 203. Even if the internal circuit is disconnected once, when the electric power supplied to the own electronic fuse 203 is cut off, the internal circuit is again turned on. Are configured to return to a state in which they are electrically connected.
  • Specific examples of the electronic fuse 203 include, for example, “TPS26600” manufactured by Texas Instruments, “ADG841” manufactured by Analog Devices, and the like.
  • the electronic fuse 203a is mounted to protect the module 30a from overcurrent.
  • the electronic fuse 203a includes an input terminal IN, an output terminal OUT, an enable terminal EN, and a fault terminal Fault.
  • the electronic fuse 203a detects an overcurrent exceeding an allowable current in its internal circuit, the electronic fuse 203a outputs a fault signal SGfaulta indicating that the overcurrent has been detected from the fault terminal Fault.
  • the electronic fuse 203a makes the internal circuit between the input terminal IN and the output terminal OUT conductive when the voltage at the enable terminal EN is in an asserted state, that is, a high level voltage indicating an operable state.
  • the electronic fuse 203a puts the internal circuit between the input terminal IN and the output terminal into a cut-off state.
  • the interruption state of the internal circuit the supply of power PWa from the power supply circuit 202 to the electronic fuse 203a is stopped. Thereafter, when the supply of power PWa from the power supply circuit 202 to the electronic fuse 203a is resumed, the input terminal IN and the output terminal OUT are electrically connected.
  • the electronic fuse 203b is mounted to protect the module 30b from overcurrent.
  • the electronic fuse 203b includes an input terminal IN, an output terminal OUT, an enable terminal EN, and a fault terminal Fault.
  • the electronic fuse 203b detects an overcurrent exceeding an allowable current in its internal circuit, the electronic fuse 203b outputs a fault signal SGfaultb indicating that the overcurrent has been detected from the fault terminal Fault.
  • the electronic fuse 203b makes the internal circuit between the input terminal IN and the output terminal OUT conductive when the voltage at the enable terminal EN is in an asserted state, that is, a high level voltage indicating an operable state.
  • the electronic fuse 203b puts the internal circuit between the input terminal IN and the output terminal into a cut-off state.
  • the interruption state of the internal circuit the supply of power PWb from the power supply circuit 202 to the electronic fuse 203b is stopped. Thereafter, when the supply of power PWb from the power supply circuit 202 to the electronic fuse 203b is resumed, the input terminal IN and the output terminal OUT are electrically connected.
  • the electronic fuse 203c is mounted to protect the module 30a from overcurrent.
  • the electronic fuse 203c includes an input terminal IN, an output terminal OUT, an enable terminal EN, and a fault terminal Fault.
  • the electronic fuse 203c detects an overcurrent exceeding an allowable current in its internal circuit, the electronic fuse 203c outputs a fault signal SGfaultc indicating that the overcurrent is detected from the fault terminal Fault.
  • the electronic fuse 203c makes the internal circuit between the input terminal IN and the output terminal OUT conductive when the voltage at the enable terminal EN is an asserted state, that is, a high level voltage indicating an operable state.
  • the electronic fuse 203c puts the internal circuit between the input terminal IN and the output terminal into a cut-off state.
  • the interruption state of the internal circuit the supply of power PWc from the power supply circuit 202 to the electronic fuse 203c is stopped. Thereafter, when the supply of the power PWc from the power supply circuit 202 to the electronic fuse 203c is resumed, the input terminal IN and the output terminal OUT are electrically connected.
  • the module 30a includes a second circuit board 301a, a power consumption circuit 302a, and a switch 303a.
  • the second circuit board 301a includes a power consumption circuit 302a and a switch 303a.
  • the power consumption circuit 302 a operates with the power supplied from the power supply circuit 202 and is a load that consumes the power of the power supply circuit 202.
  • the power consumption circuit 302a corresponds to a circuit with high power consumption such as a CPU and a memory, for example.
  • the switch 303a has a non-volatile storage area, and holds the value stored immediately before the power supply to the switch 303a is stopped. One terminal of the switch 303a is grounded to the ground GND. The other terminal of the switch 303a is connected to the enable terminal EN of the electronic fuse 203a through the connector 10a.
  • the switch 303a In the initial state where the switch 303a does not receive the signal SGfault from the fault terminal Fault of the electronic fuse 203a, the switch 303a opens the ground GND and the enable terminal EN of the electronic fuse 203a. On the other hand, when the switch 303a receives the signal SGfault from the fault terminal Fault of the electronic fuse 203a, the switch 303a sets a short circuit between the ground GND and the enable terminal EN of the electronic fuse 203a.
  • the switch 303a holds the value stored immediately before in the non-volatile storage area even when power is not supplied, so once the fault signal SGfault is received from the fault terminal Fault of the electronic fuse 203a, Thereafter, the ground GND and the enable terminal of the electronic fuse 203a are always kept short-circuited.
  • the module 30b includes a second circuit board 301b, a power consumption circuit 302b, and a switch 303b.
  • the second circuit board 301b includes a power consumption circuit 302b and a switch 303b.
  • the power consumption circuit 302 b operates with the power supplied from the power supply circuit 202 and is a load that consumes the power of the power supply circuit 202.
  • the switch 303b has a non-volatile storage area, and holds the value stored immediately before even when the power supply to the switch 303b is stopped.
  • One terminal of the switch 303b is grounded to the ground GND. Further, another terminal of the switch 303b is connected to the enable terminal EN of the electronic fuse 203b via the connector 10b.
  • the switch 303b In the initial state where the switch 303b does not receive the signal SGfaultb from the fault terminal Fault of the electronic fuse 203b, the switch 303b opens the ground GND and the enable terminal EN of the electronic fuse 203b. On the other hand, in a state where the switch 303b receives the signal SGfaultb from the fault terminal Fault of the electronic fuse 203b, the switch 303b makes a short circuit between the ground GND and the enable terminal EN of the electronic fuse 203b.
  • the switch 303b holds the value stored immediately before in the nonvolatile storage area even when power is not supplied, so once the fault signal SGfaultb is received from the fault terminal Fault of the electronic fuse 203b, Thereafter, the ground GND and the enable terminal of the electronic fuse 203b are always kept short-circuited.
  • the module 30c includes a second circuit board 301c, a power consumption circuit 302c, and a switch 303c.
  • the second circuit board 301c includes a power consumption circuit 302c and a switch 303c.
  • the power consuming circuit 302 c operates with the power supplied from the power supply circuit 202 and is a load that consumes the power of the power supply circuit 202.
  • the switch 303c has a non-volatile storage area, and holds the value stored immediately before the power supply to the switch 303c is stopped. One terminal of the switch 303c is grounded to the ground GND. Further, another terminal of the switch 303c is connected to the enable terminal EN of the electronic fuse 203c through the connector 10c.
  • the switch 303c In the initial state where the switch 303c does not receive the signal SGfaultc from the fault terminal Fault of the electronic fuse 203c, the switch 303c opens the ground GND and the enable terminal EN of the electronic fuse 203c. On the other hand, the switch 303c makes a short circuit between the ground GND and the enable terminal EN of the electronic fuse 203c in a state where the signal SGfaultc from the fault terminal Fault of the electronic fuse 203c is received.
  • the switch 303c holds the value stored immediately before in the nonvolatile storage area even when power is not supplied, so once the fault signal SGfaultc is received from the fault terminal Fault of the electronic fuse 203c, Thereafter, the ground GND and the enable terminal of the electronic fuse 203c are always kept short-circuited.
  • the processing procedure of the power supply system 1 when a malfunction occurs in the power consumption circuit 302a among the plurality of power consumption circuits 302 and an overcurrent flows will be described with reference to the flowchart shown in FIG.
  • the switches 303a, 303b, and 303c are collectively referred to as a switch 303.
  • a malfunction occurs in the power consumption circuit 302a and an overcurrent flows (step S1).
  • the electronic fuse 203a detects the overcurrent with an internal circuit (step S2).
  • the electronic fuse 203a detects an overcurrent, it outputs a fault signal SGfault from the fault terminal Fault (step S3).
  • the switch 303a receives the fault signal SGfault from the electronic fuse 203a.
  • the switch 303a receives the fault signal SGfault
  • the switch 303a short-circuits between the ground GND and the enable terminal EN of the electronic fuse 203a (step S4).
  • the storage area of the switch 303a stores a value (for example, “1” indicating a high level) when the fault signal SGfault is received (step S5). By storing this value, the short circuit state between the ground GND and the enable terminal EN of the electronic fuse 203a is maintained.
  • step S6 When the ground GND and the enable terminal EN of the electronic fuse 203a are short-circuited, a current flows through the resistor 204a. When a current flows through the resistor 204a, a voltage drop occurs (step S6). In addition, the enable terminal EN of the electronic fuse 203a is given a deasserted voltage (low level voltage) and is short-circuited to the ground GND (step S7).
  • the electronic fuse 203a electrically cuts off the internal circuit between the input terminal IN and the output terminal OUT when the enable terminal EN is short-circuited to the ground GND (step S8).
  • step S9 When the internal circuit is electrically cut off between the input terminal IN and the output terminal OUT of the electronic fuse 203a, no power is supplied to the power consumption circuit 302. That is, no overcurrent flows through the power consumption circuit 302a, and as a result, overcurrent protection is implemented for the power consumption circuit 302a (step S9).
  • step S10 the power supply from the power supply circuit 202 to each of the electronic fuses 203, the power consumption circuits 302, and the switches 303a, 303b, and 303c is stopped, and then the power supply is restarted (step S10).
  • the storage area of the switch 303a stores the value when the fault signal SGfaulta is received in step S5, and the short circuit state between the ground GND and the enable terminal EN of the electronic fuse 203a is maintained. . That is, overcurrent protection is maintained for the power consumption circuit 302a in which a problem has occurred (step S11).
  • the switches 303b and 303c other than the switch 303a are not described, but the storage areas of the switches 303b and 303c are also values corresponding to the fault signals SGfaultb and SGfaultc (for example, the overcurrent). Is stored as a Low level value “0”) indicating that no signal is flowing. Therefore, each of the switches 303b and 303c holds an open state between the ground GND and the enable terminal EN of the electronic fuses 203b and 203c. That is, power is supplied from the power supply circuit 202 to the power consumption circuits 302b and 302c other than the power consumption circuit 302a (step S12).
  • each of the other power consumption circuits 302b and 302c performs a normal operation during a period in which power is supplied from the power supply circuit 202.
  • the switch 303a is provided on the same circuit board 301a as the power consumption circuit 302a. In this way, the power consumption circuit 302a in which an overcurrent has flowed due to a malfunction can be exchanged with other modules together with the module 30a.
  • the power supply system 1 includes the first circuit board 201, the second circuit boards 301a, 301b, and 301c, the first circuit board 201, and the second circuit board.
  • a plurality of connectors 10 a, 10 b, and 10 c that connect the terminal 301.
  • the first circuit board 201 supplies the power supplied from the power supply circuit 202 to the circuit board 301 based on the voltage applied to the power supply circuit 202 and the enable terminal (first terminal) and flows to the internal circuit.
  • Electronic fuses 203a, 203b, and 203c that generate a fault signal at the fault terminal Fault (second terminal) based on the magnitude of the current.
  • Each of the circuit boards 301a, 301b, and 301c includes power consumption circuits 302a, 302b, and 302c that consume power supplied from the power supply circuit 202, and switches 303a, 303b, and 303c.
  • each of the switches 303 changes from a current connection state to another connection state (for example, an open state to a short-circuit state) in response to a fault signal (predetermined signal) generated at the fault terminal Fault of the electronic fuse 203, Keep another connection state.
  • the power supply system 1 if an overcurrent flows due to a malfunction in one of the plurality of power consumption circuits (loads) 302 that consumes the power supplied from the power supply circuit 202, power is consumed wastefully. Therefore, the overcurrent flowing through the power consumption circuit 302 in which a malfunction has occurred is immediately cut off. In addition, the power consumption circuit 302 in which the problem has occurred can be replaced with another power consumption circuit that operates normally while the power consumption circuit 302 in which the problem has not occurred is operated.
  • the power supply system 1 shown in FIG. 3 includes a first circuit board 201, second circuit boards 301a and 301b, a connector 10a that connects the first circuit board 201 and the second circuit boards 301a and 301b, 10b.
  • the first circuit board 201 includes a power supply circuit 202 and electronic fuses 203a and 203b.
  • the electronic fuses 203a and 203b supply the power supplied from the power supply circuit 202 to the second circuit boards 301a and 301b based on the voltage applied to the enable terminal EN (first terminal), and in the internal circuit thereof A fault signal (predetermined signal) is generated at the fault terminal Fault (second terminal) based on the magnitude of the flowing current.
  • the second circuits 301a and 301b include power consumption circuits 302a and 302b that consume power supplied from the power supply circuit 202, and switches 303a and 303b.
  • the switches 303a and 303b change from the current connection state to another connection state (for example, from the open state to the short-circuit state) in response to a fault signal (predetermined signal) generated at the fault terminal Fault of the electronic fuses 203a and 203b. If so, keep another connection state.
  • a fault signal predetermined signal
  • FIG. 4 and 5 are block diagrams showing a power supply system 1 according to a modification of one embodiment of the present invention.
  • the electronic fuse 203 may be in an operable state when the enable terminal is pulled down.
  • the resistor 204 is a pull-down resistor.
  • the switch 303 receives a fault signal from the electronic fuse 203, the switch 303 is short-circuited between the output terminal of the power supply and the enable terminal EN of the electronic fuse 203.
  • the electronic fuse 203 may be one in which the internal circuit between the input terminal IN and the output terminal OUT is cut off regardless of the state of the enable terminal EN when the internal circuit detects an overcurrent.
  • the first circuit board 201 of the power supply system 1 may include a plurality of power supply circuits 202.
  • a storage unit or a storage device (such as a register) provided in the switch 303 or the like may be provided in any part of the power supply system as long as information is appropriately transmitted and received. Further, a plurality of storage units and storage devices may exist as long as information is appropriately transmitted and received, and data may be distributed and stored.
  • processing procedure of the power supply system may be changed in order of processing steps as long as the overcurrent protection processing is appropriately performed.
  • the power supply system, the control method of the power supply system, and the circuit board according to the present invention can be applied to various electric devices and electronic devices.
  • the present invention can also be applied to other devices such as communication devices and vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

電力供給システムは、電源回路と電子ヒューズを搭載した第1の回路基板と、電力消費回路とスイッチを搭載した第2の回路基板とをコネクタで接続して構成される。電力消費回路に不具合が発生して、電子ヒューズにて過電流が検出された場合、直ちに電力消費回路に流れる過電流を遮断するとともに、電子ヒューズから出力されるフォルト信号によりスイッチを開放状態から短絡状態する。これにより、第1の回路基板から第2の回路基板を安全に切り離すことができ、正常な電力消費回路を搭載した回路基板と交換することができる。

Description

電力供給システム、電力供給システムの制御方法、及び回路基板
 本発明は、電力供給システム、電力供給システムの制御方法、及び電力供給システムに適用される回路基板に関する。
 本願は、2017年2月10日に、日本国に出願された特願2017-023563号に基づき優先権を主張し、その内容をここに援用する。
 従来、種々の電気機器や電子機器などに対して電力を供給する電源回路が搭載されている。例えば、特許文献1は、テレビ受像機などの電気機器に電力の供給を行うための過電流保護回路を備えた電源回路を開示している。ここで、負荷の異常動作時の過大電流に対処するための保護デバイスとして復帰型ヒューズを使用して、電源回路の異常からの復帰を実現している。特許文献2は、車両に備えられた発電機やバッテリーから電装品に対して電力を供給する車両用電力供給システムを開示している。ここで、半導体スイッチングデバイスには、異常発生時に出力電流を遮断する電子ヒューズが搭載されている。
特開2000-041330号公報 特開2016-060427号公報
電力供給システムにおいて、電源回路から供給される電力を消費する複数の電力消費回路(負荷)のいずれかに不具合が発生した場合、電源回路から不具合が発生した電力消費回路に大電流が流れることがある。この場合、無駄に電力を消費しないように、直ちに電力消費回路に流れる大電流を遮断するとともに、不具合の発生していない電力消費回路を動作させたまま、不具合の発生した電力消費回路を正常に動作する電力消費回路に交換することが望まれている。
本発明は、上記の課題を解決することのできる電力供給システム、電力供給システムの制御方法、及び回路基板を提供することを目的とする。
 本発明の第1の態様は、電源回路と、第1の端子に印加される電圧に応じて電源回路から供給される電力を出力するとともに、電源回路の電力に基づいて発生する電流の大きさに応じて第2の端子にて所定の信号を発生させる電子ヒューズと、電子ヒューズを介して電源回路から供給される電力を消費する電力消費回路と、電子ヒューズの第2の端子において発生した所定の信号に応じて、電子ヒューズとの接続状態が変化するスイッチと、を具備する電力供給システムである。ここで、電源回路と電子ヒューズとは第1の回路基板に設けられ、電力消費回路とスイッチとは第2の回路基板に設けられており、第1の回路基板と第2の回路基板とはコネクタを介して接続されている。
本発明の第2の態様は、電源回路から電子ヒューズを介して供給される電力を消費する電力消費回路と、電子ヒューズから出力される所定の信号に応じて電子ヒューズとの接続状態が変化するスイッチと、を備えた回路基板である。
 本発明の第3の態様は、電源回路と、電子ヒューズと、電力消費回路と、スイッチとを備えた電力供給システムに適用される制御方法である。この制御方法において、電子ヒューズの第1の端子に印加される電圧に応じて電源回路から電子ヒューズを介して電力消費回路に電力を供給し、電源回路の電力に基づいて発生する電流の大きさに応じて電子ヒューズの第2の端子にて所定の信号を発生させ、電子ヒューズの第2の端子において発生した所定の信号に応じて、スイッチの接続状態を変化させる。
 本発明によれば、電源回路から供給される電力を消費する複数の電力消費回路(負荷)のいずれかに不具合が発生してその電力消費回路に過電流が流れた場合、直ちに電力消費回路に流れる過電流を遮断するとともに、不具合のない電力消費回路を動作させたまま、不具合の発生した電力消費回路を正常に動作する電力消費回路に交換することができる。
本発明の一実施例に係る電力供給システムのブロック図である。 本発明の一実施例に係る電力供給システムの処理手順を示したフローチャートである。 本発明に係る電力供給システムの最小構成を示すブロック図である。 本発明の一実施例の第1変形例に係る電力供給システムのブロック図である。 本発明の一実施例の第2変形例に係る電力供給システムのブロック図である。
 本発明に係る電力供給システムについて、実施例とともに添付図面を参照して詳細に説明する。
 図1は、本発明の一実施例に係る電力供給システム1のブロック図である。電力供給システム1は、コネクタ10a、10b、10cと、モジュール20と、モジュール30a、30b、30cと、を備える。以下、コネクタ10a、10b、10cを総称してコネクタ10と呼ぶ。また、モジュール30a、30b、30cを総称してモジュール30と呼ぶ。
 コネクタ10aは、モジュール20とモジュール30aとを接続する。モジュール20にて発生される電力PWaは、コネクタ10aを介してモジュール30aに供給される。また、モジュール20内のイネーブル端子ENからのイネーブル信号SGenaは、コネクタ10aを介してモジュール30aに供給される。さらに、モジュール20内のフォルト端子Faultからのフォルト信号SGfaultaは、コネクタ10aを介してモジュール30aに供給される。
 コネクタ10bは、モジュール20とモジュール30bとを接続する。モジュール20にて発生される電力PWbは、コネクタ10bを介してモジュール30bに供給される。また、モジュール20内のイネーブル端子ENから出力されるイネーブル信号SGenbは、コネクタ10bを介してモジュール30bに供給される。さらに、モジュール20内のフォルト端子Faultから出力されるフォルト信号SGfaultbは、コネクタ10bを介してモジュール30bに供給される。
 コネクタ10cは、モジュール20とモジュール30cとを接続する。モジュール20にて発生される電力PWcは、コネクタ10cを介してモジュール30cに供給される。また、モジュール20内のイネーブル端子ENから出力されるイネーブル信号SGencは、コネクタ10cを介してモジュール30cに供給される。さらに、モジュール20内のフォルト端子Faultから出力されるフォルト信号SGfaultcは、コネクタ10cを介してモジュール30cに供給される。
 モジュール20は、第1の回路基板201と、電源回路202と、電子ヒューズ203a、203b、203cと、抵抗204a、204b、204cと、を備える。以下、電子ヒューズ203a、203b、203cを総称して電子ヒューズ203と呼ぶ。また、抵抗204a、204b、204cを総称して抵抗204と呼ぶ。
 第1の回路基板201は、電源回路202と、複数の電子ヒューズ203と、複数の抵抗204と、を搭載する。
 電源回路202は、電子ヒューズ203a及びコネクタ10aを介して、第2の回路基板301aに電力を供給する。電源回路202は、電子ヒューズ203b及びコネクタ10bを介して、第2の回路基板301bに電力を供給する。電源回路202は、電子ヒューズ203c及びコネクタ10cを介して、第2の回路基板301cに電力を供給する。
 電子ヒューズ203の各々は、自電子ヒューズ203の内部回路を電気的に遮断するものであり、一度内部回路が切断しても、自電子ヒューズ203に供給さえる電力が遮断されると、再度内部回路が電気的に接続される状態に復帰するよう構成されている。電子ヒューズ203の具体例としては、例えば、テキサスインスツルメント社製の「TPS26600」や、アナログデバイス社製の「ADG841」などが挙げられる。
 電子ヒューズ203aは、モジュール30aを過電流から保護するために搭載されている。電子ヒューズ203aは、入力端子INと、出力端子OUTと、イネーブル端子ENと、フォルト端子Faultと、を備える。電子ヒューズ203aは、その内部回路において許容電流を超える過電流を検出した場合、その過電流を検出したことを示すフォルト信号SGfaultaをフォルト端子Faultから出力する。
 また、電子ヒューズ203aは、イネーブル端子ENにおける電圧がアサート状態、即ち、動作可能状態を示すHighレベルの電圧である場合、入力端子INと出力端子OUTとの間の内部回路を導電状態とする。一方、電子ヒューズ203aは、イネーブル端子ENにおける電圧がディアサート状態、即ち、動作禁止状態を示すLowレベルの電圧である場合、入力端子INと出力端子との間の内部回路を遮断状態とする。この内部回路の遮断状態において、電源回路202から電子ヒューズ203aへの電力PWaの供給が停止される。その後、電源回路202から電子ヒューズ203aへの電力PWaの供給が再開されると、入力端子INと出力端子OUTとの間が電気的に接続される。
 電子ヒューズ203bは、モジュール30bを過電流から保護するために搭載されている。電子ヒューズ203bは、入力端子INと、出力端子OUTと、イネーブル端子ENと、フォルト端子Faultと、を備える。電子ヒューズ203bは、その内部回路において許容電流を超える過電流を検出した場合、その過電流を検出したことを示すフォルト信号SGfaultbをフォルト端子Faultから出力する。
 また、電子ヒューズ203bは、イネーブル端子ENにおける電圧がアサート状態、即ち、動作可能状態を示すHighレベルの電圧である場合、入力端子INと出力端子OUTとの間の内部回路を導電状態とする。一方、電子ヒューズ203bは、イネーブル端子ENにおける電圧がディアサート状態、即ち、動作禁止状態を示すLowレベルの電圧である場合、入力端子INと出力端子との間の内部回路を遮断状態とする。この内部回路の遮断状態において、電源回路202から電子ヒューズ203bへの電力PWbの供給が停止される。その後、電源回路202から電子ヒューズ203bへの電力PWbの供給が再開されると、入力端子INと出力端子OUTとの間が電気的に接続される。
 電子ヒューズ203cは、モジュール30aを過電流から保護するために搭載されている。電子ヒューズ203cは、入力端子INと、出力端子OUTと、イネーブル端子ENと、フォルト端子Faultと、を備える。電子ヒューズ203cは、その内部回路において許容電流を超える過電流を検出した場合、その過電流を検出したことを示すフォルト信号SGfaultcをフォルト端子Faultから出力する。
 また、電子ヒューズ203cは、イネーブル端子ENにおける電圧がアサート状態、即ち、動作可能状態を示すHighレベルの電圧である場合、入力端子INと出力端子OUTとの間の内部回路を導電状態とする。一方、電子ヒューズ203cは、イネーブル端子ENにおける電圧がディアサート状態、即ち、動作禁止状態を示すLowレベルの電圧である場合、入力端子INと出力端子との間の内部回路を遮断状態とする。この内部回路の遮断状態において、電源回路202から電子ヒューズ203cへの電力PWcの供給が停止される。その後、電源回路202から電子ヒューズ203cへの電力PWcの供給が再開されると、入力端子INと出力端子OUTとの間が電気的に接続される。
 モジュール30aのスイッチ303aが開放状態(オフ状態)である場合、抵抗204aには電流が流れない。そのため、スイッチ303aが開放状態である場合、抵抗204aは、電子ヒューズ203aのイネーブル端子ENをプルアップ状態、即ち、イネーブル端子ENにHighレベルの電圧を印加する。一方、スイッチ303aが短絡状態(オン状態)である場合には、抵抗204aに電流が流れる。このとき、抵抗204aにおいて電圧降下が発生するとともに、電子ヒューズ203aのイネーブル端子ENは、グラウンドGND(Lowレベルの電圧)に短絡される。
 モジュール30bのスイッチ303bが開放状態(オフ状態)である場合、抵抗204bには電流が流れない。そのため、スイッチ303bが開放状態である場合、抵抗204bは、電子ヒューズ203bのイネーブル端子ENをプルアップ状態、即ち、イネーブル端子ENにHighレベルの電圧を印加する。一方、スイッチ303bが短絡状態(オン状態)である場合には、抵抗204bに電流が流れる。このとき、抵抗204bにおいて電圧降下が発生するとともに、電子ヒューズ203bのイネーブル端子ENは、グラウンドGND(Lowレベルの電圧)に短絡される。
 モジュール30cのスイッチ303cが開放状態(オフ状態)である場合、抵抗204cには電流が流れない。そのため、スイッチ303cが開放状態である場合、抵抗204cは、電子ヒューズ203cのイネーブル端子ENをプルアップ状態、即ち、イネーブル端子ENにHighレベルの電圧を印加する。一方、スイッチ303cが短絡状態(オン状態)である場合には、抵抗204cに電流が流れる。このとき、抵抗204cにおいて電圧降下が発生するとともに、電子ヒューズ203cのイネーブル端子ENは、グラウンドGND(Lowレベルの電圧)に短絡される。
 モジュール30aは、第2の回路基板301aと、電力消費回路302aと、スイッチ303aと、を備える。第2の回路基板301aは、電力消費回路302aと、スイッチ303aと、を搭載する。電力消費回路302aは、電源回路202から供給される電力で動作するものであり、電源回路202の電力を消費する負荷である。電力消費回路302aは、例えば、CPU、メモリなどの消費電力の大きい回路に相当する。
 スイッチ303aは、不揮発性の記憶領域を有しており、スイッチ303aへの電力供給が停止された状態でも、直前に記憶された値を保持する。スイッチ303aの一つの端子は、グラウンドGNDに接地される。また、スイッチ303aの別の端子は、コネクタ10aを介して電子ヒューズ203aのイネーブル端子ENに接続される。
 スイッチ303aは、電子ヒューズ203aのフォルト端子Faultからの信号SGfaultaを受信しない初期状態では、グラウンドGNDと電子ヒューズ203aのイネーブル端子ENとの間を開放状態とする。一方、スイッチ303aは、電子ヒューズ203aのフォルト端子Faultからの信号SGfaultaを受信した状態では、グラウンドGNDと電子ヒューズ203aのイネーブル端子ENとの間を短絡状態とする。なお、スイッチ303aでは、電力が供給されていない場合でも、不揮発性の記憶領域に直前に記憶された値を保持しているため、一度電子ヒューズ203aのフォルト端子Faultからフォルト信号SGfaultaを受信すると、それ以降はグラウンドGNDと電子ヒューズ203aのイネーブル端子との間を常に短絡状態に保持する。
 モジュール30bは、第2の回路基板301bと、電力消費回路302bと、スイッチ303bと、を備える。第2の回路基板301bは、電力消費回路302bと、スイッチ303bと、を搭載する。電力消費回路302bは、電源回路202から供給される電力で動作するものであり、電源回路202の電力を消費する負荷である。
 スイッチ303bは、不揮発性の記憶領域を有しており、スイッチ303bへの電力供給が停止された状態でも、直前に記憶された値を保持する。スイッチ303bの一つの端子は、グラウンドGNDに接地される。また、スイッチ303bの別の端子は、コネクタ10bを介して電子ヒューズ203bのイネーブル端子ENに接続される。
 スイッチ303bは、電子ヒューズ203bのフォルト端子Faultからの信号SGfaultbを受信しない初期状態では、グラウンドGNDと電子ヒューズ203bのイネーブル端子ENとの間を開放状態とする。一方、スイッチ303bは、電子ヒューズ203bのフォルト端子Faultからの信号SGfaultbを受信した状態では、グラウンドGNDと電子ヒューズ203bのイネーブル端子ENとの間を短絡状態とする。なお、スイッチ303bでは、電力が供給されていない場合でも、不揮発性の記憶領域に直前に記憶された値を保持しているため、一度電子ヒューズ203bのフォルト端子Faultからフォルト信号SGfaultbを受信すると、それ以降はグラウンドGNDと電子ヒューズ203bのイネーブル端子との間を常に短絡状態に保持する。
 モジュール30cは、第2の回路基板301cと、電力消費回路302cと、スイッチ303cと、を備える。第2の回路基板301cは、電力消費回路302cと、スイッチ303cと、を搭載する。電力消費回路302cは、電源回路202から供給される電力で動作するものであり、電源回路202の電力を消費する負荷である。
 スイッチ303cは、不揮発性の記憶領域を有しており、スイッチ303cへの電力供給が停止された状態でも、直前に記憶された値を保持する。スイッチ303cの一つの端子は、グラウンドGNDに接地される。また、スイッチ303cの別の端子は、コネクタ10cを介して電子ヒューズ203cのイネーブル端子ENに接続される。
 スイッチ303cは、電子ヒューズ203cのフォルト端子Faultからの信号SGfaultcを受信しない初期状態では、グラウンドGNDと電子ヒューズ203cのイネーブル端子ENとの間を開放状態とする。一方、スイッチ303cは、電子ヒューズ203cのフォルト端子Faultからの信号SGfaultcを受信した状態では、グラウンドGNDと電子ヒューズ203cのイネーブル端子ENとの間を短絡状態とする。なお、スイッチ303cでは、電力が供給されていない場合でも、不揮発性の記憶領域に直前に記憶された値を保持しているため、一度電子ヒューズ203cのフォルト端子Faultからフォルト信号SGfaultcを受信すると、それ以降はグラウンドGNDと電子ヒューズ203cのイネーブル端子との間を常に短絡状態に保持する。
 次に、本発明の一実施例による電力供給システム1の処理手順について説明する。ここでは、複数の電力消費回路302のうち電力消費回路302aに不具合が発生して過電流が流れる場合の電力供給システム1の処理手順について、図2に示すフローチャートを参照して説明する。以下、スイッチ303a、303b、303cを総称してスイッチ303と呼ぶ。
 先ず、電力消費回路302aに不具合が発生して過電流が流れる(ステップS1)。電力消費回路302aに過電流が流れると、電子ヒューズ203aは、内部回路でその過電流を検出する(ステップS2)。電子ヒューズ203aは、過電流を検出すると、フォルト端子Faultからフォルト信号SGfaultを出力する(ステップS3)。
 スイッチ303aは、電子ヒューズ203aからフォルト信号SGfaultaを受信する。スイッチ303aは、フォルト信号SGfaultaを受信すると、グラウンドGNDと電子ヒューズ203aのイネーブル端子ENとの間を短絡状態とする(ステップS4)。このとき、スイッチ303aの記憶領域は、フォルト信号SGfaultaを受信したときの値(例えば、Highレベルを示す「1」)を記憶する(ステップS5)。この値の記憶により、グラウンドGNDと電子ヒューズ203aのイネーブル端子ENとの間の短絡状態が保持される。
 グラウンドGNDと電子ヒューズ203aのイネーブル端子ENとの間が短絡状態になると、抵抗204aに電流が流れる。抵抗204aに電流が流れると、電圧降下が発生する(ステップS6)。また、電子ヒューズ203aのイネーブル端子ENは、ディアサート状態となる電圧(Lowレベルの電圧)が付与され、グラウンドGNDに短絡される(ステップS7)。
 電子ヒューズ203aは、イネーブル端子ENがグラウンドGNDに短絡されると、入力端子INと出力端子OUTとの間の内部回路を電気的に遮断する(ステップS8)。
 電子ヒューズ203aの入力端子INと出力端子OUTとの間で内部回路が電気的に遮断されると、電力消費回路302には電力が供給されない。即ち、電力消費回路302aには過電流が流れず、その結果、電力消費回路302aに対する過電流保護が実施される(ステップS9)。
 次に、電子ヒューズ203の各々と電力消費回路302の各々と、スイッチ303a、303b、303cに対する電源回路202からの電力供給が停止され、その後、電力供給が再開されたとする(ステップS10)。このとき、スイッチ303aの記憶領域は、ステップS5において、フォルト信号SGfaultaを受信したときの値を記憶しており、グラウンドGNDと電子ヒューズ203aのイネーブル端子ENとの間の短絡状態が保持されている。つまり、不具合が発生した電力消費回路302aに対して過電流保護が維持されたままである(ステップS11)。
 上記において、スイッチ303a以外のスイッチ303b、303cについては説明していないが、そのスイッチ303b、303cの記憶領域もスイッチ303aの記憶領域と同様にフォルト信号SGfaultb、SGfaultcに応じた値(例えば、過電流が流れていないことを示すLowレベルの値「0」)を記憶する。そのため、スイッチ303b、303cの各々は、グラウンドGNDと電子ヒューズ203b、203cのイネーブル端子ENとの間の開放状態を保持している。つまり、電力消費回路302a以外の電力消費回路302b、302cに対して電源回路202から電力が供給される(ステップS12)。
 上記のステップS11とステップS12から分かるように、電力供給システム1において不具合が発生して電力消費回路302aに過電流が流れると、電力消費回路302aに対して過電流保護がなされる。一方、その他の電力消費回路302b、302cの各々は電源回路202から電力が供給されている期間において、通常の動作を行う。
 従って、正常に動作しているモジュール30b、30cを作動させたまま、不具合が発生して過電流が流れた電力消費回路302aを備えるモジュール30aのみを取り出して、不具合が発生していない電力消費回路に交換することができる。その際、直前の状態を保持するスイッチ303aのグラウンドGNDとの接続状態を元の接続状態に戻す必要があるため、スイッチ303aを電力消費回路302aと同一の回路基板301aに設けている。このように、不具合が発生して過電流が流れた電力消費回路302aをモジュール30aとともに他のモジュールと一度に交換することができる。
 上記のように、本発明の一実施例による電力供給システム1は、第1の回路基板201と、第2の回路基板301a、301b、301cと、第1の回路基板201と第2の回路基板301とを接続する複数のコネクタ10a、10b、10cと、を備える。第1の回路基板201は、電源回路202と、イネーブル端子(第1の端子)に印加される電圧に基づいて電源回路202から供給される電力を回路基板301に供給するとともに、内部回路に流れる電流の大きさに基づいてフォルト端子Fault(第2の端子)においてフォルト信号を発生させる電子ヒューズ203a、203b、203cと、を備える。また、回路基板301a、301b、301cの各々は、電源回路202から供給される電力を消費する電力消費回路302a、302b、302cと、スイッチ303a、303b、303cと、を備える。スイッチ303の各々は、電子ヒューズ203のフォルト端子Faultにおいて発生するフォルト信号(所定の信号)に応じて、現在の接続状態から別の接続状態(例えば、開放状態から短絡状態)に変化した場合、別の接続状態を保持する。
 これにより、電力供給システム1において、電源回路202から供給される電力を消費する複数の電力消費回路(負荷)302のいずれかに不具合が発生して過電流が流れた場合、無駄に電力を消費しないために直ちに不具合の発生した電力消費回路302に流れる過電流を遮断する。また、不具合の発生していない電力消費回路302を動作させたまま、不具合の発生した電力消費回路302を正常に動作する別の電力消費回路に交換することができる。
 次に、本発明に係る電力供給システム1の最小構成について図3を参照して説明する。図3において、図1と同等の構成部材には同一の符号を付すものとする。図3に示す電力供給システム1は、第1の回路基板201と、第2の回路基板301a、301bと、第1の回路基板201と第2の回路基板301a、301bとを接続するコネクタ10a、10bと、を備える。第1の回路基板201は、電源回路202と、電子ヒューズ203a、203bと、を備える。電子ヒューズ203a、203bは、イネーブル端子EN(第1の端子)に印加された電圧に基づいて電源回路202から供給される電力を第2の回路基板301a、301bに供給するとともに、その内部回路に流れる電流の大きさに基づいてフォルト端子Fault(第2の端子)においてフォルト信号(所定の信号)を発生する。第2の回路301a、301bは、電源回路202から供給される電力を消費する電力消費回路302a、302bと、スイッチ303a、303bと、を備える。スイッチ303a、303bは、電子ヒューズ203a、203bのフォルト端子Faultに発生するフォルト信号(所定の信号)に応じて、現在の接続状態から別の接続状態(例えば、開放状態から短絡状態)に変化した場合、別の接続状態を保持する。
 図4及び図5は、本発明の一実施例の変形例に係る電力供給システム1を示すブロック図である。ここで、図1に示す構成部材と同一のものには同一の符号を付して、その説明を省略する。
 上記の電子ヒューズ203は、イネーブル端子がプルダウンされているときに動作可能状態となるものであってもよい。その場合、図4に示すように、電力供給システム1は、抵抗204はプルダウン抵抗となる。また、スイッチ303は、電子ヒューズ203からフォルト信号を受信すると、電源の出力端子と電子ヒューズ203のイネーブル端子ENとの間が短絡状態となる。
 上記の電子ヒューズ203は、内部回路が過電流を検出した場合、イネーブル端子ENの状態に拘らず、入力端子INと出力端子OUTとの間における内部回路が遮断されるものであってもよい。
 或いは、図5に示すように、電力供給システム1の第1の回路基板201は、複数の電源回路202を備えてもよい。
 なお、スイッチ303などに設けられる記憶部や記憶装置(レジスタなど)は、適切に情報の送受信が行われる限度において、電力供給システムのいずれの箇所に備えられてもよい。また、記憶部や記憶装置は、適切に情報の送受信が行われる限度において複数存在し、データを分散して記憶してもよい。
 また、電力供給システムの処理手順(例えば、図2の処理手順)は、適切に過電流保護処理などが行なわれる限度において、処理工程の順序が入れ替わってもよい。
 本発明に係る実施例について説明したが、上記の実施例は例示であり、限定的なものではなく、本発明は上記の実施例に限定されるものではない。また、添付の請求項において定義した発明の要旨を逸脱しない範囲で、適宜、構成部材や処理工程の省略、変更、置換をおこなってもよい。
 本発明に係る電力供給システム、電力供給システムの制御方法、及び回路基板は、種々の電気機器や電子機器に適用可能である。また、本発明は、通信機器や車両などその他の機器にも適用可能である。
 1 電力供給システム
 10、10a、10b、10c コネクタ
 20、30、30a、30b、30c モジュール
201 第1の回路基板
301、301a、301b、301c 第2の回路基板
202 電源回路
203、203a、203b、203c 電子ヒューズ
204、204a、204b、204c 抵抗
302、302a、302b、302c 電力消費回路
303、303a、303b、303c スイッチ

Claims (10)

  1.  電源回路と、
     第1の端子に印加される電圧に応じて前記電源回路から供給される電力を出力するとともに、前記電源回路の電力に基づいて発生する電流の大きさに応じて第2の端子にて所定の信号を発生させる電子ヒューズと、
     前記電子ヒューズを介して前記電源回路から供給される電力を消費する電力消費回路と、
     前記電子ヒューズの第2の端子において発生した所定の信号に応じて、前記電子ヒューズとの接続状態が変化するスイッチと、を具備し、
     前記電源回路と前記電子ヒューズとは、第1の回路基板に設けられ、
     前記電力消費回路と前記スイッチとは、第2の回路基板に設けられ、
     前記第1の回路基板と前記第2の回路基板とはコネクタを介して接続されてなる電力供給システム。
  2.  前記スイッチは、不揮発性の記憶領域を備え、
     前記電子ヒューズの前記第2の端子において発生した所定の信号に応じた値を保持することによって、前記電子ヒューズとの接続状態の変化を保持するようにした、請求項1に記載の電力供給システム。
  3.  前記スイッチは、前記電子ヒューズの前記第2の端子において発生した所定の信号に応じて、前記電子ヒューズの前記第1の端子との接続を開放する開放状態、または前記電子ヒューズの前記第1の端子とグラウンドとを短絡する短絡状態のいずれかに変化するようにした、請求項1に記載の電力供給システム。
  4.   前記スイッチは、前記電子ヒューズの前記第2の端子において発生した所定の信号に応じて、前記電子ヒューズの前記第1の端子との接続状態を開放する開放状態、または前記電子ヒューズの前記第1の端子と電源の出力端子とを短絡する短絡状態のいずれかに変化するようにした、請求項1に記載の電力供給システム。
  5.  前記電子ヒューズは、前記電源回路から前記電力消費回路に供給される電力により過電流が発生した場合に、前記第2の端子からフォルト信号を発生して前記スイッチを前記開放状態から前記短絡状態に変化するようにした、請求項3又は請求項4に記載の電力供給システム。
  6.  電源回路から電子ヒューズを介して供給される電力を消費する電力消費回路と、
     前記電子ヒューズから出力される所定の信号に応じて前記電子ヒューズとの接続状態が変化するスイッチと、
     を備えた回路基板。
  7.  前記電源回路から前記電力消費回路に供給される電力により過電流が発生した場合に、前記電子ヒューズから出力されるフォルト信号に応じて、前記スイッチが開放状態から短絡状態に変化した場合に、前記電源回路及び前記電子ヒューズから前記電力消費回路を切り離すことを可能とした請求項6に記載の回路基板。
  8.  電源回路と、電子ヒューズと、電力消費回路と、スイッチとを備えた電力供給システムに適用される制御方法であって、
     前記電子ヒューズの第1の端子に印加される電圧に応じて前記電源回路から前記電子ヒューズを介して前記電力消費回路に電力を供給し、
    前記電源回路の電力に基づいて発生する電流の大きさに応じて前記電子ヒューズの第2の端子にて所定の信号を発生させ、
     前記電子ヒューズの第2の端子において発生した所定の信号に応じて、前記スイッチの接続状態を変化させるようにした制御方法。
  9.  前記電源回路から前記電力消費回路に供給される電力により過電流が発生した場合に、前記電子ヒューズの前記第2の端子からフォルト信号を発生して前記スイッチを開放状態から短絡状態に変化させるようにした、請求項7に記載の制御方法。
  10.  前記スイッチが短絡状態になった場合に、前記電源回路及び前記電子ヒューズから前記電力消費回路を切り離すことを可能とした、請求項8に記載の制御方法。
PCT/JP2018/000011 2017-02-10 2018-01-04 電力供給システム、電力供給システムの制御方法、及び回路基板 WO2018146980A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/482,729 US11394193B2 (en) 2017-02-10 2018-01-04 Power supply system, power supply system control method, and circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017023563A JP6497754B2 (ja) 2017-02-10 2017-02-10 電力供給システム、回路基板及び電力供給システムの制御方法
JP2017-023563 2017-02-10

Publications (1)

Publication Number Publication Date
WO2018146980A1 true WO2018146980A1 (ja) 2018-08-16

Family

ID=63107415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000011 WO2018146980A1 (ja) 2017-02-10 2018-01-04 電力供給システム、電力供給システムの制御方法、及び回路基板

Country Status (3)

Country Link
US (1) US11394193B2 (ja)
JP (1) JP6497754B2 (ja)
WO (1) WO2018146980A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11811212B2 (en) * 2022-03-04 2023-11-07 GM Global Technology Operations LLC Synchronization of electronic fuses in vehicle power distribution
US20230403005A1 (en) * 2022-06-14 2023-12-14 Stmicroelectronics S.R.L. Capacitor charging method, corresponding circuit and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555730U (ja) * 1991-12-27 1993-07-23 矢崎総業株式会社 過負荷保護回路
JP2001309546A (ja) * 2000-04-27 2001-11-02 Mitsubishi Cable Ind Ltd 車両用配線系統の保護装置
JP2009118655A (ja) * 2007-11-07 2009-05-28 Sony Corp 保護回路付き電子回路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3291877B2 (ja) * 1993-12-24 2002-06-17 株式会社デンソー 電源保持回路
JP2000041330A (ja) 1998-07-22 2000-02-08 Sony Corp 過電流保護回路を備えた電源回路
DE10045446C1 (de) * 2000-09-14 2001-10-25 Eurocopter Deutschland Energieschalteinrichtung in einer elektrischen Energieverteilungsanlage an Bord eines Hubschraubers
JP2011131708A (ja) * 2009-12-24 2011-07-07 Toyota Motor Corp 機器電源制御装置
JP5488428B2 (ja) * 2010-11-26 2014-05-14 株式会社デンソー 電源バックアップ回路
JP6426956B2 (ja) 2014-09-19 2018-11-21 矢崎総業株式会社 車両用電力供給システム
DE102016111690B4 (de) * 2015-06-29 2020-08-27 Lisa Dräxlmaier GmbH Stromverteiler für ein Fahrzeug

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555730U (ja) * 1991-12-27 1993-07-23 矢崎総業株式会社 過負荷保護回路
JP2001309546A (ja) * 2000-04-27 2001-11-02 Mitsubishi Cable Ind Ltd 車両用配線系統の保護装置
JP2009118655A (ja) * 2007-11-07 2009-05-28 Sony Corp 保護回路付き電子回路

Also Published As

Publication number Publication date
US20210288486A1 (en) 2021-09-16
JP2018130002A (ja) 2018-08-16
US11394193B2 (en) 2022-07-19
JP6497754B2 (ja) 2019-04-10

Similar Documents

Publication Publication Date Title
CN110277770B (zh) 模块存储器联接的双重保险装置
EP3144186A1 (en) Automobile power source device
US10536025B2 (en) Relay device
JP2007244147A (ja) 集積回路用電源保護回路
EP3751693B1 (en) Battery protective circuit and battery pack comprising same
WO2018146980A1 (ja) 電力供給システム、電力供給システムの制御方法、及び回路基板
US11932121B2 (en) Power supply control system and method
KR20160114797A (ko) 전자 스위칭 장치
JP5157390B2 (ja) Rtc回路のバックアップ電源切換回路を備えた半導体装置
JP6176185B2 (ja) 自動車用電源装置
JP2011020522A (ja) 車載電力供給制御装置
JP2007137093A (ja) 車両用電源システム
KR20190002680A (ko) 전압 발생 장치 및 반도체 칩
US7701684B2 (en) Power supply apparatus and power supply system including the same addressing abnormality
JP6176186B2 (ja) 自動車の電源装置
US9343959B2 (en) Interrupt protection circuits, systems and methods for sensors and other devices
US20160099559A1 (en) Overcurrent protection for an automotive instrument cluster
US10353451B2 (en) Semiconductor device and system
TWI558126B (zh) 聯合供電模組及其系統
JP2006006070A (ja) 負荷保護装置
KR101394815B1 (ko) 통합형 제어기의 전원 보상용 회로 장치
JPH1059090A (ja) 車両電源分配装置
JP2007312460A (ja) 電源保護回路
JP6090103B2 (ja) 電源装置
CN114514665A (zh) 用于防止由安全相关系统的故障传播引起的过电压损坏的设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18751712

Country of ref document: EP

Kind code of ref document: A1