WO2018143837A1 - High strength cryogenic austenitic corrosion resistant weldable construction steel and production method - Google Patents

High strength cryogenic austenitic corrosion resistant weldable construction steel and production method Download PDF

Info

Publication number
WO2018143837A1
WO2018143837A1 PCT/RU2017/000662 RU2017000662W WO2018143837A1 WO 2018143837 A1 WO2018143837 A1 WO 2018143837A1 RU 2017000662 W RU2017000662 W RU 2017000662W WO 2018143837 A1 WO2018143837 A1 WO 2018143837A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
temperature range
corrosion resistant
high strength
nitrogen
Prior art date
Application number
PCT/RU2017/000662
Other languages
English (en)
French (fr)
Inventor
Mikhail Rudolfovich FILONOV
Viacheslav Evgenevich BAZHENOV
Alexandr Georgievich GLEBOV
Liudmila Michailovna KAPUTKINA
Dmitry Efimovich KAPUTKIN
Vladimir Edelbertovich KINDOP
Anatoly Grigorievich SVYAZHIN
Inga Vladimirovna SMARYGINA
Original Assignee
National University Of Science And Technology "Misis"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Of Science And Technology "Misis" filed Critical National University Of Science And Technology "Misis"
Priority to EA201900398A priority Critical patent/EA036755B1/ru
Priority to JP2019541241A priority patent/JP2020509225A/ja
Priority to CN201780089165.2A priority patent/CN110475897B/zh
Publication of WO2018143837A1 publication Critical patent/WO2018143837A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Definitions

  • This invention relates to the metallurgy of construction steels comprising, as the basis, iron with the preset ratio of the alloying and impurity elements, and can be used in various branches of industry, more specifically, for the fabrication of high-strength cryogenic welded structures used for the transportation of liquefied gases.
  • said known steel contains carbon, chromium, nickel, manganese, nitrogen, silicon, vanadium, copper, molybdenum, cerium, selenium and iron in the following weight ratio (wt.%): carbon 0,01-0,06, chromium 18-22, nickel 15-18, manganese 2-10, nitrogen 0.2-0.5, silicon 0.01-0.45, vanadium 0.1-0.5, copper 0.1-1.5, molybdenum 0.1-2.5, cerium 0.005-0.25, selenium 0.05-0.25, balance iron, wherein if the manganese content is less than 5% the nitrogen content is approx. 0.3 while if the manganese content is greater than 5% the nitrogen content is 0.4-0.5.
  • Said known austenitic steel has multiple technical and mechanical properties and the stability of the austenitic structure and can be used for the fabrication of high-load parts of cryogenic machinery and devices.
  • Said known austenitic steel has the following disadvantages.
  • This steel is not economic due to high concentrations of expensive elements such as nickel (up to 18%) and molybdenum (up to 2.5%).
  • the nickel content in this steel is higher than in conventional austenitic stainless steel 19-10.
  • manganese and nitrogen are used for the stabilization of the austenitic structure.
  • a number of steel compositions having the claimed limits of element contents are not feasible.
  • the manganese content in this steel is higher than 5%, the nitrogen content is acceptable at 0.4-0.5%.
  • the nitrogen content should be lower than the claimed one, otherwise bubbles will form during the solidification of ingots at nitrogen contents of 0.4-0.5%.
  • the prototype of the first subject of this invention is high-strength corrosion resistant non-magnetic steel (RU 2392348 C2, publ. 20.06.2010).
  • This steel has the following composition (wt.%): 0.02-0.06 carbon, 0.10-0.60 silicon, 9.5-12.5 manganese, 19.0-21.0 chromium, 4.5-7.5 nickel, 1.2-2.0 molybdenum, 0.08-0.22 vanadium, 0.005-0.010 calcium, 0.005-0.010 sodium, 0.05-0.15 niobium, 0.0005-0.001 magnesium, 0.40-0.60 nitrogen, 0.005-0.01 aluminum, balance iron and impurities, wherein said impurities in this steel are (wt.%) 0.003-0.012 sulfur, 0.004-0.025 phosphorus, 0.0002-0.005 lead, 0.0002-0.005 bismuth, 0.0002-0.005 tin, 0.0002-0.005 arsenic and 0.05-0.2 copper.
  • the prototype of the second subject of this invention is a method of thermal deformation processing of the abovementioned high-strength corrosion resistant non-magnetic steel (RU 2392348 C2, publ. 20.06.2010).
  • the method of thermal deformation processing of the high-strength corrosion resistant non-magnetic steel comprises ingot heating, ingot deformation to a plate in the 1240-1000 °C temperature range with a total strain rate of 40-94%, air cooling of the plate for surface quality control and cleaning, deformation of the resultant plate in the 1240-1000 °C temperature range, treatment to the final total strain rate of 45 - 65% by 10-14%) at a time to the sheet shape with a thickness of 2.5-3.5 times smaller than the plate thickness, air cooling of the sheet to 1000-950 °C, surface temperature control and final straining in 2-3 runs by 8-12% at a time, followed by rapid cooling at a 10-50 °C/s rate to 100-150 °C at the sheet surface and further air cooling.
  • Said known steel is melted in furnaces following a standard technology.
  • the steel is subjected to thermal deformation processing in a special mode.
  • the thermal deformation processing technology Disadvantages of the thermal deformation processing technology is the excessive detalization of process steps which complicates the implementation and control of the technology and, furthermore, for the recommended pre- straining heating mode and at some element ratios, the structure of the steel during heating to > 1200 °C passes through several phases including 5- ferrite.
  • the structure of the steel during heating to > 1200 °C passes through several phases including 5- ferrite.
  • the steel has an + ⁇ + (Nb, Cr)N structure. Therefore at the claimed heating temperature according to the patent (1240 °C) it is impossible to obtain a homogeneous ⁇ - structure before rolling and hence no finished austenitic steel will be produced.
  • the high strength cryogenic austenitic corrosion resistant weldable construction steel comprises the following elements in the ratios as shown below, wt.%:
  • the technical result of the second subject of the claimed invention is a simple industrial implementation of said method, good processability of the steel combined with a relatively low manganese concentration and the possibility of obtaining the required nitrogen concentration during melting at a normal pressure in the existing equipment.
  • the method of thermal deformation processing of the high strength cryogenic austenitic corrosion resistant weldable construction steel as per Claim 1 comprises ingot heating, ingot deformation to a workpiece in the 1240-1050 °C temperature range with a total strain rate of at least 50%, air cooling of the workpiece, straining of the resultant plate in the 1 180-1080 °C temperature range with a total compression rate of at least 40% and final straining in 2-3 runs with a total compression rate of 30-80 % in the 1 150-1080 °C temperature range with the finishing rolling temperature of 1050-1080 °C, followed by rapid cooling at a 20-100 °C/s rate to room temperature.
  • the advantages of the steel suggested in this invention and its treatment method are as follows.
  • the equilibrium structure of the steel in the 1050 - 1300 °C is austenite with fine chromium boride Cr 2 B particles which guarantees the basic austenitic structure and the required combination of properties under actual industrial process conditions.
  • the suggested steel also has good economic parameters due to a low nickel content and high workability due to a small number of alloying additions, and at their claimed concentrations the required nitrogen content can be obtained by melting at normal pressure in the existing equipment.
  • Carbon contents in the 0.05-0.07% range favors the formation of an austenitic structure in the steel and, jointly with nitrogen provides for the required steel hardening during thermal and thermal deformation processing combined with good corrosion resistance and weldability.
  • At higher carbon contents in the steel its corrosion resistance decreases, this being accompanied by increasing susceptibility to intergranular corrosion, susceptibility to brittle fracture and decreasing weldability.
  • Chromium, nickel, manganese, molybdenum and copper in the claimed concentration limits at a boron content of 0.005 - 0.015 wt.% and a nitrogen content of 0.30 - 0.38 wt.% at every possible combination of these element compositions in the composition range delimited in this invention provide the finished steel with a stable austenitic structure with a small quantity of fine boron particles, the required mechanical properties, corrosion resistance in acid media and in seawater and suitability for the fabrication of cold-resistant high- strength welded structure used for liquefied gas transportation.
  • the required austenitic structure and properties are not achievable, same as the nitrogen concentrations as are required in accordance with this invention.
  • an austenitic structure forms but the obtained ⁇ - solid solution has a higher hot plastic deformation strength.
  • the claimed concentrations of Cr, Ni, Mn and Mo provide for a high nitrogen solubility in the liquid phase and in the austenite, an das a resultat every possible combination of element concentrations in the composition range claimed in the invention and a nitrogen concentration of 0.30 - 0.38 wt.% the steel crystallized without bubbles or pores in ingots or uninterruptible cast workpieces. At lower nitrogen concentrations the required mechanical properties are not achieved, while at higher nitrogen contents bubbles and pores may form in the ingots.
  • Copper makes the steel of this composition more corrosion resistant and at the claimed concentration of other elements increases the higher temperature limit of the ⁇ region.
  • the equilibrium steel structure in the 1050 - 1300 °C temperature range is ⁇ + Cr 2 B which guarantees industrial production of an austenite structure and the required combination of properties.
  • the corrosion resistance of the steel decreases in acid media and in seawater.
  • High copper concentrations are also undesirable due to an increase in the lower temperature limit of the austenite region and the melt and the steel may acquire inhomogeneous chemical composition and properties.
  • Aluminum within the claimed concentration limits 0.015 - 0.035 wt.% provides for the required steel deoxidation degree and oxygen content. At lower aluminum concentrations the required steel deoxidation degree is not achieved and chromium oxides may form, while higher aluminum concentrations lead to the formation of high-temperature aluminum nitrides which negatively affect the properties of the steel.
  • Silicon within the claimed concentration limits favors efficient steel deoxidation and the removal of nonmetallic inclusions and typically provides for the acceptable equivalent concentration of chromium Cr 3 .
  • Cr 3 content increases and ⁇ - ferrites may form in the steel structure.
  • steel deoxidation is hindered.
  • the presence of these impurities complicates the achievement of the required structure and properties of the steel and reduces the efficiency of nitrogen addition. Therefore nitrogen alloyed steel are usually melted following the pure steel technology.
  • the impurity concentration limit required in accordance with this invention i.e. P ⁇ 0.015, S ⁇ 0.0025, Sn ⁇ 0.005, Pb ⁇ 0.005, As ⁇ 0.005 and Bi ⁇ 0.005 in the steel provides for the best steel properties achievable at this composition. At higher impurity concentrations they negatively affect the structure and properties of the steel and the structure formation processes in the steel. Significantly lower impurity concentrations is currently difficultly achievable for technological reasons.
  • the steel has a basic austenitic structure and the required combination of mechanical and physical properties. Failure to maintain the required heating temperatures before straining and the onset and completion of the thermal deformation processing operations, compression rate and cooling rate at different process steps the required austenitic steel and the properties claimed in the invention cannot be achieved.
  • Embodiments of the Invention Example of steel melting and processing technology follows.
  • the ingots were heated at 1250 °C and forged in the 1250-1050 °C temperature range to 70% strain, and then the forged pieces were air cooled and cleaned.
  • the forged pieces were heated to 1 180 °C and rolled to a total strain of 60% (to a 10 mm thickness) in the 1 180-1080 °C temperature range in 9 runs with interim heating. After rolling the pieces were air cooled.
  • the final rolling was following the high-temperature thermomechanical treatment setup.
  • the metal was heated to 1 150 °C and rolled to a sheet with a total strain of 60% (to a 6 mm thickness) in the 1150-1080 °C temperature range with interim heating.
  • the final cooling of the rolled pieces was at a 100 °C/s rate in water.
  • Then the rolled pieces were cleaned and cut to the required piece sizes.
  • the chemical composition of the steels is summarized in Table 1.
  • the mechanical properties of the alloys are presented in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
PCT/RU2017/000662 2017-01-31 2017-09-11 High strength cryogenic austenitic corrosion resistant weldable construction steel and production method WO2018143837A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EA201900398A EA036755B1 (ru) 2017-01-31 2017-09-11 Конструкционная криогенная аустенитная высокопрочная коррозионностойкая свариваемая сталь и способ ее обработки
JP2019541241A JP2020509225A (ja) 2017-01-31 2017-09-11 極低温用高強度オーステナイト系耐食性溶接構造用鋼材および製造方法
CN201780089165.2A CN110475897B (zh) 2017-01-31 2017-09-11 高强度低温奥氏体耐腐蚀可焊建筑钢及其生产方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2017103168A RU2657741C1 (ru) 2017-01-31 2017-01-31 Конструкционная криогенная аустенитная высокопрочная коррозионно-стойкая свариваемая сталь и способ ее обработки
RU2017103168 2017-01-31

Publications (1)

Publication Number Publication Date
WO2018143837A1 true WO2018143837A1 (en) 2018-08-09

Family

ID=62620104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2017/000662 WO2018143837A1 (en) 2017-01-31 2017-09-11 High strength cryogenic austenitic corrosion resistant weldable construction steel and production method

Country Status (5)

Country Link
JP (1) JP2020509225A (ja)
CN (1) CN110475897B (ja)
EA (1) EA036755B1 (ja)
RU (1) RU2657741C1 (ja)
WO (1) WO2018143837A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2696792C1 (ru) * 2019-05-23 2019-08-06 Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения", АО "НПО "ЦНИИТМАШ" Коррозионно-стойкая высокопрочная немагнитная сталь

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009070345A1 (en) * 2007-11-29 2009-06-04 Ati Properties, Inc. Lean austenitic stainless steel
RU2392348C2 (ru) * 2008-08-20 2010-06-20 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Коррозионно-стойкая высокопрочная немагнитная сталь и способ ее термодеформационной обработки
WO2011053460A1 (en) * 2009-11-02 2011-05-05 Ati Properties, Inc. Lean austenitic stainless steel
RU2545856C2 (ru) * 2013-08-02 2015-04-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Конструкционная криогенная аустенитная высокопрочная свариваемая сталь и способ ее получения
JP2016199776A (ja) * 2015-04-07 2016-12-01 新日鐵住金株式会社 オーステナイト系ステンレス鋼

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560286A (zh) * 2012-02-29 2012-07-11 宝山钢铁股份有限公司 一种无磁硬态节镍奥氏体不锈钢及其制造方法
RU2608251C1 (ru) * 2015-11-18 2017-01-17 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Хладостойкая аустенитная высокопрочная сталь

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009070345A1 (en) * 2007-11-29 2009-06-04 Ati Properties, Inc. Lean austenitic stainless steel
RU2392348C2 (ru) * 2008-08-20 2010-06-20 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Коррозионно-стойкая высокопрочная немагнитная сталь и способ ее термодеформационной обработки
WO2011053460A1 (en) * 2009-11-02 2011-05-05 Ati Properties, Inc. Lean austenitic stainless steel
RU2545856C2 (ru) * 2013-08-02 2015-04-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Конструкционная криогенная аустенитная высокопрочная свариваемая сталь и способ ее получения
JP2016199776A (ja) * 2015-04-07 2016-12-01 新日鐵住金株式会社 オーステナイト系ステンレス鋼

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2696792C1 (ru) * 2019-05-23 2019-08-06 Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения", АО "НПО "ЦНИИТМАШ" Коррозионно-стойкая высокопрочная немагнитная сталь

Also Published As

Publication number Publication date
JP2020509225A (ja) 2020-03-26
RU2657741C1 (ru) 2018-06-15
EA036755B1 (ru) 2020-12-16
CN110475897A (zh) 2019-11-19
EA201900398A1 (ru) 2019-12-30
CN110475897B (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
CN110423950B (zh) 一种Fe-Mn-Al-C系中锰低温钢及其制备方法
TWI460293B (zh) 雙相不銹鋼、雙相不銹鋼鑄片、及雙相不銹鋼鋼材
TW201825694A (zh) 高錳鋼板及其製造方法
JP6856129B2 (ja) 高Mn鋼の製造方法
JP6954475B2 (ja) 高Mn鋼およびその製造方法
KR102405388B1 (ko) 고 Mn 강 및 그 제조 방법
CN113544295A (zh) 超级奥氏体材料
JP7272438B2 (ja) 鋼材およびその製造方法、ならびにタンク
WO2014036091A1 (en) Ferritic stainless steel with excellent oxidation resistance, good high temperature strength, and good formability
RU2584315C1 (ru) Конструкционная криогенная аустенитная высокопрочная коррозионно-стойкая, в том числе в биоактивных средах, свариваемая сталь и способ ее обработки
CN113106356A (zh) 一种高强度马氏体沉淀硬化不锈钢及其制备方法
JP2013087352A (ja) 二相ステンレス鋼、二相ステンレス鋼鋳片、および、二相ステンレス鋼鋼材
RU2653954C2 (ru) Способ производства толстолистового проката для изготовления электросварных газонефтепроводных труб большого диаметра категории прочности х42-х56, стойких против индуцированного водородом растрескивания в h2s -содержащих средах
EP3686306B1 (en) Steel plate and method for manufacturing same
CN110475897B (zh) 高强度低温奥氏体耐腐蚀可焊建筑钢及其生产方法
CN112513309B (zh) 钢板及其制造方法
RU2362814C2 (ru) Низколегированная сталь и изделие, выполненное из нее
KR20200123831A (ko) 고Mn강 및 그의 제조 방법
RU2652934C1 (ru) Конструкционная деформируемая аустенитная немагнитная теплостойкая криогенная сталь с высокой удельной прочностью и способ ее обработки
RU2652935C1 (ru) Конструкционная литейная и деформируемая микролегированная азотом аустенитная теплостойкая криогенная сталь с высокой удельной прочностью и способ ее обработки
CN112513304A (zh) 钢板及其制造方法
KR20230125288A (ko) 강재 및 그 제조 방법, 탱크 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894686

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019541241

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894686

Country of ref document: EP

Kind code of ref document: A1