WO2018143718A1 - Method for forming coating that blocks electromagnetic waves - Google Patents

Method for forming coating that blocks electromagnetic waves Download PDF

Info

Publication number
WO2018143718A1
WO2018143718A1 PCT/KR2018/001441 KR2018001441W WO2018143718A1 WO 2018143718 A1 WO2018143718 A1 WO 2018143718A1 KR 2018001441 W KR2018001441 W KR 2018001441W WO 2018143718 A1 WO2018143718 A1 WO 2018143718A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
metal ink
dipping
electromagnetic shielding
coating method
Prior art date
Application number
PCT/KR2018/001441
Other languages
French (fr)
Korean (ko)
Inventor
정광춘
한미경
김민희
성준기
Original Assignee
(주)잉크테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170051819A external-priority patent/KR102044773B1/en
Application filed by (주)잉크테크 filed Critical (주)잉크테크
Priority to CN201880023840.6A priority Critical patent/CN110769944B/en
Publication of WO2018143718A1 publication Critical patent/WO2018143718A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/002Pretreatement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0092Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive pigments, e.g. paint, ink, tampon printing

Definitions

  • the present invention relates to an electromagnetic shielding coating method, and more particularly, to an electromagnetic shielding coating method characterized in that an electromagnetic shielding film is formed on the surface of an electronic device by dipping the surface of the electronic device into a metal ink.
  • Electromagnetic waves generated from household appliances, information and communication devices, and industrial devices are emerging as new environmental problems due to electromagnetic interference (EMI) and harmful effects on human bodies.
  • EMI electromagnetic interference
  • PDAs personal digital assistants
  • the problem of EMI is more serious, and technology development to solve this problem is urgent.
  • the semiconductor chip fabricated in the packaging process step of the semiconductor device fabrication process is molded with an insulating resin to protect from the external environment.
  • electromagnetic waves are generated here or vice versa. There is a fear that an error may occur under the influence of the electronic device and cause a serious defect of the electronic device.
  • a method of forming an electromagnetic shielding film by sputtering is commonly used.
  • the sputtering equipment is not only expensive but also has an inefficient disadvantage due to the sputtering being performed for a long time.
  • the upper and side surfaces are difficult to form a metal layer with a uniform thickness, so that a mechanical process means for supplementing this situation is required.
  • a method and apparatus for forming a uniform electromagnetic shielding film on the upper surface and the side in the Republic of Korea Patent Publication KR 10-1686318 B1 (2016.12.07) is disclosed.
  • the spray method is generally used as a wet method, and is relatively more productive than the sputtering method, but it is not structurally easy to spray on the entire surface of the electronic device, especially the side of the electronic device, and the dust generated during the spraying process There is a problem that causes waste and pollution in the semiconductor clean room.
  • it is difficult to apply a metal layer having a uniform thickness for forming an electromagnetic shielding film on the upper surface and the side in the spraying process.
  • the plating method has a weak adhesion between the metal layer and the resin
  • Republic of Korea Patent Publication No. 10-0839930 (2008.06.20.) Describes a separate pre-treatment process for generating a roughness is disclosed have.
  • the plating solution used in the plating process has a disadvantage in that it is difficult to manage and process in terms of environmental safety.
  • the electromagnetic shielding film is most important to form the electromagnetic shielding film only in the necessary shielding area except the mounting surface (PCB surface) of the entire surface of the electronic device, and the problem of forming the metal shielding film in the sputtering method, the spraying method, and the plating method does not require electromagnetic shielding. Occurs.
  • a mounting surface which does not require shielding may be masked by using an adhesive tape. As the metal shielding film is coated on the adhesive tape, a crack occurs in the metal shielding film during unloading of the electronic device. Since there is a problem that the electromagnetic shielding function can not be performed at all, an additional precutting process is required to prevent such defects.
  • an object of the present invention is to solve such a conventional problem, by dipping the exposed surface of the electronic device in the metal ink to form an electromagnetic shielding film having a uniform thickness on the surface of the electronic device It is about.
  • a loading step of attaching one surface of the electronic device to the transport carrier; and dipping the electronic device attached to the transport carrier in a receiving tank containing a metal ink, the exposure of the electronic device A dipping step of applying a metal ink to an outer surface; and a firing step of curing the metal ink applied to the electronic device; And an unloading step of separating the electronic device from the transport carrier.
  • a surface treatment step for imparting hydrophilicity to the exposed surface of the electronic device attached to the transfer carrier
  • the surface treatment step is preferably a plasma treatment of the surface of the electronic device.
  • the electronic device attachment surface of the transfer carrier has hydrophobicity.
  • the leveling step it is preferable to scrape the metal ink overcoated on the surface of the electronic device with a blade and level the surface flatly.
  • the metal ink overcoated on the surface of the electronic device is absorbed by a blade made of an absorbing material and leveled flatly in the dipping step.
  • the dipping step it is preferable to control the dipping depth of the electronic device according to the specification of the electronic device attached to the transport carrier.
  • the receiving tank is preferably to selectively adjust the level of the metal ink to a depth equal to or less than the thickness of the electronic device.
  • the transfer carrier is made of a carrier film to be transported in a roll-to-roll manner, it is preferable that one side of the carrier film is provided with an adhesive portion to which one side of the electronic device can be attached.
  • the dipping step it is preferable to control the dipping depth of the electronic device by pressing the rear surface of the transfer carrier to which the electronic device is attached toward the receiving tank by using a dipping roller which is lifted and controlled at the upper side of the receiving tank.
  • the metal ink it is preferable to apply the metal ink to the outer surface of the electronic device moving above the dipping roller while the dipping roller absorbing the metal ink of the container rotates.
  • the present invention by dipping the surface of the electronic device in the metal ink to form an electromagnetic shielding film of uniform thickness on the surface, it is possible to provide an excellent electromagnetic shielding effect in a simplified process.
  • an additional step of removing the electromagnetic shielding film formed in the unnecessary area after sputtering is necessary.
  • a crack occurs in the electromagnetic shielding film, and thus the original electromagnetic shielding function may be performed due to the crack.
  • the mounting surface of the electronic device is attached to the bonding part of the transport carrier, and then the exposed surface of the electronic device is dipped into the metal ink to form the electromagnetic shielding film, thereby preventing the electromagnetic shielding film from being formed on the unnecessary part.
  • FIG 2 is a process step by step of Figure 1
  • FIG. 3 is an enlarged view of the receiving tank shown in FIG.
  • FIG. 4 is a process chart showing a modification of the dipping step of the electromagnetic shielding coating method according to the first embodiment of the present invention
  • FIG. 5 is a process chart of the electromagnetic wave shielding coating method according to a second embodiment of the present invention.
  • FIG. 6 is a process chart of the electromagnetic wave shielding coating method according to a third embodiment of the present invention.
  • FIG. 1 is a process flow chart of the electromagnetic wave shielding coating method according to a first embodiment of the present invention
  • Figure 2 is a process step by step of Figure 1
  • Figure 3 is an enlarged view of the receiving tank shown in FIG.
  • the electromagnetic wave shielding coating method includes a loading step S10, a dipping step S20, a leveling step S30, a baking step S40, and an unloading step S50. Include.
  • the transport carrier 10 proceeds for each process while moving in the lateral direction.
  • a surface treatment step may be performed to impart hydrophilicity to the outer surface of the electronic device D.
  • the surface of the electronic device D may be hydrophilic through surface treatment using plasma P.
  • the transfer carrier 10 is moved to an upper region of the receiving tank 20 in which the metal ink M is accommodated and transferred.
  • the carrier 20 is placed in the container 20.
  • the electronic element D is dipped in the metal ink M by lowering the direction toward the cross section.
  • the dipping is made only in the essential shielding area of the electronic device (D), the specific example is electromagnetic shielding in the EMC (Epoxy Molding Compound) portion except the mounting surface of the electronic device (D) attached to the bonding portion 11 Since the should be made, as shown in FIG. 2 (b) in the state in which the water level (d2) of the metal ink (M) accumulated in the reservoir 20 is set lower than the side height (d1) of the electronic device (D), Only the top and side portions of (D) can be dipped in the metal ink M to form an electromagnetic shielding film having a uniform thickness.
  • EMC Application Molding Compound
  • the electromagnetic shielding film only in the essential shielding area except the mounting surface of the entire surface of the electronic device D.
  • the electronic device (D) that requires shielding is required.
  • the formation of a uniform electromagnetic shielding film on the side of the is not easy, requires a separate masking process for protecting the mounting surface, and must be accompanied by a separate process to prevent cracking of the electromagnetic shielding film during the unloading process.
  • the opposite surface (upper surface) of the mounting surface faces the receiving tank 20. Since the inverting and then dipping, it is possible to apply the metal ink (M) only to the essential shielding area. In particular, the present embodiment prevents the metal ink M from being applied to the mounting surface because the mounting surface of the electronic device D, which is a problem in the prior art, is not exposed because it is bonded to the bonding portion 11 of the transfer carrier 10. In addition, since the metal ink (M) is applied to the side of the electronic device (D) at once, it is possible to provide an integrated electromagnetic shielding film of uniform thickness.
  • the electromagnetic wave shielding film is not formed in an unnecessary area as in the prior art, an additional process for removing the electromagnetic wave is unnecessary, and the crack of the electromagnetic wave protection layer that may occur in such a removal process is not caused, and the seal of the electronic device D The scene can be prevented from being contaminated by the metal for forming the electromagnetic shielding film.
  • the reservoir 20 must maintain the level of the metal ink M required for dipping the electronic device D, and thus, the water level adjusting means is provided inside the reservoir 20. It is preferable that it is provided. More specifically, the water level (d2) of the metal ink (M) accumulated in the receiving tank 20 should be equal to or lower than the side height (d1) of the electronic device (D), depending on the size of the electronic device (D) It is preferable to comprise so that the water level of (M) can be adjusted.
  • the water level sensor 21 in order to precisely adjust the level of the metal ink (M) of the receiving tank 20, by installing the water level sensor 21 to replenish the metal ink (M) in a constant amount as much as the amount of the metal ink (M) constant water level It is preferable to maintain the, and the water level sensor 21 used may be a laser type, ultrasonic type, magnetostrictive, frequency type, floating type sensor. On the other hand, in addition to such a sensor, it is also possible to use a variety of sensors that can measure the level of the metal ink (M) in the receiving tank (20).
  • At least one of the height adjusting device of the electronic device D and the height adjusting device of the receiving tank 20 may be used. It is preferable to provide.
  • the supply means 22 for supplying the metal ink M a diaphragm pump, a tube pump, a piston pump, and a gear pump can be used, and in addition, various kinds capable of quantitatively discharging the metal ink M can be used. It is also possible to use a pump.
  • the water level sensor 21 senses the level of the metal ink M, thereby separating the gap between the tank 20 and the electronic device D.
  • the excess metal ink M may be drained by adjusting or by adjusting the height of the sidewall of the container 20 to be lower than the side height of the electronic device D. At this time, the drained excess metal ink (M) may be stored in the storage tank 23 and supplied to the receiving tank 20 through the supply means 22 again.
  • any metal ink (M) containing a conductive metal can be used, for example, a metal ink (M) containing conductive metal particles, a metal ink of a particleless type (M) All are applicable, but not limited to.
  • a conductive metal can be used in various ways.
  • a silver ink containing silver (Ag) can be used, and in the case of silver, a metal that can provide excellent electromagnetic shielding effect among metals. Therefore, it may be preferable to use silver ink, but is not necessarily limited to silver ink.
  • the viscosity of the metal ink (M) composition of this invention it is more preferable that it is 5-400 cPs. If the viscosity value is too low, the flowability increases, making it difficult to form a uniform electromagnetic shielding film on the upper and side surfaces of the electronic device D. If the viscosity value is too high, the flowability decreases excessively, resulting in uneven thickness of the electromagnetic shielding film and plasticity. Due to the poor electrical conductivity, adhesion characteristics and appearance problems occur.
  • the surface tension of the metal ink (M) may be adjusted to obtain a uniform electromagnetic shielding film on the upper and side surfaces and the bent portion of the electronic device (D). It is preferable that the surface tension of the metal ink M is 35 dyn / cm at maximum, and it is more preferable that it is 30 dyn / cm or less.
  • the surface tension of the metal ink (M) is high, the ink is concentrated on the upper and side surfaces due to the wettability of the metal ink (M) with respect to the surface of the electronic device (D), and the application of the ink is thinned on the bent portion, thereby revealing the bent portion after firing. Defects can occur. Such defects can be eliminated by repeating the dipping step S20 several times, but it is natural that the number of dipping steps S20 should be minimized in terms of production efficiency.
  • the electrical property of the electromagnetic shielding film formed of the metal ink M of the present embodiment is preferably at most 800 mW / square or less.
  • the electrical conductivity is low, since the thickness of the electromagnetic shielding film is thickened to secure the required electromagnetic shielding properties, it may adversely affect the light and thin shortening of the electronic device (D).
  • the electronic device D When sufficient dipping is completed, as shown in FIG. 2C, the electronic device D is moved upwardly from the container 20, and the electronic device D is removed from the metal ink M of the container 20. Will be withdrawn.
  • the metal ink M may be applied to a portion of the upper surface and the side surface of the entire surface of the electronic device D, which require electromagnetic shielding.
  • electromagnetic shielding There is an advantage in that the electromagnetic wave shielding film can be constantly formed only up to the side height of the required electronic device (D).
  • the metal ink (M) By absorbing a predetermined amount of the metal ink (M) over-coated on the surface of the electronic device (D) by using a blade 30 made of an absorbent material, such as a porous material, it is possible to prevent the metal ink (M) from falling out.
  • an absorbent material such as porous material, for example, sponge, EVA foam, urethane foam can be used, and in addition, various porous absorbent materials can be used.
  • the metal element (M) is applied to the surface of the electronic element (D), the electronic element (D) is heated to perform firing.
  • This firing step (S40) may include a primary firing step and a secondary firing step, the primary firing is preliminary firing, the conditions may vary depending on the type of the electronic device (D) or the use environment, As shown in (d) and (e) of FIG. 2, preheating at 80 ° C. for 1 minute while providing thermal energy to the electronic device D coated with the metal ink M through the primary heater 41. You can proceed.
  • the primary purpose of the first firing step is to minimize or eliminate the fluidity of the metal ink M uniformly coated on the surface of the electronic device D to maintain uniformity until the second firing step is reached.
  • firing may be performed at 150 ° C. for 5 minutes through the secondary heater 42, but is not limited thereto.
  • the unloading step (S50), as shown in (f) of Figure 2, is to separate the electronic device (D) from the bonding portion 11 of the transport carrier 10, the separated electronic device (D)
  • the electromagnetic shielding film is formed by applying and firing the metal ink M only on the upper surface and a part of the side surface.
  • the adhesive portion 11 used in this embodiment is to maintain the adhesive force while the dipping step (S20) proceeds, but it is good to lose the adhesive force or have a weak adhesive force before going to the unloading step (S50). Contamination of the mounting surface of the electronic device (D) in the unloading step (S50) causes a product defect, so it is natural that there should be no transition of the adhesive material from the adhesive portion 11 at all.
  • an ultraviolet (UV) curing tape may be used, or more preferably, a foam tape may be used, and a tape capable of selectively losing the adhesive force may be used.
  • the adhesive portion 11 that maintains a level of adhesion without difficulty in separating from the adhesive portion 11, dipping step
  • the adhesive force may not change before and after (S20).
  • the water level d2 of the metal ink M that accumulates in the receiving tank 20 is set to be equal to the side height d1 of the electronic device D, so that the electronic device D has a side surface.
  • the metal ink M is formed between the mounting part of the electronic device D and the adhesive part 11. It is possible to form an electromagnetic wave shielding film in an infiltrated state.
  • the adhesive part 11 may include a hydrophobic material such as Teflon or silicon, or may be surface treated using the hydrophobic material, and may also use a micrometer having a nanometer size.
  • the surface of the electronic device D may be dipped in the metal ink M to form an electromagnetic shielding film on the top and side surfaces of the electronic device D. Can be provided.
  • a separate protective coating layer may be formed on the electromagnetic shielding film for the purpose of protecting the electromagnetic shielding film formed as needed from the external environment.
  • the protective coating layer it is preferable to use a polymer resin composition such as thermosetting resin or UV curing resin. In the semiconductor inspection process, not only color may be added for the purpose of increasing recognition rate or appearance quality, but also silver is used as the metal material of the electromagnetic shielding film, mercaptan in the protective coating layer composition. It may include a compound, a carboxylic acid compound or a silane compound.
  • a method of forming the above-described protective coating layer it is preferable to use a process of coating and curing using a dipping process similarly to the metal ink (M) described above.
  • FIG. 5 is a process chart of the electromagnetic wave shielding coating method according to a second embodiment of the present invention.
  • the electromagnetic wave shielding coating method according to the second embodiment may be indirectly dipped using a dipping roller 24 having a porous moisture absorption structure unlike the first embodiment.
  • the transport carrier 10 is formed of a carrier film wound in the form of a roll provided with an adhesive portion on one surface, in the process of transferring in a roll-to-roll method, a loading step (S10), a dipping step (S20) ), The firing step (S40) and the unloading step (S50) is performed in sequence, which is advantageous for the continuous process.
  • the electronic device D attached to the transport carrier 10 through the loading step S10 moves on the roll-to-roll line and moves to the dipping step S20.
  • the electronic device D moves to the transport carrier 10.
  • the attached electronic device D comes into contact with the dipping roller 24.
  • the dipping roller 24 has a porous moisture absorption structure and is dipped in advance in the metal ink M of the receiving tank 20 so as to contain sufficient metal ink M, and the upper region of the receiving tank 20.
  • Application of the metal ink (M) to the upper and side surfaces of the electronic device (D) requiring electromagnetic shielding by rotating the dipping roller 24 can be made at the same time.
  • the material of the dipping roller 24 is urethane foam, silicon foam, rubber foam is preferably used, in addition to the metal ink (M) is easy to transfer, the metal ink (M) on the upper and side surfaces of the electronic device (D)
  • the interval between the dipping roller 24 and the electronic device (D) can be adjusted according to the specifications of the electronic device (D), for this purpose, in the upper region of the dipping roller 24 of the transport carrier 10
  • the roller supporting the back surface can be configured to be adjustable up and down.
  • the electronic device D which has been coated with the metal ink M, is subjected to a firing step S40, which is a next step, through a roll-to-roll line.
  • a firing step S40 preliminary firing and final firing may be performed through the primary heater 41 and the secondary heater 42, and when the metal ink M is completely cured by the firing step S40, An electromagnetic shielding film is formed on the top and side surfaces of the device D, and is then separated from the transport carrier 10 through an unloading step (S50).
  • the coating amount of the metal ink M applied to the surface of the electronic device D through the absorption rate of the dipping roller 24 is determined. Since it can be controlled, the leveling step in the first embodiment for removing a part of the metal ink M overcoated on the surface of the electronic device D may be omitted.
  • the electromagnetic wave shielding coating method according to the third embodiment includes a roll-to-roll process differently from the first embodiment.
  • the transport carrier 10 is made of a carrier film wound in the form of a roll provided with an adhesive portion on one surface, in the process of transporting in a roll-to-roll manner, a loading step (S10), surface treatment step, dipping step (S20), Since the leveling step (S30), the firing step (S40) and the unloading step (S50) are performed in sequence, it is advantageous for the continuous process.
  • the electronic device (D) attached to the transport carrier 10 through the loading step (S10) is moved to the dipping step (S20) while moving in a roll-to-roll line, dipping step (S20) ),
  • the back surface of the transfer carrier 10 to which the electronic device D is attached is pressed by the pressure roller 25, and dipped into the metal ink M of the receiving tank 20.
  • the angle of entry (angle roll) disposed on both sides of the pressure roller 25 can be adjusted to the entry angle of the electronic device (D) enters the receiving tank 20, the coating on the electronic device (D) during the dipping process It is possible to maximize the uniformity of the metal ink (M).
  • the entrance angle of the electronic device (D) is too large than the horizontal, when the electronic device (D) enters the first side of the receiving tank 20 and the side of the later touching portion may not be constant coating height If the entry angle is too low, only a portion of the side surface of the electronic device D may be coated, and thus, it may be difficult to form an electromagnetic shielding film of a required portion.
  • the electronic device D transferred in a roll-to-roll manner is withdrawn from the metal ink M of the storage tank 20 while leaving the section pressurized toward the storage tank 20 by the pressure roller 25. .
  • the receiving tank 20 is to maintain a certain amount of water level as described above, it is preferable that the receiving tank 20 is provided with a level control means such as the water level sensor 21.
  • a vibration means for providing ultrasonic vibration to the receiving tank 20 to improve the dipping efficiency by placing the uneven at the bottom of the receiving tank 20 to control the fluidity of the metal ink (M) coating It is possible to improve the characteristics.
  • the dipping step (S20) Through the dipping step (S20), the application of the metal ink (M) is completed on the upper and side surfaces of the entire surface of the electronic device (D), the electromagnetic wave shielding to the outside is required.
  • the electronic device D is withdrawn from the receiving tank 20, moves through the roll-to-roll line, and enters the leveling step S30.
  • this leveling step (S30) in order to prevent chipping of the metal ink M applied to the surface of the electronic device D in a continuous process in which the electronic device D moves a roll-to-roll line, the surface of the electronic device D The metal ink (M) over-coated in the blade 30 is scraped with a leveling (leveling) operation to flatten it flat.
  • the overcoated metal ink M may be partially removed and planarized. It is also possible to use other means, and as another example, the blade 30 may be made of a porous absorbent material, thereby preventing the ink bleeding phenomenon by absorbing a certain amount of the metal ink M collected on the surface of the electronic device D. .
  • the firing step (S40) of the next step through the roll-to-roll line When the leveling step (S30) is completed, the firing step (S40) of the next step through the roll-to-roll line.
  • preliminary firing and final firing may be performed through the primary heater 41 and the secondary heater 42, and the metal ink coated on the electronic device D by the firing step S40 (
  • M) When M is completely cured, an electromagnetic shielding film is formed on the upper and side surfaces of the electronic device D, and then the electronic device D on which the electromagnetic shielding film is formed is separated from the transport carrier 10 through an unloading step S50. do.
  • the surface of the electronic device D is dipped in the metal ink M to form an electromagnetic shielding film, thereby providing an excellent electromagnetic shielding effect in a simplified process.
  • the sheet resistance of the ink coating surface was measured using a sheet resistance meter (4 point probe), the viscosity was measured at 20 rpm, 25 °C using a Brookfield viscometer with 0.5 ml of ink, the surface tension of K20 (Easy dyne KRUSS) was measured.
  • Dispersion particle size was measured by diluting 10% ink in butyl carbitol solvent using dynamic light scattering.
  • Coating thickness was measured using FE-SEM, electromagnetic shielding test was measured by the electromagnetic shielding performance (S21 Parameter, ASTM D4935).
  • Ag 2-ethylhexylcarbamate 100g, solvent (Butanol 100g, Isobutylamine 50g), dispersant (BYK 145145, 1g), binder resin (epoxy resin, 0.5g), wetting agent (antittera 204, 0.2g), leveling agent (EFKA 350 , 0.05 g) was mixed to prepare a particleless Ag ink having a viscosity of 5 cps, surface tension of 23 dyne / cm, and sheet resistance of 650 mPa / ⁇ .
  • the beads were removed by a filter to obtain an ink in which Ag nanoparticles were uniformly dispersed.
  • An ink having a viscosity of 50 cps, a surface tension of 26 dyne / cm, and a sheet resistance of 90 mPa / ⁇ was prepared.
  • the sheet resistance of the shielding film thus formed is 700m ⁇ / ⁇ , step coverage 93%, shielding rate 32dB
  • the other five surfaces of the six surfaces of the semiconductor package except the lower surface of the semiconductor package were coated by the vertical dipping process of the first embodiment, followed by preliminary firing at 80 ° C. for 1 min. And 150 ° C., 5 min final firing to form an electromagnetic shielding film.
  • the sheet resistance of the shielding film thus formed is 350m ⁇ / ⁇ , step coverage 95%, shielding rate 42dB.
  • the sheet resistance of the thus formed shielding film is 100m ⁇ / ⁇ , step coverage 94%, shielding rate 50dB.
  • the sheet resistance of the thus formed shielding film is 55m ⁇ / ⁇ , step coverage 95%, shielding rate 61dB.
  • the other five surfaces except the lower surface of the six surfaces of the semiconductor package were coated through a vertical dipping process of the first embodiment, followed by 130 ° C. and 20 min. It fires during the time and forms an electromagnetic wave shielding film.
  • the sheet resistance of the shielding film thus formed is 65m ⁇ / ⁇ , step coverage 95%, shielding rate 57dB.
  • the sheet resistance of the shielding film thus formed is 750m ⁇ / ⁇ , step coverage 90%, shielding rate 30dB.
  • the sheet resistance of the thus formed shielding film is 400m ⁇ / ⁇ , step coverage 92%, shielding rate 40dB.
  • the sheet resistance of the shielding film thus formed is 150m ⁇ / ⁇ , step coverage 91%, shielding rate 48dB.
  • the sheet resistance of the thus formed shielding film is 57m ⁇ / ⁇ , step coverage 93%, shielding rate 61dB.
  • the sheet resistance of the shielding film thus formed is 70 m ⁇ / ⁇ , step coverage 92%, shielding rate 56dB.
  • Electromagnetic shielding film is formed by preliminary firing and final firing at 150 ° C. for 5 min.
  • the sheet resistance of the shielding film thus formed is 300 m ⁇ / ⁇ , step coverage 96%, shielding rate 43dB.
  • the sheet resistance of the thus formed shielding film is 90m ⁇ / ⁇ , step coverage 97%, shielding rate 52dB.
  • the viscosity of 400 cps Ag nanoparticle-dispersion type metal ink of [Production Example 4] was coated at 130 ° C. after the other five surfaces of the six surfaces of the semiconductor package were coated by the roll to roll dipping process of the third embodiment. , The electromagnetic shielding film is formed by firing for 15 minutes.
  • the sheet resistance of the shielding film thus formed is 50 mPa / ⁇ , step coverage 96%, shielding rate 65dB.
  • the Ag paste-type metal ink having a viscosity of 50,000 cps of [Production Example 5] was coated at 130 ° C. after coating the remaining five surfaces of the six surfaces of the semiconductor package through the Roll to Roll dipping process of the third embodiment. 20 minutes to form an electromagnetic shielding film through firing.
  • the sheet resistance of the shielding film thus formed is 60m ⁇ / ⁇ , step coverage 96%, shielding rate 59dB.
  • the remaining layer of the six surfaces of the semiconductor package except the lower surface of the six surfaces of the semiconductor package was coated with a thermosetting resin through a roll to roll dipping process of the third embodiment on the electromagnetic shielding film prepared in Example, and then fired for 180 ° C. for 10 min. To form a protective coating layer through.
  • Sputtering apparatus A metal sintered compact was formed as a sputtering target using the DC magnetron sputter apparatus. Film-forming conditions were room temperature, DC500W, 6% oxygen concentration, and annealing conditions were performed at 300 degreeC x 1 hr in air
  • the step coverage of the shielding film thus formed is 41%.
  • the characteristics of the prepared electromagnetic shielding ink are shown in Table 1 below.
  • Table 2 summarizes the characteristics of the electromagnetic shielding film formed according to the electromagnetic shielding dipping process prepared in Example.

Abstract

The present invention relates to a method for forming a coating that blocks electromagnetic waves, characterized by comprising: a loading step of attaching a surface of an electronic element to a transfer carrier; a dipping step of dipping the electronic element attached to the transfer carrier into a containing tank in which metal ink is contained such that the metal ink is applied to the exposed outer surface of the electronic element; a sintering step of hardening the metal ink applied to the electronic element; and an unloading step of separating the electronic device from the transfer carrier.

Description

전자파 차폐 코팅 방법Electromagnetic shielding coating method
본 발명은 전자파 차폐 코팅 방법에 관한 것으로서, 보다 상세하게는 전자 소자의 표면을 금속잉크에 디핑(dipping)하여 전자소자의 표면에 전자파 차폐막을 형성하는 것을 특징으로 하는 전자파 차폐 코팅 방법에 관한 것이다. The present invention relates to an electromagnetic shielding coating method, and more particularly, to an electromagnetic shielding coating method characterized in that an electromagnetic shielding film is formed on the surface of an electronic device by dipping the surface of the electronic device into a metal ink.
최근 전기전자 산업과 정보통신기술의 급속한 발전은 인류 생활에 많은 편리함과 윤택함을 제공하고 있다. 그러나, 이러한 장점 외에도 여러 가지 부작용을 낳고 있는데, 그 중의 하나가 이로부터 발생하는 전자파의 유해성이다. 생활 가전기기, 정보통신기기 및 산업기기 등으로부터 발생하는 전자파는 기기간의 전자파 장해(EMI, electromagnetic interference)와 더불어 인체에 대한 유해성으로 인하여 새로운 환경 문제로 대두되고 있는 실정이다. 또한, 전자, 정보통신기기의 고속화, 광대역화가 가속화됨에 따라 휴대폰, 노트북컴퓨터, 개인 휴대용 정보 단말기(PDA, personal digital assistant) 등 정보통신기기뿐만 아니라 일상 생활용품 등의 소형화, 박형화 및 경량화가 이루어지고 있으며, 이에 따라 EMI 문제가 더욱 심하게 대두되고 있어 이를 해결하기 위한 기술 개발이 시급하다 할 수 있다. Recently, the rapid development of the electric and electronic industry and information and communication technology has provided a lot of convenience and richness to human life. However, in addition to these advantages, there are various side effects, one of which is the harmfulness of electromagnetic waves generated therefrom. Electromagnetic waves generated from household appliances, information and communication devices, and industrial devices are emerging as new environmental problems due to electromagnetic interference (EMI) and harmful effects on human bodies. In addition, as the speed and speed of electronic and information communication equipments are accelerated, miniaturization, thinning, and weight reduction of not only information communication devices such as mobile phones, notebook computers, personal digital assistants (PDAs), but also daily living products are achieved. As a result, the problem of EMI is more serious, and technology development to solve this problem is urgent.
일반적으로 반도체 소자 제작 공정 중 패키징 공정 단계에서 제작된 반도체 칩을 절연성 수지로 몰딩하여 외부 환경으로부터 보호하는 공정을 하게 되는데, 완성된 전자소자가 동작될 경우 여기서 전자파가 발생하거나 반대로 주변에서 발생하는 전자파의 영향을 받아 오류가 발생하여 전자기기의 중대한 결함을 발생시킬 우려를 가지고 있다. In general, the semiconductor chip fabricated in the packaging process step of the semiconductor device fabrication process is molded with an insulating resin to protect from the external environment. When the completed electronic device is operated, electromagnetic waves are generated here or vice versa. There is a fear that an error may occur under the influence of the electronic device and cause a serious defect of the electronic device.
이를 해결하기 위한 다른 제안으로서, 전자 소자의 표면이나 수지 몰딩 외표면에 건식 또는 습식으로 전자파 차폐막을 형성하는 방법이 있다.As another proposal to solve this problem, there is a method of forming an electromagnetic shielding film on a surface of an electronic device or an outer surface of a resin molding in a dry or wet manner.
건식방법으로는 스퍼터링 방식으로 전자파 차폐막을 형성하는 방법이 보편적으로 사용되고 있다. 스퍼터링 방식의 경우 스퍼터링 장비는 상당히 고가일 뿐만 아니라 장시간 스퍼터링이 이루어져야 함에 따라 비효율적인 단점이 있다. 뿐만 아니라 스퍼터링 공정의 특성상 상면과 측면이 균일한 두께로 금속층 형성이 어렵다는 단점이 있어 이를 보완하기 위한 기계적 공정적 수단이 추가로 필요한 상황이다. 상기와 같은 문제점을 해결하기 위해, 대한민국 등록특허공보 KR 10-1686318 B1 (2016.12.07)에 상면 및 측면에 균일한 전자파 차폐막을 형성하기 위한 방법 및 장치에 대해 개시되어 있다.As a dry method, a method of forming an electromagnetic shielding film by sputtering is commonly used. In the case of the sputtering method, the sputtering equipment is not only expensive but also has an inefficient disadvantage due to the sputtering being performed for a long time. In addition, due to the nature of the sputtering process, the upper and side surfaces are difficult to form a metal layer with a uniform thickness, so that a mechanical process means for supplementing this situation is required. In order to solve the above problems, a method and apparatus for forming a uniform electromagnetic shielding film on the upper surface and the side in the Republic of Korea Patent Publication KR 10-1686318 B1 (2016.12.07) is disclosed.
습식 방법으로는 스프레이 방식이 보편적이며, 스퍼터링 방식에 비해 비교적 생산성이 우수하나 전자소자의 전체 표면 중, 특히 전자소자의 측면에 분사가 구조적으로 용이하지 않고 분사과정에서 발생하는 분진으로 인해 잉크소재의 낭비와 반도체 크린룸내 오염을 유발하는 문제점을 안고 있다. 또한 전술한 스퍼터링 공정과 마찬가지로 스프레이 과정에서 상면과 측면에 전자파 차폐막 형성을 위한 균일한 두께의 금속층을 도포하는 것이 어렵다.The spray method is generally used as a wet method, and is relatively more productive than the sputtering method, but it is not structurally easy to spray on the entire surface of the electronic device, especially the side of the electronic device, and the dust generated during the spraying process There is a problem that causes waste and pollution in the semiconductor clean room. In addition, as in the sputtering process described above, it is difficult to apply a metal layer having a uniform thickness for forming an electromagnetic shielding film on the upper surface and the side in the spraying process.
이외에 도금 방식이 있으나, 도금방식은 금속층과 수지와의 부착력이 약하므로, 대한민국 등록특허공보 제10-0839930호(2008.06.20.)에는 거칠기를 발생시키는 별도의 전 처리 공정에 대한 설명이 개시되어 있다. 하지만, 도금공정에 사용되는 도금액제는 환경안전 측면에서 까다롭게 관리 및 처리해야 하는 단점이 있다. In addition to the plating method, the plating method has a weak adhesion between the metal layer and the resin, the Republic of Korea Patent Publication No. 10-0839930 (2008.06.20.) Describes a separate pre-treatment process for generating a roughness is disclosed have. However, the plating solution used in the plating process has a disadvantage in that it is difficult to manage and process in terms of environmental safety.
전자소자의 전체 표면 중 실장면(PCB면)을 제외한 필수 차폐영역에만 전자파 차폐막을 형성하는 것이 가장 중요한데, 상기 스퍼터링 방법, 스프레이방법, 도금방법 모두 전자파차폐가 불필요한 영역까지 금속 차폐막이 형성되는 문제가 발생한다. 이를 방지하기 위해, 예컨대 점착 테이프를 사용하여 차폐가 필요하지 않은 실장면을 마스킹할 수 있는데, 점착 테이프에도 금속 차폐막이 코팅됨에 따라, 전자소자의 언로딩(unloading) 시 금속 차폐막에 크랙이 발생하면서 전자파 차폐기능을 전혀 수행할 수 없게 되는 문제점이 유발되므로, 이러한 결함을 방지하기 위해 추가적인 프리 커팅(precutting) 공정까지 요구되고 있는 실정이다. It is most important to form the electromagnetic shielding film only in the necessary shielding area except the mounting surface (PCB surface) of the entire surface of the electronic device, and the problem of forming the metal shielding film in the sputtering method, the spraying method, and the plating method does not require electromagnetic shielding. Occurs. To prevent this, for example, a mounting surface which does not require shielding may be masked by using an adhesive tape. As the metal shielding film is coated on the adhesive tape, a crack occurs in the metal shielding film during unloading of the electronic device. Since there is a problem that the electromagnetic shielding function can not be performed at all, an additional precutting process is required to prevent such defects.
따라서, 본 발명의 목적은 이와 같은 종래의 문제점을 해결하기 위한 것으로서, 전자소자의 노출된 표면을 금속잉크에 디핑하여 전자소자의 표면에 균일한 두께의 전자파 차폐막을 형성할 수 있는 전자파 차폐 코팅 방법에 관한 것이다.Accordingly, an object of the present invention is to solve such a conventional problem, by dipping the exposed surface of the electronic device in the metal ink to form an electromagnetic shielding film having a uniform thickness on the surface of the electronic device It is about.
상기 목적은, 본 발명에 따라, 전자소자의 일면을 이송캐리어에 부착하는 로딩단계;와, 상기 이송캐리어에 부착된 전자소자를 금속잉크가 수용된 수용조에 디핑(dipping)시켜, 전자소자의 노출된 외표면에 금속잉크를 도포하는 디핑단계;와, 상기 전자소자에 도포된 금속잉크를 경화시키는 소성단계; 및 이송캐리어로부터 전자소자를 분리하는 언로딩단계;를 포함하는 전자파 차폐 코팅 방법에 의해 달성된다. According to the present invention, a loading step of attaching one surface of the electronic device to the transport carrier; and dipping the electronic device attached to the transport carrier in a receiving tank containing a metal ink, the exposure of the electronic device A dipping step of applying a metal ink to an outer surface; and a firing step of curing the metal ink applied to the electronic device; And an unloading step of separating the electronic device from the transport carrier.
여기서, 상기 디핑단계에 앞서, 이송캐리어에 부착된 전자소자의 노출된 표면에 친수성을 부여하기 위한 표면처리단계;를 더 수행하는 것이 바람직하다.Here, prior to the dipping step, a surface treatment step for imparting hydrophilicity to the exposed surface of the electronic device attached to the transfer carrier;
또한, 상기 표면처리단계는 전자소자의 표면을 플라즈마 처리하는 것이 바람직하다.In addition, the surface treatment step is preferably a plasma treatment of the surface of the electronic device.
또한, 상기 이송캐리어의 전자소자 부착면은 소수성을 갖는 것이 바람직하다.In addition, it is preferable that the electronic device attachment surface of the transfer carrier has hydrophobicity.
또한, 상기 소성단계에 앞서, 전자소자의 표면에 도포된 금속잉크의 도포 두께를 일정하게 하는 레벨링단계;를 더 수행하는 것이 바람직하다.In addition, prior to the firing step, a leveling step of making the coating thickness of the metal ink applied to the surface of the electronic device constant; it is preferable to further perform.
또한, 상기 레벨링단계는, 디핑단계에서 전자소자 표면에 과잉 도포된 금속잉크를 블레이드로 긁어내어 평평하게 레벨링(leveling)하는 것이 바람직하다.In addition, in the leveling step, it is preferable to scrape the metal ink overcoated on the surface of the electronic device with a blade and level the surface flatly.
또한, 상기 레벨링단계는, 디핑단계에서 전자소자 표면에 과잉 도포된 금속잉크를 흡수 재료로 이루어진 블레이드로 흡수하여 평평하게 레벨링(leveling)하는 것이 바람직하다.In addition, in the leveling step, it is preferable that the metal ink overcoated on the surface of the electronic device is absorbed by a blade made of an absorbing material and leveled flatly in the dipping step.
또한, 상기 디핑단계에서는, 이송캐리어에 부착된 전자소자의 규격에 따라, 전자소자의 디핑 깊이를 제어하는 것이 바람직하다.Further, in the dipping step, it is preferable to control the dipping depth of the electronic device according to the specification of the electronic device attached to the transport carrier.
또한, 상기 수용조는 금속잉크의 수위를 전자소자의 두께와 같거나 낮은 깊이로 선택적으로 조절하는 것이 바람직하다.In addition, the receiving tank is preferably to selectively adjust the level of the metal ink to a depth equal to or less than the thickness of the electronic device.
또한, 상기 이송캐리어는 롤투롤 방식으로 이송되는 캐리어필름으로 이루어지고, 캐리어필름의 일측 면에는 상기 전자소자의 일면이 부착될 수 있는 접착부가 마련되는 것이 바람직하다.In addition, the transfer carrier is made of a carrier film to be transported in a roll-to-roll manner, it is preferable that one side of the carrier film is provided with an adhesive portion to which one side of the electronic device can be attached.
또한, 상기 디핑단계에서는, 수용조의 상측에서 승강제어되는 디핑롤러를 이용해 전자소자가 부착된 이송캐리어의 이면을 수용조를 향해 가압하여 전자소자의 디핑 깊이를 제어하는 것이 바람직하다.In addition, in the dipping step, it is preferable to control the dipping depth of the electronic device by pressing the rear surface of the transfer carrier to which the electronic device is attached toward the receiving tank by using a dipping roller which is lifted and controlled at the upper side of the receiving tank.
또한, 상기 디핑단계에서는, 상기 수용조의 금속잉크를 흡수한 디핑롤러가 회전하면서, 디핑롤러의 상측에서 이동하는 전자소자의 외표면에 금속잉크를 도포하는 것이 바람직하다.In addition, in the dipping step, it is preferable to apply the metal ink to the outer surface of the electronic device moving above the dipping roller while the dipping roller absorbing the metal ink of the container rotates.
본 발명에 따르면, 전자소자의 표면을 금속잉크에 디핑하여 그 표면에 균일한 두께의 전자파 차폐막을 형성함으로써, 간소화된 공정으로 우수한 전자파 차폐 효과를 제공할 수 있게 된다. According to the present invention, by dipping the surface of the electronic device in the metal ink to form an electromagnetic shielding film of uniform thickness on the surface, it is possible to provide an excellent electromagnetic shielding effect in a simplified process.
또한, 기존 스퍼터링 방법으로 전자파 차폐막을 형성하는 경우 스퍼터링 후 필요 없는 영역에 형성된 전자파 차폐막을 제거하는 추가 공정이 반드시 필요하고 이 과정에서 전자파 차폐막에 크랙이 발생하여 크랙 때문에 본래의 전자파 차폐 기능을 할 수 없게 되던 기존 방법과 달리, 전자소자의 실장면을 이송캐리어의 접착부에 부착한 뒤, 전자소자의 노출된 표면을 금속잉크에 디핑하여 전자파 차폐막을 형성함으로써, 불필요한 부분에 전자파 차폐막이 형성되는 것을 방지할 수 있으며, 이로 인해 종래의 일부 전자파 차폐막을 제거하는 추가 공정을 생략할 수 있을 뿐만 아니라, 전자파 차폐막의 크랙 유발을 방지할 수 있다.In addition, in the case of forming the electromagnetic shielding film by the conventional sputtering method, an additional step of removing the electromagnetic shielding film formed in the unnecessary area after sputtering is necessary. In this process, a crack occurs in the electromagnetic shielding film, and thus the original electromagnetic shielding function may be performed due to the crack. Unlike the conventional method, the mounting surface of the electronic device is attached to the bonding part of the transport carrier, and then the exposed surface of the electronic device is dipped into the metal ink to form the electromagnetic shielding film, thereby preventing the electromagnetic shielding film from being formed on the unnecessary part. As a result, it is possible to omit an additional process of removing some of the conventional electromagnetic shielding films, and to prevent the occurrence of cracking of the electromagnetic shielding films.
도 1은 본 발명의 제1실시예에 따른 전자파 차폐 코팅 방법의 공정순서도, 1 is a process flowchart of the electromagnetic wave shielding coating method according to the first embodiment of the present invention;
도 2는 도 1의 공정 단계별 공정도, Figure 2 is a process step by step of Figure 1,
도 3은 도 2에 나타나 있는 수용조의 확대도, 3 is an enlarged view of the receiving tank shown in FIG.
도 4는 본 발명의 제1실시예에 따른 전자파 차폐 코팅 방법의 디핑단계의 변형예를 나타낸 공정도,4 is a process chart showing a modification of the dipping step of the electromagnetic shielding coating method according to the first embodiment of the present invention,
도 5는 본 발명의 제2실시예에 따른 전자파 차폐 코팅 방법의 공정도이고, 5 is a process chart of the electromagnetic wave shielding coating method according to a second embodiment of the present invention,
도 6은 본 발명의 제3실시예에 따른 전자파 차폐 코팅 방법의 공정도이다.6 is a process chart of the electromagnetic wave shielding coating method according to a third embodiment of the present invention.
도 7은 전자파 차폐 형성 공정에 따른 코팅막의 step coverage 특성 비교표이다.7 is a comparison table of step coverage characteristics of the coating film according to the electromagnetic shielding forming process.
이하, 첨부한 도면을 참조하여, 본 발명의 제1실시예에 따른 전자파 차폐 코팅 방법에 대해 상세히 설명한다. Hereinafter, an electromagnetic wave shielding coating method according to a first embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 제1실시예에 따른 전자파 차폐 코팅 방법의 공정순서도이고, 도 2는 도 1의 공정 단계별 공정도이고, 도 3은 도 2에 나타나 있는 수용조의 확대도이다. 1 is a process flow chart of the electromagnetic wave shielding coating method according to a first embodiment of the present invention, Figure 2 is a process step by step of Figure 1, Figure 3 is an enlarged view of the receiving tank shown in FIG.
도 1에 도시된 바와 같이, 제1실시예에 따른 전자파 차폐 코팅 방법은 로딩단계(S10), 디핑단계(S20), 레벨링단계(S30), 소성단계(S40) 및 언로딩단계(S50)를 포함한다. As shown in FIG. 1, the electromagnetic wave shielding coating method according to the first embodiment includes a loading step S10, a dipping step S20, a leveling step S30, a baking step S40, and an unloading step S50. Include.
본 실시예에서는 이송캐리어(10)가 횡방향으로 이동하면서 각 공정별로 진행되는 것으로 예를 들어 설명한다.In the present embodiment, for example, it will be described that the transport carrier 10 proceeds for each process while moving in the lateral direction.
상기 로딩단계(S10)에서는, 도 2의 (a)에 도시된 바와 같이, 전자소자(D)의 실장면(PCB면)을 이송캐리어(10)의 접착부(11)에 밀착시킨 후, 압력을 가하여 전자소자(D)를 이송캐리어(10)의 접착부(11)에 부착시킨다. 한편, 상기 전자소자(D)의 외표면에 친수성을 부여하기 위한 표면처리단계를 수행할 수 있으며, 이러한 표면처리단계에서는 플라즈마(P)를 이용한 표면처리를 통해 전자소자(D)의 표면에 친수성을 부여함으로써, 금속잉크(M)의 부착력을 증대시킬 수 있다.In the loading step (S10), as shown in (a) of Figure 2, after mounting the mounting surface (PCB surface) of the electronic device (D) in close contact with the adhesive portion 11 of the transfer carrier 10, the pressure In addition, the electronic device D is attached to the adhesive part 11 of the transfer carrier 10. Meanwhile, a surface treatment step may be performed to impart hydrophilicity to the outer surface of the electronic device D. In this surface treatment step, the surface of the electronic device D may be hydrophilic through surface treatment using plasma P. By providing, the adhesion of the metal ink M can be increased.
상기 디핑단계(S20)는, 도 2의 (b) 및 (c)에 도시된 바와 같이, 이송캐리어(10)를 금속잉크(M)가 수용된 수용조(20)의 상부영역으로 이동시키고, 이송캐리어(10)의 접착부(11)에 부착된 전자소자(D)가 이송캐리어(10) 하부영역에 위치한 수용조(20)를 향하도록 위치시킨 상태에서, 이송캐리어(10)를 수용조(20)를 향해 하강시킴으로써, 전자소자(D)를 금속잉크(M)에 디핑한다.In the dipping step S20, as shown in FIGS. 2B and 2C, the transfer carrier 10 is moved to an upper region of the receiving tank 20 in which the metal ink M is accommodated and transferred. In the state where the electronic element D attached to the adhesive part 11 of the carrier 10 faces the container 20 located in the lower area of the carrier carrier 10, the carrier 20 is placed in the container 20. The electronic element D is dipped in the metal ink M by lowering the direction toward the cross section.
여기서, 디핑은 전자소자(D)의 필수 차폐영역에만 이루어지는 것을 특징으로 하며, 구체적인 예로는 접착부(11)에 부착된 전자소자(D)의 실장면을 제외한 EMC(Epoxy Molding Compound)부분에 전자파 차폐가 이루어져야 하므로, 도 2의 (b)와 같이 수용조(20)에 고이는 금속잉크(M)의 수위(d2)를 전자소자(D)의 측면 높이(d1)보다 낮게 설정한 상태에서, 전자소자(D)의 상면과 측면 부분만 금속잉크(M)에 디핑하여 균일한 두께의 전자파 차폐막을 형성할 수 있다.Here, the dipping is made only in the essential shielding area of the electronic device (D), the specific example is electromagnetic shielding in the EMC (Epoxy Molding Compound) portion except the mounting surface of the electronic device (D) attached to the bonding portion 11 Since the should be made, as shown in FIG. 2 (b) in the state in which the water level (d2) of the metal ink (M) accumulated in the reservoir 20 is set lower than the side height (d1) of the electronic device (D), Only the top and side portions of (D) can be dipped in the metal ink M to form an electromagnetic shielding film having a uniform thickness.
전술한 바와 같이 전자소자(D)의 전체 표면 중 실장면을 제외한 필수 차폐영역에만 전자파 차폐막을 형성하는 것이 가장 중요한데, 스퍼터링 방식, 스프레이 방식 등의 공지된 기술의 경우 차폐가 필요한 전자소자(D)의 측면에 균일한 전자파 차폐막의 형성이 용이하지 않고, 실장면 보호를 위한 별도의 마스킹 공정을 필요로 하며, 언로딩 과정에서 전자파 차폐막의 크랙을 방지하기 위한 별도의 공정이 수반되어야만 한다. As described above, it is most important to form the electromagnetic shielding film only in the essential shielding area except the mounting surface of the entire surface of the electronic device D. In the known technologies such as sputtering and spraying, the electronic device (D) that requires shielding is required. The formation of a uniform electromagnetic shielding film on the side of the is not easy, requires a separate masking process for protecting the mounting surface, and must be accompanied by a separate process to prevent cracking of the electromagnetic shielding film during the unloading process.
그러나, 본 실시예에 따르면, 전자소자(D)의 실장면이 이송캐리어(10)의 접착부(11)에 접착된 상태에서, 실장면의 반대쪽 면(상면)이 수용조(20)를 향하도록 뒤집은 다음 디핑하므로, 필수 차폐영역에만 금속잉크(M)를 도포할 수 있다. 특히 본 실시예에서는 종래 기술에서 문제가 되는 전자소자(D)의 실장면이 이송캐리어(10)의 접착부(11)에 접착되어 노출되지 않기 때문에 실장면에 금속잉크(M)가 도포되는 것을 방지할 수 있으며, 전자소자(D)의 측면까지 금속잉크(M)가 한꺼번에 도포되기 때문에 일체화된 균일한 두께의 전자파 차폐막을 제공할 수 있다. 따라서, 종래와 같이 불필요한 영역에 전자파 차폐막이 형성되지 않으므로, 이를 제거하기 위한 추가 공정이 불필요하고, 또한 이러한 제거 공정에서 발생할 수 있는 전자파 보호층의 크랙이 유발되지 않으며, 전자소자(D)의 실장면이 전자파 차폐막 형성을 위한 금속에 의해 오염되는 것을 방지할 수 있다.However, according to the present embodiment, in a state where the mounting surface of the electronic device D is bonded to the bonding portion 11 of the transfer carrier 10, the opposite surface (upper surface) of the mounting surface faces the receiving tank 20. Since the inverting and then dipping, it is possible to apply the metal ink (M) only to the essential shielding area. In particular, the present embodiment prevents the metal ink M from being applied to the mounting surface because the mounting surface of the electronic device D, which is a problem in the prior art, is not exposed because it is bonded to the bonding portion 11 of the transfer carrier 10. In addition, since the metal ink (M) is applied to the side of the electronic device (D) at once, it is possible to provide an integrated electromagnetic shielding film of uniform thickness. Therefore, since the electromagnetic wave shielding film is not formed in an unnecessary area as in the prior art, an additional process for removing the electromagnetic wave is unnecessary, and the crack of the electromagnetic wave protection layer that may occur in such a removal process is not caused, and the seal of the electronic device D The scene can be prevented from being contaminated by the metal for forming the electromagnetic shielding film.
한편, 수용조(20)는 도 3에 도시된 바와 같이, 전자소자(D)의 디핑에 요구되는 금속잉크(M)의 수위를 유지하여야 하므로, 수용조(20)의 내부에는 수위 조절 수단이 구비되어 있는 것이 바람직하다. 보다 상세하게는 수용조(20)에 고이는 금속잉크(M)의 수위(d2)는 전자소자(D)의 측면 높이(d1)와 같거나 낮아야 하며, 전자소자(D)의 규격에 따라 금속잉크(M)의 수위를 조절할 수 있도록 구성하는 것이 바람직하다. 또한 수용조(20)의 금속잉크(M)의 수위를 정밀하게 조절하기 위해서, 수위센서(21)를 설치하여 금속잉크(M)의 사용량만큼 일정하게 금속잉크(M)를 보충해줌으로써 일정한 수위가 유지되도록 하는 것이 바람직하며, 사용되는 수위센서(21)로는 레이저방식, 초음파 방식, 자왜식(磁歪式), 주파수식, 부유방식의 센서를 사용할 수 있다. 한편, 이러한 센서 이외에도, 수용조(20) 내의 금속잉크(M)의 수위를 측정할 수 있는 다양한 종류의 센서를 사용하는 것도 가능하다.Meanwhile, as shown in FIG. 3, the reservoir 20 must maintain the level of the metal ink M required for dipping the electronic device D, and thus, the water level adjusting means is provided inside the reservoir 20. It is preferable that it is provided. More specifically, the water level (d2) of the metal ink (M) accumulated in the receiving tank 20 should be equal to or lower than the side height (d1) of the electronic device (D), depending on the size of the electronic device (D) It is preferable to comprise so that the water level of (M) can be adjusted. In addition, in order to precisely adjust the level of the metal ink (M) of the receiving tank 20, by installing the water level sensor 21 to replenish the metal ink (M) in a constant amount as much as the amount of the metal ink (M) constant water level It is preferable to maintain the, and the water level sensor 21 used may be a laser type, ultrasonic type, magnetostrictive, frequency type, floating type sensor. On the other hand, in addition to such a sensor, it is also possible to use a variety of sensors that can measure the level of the metal ink (M) in the receiving tank (20).
수용조(20)의 수위조절과 더불어 보다 정밀하게 전자파 차폐막의 균일성을 정밀하게 제어하기 위하여 디핑시 전자소자(D)의 높이조절장치와 수용조(20)의 높이조절장치 중 적어도 어느 하나를 구비하는 것이 바람직하다. In order to precisely control the uniformity of the electromagnetic wave shielding film in addition to adjusting the water level of the receiving tank 20, at least one of the height adjusting device of the electronic device D and the height adjusting device of the receiving tank 20 may be used. It is preferable to provide.
또한, 금속잉크(M)를 공급하기 위한 공급수단(22)으로는, 다이어프램 펌프, 튜브펌프, 피스톤 펌프, 기어 펌프를 사용할 수 있으며, 이외에도, 금속잉크(M)를 정량 토출할 수 있는 다양한 종류의 펌프를 사용하는 것도 가능하다. 수용조(20)에 저장된 금속잉크(M)가 오버플로우(overflow) 되는 경우, 수위센서(21)로 금속잉크(M)의 수위를 감지하여 수용조(20)와 전자소자(D)간 간격을 조절하거나, 수용조(20)의 측벽의 높이를 전자소자(D)의 측면 높이보다 낮게 조정하여 여분의 금속잉크(M)를 드레인 시킬 수 있다. 이때 드레인 된 여분의 금속잉크(M)는 저장탱크(23)에 보관하였다가 공급수단(22)을 통해 다시 수용조(20)로 공급될 수 있다.In addition, as the supply means 22 for supplying the metal ink M, a diaphragm pump, a tube pump, a piston pump, and a gear pump can be used, and in addition, various kinds capable of quantitatively discharging the metal ink M can be used. It is also possible to use a pump. When the metal ink M stored in the tank 20 overflows, the water level sensor 21 senses the level of the metal ink M, thereby separating the gap between the tank 20 and the electronic device D. The excess metal ink M may be drained by adjusting or by adjusting the height of the sidewall of the container 20 to be lower than the side height of the electronic device D. At this time, the drained excess metal ink (M) may be stored in the storage tank 23 and supplied to the receiving tank 20 through the supply means 22 again.
디핑단계(S20)에 사용되는 금속잉크(M)로는, 전도성 금속을 포함하는 금속잉크(M)라면 모두 사용 가능하며, 예컨대 전도성 금속 입자를 포함하는 금속잉크(M), 무입자 타입의 금속잉크(M) 모두 적용가능하며, 이에 한정하는 것은 아니다.As the metal ink (M) used in the dipping step (S20), any metal ink (M) containing a conductive metal can be used, for example, a metal ink (M) containing conductive metal particles, a metal ink of a particleless type (M) All are applicable, but not limited to.
또한 금속잉크(M)로는 전도성을 띄는 금속이라면 다양하게 적용할 수 있으며, 한 예로서 은(Ag)을 포함하는 은 잉크를 사용할 수 있으며, 은의 경우 금속 중 우수한 전자파 차폐효과를 제공할 수 있는 금속이므로, 은 잉크를 사용하는 것이 바람직할 수 있으나, 반드시 은 잉크로 한정되는 것은 아니다. 이들 혼합물 이외에 필요에 따라서 용매, 안정제, 분산제, 바인더 수지(binder resin), 가교제, 환원제, 계면활성제(surfactant), 습윤제(wetting agent), 칙소제(thixotropic agent) 또는 레벨링제(leveling agent), 증점제, 소포제와 같은 첨가제 등을 포함할 수 있다.In addition, as the metal ink (M), a conductive metal can be used in various ways. For example, a silver ink containing silver (Ag) can be used, and in the case of silver, a metal that can provide excellent electromagnetic shielding effect among metals. Therefore, it may be preferable to use silver ink, but is not necessarily limited to silver ink. In addition to these mixtures, solvents, stabilizers, dispersants, binder resins, crosslinkers, reducing agents, surfactants, wetting agents, thixotropic agents or leveling agents, thickeners, as necessary And additives such as antifoaming agents.
본 발명의 금속잉크(M) 조성물의 점도는 1 ~ 50,000 cPs 인 것이 바람직하고, 5 ~ 400 cPs 인 것이 보다 바람직하다. 점도 값이 너무 낮으면 흐름성이 증가하여 전자소자(D)의 상면과 측면에 균일한 전자파 차폐막을 형성하기 어려우며, 점도 값이 너무 높으면 흐름성이 지나치게 감소하여 전자파 차폐막의 두께가 불균일해지고 소성이 잘 이루어지지 않아 전기전도도, 부착특성 및 외관문제가 발생한다. It is preferable that it is 1-50,000 cPs, and, as for the viscosity of the metal ink (M) composition of this invention, it is more preferable that it is 5-400 cPs. If the viscosity value is too low, the flowability increases, making it difficult to form a uniform electromagnetic shielding film on the upper and side surfaces of the electronic device D. If the viscosity value is too high, the flowability decreases excessively, resulting in uneven thickness of the electromagnetic shielding film and plasticity. Due to the poor electrical conductivity, adhesion characteristics and appearance problems occur.
또한, 전자소자(D)의 상면과 측면, 그리고 굴곡 부위에 균일한 전자파 차폐막을 얻기 위해 금속잉크(M)의 표면장력을 조절할 수 있다. 금속잉크(M)의 표면장력은 최대 35dyn/cm 인 것이 바람직하고, 30dyn/cm 이하인 것이 보다 바람직하다. 금속잉크(M)의 표면 장력이 높을 경우 전자소자(D) 표면에 대한 금속잉크(M)의 젖음성으로 인해 상면과 측면에 잉크가 몰리고 굴곡진 부위에는 도포가 얇게 되어 소성 후 굴곡진 부위가 드러나는 결함이 발생할 수 있다. 이러한 결함은 디핑단계(S20)를 수회 반복하여 해소할 수 있지만 생산 효율 측면에서 디핑단계(S20)의 횟수를 최소로 하여야 함은 당연하다. In addition, the surface tension of the metal ink (M) may be adjusted to obtain a uniform electromagnetic shielding film on the upper and side surfaces and the bent portion of the electronic device (D). It is preferable that the surface tension of the metal ink M is 35 dyn / cm at maximum, and it is more preferable that it is 30 dyn / cm or less. When the surface tension of the metal ink (M) is high, the ink is concentrated on the upper and side surfaces due to the wettability of the metal ink (M) with respect to the surface of the electronic device (D), and the application of the ink is thinned on the bent portion, thereby revealing the bent portion after firing. Defects can occur. Such defects can be eliminated by repeating the dipping step S20 several times, but it is natural that the number of dipping steps S20 should be minimized in terms of production efficiency.
뿐만 아니라 전자파 차폐막의 차폐특성을 발현하기 위해서 본 실시예의 금속잉크(M)로 형성된 전자파 차폐막이 갖는 전기적특성은 최대 800 Ω/□이하인 것이 바람직하다. 전기 전도도가 낮을 경우, 필요로 하는 전자파 차폐특성을 확보하기 위해 전자파 차폐막의 두께가 두꺼워지게 되므로 전자소자(D)의 경박단소화에 불리하게 작용할 수 있다. In addition, in order to express the shielding property of the electromagnetic shielding film, the electrical property of the electromagnetic shielding film formed of the metal ink M of the present embodiment is preferably at most 800 mW / square or less. When the electrical conductivity is low, since the thickness of the electromagnetic shielding film is thickened to secure the required electromagnetic shielding properties, it may adversely affect the light and thin shortening of the electronic device (D).
충분한 디핑이 완료되면, 도 2의 (c)에 도시된 바와 같이 전자소자(D)를 수용조(20)로부터 상향 이동시켜, 수용조(20)의 금속잉크(M)로부터 전자소자(D)를 인출하게 된다. When sufficient dipping is completed, as shown in FIG. 2C, the electronic device D is moved upwardly from the container 20, and the electronic device D is removed from the metal ink M of the container 20. Will be withdrawn.
이러한 디핑단계(S20)를 통해, 전자소자(D)의 전체 표면 중, 전자파 차폐가 필요한 상면과 측면 일부에 금속잉크(M)를 도포할 수 있다. 한편, 전자파 차폐가 필요한 높이에 맞추어 수용조(20)에 수용된 금속잉크(M)의 수위를 설정해 놓은 다음, 전자소자(D)를 수용조(20)의 바닥면까지 디핑하고 인출하면, 전자파 차폐가 필요한 전자소자(D)의 측면 높이까지만 항상 일정하게 전자파 차폐막을 형성할 수 있는 장점이 있다.Through the dipping step S20, the metal ink M may be applied to a portion of the upper surface and the side surface of the entire surface of the electronic device D, which require electromagnetic shielding. On the other hand, after setting the level of the metal ink (M) accommodated in the receiving tank 20 according to the height required for electromagnetic shielding, and dipping and withdrawing the electronic element (D) to the bottom surface of the receiving tank 20, electromagnetic shielding There is an advantage in that the electromagnetic wave shielding film can be constantly formed only up to the side height of the required electronic device (D).
상기 레벨링단계(S30)에서는, 도 2의 (d)에 도시된 바와 같이, 전자소자(D) 표면에 도포된 금속잉크(M)의 몰림 현상을 방지하고자, 전자소자(D) 표면에 몰린 과량의 금속잉크(M)를 제거하여 평탄화하는 작업을 수행할 수 있다. 일예로, 소정의 경도를 갖는 재질로 이루어진 블레이드(30)를 전자소자(D)의 상면으로부터 소정간격 이격된 위치에 배치한 상태에서, 블레이드(30)와 전자소자(D)를 상대 이동시키면, 블레이드(30)가 전자소자(D)에 과잉 도포된 금속잉크(M)를 긁어내어 평탄화할 수 있다. 또한, 다공성 재질과 같은 흡수 재료로 이루어진 블레이드(30)를 이용해 전자소자(D) 표면에 과잉 도포된 금속잉크(M)를 일정량 흡수함으로써 금속잉크(M)의 몰림 현상을 방지하는 것도 가능하다. 다공성 재질과 같은 흡수 재료로는 예컨대 스펀지, EVA 폼, 우레탄 폼을 사용할 수 있으며, 이외에도 다양한 다공성 흡수 재료를 사용할 수 있다.In the leveling step (S30), as shown in (d) of Figure 2, in order to prevent the phenomenon of the metal ink (M) applied to the surface of the electronic device (D), excessive amount accumulated on the surface of the electronic device (D) Removing the metal ink (M) can be performed to planarize. For example, when the blade 30 made of a material having a predetermined hardness is disposed at a position spaced apart from the upper surface of the electronic device D by a predetermined distance, the blade 30 and the electronic device D are relatively moved. The blade 30 may scrape and planarize the metal ink M overcoated on the electronic device D. FIG. In addition, by absorbing a predetermined amount of the metal ink (M) over-coated on the surface of the electronic device (D) by using a blade 30 made of an absorbent material, such as a porous material, it is possible to prevent the metal ink (M) from falling out. As the absorbent material such as porous material, for example, sponge, EVA foam, urethane foam can be used, and in addition, various porous absorbent materials can be used.
상기 소성단계(S40)에서는, 전자소자(D)의 표면에 금속잉크(M)가 도포된 상태에서, 전자소자(D)를 가열하여 소성을 수행하게 된다. In the firing step (S40), the metal element (M) is applied to the surface of the electronic element (D), the electronic element (D) is heated to perform firing.
본 소성단계(S40)는 1차 소성 단계 및 2차 소성 단계를 포함할 수 있으며, 1차 소성은 예비 소성으로서, 그 조건은 전자소자(D)의 종류나 사용환경에 따라 다양할 수 있으나, 도 2의 (d) 및 (e)에 도시된 바와 같이, 1차 가열기(41)를 통해 금속잉크(M)가 도포된 전자소자(D)에 열에너지를 제공하면서, 80℃에서 1분간 예비 소성을 진행할 수 있다. 1차 소성 단계의 주목적은 전자소자(D)의 표면에 균일하게 도포된 금속잉크(M)의 유동성을 최소화하거나 제거함으로써 2차 소성 단계에 도달하기 전까지 균일성을 유지하는 것이다. 또한 2차 소성 단계에서는, 2차 가열기(42)를 통해 150℃에서 5분간 소성을 진행할 수 있으나, 이러한 소성 조건으로 제한하는 것은 아니다.This firing step (S40) may include a primary firing step and a secondary firing step, the primary firing is preliminary firing, the conditions may vary depending on the type of the electronic device (D) or the use environment, As shown in (d) and (e) of FIG. 2, preheating at 80 ° C. for 1 minute while providing thermal energy to the electronic device D coated with the metal ink M through the primary heater 41. You can proceed. The primary purpose of the first firing step is to minimize or eliminate the fluidity of the metal ink M uniformly coated on the surface of the electronic device D to maintain uniformity until the second firing step is reached. In addition, in the secondary firing step, firing may be performed at 150 ° C. for 5 minutes through the secondary heater 42, but is not limited thereto.
상기 언로딩단계(S50)는, 도 2의 (f)에 도시된 바와 같이, 이송캐리어(10)의 접착부(11)로부터 전자소자(D)를 분리하는 것으로서, 분리된 전자소자(D)에는 상면과 측면 일부에만 금속잉크(M)의 도포 및 소성에 의한 전자파 차폐막이 형성된다. The unloading step (S50), as shown in (f) of Figure 2, is to separate the electronic device (D) from the bonding portion 11 of the transport carrier 10, the separated electronic device (D) The electromagnetic shielding film is formed by applying and firing the metal ink M only on the upper surface and a part of the side surface.
한편, 본 실시예에서 사용되는 접착부(11)는 디핑단계(S20)가 진행되면서 부착력을 유지하되 언로딩단계(S50)로 넘어가기 전에 접착력을 상실하거나 약한 점착력을 갖도록 하는 것이 좋다. 언로딩단계(S50)에서 전자소자(D)의 실장면의 오염은 제품 불량을 야기하므로 접착부(11)로부터 접착물질의 전이가 전혀 없어야 함은 당연하다. 전자소자(D)의 접착력을 상실시키기 위해 자외선(UV)경화 테이프를 사용하거나, 보다 바람직하게는 발포 테이프를 사용할 수 있으며, 선택적으로 접착력을 상실시킬 수 있는 테이프를 사용하는 것도 가능하다. 한편 전자소자(D)를 테이프에 부착하고 금속잉크(M)로 전자파 차폐막을 형성한 후, 접착부(11)로부터 분리하는 과정에 어려움이 없는 수준의 점착력을 유지하는 접착부(11)라면, 디핑단계(S20) 전후에 점착력이 변하지 않아도 상관없다.On the other hand, the adhesive portion 11 used in this embodiment is to maintain the adhesive force while the dipping step (S20) proceeds, but it is good to lose the adhesive force or have a weak adhesive force before going to the unloading step (S50). Contamination of the mounting surface of the electronic device (D) in the unloading step (S50) causes a product defect, so it is natural that there should be no transition of the adhesive material from the adhesive portion 11 at all. In order to lose the adhesive force of the electronic device (D), an ultraviolet (UV) curing tape may be used, or more preferably, a foam tape may be used, and a tape capable of selectively losing the adhesive force may be used. On the other hand, after attaching the electronic device (D) to the tape to form an electromagnetic shielding film with a metal ink (M), if the adhesive portion 11 that maintains a level of adhesion without difficulty in separating from the adhesive portion 11, dipping step The adhesive force may not change before and after (S20).
한편, 도 4에 도시된 바와 같이, 수용조(20)에 고이는 금속잉크(M)의 수위(d2)를 전자소자(D)의 측면 높이(d1)와 동일하게 설정하여 전자소자(D) 측면의 두께만큼 디핑하는 경우에는, 접착부(11)의 표면에 선택적으로 소수성 처리하는 것이 바람직하다. 전술한 바와 같이 친수성 처리된 전자소자(D)의 표면과 소수성 처리된 접착부(11) 표면의 특성차이를 이용하면 전자소자(D)의 실장부와 접착부(11) 사이에 금속잉크(M)가 스며들지 않은 상태로 전자파 차폐막을 형성하는 것이 가능하다. 접착부(11)는 소수성을 부여하기 위해서 테프론이나 실리콘등의 소수성 물질을 포함하거나 이를 이용하여 표면 처리할 수 있으며, 나노미터 사이즈(nano meter size)의 미세돌기를 이용하는 것도 무방하다. Meanwhile, as shown in FIG. 4, the water level d2 of the metal ink M that accumulates in the receiving tank 20 is set to be equal to the side height d1 of the electronic device D, so that the electronic device D has a side surface. In the case of dipping by the thickness of, it is preferable to selectively hydrophobize the surface of the adhesive portion 11. As described above, when the characteristic difference between the surface of the hydrophilic treated electronic device D and the surface of the hydrophobic treated adhesive part 11 is used, the metal ink M is formed between the mounting part of the electronic device D and the adhesive part 11. It is possible to form an electromagnetic wave shielding film in an infiltrated state. In order to impart hydrophobicity, the adhesive part 11 may include a hydrophobic material such as Teflon or silicon, or may be surface treated using the hydrophobic material, and may also use a micrometer having a nanometer size.
이와 같이, 본 실시예에 따르면 전자소자(D)의 표면을 금속잉크(M)에 디핑하여 전자소자(D)의 상면과 측면에 전자파 차폐막을 형성할 수 있으므로, 간소화된 공정으로 우수한 전자파 차폐 효과를 제공할 수 있게 된다. As described above, according to the present embodiment, the surface of the electronic device D may be dipped in the metal ink M to form an electromagnetic shielding film on the top and side surfaces of the electronic device D. Can be provided.
필요에 따라 형성된 전자파 차폐막을 외부 환경으로부터 보호하기 위한 목적으로 전자파 차폐막 위에 별도의 보호코팅층을 형성할 수 있다. 보호코팅층은 열경화수지나 UV경화수지 등의 고분자 수지 조성을 사용하는 것이 바람직하다. 반도체 검사공정에서 인식률을 높이거나 외관품질을 높이기 위한 목적으로 컬러(color)를 추가할 수 있을 뿐만 아니라 전자파 차폐막의 금속재료로 은(Ag)을 사용할 경우, 상기 보호코팅층 조성에 머캡탄(mercaptan) 화합물이나 카르복실산(carboxylic acid)화합물 또는 실란(silane)계 화합물을 포함할 수 있다. 상기 기술한 보호코팅층을 형성하는 방법으로는 전술한 금속잉크(M)와 마찬가지로 디핑 공정을 이용하여 코팅하고 경화시키는 공정을 이용하는 것이 바람직하다.A separate protective coating layer may be formed on the electromagnetic shielding film for the purpose of protecting the electromagnetic shielding film formed as needed from the external environment. As the protective coating layer, it is preferable to use a polymer resin composition such as thermosetting resin or UV curing resin. In the semiconductor inspection process, not only color may be added for the purpose of increasing recognition rate or appearance quality, but also silver is used as the metal material of the electromagnetic shielding film, mercaptan in the protective coating layer composition. It may include a compound, a carboxylic acid compound or a silane compound. As a method of forming the above-described protective coating layer, it is preferable to use a process of coating and curing using a dipping process similarly to the metal ink (M) described above.
이와 같이 본 실시예에 따르면 전자소자(D)의 표면을 금속잉크(M)에 디핑하여 전자소자(D)의 표면에 전자파 차폐막과 필요에 따라 보호코팅층을 형성함으로써, 간소화된 공정으로 우수한 전자파 차폐효과를 제공할 수 있게 된다.Thus, according to this embodiment, by dipping the surface of the electronic device (D) in the metal ink (M) to form an electromagnetic shielding film and a protective coating layer on the surface of the electronic device (D), excellent electromagnetic shielding in a simplified process Can provide an effect.
다음으로, 첨부한 도면을 참조해서 본 발명의 제2 실시예에 따른 전자파 차폐 코팅 방법에 대한 설명을 개시한다.Next, a description will be given of the electromagnetic shielding coating method according to a second embodiment of the present invention with reference to the accompanying drawings.
도 5는 본 발명의 제2실시예에 따른 전자파 차폐 코팅 방법의 공정도이다. 5 is a process chart of the electromagnetic wave shielding coating method according to a second embodiment of the present invention.
도 5에 도시된 바와 같이, 제2 실시예에 따른 전자파 차폐 코팅 방법은 제1실시예와는 다르게 다공성 흡습구조를 갖는 디핑롤러(24)를 이용하여 간접적으로 디핑할 수 있다.As shown in FIG. 5, the electromagnetic wave shielding coating method according to the second embodiment may be indirectly dipped using a dipping roller 24 having a porous moisture absorption structure unlike the first embodiment.
또한, 이송캐리어(10)는 일면에 접착부가 마련되어 롤 형태로 권취된 캐리어필름으로 이루어지며, 롤투롤(roll-to-roll) 방식으로 이송되는 과정에서, 로딩단계(S10), 디핑단계(S20), 소성단계(S40) 및 언로딩단계(S50)가 차례로 수행되므로, 연속공정에 유리하다.In addition, the transport carrier 10 is formed of a carrier film wound in the form of a roll provided with an adhesive portion on one surface, in the process of transferring in a roll-to-roll method, a loading step (S10), a dipping step (S20) ), The firing step (S40) and the unloading step (S50) is performed in sequence, which is advantageous for the continuous process.
구체적으로, 로딩단계(S10)에서는 이송캐리어(10)에 전자소자(D)의 실장면을 밀착시킨 후, 압력을 가하여 부착시킨다.Specifically, in the loading step (S10) and after the mounting surface of the electronic device (D) in close contact with the transfer carrier 10, it is attached by applying pressure.
로딩단계(S10)를 통해 이송캐리어(10)에 부착된 전자소자(D)는 롤투롤 라인을 타고 이동하면서 디핑단계(S20)로 이동하게 되며, 디핑단계(S20)에서는 이송캐리어(10)에 부착된 전자소자(D)가 디핑롤러(24)와 맞닿게 된다. 이때 디핑롤러(24)는 다공성 흡습구조로 이루어지고 수용조(20)의 금속잉크(M)에 사전에 디핑되어 충분한 금속잉크(M)를 머금고 있는 상태이며, 수용조(20)의 상부영역에서 회전하는 디핑롤러(24)에 의해 전자파 차폐가 필요한 전자소자(D)의 상면과 측면에 금속잉크(M)의 도포가 동시에 이루어질 수 있다. 이때 디핑롤러(24)의 재질은 우레탄폼, 실리콘폼, 러버폼을 사용하는 것이 바람직하나 이외에도 금속잉크(M)의 전이가 용이하고, 전자소자(D)의 상면과 측면에 금속잉크(M)를 코팅하는데 필요한 탄성계수를 지닌 재료를 사용할 수 있음은 물론이다. 또한, 상기 디핑롤러(24)와 전자소자(D)의 사이간격은 전자소자(D)의 규격에 따라 조절될 수 있으며, 이를 위해, 디핑롤러(24)의 상부영역에서 이송캐리어(10)의 이면을 지지하는 롤러가 상하로 위치조절 가능하도록 구성할 수 있다.The electronic device D attached to the transport carrier 10 through the loading step S10 moves on the roll-to-roll line and moves to the dipping step S20. In the dipping step S20, the electronic device D moves to the transport carrier 10. The attached electronic device D comes into contact with the dipping roller 24. At this time, the dipping roller 24 has a porous moisture absorption structure and is dipped in advance in the metal ink M of the receiving tank 20 so as to contain sufficient metal ink M, and the upper region of the receiving tank 20. Application of the metal ink (M) to the upper and side surfaces of the electronic device (D) requiring electromagnetic shielding by rotating the dipping roller 24 can be made at the same time. In this case, the material of the dipping roller 24 is urethane foam, silicon foam, rubber foam is preferably used, in addition to the metal ink (M) is easy to transfer, the metal ink (M) on the upper and side surfaces of the electronic device (D) Of course, it is possible to use a material having a modulus of elasticity necessary to coat it. In addition, the interval between the dipping roller 24 and the electronic device (D) can be adjusted according to the specifications of the electronic device (D), for this purpose, in the upper region of the dipping roller 24 of the transport carrier 10 The roller supporting the back surface can be configured to be adjustable up and down.
금속잉크(M)의 도포가 완료된 전자소자(D)는 롤투롤 라인을 통해 다음 단계인 소성단계(S40)를 진행하게 된다. 소성단계(S40)에서는 1차 가열기(41)와 2차 가열기(42)를 통해 예비 소성 및 최종 소성을 진행할 수 있으며, 이러한 소성단계(S40)에 의해 금속잉크(M)가 완전히 경화되면, 전자소자(D)의 상면과 측면에 전자파 차폐막이 형성되며, 이후 언로딩단계(S50)를 통해 이송캐리어(10)로부터 분리된다.The electronic device D, which has been coated with the metal ink M, is subjected to a firing step S40, which is a next step, through a roll-to-roll line. In the firing step (S40), preliminary firing and final firing may be performed through the primary heater 41 and the secondary heater 42, and when the metal ink M is completely cured by the firing step S40, An electromagnetic shielding film is formed on the top and side surfaces of the device D, and is then separated from the transport carrier 10 through an unloading step (S50).
한편, 제2실시예와 같이 디핑롤러(24)를 이용하여 간접적으로 디핑하는 경우에는, 디핑롤러(24)의 흡수율을 통해 전자소자(D)의 표면에 도포되는 금속잉크(M)의 도포량을 제어할 수 있으므로, 전자소자(D)의 표면에 과잉 도포된 금속잉크(M)를 일부 제거하기 위한 제1실시예에서의 레벨링단계를 생략할 수도 있다. On the other hand, in the case of indirect dipping using the dipping roller 24 as in the second embodiment, the coating amount of the metal ink M applied to the surface of the electronic device D through the absorption rate of the dipping roller 24 is determined. Since it can be controlled, the leveling step in the first embodiment for removing a part of the metal ink M overcoated on the surface of the electronic device D may be omitted.
다음으로는, 첨부한 도면을 참조하여, 본 발명의 제3실시예에 따른 전자파 차폐 코팅 방법에 대해 상세히 설명한다.Next, an electromagnetic wave shielding coating method according to a third embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 6에 도시된 바와 같이, 제3실시예에 따른 전자파 차폐 코팅 방법은, 제1실시예와는 다르게 롤투롤 공정으로 구성된다. As shown in FIG. 6, the electromagnetic wave shielding coating method according to the third embodiment includes a roll-to-roll process differently from the first embodiment.
이를 위해, 이송캐리어(10)는 일면에 접착부가 마련되어 롤 형태로 권취된 캐리어필름으로 이루어지며, 롤투롤 방식으로 이송되는 과정에서, 로딩단계(S10), 표면처리단계, 디핑단계(S20), 레벨링단계(S30), 소성단계(S40) 및 언로딩단계(S50)가 차례로 수행되므로, 연속공정에 유리하다.To this end, the transport carrier 10 is made of a carrier film wound in the form of a roll provided with an adhesive portion on one surface, in the process of transporting in a roll-to-roll manner, a loading step (S10), surface treatment step, dipping step (S20), Since the leveling step (S30), the firing step (S40) and the unloading step (S50) are performed in sequence, it is advantageous for the continuous process.
도 6에 도시된 바와 같이, 로딩단계(S10)를 통해 이송캐리어(10)에 부착된 전자소자(D)는 롤투롤 라인을 타고 이동하면서 디핑단계(S20)로 이동하게 되며, 디핑단계(S20)에서는 전자소자(D)가 부착된 이송캐리어(10)의 이면이 가압롤러(25)에 의해 가압되어, 수용조(20)의 금속잉크(M)에 디핑된다.As shown in Figure 6, the electronic device (D) attached to the transport carrier 10 through the loading step (S10) is moved to the dipping step (S20) while moving in a roll-to-roll line, dipping step (S20) ), The back surface of the transfer carrier 10 to which the electronic device D is attached is pressed by the pressure roller 25, and dipped into the metal ink M of the receiving tank 20.
이때 가압롤러(25)의 양측에 배치된 앵글롤(angle roll)을 이용해 전자소자(D)가 수용조(20)에 진입하는 진입각도를 조절할 수 있으므로, 디핑과정에서 전자소자(D)에 코팅되는 금속잉크(M)의 균일성을 극대화시킬 수 있다. 여기서, 상기 전자소자(D)의 진입각도가 수평보다 지나치게 클 경우, 전자소자(D)의 진입 시 먼저 수용조(20) 바닥에 닿는 부분과 나중에 닿는 부분의 측면 코팅높이가 일정하지 않을 수 있으며, 진입각도가 지나치게 낮을 경우 전자소자(D) 측면의 일부만 코팅이 되어 필요한 부분의 전자파 차폐막의 형성이 어려울 수 있다.At this time, since the angle of entry (angle roll) disposed on both sides of the pressure roller 25 can be adjusted to the entry angle of the electronic device (D) enters the receiving tank 20, the coating on the electronic device (D) during the dipping process It is possible to maximize the uniformity of the metal ink (M). Here, when the entrance angle of the electronic device (D) is too large than the horizontal, when the electronic device (D) enters the first side of the receiving tank 20 and the side of the later touching portion may not be constant coating height If the entry angle is too low, only a portion of the side surface of the electronic device D may be coated, and thus, it may be difficult to form an electromagnetic shielding film of a required portion.
이후, 롤투롤 방식으로 이송되는 전자소자(D)는, 가압롤러(25)에 의해 수용조(20)를 향해 가압되는 구간을 벗어나게 되면서, 수용조(20)의 금속잉크(M)로부터 인출된다. 이때, 수용조(20)는 전술한 바와 같이 일정량의 수위가 유지되어야 하므로, 수용조(20)에는 수위센서(21)와 같은 수위 조절 수단이 구비되어 있는 것이 바람직하다. 또한, 수용조(20)에 초음파 진동을 제공하는 진동 수단을 더 구비하여 디핑 효율을 향상시킬 수도 있으며, 수용조(20)의 바닥에 요철을 배치하여 금속잉크(M)의 유동성을 제어하여 코팅특성을 개선하는 것이 가능하다. 즉, 금속잉크(M)의 유동성이 높아 균일한 코팅이 어려울 경우 금속잉크(M)의 점도를 조정하는 것 외에도 준비된 수용조(20)의 요철에 의한 금속잉크(M)의 유동 저항을 조절하여 균일한 코팅을 유도할 수 있다.Thereafter, the electronic device D transferred in a roll-to-roll manner is withdrawn from the metal ink M of the storage tank 20 while leaving the section pressurized toward the storage tank 20 by the pressure roller 25. . At this time, since the receiving tank 20 is to maintain a certain amount of water level as described above, it is preferable that the receiving tank 20 is provided with a level control means such as the water level sensor 21. In addition, by further comprising a vibration means for providing ultrasonic vibration to the receiving tank 20 to improve the dipping efficiency, by placing the uneven at the bottom of the receiving tank 20 to control the fluidity of the metal ink (M) coating It is possible to improve the characteristics. That is, when the fluidity of the metal ink (M) is high and uniform coating is difficult, in addition to adjusting the viscosity of the metal ink (M), by adjusting the flow resistance of the metal ink (M) due to the unevenness of the prepared reservoir 20 It can lead to a uniform coating.
이와 같은 디핑단계(S20)를 통해, 전자소자(D)의 전체 표면 중, 외부로 노출된 전자파 차폐가 필요한 상면과 측면에 금속잉크(M)의 도포가 완료된다. Through the dipping step (S20), the application of the metal ink (M) is completed on the upper and side surfaces of the entire surface of the electronic device (D), the electromagnetic wave shielding to the outside is required.
롤투롤 이송방식에 따른 연속공정으로 전자소자(D)가 수용조(20)로부터 인출되어, 롤투롤 라인을 통해 이동하다가, 레벨링단계(S30)에 진입하게 된다. In the continuous process according to the roll-to-roll transfer method, the electronic device D is withdrawn from the receiving tank 20, moves through the roll-to-roll line, and enters the leveling step S30.
이 레벨링단계(S30)에서는 전자소자(D)가 롤투롤 라인을 이동하는 연속 공정상에서 전자소자(D)의 표면에 도포된 금속잉크(M)의 몰림 현상을 방지하고자, 전자소자(D) 표면에 과잉 도포된 금속잉크(M)를 블레이드(30)로 긁어내어 평평하게 평탄화시켜주는 레벨링(leveling) 작업을 수행하게 된다. In this leveling step (S30), in order to prevent chipping of the metal ink M applied to the surface of the electronic device D in a continuous process in which the electronic device D moves a roll-to-roll line, the surface of the electronic device D The metal ink (M) over-coated in the blade 30 is scraped with a leveling (leveling) operation to flatten it flat.
여기서는 전자소자(D)로부터 소정의 간격으로 이격 배치되는 막대 형태의 블레이드(30)를 이용하여, 레벨링하는 것으로 예를 들어 설명하였으나, 과잉 도포된 금속잉크(M)를 일부 제거하여 평탄화할 수 있는 다른 수단을 이용하는 것도 가능하며, 다른 예로서, 블레이드(30)를 다공성 흡수 재료로 구성하여, 전자소자(D) 표면에 몰린 금속잉크(M)를 일정량 흡수함으로써 잉크의 몰림 현상을 방지할 수도 있다. Here, for example, it is described as leveling by using a blade 30 in the form of rods spaced apart from the electronic device D at predetermined intervals. However, the overcoated metal ink M may be partially removed and planarized. It is also possible to use other means, and as another example, the blade 30 may be made of a porous absorbent material, thereby preventing the ink bleeding phenomenon by absorbing a certain amount of the metal ink M collected on the surface of the electronic device D. .
레벨링단계(S30)가 완료되면, 롤투롤 라인을 통해 다음 단계인 소성단계(S40)를 진행하게 된다. 소성단계(S40)에서는 1차 가열기(41)와 2차 가열기(42)를 통해 예비 소성 및 최종 소성을 진행할 수 있으며, 이러한 소성단계(S40)에 의해 전자소자(D)에 도포된 금속잉크(M)가 완전히 경화되면, 전자소자(D)의 상면과 측면에 전자파 차폐막이 형성되며, 이후 전자파 차폐막이 형성된 전자소자(D)는 언로딩단계(S50)를 통해 이송캐리어(10)로 부터 분리된다.When the leveling step (S30) is completed, the firing step (S40) of the next step through the roll-to-roll line. In the firing step (S40), preliminary firing and final firing may be performed through the primary heater 41 and the secondary heater 42, and the metal ink coated on the electronic device D by the firing step S40 ( When M) is completely cured, an electromagnetic shielding film is formed on the upper and side surfaces of the electronic device D, and then the electronic device D on which the electromagnetic shielding film is formed is separated from the transport carrier 10 through an unloading step S50. do.
이와 같이, 본 발명에 따르면 전자소자(D)의 표면을 금속잉크(M)에 디핑하여 전자파 차폐막을 형성함으로써, 간소화된 공정으로 우수한 전자파 차폐 효과를 제공할 수 있게 된다. As described above, according to the present invention, the surface of the electronic device D is dipped in the metal ink M to form an electromagnetic shielding film, thereby providing an excellent electromagnetic shielding effect in a simplified process.
이하, 실시 예를 통하여 본 발명의 구성 및 효과를 더욱 상세히 설명하고자 한다. 이들 실시 예는 오로지 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들 실시 예에 의해 제한되는 것은 아니다.Hereinafter, the configuration and effects of the present invention through the embodiments will be described in more detail. These examples are only for illustrating the present invention, but the scope of the present invention is not limited by these examples.
<물성 측정><Measurement of properties>
잉크 코팅 표면의 면저항은 면저항 측정기(4 Point Probe)를 이용하여 측정하였고, 점도는 0.5ml의 잉크를 취하여 브룩필드 점도계를 이용하여 20rpm, 25℃에서 측정하였으며, 표면장력은 KRUSS사의 K20(Easy dyne)로 측정하였다.The sheet resistance of the ink coating surface was measured using a sheet resistance meter (4 point probe), the viscosity was measured at 20 rpm, 25 ℃ using a Brookfield viscometer with 0.5 ml of ink, the surface tension of K20 (Easy dyne KRUSS) Was measured.
분산입도는 다이나믹 광산란기(dynamic light scattering)를 이용하여 부틸카비톨 용매에 10%의 잉크를 희석하여 측정하였다Dispersion particle size was measured by diluting 10% ink in butyl carbitol solvent using dynamic light scattering.
코팅 두께는 FE-SEM을 이용해 측정하였고, 전자파차폐 시험은 전자파 소재 차폐 성능(S21 Parameter, ASTM D4935)로 측정하였다.Coating thickness was measured using FE-SEM, electromagnetic shielding test was measured by the electromagnetic shielding performance (S21 Parameter, ASTM D4935).
<전자파 차폐 코팅용 잉크의 제조> <Production of Electromagnetic Shielding Coating Ink>
[제조예 1] 무입자 형태의 Ag 잉크 제조 Preparation Example 1 Preparation of Ag Particles in a Particle-Free Form
Ag 2-에틸헥실카바메이트 100g과 용매(Butanol 100g, Isobutylamine 50g), 분산제(BYK 145145, 1g), 바인더 수지(epoxy resin, 0.5g), 습윤제(antittera 204, 0.2g), 레벨링제(EFKA 350, 0.05g)를 혼합하여 점도 5cps, 표면장력 23dyne/cm, 면저항 650mΩ/□인 무입자형 Ag 잉크를 제조하였다.Ag 2-ethylhexylcarbamate 100g, solvent (Butanol 100g, Isobutylamine 50g), dispersant (BYK 145145, 1g), binder resin (epoxy resin, 0.5g), wetting agent (antittera 204, 0.2g), leveling agent (EFKA 350 , 0.05 g) was mixed to prepare a particleless Ag ink having a viscosity of 5 cps, surface tension of 23 dyne / cm, and sheet resistance of 650 mPa / □.
[제조예 2] 무입자 형태의 금속잉크 제조Preparation Example 2 Preparation of Metal Particles in Particle-Free Form
Ag 2-에틸헥실카바메이트 100g과 용매(Anisole 20g, 2-ethylhexyl amine 40g), 분산제(BYK 145, 0.5g), 바인더 수지(epoxy resin, 0.3g), 습윤제(antittera 204, 0.2g), 레벨링제(EFKA 350, 0.05g)를 혼합하여 점도 38cps, 표면장력 29dyne/cm, 면저항 300mΩ/□인 무입자형 Ag 잉크를 제조하였다.100 g Ag 2-ethylhexylcarbamate and solvent (Anisole 20g, 2-ethylhexyl amine 40g), dispersant (BYK 145, 0.5g), binder resin (epoxy resin, 0.3g), wetting agent (antittera 204, 0.2g), leveling (EFKA 350, 0.05 g) was mixed to prepare a particleless Ag ink having a viscosity of 38 cps, surface tension of 29 dyne / cm, and sheet resistance of 300 mPa / □.
[제조예 3] 나노입자 분산형 금속잉크 제조 Preparation Example 3 Preparation of Nanoparticle Dispersed Metal Ink
Ag 나노입자 40g과 용매(butyl carbitol 60g), 분산제(BYK 145, 4g), 안정제(Ethyl cellulose, 2g), 바인더 수지(Cellulose acetate butyrate, 1g)를 500ml 반응기에 혼합하고, 0.3mm 비드를 이용하여 균일하게 6h 혼합 및 반응하였다. 40 g Ag nanoparticles, a solvent (butyl carbitol 60 g), a dispersant (BYK 145, 4 g), a stabilizer (Ethyl cellulose, 2 g), a binder resin (Cellulose acetate butyrate, 1 g) were mixed in a 500 ml reactor, and 0.3 mm beads were used. 6 h mixed and reacted uniformly.
반응이 완료된 후 비드를 필터로 제거하여 균일하게 Ag 나노입자가 분산된 잉크를 얻었으며, 점도50cps, 표면장력26dyne/cm, 면저항 90mΩ/□인 잉크를 제조하였다.After the reaction was completed, the beads were removed by a filter to obtain an ink in which Ag nanoparticles were uniformly dispersed. An ink having a viscosity of 50 cps, a surface tension of 26 dyne / cm, and a sheet resistance of 90 mPa / □ was prepared.
[제조예 4] 나노입자 분산형 금속잉크 제조 Preparation Example 4 Preparation of Nanoparticle Dispersed Metal Ink
Ag 나노입자 40g과 용매(Propylene glycol monomethyl ether acetate, 50g), 분산제(BYK 330, 5g), 안정제(Ethyl cellulose, 2g), 바인더 수지(Polyvinyl butyral, 1g)를 500ml 반응기에 혼합하고, 0.3mm 비드를 이용하여 균일하게 6h 혼합 및 반응 하였다. 반응이 완료된 후 비드를 필터로 제거하여 균일하게 Ag 나노입자가 분산된 잉크를 얻었으며, 점도400cps, 표면장력35dyne/cm, 면저항 50mΩ/□인 잉크를 제조하였다.40g Ag nanoparticles, solvent (Propylene glycol monomethyl ether acetate, 50g), dispersant (BYK 330, 5g), stabilizer (Ethyl cellulose, 2g), binder resin (Polyvinyl butyral, 1g) were mixed in 500ml reactor, 0.3mm beads 6 h was mixed and reacted uniformly. After the reaction was completed, the beads were removed with a filter to obtain an ink in which Ag nanoparticles were uniformly dispersed. An ink having a viscosity of 400 cps, a surface tension of 35 dyne / cm, and a sheet resistance of 50 mΩ / □ was prepared.
[제조예 5] 페이스트형 금속잉크 제조 Preparation Example 5 Preparation of Paste Type Metal Ink
Ag powder(40g), 바인더 수지(epoxy resin, 10g), 부착증진제(BYK 4510, 0.3g), 칙소제(Fumed silica, 0.05g), 용매(butyl carbitol, 0.5g)를 혼합한 후, 3-roll mill로 혼합 및 제조하여 점도50,000cps, 면저항 60mΩ/□인 페이스트 잉크를 제조하였다.Ag powder (40g), binder resin (epoxy resin, 10g), adhesion promoter (BYK 4510, 0.3g), thixotropic agent (Fumed silica, 0.05g), solvent (butyl carbitol, 0.5g) was mixed, 3- The paste ink having a viscosity of 50,000 cps and a sheet resistance of 60 mPa / s was prepared by mixing and preparing with a roll mill.
<전자파 차폐 코팅 공정>Electromagnetic shielding coating process
[실시예 1]Example 1
[제조예 1]의 점도 5cps 무입자형 금속잉크를 이용하여, 제1실시예의 수직 dipping 공정을 통해 반도체 패키지의 6개 면 중 하면을 제외한 나머지 5개 면을 코팅한 후 150℃, 5min 동안 소성하여 전자파 차폐막을 형성한다. By using the viscosity of 5cps particleless metal ink of [Preparation Example 1], the other 5 surfaces except the lower surface of the six surfaces of the semiconductor package were coated through the vertical dipping process of the first embodiment and then fired at 150 ° C. for 5 minutes. To form an electromagnetic shielding film.
이렇게 형성된 차폐막의 면저항은 700mΩ/□, step coverage 93%, 차폐율 32dB이다The sheet resistance of the shielding film thus formed is 700mΩ / □, step coverage 93%, shielding rate 32dB
[실시예 2]Example 2
[제조예 2]의 점도 38cps 무입자형 금속잉크를 이용하여, 제1실시예의 수직 dipping 공정을 통해 반도체 패키지의 6개 면 중 하면을 제외한 나머지 5개 면을 코팅한 후 80℃, 1min 예비 소성 및 150℃, 5min 최종 소성을 통해 전자파 차폐막을 형성한다. 이렇게 형성된 차폐막의 면저항은 350mΩ/□, step coverage 95%, 차폐율 42dB이다.By using the viscosity of 38 cps particle-free metal ink of [Preparation Example 2], the other five surfaces of the six surfaces of the semiconductor package except the lower surface of the semiconductor package were coated by the vertical dipping process of the first embodiment, followed by preliminary firing at 80 ° C. for 1 min. And 150 ° C., 5 min final firing to form an electromagnetic shielding film. The sheet resistance of the shielding film thus formed is 350mΩ / □, step coverage 95%, shielding rate 42dB.
[실시예 3]Example 3
[제조예 3]의 점도 50cps 나노입자 분산형 금속잉크를 이용하여, 제1실시예의 수직 dipping 공정을 통해 반도체 패키지의 6개 면 중 하면을 제외한 나머지 5개 면을 코팅한 후 130℃, 10min 동안 소성하여 전자파 차폐막을 형성한다. Using the viscosity of 50cps nanoparticle dispersed metal ink of [Preparation Example 3], after coating five remaining surfaces except for the lower surface of the six surfaces of the semiconductor package through the vertical dipping process of the first embodiment for 130 ℃, 10 minutes It bakes and forms an electromagnetic wave shielding film.
이렇게 형성된 차폐막의 면저항은 100mΩ/□, step coverage 94%, 차폐율 50dB이다.The sheet resistance of the thus formed shielding film is 100mΩ / □, step coverage 94%, shielding rate 50dB.
[실시예 4]Example 4
[제조예 4]의 점도 400cps Ag 나노입자 분산형 금속잉크를 이용하여, 제1실시예의 수직 dipping 공정을 통해 반도체 패키지의 6개 면 중 하면을 제외한 나머지 5개 면을 코팅한 후 130℃, 15min 동안 소성하여 전자파 차폐막을 형성한다. The viscosity of [Production Example 4] 400cps Ag nanoparticle dispersion type metal ink was coated, the other five surfaces except the lower surface of the six surfaces of the semiconductor package through the vertical dipping process of the first embodiment 130 ℃, 15min It fires during the time and forms an electromagnetic wave shielding film.
이렇게 형성된 차폐막의 면저항은 55mΩ/□, step coverage 95%, 차폐율 61dB이다.The sheet resistance of the thus formed shielding film is 55mΩ / □, step coverage 95%, shielding rate 61dB.
[실시예 5]Example 5
[제조예 5]의 점도 50,000cps인 Ag 페이스트형 금속잉크를 이용하여, 제1실시예의 수직 dipping 공정을 통해 반도체 패키지의 6개 면 중 하면을 제외한 나머지 5개 면을 코팅한 후 130℃, 20min 동안 소성하여 전자파 차폐막을 형성한다. Using the Ag paste-type metal ink having a viscosity of 50,000 cps of [Production Example 5], the other five surfaces except the lower surface of the six surfaces of the semiconductor package were coated through a vertical dipping process of the first embodiment, followed by 130 ° C. and 20 min. It fires during the time and forms an electromagnetic wave shielding film.
이렇게 형성된 차폐막의 면저항은 65mΩ/□, step coverage 95%, 차폐율 57dB이다.The sheet resistance of the shielding film thus formed is 65mΩ / □, step coverage 95%, shielding rate 57dB.
[실시예 6]Example 6
[제조예 1]의 점도 5cps 무입자형 금속잉크를 이용하여, 제2실시예의 간접 dipping 공정을 통해 반도체 패키지의 6개 면 중 하면을 제외한 나머지 5개 면을 코팅한 후 80℃, 1min 예비 소성 및 150℃, 5min 최종 소성을 통해 전자파 차폐막을 형성한다. By using the viscosity of 5cps particleless metal ink of [Preparation Example 1], the other five surfaces of the six surfaces of the semiconductor package except for the lower surface of the semiconductor package were coated through the indirect dipping process of the second embodiment, followed by preliminary firing at 80 ° C. for 1 min. And 150 ° C., 5 min final firing to form an electromagnetic shielding film.
이렇게 형성된 차폐막의 면저항은 750mΩ/□, step coverage 90%, 차폐율 30dB이다.The sheet resistance of the shielding film thus formed is 750mΩ / □, step coverage 90%, shielding rate 30dB.
[실시예 7]Example 7
[제조예 2]의 점도 38cps 무입자형 금속잉크를 이용하여, 제2실시예의 간접 dipping 공정을 통해 반도체 패키지의 6개 면 중 하면을 제외한 나머지 5개 면을 코팅한 후 150℃, 5min 동안 소성을 통해 전자파 차폐막을 형성한다. By using the viscosity 38cps particleless metal ink of [Preparation Example 2], the other five surfaces of the six surfaces of the semiconductor package except the lower surface of the semiconductor package were coated through the indirect dipping process of the second embodiment, and then fired at 150 ° C. for 5 minutes. Through the electromagnetic shielding film is formed.
이렇게 형성된 차폐막의 면저항은 400mΩ/□, step coverage 92%, 차폐율 40dB이다.The sheet resistance of the thus formed shielding film is 400mΩ / □, step coverage 92%, shielding rate 40dB.
[실시예 8]Example 8
[제조예 3]의 점도 50cps 나노입자 분산형 금속잉크를 이용하여, 제2실시예의 간접 dipping 공정을 통해 반도체 패키지의 6개 면 중 하면을 제외한 나머지 5개 면을 코팅한 후 130℃, 10min 동안 소성을 통해 전자파 차폐막을 형성한다. The viscosity of 50cps nanoparticle dispersed metal ink of [Preparation Example 3] was coated on the other five surfaces except for the lower surface of the six surfaces of the semiconductor package through the indirect dipping process of the second embodiment, followed by 130 ° C. for 10 minutes. Firing forms an electromagnetic shielding film.
이렇게 형성된 차폐막의 면저항은 150mΩ/□, step coverage 91%, 차폐율 48dB이다.The sheet resistance of the shielding film thus formed is 150mΩ / □, step coverage 91%, shielding rate 48dB.
[실시예 9]Example 9
[제조예 4]의 점도 400cps Ag 나노입자 분산형 금속잉크를 이용하여, 제2실시예의 간접 dipping 공정을 통해 반도체 패키지의 6개 면 중 하면을 제외한 나머지 5개 면을 코팅한 후 130℃, 15min 동안 소성을 통해 전자파 차폐막을 형성한다. Viscosity of [Production Example 4] 400cps Ag nanoparticle dispersion type metal ink, after coating the remaining five surfaces except the lower surface of the six surfaces of the semiconductor package through the indirect dipping process of the second embodiment 130 ℃, 15min During the firing, an electromagnetic wave shielding film is formed.
이렇게 형성된 차폐막의 면저항은 57mΩ/□, step coverage 93%, 차폐율 61dB이다.The sheet resistance of the thus formed shielding film is 57mΩ / □, step coverage 93%, shielding rate 61dB.
[실시예 10]Example 10
[제조예 5]의 점도 50,000cps인 Ag 페이스트형 금속잉크를 이용하여, 제2실시예의 간접 dipping 공정을 통해 반도체 패키지의 6개 면 중 하면을 제외한 나머지 5개 면을 코팅한 후 130℃, 20min 동안 소성을 통해 전자파 차폐막을 형성한다. Using Ag paste-type metal ink having a viscosity of 50,000 cps of [Production Example 5], the other five surfaces of the six surfaces of the semiconductor package except the bottom surface of the semiconductor package were coated through the indirect dipping process of the second embodiment, followed by 130 ° C. and 20 min. During the firing, an electromagnetic wave shielding film is formed.
이렇게 형성된 차폐막의 면저항은 70mΩ/□, step coverage 92%, 차폐율 56dB이다.The sheet resistance of the shielding film thus formed is 70 mΩ / □, step coverage 92%, shielding rate 56dB.
[실시예 11]Example 11
[제조예 1]의 점도 5cps 무입자형 금속잉크를 이용하여, 제3실시예의 Roll to Roll dipping 공정을 통해 반도체 패키지의 6개 면 중 하면을 제외한 나머지 5개 면을 코팅한 후 150℃, 5min 동안 소성을 통해 전자파 차폐막을 형성한다. 이렇게 형성된 차폐막의 면저항은 650mΩ/□, step coverage 95%, 차폐율 34dB이다.By using the viscosity of 5cps particleless metal ink of [Preparation Example 1], the other five surfaces except the lower surface of the six surfaces of the semiconductor package were coated by the Roll to Roll dipping process of the third embodiment, followed by 150 ° C for 5 minutes. During the firing, an electromagnetic wave shielding film is formed. The sheet resistance of the shielding film thus formed is 650mΩ / □, step coverage 95%, shielding rate 34dB.
[실시예 12]Example 12
[제조예 2]의 점도 38cps 무입자형 금속잉크를 이용하여, 제3실시예의 Roll to Roll dipping 공정을 통해 반도체 패키지의 6개 면 중 하면을 제외한 나머지 5개 면을 코팅한 후 80℃, 1min 예비 소성 및 150℃, 5min 최종 소성을 통해 전자파 차폐막을 형성한다. 이렇게 형성된 차폐막의 면저항은 300 mΩ/□, step coverage 96%, 차폐율 43dB이다.By using the viscosity of 38cps particleless metal ink of [Preparation Example 2], the remaining five surfaces of the six surfaces of the semiconductor package except the lower surface of the semiconductor package were coated through the Roll to Roll dipping process of the third embodiment at 80 ° C. for 1 min. Electromagnetic shielding film is formed by preliminary firing and final firing at 150 ° C. for 5 min. The sheet resistance of the shielding film thus formed is 300 mΩ / □, step coverage 96%, shielding rate 43dB.
[실시예 13]Example 13
[제조예 3]의 점도 50cps 나노입자 분산형 금속잉크를 이용하여, 제3실시예의 Roll to Roll dipping 공정을 통해 반도체 패키지의 6개 면 중 하면을 제외한 나머지 5개 면을 코팅한 후 130℃, 10min 동안 소성을 통해 전자파 차폐막을 형성한다. By using the viscosity of 50cps nanoparticle dispersed metal ink of [Preparation Example 3], the other five surfaces except the lower surface of the six surfaces of the semiconductor package through the Roll to Roll dipping process of the third embodiment 130 ℃, Firing for 10 min to form an electromagnetic shielding film.
이렇게 형성된 차폐막의 면저항은 90mΩ/□, step coverage 97%, 차폐율 52dB이다.The sheet resistance of the thus formed shielding film is 90mΩ / □, step coverage 97%, shielding rate 52dB.
[실시예 14]Example 14
[제조예 4]의 점도 400cps Ag 나노입자 분산형 금속잉크를 이용하여, 제3실시예의 Roll to Roll dipping 공정을 통해 반도체 패키지의 6개 면 중 하면을 제외한 나머지 5개 면을 코팅한 후 130℃, 15min 동안 소성을 통해 전자파 차폐막을 형성한다. The viscosity of 400 cps Ag nanoparticle-dispersion type metal ink of [Production Example 4] was coated at 130 ° C. after the other five surfaces of the six surfaces of the semiconductor package were coated by the roll to roll dipping process of the third embodiment. , The electromagnetic shielding film is formed by firing for 15 minutes.
이렇게 형성된 차폐막의 면저항은 50mΩ/□, step coverage96%, 차폐율 65dB이다.The sheet resistance of the shielding film thus formed is 50 mPa / □, step coverage 96%, shielding rate 65dB.
[실시예 15]Example 15
[제조예 5]의 점도 50,000cps인 Ag 페이스트형 금속잉크를 이용하여, 제3실시예의 Roll to Roll dipping 공정을 통해 반도체 패키지의 6개 면 중 하면을 제외한 나머지 5개 면을 코팅한 후 130℃, 20min 동안 소성을 통해 전자파 차폐막을 형성한다. The Ag paste-type metal ink having a viscosity of 50,000 cps of [Production Example 5] was coated at 130 ° C. after coating the remaining five surfaces of the six surfaces of the semiconductor package through the Roll to Roll dipping process of the third embodiment. 20 minutes to form an electromagnetic shielding film through firing.
이렇게 형성된 차폐막의 면저항은 60m Ω/□, step coverage96%, 차폐율 59dB이다.The sheet resistance of the shielding film thus formed is 60m Ω / □, step coverage 96%, shielding rate 59dB.
<전자파 차폐막 보호 코팅>Electromagnetic shielding film protective coating
[실시예 19]Example 19
[실시예]에서 제조된 전자파 차폐막 상층에 제3실시예의 Roll to Roll dipping 공정을 통해 반도체 패키지의 6개 면 중 하면을 제외한 나머지 5개 면을 열경화 수지로 코팅한 후 180℃, 10min 동안 소성을 통해 보호코팅층을 형성한다. The remaining layer of the six surfaces of the semiconductor package except the lower surface of the six surfaces of the semiconductor package was coated with a thermosetting resin through a roll to roll dipping process of the third embodiment on the electromagnetic shielding film prepared in Example, and then fired for 180 ° C. for 10 min. To form a protective coating layer through.
[실시예 20]Example 20
[실시예]에서 제조된 전자파 차폐막 상층에 제3실시예의 Roll to Roll dipping 공정을 통해 반도체 패키지의 6개 면 중 하면을 제외한 나머지 5개 면을 UV 경화 수지로 코팅한 후 UV 경화를 통해 보호코팅층을 형성한다. After coating the remaining five of the six surfaces of the semiconductor package except the lower surface of the six surfaces of the semiconductor package with the UV curable resin through the Roll to Roll dipping process of the third embodiment on the electromagnetic shielding film prepared in the [Example] To form.
<전자파 차폐 코팅 공정 비교예>Comparative Example of Electromagnetic Shielding Coating Process
[비교예 1]/ 스퍼터 공정Comparative Example 1 / sputtering process
스퍼터링 장치 DC 마그네트론 스퍼터 장치를 사용하여, 금속 소결체를 스퍼터링 타깃으로서 형성하였다. 성막 조건은 실온, DC 500W, 산소 농도 6%, 어닐링조건은 대기 분위기에서 300℃ × 1 hr 로 실시하였다. 솔더볼이 구비된 면을 제외한 나머지 5면에 코팅 처리할 수 있도록 스퍼터링 각도를 조절함으로써 상면과 측면에 상기 타깃 모듈을 스퍼터링하여 SUS/CU/SUS 다층 구조의 차폐막을 형성하였다.Sputtering apparatus A metal sintered compact was formed as a sputtering target using the DC magnetron sputter apparatus. Film-forming conditions were room temperature, DC500W, 6% oxygen concentration, and annealing conditions were performed at 300 degreeC x 1 hr in air | atmosphere atmosphere. The target module was sputtered on the upper and side surfaces by adjusting the sputtering angle so as to coat the remaining five surfaces except for the surface provided with solder balls, thereby forming a shield film having a SUS / CU / SUS multilayer structure.
이렇게 형성된 차폐막의 step coverage는 41%이다.The step coverage of the shielding film thus formed is 41%.
[비교예 2] / 스프레이 공정[Comparative Example 2] / spray process
스프레이 장비(787MS-SS valve)를 이용하여, [제조예 3]의 점도 50cps 나노입자 분산형 잉크를 반도체 패키지의 상측과 측면에 각각 잉크를 스프레이 코팅한 후, 130℃, 10min 동안 소성을 통해 전자파 차폐막을 형성한다. 이렇게 형성된 차폐막의 step coverage는 47%이다.Using spray equipment (787MS-SS valve), spray coating the ink on the upper side and the side of the viscosity of 50cps nanoparticle dispersion ink of [Production Example 3], and then firing at 130 ° C. for 10 min. A shielding film is formed. The step coverage of the shielding film thus formed is 47%.
<물성 측정 결과><Physical measurement result>
제조된 전자파 차폐잉크의 특성은 아래 표 1과 같다. The characteristics of the prepared electromagnetic shielding ink are shown in Table 1 below.
잉크 유형Ink type 무입자형 Ag 잉크Particle-free Ag ink 나노입자 분산형Ag 잉크Nanoparticle Disperse Ag Ink 페이스트형 잉크Paste Ink
제조예Production Example 제조예1Preparation Example 1 제조예2Preparation Example 2 제조예3Preparation Example 3 제조예4Preparation Example 4 제조예5Preparation Example 5
점도(cps)Viscosity (cps) 55 3838 5050 400400 50,00050,000
표면장력(dyne/cm)Surface tension (dyne / cm) 2323 2929 2626 3535 --
면저항 (mΩ/□)Sheet resistance (mΩ / □) 650650 300300 9090 5050 6060
실시예에서 제조된 각 전자파 차폐 dipping 공정에 따라 형성된 전자파 차폐막의 특성을 표 2에 정리하였다. Table 2 summarizes the characteristics of the electromagnetic shielding film formed according to the electromagnetic shielding dipping process prepared in Example.
Dipping 공정 및 잉크 종류에 따른 전자파 차폐막 물성Electromagnetic Shielding Film Properties by Dipping Process and Ink Type
제1실시예수직 dippingFirst Embodiment Vertical Dipping [실시예1]/제조예1Example 1 / Production Example 1 [실시예2]/제조예2Example 2 / Production Example 2 [실시예3]/제조예3Example 3 / Production Example 3 [실시예4]/제조예4Example 4 / Production Example 4 [실시예5]/제조예5Example 5 / Production Example 5
면저항 (mΩ/□)Sheet resistance (mΩ / □) 700700 350350 100100 5555 6565
Step coverage(%)Step coverage (%) 9393 9595 9494 9595 9595
차폐율(dB)Shielding Rate (dB) 3232 4242 5050 6161 5757
제2실시예간접 dippingSecond Embodiment Indirect Dipping [실시예6]/제조예1Example 6 / Production Example 1 [실시예7]/제조예2Example 7 / Production Example 2 [실시예8]/제조예3Example 8 Preparation Example 3 [실시예9]/제조예4Example 9 / Production Example 4 [실시예10]/제조예5Example 10 Preparation Example 5
면저항 (mΩ/□)Sheet resistance (mΩ / □) 750750 400400 150150 5757 7070
Step coverage(%)Step coverage (%) 9090 9292 9191 9393 9292
차폐율(dB)Shielding Rate (dB) 3030 4040 4848 6161 5656
제3실시예Roll to Roll dippingsRoll to Roll dippings [실시예11]/제조예1Example 11 / Production Example 1 [실시예12]/제조예2Example 12 / Production Example 2 [실시예13]/제조예3Example 13 / Production Example 3 [실시예14]/제조예4Example 14 / Production Example 4 [실시예15]/제조예5Example 15 Production Example 5
면저항 (mΩ/□)Sheet resistance (mΩ / □) 650650 300300 9090 5050 6060
step coverage(%)step coverage (%) 9595 9696 9797 9696 9696
차폐율(dB)Shielding Rate (dB) 3434 4343 5252 6565 5959
전자파 차폐 형성 공정에 따른 코팅막의 step coverage 특성 비교 Comparison of Step Coverage Characteristics of Coating Films by Electromagnetic Shielding Formation Process
[실시예13]Example 13 [비교예1]Comparative Example 1 [비교예2]Comparative Example 2
공정fair Roll to RollDippingRoll to RollDipping SputterSputter SpraySpray
코팅두께(um)Coating thickness (um) 상면Top 1.81.8 4.14.1 3.153.15
측면side 1.751.75 1.71.7 1.51.5
step coverage (%)step coverage (%) 9797 4141 4747
본 발명의 권리범위는 상술한 실시예에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.The scope of the present invention is not limited to the above-described embodiment, but may be embodied in various forms of embodiments within the scope of the appended claims. Without departing from the gist of the invention claimed in the claims, it is intended that any person skilled in the art to which the present invention pertains falls within the scope of the claims described in the present invention to various extents which can be modified.

Claims (12)

  1. 전자소자의 일면을 이송캐리어에 부착하는 로딩단계;A loading step of attaching one surface of the electronic device to the transport carrier;
    상기 이송캐리어에 부착된 전자소자를 금속잉크가 수용된 수용조에 디핑(dipping)시켜, 전자소자의 노출된 외표면에 금속잉크를 도포하는 디핑단계; Dipping the electronic element attached to the transfer carrier in a container containing a metal ink to apply the metal ink to the exposed outer surface of the electronic element;
    상기 전자소자에 도포된 금속잉크를 경화시키는 소성단계; 및 Firing the metal ink applied to the electronic device; And
    상기 이송캐리어로부터 전자소자를 분리하는 언로딩단계;를 포함하는 전자파 차폐 코팅 방법.And an unloading step of separating the electronic device from the transport carrier.
  2. 제 1항에 있어서, The method of claim 1,
    상기 디핑단계에 앞서, 전자소자의 노출된 표면에 친수성을 부여하는 표면처리단계;를 더 수행하는 것을 특징으로 하는 전자파 차폐 코팅 방법.Prior to the dipping step, the surface treatment step of imparting hydrophilicity to the exposed surface of the electronic device; electromagnetic shielding coating method further comprising.
  3. 제 2항에 있어서, The method of claim 2,
    상기 표면처리단계는 전자소자의 표면을 플라즈마 처리하는 것을 특징으로 하는 전자파 차폐 코팅 방법.The surface treatment step of the electromagnetic shielding coating method characterized in that the plasma treatment of the surface of the electronic device.
  4. 제 2항에 있어서, The method of claim 2,
    상기 이송캐리어의 전자소자 부착면은 소수성을 갖는 것을 특징으로 하는 전자파 차폐 코팅 방법.Electromagnetic shielding coating method characterized in that the electronic device attachment surface of the transfer carrier has a hydrophobicity.
  5. 제 1항에 있어서,The method of claim 1,
    상기 소성단계에 앞서, 전자소자의 표면에 도포된 금속잉크의 도포 두께를 일정하게 하는 레벨링단계;를 더 수행하는 것을 특징으로 하는 전자파 차폐 코팅 방법.Prior to the firing step, a leveling step of making the coating thickness of the metal ink applied to the surface of the electronic element constant; electromagnetic shielding coating method further comprising.
  6. 제 5항에 있어서, The method of claim 5,
    상기 레벨링단계는, 디핑단계에서 전자소자 표면에 과잉 도포된 금속잉크를 블레이드로 긁어내어 평평하게 레벨링(leveling)하는 것을 특징으로 하는 전자파 차폐 코팅 방법.Wherein the leveling step, the electromagnetic shielding coating method characterized in that the leveling (leveling) by scraping the metal ink over-coated on the surface of the electronic device with a blade in a dipping step.
  7. 제 5항에 있어서, The method of claim 5,
    상기 레벨링단계는, 디핑단계에서 전자소자 표면에 과잉 도포된 금속잉크를 흡수 재료로 이루어진 블레이드로 흡수하여 평평하게 레벨링(leveling)하는 것을 특징으로 하는 전자파 차폐 코팅 방법.Wherein the leveling step, the electromagnetic shielding coating method characterized in that the leveling (leveling) by absorbing the metal ink over-coated on the surface of the electronic device with a blade made of the absorbing material in the dipping step.
  8. 제 1항에 있어서, The method of claim 1,
    상기 디핑단계에서는, 이송캐리어에 부착된 전자소자의 규격에 따라, 전자소자의 디핑 깊이를 제어하는 것을 특징으로 하는 전자파 차폐 코팅 방법.The dipping step, the electromagnetic shielding coating method characterized in that for controlling the dipping depth of the electronic device, according to the specification of the electronic device attached to the transport carrier.
  9. 제 8항에 있어서, The method of claim 8,
    상기 수용조는 금속잉크의 수위를 전자소자의 두께와 같거나 낮은 깊이로 조절하는 것을 특징으로 하는 전자파 차폐 코팅 방법.The receiving tank is electromagnetic shielding coating method characterized in that for adjusting the level of the metal ink to the same or lower depth of the thickness of the electronic device.
  10. 제 1항에 있어서,The method of claim 1,
    상기 이송캐리어는 롤투롤 방식으로 이송되는 캐리어필름으로 이루어지고, 캐리어필름의 일측 면에는 상기 전자소자의 일면이 부착될 수 있는 접착부가 마련되는 것을 특징으로 하는 전자파 차폐 코팅 방법.The transfer carrier is made of a carrier film to be transported in a roll-to-roll manner, the electromagnetic shielding coating method, characterized in that the one side of the carrier film is provided with an adhesive portion to which one side of the electronic device can be attached.
  11. 제 10항에 있어서, The method of claim 10,
    상기 디핑단계에서는, 수용조의 상측에서 승강제어되는 디핑롤러를 이용해 전자소자가 부착된 이송캐리어의 이면을 수용조를 향해 가압하여 전자소자의 디핑 깊이를 제어하는 것을 특징으로 하는 전자파 차폐 코팅 방법.The dipping step, the electromagnetic shielding coating method characterized in that to control the dipping depth of the electronic device by pressing the back surface of the transfer carrier to which the electronic device is attached to the receiving tank using a dipping roller which is lifted and controlled at the upper side of the receiving tank.
  12. 제 10항에 있어서, The method of claim 10,
    상기 디핑단계에서는, 상기 수용조의 금속잉크를 흡수한 디핑롤러가 회전하면서, 디핑롤러의 상측에서 이동하는 전자소자의 외표면에 금속잉크를 도포하는 것을 특징으로 하는 전자파 차폐 코팅 방법.The dipping step, the electromagnetic shielding coating method characterized in that the metal ink is applied to the outer surface of the electronic element moving in the upper side of the dipping roller while the dipping roller absorbing the metal ink of the receiving tank.
PCT/KR2018/001441 2017-02-03 2018-02-02 Method for forming coating that blocks electromagnetic waves WO2018143718A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880023840.6A CN110769944B (en) 2017-02-03 2018-02-02 Electromagnetic wave shielding coating method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0015770 2017-02-03
KR20170015770 2017-02-03
KR1020170051819A KR102044773B1 (en) 2017-02-03 2017-04-21 electromagnetic wave shield coating method
KR10-2017-0051819 2017-04-21

Publications (1)

Publication Number Publication Date
WO2018143718A1 true WO2018143718A1 (en) 2018-08-09

Family

ID=63040870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001441 WO2018143718A1 (en) 2017-02-03 2018-02-02 Method for forming coating that blocks electromagnetic waves

Country Status (2)

Country Link
CN (1) CN110769944B (en)
WO (1) WO2018143718A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200599A (en) * 2002-12-20 2004-07-15 Tokai Rubber Ind Ltd Manufacturing method for transparent electromagnetic shield film for plasma-display, and transparent electromagnetic shield film for plasma-display obtained thereby
KR20080013787A (en) * 2006-08-07 2008-02-13 주식회사 잉크테크 Process for preparing silver nanoparticles or silver nanocolloid, and the compositions of silver ink containing the silver nanoparticles
KR20120042022A (en) * 2010-10-22 2012-05-03 한국과학기술원 Pattern fabricating method and pattern transferring apparatus, flexible display panel, flexible solar cell, electronic book, thin film transistor, electromagnetic-shielding sheet, flexible printed circuit board applying thereof
KR20150065327A (en) * 2013-12-05 2015-06-15 에스피텍 주식회사 Method of manufacturuing Electro-Magnetic Shielding Layer for semiconductor package
KR20160061063A (en) * 2014-11-21 2016-05-31 (주) 씨앤아이테크놀로지 Apparatus for Manufacturing Adhesive-Pad for EMI shielding of Semiconductor Packages and Method for Manufacturing Adhesive-Pad Using the Same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1156521A3 (en) * 2000-04-24 2007-05-23 Interuniversitair Microelektronica Centrum Vzw Low cost electroless plating process for single chips and wafer parts and products obtained thereof
KR20020071437A (en) * 2001-03-06 2002-09-12 유승균 Plating method of metal film on the surface of polymer
JP2010541285A (en) * 2007-10-02 2010-12-24 パーカー.ハニフィン.コーポレイション Nano ink for providing EMI shielding to windows
CN105658043B (en) * 2014-11-10 2018-09-18 东华大学 A kind of electromagnetic shielding membrane material and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200599A (en) * 2002-12-20 2004-07-15 Tokai Rubber Ind Ltd Manufacturing method for transparent electromagnetic shield film for plasma-display, and transparent electromagnetic shield film for plasma-display obtained thereby
KR20080013787A (en) * 2006-08-07 2008-02-13 주식회사 잉크테크 Process for preparing silver nanoparticles or silver nanocolloid, and the compositions of silver ink containing the silver nanoparticles
KR20120042022A (en) * 2010-10-22 2012-05-03 한국과학기술원 Pattern fabricating method and pattern transferring apparatus, flexible display panel, flexible solar cell, electronic book, thin film transistor, electromagnetic-shielding sheet, flexible printed circuit board applying thereof
KR20150065327A (en) * 2013-12-05 2015-06-15 에스피텍 주식회사 Method of manufacturuing Electro-Magnetic Shielding Layer for semiconductor package
KR20160061063A (en) * 2014-11-21 2016-05-31 (주) 씨앤아이테크놀로지 Apparatus for Manufacturing Adhesive-Pad for EMI shielding of Semiconductor Packages and Method for Manufacturing Adhesive-Pad Using the Same

Also Published As

Publication number Publication date
CN110769944A (en) 2020-02-07
CN110769944B (en) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2017175975A1 (en) Emi shielding structure and manufacturing method therefor
WO2011021824A2 (en) Electrostatic chuck and method for manufacturing same
WO2016190722A1 (en) Functionalized graphene comprising two or more types of amines, and preparation method therefor
WO2015093903A1 (en) Metal packaging material having good heat resistance, method of manufacturing same, and flexible electronic device packaged in said metal packaging material
WO2014171798A9 (en) Method of manufacturing transparent electrode film for display and transparent electrode film for display
WO2015152559A1 (en) Low refractive composition, preparation method therefor, and transparent conductive film
WO2018135865A1 (en) Oled panel lower part protection film, and organic light-emitting display apparatus comprising same
WO2023038425A1 (en) Release coating composition
WO2019198929A1 (en) Copper-based conductive paste and manufacturing method therefor
WO2017200169A1 (en) Hollow aluminosilicate particles and method of manufacturing the same
WO2018143718A1 (en) Method for forming coating that blocks electromagnetic waves
KR101216577B1 (en) Process for minimizing electromigration in an electronic device
WO2020189882A1 (en) Antistatic silicone release film
WO2024010242A1 (en) Release film
WO2021194202A1 (en) Super absorbent resin film and preparation method thereof
WO2017073956A1 (en) Ink composition for photonic sintering and method for producing same
WO2015167235A1 (en) Polyester film and method for manufacturing same
KR102044773B1 (en) electromagnetic wave shield coating method
WO2020256394A1 (en) Method for manufacturing composite material, and composite material
WO2022220349A1 (en) Double-sided antistatic silicone release film
WO2010143794A1 (en) Etching paste having doping function, and formation method of selective emitter of solar cell using same
WO2018169280A1 (en) Device and method for forming electromagnetic shielding film of semiconductor chip
WO2020185021A1 (en) Packaging substrate, and semiconductor device comprising same
WO2020076138A1 (en) Complex coating solution, metal substrate structure manufactured using same, and manufacturing method therefor
KR102477004B1 (en) Method For Manufacturing Conveying Plate For Display Panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18747338

Country of ref document: EP

Kind code of ref document: A1