WO2018143250A1 - 中空糸膜モジュール - Google Patents

中空糸膜モジュール Download PDF

Info

Publication number
WO2018143250A1
WO2018143250A1 PCT/JP2018/003150 JP2018003150W WO2018143250A1 WO 2018143250 A1 WO2018143250 A1 WO 2018143250A1 JP 2018003150 W JP2018003150 W JP 2018003150W WO 2018143250 A1 WO2018143250 A1 WO 2018143250A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
end side
membrane module
potting
Prior art date
Application number
PCT/JP2018/003150
Other languages
English (en)
French (fr)
Inventor
小林 敦
直紀 中島
健児 林田
花川 正行
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201880009543.6A priority Critical patent/CN110234419B/zh
Priority to US16/482,089 priority patent/US11090610B2/en
Priority to KR1020197022122A priority patent/KR102420006B1/ko
Priority to EP18748262.5A priority patent/EP3578248A4/en
Priority to AU2018214388A priority patent/AU2018214388B2/en
Priority to JP2018515681A priority patent/JP6341353B1/ja
Publication of WO2018143250A1 publication Critical patent/WO2018143250A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/024Hollow fibre modules with a single potted end
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/033Specific distribution of fibres within one potting or tube-sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • B01D63/043Hollow fibre modules comprising multiple hollow fibre assemblies with separate tube sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/08Flow guidance means within the module or the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/02Forward flushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/20By influencing the flow
    • B01D2321/2008By influencing the flow statically
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a hollow fiber membrane module.
  • Separation membranes such as microfiltration membranes and ultrafiltration membranes have features such as energy saving and space saving, labor saving and product quality improvement. It is used in various processes including water treatment, food industry, and medical fields.
  • a permeate or water is passed from the permeate side of the separation membrane to the stock solution side to back-pressure wash that extrudes substances adhering to the inside of the membrane pores or the membrane surface, or gas is supplied from the lower part of the hollow fiber membrane module.
  • air scrubbing for example, see Patent Document 1 in which a hollow fiber membrane (that is, a hollow fiber-shaped separation membrane) is shaken and physically washed may be mentioned.
  • a flushing method for example, see Patent Document 2 in which a stock solution or a chemical solution is allowed to flow at a high linear velocity parallel to the membrane surface on the stock solution side of the hollow fiber membrane.
  • the flow path in the hollow fiber membrane module may be blocked by the accumulation of turbidity, and the transmembrane differential pressure may rise rapidly, making it impossible to continue the operation. Flushing is effective as a method for washing the hollow fiber membrane module, but the flow during flushing is uneven, and if there is a portion with a low flow rate, the separation membrane is not sufficiently washed and turbidity accumulates.
  • a cylindrical housing having a first end and a second end in the axial direction, a plurality of hollow fiber membranes accommodated in the housing, and a plurality of the fibers positioned on the first end side of the housing
  • a first potting portion for bonding the hollow fiber membranes in an open state
  • a second potting portion for bonding the plurality of hollow fiber membrane ends positioned on the second end side of the housing.
  • the fluid flowing outside the hollow fiber membrane from the second end side toward the first end side is directed toward the radial center portion on the second end side of the first potting portion.
  • the hollow fiber membrane module further includes a rectifying structure for generating a flow radially from the radially central portion on the second end side of the first potting portion toward the radially outer peripheral side.
  • the rectifying structure includes an inner pipe and a rectifying cylinder provided on the second end side of the first potting portion, and the inner pipe is provided at a radial center portion of the casing, and the inner pipe Has one or more side opening portions on the side surface in the vicinity of the second end side of the first potting portion, and the filling rate of the hollow fiber membrane inside the inner pipe is a hollow space outside the inner pipe.
  • the rectifying cylinder is provided between the hollow fiber membrane and the casing, and the rectifying cylinder has one or more rectifying holes on its side surface, and the casing is on the side surface thereof.
  • the rectifying structure includes a central space portion and a rectifying cylinder provided on the second end side of the first potting portion, and the central space portion is provided at a radial center portion of the casing, The filling rate of the hollow fiber membrane in the central space portion is smaller than the filling rate of the hollow fiber membrane outside the central space portion, the rectifying cylinder is provided between the hollow fiber membrane and the housing, and the rectifying cylinder is The hollow fiber membrane module according to [1], wherein the side surface has one or more rectifying holes, and the housing has a side nozzle on the side surface.
  • the length of the inner pipe is equal to or greater than D.
  • the central space portion The hollow fiber membrane module according to [3], wherein the length is D or more and M or less.
  • the filling rate of the hollow fiber membrane inside the inner pipe is A1
  • the filling rate of the hollow fiber membrane outside the inner pipe is A2
  • the sectional area of the cross section perpendicular to the axial direction of the inner pipe is T1
  • the hollow according to [2] or [4], wherein a flow parameter F of the following formula (1) is 1.0 or more and 8.0 or less when a cross-sectional area of a cross section perpendicular to the axial direction of the housing is T2.
  • the filling rate of the hollow fiber membrane in the central space portion is A1
  • the filling rate of the hollow fiber membrane outside the central space portion is A2
  • the cross-sectional area of the cross section perpendicular to the axial direction of the central space portion is T1.
  • the flow parameter F of the following formula (1) is 1.0 or more and 8.0 or less, according to [3] or [5], where T2 is a cross-sectional area of a cross section perpendicular to the axial direction of the casing. Hollow fiber membrane module.
  • the inner pipe has one or more side opening portions on the side surface, and when the inner diameter of the side nozzle is D, the inner pipe extends from the second end side of the first potting portion.
  • the side surface In the range of the length D, the side surface has one or more first side surface openings, and out of the total opening area of the side surface openings, the ratio R1 of the total opening area occupied by the first side surface openings is 50. % Of the hollow fiber membrane module according to any one of [2], [4], and [6].
  • the ratio R2 of the total opening area of the first side surface opening of the inner pipe to the cross-sectional area of the cross section perpendicular to the axial direction of the housing is 5% or more and 50% or less.
  • the ratio R3 of the total opening area of the flow straightening holes of the flow straightening cylinder to the cross-sectional area of the cross section perpendicular to the axial direction of the housing is 5% to 50%.
  • the rectifying cylinder has one or more first rectifying holes on its side surface in the range of the length D from the second end side of the first potting portion.
  • the hollow fiber according to any one of [2] to [10], wherein a ratio R4 of a total opening area occupied by the first rectifying hole in the total opening area of the rectifying hole is 50% or more Membrane module.
  • the hollow fiber membrane module of the present invention has a rectifying structure that suppresses uneven flow during flushing, improves the flow velocity, makes it uniform, and improves turbidity cleaning and discharging. Therefore, accumulation of turbidity in the hollow fiber membrane module is suppressed, and long-term stable filtration is possible even for highly turbid stock solutions.
  • FIG. 1 is a schematic longitudinal sectional view of a hollow fiber membrane module according to a first embodiment of the present invention.
  • FIG. 2 is a schematic longitudinal sectional view showing a liquid flow in the hollow fiber membrane module of FIG.
  • FIG. 3 is a cross-sectional view of the hollow fiber membrane module of FIG. 1 taken along the line AA.
  • FIG. 4 is a cross-sectional view showing the liquid flow in FIG.
  • FIG. 5 is a cross-sectional view of the hollow fiber membrane module of FIG. 1 taken along the line BB.
  • FIG. 6 is a schematic longitudinal sectional view of a hollow fiber membrane module according to the second embodiment of the present invention.
  • FIG. 7 is a schematic longitudinal sectional view showing a liquid flow in the hollow fiber membrane module of FIG. FIG.
  • FIG. 8 is a schematic longitudinal sectional view showing an example of the hollow fiber membrane module of the present invention.
  • FIG. 9 is a schematic longitudinal sectional view showing a liquid flow in the hollow fiber membrane module of FIG.
  • FIG. 10 is a schematic longitudinal sectional view showing an example of a conventional hollow fiber membrane module.
  • FIG. 11 is a schematic longitudinal sectional view showing a liquid flow in the conventional hollow fiber membrane module of FIG.
  • FIG. 12 is a schematic view illustrating an example of a method for producing a hollow fiber membrane module of the present invention.
  • FIG. 13 is a schematic view illustrating an example of a method for producing a hollow fiber membrane module of the present invention.
  • FIG. 14 is a schematic view illustrating an example of a method for producing a hollow fiber membrane module of the present invention.
  • FIG. 15 is a schematic longitudinal sectional view showing an example of a liquid flow in the hollow fiber membrane module of the present invention.
  • FIG. 16 is a schematic longitudinal sectional view showing an example of the hollow fiber membrane module of the present invention.
  • FIG. 17 is a schematic longitudinal sectional view showing an example of the hollow fiber membrane module of the present invention.
  • FIG. 18 is a schematic longitudinal sectional view showing an example of the hollow fiber membrane module of the present invention.
  • FIG. 19 is a schematic longitudinal sectional view showing an example of a conventional hollow fiber membrane module.
  • FIG. 20 is a schematic longitudinal sectional view showing an example of the hollow fiber membrane module of the present invention.
  • longitudinal is a direction along the axial direction of the hollow fiber membrane module
  • lateral is a direction orthogonal to the axial direction of the hollow fiber membrane module
  • hollow fiber membrane module of the present invention examples include, for example, the first embodiment or the second embodiment described below. In addition, this invention is not limited by embodiment described below.
  • FIG. 1 is a schematic longitudinal sectional view showing a hollow fiber membrane module according to the first embodiment of the present invention.
  • a hollow fiber membrane module 100A shown in FIG. 1 includes a cylindrical housing 2 having both ends opened, and a plurality of hollow fiber membranes 1 accommodated in the housing 2.
  • the housing 2 includes a housing upper cap 2a at an upper portion thereof and a housing lower cap 2b at a lower portion thereof.
  • the upper housing cap 2 a has a filtrate outlet 7, and the lower housing cap 2 b has a stock solution inlet 5.
  • “upper” and “lower” refer to the top and bottom in the posture when the hollow fiber membrane module 100A is used, and coincide with the top and bottom in FIG.
  • the hollow fiber membrane module 100A includes a first potting part 3, a second potting part 4, and the like.
  • the upper end portion of the housing upper cap 2 a that is, the filtrate outlet 7 is the first end of the housing 2
  • the lower end portion of the housing lower cap 2 b, that is, the stock solution inlet 5 is the second end of the housing 2. is there.
  • a housing side nozzle 2 c is provided near the first end of the housing 2, and the housing side nozzle 2 c has a stock solution outlet 6.
  • the inner diameter D of the housing side nozzle 2c is a range in which the flow rate during flushing in the housing side nozzle 2c is 0.5 m / s or more and 10 m / s or less from the viewpoint of pressure loss during flushing and cleanability. Is preferably set to be in a range of 1 m / s or more and 5 m / s or less.
  • the inner diameter D of the housing side nozzle 2c is too small, the pressure loss at the time of flushing may increase and the power cost may increase. On the other hand, if the inner diameter D of the housing side nozzle 2c is too large, the flow rate at the time of flushing may become low, and the cleaning performance may deteriorate.
  • the first potting unit 3 is also called an upper potting unit.
  • the first potting portion 3 is formed of an adhesive, and the upper end of the hollow fiber membrane 1 (corresponding to a “hollow fiber membrane first end”) is opened in the end surface of the housing 2. Adhesive and liquid-tight. That is, the hollow fiber membrane 1 is bundled by the first potting part 3 and fixed to the inner wall of the housing 2.
  • the second potting part 4 is also called a lower potting part.
  • the second potting portion 4 is formed of an adhesive, and seals the end surface of the lower end portion of the hollow fiber membrane 1 (corresponding to “hollow fiber membrane second end”); and Bonded to the housing 2. That is, the second potting unit 4 is disposed in the housing 2 so as to face the first potting unit 3.
  • the hollow part of the hollow fiber membrane 1 is sealed with the adhesive and is not open.
  • the hollow fiber membrane 1 is bundled by the second potting part 4 and fixed to the inner wall of the housing 2.
  • the second potting portion 4 has a continuous through-hole 8 from the surface facing the first potting portion 3 to the opposite surface.
  • the through hole 8 serves as a flow path for the stock solution and a flow path for air during air scrubbing.
  • FIG. 5 is a cross-sectional view of the hollow fiber membrane module 100A in FIG. 1 taken along the line BB and shows an example of the arrangement of the through holes 8 in the second potting portion 4.
  • FIG. The through holes 8 are preferably arranged evenly in the second potting part 4 in order to suppress the drift of the stock solution during flushing and the drift of air during air scrubbing.
  • the hollow fiber membrane module 100 ⁇ / b> A further includes a first potting unit for fluid flowing outside the hollow fiber membrane 1 from the second end side of the housing 2 toward the first end side of the housing 2. 3 is directed toward the radial center portion on the second end side of the third, and further flows radially from the radial center portion on the second end side of the first potting portion 3 toward the radially outer side.
  • the rectifying structure includes a rectifying cylinder 9 and an inner pipe 11.
  • the rectifying cylinder 9 is a cylindrical member disposed inside the housing 2.
  • the rectifying cylinder 9 is disposed on the second end side (lower side) of the first potting portion 3.
  • the upper and lower sides of the rectifying cylinder 9 are open, and rectifying holes 10 are provided on the side surfaces.
  • the flow straightening tube 9 can be passed through the flow straightening hole 10.
  • the inner pipe 11 is a cylindrical member disposed in the central portion of the rectifying tube 9 in the radial direction of the module, and is disposed on the second end side (lower side) of the first potting unit 3.
  • the upper side of the inner pipe 11 is fixed to the first potting part 3, and the lower side is open.
  • a side opening 12 is provided on the side surface of the inner pipe 11.
  • the stock solution is supplied into the module from the stock solution inlet 5, and the stock solution is filtered from the outside to the inside of the hollow fiber membrane 1.
  • the filtrate passes through the hollow portion of the hollow fiber membrane 1 and is discharged from the upper filtrate outlet 7 to the outside.
  • pressure loss occurs when the filtrate passes through the hollow portion of the hollow fiber membrane 1, but the closer to the first end side (upper side) of the module, the shorter the liquid passage distance of the hollow portion and the smaller the pressure loss. Therefore, the filtration flux becomes high.
  • the hollow fiber membrane 1 has a high filtration flux in the vicinity of the second end side (lower side) of the first potting portion 3, and turbidity tends to be deposited on the membrane surface. Therefore, when filtering a highly turbid undiluted solution, it is important to improve the washability in the vicinity of the second end side (lower side) of the first potting unit 3.
  • FIG. 10 shows the liquid flow in the hollow fiber membrane module 100D during the flushing.
  • the stock solution is supplied from the stock solution inlet 5, and the stock solution is discharged from the stock solution outlet 6 to clean the inside of the module.
  • the flow from the second end side (lower side) of the module Since the first end side (upper side) of the module heads toward the rectifying hole 10, the flow velocity is low in the vicinity of the second end side (lower side) of the first potting portion 3, and the accumulated turbidity is not sufficiently washed.
  • the flow rate is particularly low at the module radial direction central portion in the vicinity of the second end side (lower side) of the first potting portion 3, and turbidity tends to accumulate.
  • the flow rate required for discharging the turbid matter varies depending on the particle size, specific gravity, interaction with the hollow fiber membrane, etc. of the turbid matter, but is preferably 0.05 m / s or more, preferably 0.1 m / s or more. More preferably, it is more preferably 0.2 m / s or more.
  • the flow straightening tube 9 and the inner are arranged as a flow straightening structure in order to increase the flow rate at the time of flushing in the vicinity of the second end side (lower side) of the first potting part 3 and improve the cleaning performance.
  • a pipe 11 was provided.
  • This rectifying structure is used for the stock solution flowing outside the hollow fiber membrane 1 from the second end side (lower side) of the module toward the first end side (upper side) of the module at the time of flushing.
  • the flow is directed toward the module radial center on the side (lower side), and further directed from the module radial center on the second end side (lower) of the first potting unit 3 toward the radial outer periphery.
  • the purpose is to generate a radial flow and improve the cleaning performance in the vicinity of the second end side (lower side) of the first potting unit 3.
  • the stock solution from the second end side (lower side) of the module toward the first end side (upper side) of the module passes through the inner side of the inner pipe 11 and the module diameter on the second end side (lower side) of the first potting portion 3.
  • the stock solution that is guided to the center of the direction and then exits from the side opening 12 of the inner pipe 11 flows toward the rectifying hole 10 of the rectifying cylinder 9.
  • the filling rate A1 of the hollow fiber membrane inside the inner pipe 11 needs to be smaller than the filling rate A2 of the hollow fiber membrane outside the inner pipe 11. This is because the filling rate A1 of the hollow fiber membrane inside the inner pipe 11 is made smaller than the filling rate A2 of the hollow fiber membrane outside the inner pipe 11 to reduce the fluid flow resistance and increase the flow velocity inside the inner pipe 11. It is.
  • the filling rate of the hollow fiber membrane is a cross section perpendicular to the axial direction of the housing 2 of the hollow fiber membrane module between the first potting part 3 and the second potting part 4 (parallel to the horizontal direction in FIG. 1). In addition, it is the ratio of the area occupied by the hollow fiber membrane on the plane perpendicular to the paper surface, hereinafter also referred to as “cross section”).
  • cross section the ratio of the area occupied by the hollow fiber membrane on the plane perpendicular to the paper surface
  • the hollow fiber membrane existing section represents a certain section where the hollow fiber membrane exists.
  • the sorting is performed by a member such as the casing 2, the rectifying cylinder 9, the inner pipe 11, or the like, and the sorting is performed by fixing the hollow fiber membrane in the potting portion like the hollow fiber membrane module 100B of FIG. The method etc. are mentioned.
  • FIG. 3 shows a cross-sectional view taken along the line AA of the hollow fiber membrane module 100A of FIG. 1.
  • the hollow fiber membrane 1 exists in the space between the rectifying cylinder 9 and the inner pipe 11. Therefore, in FIG. 3, the area obtained by subtracting the cross-sectional area (outer diameter reference) of the inner pipe 11 from the inner cross-sectional area of the flow straightening tube 9 is the cross-sectional area S1 of the hollow fiber membrane existing section.
  • the filling rate of the hollow fiber membrane in the section where the hollow fiber membrane does not exist is 0%.
  • the inner cross-sectional area of the casing 2, the rectifying cylinder 9 or the inner pipe 11 is a section perpendicular to the axial direction of the hollow fiber membrane module of the casing 2, the rectifying cylinder 9 or the inner pipe 11,
  • casing 2, the rectifying cylinder 9, or the inner pipe 11 is said.
  • the total cross-sectional area S2 of the cross section of the hollow fiber membrane can be expressed by the following formula (3).
  • the outer diameter of each of the ten hollow fiber membranes in the hollow fiber membrane existing section is measured in two directions, the longest direction and the shortest direction.
  • the average value of the measured values at the total of 20 locations is defined as the outer diameter R of the hollow fiber membrane.
  • the total cross-sectional area S2 of the cross-section of the hollow fiber membrane is calculated by Equation (3).
  • the number of hollow fiber membranes present in the hollow fiber membrane existing section is less than 10
  • the outer diameter of all hollow fiber membranes present in the hollow fiber membrane present section may be measured and the average value calculated.
  • S2 [circumference ratio] ⁇ [outer diameter R / 2 of hollow fiber membrane] 2 ⁇ [number of hollow fiber membranes in the hollow fiber membrane existing section] (3)
  • the filling rate A1 of the hollow fiber membrane inside the inner pipe 11 is preferably 0% or more and 50% or less, more preferably 0% or more and 40% or less, and further preferably 0% or more and 30% or less. .
  • the filling rate A2 of the hollow fiber membrane outside the inner pipe 11 may be set as appropriate in consideration of the balance with the filling rate A1 of the hollow fiber membrane inside the inner pipe 11, but is 20% or more and 70% or less. It is preferably 30% to 60%, more preferably 40% to 60%.
  • the filling rate of the hollow fiber membranes on the inner side and the outer side of the inner pipe 11 is set on each of the first end side and the second end side of the inner pipe 11. taking measurement. And let the average value of the hollow fiber membrane filling rate in the inner pipe 11 inside the 1st end side and the 2nd end side be the filling rate A1 of the hollow fiber membrane inside the inner pipe 11. And let the average value of the hollow fiber membrane filling rate outside the inner pipe 11 in the first end side and the second end side be the filling rate A2 of the hollow fiber membrane outside the inner pipe 11.
  • the flow parameter F of the following formula (1) is 1.0 or more and 8. It is preferably 0 or less.
  • F (A2-A1) ⁇ T1 / T2 (1)
  • (A2-A1) is the difference in the filling rate between the outer and inner hollow fiber membranes of the inner pipe 11, and represents the difference in liquid flow resistance between the outer and inner sides of the inner pipe 11.
  • T1 / T2 represents the ratio of the cross-sectional area of the inner pipe 11 to the cross-sectional area of the housing 2. The larger the T1 / T2, the easier the stock solution flows inside the inner pipe 11.
  • the flow parameter F of the formula (1) is set to 1.0 or more and 8. It is preferably 0 or less, and more preferably 2.0 or more and 8.0 or less.
  • the flow parameter F When the flow parameter F is less than 1.0, the flow velocity inside the inner pipe 11 decreases, and there may be a case where sufficient detergency cannot be obtained in the vicinity of the second end side (lower side) of the first potting portion 3. On the other hand, when the flow parameter F exceeds 8.0, the flow velocity outside the inner pipe 11 is significantly reduced, and the detergency of the hollow fiber membrane outside the inner pipe 11 may be lowered.
  • the inner cross-sectional area of the inner pipe 11 is measured at each of the first end side and the second end side of the inner pipe 11. And let the average value of the inner side cross-sectional area of the inner pipe 11 in a 1st end side and a 2nd end side be the cross-sectional area (inner cross-sectional area) T1 of the inner pipe 11.
  • the length of the inner pipe 11 is preferably not less than the inner diameter D of the housing side nozzle 2c, and is not less than 1.5 ⁇ D. More preferably, it is more preferably 2 ⁇ D or more.
  • the length of the inner pipe 11 is a length from the second end side (lower side) of the first potting portion 3 to the second end side (lower side) of the inner pipe 11.
  • the length of the inner pipe 11 is less than the inner diameter D of the housing side nozzle 2c, the flow from the module second end side (lower side) is dispersed in the module radial direction before reaching the inner pipe 11, and the inner pipe 11 The inner flow rate may not improve sufficiently.
  • the length of the inner pipe 11 is L or less. Preferably, it is 60 ⁇ D or less, more preferably 40 ⁇ D or less, and further preferably 5 ⁇ D or less.
  • the inner pipe 11 can also extend through the second potting portion 4 to the second end side of the housing 2. If the inner pipe 11 is long, the difference in flow resistance between the inner and outer sides of the inner pipe 11 increases, so that the flow velocity inside the inner pipe 11 is improved and near the second end side (lower side) of the first potting portion 3. However, since the flow velocity outside the inner pipe 11 decreases, the cleaning performance outside the inner pipe 11 may decrease.
  • the inner pipe 11 has one or more side openings 12 on its side surface, but the length D from the second end side (lower side) of the first potting unit 3 (inner diameter of the housing side nozzle 2c).
  • the side opening 12 existing in the range is referred to as a first side opening.
  • the ratio R1 (Formula 4) of the total opening area occupied by the first side opening is preferably 50% or more, and more preferably 80% or more. More preferred.
  • R1 [%] [total opening area of first side opening] / [total opening area of side opening] ⁇ 100 (4)
  • the ratio R2 (Formula 5) of the total opening area of the first side opening of the inner pipe 11 to the inner cross-sectional area T2 of the housing 2 is preferably 5% to 50%, preferably 10% to 40%. More preferably, it is as follows. If R2 is less than 5%, the opening area of the first side opening may be too small to sufficiently diffuse the flow around. On the other hand, if R2 exceeds 50%, the opening area of the first side opening is too large, and the flow velocity in the vicinity of the second end side (lower side) of the first potting unit 3 may decrease.
  • R2 [%] [total opening area of first side opening] / T2 ⁇ 100 (5)
  • the side openings 12 are arranged substantially evenly in the circumferential direction of the inner pipe 11. If the arrangement of the side openings 12 is not uniform, the flow from the side openings 12 may be biased, and a portion with a low flow velocity may be generated.
  • the side openings 12 may be arranged at regular intervals in the circumferential direction of the inner pipe 11 or may be arranged in a staggered manner.
  • the shape of the side opening 12 is not particularly limited, but may be a circle, an ellipse, a rectangle, or the like.
  • the side opening 12 can be provided over the entire circumference of the inner pipe 11.
  • the inner pipe 11 can be installed in the module by a method of fixing with the first potting unit 3 or the second potting unit 4 or a method of connecting and fixing to the rectifying cylinder 9 or the housing 2 via a shaft or the like. it can.
  • the rectifying cylinder 9 has one or more rectifying holes 10 on its side surface, but the ratio R3 (formula 6) of the total opening area of the rectifying holes to the inner cross-sectional area T2 of the housing 2 is 5% or more and 50% or less. Preferably, it is 10% or more and 40% or less, more preferably 15% or more and 30% or less. If R3 is less than 5%, the opening area of the rectifying hole is too small, and a drift occurs inside the rectifying cylinder 9, and a part with a low flow velocity may occur.
  • R3 exceeds 50%, the opening area of the first side opening may be too large, and the flow velocity in the vicinity of the second end side (lower side) of the first potting unit 3 may decrease.
  • R3 [%] [total opening area of rectifying holes] / [T2] ⁇ 100 (6)
  • the rectifying holes 10 existing in the range from the second end side (lower side) of the first potting portion 3 to the length D (inner diameter of the housing side nozzle 2 c) are called first rectifying holes. .
  • the ratio R4 (Formula 7) of the total opening area occupied by the first rectifying holes is preferably 50% or more, and more preferably 80% or more.
  • One rectifying hole is preferably in contact with the second end side of the first potting portion 3.
  • R4 [%] [total opening area of first rectifying holes] / [total opening area of rectifying holes] ⁇ 100 (7)
  • the rectifying holes 10 are preferably arranged substantially evenly in the circumferential direction of the rectifying cylinder 9. If the arrangement of the rectifying holes 10 is not uniform, the flow inside the rectifying cylinder 9 is biased, and a portion with a low flow velocity may be generated.
  • the rectifying holes 10 may be arranged at regular intervals in the circumferential direction of the rectifying cylinder 9, or may be staggered.
  • the shape of the rectifying hole 10 is not particularly limited, but may be a circular shape, an elliptical shape, a rectangular shape, or the like.
  • the rectifying hole 10 can be provided over the entire circumference of the rectifying cylinder 9. Further, the rectifying cylinder 9 can be installed in the module by a method of fixing with the first potting portion 3 or a method of fixing by adhering to the housing 2.
  • the cross-sectional area of the clearance between the second end side (lower side) of the rectifying cylinder 9 and the housing 2 in the radial direction of the hollow fiber membrane module is preferably 50% or less of the total opening area of the rectifying holes 10. 20% or less is more preferable.
  • the flow that flows out of the rectifying hole 10 flows through the flow path between the rectifying cylinder 9 and the casing 2 toward the casing side nozzle 2 c and is discharged from the stock solution outlet 6. It is preferable to increase the road cross-sectional area. If the cross-sectional area of the flow path between the flow straightening cylinder 9 and the housing 2 is small, the pressure loss at the time of liquid flow increases, and the flow velocity from the flow straightening hole 10 that is far from the housing side nozzle 2c may be low. . As a result, a drift occurs inside the flow straightening cylinder 9, and a part having a low flow velocity may occur. That is, the flow velocity on the opposite surface side of the housing side nozzle 2c may be low.
  • the cross-sectional area in the axial direction of the hollow fiber membrane module of the flow path between the rectifying cylinder 9 and the housing 2 is preferably 3% or more of the inner cross-sectional area T2 of the housing 2, and more preferably 5% or more. Preferably, it is more preferably 10% or more.
  • the inner cross-sectional area T2 of the housing 2 is described in this specification, such as the formula (1), the formula (5), and the formula (6), as shown in FIG.
  • the inner cross-sectional area T2 of the casing 2 uses a value calculated based on the inner diameter E of the casing 2 at the second end side (lower side) of the rectifying cylinder 9. . That is, the inner cross-sectional area T2 is calculated based on the inner diameter of the casing 2 at the portion where the diameter is not expanded.
  • the inner diameter of the rectifying cylinder 9 may be set as appropriate, but is preferably 80% or more and 120% or less with respect to the inner diameter E of the housing 2 on the second end side of the rectifying cylinder 9 and is 90%. More preferably, it is 110% or less. Since the hollow fiber membrane is filled inside the flow straightening tube 9, when the inner diameter of the flow straightening tube 9 is less than 80% of E, the number of hollow fiber membranes that can be filled decreases and the membrane area of the hollow fiber membrane module decreases. There is. If the inner diameter of the rectifying cylinder 9 exceeds 120% of E, the first end side of the housing 2 needs to be greatly expanded, and the manufacturing cost may increase.
  • the potting method includes centrifugal potting, in which a liquid potting agent (adhesive) penetrates between the hollow fiber membranes using centrifugal force and then hardens, and the liquid potting agent is fed by a metering pump or head.
  • a liquid potting agent adheresive
  • the liquid potting agent is fed by a metering pump or head.
  • there is a stationary potting method in which it is allowed to permeate between the hollow fiber membranes by naturally flowing and then cured.
  • the centrifugal potting method the potting agent easily penetrates between the hollow fiber membranes by centrifugal force, and a highly viscous potting agent can also be used.
  • FIG. 12 An example of centrifugal potting of the hollow fiber membrane module will be described with reference to FIG. 12, FIG. 13, and FIG.
  • the casing 2 is loaded with members such as a rectifying cylinder, an inner pipe and a hollow fiber membrane, a first potting cap 15 is installed on the first end side, and a second potting cap is installed on the second end side. 16 is installed.
  • the first end side of the hollow fiber membrane is preliminarily treated to prevent the potting agent from entering the hollow portion.
  • a pin 14 for forming the through hole 8 is inserted into the second potting cap 16.
  • the potting agent is fed from the potting agent feeder 17 to the first end side and the second end side of the hollow fiber membrane.
  • the potting agent is fed by centrifugal force by rotating the hollow fiber membrane module, and continues to rotate until the potting agent is cured.
  • the potting agent also enters the hollow portion, and the hollow portion is blocked.
  • the through hole 8 is formed. Thereafter, the first potting cap 15 and the second potting cap 16 are removed, and the hollow portion of the hollow fiber membrane can be opened by cutting the potting agent along the line CC in FIG. Finally, the housing upper cap 2a and the housing lower cap 2b are mounted in a liquid-tight and air-tight manner to complete the hollow fiber membrane module.
  • the type of potting agent to be used is not particularly limited, and for example, epoxy resin, polyurethane, silicone resin, or the like can be used.
  • the hollow fiber membrane module of this embodiment includes a hollow fiber membrane as a separation membrane.
  • a hollow fiber membrane is advantageous because it generally has a specific surface area larger than that of a flat membrane and a larger amount of liquid can be filtered per unit time.
  • the structure of the hollow fiber membrane is a symmetric membrane with a uniform pore size as a whole, an asymmetric membrane whose pore size changes in the thickness direction of the membrane, and a separation function for separating the support layer and the target substance to maintain strength There are composite membranes having layers.
  • the average pore diameter of the hollow fiber membrane may be appropriately selected depending on the separation target, but is preferably 10 nm or more and 1000 nm or less for the purpose of separation of microorganisms. If the average pore diameter is less than 10 nm, the water permeability becomes low, and if it exceeds 1000 nm, microorganisms and the like may leak. On the other hand, when separating a low molecular weight protein or the like, it is preferable to use a hollow fiber membrane having an average pore diameter of 2 nm to 20 nm.
  • the average pore size in the present invention is the pore size of the dense layer having the smallest pore size.
  • the material of the hollow fiber membrane is not particularly limited.
  • fluorine such as polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, tetrafluoroethylene / hexafluoropropylene copolymer, ethylene / tetrafluoroethylene copolymer, etc.
  • Resins such as polyacetone resins, cellulose esters such as cellulose acetate, cellulose acetate propionate, and cellulose acetate butyrate, polysulfone resins such as polysulfone and polyethersulfone, polyacrylonitrile, polyimide, and polypropylene can be contained.
  • a separation membrane made of a fluorine resin or a polysulfone resin has high heat resistance, physical strength, and chemical durability, and therefore can be suitably used for a hollow fiber membrane module.
  • the hollow fiber membrane may further contain a hydrophilic resin in addition to the fluorine resin or the polysulfone resin.
  • the hydrophilic resin can increase the hydrophilicity of the hollow fiber membrane and improve the water permeability of the membrane.
  • the hydrophilic resin may be any resin that can impart hydrophilicity to the separation membrane, and is not limited to a specific compound. For example, cellulose ester, fatty acid vinyl ester, vinyl pyrrolidone, ethylene oxide, Propylene oxide, polymethacrylic ester resin, polyacrylic ester resin and the like are preferably used.
  • a hollow fiber membrane module fill the potting cap with the hollow fiber membrane and fix it with a potting agent. At that time, the hollow fiber membrane is dried in advance from the viewpoint of good handling and prevention of adhesion failure.
  • most of the hollow fiber membranes have a problem that shrinkage occurs due to drying and water permeability is lowered. Therefore, a hollow fiber membrane is used after being dipped in an aqueous glycerin solution. When dried after immersing in an aqueous glycerin solution, glycerin remains in the pores, so that shrinkage due to drying can be prevented, and water permeability can be restored by performing immersion treatment with a solvent such as ethanol after that. .
  • the method of filtering the supplied stock solution in a state where the stock solution outlet 6 of the housing side nozzle 2c is closed is called dead-end filtration.
  • the method of filtering while opening the stock solution outlet 6 of the housing side nozzle 2c and discharging the stock solution that is, the method of filtering while flowing the stock solution in parallel to the membrane surface is called cross flow filtration.
  • Cross-flow filtration has the effect of suppressing accumulation of turbidity in the stock solution on the membrane surface and the effect of suppressing concentration polarization on the membrane surface of the components contained in the stock solution, but the amount of stock solution fed is large. Therefore, the power cost is higher than that of dead end filtration.
  • a method of supplying a stock solution to the outside of the hollow fiber membrane and performing filtration from the outside to the inside as in the hollow fiber membrane module 100A of FIG. 1 is called an external pressure type.
  • the method of performing filtration from the inside to the outside of the hollow fiber membrane is called an internal pressure type.
  • an external pressure type hollow fiber membrane module is preferable for filtration of the highly turbid liquid.
  • the filtration flux may be appropriately set according to the properties of the stock solution, but is preferably 0.1 m 3 / m 2 / d or more and 10.0 m 3 / m 2 / d or less, and 0.3 m 3 / m. 2 / d or more and 5.0 m 3 / m 2 / d or less is more preferable, and 0.5 m 3 / m 2 / d or more and 3.0 m 3 / m 2 / d or less is more preferable.
  • the stock solution is supplied into the hollow fiber membrane module from the stock solution inlet 5 and the stock solution is discharged from the stock solution outlet 6 to clean the inside of the hollow fiber membrane module.
  • the shear stress acting on the film surface is improved and the cleaning property is improved.
  • the membrane surface linear velocity (m / s) can be obtained by dividing the stock solution flow rate (m 3 / s) by the flow area (m 2 ) of the radial cross section of the hollow fiber membrane module.
  • the representative membrane surface linear velocity is defined by equation (8) based on the inner sectional area T2 of the casing and the total sectional area S2 of the transverse cross section of the hollow fiber membrane.
  • Typical film surface linear velocity [m / s] [stock solution flow rate] / (T2-S2) (8)
  • the representative film surface linear velocity during flushing is preferably 0.1 m / s or more, more preferably 0.3 m / s or more, and further preferably 0.5 m / s or more. If the representative film surface linear velocity is less than 0.1 m / s, a sufficient cleaning effect may not be obtained.
  • the representative film surface linear velocity during flushing is preferably 5 m / s or less, more preferably 3 m / s or less, and even more preferably 2 m / s or less. If the representative film surface linear velocity exceeds 5 m / s, the power cost may increase.
  • filtration can be periodically stopped and backwashing can be performed.
  • backwashing the backwashing liquid is supplied from the filtrate outlet 7 of the hollow fiber membrane module 100A, and the backwashing liquid is flowed from the inside to the outside of the hollow fiber membrane to wash the membrane.
  • the backwashing may be performed with a filtrate, or other liquids such as water may be used.
  • the backwashing flux may be appropriately set according to the properties of the stock solution and the clogged state of the hollow fiber membrane, and is 0.5 m 3 / m 2 / d or more and 10.0 m 3 / m 2 / d or less. It is preferable to be 1.0 m 3 / m 2 / d or more and 5.0 m 3 / m 2 / d or less.
  • the backwashing flux is less than 0.5 m 3 / m 2 / d, the cleaning effect may be lowered. If the backwash flux exceeds 10.0 m 3 / m 2 / d, the power cost may increase or a large amount of liquid used for backwashing may be required.
  • FIG. 6 is a schematic longitudinal sectional view showing a hollow fiber membrane module 100B according to the second embodiment of the present invention
  • FIG. 7 shows a liquid flow in the hollow fiber membrane module 100B during flushing
  • FIG. 8 is a schematic longitudinal sectional view showing a hollow fiber membrane module 100C, which is a modification of the second embodiment of the present invention
  • FIG. 9 shows a liquid flow in the hollow fiber membrane module 100C during flushing. Yes.
  • a hollow fiber membrane module 100B shown in FIG. 6 is provided with a central space portion 13 instead of the inner pipe 11 of the first embodiment.
  • the central space portion 13 can be formed by bonding the central portion of the hollow fiber membrane module in a state of being divided by a spacer or the like.
  • the configuration of the hollow fiber membrane module according to the second embodiment of the present invention is the same as that of the hollow fiber membrane module according to the first embodiment of the present invention, except that a central space is provided instead of the inner pipe.
  • the configuration is the same.
  • the stock solution flows as shown in FIG. 7 during flushing.
  • the stock solution from the second end side (lower side) of the module toward the first end side (upper side) of the module passes through the central space part 13 and is in the module radial direction on the second end side (lower side) of the first potting part 3. It is guided to the center and then flows toward the rectifying hole 10 of the rectifying cylinder 9.
  • a radial flow is generated from the central portion in the radial direction of the module toward the outer peripheral side in the radial direction, and the accumulated turbidity can be washed away. it can.
  • the filling rate A1 of the hollow fiber membrane in the central space portion 13 needs to be smaller than the filling rate A2 of the hollow fiber membrane outside the central space portion 13. This lowers the fluid flow resistance by increasing the filling rate A1 of the hollow fiber membrane in the central space portion 13 to be smaller than the filling rate A2 of the hollow fiber membrane outside the central space portion 13 and increases the flow velocity in the central space portion 13. Because.
  • the filling rate of the hollow fiber membrane refers to a cross section of the housing 2 of the hollow fiber membrane module between the first potting part 3 and the second potting part 4 (parallel to the horizontal direction in FIG. 6 and perpendicular to the paper surface). Is the ratio of the area occupied by the hollow fiber membrane.
  • the hollow fiber membrane existing section represents a certain section where the hollow fiber membrane exists.
  • the sorting method include a method of sorting by members such as the casing 2 and the rectifying cylinder 9, and a method of sorting by fixing the hollow fiber membrane at the potting portion as in the hollow fiber membrane module 100B of FIG. It is done. Moreover, it can also classify
  • the area obtained by subtracting the cross-sectional area of the cross section perpendicular to the axial direction of the central space portion 13 from the inner cross-sectional area of the rectifying tube 9 is ,
  • the filling rate of the hollow fiber membrane in the section where the hollow fiber membrane does not exist is 0%.
  • the total cross-sectional area S2 of the cross section of the hollow fiber membrane can be expressed by the following formula (3).
  • the outer diameter of each of the ten hollow fiber membranes in the hollow fiber membrane existing section is measured in two directions, the longest direction and the shortest direction.
  • the average value of the measured values at the total of 20 locations is defined as the outer diameter R of the hollow fiber membrane.
  • the total cross-sectional area S2 of the cross-section of the hollow fiber membrane is calculated by Equation (3).
  • the number of hollow fiber membranes present in the hollow fiber membrane existing section is less than 10
  • the outer diameter of all hollow fiber membranes present in the hollow fiber membrane present section may be measured and the average value calculated.
  • S2 [circumference ratio] ⁇ [outer diameter R / 2 of hollow fiber membrane] 2 ⁇ [number of hollow fiber membranes in the hollow fiber membrane existing section] (3)
  • the filling rate A1 of the hollow fiber membrane in the central space 13 is preferably 0% or more and 50% or less, more preferably 0% or more and 40% or less, and further preferably 0% or more and 30% or less. .
  • the filling rate A2 of the hollow fiber membrane outside the central space portion 13 may be appropriately set in consideration of the balance with the filling rate A1 of the hollow fiber membrane in the central space portion 13, and is 20% or more and 70% or less. It is preferable to be 30% or more and 60% or less, and more preferably 40% or more and 60% or less.
  • the central space portion 13 has a tapered shape whose diameter varies depending on the portion thereof as in the hollow fiber membrane module 100B of FIG. 6, the first end of the second potting portion 4 and the second end side of the first potting portion 3 are used. In each of the end sides, the center space portion 13 and the hollow fiber membrane filling rate outside the center space portion 13 are measured. And the average value of the hollow fiber membrane filling rate of the central space portion 13 on the second end side of the first potting portion 3 and the first end side of the second potting portion 4 is determined as the filling rate of the hollow fiber membrane of the central space portion 13. Let A1. And the average value of the hollow fiber membrane filling rate outside the central space portion 13 on the second end side of the first potting portion 3 and the first end side of the second potting portion 4 is determined as the hollow fiber membrane outside the central space portion 13. The filling rate is A2.
  • the flow parameter F of the following equation (1) is 1.0. It is preferable to set it to 8.0 or less.
  • F (A2-A1) ⁇ T1 / T2 (1)
  • (A2-A1) is a difference in filling rate between the outer and inner hollow fiber membranes of the central space portion 13, and represents a difference in liquid flow resistance between the outer and inner sides of the central space portion 13.
  • T1 / T2 represents the ratio of the cross-sectional area of the central space portion 13 to the cross-sectional area of the housing 2. The larger the T1 / T2, the easier the stock solution flows into the central space portion 13.
  • the flow parameter F of the formula (1) is set to 1.0 or more and 8.0. Or less, more preferably 2.0 or more and 8.0 or less.
  • the flow parameter F is less than 1.0, the flow rate of the central space portion 13 decreases, and sufficient cleaning properties may not be obtained in the vicinity of the second end side (lower side) of the first potting portion 3.
  • the flow parameter F exceeds 8.0, the flow velocity outside the central space portion 13 is significantly reduced, and the detergency of the hollow fiber membrane outside the central space portion 13 may be reduced.
  • the central space portion 13 has a tapered shape whose diameter changes depending on the portion
  • the central space portion 13 is provided on each of the second end side of the first potting portion 3 and the first end side of the second potting portion 4. Measure the cross-sectional area.
  • the average value of the cross-sectional areas of the central space portion 13 on the second end side of the first potting portion 3 and the first end side of the second potting portion 4 is the cross-sectional area T1 of the cross section perpendicular to the axial direction of the central space portion 13.
  • a hollow fiber membrane module in which the filling rate of the hollow fiber membrane is continuously changed from the center of the hollow fiber membrane module toward the outer peripheral portion can be used.
  • a range of 30% of the inner diameter of 2 is defined as the central space portion 13.
  • the length of the central space 13 (in the hollow fiber membrane module axial direction) is preferably not less than the inner diameter D of the housing side nozzle 2c, and not less than 1.5 ⁇ D. More preferably, it is more preferably 2 ⁇ D or more.
  • the length of the central space portion 13 is a length from the second end side (lower side) of the first potting portion 3 to a location where the hollow fiber membrane 1 is bound or fixed.
  • the hollow fiber membrane 1 can be bound or fixed by a binding member, the second potting part 4 or the like.
  • the length of the central space portion 13 is less than the inner diameter D of the housing side nozzle 2c, the flow from the module second end side (lower side) is dispersed in the module radial direction before reaching the central space portion 13, and the center The flow rate of the space 13 may not be improved sufficiently.
  • the length from the second end side (lower side) of the first potting part 3 to the second end side (lower side) of the second potting part 4 is M, and the second end side ( When the length from the lower side to the first end side (upper side) of the second potting portion 4 is N, the length of the central space portion 13 is N or less.
  • the through hole 8 at the center of the second potting portion 4 the flow path can be connected from the through hole 8 to the central space portion 13.
  • the central space portion 13 If the central space portion 13 is long, the difference in liquid flow resistance between the central space portion 13 and the central space portion 13 increases, so that the flow rate of the central space portion 13 is improved and the second end side (lower side) of the first potting portion 3 is improved. ) Although the cleanability in the vicinity is improved, on the other hand, the flow rate outside the central space portion 13 is decreased, and thus the cleanability outside the central space portion 13 may be decreased.
  • This membrane-forming stock solution was uniformly applied to the surface of a hollow fiber membrane having a spherical structure, and immediately solidified in a water bath to produce a hollow fiber membrane having a three-dimensional stitch structure formed on the spherical structure layer.
  • the obtained hollow fiber membrane had an outer diameter of 1350 ⁇ m, an inner diameter of 800 ⁇ m, and a membrane surface average pore size of 40 nm.
  • Example 1 Hollow fiber membrane module production
  • the hollow fiber membrane of Reference Example 1 was immersed in a 30% by mass glycerin aqueous solution for 1 hour and then air-dried.
  • the hollow part at one end of the hollow fiber membrane was sealed with a silicone adhesive (manufactured by Dow Corning Toray, SH850A / B, mixed in such a way that the two components have a mass ratio of 50:50).
  • Casing 2 made of vinyl chloride resin (inner diameter 77 mm, inner diameter of rectifying cylinder outer diameter 90 mm, length 1900 mm, inner diameter of casing side nozzle 24 mm), rectifying cylinder 9 (outer diameter 75 mm, inner diameter 71 mm), inner pipe 11 (outer diameter 24 mm Of the surface having an inner diameter of 20 mm), the region to be adhered with the potting agent was previously sanded with sandpaper (# 80) and degreased with ethanol.
  • the bundle of hollow fiber membranes described above was filled into the casing 2 and the rectifying cylinder 9 as shown in FIG.
  • the filling rate A1 of the hollow fiber membrane inside the inner pipe 11 was 0%
  • the filling rate A2 of the hollow fiber membrane outside the inner pipe 11 was 50%.
  • the hollow fiber membrane bundle is arranged so that the end on the side facing the first end (the right end in FIG. 12) on the module upper side of the housing 2 faces, and the first potting cap 15 is attached. did.
  • a second potting cap 16 having 36 holes in the bottom was attached to the second end (the left end in FIG. 12) on the lower side of the module.
  • Polymeric MDI manufactured by Huntsman, Suprasec 5025
  • polybutadiene-based polyol manufactured by Cray Valley, Krasol LBH 3000
  • 2-ethyl-1,3-hexanediol were mixed so that the mass ratio was 57: 100: 26. .
  • the obtained mixture (that is, polyurethane resin liquid) was put in a potting agent feeder 17.
  • the centrifugal molding machine was rotated and the potting agent was filled in the potting caps at both ends to form the first potting part 3 and the second potting part 4.
  • the potting agent thrower 17 is divided in two directions, and the polyurethane resin liquid is thrown into the module upper side (first end) and the module lower side (second end) by centrifugal force.
  • the temperature in the centrifugal molding machine was 35 ° C., and the centrifugation time was 4 hours.
  • the first potting cap 15, the second potting cap 16 and the pin 14 were removed, and the potting agent was post-cured for 24 hours at room temperature. Thereafter, the potting agent portion (CC surface shown in FIG. 14) on the outside of the module 2 on the module upper side (first end portion side) was cut with a tip saw type rotary blade to open the end surface of the hollow fiber membrane. . Subsequently, a case upper cap 2a and a case lower cap 2b were attached to both ends of the case 2 to obtain a hollow fiber membrane module 100F shown in FIG.
  • the length of the inner pipe 11 of the hollow fiber membrane module 100F was 12 mm.
  • four first side opening portions having a height of 12 mm and a width of 14.8 mm (rectangular) were equally arranged in the circumferential direction at a position in contact with the second end side of the first potting portion 3.
  • twelve first rectifying holes having a height of 10 mm and a width of 8 mm (rectangular) were equally arranged in the circumferential direction in the rectifying cylinder 9 at a position in contact with the second end side of the first potting portion 3.
  • the width of the flow path between the rectifying cylinder 9 and the housing 2 was 7.5 mm, and the axial height was 50 mm.
  • the flow parameter F is calculated by the above equation (1), and the ratio R1 of the total opening area occupied by the first side surface opening is calculated by the above equation (4).
  • the ratio R2 of the opening area to the inner cross-sectional area T2 of the housing 2 is rectified by the above equation (5), and the ratio R3 of the total opening area of the rectifying holes to the inner cross-sectional area T2 of the housing 2 is rectified by the above equation (6).
  • the ratio R4 of the total opening area occupied by the first rectifying hole in the total opening area of the hole 10 was calculated by the above formula (7). The results are shown in Table 1.
  • the turbidity of the hollow fiber membrane module 100F was evaluated by the following method.
  • a suspension of bentonite 70 mg / L, polyaluminum chloride 70 mg / L, pH 7 was prepared and stirred for 1 hour or more to form aggregated floc.
  • the feed suspension was filtered with a filtration flux of 1 m 3 / m 2 / d for 30 minutes.
  • backwashing with the filtrate was performed.
  • the backwash flux was performed at 2 m 3 / m 2 / d for 1 minute.
  • flushing was performed for 1 minute at a representative membrane surface linear velocity of 0.4 m / s using the supplied suspension.
  • the effluent discharged to the outside of the hollow fiber membrane module by backwashing and flushing was collected and the mass of the suspended substance was measured.
  • Turbidity [%] [Mass of suspended suspended matter] / [Mass of suspended suspended matter] ⁇ 100 (9)
  • the mass of the supply suspended substance and the mass of the discharged suspended substance were determined by the following method. 1 L of the suspension is filtered through a glass filter with a pore size of 1 ⁇ m, dried at 110 ° C. for 3 hours, the mass is measured, and the mass of the suspended substance per 1 L of the suspension is determined by subtracting the previously measured mass of the glass filter. Was measured, and the suspended substance concentration (g / L) was determined.
  • the mass of the supply suspension was determined by multiplying the concentration of the suspension in the supply suspension by the amount of the supply liquid (the total amount of the filtrate and the flushing liquid) as shown in Equation (10). As shown in Equation (11), the mass of the suspended suspended matter is obtained by multiplying the suspended solid concentration of the drained fluid discharged to the outside by washing with the amount of drained fluid (the sum of the amount of backwash and flushing fluid). It was.
  • Supply suspension mass [g] [Suspension concentration of supply suspension] ⁇ [Amount of filtrate + Amount of flushing solution] (10)
  • Discharged suspended matter mass [g] [Suspended suspended substance concentration] ⁇ [Backwash amount + Flushing amount] (11)
  • the turbidity was 90%.
  • Example 2 A hollow fiber membrane module 100F was produced in the same manner as in Example 1 except that the length of the inner pipe 11 was changed to that shown in Table 1.
  • Table 1 shows the evaluation results of the turbidity of each hollow fiber membrane module 100F.
  • the flow parameter F, the ratio R1, the ratio R2, the ratio R3, and the ratio R4 were calculated. The results are shown in Table 1.
  • Example 1 shows a housing side nozzle inner diameter.
  • Example 9 A hollow fiber membrane module 100F is manufactured in the same manner as in Example 1 except that the length of the inner pipe 11 is 72 mm (3 ⁇ D) and the filling rate A1 of the hollow fiber membrane inside the inner pipe 11 is 10%. did. As a result of evaluating the turbidity of the hollow fiber membrane module 100F by the above-mentioned method, the turbidity was 98%.
  • the flow parameter F, the ratio R1, the ratio R2, the ratio R3, and the ratio R4 were calculated. The results are shown in Table 1.
  • Example 10 A hollow fiber membrane module 100F was produced in the same manner as in Example 9 except that the filling rate A1 of the hollow fiber membrane inside the inner pipe 11 was 20%. As a result of evaluating the turbidity of the hollow fiber membrane module 100F by the above-mentioned method, the turbidity was 98%.
  • the flow parameter F, the ratio R1, the ratio R2, the ratio R3, and the ratio R4 were calculated. The results are shown in Table 1.
  • Example 11 A hollow fiber membrane module 100F was produced in the same manner as in Example 9 except that the filling rate A1 of the hollow fiber membrane inside the inner pipe 11 was set to 30%. As a result of evaluating the turbidity of the hollow fiber membrane module 100F by the above-mentioned method, the turbidity was 96%.
  • the flow parameter F, the ratio R1, the ratio R2, the ratio R3, and the ratio R4 were calculated. The results are shown in Table 1.
  • Example 12 A hollow fiber membrane was produced in the same manner as in Example 1 except that the length of the inner pipe 11 was 72 mm (3 ⁇ D), the inner diameter was 12 mm, the outer diameter was 16 mm, and the width of the first side opening was 8.6 mm.
  • a module 100F was produced. As a result of evaluating the turbidity of the hollow fiber membrane module 100F by the above-mentioned method, the turbidity was 96%.
  • the flow parameter F, the ratio R1, the ratio R2, the ratio R3, and the ratio R4 were calculated. The results are shown in Table 1.
  • Example 13 The length of the inner pipe 11 is 72 mm (3 ⁇ D), the inner diameter is 28 mm, the outer diameter is 32 mm, the width of the first side opening is 21.1 mm, and the filling rate A2 of the hollow fiber membrane outside the inner pipe 11 is 60. %, A hollow fiber membrane module 100F was produced in the same manner as in Example 1. As a result of evaluating the turbidity of the hollow fiber membrane module 100F by the method described above, the turbidity was 99%. The flow parameter F, the ratio R1, the ratio R2, the ratio R3, and the ratio R4 were calculated. The results are shown in Table 1.
  • the length of the inner pipe 11 is 72 mm (3 ⁇ D).
  • the first side surface of the inner pipe 11 is 12 mm high and 14.8 mm wide (rectangular) at a position in contact with the second end side of the first potting portion 3.
  • Four openings were equally arranged in the circumferential direction.
  • four side openings 12 having a height of 3 mm and a width of 14.8 mm (rectangular) are equally arranged in the circumferential direction within a range of 5 mm to 8 mm from the second end side to the first end side of the inner pipe 11. did.
  • a hollow fiber membrane module 100F was produced in the same manner as in Example 1.
  • the turbidity was 98%.
  • the flow parameter F, the ratio R1, the ratio R2, the ratio R3, and the ratio R4 were calculated. The results are shown in Table 1.
  • the length of the inner pipe 11 is 72 mm (3 ⁇ D).
  • the first side surface of the inner pipe 11 is 12 mm high and 14.8 mm wide (rectangular) at a position in contact with the second end side of the first potting portion 3.
  • Four openings were equally arranged in the circumferential direction.
  • four side openings 12 having a height of 12 mm and a width of 14.8 mm (rectangular) are equally arranged in the circumferential direction in a range of 5 mm to 17 mm from the second end side to the first end side of the inner pipe 11. did.
  • a hollow fiber membrane module 100F was produced in the same manner as in Example 1.
  • the turbidity was 97%.
  • the flow parameter F, the ratio R1, the ratio R2, the ratio R3, and the ratio R4 were calculated. The results are shown in Table 1.
  • the length of the inner pipe 11 is 72 mm (3 ⁇ D).
  • the first side surface of the inner pipe 11 is 12 mm high and 14.8 mm wide (rectangular) at a position in contact with the second end side of the first potting portion 3.
  • Four openings were equally arranged in the circumferential direction.
  • four side openings 12 having a height of 12 mm and a width of 14.8 mm (rectangular) are equally arranged in the circumferential direction in a range of 5 mm to 17 mm from the second end side to the first end side of the inner pipe 11.
  • Example 17 A hollow fiber membrane module 100F was produced in the same manner as in Example 1 except that the length of the inner pipe 11 was 72 mm (3 ⁇ D) and the height of the first side opening was 24 mm. As a result of evaluating the turbidity of the hollow fiber membrane module 100F by the method described above, the turbidity was 99%.
  • the flow parameter F, the ratio R1, the ratio R2, the ratio R3, and the ratio R4 were calculated. The results are shown in Table 1.
  • Example 18 A hollow fiber membrane module 100F was produced in the same manner as in Example 1 except that the length of the inner pipe 11 was 72 mm (3 ⁇ D) and the height of the first side opening was 4 mm. As a result of evaluating the turbidity of the hollow fiber membrane module 100F by the method described above, the turbidity was 99%.
  • the flow parameter F, the ratio R1, the ratio R2, the ratio R3, and the ratio R4 were calculated. The results are shown in Table 1.
  • Example 19 The length of the inner pipe 11 was 72 mm (3 ⁇ D).
  • twelve first rectifying holes having a height of 10 mm and a width of 8 mm (rectangular) were equally arranged in the circumferential direction in the rectifying cylinder 9 at a position in contact with the second end side of the first potting portion 3.
  • 12 rectification holes 10 having a height of 8 mm and a width of 12 mm (rectangular) are provided in the circumferential direction in the range from 28 mm to 36 mm from the second end side of the first potting portion 3 toward the second end side of the hollow fiber membrane module.
  • the rectifying holes 10 having a height of 8 mm and a width of 12 mm (rectangular) are arranged in a range of 40 mm to 48 mm from the second end side of the first potting portion 3 toward the second end side of the hollow fiber membrane module. Twelve places were equally arranged in the circumferential direction. Except for the above, a hollow fiber membrane module 100F was produced in the same manner as in Example 1. As a result of evaluating the turbidity of the hollow fiber membrane module 100F by the method described above, the turbidity was 94%. The flow parameter F, the ratio R1, the ratio R2, the ratio R3, and the ratio R4 were calculated. The results are shown in Table 1.
  • Example 20 The length of the inner pipe 11 was 72 mm (3 ⁇ D).
  • 12 straight rectifying holes having a height of 8 mm and a width of 10 mm (rectangular) are arranged in the rectifying cylinder 9 at a position in contact with the second end side of the first potting portion 3 at equal positions in the circumferential direction.
  • a hollow fiber membrane module 100F was produced in the same manner as in Example 1.
  • the turbidity was 97%.
  • the flow parameter F, the ratio R1, the ratio R2, the ratio R3, and the ratio R4 were calculated. The results are shown in Table 1.
  • Example 21 The length of the inner pipe 11 was 72 mm (3 ⁇ D). Further, twelve first rectifying holes having a height of 6 mm and a width of 6 mm (rectangular) were equally arranged in the circumferential direction at positions where the rectifying cylinder 9 was in contact with the second end side of the first potting portion 3. Except for the above, a hollow fiber membrane module 100F was produced in the same manner as in Example 1. As a result of evaluating the turbidity of the hollow fiber membrane module 100F by the above-mentioned method, the turbidity was 98%. The flow parameter F, the ratio R1, the ratio R2, the ratio R3, and the ratio R4 were calculated. The results are shown in Table 1.
  • Example 22 The length of the inner pipe 11 was 72 mm (3 ⁇ D). Further, twelve first rectifying holes having a height of 5 mm and a width of 8 mm (rectangular) were equally arranged in the circumferential direction in the rectifying cylinder 9 at a position in contact with the second end side of the first potting portion 3. Furthermore, 12 rectifying holes 10 having a height of 5 mm and a width of 8 mm (rectangular) in the range from 30 mm to 35 mm from the second end side of the first potting part 3 toward the second end side of the hollow fiber membrane module, in the circumferential direction Evenly arranged. Except for the above, a hollow fiber membrane module 100F was produced in the same manner as in Example 1.
  • the turbidity was 98%.
  • the flow parameter F, the ratio R1, the ratio R2, the ratio R3, and the ratio R4 were calculated. The results are shown in Table 1.
  • Example 23 The length of the inner pipe 11 was 72 mm (3 ⁇ D). Further, twelve first rectifying holes having a height of 5 mm and a width of 5 mm (rectangular) were equally arranged in the circumferential direction in the rectifying cylinder 9 at a position in contact with the second end side of the first potting portion 3. Furthermore, 12 rectification holes 10 having a height of 5 mm and a width of 5 mm (rectangular) are provided in the circumferential direction in the range from 30 mm to 35 mm from the second end side of the first potting portion 3 toward the second end side of the hollow fiber membrane module.
  • the rectifying holes 10 having a height of 5 mm and a width of 5 mm are in the range of 40 mm to 45 mm from the second end side of the first potting portion 3 toward the second end side of the hollow fiber membrane module.
  • a hollow fiber membrane module 100F was produced in the same manner as in Example 1.
  • the flow parameter F, the ratio R1, the ratio R2, the ratio R3, and the ratio R4 were calculated. The results are shown in Table 1.
  • the length is a length N (74 ⁇ D) from the second end side (lower side) of the first potting part 3 to the first end side (upper side) of the second potting part 4.
  • a hollow fiber membrane module 100G (FIG. 17) provided with the central space portion 13 was produced.
  • the central space portion 13 has a conical shape with a diameter reduced toward the second end side of the hollow fiber membrane module, the diameter of the central space portion 13 on the second end side of the first potting portion 3 is 20 mm, and the second potting portion On the first end side of 4, the central space portion 13 was not provided, and the hollow fiber membranes 1 were arranged substantially evenly.
  • the filling rate A1 of the hollow fiber membrane in the central space 13 was 0%, and the filling rate A2 of the hollow fiber membrane outside the central space 13 was 35%. Except for the above, a hollow fiber membrane module 100G was produced in the same manner as in Example 1. As a result of evaluating the turbidity of the hollow fiber membrane module 100G by the method described above, the turbidity was 94%. The flow parameter F, the ratio R3 and the ratio R4 were calculated. The results are shown in Table 2.
  • Example 25 A hollow fiber membrane module 100G was produced in the same manner as in Example 24 except that the filling rate A2 of the hollow fiber membrane outside the central space portion 13 was 50%. As a result of evaluating the turbidity of the hollow fiber membrane module 100G by the method described above, the turbidity was 91%. The flow parameter F, the ratio R3 and the ratio R4 were calculated. The results are shown in Table 2.
  • Example 26 Twelve first rectifying holes having a height of 8 mm and a width of 8 mm (rectangular) were equally arranged in the circumferential direction at a position in contact with the second end side of the first potting portion 3 of the rectifying cylinder 9. Furthermore, 12 rectification holes 10 having a height of 4 mm and a width of 4 mm (rectangular) are provided in a circumferential direction in the range from 30 mm to 34 mm from the second end side of the first potting portion 3 toward the second end side of the hollow fiber membrane module. Evenly arranged. Except for the above, a hollow fiber membrane module 100G was produced in the same manner as in Example 25. As a result of evaluating the turbidity of the hollow fiber membrane module 100G by the above-described method, the turbidity was 90%. The flow parameter F, the ratio R3 and the ratio R4 were calculated. The results are shown in Table 2.
  • Example 27 Twelve first rectifying holes having a height of 5 mm and a width of 5 mm (rectangular) were equally arranged in the circumferential direction at a position in contact with the second end side of the first potting portion 3 of the rectifying cylinder 9. Furthermore, 12 rectification holes 10 having a height of 5 mm and a width of 5 mm (rectangular) are provided in the circumferential direction in the range from 30 mm to 35 mm from the second end side of the first potting portion 3 toward the second end side of the hollow fiber membrane module.
  • the rectifying holes 10 having a height of 5 mm and a width of 5 mm (rectangular) are arranged in a range of 40 mm to 45 mm from the second end side of the first potting portion 3 toward the second end side of the hollow fiber membrane module. Twelve places were equally arranged in the circumferential direction. Except for the above, a hollow fiber membrane module 100G was produced in the same manner as in Example 25. As a result of evaluating the turbidity of the hollow fiber membrane module 100G by the above-described method, the turbidity was 86%. The flow parameter F, the ratio R3 and the ratio R4 were calculated. The results are shown in Table 2.
  • Example 28 A hollow fiber membrane module 100H (FIG. 18) provided with a cylindrical central space portion 13 was produced.
  • the diameter of the central space portion 13 on the second end side of the first potting portion 3 was 20 mm, and the diameter of the central space portion 13 on the first end side of the second potting portion 4 was also 20 mm.
  • a hollow fiber membrane module 100H was produced in the same manner as in Example 24 except for the above.
  • the turbidity was 94%.
  • the flow parameter F, the ratio R3 and the ratio R4 were calculated. The results are shown in Table 2.
  • Example 29 A hollow fiber membrane module 100H was produced in the same manner as in Example 28 except that the filling rate A2 of the hollow fiber membrane outside the central space 13 was 50%. As a result of evaluating the turbidity of the hollow fiber membrane module 100H by the above-mentioned method, the turbidity was 92%. The flow parameter F, the ratio R3 and the ratio R4 were calculated. The results are shown in Table 2.
  • Example 30 Twelve first rectifying holes having a height of 8 mm and a width of 8 mm (rectangular) were equally arranged in the circumferential direction at a position in contact with the second end side of the first potting portion 3 of the rectifying cylinder 9. Furthermore, 12 rectification holes 10 having a height of 4 mm and a width of 4 mm (rectangular) are provided in a circumferential direction in the range from 30 mm to 34 mm from the second end side of the first potting portion 3 toward the second end side of the hollow fiber membrane module. Evenly arranged. Except for the above, a hollow fiber membrane module 100H was produced in the same manner as in Example 29. As a result of evaluating the turbidity of the hollow fiber membrane module 100H by the above-described method, the turbidity was 90%. The flow parameter F, the ratio R3 and the ratio R4 were calculated. The results are shown in Table 2.
  • Example 31 Twelve first rectifying holes having a height of 5 mm and a width of 5 mm (rectangular) were equally arranged in the circumferential direction at a position in contact with the second end side of the first potting portion 3 of the rectifying cylinder 9. Furthermore, 12 rectification holes 10 having a height of 5 mm and a width of 5 mm (rectangular) are provided in the circumferential direction in the range from 30 mm to 35 mm from the second end side of the first potting portion 3 toward the second end side of the hollow fiber membrane module.
  • the rectifying holes 10 having a height of 5 mm and a width of 5 mm (rectangular) are arranged in a range of 40 mm to 45 mm from the second end side of the first potting portion 3 toward the second end side of the hollow fiber membrane module. Twelve places were equally arranged in the circumferential direction. Except for the above, a hollow fiber membrane module 100H was produced in the same manner as in Example 29. As a result of evaluating the turbidity of the hollow fiber membrane module 100H by the above-described method, the turbidity was 87%. The flow parameter F, the ratio R3 and the ratio R4 were calculated. The results are shown in Table 2.
  • Example 1 A hollow fiber membrane module 100I shown in FIG. 19 was produced. The inner pipe and the central space were not provided, and the filling rate of the hollow fiber membrane inside the rectifying cylinder 9 was 50%. Except for the above, a hollow fiber membrane module 100I was produced in the same manner as in Example 31. As a result of evaluating the turbidity of the hollow fiber membrane module 100I by the above-described method, the turbidity was 78%. The ratio R3 and the ratio R4 were calculated. The results are shown in Table 2.
  • Example 2 A hollow fiber membrane module 100J shown in FIG. 20 was manufactured. No rectifying cylinder was provided, the filling rate A1 of the hollow fiber membrane inside the inner pipe 11 was 0%, and the filling rate A2 of the hollow fiber membrane outside the inner pipe was 50%. Except for the above, a hollow fiber membrane module 100J was produced in the same manner as in Example 5. As a result of evaluating the turbidity of the hollow fiber membrane module 100J by the method described above, the turbidity was 78%. The flow parameter F, the ratio R1 and the ratio R2 were calculated. The results are shown in Table 2.
  • the hollow fiber membrane module of the present invention can be used for the treatment of various liquids such as water purification treatment, industrial water treatment, wastewater treatment, seawater desalination, fermentation liquor, food, beverage and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本発明は、軸方向における第1端と第2端とを有する筒状の筐体と、複数の中空糸膜と、第1ポッティング部と、第2ポッティング部とを備え、さらに上記第2端側から上記第1端側へ向かって上記中空糸膜の外側を流れる流体について、上記第1ポッティング部の上記第2端側の径方向中心部に指向して流れを発生させ、さらに上記第1ポッティング部の上記第2端側の径方向中心部から径方向外周側に指向して放射状に流れを発生させる整流構造を有する、中空糸膜モジュールに関する。

Description

中空糸膜モジュール
 本発明は、中空糸膜モジュールに関する。
 精密ろ過膜や限外ろ過膜などの分離膜は、省エネルギー、省スペースの特長を有し、省力化及び製品の品質向上等の特徴を有するため、近年、浄水処理、用水製造及び排水処理等の水処理、食品工業、医療等の分野をはじめとして様々なプロセスで利用されている。
 一方で、原液に対して膜分離を行うと、原液に含まれる懸濁物質(以下、「濁質」と表記することもある。)や有機物等の膜不透過性の物質が徐々に膜表面や膜細孔内に付着、堆積し、分離膜の目詰まりが起こる。そのため、分離膜の通液抵抗が上昇するにつれて膜分離に必要な動力が増加し、やがては膜分離を行うことができなくなる。膜分離が継続できなくなった場合、膜分離性能を回復させるために、一般に分離膜に対して薬液による洗浄を実施するが、分離膜の目詰まりが早く進行すると薬液洗浄の頻度が増加し、処理コストが増加する。
 そこで、分離膜の目詰まりを解消しながら長期にわたって膜分離性能を維持し続けるため、様々な膜分離運転技術が開発されてきた。例えば、透過液や水等を分離膜の透過側から原液側へ通水させて膜細孔内や膜表面に付着した物質を押し出す逆圧洗浄や、中空糸膜モジュールの下部から気体を供給して、中空糸膜(すなわち中空糸状の分離膜)を揺らして物理的に洗浄するエアスクラビング(例えば、特許文献1参照)が挙げられる。さらには中空糸膜の原液側で膜表面に対して平行に高い線速度で原液や薬液を流すフラッシング方法(例えば、特許文献2参照)が挙げられる。
日本国特開平11-342320号公報 日本国特開2010-005615号公報
 しかしながら、高濁度の原液のろ過を行う場合、中空糸膜モジュール内の流路が濁質の堆積により閉塞し、膜間差圧が急上昇して運転を継続できなくなる場合があった。中空糸膜モジュールの洗浄方法としてはフラッシングが有効であるが、フラッシング時の流れに偏りがあり、流速の低い部分が存在すると、分離膜が十分に洗浄されず濁質が堆積してしまう。
 本発明ではフラッシング時の偏流を抑制することで洗浄性を向上させ、高濁度の原液に対しても長期間の安定ろ過が可能な中空糸膜モジュールを提供することを課題とする。
 上述した課題を解決するために、本発明は以下の[1]~[10]の技術を提供する。
[1]軸方向における第1端と第2端とを有する筒状の筐体と、前記筐体内に収容される複数の中空糸膜と、前記筐体の前記第1端側に位置する複数の中空糸膜の端部を開口した状態で接着する第1ポッティング部と、前記筐体の前記第2端側に位置する複数の中空糸膜の端部を接着する第2ポッティング部とを備え、さらに前記第2端側から前記第1端側へ向かって前記中空糸膜の外側を流れる流体について、前記第1ポッティング部の前記第2端側の径方向中心部に指向して流れを発生させ、さらに前記第1ポッティング部の前記第2端側の径方向中心部から径方向外周側に指向して放射状に流れを発生させる整流構造を有する、中空糸膜モジュール。
[2]前記整流構造が、前記第1ポッティング部の前記第2端側に設けられたインナーパイプと整流筒を備え、前記インナーパイプは前記筐体の径方向中心部に設けられ、前記インナーパイプは前記第1ポッティング部の前記第2端側の近傍においてその側面に1つ以上の側面開口部を有し、前記インナーパイプの内側の中空糸膜の充填率は、前記インナーパイプの外側の中空糸膜の充填率より小さく、前記整流筒は前記中空糸膜と前記筐体の間に設けられ、前記整流筒はその側面に1つ以上の整流孔を有し、前記筐体はその側面にサイドノズルを有する、[1]に記載の中空糸膜モジュール。
[3]前記整流構造が、前記第1ポッティング部の前記第2端側に設けられた中心空間部と整流筒を備え、前記中心空間部は前記筐体の径方向中心部に設けられ、前記中心空間部の中空糸膜の充填率は、前記中心空間部の外側の中空糸膜の充填率より小さく、前記整流筒は前記中空糸膜と前記筐体の間に設けられ、前記整流筒はその側面に1つ以上の整流孔を有し、前記筐体はその側面にサイドノズルを有する、[1]に記載の中空糸膜モジュール。
[4]前記サイドノズルの内径をDとし、前記第1ポッティング部の前記第2端側から前記筐体の第2端までの長さをLとしたとき、前記インナーパイプの長さがD以上L以下である、[2]に記載の中空糸膜モジュール。
[5]前記サイドノズルの内径をDとし、前記第1ポッティング部の前記第2端側から前記第2ポッティング部の前記第2端側までの長さをMとしたとき、前記中心空間部の長さがD以上M以下である、[3]に記載の中空糸膜モジュール。
[6]前記インナーパイプの内側の中空糸膜の充填率をA1、前記インナーパイプの外側の中空糸膜の充填率をA2、前記インナーパイプの軸方向に垂直な断面の断面積をT1、前記筐体の軸方向に垂直な断面の断面積をT2としたとき、下記式(1)の流動パラメータFが1.0以上8.0以下である、[2]又は[4]に記載の中空糸膜モジュール。
 F=(A2-A1)×T1/T2 ・・・(1)
[7]前記中心空間部の中空糸膜の充填率をA1、前記中心空間部の外側の中空糸膜の充填率をA2、前記中心空間部の軸方向に垂直な断面の断面積をT1、前記筐体の軸方向に垂直な断面の断面積をT2としたとき、下記式(1)の流動パラメータFが1.0以上8.0以下である、[3]又は[5]に記載の中空糸膜モジュール。
 F=(A2-A1)×T1/T2 ・・・(1)
[8]前記インナーパイプは、その側面に1つ以上の側面開口部を有し、前記サイドノズルの内径をDとしたとき、前記インナーパイプは、前記第1ポッティング部の前記第2端側から長さDの範囲において、その側面に1つ以上の第1側面開口部を有し、前記側面開口部の総開口面積のうち、前記第1側面開口部が占める総開口面積の割合R1が50%以上である、[2]、[4]、[6]のいずれか1つに記載の中空糸膜モジュール。
[9]前記筐体の軸方向に垂直な断面の断面積に対する、前記インナーパイプの前記第1側面開口部の総開口面積の割合R2が、5%以上50%以下である、[8]に記載の中空糸膜モジュール。
[10]前記筐体の軸方向に垂直な断面の断面積に対する、前記整流筒の前記整流孔の総開口面積の割合R3が、5%以上50%以下である、[2]~[9]のいずれか1つに記載の中空糸膜モジュール。
[11]前記サイドノズルの内径をDとしたとき、前記整流筒は、前記第1ポッティング部の前記第2端側から長さDの範囲において、その側面に1つ以上の第1整流孔を有し、前記整流孔の総開口面積のうち、前記第1整流孔が占める総開口面積の割合R4が50%以上である、[2]~[10]のいずれか1つに記載の中空糸膜モジュール。
 本発明の中空糸膜モジュールは、整流構造によりフラッシング時の偏流が抑制され、流速が向上、均一化し、濁質の洗浄性、排出性が向上する。従って中空糸膜モジュール内での濁質の堆積が抑制され、高濁度の原液に対しても長期間の安定ろ過が可能となる。
図1は、本発明の第1実施形態にかかる中空糸膜モジュールの概略縦断面図である。 図2は、図1の中空糸膜モジュール内の液流を示す概略縦断面図である。 図3は、図1の中空糸膜モジュールのA-A線断面図である。 図4は、図3での液流を示す断面図である。 図5は、図1の中空糸膜モジュールのB-B線断面図である。 図6は、本発明の第2実施形態にかかる中空糸膜モジュールの概略縦断面図である。 図7は、図6の中空糸膜モジュール内の液流を示す概略縦断面図である。 図8は、本発明の中空糸膜モジュールの一例を示す概略縦断面図である。 図9は、図8の中空糸膜モジュール内の液流を示す概略縦断面図である。 図10は、従来の中空糸膜モジュールの一例を示す概略縦断面図である。 図11は、図10の従来の中空糸膜モジュール内の液流を示す概略縦断面図である。 図12は、本発明の中空糸膜モジュールの製造方法の一例を説明する概略図である。 図13は、本発明の中空糸膜モジュールの製造方法の一例を説明する概略図である。 図14は、本発明の中空糸膜モジュールの製造方法の一例を説明する概略図である。 図15は、本発明の中空糸膜モジュール内の液流の一例を示す概略縦断面図である。 図16は、本発明の中空糸膜モジュールの一例を示す概略縦断面図である。 図17は、本発明の中空糸膜モジュールの一例を示す概略縦断面図である。 図18は、本発明の中空糸膜モジュールの一例を示す概略縦断面図である。 図19は、従来の中空糸膜モジュールの一例を示す概略縦断面図である。 図20は、本発明の中空糸膜モジュールの一例を示す概略縦断面図である。
 本発明の中空糸膜モジュールを図面に基づいて詳細に説明する。
 なお、本明細書において、「縦」とは中空糸膜モジュールの軸方向に沿った方向であり、「横」とは、中空糸膜モジュールの軸方向と直交する方向である。
 本発明の中空糸膜モジュールの実施形態としては、例えば、以下に記す第1実施形態又は第2実施形態が挙げられる。なお、以下に記す実施形態により本発明が限定されるものではない。
(第1実施形態)
<中空糸膜モジュール>
 本発明の第1実施形態にかかる中空糸膜モジュールの構成について、図面を参照しながら説明する。図1は、本発明の第1実施形態にかかる中空糸膜モジュールを示す概略縦断面図である。
 図1に示す中空糸膜モジュール100Aは、両端が開口した筒状の筐体2と、筐体2内に収容された複数の中空糸膜1とを備える。筐体2は、その上部に筐体上部キャップ2aを備え、その下部に筐体下部キャップ2bを備えている。筐体上部キャップ2aはろ過液出口7を有し、筐体下部キャップ2bは原液流入口5を有する。なお、ここでの「上」、「下」は、中空糸膜モジュール100Aの使用時の姿勢における上下を指し、図1の上下と一致する。
 さらに、中空糸膜モジュール100Aは、第1ポッティング部3及び第2ポッティング部4等を備える。
 ここで筐体上部キャップ2aの上端部、すなわちろ過液出口7は筐体2の第1端であり、筐体下部キャップ2bの下端部、すなわち原液流入口5は筐体2の第2端である。また、筐体2の側面には、筐体2の第1端の近傍に筐体サイドノズル2cが設けられ、筐体サイドノズル2cは原液出口6を有している。
 なお、筐体サイドノズル2cの内径Dは、フラッシング時の圧力損失と洗浄性の観点から、筐体サイドノズル2c内でのフラッシング時の流速が、0.5m/s以上10m/s以内の範囲となるように設定することが好ましく、1m/s以上5m/s以内の範囲となるように設定することがより好ましい。
 筐体サイドノズル2cの内径Dが小さ過ぎると、フラッシング時の圧力損失が増加し、動力コストが増加する場合がある。一方、筐体サイドノズル2cの内径Dが大き過ぎると、フラッシング時の流速が低くなり、洗浄性が低下する場合がある。
 第1ポッティング部3は、上部ポッティング部とも呼ばれる。第1ポッティング部3は接着剤で形成されており、中空糸膜1の上側の端部(「中空糸膜第1端」に相当する。)を、その端面が開口した状態で、筐体2に液密かつ気密に接着する。つまり、中空糸膜1は、第1ポッティング部3により束ねられ、筐体2の内壁に固定されている。
 第2ポッティング部4は、下部ポッティング部とも呼ばれる。第2ポッティング部4は、接着剤で形成されており、中空糸膜1の下側の端部(「中空糸膜第2端」に相当する。)において、その端面を封止し、かつ、筐体2に接着している。すなわち、第2ポッティング部4は、筐体2内で、第1ポッティング部3と対向するように配置されている。こうして、中空糸膜モジュール100Aの下部では、中空糸膜1の中空部が接着剤で封止されており、開口しない状態になっている。中空糸膜1は、第2ポッティング部4によって束ねられ、筐体2の内壁に固定されている。
 第2ポッティング部4は、第1ポッティング部3との対向面から逆の面まで、連続する貫通孔8を有している。貫通孔8は原液の流路やエアスクラビング時の空気の流路の役割を担っている。
 図5は、図1の中空糸膜モジュール100AのB-B線断面図であり、第2ポッティング部4における貫通孔8の配置の一例を示している。フラッシング時の原液の偏流や、エアスクラビング時の空気の偏流を抑制するため、貫通孔8は第2ポッティング部4に均等に配置することが好ましい。
<整流構造>
 中空糸膜モジュール100Aは、図2に示すように、さらに筐体2の第2端側から筐体2の第1端側へ向かって中空糸膜1の外側を流れる流体について、第1ポッティング部3の上記第2端側の径方向中心部に指向して流れを発生させ、さらに第1ポッティング部3の上記第2端側の径方向中心部から径方向外周側に指向して放射状に流れを発生させる整流構造を有する。
 上記整流構造は、整流筒9とインナーパイプ11を備える。
 整流筒9は、筐体2の内側に配置される筒状の部材である。整流筒9は第1ポッティング部3の第2端側(下側)に配置される。整流筒9の上下は開口しており、側面には整流孔10が設けられている。整流筒9は、この整流孔10から通液することができる。
 一方、インナーパイプ11は整流筒9の内側のモジュール径方向中心部に配置される筒状の部材であり、第1ポッティング部3の第2端側(下側)に配置される。インナーパイプ11の上側は第1ポッティング部3に固定されており、下側は開口している。また、インナーパイプ11の側面には側面開口部12が設けられている。
 中空糸膜モジュール100Aのろ過運転では原液流入口5からモジュール内に原液が供給され、中空糸膜1の外側から内側に向かって原液がろ過される。ろ過液は中空糸膜1の中空部を通って上側のろ過液出口7から外部に排出される。ここで中空糸膜1の中空部をろ過液が通液する際に圧力損失が発生するが、モジュールの第1端側(上側)に近いほど中空部の通液距離が短く、圧力損失が小さいため、ろ過流束が高くなる。
 つまり中空糸膜1は、第1ポッティング部3の第2端側(下側)近傍の部位のろ過流束が高く、膜表面に濁質が堆積しやすい。従って高濁度の原液をろ過する場合、第1ポッティング部3の第2端側(下側)近傍の洗浄性を向上させることが重要である。
 膜表面に濁質が堆積しやすい従来の中空糸膜モジュールの一例として整流筒9のみを有し、中空糸膜1が筐体2内に均等に配置された中空糸膜モジュール100Dの構造を図10に示し、フラッシング時の中空糸膜モジュール100D内の液流を図11に示している。
 従来の中空糸膜モジュール100Dでは、フラッシング時には原液流入口5から原液を供給し、原液出口6から原液を排出してモジュール内を洗浄するが、モジュールの第2端側(下側)からの流れはモジュールの第1端側(上側)では整流孔10に向かうため、第1ポッティング部3の第2端側(下側)近傍は流速が低く、堆積した濁質が十分に洗浄されない。第1ポッティング部3の第2端側(下側)近傍のモジュール径方向中心部については特に流速が低く、濁質が堆積しやすい。
 なお、濁質の排出に必要な流速は濁質の粒径、比重、中空糸膜との相互作用などによって変化するが、0.05m/s以上とすることが好ましく、0.1m/s以上とすることがより好ましく、0.2m/s以上とすることがさらに好ましい。
 そこで、本発明の第1実施形態では、第1ポッティング部3の第2端側(下側)近傍でのフラッシング時の流速を高め、洗浄性を向上させるため、整流構造として整流筒9とインナーパイプ11を設けた。
 この整流構造は、フラッシング時にモジュールの第2端側(下側)からモジュールの第1端側(上側)へ向かって中空糸膜1の外側を流れる原液について、第1ポッティング部3の第2端側(下側)のモジュール径方向中心部に指向して流れを発生させ、さらに第1ポッティング部3の第2端側(下側)のモジュール径方向中心部から径方向外周側に指向して放射状に流れを発生させ、第1ポッティング部3の第2端側(下側)近傍の洗浄性を向上させることが目的である。
 モジュールの第2端側(下側)からモジュールの第1端側(上側)へ向かう原液は、インナーパイプ11の内側を通って第1ポッティング部3の第2端側(下側)のモジュール径方向中心部に導かれ、その後インナーパイプ11の側面開口部12から出た原液は、整流筒9の整流孔10に向かって流れる。
 この整流構造により第1ポッティング部3の第2端側(下側)近傍で、モジュール径方向中心部から径方向外周側に指向して放射状に流れが発生し、堆積した濁質を洗い流すことができる。なお整流孔10を出た原液は図4に示すように整流筒9と筐体2の間の流路を通って、原液出口6から排出される。
<流動パラメータF>
 ここで、フラッシング時にインナーパイプ11の内側に原液を導くため、インナーパイプ11内側の中空糸膜の充填率A1は、インナーパイプ11外側の中空糸膜の充填率A2より小さくする必要がある。これはインナーパイプ11内側の中空糸膜の充填率A1をインナーパイプ11の外側の中空糸膜の充填率A2よりも小さくすることで通液抵抗を下げ、インナーパイプ11の内側の流速を高めるためである。
 なお、ここで中空糸膜の充填率とは、第1ポッティング部3と第2ポッティング部4の間における中空糸膜モジュールの筐体2の軸方向に垂直な断面(図1の左右方向に平行かつ紙面に垂直な面、以下「横断面」ともいう。)で、中空糸膜が占める面積の割合のことである。筐体2内側の中空糸膜存在区画の横断面の断面積をS1、中空糸膜の横断面の合計断面積をS2としたとき、中空糸膜の充填率は下記式(2)で表すことができる。
 中空糸膜の充填率[%]=S2/S1×100 ・・・(2)
 ここで中空糸膜存在区画とは、中空糸膜が存在する一定の区画を表す。この区分けの方法としては、筐体2、整流筒9、インナーパイプ11などの部材により区分けする方法や、図6の中空糸膜モジュール100Bのようにポッティング部での中空糸膜の固定により区分けする方法などが挙げられる。
 例えば図3に、図1の中空糸膜モジュール100AのA-A線断面図を示しているが、中空糸膜1は整流筒9とインナーパイプ11の間の空間に存在している。従って、図3中では、整流筒9の内側断面積からインナーパイプ11の断面積(外径基準)を差し引いた面積が、中空糸膜存在区画の断面積S1となる。なお、中空糸膜が存在しない区画の中空糸膜の充填率は0%である。
 なお、本明細書において、筐体2、整流筒9又はインナーパイプ11の内側断面積とは、筐体2、整流筒9又はインナーパイプ11の中空糸膜モジュールの軸方向に垂直な断面の、筐体2、整流筒9又はインナーパイプ11の中空部の断面積をいう。
 ここで中空糸膜の横断面の合計断面積S2は下記式(3)で表すことができる。中空糸膜存在区画内の中空糸膜10本について、それぞれ最も長い方向と短い方向の2方向ずつ外径を測定する。この合計20箇所の測定値の平均値を中空糸膜の外径Rとする。この外径Rを使用し、中空糸膜の横断面が真円と仮定して式(3)により中空糸膜の横断面の合計断面積S2を算出する。なお、中空糸膜存在区画内に存在する中空糸膜が10本未満の場合は、中空糸膜存在区画内に存在する全ての中空糸膜について外径を測定し、平均値を算出すればよい。
 S2=[円周率]×[中空糸膜の外径R/2]×[中空糸膜存在区画内の中空糸膜の本数] ・・・(3)
 ここでインナーパイプ11内側の中空糸膜の充填率A1が低いほどインナーパイプ11内側の通液抵抗が下がる。インナーパイプ11内側の中空糸膜の充填率A1は0%以上50%以下とすることが好ましく、0%以上40%以下とすることがより好ましく、0%以上30%以下とすることがさらに好ましい。
 一方、インナーパイプ11外側の中空糸膜の充填率A2は、インナーパイプ11内側の中空糸膜の充填率A1とのバランスを考慮して適宜設定すればよいが、20%以上70%以下とすることが好ましく、30%以上60%以下とすることがより好ましく、40%以上60%以下とすることがさらに好ましい。
 なお、インナーパイプ11がその部位によって直径が変化するテーパー形状の場合、インナーパイプ11の第1端側と第2端側の各々において、インナーパイプ11の内側と外側の中空糸膜の充填率を測定する。そして第1端側と第2端側のインナーパイプ11内側における中空糸膜充填率の平均値をインナーパイプ11内側の中空糸膜の充填率A1とする。そして第1端側と第2端側におけるインナーパイプ11外側の中空糸膜充填率の平均値をインナーパイプ11外側の中空糸膜の充填率A2とする。
 ここで、インナーパイプ11の断面積(内側断面積)をT1、筐体2の断面積(内側断面積)をT2としたとき、下記式(1)の流動パラメータFを1.0以上8.0以下とすることが好ましい。
 F=(A2-A1)×T1/T2 ・・・(1)
 式(1)において(A2-A1)はインナーパイプ11の外側と内側の中空糸膜の充填率の差であり、インナーパイプ11の外側と内側の通液抵抗の差を表している。(A2-A1)が大きいほど、インナーパイプ11の内側に原液が流れやすい。一方T1/T2は筐体2の断面積に対するインナーパイプ11の断面積の割合を表しており、T1/T2が大きいほどインナーパイプ11の内側に原液が流れやすい。
 インナーパイプ11の内側に十分に原液を導き、第1ポッティング部3の第2端側(下側)近傍の洗浄性を向上させるには式(1)の流動パラメータFを1.0以上8.0以下とすることが好ましく、2.0以上8.0以下とすることがより好ましい。
 流動パラメータFが1.0未満だと、インナーパイプ11の内側の流速が低下し、第1ポッティング部3の第2端側(下側)近傍で十分な洗浄性が得られない場合がある。一方、流動パラメータFが8.0を超えると、インナーパイプ11の外側の流速が大幅に低下し、インナーパイプ11の外側での中空糸膜の洗浄性が低下する場合がある。
 なお、インナーパイプ11がその部位によって直径が変化するテーパー形状の場合、インナーパイプ11の第1端側と第2端側の各々において、インナーパイプ11の内側断面積を測定する。そして第1端側と第2端側におけるインナーパイプ11の内側断面積の平均値をインナーパイプ11の断面積(内側断面積)T1とする。
<インナーパイプ長さ>
 第1実施形態の中空糸膜モジュール100Aにおいて、インナーパイプ11の長さ(中空糸膜モジュール軸方向)は、筐体サイドノズル2cの内径D以上とすることが好ましく、1.5×D以上とすることがより好ましく、2×D以上とすることがさらに好ましい。ここでインナーパイプ11の長さとは、第1ポッティング部3の第2端側(下側)から、インナーパイプ11の第2端側(下側)までの長さである。
 インナーパイプ11の長さが筐体サイドノズル2cの内径D未満だと、モジュール第2端側(下側)からの流れがインナーパイプ11に到達する前にモジュール径方向に分散し、インナーパイプ11内側の流速が十分に向上しない場合がある。一方、第1ポッティング部3の第2端側(下側)から筐体2の第2端(原液流入口5)までの長さをLとしたとき、インナーパイプ11の長さはL以下とすることが好ましく、60×D以下とすることがより好ましく、40×D以下とすることがさらに好ましく、5×D以下とすることがさらに好ましい。
 インナーパイプ11は第2ポッティング部4を貫通し、筐体2の第2端側まで延長することもできる。なお、インナーパイプ11が長いとインナーパイプ11内側と外側の通液抵抗差が大きくなるため、インナーパイプ11内側の流速は向上し、第1ポッティング部3の第2端側(下側)近傍での洗浄性は向上するが、一方でインナーパイプ11外側の流速は低下するため、インナーパイプ11外側での洗浄性は低下する場合がある。
<インナーパイプ側面開口部>
 インナーパイプ11は、その側面に1つ以上の側面開口部12を有しているが、第1ポッティング部3の第2端側(下側)から長さD(筐体サイドノズル2cの内径)の範囲に存在する側面開口部12を第1側面開口部と呼ぶ。第1ポッティング部3の第2端側(下側)近傍での流速を向上させるには、インナーパイプ11の第1側面開口部の総開口面積の割合を大きくすることが好ましい。インナーパイプ11の側面開口部12の総開口面積のうち、第1側面開口部が占める総開口面積の割合R1(式4)は、50%以上とすることが好ましく、80%以上とすることがより好ましい。
 R1[%]=[第1側面開口部の総開口面積]/[側面開口部の総開口面積]×100 ・・・(4)
 また、インナーパイプ11の第1側面開口部が第1ポッティング部3の第2端側(下側)に近いほど、第1ポッティング部3の第2端側(下側)近傍での流速をさらに高められるため、第1側面開口部が第1ポッティング部3の第2端側と接していることが好ましい。
 また、インナーパイプ11の第1側面開口部の総開口面積の、筐体2の内側断面積T2に対する割合R2(式5)は5%以上50%以下とすることが好ましく、10%以上40%以下とすることがより好ましい。R2が5%未満だと、第1側面開口部の開口面積が小さ過ぎて、周囲に流れを十分拡散できない場合がある。一方、R2が50%を超えると、第1側面開口部の開口面積が大き過ぎて、第1ポッティング部3の第2端側(下側)近傍での流速が低下する場合がある。
 R2[%]=[第1側面開口部の総開口面積]/T2×100 ・・・(5)
 側面開口部12から放射状に流れを発生させるため、側面開口部12はインナーパイプ11の周方向に略均等に配置することが好ましい。側面開口部12の配置が不均一だと、側面開口部12からの流れに偏りが発生し、流速の低い部位が発生する場合がある。側面開口部12はインナーパイプ11の周方向に一定間隔で配置してもよいし、千鳥配置等にしてもよい。側面開口部12の形状は特に限定されないが、円形、楕円形、長方形などの形状とすることができる。
 また、インナーパイプ11の全周に亘り、側面開口部12を設けることもできる。また、インナーパイプ11は第1ポッティング部3や第2ポッティング部4で固定する方法や、整流筒9や筐体2とシャフト等を介して接続して固定する方法によりモジュール内に設置することができる。
<整流筒>
 整流筒9はその側面に1つ以上の整流孔10を有しているが、整流孔の総開口面積の筐体2の内側断面積T2に対する割合R3(式6)は5%以上50%以下とすることが好ましく、10%以上40%以下とすることがより好ましく、15%以上30%以下とすることがさらに好ましい。R3が5%未満だと、整流孔の開口面積が小さ過ぎて、整流筒9の内側で偏流が発生し、流速の低い部位が発生する場合がある。一方、R3が50%を超えると、第1側面開口部の開口面積が大き過ぎて、第1ポッティング部3の第2端側(下側)近傍での流速が低下する場合がある。
 R3[%]=[整流孔の総開口面積]/[T2]×100 ・・・(6)
 また、整流孔10のうち、第1ポッティング部3の第2端側(下側)から長さD(筐体サイドノズル2cの内径)の範囲に存在する整流孔10を第1整流孔と呼ぶ。第1ポッティング部3の第2端側(下側)近傍での流速を向上させるには、第1整流孔の総開口面積の割合を大きくすることが好ましい。整流孔10の総開口面積のうち、第1整流孔が占める総開口面積の割合R4(式7)は、50%以上とすることが好ましく、80%以上とすることがより好ましい。また、第1整流孔が第1ポッティング部3の第2端側(下側)に近いほど、第1ポッティング部3の第2端側(下側)近傍での流速をさらに高められるため、第1整流孔が第1ポッティング部3の第2端側と接していることが好ましい。
 R4[%]=[第1整流孔の総開口面積]/[整流孔の総開口面積]×100 ・・・(7)
 整流筒9の内側で放射状に流れを発生させるため、整流孔10は整流筒9の周方向に略均等に配置することが好ましい。整流孔10の配置が不均一だと、整流筒9の内側の流れに偏りが発生し、流速の低い部位が発生する場合がある。整流孔10は整流筒9の周方向に一定間隔で配置してもよいし、千鳥配置等にしてもよい。整流孔10の形状は特に限定されないが、円形、楕円形、長方形などの形状とすることができる。
 また、整流筒9の全周に亘り、整流孔10を設けることもできる。また、整流筒9は第1ポッティング部3で固定する方法や、筐体2と接着して固定する方法によりモジュール内に設置することができる。
 第1ポッティング部3の第2端側(下側)近傍での流速を高めるため、整流筒9の第2端側(下側)での筐体2との間のクリアランスは小さくすることが好ましい。整流筒9の第2端側(下側)と筐体2の間に大きなクリアランスがあると、図15に示すようにフラッシング時に原液がクリアランス部分から抜けてしまい、第1ポッティング部3の第2端側(下側)での流速が低下してしまう。整流筒9の第2端側(下側)と筐体2との間のクリアランスの、中空糸膜モジュール径方向における断面積は、整流孔10の総開口面積の50%以下とすることが好ましく、20%以下とすることがより好ましい。
 図4に示すように整流孔10から出た流れは整流筒9と筐体2の間の流路を通って筐体サイドノズル2cに向かって流れ、原液出口6から排出されるが、この流路断面積は大きくすることが好ましい。整流筒9と筐体2の間の流路断面積が小さいと、通液時の圧力損失が大きくなり、筐体サイドノズル2cから距離の離れた整流孔10からの流速が低くなる場合がある。その結果、整流筒9内側で偏流が発生し、流速の低い部位が発生する場合がある。つまり筐体サイドノズル2cの対向面側での流速が低くなる場合がある。
 整流筒9と筐体2の間の流路の中空糸膜モジュール軸方向における断面積は、筐体2の内側断面積T2の3%以上とすることが好ましく、5%以上とすることがより好ましく、10%以上とすることがさらに好ましい。また、整流筒9と筐体2の間の流路を確保するため、整流筒9の外周部分について図16のように筐体2の直径を拡大してもよい。
 なお、式(1)、式(5)、式(6)など、本明細書中で筐体2の内側断面積T2を記載しているが、図16のように整流筒9の外周部の筐体2を拡径する場合、筐体2の内側断面積T2は、整流筒9よりも第2端側(下側)の部分の筐体2の内径Eを基準に算出した値を使用する。即ち拡径していない部分の筐体2の内径を基準に内側断面積T2を算出する。
 なお、整流筒9の内径は適宜設定すればよいが、整流筒9よりも第2端側の部分の筐体2の内径Eに対し、80%以上120%以下とすることが好ましく、90%以上110%以下とすることがより好ましい。中空糸膜は整流筒9の内側に充填するため、整流筒9の内径がEの80%未満だと、充填可能な中空糸膜の本数が減り、中空糸膜モジュールの膜面積が減少する場合がある。整流筒9の内径がEの120%を超えると、筐体2の第1端側を大幅に拡径する必要があり、製作コストが上がる場合がある。
<中空糸膜モジュールの製造方法>
 中空糸膜同士を接着剤で束ねることは、ポッティングと呼ばれる。ポッティングの方法としては、遠心力を利用して液状のポッティング剤(接着剤)を中空糸膜間に浸透させてから硬化させる遠心ポッティング法と、液状のポッティング剤を定量ポンプまたはヘッドにより送液し自然に流動させることにより中空糸膜間に浸透させてから硬化させる静置ポッティング法とが代表的な方法として挙げられる。遠心ポッティング法は遠心力によりポッティング剤が中空糸膜間に浸透しやすく、高粘度のポッティング剤も使用することができる。
 図12、図13、図14を用い、中空糸膜モジュールの遠心ポッティングの一例を説明する。図12に示すように筐体2に整流筒やインナーパイプ、中空糸膜等の部材を装填し、第1端側に第1ポッティングキャップ15を設置し、第2端側には第2ポッティングキャップ16を設置する。このとき中空糸膜の第1端側は、中空部にポッティング剤が侵入するのを防ぐため、予め目止め処理をしておく。また第2ポッティングキャップ16には貫通孔8を形成するためのピン14を差し込んでおく。
 続いて図13に示すようにポッティング剤投入器17より、中空糸膜の第1端側と第2端側にポッティング剤を送液する。ポッティング剤は中空糸膜モジュールを回転させることで遠心力により送液され、ポッティング剤が硬化するまで回転を継続する。ここで中空糸膜の第2端側は中空部にもポッティング剤が侵入し、中空部が閉塞する。
 ポッティング剤の硬化後にピン14を引き抜くと貫通孔8が形成される。その後第1ポッティングキャップ15と第2ポッティングキャップ16を取り外し、図14のC-C線でポッティング剤を切断することで中空糸膜の中空部を開口させることができる。最後に筐体上部キャップ2aと筐体下部キャップ2bを液密かつ気密に装着し、中空糸膜モジュールが完成する。
 使用するポッティング剤の種類は特に限定されないが、例えばエポキシ樹脂、ポリウレタンやシリコーン樹脂などを用いることができる。
<中空糸膜>
 本実施形態の中空糸膜モジュールは、分離膜として中空糸膜を備える。中空糸膜は一般的に平膜よりも比表面積が大きく、単位時間当たりにろ過できる液量が多いため有利である。中空糸膜の構造としては全体的に孔径が一様な対称膜や、膜の厚み方向で孔径が変化する非対称膜、強度を保持するための支持層と対象物質の分離を行うための分離機能層を有する複合膜などが存在する。
 中空糸膜の平均孔径は分離対象によって適宜選択すればよいが、微生物の分離などを目的とする場合、10nm以上、1000nm以下であることが好ましい。平均孔径が10nm未満だと透水性が低くなり、1000nmを超えると微生物等が漏洩する可能性がある。一方、低分子量のタンパク質などの分離を行う場合、平均孔径が2nm~20nmの中空糸膜を使用することが好ましい。本発明での平均孔径とは最も孔径の小さい緻密層の孔径とする。
 中空糸膜の材質は特に限定されないが、例えばポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、四フッ化エチレン・六フッ化プロピレン共重合体、エチレン・四フッ化エチレン共重合体などのフッ素系樹脂、セルロースアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレートなどのセルロースエステル、ポリスルホン、ポリエーテルスルホンなどのポリスルホン系樹脂、ポリアクリロニトリル、ポリイミド、ポリプロピレンなどの樹脂を含有することができる。特にフッ素系樹脂やポリスルホン系樹脂からなる分離膜は耐熱性、物理的強度、化学的耐久性が高いことから、中空糸膜モジュールに好適に用いることができる。
 また、中空糸膜は、フッ素系樹脂やポリスルホン系樹脂に加えて、親水性樹脂をさらに含有してもよい。親水性樹脂によって、中空糸膜の親水性を高め、膜の透水性を向上させることができる。親水性樹脂は、分離膜に親水性を付与することができる樹脂であればよく、具体的な化合物に限定されるものではないが、例えば、セルロースエステル、脂肪酸ビニルエステル、ビニルピロリドン、エチレンオキサイド、プロピレンオキサイド、ポリメタクリル酸エステル系樹脂及びポリアクリル酸エステル系樹脂などが好適に用いられる。
 中空糸膜モジュールを作製する場合はポッティングキャップに中空糸膜を充填し、ポッティング剤で固定する。その際、ハンドリングを良好にし、接着不良を防止する観点から、予め中空糸膜を乾燥させておく。しかし中空糸膜の多くは乾燥により収縮が起こり、透水性が低下するという問題があるため、グリセリン水溶液に浸漬した後で乾燥させたものを用いる。グリセリン水溶液に浸漬した後で乾燥すると、グリセリンが細孔内に残留することで乾燥による収縮を防止することができ、その後エタノールなどの溶媒で浸漬処理を行うことで透水性を回復させることができる。
<中空糸膜モジュールの運転方法>
 次に中空糸膜モジュール100Aによるろ過方法を述べる。原液は筐体下部キャップ2bの原液流入口5より中空糸膜モジュール100A内に流入し、中空糸膜1を透過したろ過液は、筐体上部キャップ2aのろ過液出口7より中空糸膜モジュール100Aの外部に排出される。
 ここで、筐体サイドノズル2cの原液出口6を閉じた状態で、供給した原液を全量ろ過する方法をデッドエンドろ過と呼ぶ。一方、筐体サイドノズル2cの原液出口6を開放して原液を排出しながらろ過する方式、即ち膜面に対して原液を平行に流しながらろ過する方式をクロスフローろ過と呼ぶ。
 クロスフローろ過は原液中の濁質等が膜面に堆積するのを抑制する効果や、原液に含まれる成分の膜表面での濃度分極を抑制する効果があるが、原液の送液量が多いため、デッドエンドろ過と比べ動力コストは高くなる。
 また、図1の中空糸膜モジュール100Aのように中空糸膜の外側に原液を供給し、外側から内側に向かってろ過を行う方式は外圧式と呼ばれる。逆に中空糸膜の内側から外側に向かってろ過を行う方式は内圧式と呼ばれる。内圧式では中空糸膜の中空部に原液が供給されるため、高濁度の原液の場合、中空部が濁質で閉塞して送液できなくなる場合がある。そのため高濁液のろ過には外圧式の中空糸膜モジュールが好ましい。
 ろ過流束は、原液の性状に応じて適宜設定すればよいが、0.1m/m/d以上10.0m/m/d以下とすることが好ましく、0.3m/m/d以上5.0m/m/d以下とすることがより好ましく、0.5m/m/d以上3.0m/m/d以下とすることがさらに好ましい。
 前述のフラッシングやクロスフローろ過では、原液流入口5から中空糸膜モジュール内に原液を供給し、原液出口6から原液を排出することで中空糸膜モジュール内を洗浄するが、原液の膜面線速度を高めることで膜面に働くせん断応力が向上し、洗浄性が向上する。
 膜面線速度(m/s)は、原液流量(m/s)を中空糸膜モジュールの径方向断面の流路面積(m)で除することで求めることができるが、中空糸膜モジュール内に整流筒やインナーパイプ等の部材が存在する場合、流路面積は部位により変化する。そこで本発明では筐体の内側断面積T2と中空糸膜の横断面の合計断面積S2を基準に式(8)で代表膜面線速度を定義した。
 代表膜面線速度[m/s]=[原液流量]/(T2-S2) ・・・(8)
 フラッシング時の代表膜面線速度は0.1m/s以上とすることが好ましく、0.3m/s以上とすることがより好ましく、0.5m/s以上とすることがさらに好ましい。代表膜面線速度が0.1m/s未満だと、十分な洗浄効果が得られない場合がある。またフラッシング時の代表膜面線速度は5m/s以下とすることが好ましく、3m/s以下とすることがより好ましく、2m/s以下とすることがさらに好ましい。代表膜面線速度が5m/sを超えると動力コストが高くなる場合がある。
 デッドエンドろ過及びクロスフローろ過では、定期的にろ過を停止し、逆洗を実施することもできる。逆洗は中空糸膜モジュール100Aのろ過液出口7から逆洗液を供給して、中空糸膜の内側から外側に向かって逆洗液を流し、膜を洗浄する。逆洗により透水性が回復すると、ろ過時間を延長することができ、薬液洗浄の頻度が減るため運転コストを低減できる。逆洗はろ過液で実施してもよいし、水など他の液体を使用することもできる。
 逆洗流束は、原液の性状や、中空糸膜の目詰まりの状態に応じて適宜設定すればよいが、0.5m/m/d以上10.0m/m/d以下とすることが好ましく、1.0m/m/d以上5.0m/m/d以下とすることがより好ましい。逆洗流束が0.5m/m/d未満だと、洗浄効果が低くなる場合がある。また逆洗流束が10.0m/m/dを超えると動力コストが高くなる場合や、逆洗に使用する液が大量に必要となる場合がある。
(第2実施形態)
 本発明の第2実施形態にかかる中空糸膜モジュールの構成について、図面を参照しながら説明する。
 図6は、本発明の第2実施形態にかかる中空糸膜モジュール100Bを示す概略縦断面図であり、図7は、フラッシング時の中空糸膜モジュール100B内の液流を示している。図8は、本発明の第2実施形態の変形例である、中空糸膜モジュール100Cを示す概略縦断面図であり、図9は、フラッシング時の中空糸膜モジュール100C内の液流を示している。
<整流構造>
 図6に示す中空糸膜モジュール100Bには、第1実施形態のインナーパイプ11に替わり、中心空間部13が設けられている。中心空間部13は、第1ポッティング部3で中空糸膜1を接着固定する際に、中空糸膜モジュールの中心部をスペーサー等で区分けした状態で接着することにより形成させることができる。
 なお、本発明の第2実施形態にかかる中空糸膜モジュールの構成は、インナーパイプに替わり、中心空間部が設けられていること以外は、本発明の第1実施形態にかかる中空糸膜モジュールの構成と同様である。
 中心空間部13を形成することで、フラッシング時は図7のような原液の流れとなる。モジュールの第2端側(下側)からモジュールの第1端側(上側)へ向かう原液は、中心空間部13を通って第1ポッティング部3の第2端側(下側)のモジュール径方向中心部に導かれ、その後整流筒9の整流孔10に向かって流れる。この整流構造により第1ポッティング部3の第2端側(下側)近傍で、モジュール径方向中心部から径方向外周側に指向して放射状に流れが発生し、堆積した濁質を洗い流すことができる。
<流動パラメータF>
 ここで、フラッシング時に中心空間部13に原液を導くため、中心空間部13の中空糸膜の充填率A1は、中心空間部13外側の中空糸膜の充填率A2より小さくする必要がある。これは中心空間部13の中空糸膜の充填率A1を中心空間部13の外側の中空糸膜の充填率A2よりも小さくすることで通液抵抗を下げ、中心空間部13での流速を高めるためである。
 なお、ここで中空糸膜の充填率とは、第1ポッティング部3と第2ポッティング部4の間における中空糸膜モジュールの筐体2の横断面(図6の左右方向に平行かつ紙面に垂直な面)で中空糸膜が占める面積の割合のことである。筐体2内側の中空糸膜存在区画の断面積をS1、中空糸膜の横断面の合計断面積をS2としたとき、中空糸膜の充填率は下記式(2)で表すことができる。
 中空糸膜の充填率[%]=S2/S1×100 ・・・(2)
 ここで中空糸膜存在区画とは、中空糸膜が存在する一定の区画を表す。この区分けの方法としては、筐体2、整流筒9などの部材により区分けする方法や、図6の中空糸膜モジュール100Bのようにポッティング部での中空糸膜の固定により区分けする方法などが挙げられる。また、筐体2内において結束部材等で中空糸膜を束ねることで区分けすることもできる。
 例えば本発明の第2実施形態において、中心空間部13に中空糸膜が存在しない場合、整流筒9の内側断面積から中心空間部13の軸方向に垂直な断面の断面積を差し引いた面積が、中空糸膜存在区画の断面積S1となる。なお、中空糸膜が存在しない区画の中空糸膜の充填率は0%である。
 ここで中空糸膜の横断面の合計断面積S2は下記式(3)で表すことができる。中空糸膜存在区画内の中空糸膜10本について、それぞれ最も長い方向と短い方向の2方向ずつ外径を測定する。この合計20箇所の測定値の平均値を中空糸膜の外径Rとする。この外径Rを使用し、中空糸膜の横断面が真円と仮定して式(3)により中空糸膜の横断面の合計断面積S2を算出する。なお、中空糸膜存在区画内に存在する中空糸膜が10本未満の場合は、中空糸膜存在区画内に存在する全ての中空糸膜について外径を測定し、平均値を算出すればよい。
 S2=[円周率]×[中空糸膜の外径R/2]×[中空糸膜存在区画内の中空糸膜の本数] ・・・(3)
 ここで中心空間部13の中空糸膜の充填率A1が低いほど中心空間部13の通液抵抗が下がる。中心空間部13の中空糸膜の充填率A1は0%以上50%以下とすることが好ましく、0%以上40%以下とすることがより好ましく、0%以上30%以下とすることがさらに好ましい。
 一方、中心空間部13外側の中空糸膜の充填率A2は、中心空間部13の中空糸膜の充填率A1とのバランスを考慮して適宜設定すればよいが、20%以上70%以下とすることが好ましく、30%以上60%以下とすることがより好ましく、40%以上60%以下とすることがさらに好ましい。
 なお、図6の中空糸膜モジュール100Bのように中心空間部13がその部位によって直径が変化するテーパー形状の場合、第1ポッティング部3の第2端側と、第2ポッティング部4の第1端側の各々において、中心空間部13と中心空間部13の外側の中空糸膜充填率を測定する。そして第1ポッティング部3の第2端側と、第2ポッティング部4の第1端側における中心空間部13の中空糸膜充填率の平均値を、中心空間部13の中空糸膜の充填率A1とする。そして第1ポッティング部3の第2端側と、第2ポッティング部4の第1端側における中心空間部13の外側の中空糸膜充填率の平均値を、中心空間部13外側の中空糸膜の充填率A2とする。
 ここで、中心空間部13の軸方向に垂直な断面の断面積をT1、筐体2の断面積(内側断面積)をT2としたとき、下記式(1)の流動パラメータFを1.0以上8.0以下とすることが好ましい。
 F=(A2-A1)×T1/T2 ・・・(1)
 式(1)において(A2-A1)は中心空間部13の外側と内側の中空糸膜の充填率の差であり、中心空間部13の外側と内側の通液抵抗の差を表している。(A2-A1)が大きいほど、中心空間部13に原液が流れやすい。一方T1/T2は筐体2の断面積に対する中心空間部13の断面積の割合を表しており、T1/T2が大きいほど中心空間部13に原液が流れやすい。
 中心空間部13に十分に原液を導き、第1ポッティング部3の第2端側(下側)近傍の洗浄性を向上させるには式(1)の流動パラメータFを1.0以上8.0以下とすることが好ましく、2.0以上8.0以下とすることがより好ましい。
 流動パラメータFが1.0未満だと、中心空間部13の流速が低下し、第1ポッティング部3の第2端側(下側)近傍で十分な洗浄性が得られない場合がある。一方、流動パラメータFが8.0を超えると、中心空間部13の外側の流速が大幅に低下し、中心空間部13の外側での中空糸膜の洗浄性が低下する場合がある。
 なお、中心空間部13がその部位によって直径が変化するテーパー形状の場合、第1ポッティング部3の第2端側と、第2ポッティング部4の第1端側の各々において、中心空間部13の断面積を測定する。そして第1ポッティング部3の第2端側と、第2ポッティング部4の第1端側における中心空間部13の断面積の平均値を中心空間部13の軸方向に垂直な断面の断面積T1とする。
 また中空糸膜の充填率を中空糸膜モジュールの中心部から外周部に向かって連続的に変化させた中空糸膜モジュールとすることもできるが、その場合、筐体2の中心部から筐体2の内径の30%の範囲を中心空間部13と定義する。
<中心空間部長さ>
 第2実施形態の中空糸膜モジュール100Bにおいて、中心空間部13の長さ(中空糸膜モジュール軸方向)は筐体サイドノズル2cの内径D以上とすることが好ましく、1.5×D以上とすることがより好ましく、2×D以上とすることがさらに好ましい。ここで中心空間部13の長さとは、第1ポッティング部3の第2端側(下側)から、中空糸膜1が結束または固定される箇所までの長さである。中空糸膜1は結束部材や第2ポッティング部4等で結束または固定することができる。
 中心空間部13の長さが筐体サイドノズル2cの内径D未満だと、モジュール第2端側(下側)からの流れが中心空間部13に到達する前にモジュール径方向に分散し、中心空間部13の流速が十分に向上しない場合がある。一方、第1ポッティング部3の第2端側(下側)から第2ポッティング部4の第2端側(下側)までの長さをMとし、第1ポッティング部3の第2端側(下側)から第2ポッティング部4の第1端側(上側)までの長さをNとしたとき、中心空間部13の長さはN以下となる。なお、第2ポッティング部4の中心部に貫通孔8を設けることで、貫通孔8から中心空間部13に流路を繋げることもできる。
 中心空間部13が長いと中心空間部13と中心空間部13外側の通液抵抗差が大きくなるため、中心空間部13の流速は向上し、第1ポッティング部3の第2端側(下側)近傍での洗浄性は向上するが、一方で中心空間部13外側の流速は低下するため、中心空間部13外側での洗浄性は低下する場合がある。
 以下に具体的な実施例を挙げて本発明を説明するが、本発明はこれらの実施例により何ら限定されるものではない。
(参考例1)
 重量平均分子量41.7万のフッ化ビニリデンホモポリマー38質量部とγ-ブチロラクトン62質量部を混合し、160℃で溶解し高分子溶液を作製した。この高分子溶液を、85質量%γ-ブチロラクトン水溶液を中空部形成液体として随伴させながら二重管の口金から吐出し、口金の30mm下方に設置した温度20℃のγ-ブチロラクトン85質量%水溶液からなる冷却浴中で凝固させて、球状構造からなる中空糸膜を作製した。
 次いで、重量平均分子量28.4万のフッ化ビニリデンホモポリマー14質量部、セルロースアセテートプロピオネート(イーストマンケミカル社製、CAP482-0.5)1質量部、N-メチル-2-ピロリドン77質量部、ポリオキシエチレンソルビタン脂肪酸エステル(三洋化成工業(株)製、“イオネット”(登録商標)T-20C)5質量部、水3質量部を混合し、95℃で溶解して高分子溶液(製膜原液)を作製した。
 この製膜原液を、球状構造からなる中空糸膜の表面に均一に塗布し、すぐに水浴中で凝固させて球状構造層の上に三次元編目構造を形成させた中空糸膜を作製した。得られた中空糸膜は、外径1350μm、内径800μmで、膜表面平均孔径は40nmであった。
(実施例1)
(中空糸膜モジュール作製)
 参考例1の中空糸膜を30質量%グリセリン水溶液に1時間浸漬後、風乾した。この中空糸膜の片端の中空部をシリコーン接着剤(東レ・ダウコーニング社製、SH850A/B、2剤を質量比が50:50となるように混合したもの)で目止めした。
 塩化ビニル樹脂製の筐体2(内径77mm、整流筒外周部内径90mm、長さ1900mm、筐体サイドノズル内径24mm)、整流筒9(外径75mm、内径71mm)、インナーパイプ11(外径24mm、内径20mm)の表面のうち、ポッティング剤で接着する領域については、予めサンドペーパー(#80)でヤスリがけを行い、エタノールで脱脂した。
 その後、前述の中空糸膜の束を、図12に示すように筐体2及び整流筒9内に充填した。このときインナーパイプ11内側の中空糸膜の充填率A1は0%とし、インナーパイプ11の外側の中空糸膜の充填率A2は50%とした。
 筐体2のモジュール上部側となる第1端部(図12の右側端部)に目止めした側の端部が向くように、中空糸膜束を配置し、さらに第1ポッティングキャップ15を装着した。モジュール下部側となる第2端部(図12の左側端部)には底に36個の穴が空いた第2ポッティングキャップ16を装着した。
 その後、第2ポッティングキャップ16の底の穴に36本のピン14を差し込んで固定した。ピン14の位置は図5の貫通孔と同様に配置した。こうして両端にポッティングキャップが装着されたモジュールを遠心成型機内に設置した。
 ポリメリックMDI(Huntsman社製、Suprasec5025)、ポリブタジエン系ポリオール(Cray Valley社製、Krasol LBH 3000)及び2-エチル-1,3-ヘキサンジオールを、質量比が57:100:26となるように混合した。得られた混合物(つまりポリウレタン樹脂液)を、ポッティング剤投入器17に入れた。
 続いて遠心成型機を回転させ、ポッティング剤を両端のポッティングキャップに充填し、第1ポッティング部3及び第2ポッティング部4を形成した。ポッティング剤投入器17は2方向に分割されたものであり、遠心力によりモジュール上部側(第1端部)及びモジュール下部側(第2端部)にポリウレタン樹脂液が投入される。遠心成型機内の温度は35℃、遠心時間は4時間とした。
 遠心後、第1ポッティングキャップ15、第2ポッティングキャップ16及びピン14を取り外し、さらに室温で24時間ポッティング剤を後硬化させた。その後、筐体2のモジュール上部側(第1端部側)の外側のポッティング剤部分(図14に示すC-C面)をチップソー式回転刃でカットし、中空糸膜の端面を開口させた。続いて筐体2の両端に筐体上部キャップ2a、筐体下部キャップ2bを取り付け、図16に示す中空糸膜モジュール100Fを得た。
 その後中空糸膜モジュール100Fにエタノールを送液してろ過を行い、中空糸膜の細孔内をエタノールで満たした。続いてRO(Reverse Osmosis)水を送液してろ過を行い、エタノールをRO水に置換した。なお、第1ポッティング部3の第2端側から第2ポッティング部4の第1端側までの長さは1776mmとした。
 中空糸膜モジュール100Fのインナーパイプ11の長さは12mmとした。またインナーパイプ11には第1ポッティング部3の第2端側に接する位置に、高さ12mm、幅14.8mm(長方形)の第1側面開口部を4箇所、周方向に均等に配置した。また整流筒9には第1ポッティング部3の第2端側に接する位置に、高さ10mm、幅8mm(長方形)の第1整流孔を12箇所、周方向に均等に配置した。整流筒9と筐体2の間の流路の幅は7.5mmで、軸方向高さは50mmとした。
 中空糸膜モジュール100Fについて、流動パラメータFを上記式(1)により、第1側面開口部が占める総開口面積の割合R1を上記式(4)により、インナーパイプ11の第1側面開口部の総開口面積の、筐体2の内側断面積T2に対する割合R2を上記式(5)により、整流孔の総開口面積の筐体2の内側断面積T2に対する割合R3を上記式(6)により、整流孔10の総開口面積のうち、第1整流孔が占める総開口面積の割合R4を上記式(7)により算出した。結果を表1に示す。
(排濁性評価)
 中空糸膜モジュール100Fの排濁性は以下の方法で評価した。
 ベントナイト70mg/L、ポリ塩化アルミニウム70mg/L、pH7の懸濁液を調整し、1時間以上撹拌して凝集フロックを形成させた。この供給懸濁液をろ過流束1m/m/dで30分間ろ過した。続いてろ過液による逆洗を行った。逆洗流束は2m/m/dで1分間実施した。続いて供給懸濁液を使用し、代表膜面線速度0.4m/sでフラッシングを1分間実施した。逆洗とフラッシングで中空糸膜モジュール外部に排出された排出液を回収して懸濁物質質量を測定し、式(9)により洗浄による排濁率を算出した。
 排濁率[%]=[排出懸濁物質質量]/[供給懸濁物質質量]×100 ・・・(9)
 供給懸濁物質質量及び排出懸濁物質質量は以下の方法で求めた。
 懸濁液1Lを孔径1μmのガラスろ紙でろ過し、110℃で3時間乾燥させた後、質量を測定し、予め測定したガラスろ紙の質量を差し引くことで懸濁液1L当たりの懸濁物質質量を測定し、懸濁物質濃度(g/L)を求めた。
 供給懸濁物質質量は式(10)に示すように供給懸濁液の懸濁物質濃度に、供給液量(ろ過液量とフラッシング液量の合計)を乗じて求めた。
 排出懸濁物質質量は式(11)に示すように、洗浄で外部に排出された排出液の懸濁物質濃度に、排出液量(逆洗液量とフラッシング液量の合計)を乗じて求めた。
 供給懸濁物質質量[g]=[供給懸濁液の懸濁物質濃度]×[ろ過液量+フラッシング液量] ・・・(10)
 排出懸濁物質質量[g]=[排出液の懸濁物質濃度]×[逆洗液量+フラッシング液量] ・・・(11)
 前述の方法で中空糸膜モジュール100Fの排濁率を評価した結果、排濁率は90%だった。
(実施例2~8)
 インナーパイプ11の長さを表1に示すものに変更した以外は実施例1と同様の方法で中空糸膜モジュール100Fを作製した。
 各中空糸膜モジュール100Fの排濁率の評価結果を表1に示す。
 流動パラメータF、割合R1、割合R2、割合R3及び割合R4を算出した。結果を表1に示す。
 インナーパイプ11の長さと排濁率の関係は、表1に示すとおり、実施例2ではD:98%、実施例3では1.5×D:99.5%、実施例4では2×D:99.5%、実施例5では3×D:99.5%、実施例6では5×D:99%、実施例7では40×D:96%、実施例8では60×D:94%だった。
 なお、表1中のDは、筐体サイドノズル内径を示す。
(実施例9)
 インナーパイプ11の長さを72mm(3×D)とし、インナーパイプ11内側の中空糸膜の充填率A1を10%とした以外は、実施例1と同様の方法で中空糸膜モジュール100Fを作製した。前述の方法で中空糸膜モジュール100Fの排濁率を評価した結果、排濁率は98%だった。
 流動パラメータF、割合R1、割合R2、割合R3及び割合R4を算出した。結果を表1に示す。
(実施例10)
 インナーパイプ11内側の中空糸膜の充填率A1を20%とした以外は、実施例9と同様の方法で中空糸膜モジュール100Fを作製した。前述の方法で中空糸膜モジュール100Fの排濁率を評価した結果、排濁率は98%だった。
 流動パラメータF、割合R1、割合R2、割合R3及び割合R4を算出した。結果を表1に示す。
(実施例11)
 インナーパイプ11内側の中空糸膜の充填率A1を30%とした以外は、実施例9と同様の方法で中空糸膜モジュール100Fを作製した。前述の方法で中空糸膜モジュール100Fの排濁率を評価した結果、排濁率は96%だった。
 流動パラメータF、割合R1、割合R2、割合R3及び割合R4を算出した。結果を表1に示す。
(実施例12)
 インナーパイプ11の長さを72mm(3×D)、内径を12mm、外径を16mm、第1側面開口部の幅を8.6mmとした以外は、実施例1と同様の方法で中空糸膜モジュール100Fを作製した。前述の方法で中空糸膜モジュール100Fの排濁率を評価した結果、排濁率は96%だった。
 流動パラメータF、割合R1、割合R2、割合R3及び割合R4を算出した。結果を表1に示す。
(実施例13)
 インナーパイプ11の長さを72mm(3×D)、内径を28mm、外径を32mm、第1側面開口部の幅を21.1mmとし、インナーパイプ11外側の中空糸膜の充填率A2を60%とした以外は、実施例1と同様の方法で中空糸膜モジュール100Fを作製した。前述の方法で中空糸膜モジュール100Fの排濁率を評価した結果、排濁率は99%だった。
 流動パラメータF、割合R1、割合R2、割合R3及び割合R4を算出した。結果を表1に示す。
(実施例14)
 インナーパイプ11の長さを72mm(3×D)とし、インナーパイプ11には第1ポッティング部3の第2端側に接する位置に、高さ12mm、幅14.8mm(長方形)の第1側面開口部を4箇所、周方向に均等に配置した。さらにインナーパイプ11の第2端側から第1端側に向かって5mmから8mmの範囲に、高さ3mm、幅14.8mm(長方形)の側面開口部12を4箇所、周方向に均等に配置した。上記以外は実施例1と同様の方法で中空糸膜モジュール100Fを作製した。前述の方法で中空糸膜モジュール100Fの排濁率を評価した結果、排濁率は98%だった。
 流動パラメータF、割合R1、割合R2、割合R3及び割合R4を算出した。結果を表1に示す。
(実施例15)
 インナーパイプ11の長さを72mm(3×D)とし、インナーパイプ11には第1ポッティング部3の第2端側に接する位置に、高さ12mm、幅14.8mm(長方形)の第1側面開口部を4箇所、周方向に均等に配置した。さらにインナーパイプ11の第2端側から第1端側に向かって5mmから17mmの範囲に、高さ12mm、幅14.8mm(長方形)の側面開口部12を4箇所、周方向に均等に配置した。上記以外は実施例1と同様の方法で中空糸膜モジュール100Fを作製した。前述の方法で中空糸膜モジュール100Fの排濁率を評価した結果、排濁率は97%だった。
 流動パラメータF、割合R1、割合R2、割合R3及び割合R4を算出した。結果を表1に示す。
(実施例16)
 インナーパイプ11の長さを72mm(3×D)とし、インナーパイプ11には第1ポッティング部3の第2端側に接する位置に、高さ12mm、幅14.8mm(長方形)の第1側面開口部を4箇所、周方向に均等に配置した。さらにインナーパイプ11の第2端側から第1端側に向かって5mmから17mmの範囲に、高さ12mm、幅14.8mm(長方形)の側面開口部12を4箇所、周方向に均等に配置し、インナーパイプ11の第2端側から第1端側に向かって25mmから37mmの範囲に、高さ12mm、幅14.8mm(長方形)の側面開口部12を4箇所、周方向に均等に配置した。上記以外は実施例1と同様の方法で中空糸膜モジュール100Fを作製した。前述の方法で中空糸膜モジュール100Fの排濁率を評価した結果、排濁率は94%だった。
 流動パラメータF、割合R1、割合R2、割合R3及び割合R4を算出した。結果を表1に示す。
(実施例17)
 インナーパイプ11の長さを72mm(3×D)とし、第1側面開口部の高さを24mmとした以外は実施例1と同様の方法で中空糸膜モジュール100Fを作製した。前述の方法で中空糸膜モジュール100Fの排濁率を評価した結果、排濁率は99%だった。
 流動パラメータF、割合R1、割合R2、割合R3及び割合R4を算出した。結果を表1に示す。
(実施例18)
 インナーパイプ11の長さを72mm(3×D)とし、第1側面開口部の高さを4mmとした以外は実施例1と同様の方法で中空糸膜モジュール100Fを作製した。前述の方法で中空糸膜モジュール100Fの排濁率を評価した結果、排濁率は99%だった。
 流動パラメータF、割合R1、割合R2、割合R3及び割合R4を算出した。結果を表1に示す。
(実施例19)
 インナーパイプ11の長さを72mm(3×D)とした。また整流筒9には第1ポッティング部3の第2端側に接する位置に、高さ10mm、幅8mm(長方形)の第1整流孔を12箇所、周方向に均等に配置した。さらに第1ポッティング部3の第2端側から中空糸膜モジュールの第2端側に向かって28mmから36mmの範囲に、高さ8mm、幅12mm(長方形)の整流孔10を12箇所、周方向に均等に配置し、第1ポッティング部3の第2端側から中空糸膜モジュールの第2端側に向かって40mmから48mmの範囲に、高さ8mm、幅12mm(長方形)の整流孔10を12箇所、周方向に均等に配置した。上記以外は実施例1と同様の方法で中空糸膜モジュール100Fを作製した。前述の方法で中空糸膜モジュール100Fの排濁率を評価した結果、排濁率は94%だった。
 流動パラメータF、割合R1、割合R2、割合R3及び割合R4を算出した。結果を表1に示す。
(実施例20)
 インナーパイプ11の長さを72mm(3×D)とした。また整流筒9には第1ポッティング部3の第2端側に接する位置に、高さ8mm、幅10mm(長方形)の第1整流孔を12箇所、周方向に均等に配置し、さらに第1ポッティング部3の第2端側から中空糸膜モジュールの第2端側に向かって12mmから20mmの範囲に、高さ8mm、幅10mm(長方形)の第1整流孔を12箇所、周方向に均等に配置した。上記以外は実施例1と同様の方法で中空糸膜モジュール100Fを作製した。前述の方法で中空糸膜モジュール100Fの排濁率を評価した結果、排濁率は97%だった。
 流動パラメータF、割合R1、割合R2、割合R3及び割合R4を算出した。結果を表1に示す。
(実施例21)
 インナーパイプ11の長さを72mm(3×D)とした。また整流筒9には第1ポッティング部3の第2端側に接する位置に、高さ6mm、幅6mm(長方形)の第1整流孔を12箇所、周方向に均等に配置した。上記以外は実施例1と同様の方法で中空糸膜モジュール100Fを作製した。前述の方法で中空糸膜モジュール100Fの排濁率を評価した結果、排濁率は98%だった。
 流動パラメータF、割合R1、割合R2、割合R3及び割合R4を算出した。結果を表1に示す。
(実施例22)
 インナーパイプ11の長さを72mm(3×D)とした。また整流筒9には第1ポッティング部3の第2端側に接する位置に、高さ5mm、幅8mm(長方形)の第1整流孔を12箇所、周方向に均等に配置した。さらに第1ポッティング部3の第2端側から中空糸膜モジュールの第2端側に向かって30mmから35mmの範囲に、高さ5mm、幅8mm(長方形)の整流孔10を12箇所、周方向に均等に配置した。上記以外は実施例1と同様の方法で中空糸膜モジュール100Fを作製した。前述の方法で中空糸膜モジュール100Fの排濁率を評価した結果、排濁率は98%だった。
 流動パラメータF、割合R1、割合R2、割合R3及び割合R4を算出した。結果を表1に示す。
(実施例23)
 インナーパイプ11の長さを72mm(3×D)とした。また整流筒9には第1ポッティング部3の第2端側に接する位置に、高さ5mm、幅5mm(長方形)の第1整流孔を12箇所、周方向に均等に配置した。さらに第1ポッティング部3の第2端側から中空糸膜モジュールの第2端側に向かって30mmから35mmの範囲に、高さ5mm、幅5mm(長方形)の整流孔10を12箇所、周方向に均等に配置し、さらに第1ポッティング部3の第2端側から中空糸膜モジュールの第2端側に向かって40mmから45mmの範囲に、高さ5mm、幅5mm(長方形)の整流孔10を12箇所、周方向に均等に配置した。上記以外は実施例1と同様の方法で中空糸膜モジュール100Fを作製した。前述の方法で中空糸膜モジュール100Fの排濁率を評価した結果、排濁率は94%だった。
 流動パラメータF、割合R1、割合R2、割合R3及び割合R4を算出した。結果を表1に示す。
(実施例24)
 インナーパイプ11に替わり、長さが、第1ポッティング部3の第2端側(下側)から第2ポッティング部4の第1端側(上側)までの長さN(74×D)である中心空間部13を設けた中空糸膜モジュール100G(図17)を作製した。中心空間部13は中空糸膜モジュールの第2端側に向かって縮径する円錐形状とし、第1ポッティング部3の第2端側での中心空間部13の直径は20mmとし、第2ポッティング部4の第1端側では中心空間部13を設けず、中空糸膜1を略均等に配置した。また中心空間部13での中空糸膜の充填率A1は0%とし、中心空間部13の外側の中空糸膜の充填率A2は35%とした。上記以外は実施例1と同様の方法で中空糸膜モジュール100Gを作製した。前述の方法で中空糸膜モジュール100Gの排濁率を評価した結果、排濁率は94%だった。
 流動パラメータF、割合R3及び割合R4を算出した。結果を表2に示す。
(実施例25)
 中心空間部13の外側の中空糸膜の充填率A2を50%とした以外は実施例24と同様の方法で中空糸膜モジュール100Gを作製した。前述の方法で中空糸膜モジュール100Gの排濁率を評価した結果、排濁率は91%だった。
 流動パラメータF、割合R3及び割合R4を算出した。結果を表2に示す。
(実施例26)
 整流筒9の第1ポッティング部3の第2端側に接する位置に、高さ8mm、幅8mm(長方形)の第1整流孔を12箇所、周方向に均等に配置した。さらに第1ポッティング部3の第2端側から中空糸膜モジュールの第2端側に向かって30mmから34mmの範囲に、高さ4mm、幅4mm(長方形)の整流孔10を12箇所、周方向に均等に配置した。上記以外は実施例25と同様の方法で中空糸膜モジュール100Gを作製した。前述の方法で中空糸膜モジュール100Gの排濁率を評価した結果、排濁率は90%だった。
 流動パラメータF、割合R3及び割合R4を算出した。結果を表2に示す。
(実施例27)
 整流筒9の第1ポッティング部3の第2端側に接する位置に、高さ5mm、幅5mm(長方形)の第1整流孔を12箇所、周方向に均等に配置した。さらに第1ポッティング部3の第2端側から中空糸膜モジュールの第2端側に向かって30mmから35mmの範囲に、高さ5mm、幅5mm(長方形)の整流孔10を12箇所、周方向に均等に配置し、第1ポッティング部3の第2端側から中空糸膜モジュールの第2端側に向かって40mmから45mmの範囲に、高さ5mm、幅5mm(長方形)の整流孔10を12箇所、周方向に均等に配置した。上記以外は実施例25と同様の方法で中空糸膜モジュール100Gを作製した。前述の方法で中空糸膜モジュール100Gの排濁率を評価した結果、排濁率は86%だった。
 流動パラメータF、割合R3及び割合R4を算出した。結果を表2に示す。
(実施例28)
 円柱状の中心空間部13を設けた中空糸膜モジュール100H(図18)を作製した。第1ポッティング部3の第2端側での中心空間部13の直径は20mmとし、第2ポッティング部4の第1端側での中心空間部13の直径も20mmとした。上記以外は実施例24と同様の方法で中空糸膜モジュール100Hを作製した。前述の方法で中空糸膜モジュール100Hの排濁率を評価した結果、排濁率は94%だった。
 流動パラメータF、割合R3及び割合R4を算出した。結果を表2に示す。
(実施例29)
 中心空間部13の外側の中空糸膜の充填率A2を50%とした以外は実施例28と同様の方法で中空糸膜モジュール100Hを作製した。前述の方法で中空糸膜モジュール100Hの排濁率を評価した結果、排濁率は92%だった。
 流動パラメータF、割合R3及び割合R4を算出した。結果を表2に示す。
(実施例30)
 整流筒9の第1ポッティング部3の第2端側に接する位置に、高さ8mm、幅8mm(長方形)の第1整流孔を12箇所、周方向に均等に配置した。さらに第1ポッティング部3の第2端側から中空糸膜モジュールの第2端側に向かって30mmから34mmの範囲に、高さ4mm、幅4mm(長方形)の整流孔10を12箇所、周方向に均等に配置した。上記以外は実施例29と同様の方法で中空糸膜モジュール100Hを作製した。前述の方法で中空糸膜モジュール100Hの排濁率を評価した結果、排濁率は90%だった。
 流動パラメータF、割合R3及び割合R4を算出した。結果を表2に示す。
(実施例31)
 整流筒9の第1ポッティング部3の第2端側に接する位置に、高さ5mm、幅5mm(長方形)の第1整流孔を12箇所、周方向に均等に配置した。さらに第1ポッティング部3の第2端側から中空糸膜モジュールの第2端側に向かって30mmから35mmの範囲に、高さ5mm、幅5mm(長方形)の整流孔10を12箇所、周方向に均等に配置し、第1ポッティング部3の第2端側から中空糸膜モジュールの第2端側に向かって40mmから45mmの範囲に、高さ5mm、幅5mm(長方形)の整流孔10を12箇所、周方向に均等に配置した。上記以外は実施例29と同様の方法で中空糸膜モジュール100Hを作製した。前述の方法で中空糸膜モジュール100Hの排濁率を評価した結果、排濁率は87%だった。
 流動パラメータF、割合R3及び割合R4を算出した。結果を表2に示す。
(比較例1)
 図19に示す中空糸膜モジュール100Iを製作した。インナーパイプ及び中心空間部は設けず、整流筒9の内側の中空糸膜の充填率は50%とした。上記以外は実施例31と同様の方法で中空糸膜モジュール100Iを作製した。前述の方法で中空糸膜モジュール100Iの排濁率を評価した結果、排濁率は78%だった。
 割合R3及び割合R4を算出した。結果を表2に示す。
(比較例2)
 図20に示す中空糸膜モジュール100Jを製作した。整流筒は設けず、インナーパイプ11内側の中空糸膜の充填率A1は0%とし、インナーパイプ外側の中空糸膜の充填率A2は50%とした。上記以外は実施例5と同様の方法で中空糸膜モジュール100Jを作製した。前述の方法で中空糸膜モジュール100Jの排濁率を評価した結果、排濁率は78%だった。
 流動パラメータF、割合R1及び割合R2を算出した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2017年1月31日出願の日本特許出願(特願2017-15171)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の中空糸膜モジュールは浄水処理、工業用水処理、排水処理、海水淡水化、発酵液、食品、飲料などの各種液体の処理に使用することができる。
100A 中空糸膜モジュール
100B 中空糸膜モジュール
100C 中空糸膜モジュール
100D 中空糸膜モジュール
100E 中空糸膜モジュール
100F 中空糸膜モジュール
100G 中空糸膜モジュール
100H 中空糸膜モジュール
100I 中空糸膜モジュール
100J 中空糸膜モジュール
1 中空糸膜
2 筐体
2a 筐体上部キャップ
2b 筐体下部キャップ
2c 筐体サイドノズル
3 第1ポッティング部
4 第2ポッティング部
5 原液流入口
6 原液出口
7 ろ過液出口
8 貫通孔
9 整流筒
10 整流孔
11 インナーパイプ
12 側面開口部
13 中心空間部
14 ピン
15 第1ポッティングキャップ
16 第2ポッティングキャップ
17 ポッティング剤投入器

Claims (11)

  1.  軸方向における第1端と第2端とを有する筒状の筐体と、
     前記筐体内に収容される複数の中空糸膜と、
     前記筐体の前記第1端側に位置する複数の中空糸膜の端部を開口した状態で接着する第1ポッティング部と、
     前記筐体の前記第2端側に位置する複数の中空糸膜の端部を接着する第2ポッティング部とを備え、
     さらに前記第2端側から前記第1端側へ向かって前記中空糸膜の外側を流れる流体について、前記第1ポッティング部の前記第2端側の径方向中心部に指向して流れを発生させ、さらに前記第1ポッティング部の前記第2端側の径方向中心部から径方向外周側に指向して放射状に流れを発生させる整流構造を有する、中空糸膜モジュール。
  2.  前記整流構造が、前記第1ポッティング部の前記第2端側に設けられたインナーパイプと整流筒を備え、
     前記インナーパイプは前記筐体の径方向中心部に設けられ、
     前記インナーパイプは前記第1ポッティング部の前記第2端側の近傍においてその側面に1つ以上の側面開口部を有し、
     前記インナーパイプの内側の中空糸膜の充填率は、前記インナーパイプの外側の中空糸膜の充填率より小さく、
     前記整流筒は前記中空糸膜と前記筐体の間に設けられ、
     前記整流筒はその側面に1つ以上の整流孔を有し、
     前記筐体はその側面にサイドノズルを有する、請求項1に記載の中空糸膜モジュール。
  3.  前記整流構造が、前記第1ポッティング部の前記第2端側に設けられた中心空間部と整流筒を備え、
     前記中心空間部は前記筐体の径方向中心部に設けられ、
     前記中心空間部の中空糸膜の充填率は、前記中心空間部の外側の中空糸膜の充填率より小さく、
     前記整流筒は前記中空糸膜と前記筐体の間に設けられ、
     前記整流筒はその側面に1つ以上の整流孔を有し、
     前記筐体はその側面にサイドノズルを有する、請求項1に記載の中空糸膜モジュール。
  4.  前記サイドノズルの内径をDとし、前記第1ポッティング部の前記第2端側から前記筐体の第2端までの長さをLとしたとき、前記インナーパイプの長さがD以上L以下である、請求項2に記載の中空糸膜モジュール。
  5.  前記サイドノズルの内径をDとし、前記第1ポッティング部の前記第2端側から前記第2ポッティング部の前記第2端側までの長さをMとしたとき、前記中心空間部の長さがD以上M以下である、請求項3に記載の中空糸膜モジュール。
  6.  前記インナーパイプの内側の中空糸膜の充填率をA1、
     前記インナーパイプの外側の中空糸膜の充填率をA2、
     前記インナーパイプの軸方向に垂直な断面の断面積をT1、
     前記筐体の軸方向に垂直な断面の断面積をT2としたとき、
     下記式(1)の流動パラメータFが1.0以上8.0以下である、請求項2又は4に記載の中空糸膜モジュール。
     F=(A2-A1)×T1/T2 ・・・(1)
  7.  前記中心空間部の中空糸膜の充填率をA1、
     前記中心空間部の外側の中空糸膜の充填率をA2、
     前記中心空間部の軸方向に垂直な断面の断面積をT1、
     前記筐体の軸方向に垂直な断面の断面積をT2としたとき、
     下記式(1)の流動パラメータFが1.0以上8.0以下である、請求項3又は5に記載の中空糸膜モジュール。
     F=(A2-A1)×T1/T2 ・・・(1)
  8.  前記インナーパイプは、その側面に1つ以上の側面開口部を有し、
     前記サイドノズルの内径をDとしたとき、前記インナーパイプは、前記第1ポッティング部の前記第2端側から長さDの範囲において、その側面に1つ以上の第1側面開口部を有し、
     前記側面開口部の総開口面積のうち、前記第1側面開口部が占める総開口面積の割合R1が50%以上である、請求項2、4、6のいずれか1項に記載の中空糸膜モジュール。
  9.  前記筐体の軸方向に垂直な断面の断面積に対する、前記インナーパイプの前記第1側面開口部の総開口面積の割合R2が、5%以上50%以下である、請求項8に記載の中空糸膜モジュール。
  10.  前記筐体の軸方向に垂直な断面の断面積に対する、前記整流筒の前記整流孔の総開口面積の割合R3が、5%以上50%以下である、請求項2~9のいずれか1項に記載の中空糸膜モジュール。
  11.  前記サイドノズルの内径をDとしたとき、前記整流筒は、前記第1ポッティング部の前記第2端側から長さDの範囲において、その側面に1つ以上の第1整流孔を有し、
     前記整流孔の総開口面積のうち、前記第1整流孔が占める総開口面積の割合R4が50%以上である、請求項2~10のいずれか1項に記載の中空糸膜モジュール。
PCT/JP2018/003150 2017-01-31 2018-01-31 中空糸膜モジュール WO2018143250A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880009543.6A CN110234419B (zh) 2017-01-31 2018-01-31 中空纤维膜组件
US16/482,089 US11090610B2 (en) 2017-01-31 2018-01-31 Hollow fiber membrane module
KR1020197022122A KR102420006B1 (ko) 2017-01-31 2018-01-31 중공사막 모듈
EP18748262.5A EP3578248A4 (en) 2017-01-31 2018-01-31 HOLLOW FIBER MEMBRANE MODULE
AU2018214388A AU2018214388B2 (en) 2017-01-31 2018-01-31 Hollow fiber membrane module
JP2018515681A JP6341353B1 (ja) 2017-01-31 2018-01-31 中空糸膜モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017015171 2017-01-31
JP2017-015171 2017-01-31

Publications (1)

Publication Number Publication Date
WO2018143250A1 true WO2018143250A1 (ja) 2018-08-09

Family

ID=63040151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003150 WO2018143250A1 (ja) 2017-01-31 2018-01-31 中空糸膜モジュール

Country Status (7)

Country Link
US (1) US11090610B2 (ja)
EP (1) EP3578248A4 (ja)
JP (1) JP6341353B1 (ja)
KR (1) KR102420006B1 (ja)
CN (1) CN110234419B (ja)
AU (1) AU2018214388B2 (ja)
WO (1) WO2018143250A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230191332A1 (en) * 2021-12-20 2023-06-22 Saudi Arabian Oil Company Hollow fiber membrane module and method of making and using same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326327A (ja) * 1989-06-23 1991-02-04 Sakura Color Prod Corp マイクロカプセルの表面改質方法
JPH05161831A (ja) * 1991-12-16 1993-06-29 Mitsubishi Kasei Corp 中空糸膜モジュール及びそれを用いた分離方法
JPH11342320A (ja) 1998-06-02 1999-12-14 Toray Ind Inc 中空糸膜モジュールの運転方法
JP2010005615A (ja) 2008-05-28 2010-01-14 Asahi Kasei Chemicals Corp 中空糸膜モジュールを用いたろ過方法
WO2013136903A1 (ja) * 2012-03-15 2013-09-19 東レ株式会社 カートリッジ型中空糸膜モジュール
WO2015098266A1 (ja) * 2013-12-27 2015-07-02 東レ株式会社 中空糸膜モジュール
WO2016035798A1 (ja) * 2014-09-01 2016-03-10 東レ株式会社 中空糸膜モジュールおよび中空糸膜モジュールの製造方法
JP2017015171A (ja) 2015-07-01 2017-01-19 株式会社ジェイテクト ハブユニットおよびハブユニットの製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4666469A (en) * 1985-05-29 1987-05-19 The Dow Chemical Company Hollow fiber membrane device with inner wrap
JPH0711784Y2 (ja) 1989-07-25 1995-03-22 日東電工株式会社 フィルター
JPH0775657B2 (ja) * 1990-10-15 1995-08-16 旭化成工業株式会社 中空糸型モジュール
US5470469A (en) * 1994-09-16 1995-11-28 E. I. Du Pont De Nemours And Company Hollow fiber cartridge
JP4951860B2 (ja) * 2005-01-31 2012-06-13 東洋紡績株式会社 選択透過性膜モジュールの製造方法および選択透過性膜モジュール
CN201862365U (zh) * 2010-08-19 2011-06-15 苏州立升净水科技有限公司 导流式中空纤维膜组件及包含其的过滤设备
JP5512464B2 (ja) 2010-08-24 2014-06-04 旭化成ケミカルズ株式会社 中空糸膜モジュール、及びろ過方法
CN201760236U (zh) * 2010-09-13 2011-03-16 旭化成化学株式会社 中空纤维膜组件
CN103446887B (zh) * 2012-06-01 2016-04-13 珠海格力电器股份有限公司 可冲洗外压式超滤滤芯组件及净水器
HUE044836T2 (hu) * 2013-04-25 2019-11-28 Toray Industries Kazettás csõmembrán modul
CN203264561U (zh) * 2013-05-30 2013-11-06 浙江开创环保科技有限公司 一种中空纤维膜元件
KR101984034B1 (ko) * 2014-03-24 2019-05-30 코오롱인더스트리 주식회사 중공사막 모듈
CN104307371A (zh) 2014-11-07 2015-01-28 苏州博菡环保科技有限公司 简易型家用膜水处理净化器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326327A (ja) * 1989-06-23 1991-02-04 Sakura Color Prod Corp マイクロカプセルの表面改質方法
JPH05161831A (ja) * 1991-12-16 1993-06-29 Mitsubishi Kasei Corp 中空糸膜モジュール及びそれを用いた分離方法
JPH11342320A (ja) 1998-06-02 1999-12-14 Toray Ind Inc 中空糸膜モジュールの運転方法
JP2010005615A (ja) 2008-05-28 2010-01-14 Asahi Kasei Chemicals Corp 中空糸膜モジュールを用いたろ過方法
WO2013136903A1 (ja) * 2012-03-15 2013-09-19 東レ株式会社 カートリッジ型中空糸膜モジュール
WO2015098266A1 (ja) * 2013-12-27 2015-07-02 東レ株式会社 中空糸膜モジュール
WO2016035798A1 (ja) * 2014-09-01 2016-03-10 東レ株式会社 中空糸膜モジュールおよび中空糸膜モジュールの製造方法
JP2017015171A (ja) 2015-07-01 2017-01-19 株式会社ジェイテクト ハブユニットおよびハブユニットの製造方法

Also Published As

Publication number Publication date
CN110234419B (zh) 2021-09-24
CN110234419A (zh) 2019-09-13
US20200246754A1 (en) 2020-08-06
EP3578248A1 (en) 2019-12-11
JP6341353B1 (ja) 2018-06-13
AU2018214388B2 (en) 2023-05-18
KR102420006B1 (ko) 2022-07-11
KR20190105601A (ko) 2019-09-17
AU2018214388A1 (en) 2019-08-15
US11090610B2 (en) 2021-08-17
EP3578248A4 (en) 2020-03-11
JPWO2018143250A1 (ja) 2019-02-07

Similar Documents

Publication Publication Date Title
US6322703B1 (en) Method for purifying aqueous suspension
JP4951860B2 (ja) 選択透過性膜モジュールの製造方法および選択透過性膜モジュール
CN202179933U (zh) 复合多孔性中空纤维膜、膜组件、膜过滤装置
JP5798680B2 (ja) 加圧式中空糸膜モジュール
US10350549B2 (en) Hollow fiber membrane module and method for manufacturing hollow fiber membrane module
EP3107643B1 (en) Filtration element
JP6374291B2 (ja) 中空糸膜モジュール
JP6341353B1 (ja) 中空糸膜モジュール
JP4498373B2 (ja) 中空糸膜カートリッジ、並びにそれを用いた中空糸膜モジュール及びタンク型濾過装置
JP4556150B2 (ja) 高分子多孔質膜
JP2010234200A (ja) 中空糸膜モジュール
JP6277097B2 (ja) 中空糸膜、中空糸膜の製造方法、及び液体処理方法
JP4437527B2 (ja) 膜ろ過モジュール
JP2008221108A (ja) 液体分離膜モジュール
JP2023119191A (ja) 中空糸膜モジュールおよび中空糸膜モジュールの製造方法
JP2009136763A (ja) 中空糸型分離膜の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018515681

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748262

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197022122

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018214388

Country of ref document: AU

Date of ref document: 20180131

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018748262

Country of ref document: EP

Effective date: 20190902