WO2018143013A1 - Power distribution system in moving body - Google Patents

Power distribution system in moving body Download PDF

Info

Publication number
WO2018143013A1
WO2018143013A1 PCT/JP2018/001961 JP2018001961W WO2018143013A1 WO 2018143013 A1 WO2018143013 A1 WO 2018143013A1 JP 2018001961 W JP2018001961 W JP 2018001961W WO 2018143013 A1 WO2018143013 A1 WO 2018143013A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power converter
converter
command value
load
Prior art date
Application number
PCT/JP2018/001961
Other languages
French (fr)
Japanese (ja)
Inventor
良介 後藤
秀明 江崎
和馬 徳山
達也 小野寺
芳輝 原田
泰典 久次米
大野 達也
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN201880009197.1A priority Critical patent/CN110249494B/en
Publication of WO2018143013A1 publication Critical patent/WO2018143013A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/20Use of propulsion power plant or units on vessels the vessels being powered by combinations of different types of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • Y02T70/5218Less carbon-intensive fuels, e.g. natural gas, biofuels
    • Y02T70/5236Renewable or hybrid-electric solutions

Definitions

  • the present invention relates to a mobile power distribution system.
  • Patent Document 1 a propulsion system for a moving body such as a ship is known (see Patent Document 1).
  • the generator may trip due to a power load (for example, a crane) having a sudden fluctuation. Therefore, there was a risk of power outage. For this reason, when using a power load having a rapid fluctuation, it is necessary to operate an additional generator.
  • a power load for example, a crane
  • the power storage device can be connected to the power system via a power conversion device, and the amount of power fluctuation can be shared between the generator and the power storage device.
  • power measurement means is provided for each load to obtain the fluctuation amount, and the power of the power converter is increased before the generator's electromechanical system responds. There was a need to control.
  • the present invention has been made to solve the above-described problems, and allows a mobile power system to be operated with a single generator even when using a power load having rapid fluctuations by a simple method. It is an object.
  • a mobile power distribution system includes a generator having a prime mover as a driving force, and a fluctuation amount of electric power consumed or regenerated from the load (hereinafter referred to as electric power).
  • a first power converter having an end connected to the first power system and a DC terminal connected to the DC intermediate part; an AC terminal connected to the second power system; and a DC terminal connected to the DC intermediate part
  • a second power converter, a third power converter having both DC ends connected to the DC intermediate section and the power storage device, and the first power converter and the second power conversion from the first power system.
  • Supply to the second power grid A bus tie breaker that forms a path in parallel with the path, and the bus tie breaker is connected when the second power load is not operating, while the second power load is operating.
  • the first power converter is controlled based on a first power command value given by a low frequency component less than a predetermined frequency among the actual power values of the second power converter,
  • the second power converter is droop-controlled, and the third power converter controls the power so as to eliminate the unbalance of power flowing into and out of the direct current intermediate portion.
  • the bus tie breaker is opened and the first power system and the second power system are disconnected.
  • the first power system power is directly supplied from the generator to the first power load, while the first power system reaches the second power system via the first power converter and the second power converter.
  • Power is supplied to the second power load through the power supply path.
  • the electric power of the second power converter changes in accordance with the operating condition of the load.
  • the flow of power from the generator to the DC intermediate part is controlled by the first power converter.
  • the third power converter is controlled so as to absorb the power difference flowing into and out of the DC intermediate part.
  • the power difference between the first power converter and the second power converter is automatically absorbed by the power storage device.
  • the second power converter is droop-controlled, so that power supply to the second power load can be continued.
  • the 1st power converter is controlled based on the 1st electric power command value given by the low frequency component below predetermined frequency among the electric power actual values of the 2nd power converter, it is predetermined frequency among electric power load fluctuations. Only low frequency components less than the frequency appear as power fluctuations in the first power system, and frequency components above a predetermined frequency are absorbed by the power storage device under the control of the third power converter.
  • the bus tie breaker is closed and the first power system and the second power system are connected.
  • strain is formed.
  • the second power converter is droop-controlled, it can be operated in conjunction with a generator (first power system). Even if the generator is out of order, power can be supplied from the power storage device without power failure due to the effect of droop control. Therefore, the power system of the mobile body can be operated with one generator regardless of whether or not the power load having a rapid fluctuation is operated.
  • the mobile power distribution system performs droop control on the second power converter so as to be a point on a droop characteristic line indicating a relationship between the frequency of the second power system and the actual power value of the second power converter.
  • the droop characteristic line is adjusted so that the frequency of the second power system is a standard frequency, and the second power system is adjusted to the first power system.
  • the power of the second power converter may be adjusted to 0 kW, and the frequency of the second power grid may be adjusted to the standard frequency.
  • the second power converter is droop controlled so as to be one point on the droop characteristic line indicating the relationship between the frequency of the second power system and the actual power value of the second power converter.
  • the frequency of the second power system fluctuates according to the droop characteristic line with respect to the sudden fluctuation of the second power load.
  • the second power converter can function in the same manner as the generator during the self-sustaining operation.
  • the droop characteristic line can be adjusted so that the changed frequency becomes the standard frequency.
  • the second power converter when the second power system is connected to the first power system, the second power converter is operated in parallel with the generator, and the share rate of the steady load is adjusted by adjusting the droop characteristic line. Can do.
  • the steady load sharing ratio of the second power converter is 0% (power 0 kW)
  • the generator bears 100% of the load power consumption in the steady state. Thereby, the loss by the 2nd power converter can be controlled.
  • both the second power converter and the generator change transiently according to the droop characteristic line. Therefore, only the fluctuation component of the power load can be shared by the second power converter and the generator.
  • the second power converter can supply power instead without causing a power failure.
  • the power at this time is supplied from the power storage device. This indicates that in this operation, the power storage device can be used as a backup power source via the second power converter and the third power converter.
  • the power distribution system of the mobile body further includes a fourth power converter connected to the DC intermediate part, an electric motor is connected to an AC end of the fourth power converter, and a propulsion unit is connected to a propulsion shaft of the motor. May be attached.
  • the above configuration can be applied to a mobile electric propulsion system.
  • the power distribution system of the mobile body further includes a fourth power converter connected to the DC intermediate part, A motor generator may be connected to the AC terminal of the fourth power converter, and the main engine and the propeller may be attached to the propulsion shaft of the motor generator.
  • the above configuration can be applied to a hybrid propulsion system for a moving body.
  • the first power command value is a sum of a low frequency component less than a predetermined frequency among the actual values of the second power converter and a low frequency component less than a predetermined frequency among the actual power values of the fourth power converter. May be given.
  • the first power command value is given as the sum of the low frequency component of the actual value of the second power converter and the low frequency component of the actual power value of the fourth power converter.
  • the influence on the first power system caused by the power fluctuation and the rapid load fluctuation of the second power load can be suppressed.
  • the first power command value may give only the low frequency component of the actual power value of the fourth power converter.
  • the fourth power converter is subjected to power control based on a fourth power command value, and the fourth power command value is a rotation speed command value of the motor generator given from a console, and an actual motor generator.
  • the power command value of the motor generator obtained by the rotation speed control based on the deviation from the rotation speed of the motor generator, or the power command value of the motor generator given from the console.
  • the rotational speed control or power control of the motor generator can be performed by the fourth power converter by giving the rotational speed command value or the power command value from the console.
  • the charging rate of the power storage device is calculated based on the actual current value or the actual power value of the third power converter, and is charged and discharged so that the charging rate is within a predetermined range.
  • a charge / discharge correction power command value and a fourth charge / discharge correction power command value are calculated, the first charge / discharge correction power command value is added to the first power command value, and the fourth charge / discharge correction power command value is calculated. May be added to the fourth power command value.
  • the power difference between the first power converter, the second power converter, and the fourth power converter is automatically absorbed by charging / discharging of the power storage device.
  • the SOC State of Charge of the power storage device
  • the power system of the mobile body can be operated with one generator.
  • FIG. 1 is a diagram schematically showing a configuration of a moving body including a power distribution system for a moving body according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of the control device of FIG.
  • FIG. 3 is a block diagram illustrating a configuration of the power control unit in FIG. 2.
  • FIG. 4 is a block diagram showing the configuration of the power distribution system of the moving body when the tie breaker of FIG. 1 is opened.
  • FIG. 5 is a droop characteristic line used for droop control of the second power converter during the single operation.
  • FIG. 6 is a block diagram showing the configuration of the power distribution system of the moving body when the tie breaker of FIG. 1 is closed.
  • FIG. 1 is a diagram schematically showing a configuration of a moving body including a power distribution system for a moving body according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of the control device of FIG.
  • FIG. 3 is a block
  • FIG. 7 is a droop characteristic line used for the droop control of the second power converter during the interconnection operation.
  • FIG. 8 is a diagram schematically illustrating a configuration of a moving object including the power distribution system for the moving object according to the second embodiment of the present invention.
  • FIG. 9 is a block diagram showing a configuration of the control device of FIG.
  • FIG. 10 is a block diagram schematically showing an example of the inside of the control device of FIG.
  • FIG. 11 is a block diagram schematically showing another example inside the control device of FIG.
  • FIG. 12 is a diagram schematically illustrating a configuration of a moving object including the power distribution system for the moving object according to the third embodiment of the present invention.
  • FIG. 1 is a diagram schematically showing a configuration of a mobile object including a power distribution system 100 for a mobile object according to the first embodiment of the present invention.
  • a mobile power distribution system 100 includes a generator 5, a power load 7, a power conversion device 1, a power storage device 2, an AC bus line 8, and a bus tie breaker. 4, a control device 3, and a propulsion system 200.
  • the generator 5 is a main power source that supplies power to the power load 7.
  • the generator 5 uses the prime mover 6 as a driving force to cover the power used by the moving body. If this power fluctuation is very large, the power supply from the generator 5 may be cut off by an engine trip.
  • the power load 7 includes a first power load 7 a and a second power load 7 b connected to the AC bus line 8.
  • the first power load 7 a is a device that consumes the power supplied from the generator 5.
  • a plurality of first power loads 7a are provided, all of which are devices that do not include a sudden load fluctuation of power.
  • the first power load 7a includes, for example, equipment that operates continuously, such as hotel loads such as ship lighting and air conditioning, and a device that operates in a short time, such as a winch and an engine starter motor of the main engine 70.
  • the 2nd electric power load 7b is an apparatus which consumes electric power, Comprising: For example, it is an apparatus including the load fluctuation
  • including abrupt fluctuation means that the amount of change in consumed power, such as the rate of time change of power, the amplitude of a predetermined frequency component of power, or the amount of power fluctuation in steps, is greater than or equal to a predetermined value. That means. “Does not include sudden fluctuation” means that these are less than a predetermined value.
  • the predetermined value can be determined from the information related to the performance to follow the load variation, which is presented by the engine manufacturer.
  • the AC bus line 8 includes a first bus line 8 a connected to the generator 5, the first power load 7 a and the power converter 1, and a second bus line connected to the second power load 7 b and the power converter 1. This is a power supply path configured by 8b.
  • the first bus line 8 a and the second bus line 8 b are connected or disconnected by the bus tie breaker 4.
  • the bus tie breaker 4 is connected when the second power load 7b is not operating, and is disconnected when the second power load 7b is operating. In the present embodiment, the opening / closing of the bus tie breaker 4 is controlled by the control device 3.
  • the power system connected to the first bus line 8a is referred to as “first power system”, and the power system connected to the second bus line 8b is referred to as “second power system”. That's it.
  • the bus tie breaker 4 connects the first power system (8a) and the second power system (8b) to be openable and closable, and also connects the first power converter 11 and the first power converter 11 to the first power system (8a).
  • a path that is parallel to the power supply path that reaches the second power system (8b) via the second power converter 12 can be configured.
  • the power conversion device 1 has one terminal connected to the first power system (8a) and the other terminal connected to the second power system (8b). Specifically, the power conversion device 1 includes a first power converter 11, a second power converter 12, a third power converter 13, and a direct current intermediate unit 9.
  • the first power converter 11 adjusts the power consumed from the first power system (8a).
  • the first power converter 11 is an AC-DC converter.
  • the AC terminal of the first power converter 11 is connected to the first power system (8 a), and the DC terminal of the first power converter 11 is connected to the DC intermediate unit 9.
  • the second power converter 12 supplies power to the second power system (8b).
  • the second power converter 12 is an AC-DC converter.
  • the direct current end of the second power converter 12 is connected to the direct current intermediate section 9, and the alternating current end of the second power converter 12 is connected to the second power system (8b).
  • the third power converter 13 is a DC / DC converter that controls the power so as to eliminate the unbalance of the power flowing into and out of the direct current intermediate unit 9.
  • One DC terminal of the third power converter 13 is connected to the DC intermediate unit 9, and the other DC terminal of the third power converter 13 is connected to the power storage device 2.
  • the DC intermediate unit 9 is connected to the DC terminal of the first power converter 11, the DC terminal of the second power converter 12, and one DC terminal of the third power converter 13.
  • the power storage device 2 is connected to the other DC terminal of the third power converter 13.
  • the power storage device 2 is composed of, for example, a secondary battery and a capacitor.
  • a secondary battery for example, a lithium ion battery, a nickel metal hydride battery, and a lead storage battery may be used.
  • a capacitor for example, a lithium ion capacitor, an electric double layer capacitor, a nano hybrid capacitor, or a carbon nanotube capacitor may be used.
  • the power distribution system 100 of the present embodiment is applied to a ship equipped with a machine propulsion system (hereinafter also referred to as a machine propulsion ship).
  • the propulsion system 200 includes a main machine 70 as a main drive source of the propulsion device 80.
  • the propulsion device 80 is a marine propeller.
  • the main machine 70 is independent of the generator 5 and is configured to drive the propulsion device 80 only by the thrust of the main machine 70.
  • the configuration of the propulsion system 200A differs depending on the type of ship on which the power distribution system 100A is mounted, and examples include a hybrid ship, an electric propulsion ship, and a shaft generator-equipped mechanical propulsion ship.
  • the control device 3 has a memory and an arithmetic device (both not shown), and controls the power converter 1, the opening / closing of the bus tie breaker 4, the generator 5 and the propulsion system 200.
  • the control device 3 according to the present embodiment controls each element of the moving body according to operation information from the console 40.
  • the control device 3 includes a main control unit 30, a power control unit 31, a droop control unit 32, a charge / discharge control unit 33, and a droop control unit 35. Each of these units is a function realized by executing a program stored in the memory in the arithmetic device.
  • the functions of the power control unit 31, the droop control unit 32, the charge / discharge control unit 33, and the droop control unit 35 are respectively the arithmetic device of the first power converter 11, the arithmetic device of the second power converter 12, You may include in the program of the arithmetic unit of the 3rd power converter 13, and the engine control apparatus of the generator 5.
  • FIG. 1 The functions of the power control unit 31, the droop control unit 32, the charge / discharge control unit 33, and the droop control unit 35 are respectively the arithmetic device of the first power converter 11, the arithmetic device of the second power converter 12, You may include in the program of the arithmetic unit of the 3rd power converter 13, and the engine control apparatus of the generator 5.
  • the main control unit 30 selects the operation mode of the propulsion system 200 based on, for example, operation information indicating the position of the lever input from a lever provided on the console 40, and activates / stops the components of the propulsion system 200. .
  • the main control unit 30 generates an open / close command for the bus tie breaker 4 according to the operation mode of the moving body, but the bus tie breaker 4 may be opened / closed directly by the driver, for example.
  • the main control part 30 may start and stop the generator 5, and may be started and stopped from a power management system.
  • the power management system adjusts the droop characteristic line in the droop control described later and manages the actual power value of the power converter.
  • the power control unit 31 determines the power to be converted by the first power converter 11.
  • the 1st power converter 11 is controlled so that it may become 1 electric power command value.
  • the power control unit 31 includes a filter 311 (see the block diagram in FIG. 3).
  • the filter 311 is a low-pass filter or a moving average filter having a constant time constant.
  • the actual power value of the second power converter 12 is input from the main control unit 30, and the filter 311 passes only low frequency components less than a predetermined frequency among the actual power values of the second power converter 12, It outputs to the 1st power converter 11 as 1 electric power command value.
  • the droop control unit 32 performs the droop control on the second power converter 12.
  • the “droop control” is control in which the second power converter 12 has characteristics corresponding to the generator by building a governor model for controlling the generator inside the control device 3.
  • the second power converter 12 having characteristics corresponding to a generator, it is possible to seamlessly switch between independent operation and grid interconnection operation. Since “droop control” is a well-known technique, detailed description thereof is omitted. Refer to “G. ⁇ ⁇ ⁇ Marina & E. Gatti,“ Large Power PWM IGBT Converter for Shaft Alternator Systems ”, 35th Annual IEEE Power Electronics Specialists Conference, 2004, for details.
  • the frequency of the power system and the power (active power) exchanged with the power system by the second power converter 12 are detected by the respective sensors (not shown) and the droop control is performed. It is input to the unit 32 and used for these controls in the droop control.
  • the charge / discharge control unit 33 monitors the voltage of the DC intermediate unit 9 based on sensor data from a voltage sensor and a current sensor (not shown) in the third power converter 13, and the voltage of the DC intermediate unit 9 is The charge / discharge control of the power storage device 2 is performed so as to be a constant value.
  • the charge / discharge control unit 33 controls the charge / discharge of the power storage device 2 by the third power converter 13 in accordance with the change in the voltage of the direct current intermediate unit 9. As a result, the power storage device 2 absorbs the difference between the power flowing into the DC intermediate unit 9 and the power flowing out from the DC intermediate unit 9.
  • the droop control unit 35 detects active power, obtains a frequency target value based on the droop characteristic, and controls the rotational speed of the prime mover (engine, turbine, etc.) of the generator 5.
  • the speed of following the frequency fluctuation to the load fluctuation is determined by mechanical characteristics such as the inertia of the generator.
  • FIG. 4 is a block diagram illustrating a configuration of the power distribution system 100 of the moving body when the bus tie breaker 4 is opened. As shown in FIG. 4, the bus tie breaker 4 is in a disconnected state between the first power system (8a) and the second power system (8b).
  • first power system (8a) power is directly supplied from the generator 5 to the first power load 7a, but the second power system (8b) is separated from the first power system (8a). Power is supplied to the second power load 7b from the one power system (8a) via the first power converter 11 and the second power converter 12.
  • the power supplied to the second power system (8b) through the second power converter 12 changes according to the operating condition of the second power load 7b, and accordingly, the power of the second power system (8b) is changed.
  • the frequency also changes.
  • the second power converter 12 is droop-controlled by the droop control unit 32 (see FIG. 2).
  • FIG. 5 is a droop characteristic line used for the droop control of the second power converter 12 during the single operation. As shown in FIG.
  • the droop characteristic is a relationship between active power (positive during power generation) and the system frequency, and is set such that the system frequency decreases as the active power increases.
  • the droop rate is defined as the difference between the frequency at the rated load and the frequency at no load divided by the rated frequency. Usually, the droop rate is set to the same value for each power source, but may be set to a different value as necessary.
  • the droop control unit 32 performs the droop control on the second power converter 12 so as to be one point on the droop characteristic line indicating the relationship between the frequency of the second power system (8b) and the actual power value of the second power converter 12. .
  • FIG. 5A is a droop characteristic line set in the steady state of the second power converter 12.
  • the droop characteristic line has a frequency corresponding to P1 as the standard frequency. (Frequency target value) is set so as to be Fs (a line passing through the x mark in the figure).
  • FIG. 5 (b) shows a droop characteristic line when a sudden load fluctuation occurs in the second electric power load 7b (for example, a crane).
  • the 2nd power converter 12 reduces the frequency of a 2nd electric power grid
  • the power management system adjusts the droop characteristic line so as to return the lowered frequency of the second power system (8b) to the standard frequency Fs that is the target value (in the direction of the arrow in (2)).
  • FIG. 5C is a droop characteristic line of the second power converter 12 newly set by adjustment from the power management system.
  • the new droop characteristic line is set so that the frequency corresponding to P2 becomes the standard frequency (frequency target value) Fs.
  • the second power converter 12 since the second power converter 12 is droop-controlled, the second power converter 12 operates independently. Sometimes it can function like a generator. Thereby, the electric power supply to the 2nd electric power load 7b can be continued.
  • load fluctuation does not become a problem unlike an engine generator.
  • the first power converter 11 adjusts the power consumed from the first power system (8a). Specifically, since the first power converter 11 is controlled based on the first power command value given by the low frequency component less than the predetermined frequency among the actual power values of the second power converter 12, the predetermined frequency Less than low frequency component power fluctuations appear as load fluctuations in the first power system, and power fluctuations of frequency components above a predetermined frequency are absorbed by the power storage device 2. Thereby, the load fluctuation seen from the generator 5 is suppressed and the trip of the generator 5 by the sudden load fluctuation can be prevented.
  • FIG. 6 is a block diagram illustrating a configuration of the power distribution system 100 of the moving body when the bus tie breaker 4 is closed.
  • the first power system (8 a) and the second power system (8 b) are connected by the bus tie breaker 4.
  • route from a 1st power system (8a) to the 2nd power system (8b) via the 1st power converter 11 and the 2nd power converter 12 is formed.
  • a case where the bus tie breaker 4 is closed and the second power converter 12 is operated in conjunction with the generator 5 is referred to as a linked operation.
  • the power load sharing ratio of the generator or the power converter that is connected can be controlled.
  • the “first power system” and the “second power system” are not distinguished and are simply referred to as “power system”.
  • the “second power load 7b” is not operated during the interconnected operation, the “first power load 7a” and the “second power load 7b” are not distinguished from each other and are simply referred to as “power loads”.
  • FIG. 7 is a droop characteristic line used for droop control of the second power converter 12 and the generator 5 during the interconnection operation.
  • the second power converter 12 is droop-controlled so as to be one point on the droop characteristic line indicating the relationship between the frequency of the power system and the actual power value of the second power converter 12.
  • the generator 5 is also droop-controlled so as to be one point on the droop characteristic line.
  • FIG. 7A is a droop characteristic line set in the steady state of the second power converter 12 and the generator 5.
  • the droop characteristic line of the second power converter 12 indicates the standard frequency (frequency target) of the power system so that the second power converter 12 does not give power to the power system in a steady state. Value
  • the electric power command value is set to 0 kW with respect to Fs (x mark on the straight line).
  • the droop characteristic line of the generator 5 is set to the power command value Pc1 with respect to the standard frequency (frequency target value) Fs of the power system so that the generator 5 gives power to the power system in a steady state. (X on the straight line).
  • FIG. 7B shows a droop characteristic line when a load change occurs in the power load 7.
  • the power load is reduced from Pc1 to Pc2.
  • the respective operating points change according to the droop characteristic line so that the sum of the generated power of the generator 5 and the generated power of the power converter 12 becomes Pc2.
  • the frequency increases, and the operating point of the second power converter 12 moves to the mark (1) on the straight line. In this case, the power converter 12 consumes power from the power system.
  • the speed of following the frequency fluctuation to the load fluctuation is determined by mechanical characteristics such as the inertia of the generator and the operating characteristics of the power converter. Thereafter, the power management system adjusts each droop characteristic line so that the frequency of the raised power system is returned to the standard frequency Fs and the power of the power converter 12 is returned to 0 kW (in the direction of the arrow in (2)).
  • FIG. 7C is a droop characteristic line of the newly set second power converter 12 and generator 5.
  • the droop characteristic line of the second power converter 12 changes transiently
  • the droop characteristic line of the second power converter 12 returns to the original operating point.
  • Power command value (0 kW) system frequency is the standard frequency Fs.
  • the generator 5 bears 100% of the load power consumption (Pc2).
  • Pc2 load power consumption
  • the second power converter operates in conjunction with the generator 5 by droop control, even if the generator 5 fails, power can be supplied to the power load 7. Because it can, it will not lead to a power outage. In this case, the power converter 12 is operated alone, and necessary power can be supplied from the power storage device 2.
  • the power supply path to the power load 7 is switched by the bus tie breaker 4, regardless of whether or not the power load 7 having a sudden change is operated.
  • One machine can operate the power system of a mobile unit.
  • FIG. 8 is a diagram schematically showing a configuration of a mobile object including a power distribution system for a mobile object according to the second embodiment of the present invention.
  • the power distribution system 100A is different from the first embodiment (FIG. 1) in that it is applied to a ship equipped with an electric propulsion system.
  • the power conversion device 1 ⁇ / b> A further includes a fourth power converter 14 connected to the DC intermediate unit 9, and the propulsion system 200 ⁇ / b> A includes a motor generator 90 connected to the AC terminal of the fourth power converter 14.
  • a propulsion device 80 attached to the propulsion shaft of the motor generator 90 via a reduction gear 60.
  • the motor generator 90 functions as a main drive source of the propulsion device 80.
  • the motor generator 90 receives electric power from the generator 5 connected to the bus line 8 via the first power converter 11 and the fourth power converter 14 to generate driving force, which is supplied to the propulsion device 80.
  • the propulsor 80 is driven by giving.
  • the motor generator 90 operates exclusively as an electric motor, but may operate as a generator.
  • the first power converter 11 is power-controlled based on the first power command value
  • the fourth power converter 14 is power-controlled based on the fourth power command value.
  • 3 A of control apparatuses are provided with the power control part 34 which controls the 4th power converter 14 with the power control part 31 which controls the 1st power converter 11 (refer the block diagram of FIG. 9).
  • FIG. 10 is a block diagram schematically showing an example of the inside of the control device 3A.
  • the power control unit 31 of the first power converter 11 includes a first filter 311, a second filter 312, and an adder 313.
  • the first filter 311 is a low-pass filter or a moving average filter having a constant time constant.
  • the actual power value of the second power converter 12 is input to the first filter 311 from the main control unit (30).
  • the first filter 311 passes only a low frequency component having a frequency less than a predetermined frequency among the actual power values of the second power converter 12 and outputs this to the adder 313.
  • the second filter 312 is a low-pass filter or a moving average filter having a constant time constant.
  • the actual power value of the fourth power converter 14 is input to the second filter from the power management system.
  • the second filter 312 passes only the low frequency component below the predetermined frequency among the actual power values of the fourth power converter 14 and outputs this to the adder 313.
  • the adder 313 adds the low frequency component of the actual value of the second power converter 12 and the low frequency component of the actual power value of the fourth power converter 14, and uses this as the first power command value for the first power conversion.
  • the time constant of the first filter 311 and the time constant of the second filter 312 may be the same or different.
  • the first power command value is a low frequency component of the actual value of the second power converter 12 and a low frequency component of the actual power value of the fourth power converter 14. Therefore, for example, the influence on the first power system (8a) caused by the power fluctuation of the motor generator 90 and the sudden load fluctuation of the second power load 7b can be suppressed.
  • the low frequency component of the actual power value of the fourth power converter 14 may be used as the first power command value.
  • the main control unit 30 includes a first lookup table 301 and a second lookup table 302.
  • the first look-up table 301 is input with operation information (for example, a power saving command) indicating the position of the lever input from the lever provided on the console 40.
  • operation information for example, a power saving command
  • a power command value of the motor generator 90 corresponding to the lever position of the console 40 is stored in advance, and the motor generator 90 corresponding to the lever position corresponding to the input operation information is stored.
  • a power command value is set and output to the power control unit 34 of the fourth power converter 14.
  • the second look-up table 302 is input with operation information (for example, speed command) indicating the position of the lever input from the lever provided on the console 40.
  • operation information for example, speed command
  • the rotational speed command value of the motor generator 90 corresponding to the lever position of the console 40 is stored in advance, and the motor generator 90 corresponding to the lever position according to the input operation information. Is set to the power controller 34 of the fourth power converter 14.
  • the power control unit 34 of the fourth power converter 14 includes an adder / subtractor 341, a PID control unit 342, and a changeover switch 343.
  • the adder / subtractor 341 subtracts the actual rotational speed input from the rotational speed detection means (not shown) from the rotational speed command value of the motor generator 90 input from the second look-up table 302, and subtracts this.
  • the data is output to the PID control unit 342.
  • the PID control unit 342 generates a power command value for the motor generator 90 by performing proportional processing, integration processing, and differentiation processing on the deviation between the input rotation speed command value and the actual rotation speed of the motor generator 90, This is output to the changeover switch 343.
  • the integration process and the differentiation process may be omitted.
  • the changeover switch 343 selects either the power command value of the motor generator 90 set from the first look-up table 301 or the power command value of the motor generator 90 generated by the PID control unit 342 as the fourth power command value. Is output to the fourth power converter 14.
  • the changeover switch 343 can be operated by a changeover command from the main control unit 30. Further, there may be a propulsion system in which the changeover switch 343 does not exist and only one of the motor generator power command value and the motor generator rotation speed command value is used.
  • the fourth power command value is obtained by the motor generator 90 obtained by the rotation speed control based on the deviation between the motor speed command value of the motor generator 90 given from the console 40 and the actual motor speed of the motor generator 90. Since it is the power command value or the power command value of the motor generator 90 given from the console 40, the fourth power converter 14 is provided by giving the rotation speed command value or the power command value from the console 40. Thus, the rotational speed control or power control of the motor generator 90 can be performed.
  • FIG. 11 is a block diagram schematically showing another example inside the control device 3A.
  • the control device 3A includes an SOC calculation unit 411, a charge / discharge power command value calculation unit 412, a power distribution calculation unit 413, an adder 414, and an adder 415.
  • the actual current value or actual power value of the third power converter 13 is input to the SOC calculation unit 411 from the power management system.
  • the SOC calculation unit 411 calculates the charging rate of the power storage device 2 based on the actual current value of the third power converter 13 or the actual power value, and outputs this to the charge / discharge power command value calculation unit 412.
  • the charge / discharge power command value calculation unit 412 calculates a charge / discharge power command value based on the charge rate of the power storage device 2 and outputs this to the power distribution calculation unit 413.
  • the power distribution calculation unit 413 Based on the charge / discharge power command value, the power distribution calculation unit 413 performs charge / discharge so that the charge rate falls within a predetermined range, and the first charge / discharge correction power command value and the fourth charge / discharge correction power.
  • the command value is calculated, the first charge / discharge correction power command value is output to the adder 414, and the fourth charge / discharge correction power command value is output to the adder 415.
  • the adder 414 adds the first charge / discharge correction power command value to the first power command value, and outputs this to the first power converter 11.
  • the first power command value is the sum of the low frequency component of the actual value of the second power converter 12 and the low frequency component of the actual power value of the fourth power converter 14 (output value of the adder 313 in FIG. 10). Or a predetermined value may be used.
  • the adder 415 adds the fourth charge / discharge correction power command value to the fourth power command value, and outputs this to the fourth power converter 14.
  • the fourth power command value may be a rotation speed command value from the console 40 or a value obtained from the power command value (an output value of the changeover switch 343 in FIG. 10), or may be a predetermined value. Also good.
  • the power storage device 2 is added by adding the first charge / discharge correction power command value and the fourth charge / discharge correction power command value based on the actual value of the third power converter 13. SOC control can be realized.
  • FIG. 12 is a diagram schematically showing a configuration of a mobile object including a mobile power distribution system according to the third embodiment of the present invention.
  • the power distribution system 100B is different from the first embodiment (FIG. 1) in that it is applied to a ship equipped with a hybrid type propulsion system.
  • the power converter 1 ⁇ / b> A further includes a fourth power converter 14 connected to the DC intermediate unit 9, and the propulsion system 200 ⁇ / b> B includes a motor generator 90 connected to the AC terminal of the fourth power converter 14.
  • a main unit 70 and a propulsion unit 80 which are attached to the propulsion shaft of the motor generator 90 via a reduction gear 60.
  • the main engine 70 functions as a main drive source of the propulsion device 80
  • the motor generator 90 functions as an auxiliary drive source of the propulsion device 80.
  • the motor generator 90 receives electric power from the generator 5 connected to the bus line 8 via the first power converter 11 and the fourth power converter 14 to generate driving force, which is supplied to the propulsion device 80.
  • the motor generator 90 receives power from the main machine 70 to generate power, and gives it to the bus line 8 via the fourth power converter 14 and the first power converter 11 to thereby generate a bus by the generator 5.
  • the generator 5 may be stopped and the motor generator 90 may be the main power source.
  • the “moving body” is a ship, but is not particularly limited, and may be a vehicle (railway vehicle, automobile, etc.) or an airplane as long as it moves.
  • the “propulsion device” is a marine propeller, but is not particularly limited, and may be a wheel or a propeller for flight as long as it propels a moving body.
  • the present invention is useful for a power system of a moving body such as a ship.

Abstract

A power distribution system in a moving body, provided with a first power system connected to a power generator and a first power load in which the amount of power fluctuation is less than a prescribed value, a second power system connected to a second power load in which the amount of fluctuation may reach or exceed the prescribed value, a first power converter, a second power converter, a third power converter, and a bus tie breaker. When the second power load is not operating, the bus tie breaker is in a connected state, and when the second power load is operating, the bus tie breaker is in a cut-off state. The first power converter is controlled on the basis of a first power command value given by a low-frequency component, below a prescribed frequency, of the actual power value of the second power converter. The second power converter is droop-controlled. The power of the third power converter is controlled so as to resolve the imbalance of power flowing into and out from a DC intermediate part.

Description

移動体の配電システムMobile power distribution system
 本発明は、移動体の配電システムに関する。 The present invention relates to a mobile power distribution system.
 従来から、例えば船舶等の移動体の推進システムが知られている(特許文献1参照)。最近では、発電機を高負荷で使用することによる効率向上、およびメンテナンスコスト低減の観点から、移動体の電力を発電機1台のみで運用する(以下、single generator operationともいう)ことが望ましい。 Conventionally, a propulsion system for a moving body such as a ship is known (see Patent Document 1). In recent years, it is desirable to operate the power of a mobile body with only one generator (hereinafter also referred to as single generator operation) from the viewpoint of improving efficiency by using a generator at a high load and reducing maintenance costs.
特開2016-55850号公報Japanese Unexamined Patent Publication No. 2016-55850
 しかし、上記従来の移動体の推進システムの運用に必要な電力を発電機1台で賄うこと
を想定した場合、急激な変動をもつ電力負荷(例えばクレーン等)によって発電機がトリップする恐れがあったため、停電のリスクが存在していた。そのため、急激な変動をもつ電力負荷を使用する場合は、追加の発電機を運転する必要があった。
However, if it is assumed that the power required for operation of the conventional mobile propulsion system is covered by a single generator, the generator may trip due to a power load (for example, a crane) having a sudden fluctuation. Therefore, there was a risk of power outage. For this reason, when using a power load having a rapid fluctuation, it is necessary to operate an additional generator.
 あるいは、追加の発電機の代わりに、電力変換装置を介して電力貯蔵装置を電力系統に接続し、電力の変動量を発電機と電力貯蔵装置とで分担することもできる。しかし、変動量の大部分を電力貯蔵装置に分担させるには、各負荷に電力計測手段を設けて変動量を求め、発電機の電気機械系が応答するより前に電力変換装置の電力を高速に制御する必要があった。 Alternatively, instead of an additional generator, the power storage device can be connected to the power system via a power conversion device, and the amount of power fluctuation can be shared between the generator and the power storage device. However, in order to share most of the fluctuation amount to the power storage device, power measurement means is provided for each load to obtain the fluctuation amount, and the power of the power converter is increased before the generator's electromechanical system responds. There was a need to control.
 本発明は上記のような課題を解決するためになされたもので、簡便な方法により、急激な変動をもつ電力負荷を使用する場合でも、移動体の電力系統を発電機1台で運用することを目的としている。 The present invention has been made to solve the above-described problems, and allows a mobile power system to be operated with a single generator even when using a power load having rapid fluctuations by a simple method. It is an object.
 上記目的を達成するために、本発明のある形態に係る移動体の配電システムは、原動機を駆動力とする発電機、及び、負荷によって消費または負荷から回生される電力の変動量(以下、電力負荷変動と呼ぶ)が所定値未満の第1電力負荷、に接続される第1電力系統と、電力負荷変動が前記所定値以上となり得る第2電力負荷に接続される第2電力系統と、交流端が前記第1電力系統に接続され且つ直流端が直流中間部に接続された第1電力変換器と、交流端が前記第2電力系統に接続され且つ直流端が前記直流中間部に接続された第2電力変換器と、両直流端がそれぞれ前記直流中間部と電力貯蔵装置に接続された第3電力変換器と、前記第1電力系統から前記第1電力変換器及び前記第2電力変換器を介して前記第2電力系統へ至る給電経路に対して並列を成す経路を構成するバスタイブレーカと、を備え、前記バスタイブレーカは、前記第2電力負荷が運転していないときには接続状態とされる一方、前記第2電力負荷が運転しているときには遮断状態とされ、前記第1電力変換器は、前記第2電力変換器の電力実績値のうち所定周波数未満の低周波数成分で与えられる第1電力指令値に基づいて制御され、前記第2電力変換器はドループ制御され、前記第3電力変換器は前記直流中間部に流出入する電力の不平衡を解消するよう電力を制御する。 In order to achieve the above object, a mobile power distribution system according to an embodiment of the present invention includes a generator having a prime mover as a driving force, and a fluctuation amount of electric power consumed or regenerated from the load (hereinafter referred to as electric power). A first power system connected to a first power load whose load fluctuation is less than a predetermined value, a second power system connected to a second power load whose power load fluctuation can be greater than or equal to the predetermined value, and AC A first power converter having an end connected to the first power system and a DC terminal connected to the DC intermediate part; an AC terminal connected to the second power system; and a DC terminal connected to the DC intermediate part A second power converter, a third power converter having both DC ends connected to the DC intermediate section and the power storage device, and the first power converter and the second power conversion from the first power system. Supply to the second power grid A bus tie breaker that forms a path in parallel with the path, and the bus tie breaker is connected when the second power load is not operating, while the second power load is operating. The first power converter is controlled based on a first power command value given by a low frequency component less than a predetermined frequency among the actual power values of the second power converter, The second power converter is droop-controlled, and the third power converter controls the power so as to eliminate the unbalance of power flowing into and out of the direct current intermediate portion.
 上記構成によれば、電力負荷変動(例えば電力の時間変化率、電力の所定周波数成分の振幅、またはステップ状の電力変動量など)が所定値以上となり得る第2電力負荷を運転する場合は、バスタイブレーカを開き、第1電力系統および第2電力系統の間を遮断状態とする。これにより、第1電力系統では発電機から第1電力負荷に直接電力が供給される一方で、第1電力系統から第1電力変換器及び第2電力変換器を介して第2電力系統へ至る給電経路を通じて第2電力負荷に電力が供給される。第2電力変換器の電力は負荷の運転状況に応じて成り行きで変化する。一方、発電機から直流中間部までの電力の流れは第1電力変換器によって制御される。また、直流中間部に流出入する電力差を吸収するように第3電力変換器が制御される。これによって、第1電力変換器と第2電力変換器の電力差は自動的に電力貯蔵装置へ吸収される。第2電力負荷において急激な負荷変動が生じた場合、第2電力変換器はドループ制御されているので、第2電力負荷への電力供給を継続することができる。また、第1電力変換器は第2電力変換器の電力実績値のうち所定周波数未満の低周波数成分で与えられる第1電力指令値に基づいて制御されているので、電力負荷変動のうち所定周波数未満の低周波数成分のみが第1電力系統における電力変動として現れ、所定周波数以上の周波数成分は第3電力変換器の制御により電力貯蔵装置で吸収される。これにより、発電機エンジンの負荷変動は抑制され、急激な負荷変動による発電機のトリップを防ぐことができる。このように、所定周波数を調整するのみで発電機エンジンの負荷変動の大きさを設定できるので、制御調整が容易であり、各負荷に電力計測手段を設ける必要もない。 According to the above configuration, when operating the second power load in which the power load fluctuation (for example, the power temporal change rate, the amplitude of the predetermined frequency component of the power, or the stepped power fluctuation amount) can be a predetermined value or more, The bus tie breaker is opened and the first power system and the second power system are disconnected. Thus, in the first power system, power is directly supplied from the generator to the first power load, while the first power system reaches the second power system via the first power converter and the second power converter. Power is supplied to the second power load through the power supply path. The electric power of the second power converter changes in accordance with the operating condition of the load. On the other hand, the flow of power from the generator to the DC intermediate part is controlled by the first power converter. Further, the third power converter is controlled so as to absorb the power difference flowing into and out of the DC intermediate part. Thereby, the power difference between the first power converter and the second power converter is automatically absorbed by the power storage device. When a sudden load fluctuation occurs in the second power load, the second power converter is droop-controlled, so that power supply to the second power load can be continued. Moreover, since the 1st power converter is controlled based on the 1st electric power command value given by the low frequency component below predetermined frequency among the electric power actual values of the 2nd power converter, it is predetermined frequency among electric power load fluctuations. Only low frequency components less than the frequency appear as power fluctuations in the first power system, and frequency components above a predetermined frequency are absorbed by the power storage device under the control of the third power converter. Thereby, the load fluctuation of a generator engine is suppressed and the trip of the generator by a sudden load fluctuation can be prevented. Thus, since the magnitude of the load fluctuation of the generator engine can be set only by adjusting the predetermined frequency, control adjustment is easy, and it is not necessary to provide power measuring means for each load.
 一方、第2電力負荷を運転しない場合は、バスタイブレーカを閉じ、第1電力系統および第2電力系統を接続状態とする。これにより、第1電力系統から第1電力変換器及び第2電力変換器を介して第2電力系統へ至る給電経路に対して並列を成す経路が形成される。第2電力変換器はドループ制御されるので、発電機(第1電力系統)と連系して運転することができる。発電機が故障した場合であっても、ドループ制御の効果によって、停電に至ることなく電力貯蔵装置から給電を行うことができる。従って、急激な変動をもつ電力負荷の運転の有無を問わず、移動体の電力系統を発電機1台で運用することができる。 On the other hand, when the second power load is not operated, the bus tie breaker is closed and the first power system and the second power system are connected. Thereby, the path | route which makes | forms parallel with the electric power feeding path | route from a 1st electric power grid | system via a 1st power converter and a 2nd power converter to a 2nd electric power system | strain is formed. Since the second power converter is droop-controlled, it can be operated in conjunction with a generator (first power system). Even if the generator is out of order, power can be supplied from the power storage device without power failure due to the effect of droop control. Therefore, the power system of the mobile body can be operated with one generator regardless of whether or not the power load having a rapid fluctuation is operated.
 上記移動体の配電システムは、前記第2電力系統の周波数と前記第2電力変換器の電力実績値との関係を示すドループ特性線上の一点となるように前記第2電力変換器をドループ制御し、前記第2電力系統を前記第1電力系統から遮断した場合には、前記第2電力系統の周波数を標準周波数とするように前記ドループ特性線を調整し、前記第2電力系統を前記第1電力系統に接続した場合には、前記第2電力変換器の電力を0kWとし、且つ、前記第2電力系統の周波数を標準周波数とするように調整してもよい。 The mobile power distribution system performs droop control on the second power converter so as to be a point on a droop characteristic line indicating a relationship between the frequency of the second power system and the actual power value of the second power converter. When the second power system is cut off from the first power system, the droop characteristic line is adjusted so that the frequency of the second power system is a standard frequency, and the second power system is adjusted to the first power system. When connected to the power grid, the power of the second power converter may be adjusted to 0 kW, and the frequency of the second power grid may be adjusted to the standard frequency.
 上記構成によれば、第2電力変換器は第2電力系統の周波数と第2電力変換器の電力実績値との関係を示すドループ特性線上の一点となるようにドループ制御されるので、第2電力負荷を含む第2電力系統を、発電機が接続された第1電力系統から遮断した場合には、第2電力負荷の急激な変動に対し、ドループ特性線に従って第2電力系統の周波数が変動する。すなわち、第2電力変換器は自立運転時には発電機と同様に機能することができる。さらに、発電機と同様に、変動した周波数を標準周波数とするようにドループ特性線を調整することができる。 According to the above configuration, the second power converter is droop controlled so as to be one point on the droop characteristic line indicating the relationship between the frequency of the second power system and the actual power value of the second power converter. When the second power system including the power load is disconnected from the first power system to which the generator is connected, the frequency of the second power system fluctuates according to the droop characteristic line with respect to the sudden fluctuation of the second power load. To do. That is, the second power converter can function in the same manner as the generator during the self-sustaining operation. Further, like the generator, the droop characteristic line can be adjusted so that the changed frequency becomes the standard frequency.
 一方、第2電力系統を、第1電力系統に接続した場合には、第2電力変換器は発電機と並列で運転され、ドループ特性線を調整することで定常負荷の分担率を調整することができる。とくに、第2電力変換器の定常負荷分担率を0%(電力0kW)とした場合、定常状態では発電機が負荷消費電力の100%を担う。これにより、第2電力変換器による損失を抑制することができる。一方で電力負荷が変動した場合には、過渡的には第2電力変換器および発電機の両方がドループ特性線にしたがい変動する。したがって、電力負荷の変動成分のみを第2電力変換器および発電機で分担することができる。この時、もとより第2電力負荷を運転していないので、発電機が変動成分の半分程度を負担しても何ら問題はない。さらに、発電機が故障して第1電力系統から切り離されても、停電に至ることなく第2電力変換器が代わりに電力を供給できる。このときの電力は、電力貯蔵装置から供給される。このことは、本運用において電力貯蔵装置が第2電力変換器および第3電力変換器を介し、バックアップ電源として利用できることを示している。 On the other hand, when the second power system is connected to the first power system, the second power converter is operated in parallel with the generator, and the share rate of the steady load is adjusted by adjusting the droop characteristic line. Can do. In particular, when the steady load sharing ratio of the second power converter is 0% (power 0 kW), the generator bears 100% of the load power consumption in the steady state. Thereby, the loss by the 2nd power converter can be controlled. On the other hand, when the power load changes, both the second power converter and the generator change transiently according to the droop characteristic line. Therefore, only the fluctuation component of the power load can be shared by the second power converter and the generator. At this time, since the second power load is not operated, there is no problem even if the generator bears about half of the fluctuation component. Furthermore, even if the generator breaks down and is disconnected from the first power system, the second power converter can supply power instead without causing a power failure. The power at this time is supplied from the power storage device. This indicates that in this operation, the power storage device can be used as a backup power source via the second power converter and the third power converter.
 上記移動体の配電システムは、前記直流中間部に接続された第4電力変換器を更に備え、前記第4電力変換器の交流端には電動機が接続され、前記電動機の推進軸には推進器が取り付けられていてもよい。 The power distribution system of the mobile body further includes a fourth power converter connected to the DC intermediate part, an electric motor is connected to an AC end of the fourth power converter, and a propulsion unit is connected to a propulsion shaft of the motor. May be attached.
 上記構成によれば、移動体の電気推進システムに適用することができる。 The above configuration can be applied to a mobile electric propulsion system.
 上記移動体の配電システムは、前記直流中間部に接続された第4電力変換器を更に備え、
前記第4電力変換器の交流端には電動発電機が接続され、電動発電機の推進軸に主機および推進器が取り付けられていてもよい。
The power distribution system of the mobile body further includes a fourth power converter connected to the DC intermediate part,
A motor generator may be connected to the AC terminal of the fourth power converter, and the main engine and the propeller may be attached to the propulsion shaft of the motor generator.
 上記構成によれば、移動体のハイブリッド推進システムに適用することができる。 The above configuration can be applied to a hybrid propulsion system for a moving body.
 前記第1電力指令値は、前記第2電力変換器の実績値のうち所定周波数未満の低周波数成分と前記第4電力変換器の電力実績値のうち所定周波数未満の低周波数成分との和で与えられてもよい。 The first power command value is a sum of a low frequency component less than a predetermined frequency among the actual values of the second power converter and a low frequency component less than a predetermined frequency among the actual power values of the fourth power converter. May be given.
 上記構成によれば、第1電力指令値が第2電力変換器の実績値の低周波成分と前記第4電力変換器の電力実績値の低周波成分との和で与えられるので、例えば電動機の電力変動および第2電力負荷の急激な負荷変動によって生じる第1電力系統への影響を抑制することができる。特に急激な変動を含む第2負荷を運転せずにバスタイブレーカを閉じる場合は、第1電力指令値は第4電力変換器の電力実績値の低周波数成分のみを与えてもよい。 According to the above configuration, the first power command value is given as the sum of the low frequency component of the actual value of the second power converter and the low frequency component of the actual power value of the fourth power converter. The influence on the first power system caused by the power fluctuation and the rapid load fluctuation of the second power load can be suppressed. In particular, when the bus tie breaker is closed without operating the second load including a sudden change, the first power command value may give only the low frequency component of the actual power value of the fourth power converter.
 前記第4電力変換器は、第4電力指令値に基づいて電力制御され、前記第4電力指令値は、操作卓から与えられる前記電動発電機の回転数指令値と、前記電動発電機の実際の回転数との偏差に基づく回転数制御によって得られる電動発電機の電力指令値であるか、又は、操作卓から与えられる電動発電機の電力指令値であってもよい。 The fourth power converter is subjected to power control based on a fourth power command value, and the fourth power command value is a rotation speed command value of the motor generator given from a console, and an actual motor generator. The power command value of the motor generator obtained by the rotation speed control based on the deviation from the rotation speed of the motor generator, or the power command value of the motor generator given from the console.
 上記構成によれば、操作卓から回転数指令値又は電力指令値を与えることにより、第4電力変換器によって電動発電機の回転数制御又は電力制御を行うことができる。 According to the above configuration, the rotational speed control or power control of the motor generator can be performed by the fourth power converter by giving the rotational speed command value or the power command value from the console.
 前記電力貯蔵装置の充電率は、前記第3電力変換器の電流実績値、又は、電力実績値に基づいて計算され、充電率が所定の範囲内に収まるように充放電を行うよう、第1充放電補正電力指令値、及び、第4充放電補正電力指令値が計算され、前記第1充放電補正電力指令値は前記第1電力指令値に加算され、前記第4充放電補正電力指令値は前記第4電力指令値に加算されてもよい。 The charging rate of the power storage device is calculated based on the actual current value or the actual power value of the third power converter, and is charged and discharged so that the charging rate is within a predetermined range. A charge / discharge correction power command value and a fourth charge / discharge correction power command value are calculated, the first charge / discharge correction power command value is added to the first power command value, and the fourth charge / discharge correction power command value is calculated. May be added to the fourth power command value.
 第1電力変換器と第2電力変換器および第4電力変換器の電力差は自動的に電力貯蔵装置の充放電によって吸収される。上記構成によれば、第3電力変換器の実績値に基づいて、第1充放電補正電力指令値および第4充放電補正電力指令値を加算することにより、電力貯蔵装置のSOC(State of Charge)制御を実現できる。 The power difference between the first power converter, the second power converter, and the fourth power converter is automatically absorbed by charging / discharging of the power storage device. According to the above configuration, by adding the first charge / discharge correction power command value and the fourth charge / discharge correction power command value based on the actual value of the third power converter, the SOC (State of Charge of the power storage device). ) Control can be realized.
 本発明によれば、移動体の電力系統を発電機1台で運用することができる。 According to the present invention, the power system of the mobile body can be operated with one generator.
図1は、本発明の第1実施形態に係る移動体の配電システムを備える移動体の構成を概略的に示す図である。FIG. 1 is a diagram schematically showing a configuration of a moving body including a power distribution system for a moving body according to the first embodiment of the present invention. 図2は、図1の制御装置の構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of the control device of FIG. 図3は、図2の電力制御部の構成を示すブロック図である。FIG. 3 is a block diagram illustrating a configuration of the power control unit in FIG. 2. 図4は、図1のタイブレーカを開いた場合の移動体の配電システムの構成を示すブロック図である。FIG. 4 is a block diagram showing the configuration of the power distribution system of the moving body when the tie breaker of FIG. 1 is opened. 図5は、単独運転時の第2電力変換器のドループ制御に使用されるドループ特性線である。FIG. 5 is a droop characteristic line used for droop control of the second power converter during the single operation. 図6は、図1のタイブレーカを閉じた場合の移動体の配電システムの構成を示すブロック図である。FIG. 6 is a block diagram showing the configuration of the power distribution system of the moving body when the tie breaker of FIG. 1 is closed. 図7は、連系運転時の第2電力変換器のドループ制御に使用されるドループ特性線である。FIG. 7 is a droop characteristic line used for the droop control of the second power converter during the interconnection operation. 図8は、本発明の第2実施形態に係る移動体の配電システムを備える移動体の構成を概略的に示す図である。FIG. 8 is a diagram schematically illustrating a configuration of a moving object including the power distribution system for the moving object according to the second embodiment of the present invention. 図9は、図8の制御装置の構成を示すブロック図である。FIG. 9 is a block diagram showing a configuration of the control device of FIG. 図10は、図9の制御装置内部の一例を概略的に示すブロック図である。FIG. 10 is a block diagram schematically showing an example of the inside of the control device of FIG. 図11は、図9の制御装置内部のその他の例を概略的に示すブロック図である。FIG. 11 is a block diagram schematically showing another example inside the control device of FIG. 図12は、本発明の第3実施形態に係る移動体の配電システムを備える移動体の構成を概略的に示す図である。FIG. 12 is a diagram schematically illustrating a configuration of a moving object including the power distribution system for the moving object according to the third embodiment of the present invention.
 以下、本発明に係る実施形態について図面を参照しつつ説明する。以下では、全ての図面を通じて同一又は相当する要素には同じ符号を付して、重複する説明は省略する。 Hereinafter, embodiments according to the present invention will be described with reference to the drawings. Below, the same code | symbol is attached | subjected to the element which is the same or it corresponds through all the drawings, and the overlapping description is abbreviate | omitted.
 (第1実施形態)
 図1は、本発明の第1実施形態に係る移動体の配電システム100を備える移動体の構成を概略的に示す図である。図1に示すように、移動体の配電システム100は、一台の発電機5と、電力負荷7と、電力変換装置1と、電力貯蔵装置2と、交流のバスライン8と、バスタイブレーカ4と、制御装置3と、推進システム200とを備える。
(First embodiment)
FIG. 1 is a diagram schematically showing a configuration of a mobile object including a power distribution system 100 for a mobile object according to the first embodiment of the present invention. As shown in FIG. 1, a mobile power distribution system 100 includes a generator 5, a power load 7, a power conversion device 1, a power storage device 2, an AC bus line 8, and a bus tie breaker. 4, a control device 3, and a propulsion system 200.
 発電機5は、電力負荷7に電力を供給する主な電力源である。発電機5は、原動機6を駆動力とし、移動体で使用する電力を賄っている。この電力の変動が非常に大きいと、エンジントリップによって発電機5からの電力供給が遮断される恐れがある。 The generator 5 is a main power source that supplies power to the power load 7. The generator 5 uses the prime mover 6 as a driving force to cover the power used by the moving body. If this power fluctuation is very large, the power supply from the generator 5 may be cut off by an engine trip.
 電力負荷7は、交流のバスライン8に接続された第1電力負荷7aおよび第2電力負荷7bを含む。第1電力負荷7aは、発電機5から供給された電力を消費する機器である。第1電力負荷7aは、複数設けられ、いずれも急激な電力の負荷変動を含まない機器である。第1電力負荷7aには例えば船舶の照明・空調等のホテル負荷(hotel loads)など
の連続的に動作する設備、ウインチ、主機70のエンジンスタータモータ等の短時間に動作する装置が含まれる。第2電力負荷7bは、電力を消費する機器であって、例えばクレーン等の急激な電力の負荷変動を含む機器である。これらの装置は、交流のバスライン8にそれぞれ接続されている。尚、「急激な変動を含む」とは、電力の時間変化率、電力の所定周波数成分の振幅、またはステップ状の電力変動量など、消費される電力の変動に関する緒量が所定値以上であることをいう。「急激な変動を含まない」とは、これらが所定値未満であることをいう。所定値は、エンジンメーカーが提示する、負荷変動への追従性能に関する情報から決めることができる。
The power load 7 includes a first power load 7 a and a second power load 7 b connected to the AC bus line 8. The first power load 7 a is a device that consumes the power supplied from the generator 5. A plurality of first power loads 7a are provided, all of which are devices that do not include a sudden load fluctuation of power. The first power load 7a includes, for example, equipment that operates continuously, such as hotel loads such as ship lighting and air conditioning, and a device that operates in a short time, such as a winch and an engine starter motor of the main engine 70. The 2nd electric power load 7b is an apparatus which consumes electric power, Comprising: For example, it is an apparatus including the load fluctuation | variation of rapid electric power, such as a crane. These devices are respectively connected to an AC bus line 8. Note that “including abrupt fluctuation” means that the amount of change in consumed power, such as the rate of time change of power, the amplitude of a predetermined frequency component of power, or the amount of power fluctuation in steps, is greater than or equal to a predetermined value. That means. “Does not include sudden fluctuation” means that these are less than a predetermined value. The predetermined value can be determined from the information related to the performance to follow the load variation, which is presented by the engine manufacturer.
 交流のバスライン8は、発電機5、第1電力負荷7aおよび電力変換装置1に接続された第1バスライン8aと、第2電力負荷7bおよび電力変換装置1に接続された第2バスライン8bで構成された給電経路である。第1バスライン8a及び第2バスライン8bはバスタイブレーカ4によって接続又は遮断される。バスタイブレーカ4は、第2電力負荷7bが運転していないときには接続状態とされる一方、第2電力負荷7bが運転しているときには遮断状態とされる。本実施形態では、バスタイブレーカ4の開閉は、制御装置3によって制御される。以下では、移動体の配電システム100において、第1バスライン8aに接続された電力系統を「第1電力系統」といい、第2バスライン8bに接続された電力系統を「第2電力系統」という。換言すれば、バスタイブレーカ4は、第1電力系統(8a)及び第2電力系統(8b)の間を開閉可能に接続すると共に、第1電力系統(8a)から第1電力変換器11及び第2電力変換器12を介して第2電力系統(8b)へ至る給電経路に対して並列を成す経路を構成することができる。 The AC bus line 8 includes a first bus line 8 a connected to the generator 5, the first power load 7 a and the power converter 1, and a second bus line connected to the second power load 7 b and the power converter 1. This is a power supply path configured by 8b. The first bus line 8 a and the second bus line 8 b are connected or disconnected by the bus tie breaker 4. The bus tie breaker 4 is connected when the second power load 7b is not operating, and is disconnected when the second power load 7b is operating. In the present embodiment, the opening / closing of the bus tie breaker 4 is controlled by the control device 3. In the following, in the mobile power distribution system 100, the power system connected to the first bus line 8a is referred to as “first power system”, and the power system connected to the second bus line 8b is referred to as “second power system”. That's it. In other words, the bus tie breaker 4 connects the first power system (8a) and the second power system (8b) to be openable and closable, and also connects the first power converter 11 and the first power converter 11 to the first power system (8a). A path that is parallel to the power supply path that reaches the second power system (8b) via the second power converter 12 can be configured.
 電力変換装置1は、その一方の端子が第1電力系統(8a)に接続され、他方の端子が第2電力系統(8b)に接続されている。具体的には、電力変換装置1は、第1電力変換器11と、第2電力変換器12と、第3電力変換器13と、直流中間部9とを有する。 The power conversion device 1 has one terminal connected to the first power system (8a) and the other terminal connected to the second power system (8b). Specifically, the power conversion device 1 includes a first power converter 11, a second power converter 12, a third power converter 13, and a direct current intermediate unit 9.
 第1電力変換器11は、第1電力系統(8a)から消費する電力を調整する。第1電力変換器11は、AC-DC変換器である。第1電力変換器11の交流端は第1電力系統(8a)に接続され、かつ、第1電力変換器11の直流端は直流中間部9に接続されている。 The first power converter 11 adjusts the power consumed from the first power system (8a). The first power converter 11 is an AC-DC converter. The AC terminal of the first power converter 11 is connected to the first power system (8 a), and the DC terminal of the first power converter 11 is connected to the DC intermediate unit 9.
 第2電力変換器12は、第2電力系統(8b)に電力を供給する。第2電力変換器12は、AC-DC変換器である。第2電力変換器12の直流端は直流中間部9に接続され、かつ、第2電力変換器12の交流端は第2電力系統(8b)に接続されている。 The second power converter 12 supplies power to the second power system (8b). The second power converter 12 is an AC-DC converter. The direct current end of the second power converter 12 is connected to the direct current intermediate section 9, and the alternating current end of the second power converter 12 is connected to the second power system (8b).
 第3電力変換器13は、直流中間部9に流出入する電力の不平衡を解消するよう電力を制御するDC/DC変換器である。第3電力変換器13の一方の直流端は直流中間部9に接続され、且つ、第3電力変換器13の他方の直流端は電力貯蔵装置2に接続される。 The third power converter 13 is a DC / DC converter that controls the power so as to eliminate the unbalance of the power flowing into and out of the direct current intermediate unit 9. One DC terminal of the third power converter 13 is connected to the DC intermediate unit 9, and the other DC terminal of the third power converter 13 is connected to the power storage device 2.
 直流中間部9は、第1電力変換器11の直流端、第2電力変換器12の直流端、および、第3電力変換器13の一方の直流端に接続されている。 The DC intermediate unit 9 is connected to the DC terminal of the first power converter 11, the DC terminal of the second power converter 12, and one DC terminal of the third power converter 13.
 電力貯蔵装置2は、第3電力変換器13の他方の直流端に接続される。電力貯蔵装置2は例えば二次電池、キャパシタで構成される。二次電池としては、たとえば、リチウムイオン電池、ニッケル水素電池および鉛蓄電池を用いてもよい。キャパシタとしては、たとえば、リチウムイオンキャパシタ、電気二重層キャパシタ、ナノハイブリッドキャパシタ、カーボンナノチューブキャパシタを用いてもよい。 The power storage device 2 is connected to the other DC terminal of the third power converter 13. The power storage device 2 is composed of, for example, a secondary battery and a capacitor. As the secondary battery, for example, a lithium ion battery, a nickel metal hydride battery, and a lead storage battery may be used. As the capacitor, for example, a lithium ion capacitor, an electric double layer capacitor, a nano hybrid capacitor, or a carbon nanotube capacitor may be used.
 本実施形態の配電システム100は、機械推進システムを搭載した船舶(以下、機械推進船ともいう)に適用される。機械推進船では、推進システム200は、推進器80の主駆動源としての主機70を備える。推進器80は、船舶用プロペラである。主機70は、発電機5とは独立しており、主機70の推力のみで推進器80を駆動するように構成されている。尚、推進システム200Aの構成は、配電システム100Aが搭載される船舶の種類に依存して異なるが、例えばハイブリッド船、電気推進船および軸発電機搭載機械推進船が挙げられる。 The power distribution system 100 of the present embodiment is applied to a ship equipped with a machine propulsion system (hereinafter also referred to as a machine propulsion ship). In the mechanical propulsion ship, the propulsion system 200 includes a main machine 70 as a main drive source of the propulsion device 80. The propulsion device 80 is a marine propeller. The main machine 70 is independent of the generator 5 and is configured to drive the propulsion device 80 only by the thrust of the main machine 70. The configuration of the propulsion system 200A differs depending on the type of ship on which the power distribution system 100A is mounted, and examples include a hybrid ship, an electric propulsion ship, and a shaft generator-equipped mechanical propulsion ship.
 制御装置3は、メモリおよび演算装置を有しており(いずれも図示せず)、電力変換装置1、バスタイブレーカ4の開閉、発電機5および推進システム200を制御する。本実施形態の制御装置3は、操作卓40からの操作情報に従って、移動体の各要素を制御する。制御装置3は、図2のブロック図に示すように、メイン制御部30と、電力制御部31と、ドループ制御部32と、充放電制御部33と、ドループ制御部35と、を備える。これらの各部は、演算装置においてメモリに格納されたプログラムが実行されることにより実現される機能である。なお、電力制御部31、ドループ制御部32、充放電制御部33、および、ドループ制御部35の機能は、それぞれ、第1電力変換器11の演算装置、第2電力変換器12の演算装置、第3電力変換器13の演算装置、発電機5のエンジン制御装置のプログラムに含めてもよい。 The control device 3 has a memory and an arithmetic device (both not shown), and controls the power converter 1, the opening / closing of the bus tie breaker 4, the generator 5 and the propulsion system 200. The control device 3 according to the present embodiment controls each element of the moving body according to operation information from the console 40. As shown in the block diagram of FIG. 2, the control device 3 includes a main control unit 30, a power control unit 31, a droop control unit 32, a charge / discharge control unit 33, and a droop control unit 35. Each of these units is a function realized by executing a program stored in the memory in the arithmetic device. The functions of the power control unit 31, the droop control unit 32, the charge / discharge control unit 33, and the droop control unit 35 are respectively the arithmetic device of the first power converter 11, the arithmetic device of the second power converter 12, You may include in the program of the arithmetic unit of the 3rd power converter 13, and the engine control apparatus of the generator 5. FIG.
 メイン制御部30は、例えば操作卓40に設けられたレバーから入力されたレバーの位置を示す操作情報に基づいて推進システム200の動作モードを選択し、推進システム200の構成機器を起動・停止させる。メイン制御部30は、移動体の動作モードに応じてバスタイブレーカ4の開閉指令を生成するが、例えば運転者によって直接バスタイブレーカ4を開閉してもよい。また、メイン制御部30の一部の機能は、船舶の電力需給を管理するパワマネジメントシステムのプログラムに含めてもよい。また、メイン制御部30は、発電機5を起動・停止してもよいし、パワマネジメントシステムから起動・停止されてもよい。パワマネジメントシステムは、後述するドループ制御におけるドループ特性線の調整や電力変換装置の電力実績値の管理を行う。 The main control unit 30 selects the operation mode of the propulsion system 200 based on, for example, operation information indicating the position of the lever input from a lever provided on the console 40, and activates / stops the components of the propulsion system 200. . The main control unit 30 generates an open / close command for the bus tie breaker 4 according to the operation mode of the moving body, but the bus tie breaker 4 may be opened / closed directly by the driver, for example. Moreover, you may include the one part function of the main control part 30 in the program of the power management system which manages the electric power supply and demand of a ship. Moreover, the main control part 30 may start and stop the generator 5, and may be started and stopped from a power management system. The power management system adjusts the droop characteristic line in the droop control described later and manages the actual power value of the power converter.
 電力制御部31は、第2電力変換器12の電力実績値のうち所定周波数未満の低周波数成分で与えられる第1電力指令値に基づいて、第1電力変換器11が電力変換する電力が第1電力指令値になるよう第1電力変換器11を制御する。電力制御部31は、フィルタ311を備える(図3のブロック図参照)。フィルタ311は一定の時定数を有するローパスフィルタ又は移動平均フィルタである。メイン制御部30から第2電力変換器12の電力実績値が入力され、フィルタ311は、第2電力変換器12の電力実績値のうち所定周波数未満の低周波数成分のみを通過し、これを第1電力指令値として第1電力変換器11に出力する。 Based on the first power command value given by the low frequency component less than the predetermined frequency among the actual power values of the second power converter 12, the power control unit 31 determines the power to be converted by the first power converter 11. The 1st power converter 11 is controlled so that it may become 1 electric power command value. The power control unit 31 includes a filter 311 (see the block diagram in FIG. 3). The filter 311 is a low-pass filter or a moving average filter having a constant time constant. The actual power value of the second power converter 12 is input from the main control unit 30, and the filter 311 passes only low frequency components less than a predetermined frequency among the actual power values of the second power converter 12, It outputs to the 1st power converter 11 as 1 electric power command value.
 ドループ制御部32は、第2電力変換器12をドループ制御する。「ドループ制御」とは、制御装置3の内部に発電機を制御するガバナのモデルを構築することによって、第2電力変換器12に発電機に相当する特性を持たせる制御である。第2電力変換器12が発電機に相当する特性を有する結果、自立運転と系統連系運転とをシームレスに切り替えることができる。尚、「ドループ制御」は周知の技術であるので、詳しい説明は省略する。「ドループ制御」の詳細は、例えば「G. Marina & E. Gatti, “Large Power PWM IGBT Converter for Shaft Alternator Systems”, 35th Annual IEEE Power Electronics Specialists Conference, 2004」を参照されたい。なお、「ドループ制御」においては、電力系統の周波数と、電力系統に対して第2電力変換器12が授受する電力(有効電力)とがそれぞれのセンサ(図示せず)によって検出されてドループ制御部32に入力され、ドループ制御におけるこれらの制御に用いられる。 The droop control unit 32 performs the droop control on the second power converter 12. The “droop control” is control in which the second power converter 12 has characteristics corresponding to the generator by building a governor model for controlling the generator inside the control device 3. As a result of the second power converter 12 having characteristics corresponding to a generator, it is possible to seamlessly switch between independent operation and grid interconnection operation. Since “droop control” is a well-known technique, detailed description thereof is omitted. Refer to “G. ル ー プ Marina & E. Gatti,“ Large Power PWM IGBT Converter for Shaft Alternator Systems ”, 35th Annual IEEE Power Electronics Specialists Conference, 2004, for details. In the “droop control”, the frequency of the power system and the power (active power) exchanged with the power system by the second power converter 12 are detected by the respective sensors (not shown) and the droop control is performed. It is input to the unit 32 and used for these controls in the droop control.
 充放電制御部33は、第3電力変換器13において、電圧センサおよび電流センサ(図示せず)からのセンサデータに基づいて直流中間部9の電圧を監視して、直流中間部9の電圧が一定の値となるように電力貯蔵装置2の充放電制御を行う。充放電制御部33は、直流中間部9の電圧の変化に応じて第3電力変換器13により電力貯蔵装置2の充放電を制御する。これによって、直流中間部9に流入する電力と直流中間部9から流出する電力の差分が電力貯蔵装置2に吸収される。 The charge / discharge control unit 33 monitors the voltage of the DC intermediate unit 9 based on sensor data from a voltage sensor and a current sensor (not shown) in the third power converter 13, and the voltage of the DC intermediate unit 9 is The charge / discharge control of the power storage device 2 is performed so as to be a constant value. The charge / discharge control unit 33 controls the charge / discharge of the power storage device 2 by the third power converter 13 in accordance with the change in the voltage of the direct current intermediate unit 9. As a result, the power storage device 2 absorbs the difference between the power flowing into the DC intermediate unit 9 and the power flowing out from the DC intermediate unit 9.
 ドループ制御部35は、有効電力を検出し、ドループ特性に基づいて周波数目標値を求め、発電機5の原動機(エンジン・タービン等)の回転数制御を行う。負荷変動に対する周波数変動の追従の速さは、発電機の慣性などの機械的特性によって決まる。 The droop control unit 35 detects active power, obtains a frequency target value based on the droop characteristic, and controls the rotational speed of the prime mover (engine, turbine, etc.) of the generator 5. The speed of following the frequency fluctuation to the load fluctuation is determined by mechanical characteristics such as the inertia of the generator.
 次に、移動体の配電システム100の動作について説明する。操作卓40のレバー操作によって選択された移動体の動作モードに応じてバスタイブレーカ4の開閉が制御される(図2参照)。メイン制御部30は第2電力負荷7b(例えばクレーン)を運転する所定の動作モードが選択された場合にはバスタイブレーカ4の開指令を生成し、これをバスタイブレーカ4に送信する。図4は、バスタイブレーカ4が開かれた場合の移動体の配電システム100の構成を示すブロック図である。図4に示すように、バスタイブレーカ4によって、第1電力系統(8a)および第2電力系統(8b)の間は遮断状態になっている。第1電力系統(8a)では、発電機5から第1電力負荷7aに直接電力が供給されるが、第2電力系統(8b)は第1電力系統(8a)から分離されているので、第1電力系統(8a)から第1電力変換器11及び第2電力変換器12を介して第2電力負荷7bに電力が供給される。 Next, the operation of the mobile power distribution system 100 will be described. The opening / closing of the bus tie breaker 4 is controlled according to the operation mode of the moving body selected by operating the lever of the console 40 (see FIG. 2). When a predetermined operation mode for operating the second power load 7b (for example, a crane) is selected, the main control unit 30 generates an open command for the bus tie breaker 4 and transmits it to the bus tie breaker 4. FIG. 4 is a block diagram illustrating a configuration of the power distribution system 100 of the moving body when the bus tie breaker 4 is opened. As shown in FIG. 4, the bus tie breaker 4 is in a disconnected state between the first power system (8a) and the second power system (8b). In the first power system (8a), power is directly supplied from the generator 5 to the first power load 7a, but the second power system (8b) is separated from the first power system (8a). Power is supplied to the second power load 7b from the one power system (8a) via the first power converter 11 and the second power converter 12.
 このとき、第2電力変換器12を通じて第2電力系統(8b)に供給される電力は、第2電力負荷7bの運転状況に応じて変化し、これに応じて第2電力系統(8b)の周波数も変化する。具体的には、第2電力変換器12は、ドループ制御部32(図2参照)によって、ドループ制御されている。以下では、図4のようにバスタイブレーカ4が開かれて第2電力変換器12が発電機5とは自立して運転する場合を単独運転という。単独運転では、発電電力は負荷の運転状況によって決定される。図5は、単独運転時の第2電力変換器12のドループ制御に使用されるドループ特性線である。図5に示すように、ドループ特性は有効電力(発電時を正とする)と系統周波数との関係であり、有効電力が大きいほど系統周波数が低くなるよう設定される。ドループ率は、定格負荷時の周波数と無負荷時の周波数との差を定格周波数で除したもので定義される。通常、ドループ率は、各電力源で同じ値に設定されるが、必要に応じて異なる値に設定してもよい。ドループ制御部32は、第2電力系統(8b)の周波数と第2電力変換器12の電力実績値との関係を示すドループ特性線上の一点となるように第2電力変換器12をドループ制御する。 At this time, the power supplied to the second power system (8b) through the second power converter 12 changes according to the operating condition of the second power load 7b, and accordingly, the power of the second power system (8b) is changed. The frequency also changes. Specifically, the second power converter 12 is droop-controlled by the droop control unit 32 (see FIG. 2). Hereinafter, the case where the bus tie breaker 4 is opened and the second power converter 12 operates independently of the generator 5 as shown in FIG. In isolated operation, the generated power is determined by the operating condition of the load. FIG. 5 is a droop characteristic line used for the droop control of the second power converter 12 during the single operation. As shown in FIG. 5, the droop characteristic is a relationship between active power (positive during power generation) and the system frequency, and is set such that the system frequency decreases as the active power increases. The droop rate is defined as the difference between the frequency at the rated load and the frequency at no load divided by the rated frequency. Usually, the droop rate is set to the same value for each power source, but may be set to a different value as necessary. The droop control unit 32 performs the droop control on the second power converter 12 so as to be one point on the droop characteristic line indicating the relationship between the frequency of the second power system (8b) and the actual power value of the second power converter 12. .
 図5(a)は、第2電力変換器12の定常状態において設定されるドループ特性線である。図5(a)に示すように、定常状態では第2電力変換器12が第2電力系統(8b)に電力P1を供給している場合、ドループ特性線は、P1に対応する周波数が標準周波数(周波数目標値)Fsとなるように、設定される(図の×印を通る線となる)。 FIG. 5A is a droop characteristic line set in the steady state of the second power converter 12. As shown in FIG. 5A, when the second power converter 12 supplies power P1 to the second power system (8b) in the steady state, the droop characteristic line has a frequency corresponding to P1 as the standard frequency. (Frequency target value) is set so as to be Fs (a line passing through the x mark in the figure).
 図5(b)は、第2電力負荷7b(例えばクレーン)において急激な負荷変動が生じた場合のドループ特性線を示している。ここでは急激な負荷変動により、第2電力変換器12が第2電力系統(8b)に供給する電力がP1からP2に増大した場合を想定する。図5(b)に示すように、第2電力変換器12は、ドループ特性線に従って、第2電力系統(8b)の周波数を低下させる(直線上の(1)の×印)。その後、パワマネジメントシステムによって、低下した第2電力系統(8b)の周波数を目標値である標準周波数Fsに戻すべくドループ特性線を調整する((2)の矢印方向)。 FIG. 5 (b) shows a droop characteristic line when a sudden load fluctuation occurs in the second electric power load 7b (for example, a crane). Here, it is assumed that the power supplied from the second power converter 12 to the second power system (8b) increases from P1 to P2 due to a sudden load fluctuation. As shown in FIG.5 (b), the 2nd power converter 12 reduces the frequency of a 2nd electric power grid | system (8b) according to a droop characteristic line (x mark of (1) on a straight line). Thereafter, the power management system adjusts the droop characteristic line so as to return the lowered frequency of the second power system (8b) to the standard frequency Fs that is the target value (in the direction of the arrow in (2)).
 図5(c)は、パワマネジメントシステムからの調整によって新たに設定された第2電力変換器12のドループ特性線である。図5(c)に示すように、新たなドループ特性線では、P2に対応する周波数が標準周波数(周波数目標値)Fsとなるように設定されている。このように、第2電力負荷7b(例えばクレーン)において急激な負荷変動が生じた場合であっても、第2電力変換器12はドループ制御されているので、第2電力変換器12は自立運転時には発電機と同様に機能することができる。これにより、第2電力負荷7bへの電力供給を継続することができる。単独運転では、電力貯蔵装置2が電力源であるため、エンジン発電機と異なり、負荷変動が問題とならない。 FIG. 5C is a droop characteristic line of the second power converter 12 newly set by adjustment from the power management system. As shown in FIG. 5C, the new droop characteristic line is set so that the frequency corresponding to P2 becomes the standard frequency (frequency target value) Fs. Thus, even if a sudden load fluctuation occurs in the second power load 7b (for example, a crane), since the second power converter 12 is droop-controlled, the second power converter 12 operates independently. Sometimes it can function like a generator. Thereby, the electric power supply to the 2nd electric power load 7b can be continued. In isolated operation, since the power storage device 2 is a power source, load fluctuation does not become a problem unlike an engine generator.
 一方、第1電力変換器11は第1電力系統(8a)から消費する電力を調整する。具体的には、第1電力変換器11は第2電力変換器12の電力実績値のうち所定周波数未満の低周波数成分で与えられる第1電力指令値に基づいて制御されているので、所定周波数未満の低周波数成分の電力変動は第1電力系統における負荷変動として現れ、所定周波数以上の周波数成分の電力変動は電力貯蔵装置2で吸収される。これにより、発電機5からみた負荷変動は抑制され、急激な負荷変動による発電機5のトリップを防ぐことができる。 Meanwhile, the first power converter 11 adjusts the power consumed from the first power system (8a). Specifically, since the first power converter 11 is controlled based on the first power command value given by the low frequency component less than the predetermined frequency among the actual power values of the second power converter 12, the predetermined frequency Less than low frequency component power fluctuations appear as load fluctuations in the first power system, and power fluctuations of frequency components above a predetermined frequency are absorbed by the power storage device 2. Thereby, the load fluctuation seen from the generator 5 is suppressed and the trip of the generator 5 by the sudden load fluctuation can be prevented.
 次に、第2電力負荷7b(例えばクレーン)を運転しない所定の動作モードが選択された場合の配電システム100の動作について説明する。図6は、バスタイブレーカ4が閉じられた場合の移動体の配電システム100の構成を示すブロック図である。図6に示すように、配電システム100は、バスタイブレーカ4によって、第1電力系統(8a)および第2電力系統(8b)が接続状態になっている。これにより、第1電力系統(8a)から第1電力変換器11及び第2電力変換器12を介して第2電力系統(8b)へ至る給電経路に対して並列を成す経路が形成される。以下では、バスタイブレーカ4が閉じられて第2電力変換器12が発電機5と連系して運転する場合を連系運転という。連系運転時には、連系している発電機または電力変換器の電力負荷分担率を制御することができる。尚、連系運転時は「第1電力系統」と「第2電力系統」を区別することなく、単に「電力系統」と呼ぶ。また、連系運転時では「第2電力負荷7b」は運転しないので、「第1電力負荷7a」と「第2電力負荷7b」を区別することなく、単に「電力負荷」と呼ぶ。 Next, the operation of the power distribution system 100 when a predetermined operation mode in which the second power load 7b (for example, a crane) is not operated is selected will be described. FIG. 6 is a block diagram illustrating a configuration of the power distribution system 100 of the moving body when the bus tie breaker 4 is closed. As shown in FIG. 6, in the power distribution system 100, the first power system (8 a) and the second power system (8 b) are connected by the bus tie breaker 4. Thereby, the path | route which comprises in parallel with the electric power feeding path | route from a 1st power system (8a) to the 2nd power system (8b) via the 1st power converter 11 and the 2nd power converter 12 is formed. Hereinafter, a case where the bus tie breaker 4 is closed and the second power converter 12 is operated in conjunction with the generator 5 is referred to as a linked operation. At the time of the interconnection operation, the power load sharing ratio of the generator or the power converter that is connected can be controlled. It should be noted that during the interconnected operation, the “first power system” and the “second power system” are not distinguished and are simply referred to as “power system”. In addition, since the “second power load 7b” is not operated during the interconnected operation, the “first power load 7a” and the “second power load 7b” are not distinguished from each other and are simply referred to as “power loads”.
 図7は、連系運転時の第2電力変換器12と発電機5のドループ制御に使用されるドループ特性線である。第2電力変換器12は、電力系統の周波数と第2電力変換器12の電力実績値との関係を示すドループ特性線上の一点となるようにドループ制御される。発電機5も、同様に、ドループ特性線上の一点となるようにドループ制御される。 FIG. 7 is a droop characteristic line used for droop control of the second power converter 12 and the generator 5 during the interconnection operation. The second power converter 12 is droop-controlled so as to be one point on the droop characteristic line indicating the relationship between the frequency of the power system and the actual power value of the second power converter 12. Similarly, the generator 5 is also droop-controlled so as to be one point on the droop characteristic line.
 図7(a)は、第2電力変換器12および発電機5の定常状態において設定されるドループ特性線である。図7(a)に示すように、第2電力変換器12のドループ特性線は、定常状態では第2電力変換器12が電力系統に電力を授与しないように、電力系統の標準周波数(周波数目標値)Fsに対して電力指令値を0kWに設定される(直線上の×印)。一方、発電機5のドループ特性線は、定常状態では発電機5が電力系統に電力を授与するように、電力系統の標準周波数(周波数目標値)Fsに対して電力指令値Pc1に設定される(直線上の×印)。いま、第2電力変換器12の電力指令値は0kWであるから、このPc1は電力系統で消費されている負荷の電力に一致する。図7(b)は、電力負荷7において負荷変動が生じた場合のドループ特性線を示している。ここでは電力負荷がPc1からPc2と小さくなった場合を想定している。このとき、発電機5の発電電力と、電力変換器12の発電電力の和がPc2となるように、ドループ特性線にしたがって、互いの運転点が変化する。図7(b)に示すように、周波数は上昇し、第2電力変換器12の運転点は直線上の(1)の×印に移動する。この場合、電力変換器12は電力系統から電力を消費することになる。負荷変動に対する周波数変動の追従の速さは、発電機の慣性などの機械的特性と電力変換器の動作特性によって決まる。その後、パワマネジメントシステムによって、上昇した電力系統の周波数を標準周波数Fsに、電力変換器12の電力を0kWに戻すべく各々のドループ特性線を調整する((2)の矢印方向)。 FIG. 7A is a droop characteristic line set in the steady state of the second power converter 12 and the generator 5. As shown in FIG. 7A, the droop characteristic line of the second power converter 12 indicates the standard frequency (frequency target) of the power system so that the second power converter 12 does not give power to the power system in a steady state. Value) The electric power command value is set to 0 kW with respect to Fs (x mark on the straight line). On the other hand, the droop characteristic line of the generator 5 is set to the power command value Pc1 with respect to the standard frequency (frequency target value) Fs of the power system so that the generator 5 gives power to the power system in a steady state. (X on the straight line). Now, since the power command value of the second power converter 12 is 0 kW, this Pc1 matches the load power consumed in the power system. FIG. 7B shows a droop characteristic line when a load change occurs in the power load 7. Here, it is assumed that the power load is reduced from Pc1 to Pc2. At this time, the respective operating points change according to the droop characteristic line so that the sum of the generated power of the generator 5 and the generated power of the power converter 12 becomes Pc2. As shown in FIG. 7B, the frequency increases, and the operating point of the second power converter 12 moves to the mark (1) on the straight line. In this case, the power converter 12 consumes power from the power system. The speed of following the frequency fluctuation to the load fluctuation is determined by mechanical characteristics such as the inertia of the generator and the operating characteristics of the power converter. Thereafter, the power management system adjusts each droop characteristic line so that the frequency of the raised power system is returned to the standard frequency Fs and the power of the power converter 12 is returned to 0 kW (in the direction of the arrow in (2)).
 図7(c)は、新たに設定された第2電力変換器12および発電機5のドループ特性線である。過渡的には第2電力変換器12のドループ特性線は変化するが、最終的には、図7(c)に示すように、第2電力変換器12のドループ特性線は、元の運転点(電力指令値(0kW),系統周波数が標準周波数Fs)に戻る。新たな定常状態では発電機5が負荷消費電力(Pc2)の100%を担う。このように、第2電力変換器12の電力を0kWとなるようにドループ特性線を調整することにより、電力負荷の変動成分のみを第2電力変換器12および発電機5で分担することができる。 FIG. 7C is a droop characteristic line of the newly set second power converter 12 and generator 5. Although the droop characteristic line of the second power converter 12 changes transiently, finally, as shown in FIG. 7C, the droop characteristic line of the second power converter 12 returns to the original operating point. (Power command value (0 kW), system frequency is the standard frequency Fs). In the new steady state, the generator 5 bears 100% of the load power consumption (Pc2). Thus, by adjusting the droop characteristic line so that the power of the second power converter 12 becomes 0 kW, only the fluctuation component of the power load can be shared by the second power converter 12 and the generator 5. .
 このように、第2電力変換器はドループ制御により、発電機5と連系して運転しているので、発電機5が故障した場合であっても、電力負荷7に電力を供給することができるので停電に至ることはない。この場合、電力変換器12は単独運転となり、必要な電力は電力貯蔵装置2から給電することができる。 In this way, since the second power converter operates in conjunction with the generator 5 by droop control, even if the generator 5 fails, power can be supplied to the power load 7. Because it can, it will not lead to a power outage. In this case, the power converter 12 is operated alone, and necessary power can be supplied from the power storage device 2.
 従って、本実施形態によれば、移動体の電力系統において、バスタイブレーカ4によって電力負荷7への給電経路を切替えることにより、急激な変動をもつ電力負荷7の運転の有無を問わず、発電機1台で移動体の電力系統を運用することができる。 Therefore, according to the present embodiment, in the power system of the mobile body, the power supply path to the power load 7 is switched by the bus tie breaker 4, regardless of whether or not the power load 7 having a sudden change is operated. One machine can operate the power system of a mobile unit.
 (第2実施形態)
 次に、第2実施形態について説明する。本実施形態の移動体の配電システムの構成は、第1実施形態と同様である。以下では、第1実施形態と共通する構成の説明は省略し、相違する構成についてのみ説明する。
(Second Embodiment)
Next, a second embodiment will be described. The configuration of the power distribution system of the moving body of this embodiment is the same as that of the first embodiment. Below, the description of the structure common to 1st Embodiment is abbreviate | omitted, and only a different structure is demonstrated.
 図8は、本発明の第2実施形態に係る移動体の配電システムを備える移動体の構成を概略的に示す図である。図8に示すように、配電システム100Aは、第1実施形態(図1)と比べて、電気推進システムを搭載した船舶に適用される点が異なる。具体的には、電力変換装置1Aは直流中間部9に接続された第4電力変換器14を更に備え、推進システム200Aは、第4電力変換器14の交流端に接続された電動発電機90、および、電動発電機90の推進軸に減速装置60を介して取り付けられた推進器80を備える。 FIG. 8 is a diagram schematically showing a configuration of a mobile object including a power distribution system for a mobile object according to the second embodiment of the present invention. As shown in FIG. 8, the power distribution system 100A is different from the first embodiment (FIG. 1) in that it is applied to a ship equipped with an electric propulsion system. Specifically, the power conversion device 1 </ b> A further includes a fourth power converter 14 connected to the DC intermediate unit 9, and the propulsion system 200 </ b> A includes a motor generator 90 connected to the AC terminal of the fourth power converter 14. , And a propulsion device 80 attached to the propulsion shaft of the motor generator 90 via a reduction gear 60.
 電気推進船では、電動発電機90は推進器80の主駆動源として機能する。電動発電機90は、バスライン8に接続された発電機5から第1電力変換器11及び第4電力変換器14を介して電力を受給して駆動力を発生し、それを推進器80に授与することによって、推進器80を駆動する。電気推進船では、電動発電機90は、専ら電動機として動作するが、発電機として動作してもよい。 In the electric propulsion ship, the motor generator 90 functions as a main drive source of the propulsion device 80. The motor generator 90 receives electric power from the generator 5 connected to the bus line 8 via the first power converter 11 and the fourth power converter 14 to generate driving force, which is supplied to the propulsion device 80. The propulsor 80 is driven by giving. In the electric propulsion ship, the motor generator 90 operates exclusively as an electric motor, but may operate as a generator.
 第1電力変換器11は、第1電力指令値に基づいて電力制御され、第4電力変換器14は、第4電力指令値に基づいて電力制御される。制御装置3Aは、第1電力変換器11を制御する電力制御部31とともに、第4電力変換器14を制御する電力制御部34を備えている(図9のブロック図参照)。 The first power converter 11 is power-controlled based on the first power command value, and the fourth power converter 14 is power-controlled based on the fourth power command value. 3 A of control apparatuses are provided with the power control part 34 which controls the 4th power converter 14 with the power control part 31 which controls the 1st power converter 11 (refer the block diagram of FIG. 9).
 図10は、制御装置3Aの内部の一例を概略的に示すブロック図である。図10に示すように、第1電力変換器11の電力制御部31は、第1フィルタ311と、第2フィルタ312と、加算器313とを備える。 FIG. 10 is a block diagram schematically showing an example of the inside of the control device 3A. As illustrated in FIG. 10, the power control unit 31 of the first power converter 11 includes a first filter 311, a second filter 312, and an adder 313.
 第1フィルタ311は一定の時定数を有するローパスフィルタ又は移動平均フィルタである。メイン制御部(30)から第2電力変換器12の電力実績値が第1フィルタ311に入力される。第1フィルタ311は、第2電力変換器12の電力実績値のうち所定周波数未満の低周波数成分のみを通過し、これを加算器313に出力する。 The first filter 311 is a low-pass filter or a moving average filter having a constant time constant. The actual power value of the second power converter 12 is input to the first filter 311 from the main control unit (30). The first filter 311 passes only a low frequency component having a frequency less than a predetermined frequency among the actual power values of the second power converter 12 and outputs this to the adder 313.
 第2フィルタ312は一定の時定数を有するローパスフィルタ又は移動平均フィルタである。パワマネジメントシステムから第4電力変換器14の電力実績値が第2フィルタに入力される。第2フィルタ312は、第4電力変換器14の電力実績値のうち所定周波数未満の低周波数成分のみを通過し、これを加算器313に出力する。 The second filter 312 is a low-pass filter or a moving average filter having a constant time constant. The actual power value of the fourth power converter 14 is input to the second filter from the power management system. The second filter 312 passes only the low frequency component below the predetermined frequency among the actual power values of the fourth power converter 14 and outputs this to the adder 313.
 加算器313は、第2電力変換器12の実績値の低周波成分と第4電力変換器14の電力実績値の低周波成分とを加算し、これを第1電力指令値として第1電力変換器11に出力する。尚、第1フィルタ311の時定数と第2フィルタ312の時定数は同じでもよいし、異なってもよい。 The adder 313 adds the low frequency component of the actual value of the second power converter 12 and the low frequency component of the actual power value of the fourth power converter 14, and uses this as the first power command value for the first power conversion. To the device 11. The time constant of the first filter 311 and the time constant of the second filter 312 may be the same or different.
 図10の構成によれば、上記実施形態の効果に加え、第1電力指令値が第2電力変換器12の実績値の低周波成分と第4電力変換器14の電力実績値の低周波成分との和で与えられるので、例えば電動発電機90の電力変動および第2電力負荷7bの急激な負荷変動によって生じる第1電力系統(8a)への影響を抑制することができる。特に急激な変動を含む第2電力負荷7bを運転せずにバスタイブレーカ4を閉じる場合は、第4電力変換器14の電力実績値の低周波数成分を第1電力指令値としてもよい。 According to the configuration of FIG. 10, in addition to the effects of the above embodiment, the first power command value is a low frequency component of the actual value of the second power converter 12 and a low frequency component of the actual power value of the fourth power converter 14. Therefore, for example, the influence on the first power system (8a) caused by the power fluctuation of the motor generator 90 and the sudden load fluctuation of the second power load 7b can be suppressed. In particular, when the bus tie breaker 4 is closed without operating the second power load 7b including a sudden change, the low frequency component of the actual power value of the fourth power converter 14 may be used as the first power command value.
 また、図10に示すように、メイン制御部30は、第1ルックアップテーブル301および第2ルックアップテーブル302を備える。 As shown in FIG. 10, the main control unit 30 includes a first lookup table 301 and a second lookup table 302.
 第1ルックアップテーブル301には、操作卓40に設けられたレバーから入力されたレバーの位置を示す操作情報(例えば節電指令)が入力される。第1ルックアップテーブル301は、操作卓40のレバー位置に応じた電動発電機90の電力指令値が予め記憶されており、入力された操作情報に応じてレバー位置に対応する電動発電機90の電力指令値を設定し、これを第4電力変換器14の電力制御部34に出力する。 The first look-up table 301 is input with operation information (for example, a power saving command) indicating the position of the lever input from the lever provided on the console 40. In the first look-up table 301, a power command value of the motor generator 90 corresponding to the lever position of the console 40 is stored in advance, and the motor generator 90 corresponding to the lever position corresponding to the input operation information is stored. A power command value is set and output to the power control unit 34 of the fourth power converter 14.
 第2ルックアップテーブル302には、操作卓40に設けられたレバーから入力されたレバーの位置を示す操作情報(例えば速度指令)が入力される。第2ルックアップテーブル302は、操作卓40のレバー位置に応じた電動発電機90の回転数指令値が予め記憶されており、入力された操作情報に応じてレバー位置に対応する電動発電機90の回転数指令値を設定し、これを第4電力変換器14の電力制御部34に出力する。 The second look-up table 302 is input with operation information (for example, speed command) indicating the position of the lever input from the lever provided on the console 40. In the second look-up table 302, the rotational speed command value of the motor generator 90 corresponding to the lever position of the console 40 is stored in advance, and the motor generator 90 corresponding to the lever position according to the input operation information. Is set to the power controller 34 of the fourth power converter 14.
 また、図10に示すように、第4電力変換器14の電力制御部34は、加減算器341と、PID制御部342と、切替スイッチ343とを備える。 As shown in FIG. 10, the power control unit 34 of the fourth power converter 14 includes an adder / subtractor 341, a PID control unit 342, and a changeover switch 343.
 加減算器341には、第2ルックアップテーブル302より入力された電動発電機90の回転数指令値から、回転数検出手段(図示せず)より入力された実際の回転数を減算し、これをPID制御部342に出力する。 The adder / subtractor 341 subtracts the actual rotational speed input from the rotational speed detection means (not shown) from the rotational speed command value of the motor generator 90 input from the second look-up table 302, and subtracts this. The data is output to the PID control unit 342.
 PID制御部342は、入力された回転数指令値と実際の電動発電機90の回転数との偏差を比例処理、積分処理および微分処理することによって電動発電機90の電力指令値を生成し、これを切替スイッチ343に出力する。尚、積分処理や微分処理については、省略してもよい。 The PID control unit 342 generates a power command value for the motor generator 90 by performing proportional processing, integration processing, and differentiation processing on the deviation between the input rotation speed command value and the actual rotation speed of the motor generator 90, This is output to the changeover switch 343. The integration process and the differentiation process may be omitted.
 切替スイッチ343は、第1ルックアップテーブル301より設定された電動発電機90の電力指令値と、PID制御部342より生成された電動発電機90の電力指令値のいずれかを第4電力指令値として第4電力変換器14に出力する。 The changeover switch 343 selects either the power command value of the motor generator 90 set from the first look-up table 301 or the power command value of the motor generator 90 generated by the PID control unit 342 as the fourth power command value. Is output to the fourth power converter 14.
 切替スイッチ343はメイン制御部30からの切替指令により操作を行うことができる。
また、切替スイッチ343が存在せず、電動発電機電力指令値、電動発電機回転数指令値のいずれかのみを用いる推進システムであっても構わない。
The changeover switch 343 can be operated by a changeover command from the main control unit 30.
Further, there may be a propulsion system in which the changeover switch 343 does not exist and only one of the motor generator power command value and the motor generator rotation speed command value is used.
 従って、第4電力指令値は、操作卓40から与えられる電動発電機90の回転数指令値と電動発電機90の実際の回転数との偏差に基づく回転数制御によって得られる電動発電機90の電力指令値であるか、又は、操作卓40から与えられる電動発電機90の電力指令値であるので、操作卓40から回転数指令値又は電力指令値を与えることにより、第4電力変換器14によって電動発電機90の回転数制御又は電力制御を行うことができる。 Therefore, the fourth power command value is obtained by the motor generator 90 obtained by the rotation speed control based on the deviation between the motor speed command value of the motor generator 90 given from the console 40 and the actual motor speed of the motor generator 90. Since it is the power command value or the power command value of the motor generator 90 given from the console 40, the fourth power converter 14 is provided by giving the rotation speed command value or the power command value from the console 40. Thus, the rotational speed control or power control of the motor generator 90 can be performed.
 図11は、制御装置3A内部のその他の例を概略的に示すブロック図である。図11に示すように、制御装置3Aは、SOC演算部411と、充放電電力指令値演算部412と、電力分配演算部413と、加算器414と、加算器415とを備える。 FIG. 11 is a block diagram schematically showing another example inside the control device 3A. As illustrated in FIG. 11, the control device 3A includes an SOC calculation unit 411, a charge / discharge power command value calculation unit 412, a power distribution calculation unit 413, an adder 414, and an adder 415.
 SOC演算部411には、パワマネジメントシステムから第3電力変換器13の電流実績値、又は、電力実績値が入力される。SOC演算部411は、第3電力変換器13の電流実績値、又は、電力実績値に基づいて電力貯蔵装置2の充電率を計算し、これを充放電電力指令値演算部412に出力する。 The actual current value or actual power value of the third power converter 13 is input to the SOC calculation unit 411 from the power management system. The SOC calculation unit 411 calculates the charging rate of the power storage device 2 based on the actual current value of the third power converter 13 or the actual power value, and outputs this to the charge / discharge power command value calculation unit 412.
 充放電電力指令値演算部412は、電力貯蔵装置2の充電率に基づいて充放電電力指令値を演算し、これを電力分配演算部413に出力する。 The charge / discharge power command value calculation unit 412 calculates a charge / discharge power command value based on the charge rate of the power storage device 2 and outputs this to the power distribution calculation unit 413.
 電力分配演算部413は、充放電電力指令値に基づいて、充電率が所定の範囲内に収まるように充放電を行うよう、第1充放電補正電力指令値、及び、第4充放電補正電力指令値を計算し、第1充放電補正電力指令値を加算器414に出力し、第4充放電補正電力指令値を加算器415に出力する。 Based on the charge / discharge power command value, the power distribution calculation unit 413 performs charge / discharge so that the charge rate falls within a predetermined range, and the first charge / discharge correction power command value and the fourth charge / discharge correction power. The command value is calculated, the first charge / discharge correction power command value is output to the adder 414, and the fourth charge / discharge correction power command value is output to the adder 415.
 加算器414は、第1電力指令値に第1充放電補正電力指令値を加算し、これを第1電力変換器11に出力する。尚、第1電力指令値は第2電力変換器12の実績値の低周波成分と第4電力変換器14の電力実績値の低周波成分との和(図10の加算器313の出力値)を用いてもよいし、所定の値を用いてもよい。 The adder 414 adds the first charge / discharge correction power command value to the first power command value, and outputs this to the first power converter 11. The first power command value is the sum of the low frequency component of the actual value of the second power converter 12 and the low frequency component of the actual power value of the fourth power converter 14 (output value of the adder 313 in FIG. 10). Or a predetermined value may be used.
 加算器415は、第4電力指令値に第4充放電補正電力指令値を加算し、これを第4電力変換器14に出力する。尚、第4電力指令値は操作卓40からの回転数指令値又は電力指令値から得られた値(図10の切替スイッチ343の出力値)を用いてもよいし、所定の値を用いてもよい。 The adder 415 adds the fourth charge / discharge correction power command value to the fourth power command value, and outputs this to the fourth power converter 14. The fourth power command value may be a rotation speed command value from the console 40 or a value obtained from the power command value (an output value of the changeover switch 343 in FIG. 10), or may be a predetermined value. Also good.
 従って、図11の構成によれば、第3電力変換器13の実績値に基づいて、第1充放電補正電力指令値および第4充放電補正電力指令値を加算することにより、電力貯蔵装置2のSOC制御を実現できる。 Therefore, according to the configuration of FIG. 11, the power storage device 2 is added by adding the first charge / discharge correction power command value and the fourth charge / discharge correction power command value based on the actual value of the third power converter 13. SOC control can be realized.
 (第3実施形態)
 次に、第3実施形態について説明する。本実施形態の移動体の配電システムの構成は、第1実施形態と同様である。以下では、第1実施形態と共通する構成の説明は省略し、相違する構成についてのみ説明する。
(Third embodiment)
Next, a third embodiment will be described. The configuration of the power distribution system of the moving body of this embodiment is the same as that of the first embodiment. Below, the description of the structure common to 1st Embodiment is abbreviate | omitted, and only a different structure is demonstrated.
 図12は、本発明の第3実施形態に係る移動体の配電システムを備える移動体の構成を概略的に示す図である。図12に示すように、配電システム100Bは、第1実施形態(図1)と比べて、ハイブリッド型の推進システムを搭載した船舶に適用される点が異なる。具体的には、電力変換装置1Aが直流中間部9に接続された第4電力変換器14を更に備え、推進システム200Bは、第4電力変換器14の交流端に接続された電動発電機90、および、電動発電機90の推進軸に減速装置60を介して取り付けられた主機70および推進器80を備える。 FIG. 12 is a diagram schematically showing a configuration of a mobile object including a mobile power distribution system according to the third embodiment of the present invention. As shown in FIG. 12, the power distribution system 100B is different from the first embodiment (FIG. 1) in that it is applied to a ship equipped with a hybrid type propulsion system. Specifically, the power converter 1 </ b> A further includes a fourth power converter 14 connected to the DC intermediate unit 9, and the propulsion system 200 </ b> B includes a motor generator 90 connected to the AC terminal of the fourth power converter 14. And a main unit 70 and a propulsion unit 80 which are attached to the propulsion shaft of the motor generator 90 via a reduction gear 60.
 ハイブリッド船では、主機70は推進器80の主駆動源として機能し、電動発電機90は推進器80の補助駆動源として機能する。電動発電機90は、バスライン8に接続された発電機5から第1電力変換器11及び第4電力変換器14を介して電力を受給して駆動力を発生し、それを推進器80に授与することによって、主機70による推進器80の駆動をアシストする。また、電動発電機90は、主機70から動力を受給して発電し、それを第4電力変換器14及び第1電力変換器11を介してバスライン8に授与することによって発電機5によるバスライン8への電力供給をアシストする。あるいは、発電機5を停止して、電動発電機90を主たる電力源としてもよい。 In the hybrid ship, the main engine 70 functions as a main drive source of the propulsion device 80, and the motor generator 90 functions as an auxiliary drive source of the propulsion device 80. The motor generator 90 receives electric power from the generator 5 connected to the bus line 8 via the first power converter 11 and the fourth power converter 14 to generate driving force, which is supplied to the propulsion device 80. By giving, the driving of the propulsion device 80 by the main machine 70 is assisted. Further, the motor generator 90 receives power from the main machine 70 to generate power, and gives it to the bus line 8 via the fourth power converter 14 and the first power converter 11 to thereby generate a bus by the generator 5. Assist power supply to the line 8. Alternatively, the generator 5 may be stopped and the motor generator 90 may be the main power source.
 尚、本実施形態では「移動体」は船舶であるが、特に限定されず、移動するものであれば、車両(鉄道車両、自動車等)、飛行機でもよい。また、「推進器」は、船舶用プロペラであるが、特に限定されず、移動体を推進するものであれば、車輪、飛行用プロペラでもよい。 In this embodiment, the “moving body” is a ship, but is not particularly limited, and may be a vehicle (railway vehicle, automobile, etc.) or an airplane as long as it moves. The “propulsion device” is a marine propeller, but is not particularly limited, and may be a wheel or a propeller for flight as long as it propels a moving body.
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び機能の一方又は双方の詳細を実質的に変更できる。 From the above description, many modifications and other embodiments of the present invention are apparent to persons skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of one or both of the structure and function may be substantially changed without departing from the spirit of the invention.
 本発明は、船舶等の移動体の電力系統に有用である。 The present invention is useful for a power system of a moving body such as a ship.
1 電力変換装置
2 電力貯蔵装置
3 制御装置
4 バスタイブレーカ
5 発電機
6 原動機
7 電力負荷
7a 第1電力負荷(急変動あり)
7b 第2電力負荷(急変動なし)
8 バスライン
8a 第1バスライン(第1電力系統)
8b 第2バスライン(第2電力系統)
9 直流中間部
11 第1電力変換器
12 第2電力変換器
13 第3電力変換器
40 操作卓
60 減速装置
70 主機
80 推進器
90 電動発電機
100 移動体の配電システム
DESCRIPTION OF SYMBOLS 1 Power converter device 2 Power storage device 3 Control device 4 Bus tie breaker 5 Generator 6 Motor | power machine 7 Electric power load 7a 1st electric power load (there is a sudden change)
7b Second power load (no sudden fluctuation)
8 Bus line 8a First bus line (first power system)
8b Second bus line (second power system)
9 DC intermediate section 11 1st power converter 12 2nd power converter 13 3rd power converter 40 console 60 reduction gear 70 main machine 80 propulsion device 90 motor generator 100 power distribution system of moving body

Claims (7)

  1.  原動機を駆動力とする発電機、及び、負荷によって消費または負荷から回生される電力の変動量が所定値未満の第1電力負荷、に接続される第1電力系統と、
     前記変動量が前記所定値以上となり得る第2電力負荷に接続される第2電力系統と、
     交流端が前記第1電力系統に接続され且つ直流端が直流中間部に接続された第1電力変換器と、
     交流端が前記第2電力系統に接続され且つ直流端が前記直流中間部に接続された第2電力変換器と、
     両直流端がそれぞれ前記直流中間部と電力貯蔵装置に接続された第3電力変換器と、
     前記第1電力系統及び前記第2電力系統の間を開閉可能に接続すると共に、前記第1電力系統から前記第1電力変換器及び前記第2電力変換器を介して前記第2電力系統へ至る給電経路に対して並列を成す経路を構成するバスタイブレーカと、を備え、
     前記バスタイブレーカは、前記第2電力負荷が運転していないときには接続状態とされる一方、前記第2電力負荷が運転しているときには遮断状態とされ、
     前記第1電力変換器は、前記第2電力変換器の電力実績値のうち所定周波数未満の低周波数成分で与えられる第1電力指令値に基づいて制御され、前記第2電力変換器はドループ制御され、前記第3電力変換器は前記直流中間部に流出入する電力の不平衡を解消するよう電力を制御される、
     移動体の配電システム。
    A first power system connected to a generator that uses a prime mover as a driving force, and a first power load that has a fluctuation amount of power consumed or regenerated by the load less than a predetermined value;
    A second power system connected to a second power load in which the fluctuation amount may be equal to or greater than the predetermined value;
    A first power converter having an AC terminal connected to the first power system and a DC terminal connected to a DC intermediate part;
    A second power converter having an AC terminal connected to the second power system and a DC terminal connected to the DC intermediate part;
    A third power converter having both DC ends connected to the DC intermediate section and the power storage device,
    The first power system and the second power system are connected so as to be openable and closable, and from the first power system to the second power system via the first power converter and the second power converter. A bus tie breaker that forms a path parallel to the power supply path,
    The bus tie breaker is in a connected state when the second power load is not operating, and is in a disconnected state when the second power load is operating,
    The first power converter is controlled based on a first power command value given by a low frequency component less than a predetermined frequency among the actual power values of the second power converter, and the second power converter is droop controlled. The third power converter is controlled in power so as to eliminate an imbalance of power flowing into and out of the DC intermediate part,
    Mobile power distribution system.
  2.  前記第2電力系統の周波数と前記第2電力変換器の電力実績値との関係を示すドループ特性線上の一点となるように前記第2電力変換器をドループ制御し、
     前記第2電力系統を前記第1電力系統から遮断した場合には、前記第2電力系統の周波数を標準周波数とするように前記ドループ特性線を調整し、
     前記第2電力系統を前記第1電力系統に接続した場合には、前記第2電力変換器の電力を0kWとし、且つ、前記第2電力系統の周波数を標準周波数とするように調整する、請求項1に記載の移動体の配電システム。
    Droop-controlling the second power converter so as to be one point on the droop characteristic line indicating the relationship between the frequency of the second power system and the actual power value of the second power converter,
    When the second power system is cut off from the first power system, the droop characteristic line is adjusted so that the frequency of the second power system is a standard frequency,
    When the second power system is connected to the first power system, the power of the second power converter is adjusted to 0 kW, and the frequency of the second power system is adjusted to a standard frequency. Item 2. A power distribution system for a moving body according to Item 1.
  3.  前記直流中間部に接続された第4電力変換器を更に備え、
     前記第4電力変換器の交流端には電動機が接続され、前記電動機の推進軸には推進器が取り付けられている、請求項1又は2に記載の移動体の配電システム。
    A fourth power converter connected to the DC intermediate section;
    The power distribution system for a moving body according to claim 1, wherein an electric motor is connected to an AC terminal of the fourth power converter, and a propulsion unit is attached to a propulsion shaft of the electric motor.
  4.  前記直流中間部に接続された第4電力変換器を更に備え、
     前記第4電力変換器の交流端には電動発電機が接続され、電動発電機の推進軸に主機および推進器が取り付けられている、請求項1乃至3のいずれか一項に記載の移動体の配電システム。
    A fourth power converter connected to the DC intermediate section;
    The mobile body according to any one of claims 1 to 3, wherein a motor generator is connected to an AC terminal of the fourth power converter, and a main engine and a propeller are attached to a propulsion shaft of the motor generator. Power distribution system.
  5.  前記第1電力指令値は、前記第2電力変換器の実績値のうち所定周波数未満の低周波数成分と前記第4電力変換器の電力実績値のうち所定周波数未満の低周波数成分との和で与えられる、請求項3又は4に記載の移動体の配電システム。 The first power command value is a sum of a low frequency component less than a predetermined frequency among the actual values of the second power converter and a low frequency component less than a predetermined frequency among the actual power values of the fourth power converter. The power distribution system of the mobile body according to claim 3 or 4, which is given.
  6.  前記第4電力変換器は、第4電力指令値に基づいて電力制御され、
     前記第4電力指令値は、操作卓から与えられる前記電動発電機の回転数指令値と、前記電動発電機の実際の回転数との偏差に基づく回転数制御によって得られる電動発電機の電力指令値であるか、又は、操作卓から与えられる電動発電機の電力指令値である、請求項3乃至5のいずれか一項に記載の移動体の配電システム。
    The fourth power converter is power controlled based on a fourth power command value,
    The fourth power command value is a motor power command obtained by rotation speed control based on a deviation between a rotation speed command value of the motor generator given from a console and an actual rotation speed of the motor generator. The mobile power distribution system according to any one of claims 3 to 5, which is a value or a power command value of a motor generator given from an operation console.
  7.  前記電力貯蔵装置の充電率は、前記第3電力変換器の電流実績値、又は、電力実績値に基づいて計算され、
     充電率が所定の範囲内に収まるように充放電を行うよう、第1充放電補正電力指令値、及び、第4充放電補正電力指令値が計算され、
     前記第1充放電補正電力指令値は前記第1電力指令値に加算され、
     前記第4充放電補正電力指令値は前記第4電力指令値に加算される、請求項3乃至6のいずれか一項に記載の移動体の配電システム。
    The charging rate of the power storage device is calculated based on the actual current value of the third power converter, or the actual power value,
    The first charge / discharge correction power command value and the fourth charge / discharge correction power command value are calculated so as to perform charge / discharge so that the charge rate falls within a predetermined range,
    The first charge / discharge correction power command value is added to the first power command value,
    The power distribution system for a moving body according to any one of claims 3 to 6, wherein the fourth charge / discharge correction power command value is added to the fourth power command value.
PCT/JP2018/001961 2017-01-31 2018-01-23 Power distribution system in moving body WO2018143013A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880009197.1A CN110249494B (en) 2017-01-31 2018-01-23 Power distribution system for mobile body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-015495 2017-01-31
JP2017015495A JP6838979B2 (en) 2017-01-31 2017-01-31 Mobile power distribution system

Publications (1)

Publication Number Publication Date
WO2018143013A1 true WO2018143013A1 (en) 2018-08-09

Family

ID=63039598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001961 WO2018143013A1 (en) 2017-01-31 2018-01-23 Power distribution system in moving body

Country Status (4)

Country Link
JP (1) JP6838979B2 (en)
CN (1) CN110249494B (en)
TW (1) TWI661635B (en)
WO (1) WO2018143013A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6987291B1 (en) * 2021-07-28 2021-12-22 東京瓦斯株式会社 Charge / discharge control device, charge / discharge control program
JP6987292B1 (en) * 2021-07-28 2021-12-22 東京瓦斯株式会社 Charge / discharge control device, charge / discharge control program
JP2023042959A (en) * 2021-09-15 2023-03-28 オムロン株式会社 Battery capacity estimation device, charging plan generation device, discharging plan generation device, and battery capacity estimation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141998A (en) * 2008-12-10 2010-06-24 Ihi Marine United Inc Vessel power equipment and operation method for the same
JP2012508665A (en) * 2008-11-13 2012-04-12 エス テ イクス フランス ソシエテ アノニム Self-propelled propulsion ship

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2443002A (en) * 2006-10-16 2008-04-23 Converteam Ltd dc power distribution system
US7550866B2 (en) * 2006-12-20 2009-06-23 The Boeing Company Vehicular power distribution system and method
US7599161B2 (en) * 2006-12-29 2009-10-06 General Electric Company Relay device and corresponding method
JP4892417B2 (en) * 2007-06-19 2012-03-07 株式会社日立製作所 Power system supply and demand control system, command device, and power system supply and demand control method
GB2456179B (en) * 2008-01-07 2012-02-15 Converteam Technology Ltd Marine power distribution and propulsion systems
GB0818174D0 (en) * 2008-10-03 2008-11-12 Leaneco Aps Emergency power supply apparatus
JP5213909B2 (en) * 2010-06-04 2013-06-19 中国電力株式会社 Power supply system control method and power supply system
JP5632419B2 (en) * 2012-04-25 2014-11-26 住友重機械搬送システム株式会社 Hybrid power supply device for crane and control method of hybrid power supply device for crane
JP2014103838A (en) * 2012-10-26 2014-06-05 Sumitomo Electric Ind Ltd Dc power distribution system, system management device, computer program, and power demand-supply control method
US20140265560A1 (en) * 2013-03-15 2014-09-18 Levant Power Corporation System and method for using voltage bus levels to signal system conditions
JP6352123B2 (en) * 2014-09-12 2018-07-04 川崎重工業株式会社 Control method of propulsion system for moving body
CN104836258B (en) * 2015-06-02 2017-01-25 国家电网公司 Microgrid control method having functions of voltage unbalance compensation and harmonic suppression

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012508665A (en) * 2008-11-13 2012-04-12 エス テ イクス フランス ソシエテ アノニム Self-propelled propulsion ship
JP2010141998A (en) * 2008-12-10 2010-06-24 Ihi Marine United Inc Vessel power equipment and operation method for the same

Also Published As

Publication number Publication date
CN110249494B (en) 2022-11-18
JP6838979B2 (en) 2021-03-03
JP2018125941A (en) 2018-08-09
CN110249494A (en) 2019-09-17
TW201841449A (en) 2018-11-16
TWI661635B (en) 2019-06-01

Similar Documents

Publication Publication Date Title
WO2017135199A1 (en) Ship power system
US10279759B2 (en) System and method for stabilizing aircraft electrical systems
JP5956991B2 (en) Power converter for combined power generation system
US8120200B2 (en) Fast response failure mode control methodology for a hybrid vehicle having an electric machine
JP6502758B2 (en) DC stabilized power supply system
JP4845515B2 (en) Railway vehicle drive system
WO2010146854A1 (en) Hybrid electric power source device for crane and method for controlling hybrid electric power source device for crane
TWI770019B (en) Electric vehicle power conversion control device
WO2018143013A1 (en) Power distribution system in moving body
KR20140132404A (en) Drive cascade system for a watercraft
JP3911517B2 (en) Hybrid system
WO2016038900A1 (en) Control method for moving body propulsion system
JP2005207386A (en) Hybrid system
JP2017147829A (en) Power supply system, transportation equipment, and control method of power transmission system
JP3170969B2 (en) Hybrid vehicle motor voltage controller
JP2008189236A (en) Control device of hybrid vehicle
JP7459752B2 (en) Regenerative control method and regenerative control device
JP2016088476A (en) Ship propulsion system
JP2011050196A (en) Control method and controller
JP3873032B2 (en) Hybrid system
JP2005207385A (en) Control method in hybrid system
JP7214823B1 (en) Energy management system
JP5986034B2 (en) Power conversion system for auxiliary machine and control method
WO2018047341A1 (en) Vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18748624

Country of ref document: EP

Kind code of ref document: A1