WO2018047341A1 - Vehicle - Google Patents

Vehicle Download PDF

Info

Publication number
WO2018047341A1
WO2018047341A1 PCT/JP2016/076809 JP2016076809W WO2018047341A1 WO 2018047341 A1 WO2018047341 A1 WO 2018047341A1 JP 2016076809 W JP2016076809 W JP 2016076809W WO 2018047341 A1 WO2018047341 A1 WO 2018047341A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
battery
generator
main circuit
output
Prior art date
Application number
PCT/JP2016/076809
Other languages
French (fr)
Japanese (ja)
Inventor
友樹 桑野
陽介 清水
萩原 敬三
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2016/076809 priority Critical patent/WO2018047341A1/en
Publication of WO2018047341A1 publication Critical patent/WO2018047341A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • Embodiments according to the present invention relate to a vehicle on which an internal combustion engine and a main circuit battery are mounted as a power source.
  • Patent Document 1 proposes a hybrid vehicle in which a ring gear is provided on a drive shaft that is rotationally driven by an engine, and a motor is attached via a reduction gear or directly.
  • a part of the engine power is transmitted to the drive shaft using the power distribution and integration mechanism, and the remaining power is transmitted to the generator to drive the motor, battery and other electronic devices. It is converted into electric power for charging.
  • the engine required power to be output according to the accelerator opening is the axle required power for rotating the drive shaft, the battery charge / discharge required power, the drive mechanism and each device (such as an air conditioner). Calculated from the power loss.
  • the drive control of the hybrid vehicle in Patent Document 1 described above is not control that feeds back the battery output. Therefore, the power consumption required for charging / discharging the battery appropriately is affected by the loss fluctuation of the driving equipment and each equipment and the load fluctuation of the auxiliary equipment. The situation that cannot be obtained is assumed.
  • the converter that converts the current voltage output from the generator is required to have a higher conversion capability as the time rating is increased.
  • High conversion capacity leads to high cost and large size.
  • the burden on the converter is reduced by using the battery as an auxiliary.
  • batteries have lower energy density than fossil fuels and cannot be expected as regular assistance.
  • the battery cannot be charged immediately even if the SOC (State Of Charge) decreases below the specified value due to discharge for driving, the battery is electrically disconnected after the converter and inverter are gated off. ing. After that, after a certain period of time has elapsed, the converter and the inverter are gated on again to resume operation. If the vehicle is in a hill-climbing state during the separation period, the transmission of auxiliary power is interrupted and the speed decreases, and the vehicle suddenly changes due to a sudden torque change when the operation is resumed. The situation where a speed change and a shock are given arises.
  • SOC State Of Charge
  • a vehicle that uses an internal combustion engine and a motor as a power source, reduces the burden on the converter of the power split mechanism by a battery for driving the motor, and controls the battery output while maintaining the maximum vehicle output.
  • the vehicle includes an internal combustion engine that outputs mechanical energy that drives an axle, a generator that converts part of the mechanical energy into electric energy, and a DC link that transmits the electric energy generated by the generator. And a motor that is electrically connected to the DC link, is supplied with the electrical energy from the generator and applies a driving force of the axle by rotation of a rotating shaft, and is electrically connected in parallel to the DC link.
  • the main circuit battery, the electric energy generated by the generator, and the electric energy that is consumed including the electric energy required for driving the motor are controlled to be substantially the same, and the main circuit is in a state without charge / discharge.
  • a controller that electrically disconnects the battery and the DC link.
  • FIG. 1 is a block diagram showing a conceptual configuration of mode 1 in a hybrid vehicle drive system according to an embodiment.
  • FIG. 2 is a block diagram showing a conceptual configuration of mode 2 in the hybrid vehicle drive system according to the embodiment.
  • FIG. 3A is a block diagram conceptually showing a part of the hybrid controller.
  • FIG. 3B is a partial block diagram showing the remaining part of the hybrid controller of FIG. 3A.
  • FIG. 4 is a flowchart for explaining mode switching of the vehicle drive system.
  • FIG. 5A is a block diagram for explaining generator / motor torque command calculation in mode 1 of the drive system.
  • FIG. 5B is a block diagram showing a detailed configuration of a battery output control unit in the drive system shown in FIG. 5A.
  • FIG. 5A is a block diagram showing a detailed configuration of a battery output control unit in the drive system shown in FIG. 5A.
  • FIG. 6 is a block diagram for explaining the generator / motor torque command calculation in mode 2 of the drive system.
  • FIG. 7 is a block diagram for explaining an extension mode sequence of the drive system.
  • FIG. 8 is a diagram conceptually showing operating points of the internal combustion engine of the drive system.
  • FIG. 1 is a block diagram showing a conceptual configuration of mode 1 in a hybrid vehicle drive system according to an embodiment
  • FIG. 2 is a block diagram showing a conceptual configuration of mode 2.
  • the vehicle of the present embodiment is a hybrid vehicle that uses a motor driven by an internal combustion engine and a main circuit battery as a power source
  • FIGS. 1 and 2 conceptually show a drive system of the hybrid vehicle.
  • the drive system 1 includes an internal combustion engine 2 as a main power source, a power transmission system 3 that divides and combines mechanical energy generated by the internal combustion engine 2, and an auxiliary power source provided in the power transmission system 3.
  • the motor 4 the wheel 6 connected to the power transmission system 3 via the axle 5, and a hybrid controller [control unit] 7 that controls the components in the drive system 1.
  • the internal combustion engine 2 is a power source that generates mechanical energy by burning fossil fuel inside an engine such as a gasoline engine or a diesel engine, a gas turbine, or the like.
  • the main power source is the internal combustion engine 2 and the auxiliary power source is a motor.
  • the main power source is the motor 4 and the auxiliary power source is the internal combustion engine 2. Is also possible.
  • the power transmission system 3 includes a power split mechanism 8 that at least bisects mechanical energy, a generator 9 that converts one of the split mechanical energy into AC, for example, three-phase AC electrical energy, and controls the generator 9 for AC.
  • Converter 10 for generating DC current voltage from DC
  • DC link 11 for transmitting DC current voltage (power)
  • inverter for generating AC to AC, for example, three-phase AC current voltage from DC and controlling motor 4 12, and a power coupling mechanism 14 that couples auxiliary mechanical energy generated by the motor 4 and the other mechanical energy that is divided into the power split mechanism 8 and transmitted by the transmission member 13.
  • the mechanical energy coupled by the power coupling mechanism 14 rotates the wheel 6 via the axle 5.
  • mechanical energy and electrical energy will be referred to as power or power when there is no need for division.
  • the power split mechanism 8 and the power coupling mechanism 14 in the present embodiment are configured with a planetary gear mechanism.
  • This planetary gear mechanism is known, for example, a sun gear S, a planetary gear P circumscribing the sun gear S, a ring gear R inscribed by the planetary gear P, and a planetary carrier C that rotates along the orbit of the planetary gear. And.
  • the planetary carrier C is rotated by mechanical energy generated by the internal combustion engine 2.
  • the rotational power of the sun gear S is transmitted to the generator 9.
  • the rotational power of the ring gear R is transmitted to the power coupling mechanism 14 through the transmission member 13.
  • the generator 9 converts mechanical energy P supplied through the sun gear S of the power split mechanism 8 into electrical energy.
  • the generator 9 is, for example, a motor that connects the sun gear S and the rotating shaft, and outputs three-phase AC power.
  • the converter 10 has a control function for controlling the power generation operation by the generator 9 and converts the three-phase AC power output from the generator 9 into DC power.
  • the inverter 12 converts the DC power supplied from the DC link 11 into AC power and outputs the AC power to the motor 4. Further, the inverter 12 converts AC power supplied from the motor 4 that performs a regenerative operation into DC power and outputs the DC power to the DC link 11. The motor 4 is driven by AC power supplied from the inverter 12, converts electric energy into mechanical energy, and outputs the mechanical energy to the power coupling mechanism 14.
  • a main circuit battery (BAT) 15 is connected via a contactor 16 to the DC link 11 connecting the converter 10 and the inverter 12.
  • the contactor 16 is a known electromagnetic contactor and can electrically disconnect the main circuit battery 15 by opening using electromagnetic force.
  • the DC link 11 is connected to an auxiliary power unit (APU) 17 that supplies electric energy to an auxiliary machine such as an air conditioner.
  • the main circuit battery 15 is a rechargeable battery, and is composed of, for example, an assembled battery including a plurality of secondary battery cells, and can be charged by the generator 9.
  • the main circuit battery 15 provides the hybrid controller 7 with information such as battery temperature, estimated SOC value, and battery output detection value, and the auxiliary machine power unit 17 provides the auxiliary power consumption detection value to the hybrid controller 7.
  • the hybrid controller 7 includes an information processing device (for example, a computer) having a calculation function and a memory function, and a memory.
  • FIGS. 3A and 3B show block configurations as an example.
  • the hybrid controller 7 includes a system power / vehicle required torque calculation unit 21, an internal combustion engine output calculation unit 22, an internal combustion engine operating point determination unit 23, a mode 1 generator / motor torque command calculation unit (hereinafter referred to as mode 1 calculation). 24), a mode 2 generator / motor torque command calculation unit (hereinafter referred to as mode 2 calculation unit) 25, an extension mode sequence unit 26, and mode changeover switches 27 and 28.
  • the hybrid controller 7 In addition to the battery temperature, estimated SOC value, detected battery output value, and detected auxiliary machine power consumption value, the hybrid controller 7 is provided with the motor rotation speed from the motor 4, and torque according to the driver's instructions. A request / release command and a power extension mode ON / OFF command are input.
  • the system power / vehicle required torque calculation unit 21 rotates the torque of the motor 4 and a torque request / release command issued by the driver from a driving operation according to the driving state of the vehicle (such as climbing or acceleration / deceleration) Based on the numerical information, a system power request indicating how much power is required and a vehicle required torque are output.
  • the internal combustion engine output calculation unit 22 calculates the internal combustion engine required output value. .
  • This calculation result is calculated as a corrected internal combustion engine required output value by adding an internal combustion engine output correction value, which will be described later, by the adder 29. Further, the internal combustion engine operating point determination unit 23 outputs a speed command to the internal combustion engine 2 according to the operating point shown in FIG. 8 using the internal combustion engine required output value.
  • FIG. 8 is a diagram conceptually showing operating points of the internal combustion engine of the drive system.
  • FIG. 8 shows an optimum operation line of the internal combustion engine based on the internal combustion engine output with respect to the internal combustion engine speed.
  • internal combustion engine operation points 101a, 101b, and 101c arbitrarily and discretely set on the optimal operation line are shown.
  • the internal combustion engine operating point 101a is set in a region where the efficiency is high within the range allowed by the battery output performance.
  • the extension mode sequence unit 26 receives a power extension mode ON / OFF command for commanding the setting / cancellation of the extension mode by the driver's operation and a battery output detection signal value from the main circuit battery 15.
  • the extension mode sequence unit 26 outputs a battery output control ON signal, a battery output control OFF signal, and a torque command value hold signal to the mode 1 calculation unit 24, and performs mode switching (voltage control start) to the switching terminals of the mode changeover switches 27 and 28. )
  • Signal is output, and a battery open signal is output to the contactor 16.
  • the opening of the main circuit battery means that the main circuit battery 15 is electrically disconnected from the DC link 11, and the battery opening signal is a signal for instructing to electrically disconnect.
  • the power extension mode is a mode set in response to a request for a longer vehicle maximum output.
  • the mode 1 calculation unit 24 receives the motor rotational speed from the motor 4 and the generator rotational speed from the generator 9. Further, the mode 1 calculation unit 24 receives the vehicle request torque from the system power / vehicle request torque calculation unit 21 and the battery output detection value from the main circuit battery 15. As described above, the battery output control ON signal, the battery output zero control ON signal, and the torque command value hold signal are input to the mode 1 calculation unit 24 from the extension mode sequence unit 26. Further, the mode 1 calculating unit 24 outputs the internal combustion engine output correction value to the adding unit 29, and outputs the generator torque command [mode 1] to the input terminal of the mode switch 27 shown in FIG. 3B. The motor torque command [mode 1] is output to the input terminal of the changeover switch 28.
  • the motor rotation speed is input from the motor 4, the generator rotation speed is input from the generator 9, and the vehicle request torque is input from the system power / vehicle request torque calculation section 21. Is done. Further, a generator torque command value by voltage control is input from the converter 10 to the mode 2 calculation unit 25, and a motor torque value by voltage control is input from the inverter 12.
  • the mode 2 calculation unit 25 outputs a generator torque command [mode 2] and a motor torque command [mode 2] to the input terminals of the mode changeover switches 27 and 28, respectively. Further, mode 2 calculation unit 25 outputs a generator voltage control ON command to converter 10 and outputs a motor voltage control ON command to inverter 12.
  • the dividing unit 31 uses the corrected fuel engine required output value output from the adding unit 29 as the internal combustion engine speed output from the internal combustion engine 2 or the detected value of the generator and motor speed and the ring gear. Is divided by the number of revolutions of the internal combustion engine calculated from the number of gears Gr and the number of gears Gs of the sun gear, and is calculated as an internal combustion engine torque request.
  • the (planetary carrier) rotation speed of the internal combustion engine) (motor rotation speed ⁇ Gr + generator rotation speed ⁇ Gs) / (Gr + Gs).
  • the multiplying unit 32 multiplies the internal combustion engine torque request by a ratio of ⁇ Gs / (Gr + Gs) to calculate the generator torque command 1.
  • a generator torque correction value by a battery output control unit described later is subtracted from the generator torque command 1 and output as a generator torque command 2.
  • the generator torque command 2 is input to the input terminal 34a of the holding unit 34.
  • the other input terminal 34b of the holding unit 34 is feedback-connected to the output terminal 34c, and the output signal is fed back.
  • the holding unit 34 is switched by a torque command value hold signal from the extension mode sequence unit 26, and either the generator torque command 2 or the signal of the generator torque command [mode 1] so far is set as the generator torque command. Output as [Mode 1].
  • the holding unit 34 holds the generator torque command [mode 1] so far.
  • the generator torque command 2 branches and is multiplied by a ratio of ⁇ Gr / Gs by the multiplication unit 35 to be calculated as a ring gear torque.
  • the ring gear torque is subtracted from the vehicle required torque by the subtracting unit 36 and output as a motor torque command.
  • the motor torque command is input to the input terminal 37a of the holding unit 37.
  • the other input terminal 37b of the holding unit 37 is feedback-connected to the output terminal 37c, and the output signal is fed back.
  • the holding unit 37 is switched by a torque command value hold signal from the extension mode sequence unit 26, and either the motor torque command or the command of the motor torque command [mode 1] so far is sent to the motor torque command [mode 1]. Is output as In this example, when the torque command value hold signal is input, the holding unit 37 holds the motor torque command [mode 1] so far.
  • the battery output control unit 41 is a generator torque for controlling to a predetermined battery output target value (hereinafter referred to as a target value) including a battery output zero for battery release (electrical disconnection). Outputs the correction value.
  • a predetermined battery output target value hereinafter referred to as a target value
  • a battery output zero for battery release electrical disconnection
  • the switching unit 42 switches and outputs the battery output detection value and the 0 value in response to the battery output control ON signal.
  • the switching unit 42 outputs the battery output detection value in response to the input of the battery output control ON signal.
  • the switching unit 43 switches the target value and 0 value of the battery output by the battery output control ON signal, and outputs it to the input terminal of the switching unit 44.
  • the switching unit 43 outputs the target value of the battery output in response to the input of the battery output control ON signal.
  • the switching unit 44 switches between the target value and the zero value from the switching unit 43 and outputs them according to the battery output zero control ON signal.
  • the switching unit 44 outputs a zero value in response to the input of the battery output zero control ON signal.
  • the subtraction unit 45 subtracts the target value or 0 value output from the switching unit 44 from the battery output detection value output from the switching unit 42 and outputs the result to the PI control unit 46.
  • the PI control unit 46 generates a DC link power correction value by PI control for the battery output detection value or a value obtained by subtracting the target value from the battery output detection value.
  • the multiplication unit 47 multiplies the DC link power correction value by the gear number Gs of the sun gear, and outputs the multiplication result to the division unit 48.
  • the multiplication unit 49 multiplies the motor rotation number by the gear number Gr of the ring gear and outputs it to the addition unit 51
  • the multiplication unit 50 multiplies the generator rotation number by the sun gear number Gs, It outputs to the addition part 51.
  • the addition unit 51 adds the output values from the multiplication units 49 and 50, and outputs the addition result to the division unit 48.
  • the division unit 48 divides the multiplication result of the DC link power correction value and the sun gear gear number Gs by the addition result by the addition unit 51 to calculate a generator torque correction value.
  • This generator torque correction value is output to the subtraction unit 33 and the multiplication unit 53.
  • Multiplier 53 multiplies the generator torque correction value by 1 / Gs and outputs the result to multiplier 54.
  • the multiplication unit 54 multiplies the addition result of the addition unit 51 by the multiplication result of the multiplication unit 53 and outputs the result as an internal combustion engine output correction value.
  • the division unit 52 divides the addition result of the addition unit 51 by 1 / (gr + Gs) to generate the internal combustion engine speed, and outputs it to the division unit 31 described above.
  • the consumed power is the electric energy necessary for driving the motor 4 and the auxiliary power unit (APU) 17 and the electric energy supplied from the generator 9 and the main circuit battery 15 is the consumed power.
  • FIG. 6 shows a configuration for a generator / motor torque command calculation in mode 2 of the drive system.
  • the Schmitt trigger unit 78 performs threshold detection using hysteresis characteristics generated between the rotation of the motor and the drive voltage, and outputs a motor voltage control ON signal.
  • the inverter voltage (ON circuit) 79 is used to invert the motor voltage control ON signal to generate the generator voltage control ON signal.
  • the multiplier 61 multiplies the vehicle required torque from the system power / vehicle required torque calculation unit 21 and the motor rotational speed to obtain the power (motor power) necessary for driving the vehicle.
  • the result is output to the adder 62.
  • the adder 62 adds the power required for driving the vehicle and the auxiliary machine power consumption obtained by the multiplier 61.
  • the multiplication unit 65 multiplies the generator rotational speed by ⁇ 1 to invert the sign and outputs the result to the addition unit 67.
  • the multiplication unit 66 multiplies the motor rotation number by the ratio of Gr / Gs and outputs the result to the addition unit 67.
  • the adder 67 adds the multiplication results of the multiplier 65 and the multiplier 66, respectively.
  • the division unit 63 outputs the generator torque command FF by dividing the motor power by the addition unit 62 by the rotation speed by the addition unit 67.
  • the adding unit 71 outputs a motor torque command obtained by adding a motor torque command based on voltage control and a motor torque command FF described later to the multiplying unit 72.
  • the multiplier 72 multiplies the motor torque command by a ratio of Gs / Gr and outputs the command to the input terminal of the switching unit 73.
  • a 0 value is input to the other input terminal of the switching unit 73, and the switching is controlled by a generator voltage control ON signal from the inverting unit 79.
  • the switching unit 73 outputs a zero value.
  • the output (motor torque command or 0 value) of the switching unit 73 is added by the adding unit 64 to the generator torque command FF from the dividing unit 63 and output as a generator torque command (mode 2).
  • the multiplier 68 multiplies the vehicle request torque and the generator rotational speed to calculate the generator power and outputs it to the adder 69.
  • the adder 69 adds auxiliary machine power consumption to the generator power generated by the multiplier 68 and outputs the result to the divider 70.
  • the division unit 70 calculates the motor torque command FF by dividing the generator power by the rotational speed of the addition unit 67.
  • the adding unit 74 adds the generator torque command FF and the generator torque command by voltage control, and outputs the result to the multiplier 75.
  • the multiplier 75 multiplies the added torque command by a ratio of Gr / Gs and outputs the result to the input terminal of the switching unit 76.
  • a zero value is input to the other input terminal of the switching unit 76, and the switching is controlled by a motor voltage control ON signal from the Schmitt trigger unit 78.
  • the switching unit 76 outputs a 0 value.
  • the output (generator torque command or 0 value) of the switching unit 76 is added by the adding unit 77 to the motor torque command FF from the dividing unit 70 and output as a motor torque command (mode 2).
  • FIG. 7 is a block diagram for explaining an extension mode sequence of the drive system.
  • the comparison unit 81 compares the SOC estimation signal from the main circuit battery 15 with an arbitrarily set SOC lower limit value (SOC_min) stored in the memory 82, and when SOC estimation signal ⁇ SOC lower limit value is satisfied. Outputs one signal to the input terminal of the AND circuit (logical product circuit) 83.
  • SOC_min SOC lower limit value
  • the power extension mode ON signal is transmitted by the operation of a driver who desires mode setting, and is output as an input signal to the input terminal of the AND circuit 83 and a battery output control ON signal.
  • the AND circuit 83 outputs a battery output zero control ON signal.
  • the battery output detection value is input to the input terminal of the coincidence circuit (coincidence logic circuit) 84 and the absolute value circuit (abs circuit) 87, respectively.
  • the zero value is input to the other input terminal of the coincidence circuit 84, and the coincidence circuit 84 outputs one signal to the input terminal of the AND circuit 85 when the battery output detection value is zero.
  • a battery output zero control ON signal is inputted to the other input terminal of the AND circuit 85, and when one signal from the coincidence circuit 84 is inputted simultaneously, it is outputted to the flip-flop circuit 86 as an S (set) signal.
  • the flip-flop circuit 86 receives an R (reset) signal from an OR circuit 90 described later and outputs it as a torque command value hold signal (Q).
  • the torque command value hold signal is input to the on-delay circuit 91 and is output as a battery release signal after a preset time.
  • the absolute value circuit 87 outputs the absolute value of the battery output detection value to the input terminal of the comparison circuit 88.
  • the comparison circuit 88 receives a preset torque command hold release threshold value from the memory 89 at the other input terminal, and compares battery output detection value ⁇ torque command hold release threshold value. When the battery output detection value ⁇ the torque command hold release threshold value, one signal is output to the input terminal of the OR circuit 90.
  • a voltage control start signal which will be described later, is input to the other input terminal of the OR circuit 90. When this start signal or one signal from the comparison circuit 88 is input, the R signal is output to the flip-flop circuit 86.
  • the DC link voltage detection value is input to the differentiation circuit (d / dt) 94, and further input from the differentiation circuit 94 to the absolute value circuit (abs) 95.
  • the detected DC link voltage value subjected to the absolute value processing by the absolute value circuit 95 is compared with a voltage change rate maximum value preset from the memory 97 by the comparison circuit 96. If this comparison is DC link voltage detection value ⁇ voltage change rate maximum value, one signal is output to the input terminal of the AND circuit 98.
  • the absolute value of the rate of change calculated from the detected value of the DC link voltage becomes equal to or greater than the maximum voltage change rate, the battery open signal starts DC link voltage control without waiting for the set period.
  • the battery open signal from the on-delay circuit 91 is input to the other input terminal of the AND circuit 98, and when it is input simultaneously with one signal from the comparison circuit 96, it is output to the input terminal of the OR circuit 93.
  • the battery open signal from the on-delay circuit 91 is further delayed by a set time by the on-delay circuit 92 and input to the other input terminal of the OR circuit 93.
  • the OR circuit 93 outputs a voltage control start signal when the battery open signal or one signal from the AND circuit 98 is input.
  • the main circuit battery 15 when the main circuit battery 15 is electrically disconnected from the DC link 11, it is necessary to perform it when the main circuit battery 15 is not used.
  • the current flowing through the DC link 11 is cut off and disconnected, but in this embodiment, the load side including electric energy generated by the generator (generated power power) and consumed electric energy such as a motor is used.
  • the main circuit battery 15 is brought into a non-output state (or a state without charge / discharge), Disconnecting from the DC link 11 is performed.
  • the generator torque command and the motor torque command in mode 1 and the mode 2 command so that the vehicle speed, that is, the vehicle required torque is kept constant and the battery output zero control without load fluctuation caused by the auxiliary machine or the like is performed.
  • This is to match the generator and motor torque commands by DC link voltage control when the main circuit battery 15 is disconnected.
  • the main circuit battery 15 can be seamlessly disconnected from the DC link 11. Therefore, the main circuit battery 15 reduces the burden on the converter of the power split mechanism and controls the battery output while maintaining the maximum vehicle output. By realizing such disconnection, auxiliary power transmission by the motor is continued without interruption during the period of disconnection of the main circuit battery 15, and the speed is reduced even when the vehicle is in a climbing situation. Without occurrence, torque change when operation is resumed is prevented.
  • a system power request and a vehicle required torque are calculated from a torque request / release command by the driver and the motor rotation speed.
  • the internal combustion engine required output is calculated from the system power request, the estimated battery SOC value, and the battery temperature.
  • the internal combustion engine 2 outputs power at a point where the efficiency of the internal combustion engine 2 is as high as possible, as shown in FIG. 8, under the constraint condition of the maximum battery output determined by the battery SOC and the battery temperature. That is, basically, the battery output is not explicitly controlled.
  • an operating point at which efficiency is increased is determined, and an internal combustion engine speed command is determined.
  • torque commands for the generator 9 and the motor 4 are determined as shown in FIGS. 5A and 5B.
  • the internal combustion engine required output is divided by the internal combustion engine speed to calculate the internal combustion engine torque request, and this internal combustion engine torque request is multiplied by -Gs / (Gr + Gs) (Gs: number of sun gear teeth, Gr: ring gear teeth) Number)
  • a generator torque command 1 that balances the internal combustion engine torque request is calculated.
  • a generator torque command 2 is calculated by subtracting a generator torque correction value by battery output control from the generator torque command 1.
  • the ring gear torque transmitted from the internal combustion engine is calculated by multiplying the generator torque command 2 by -Gr / Gs.
  • the ring gear torque is subtracted from the vehicle request torque to calculate a motor torque command.
  • Tgref Generator torque command (Nm), ⁇ g: Generator angular velocity (rad / s), Tmref: Motor torque command (Nm), ⁇ m: Motor angular velocity (rad / s), Pbat: Battery Output (+ charge, -discharge) (kW), Papu: Auxiliary machine power consumption (kW), Ploss: Generator, motor, inverter, converter loss (kW). Further, the relational expression of torque is expressed by Expression (2).
  • Tref vehicle required torque (N ⁇ m).
  • Tgref1 is expressed by Equation (3).
  • a torque request / release command for changing the vehicle speed is input from the driver to the hybrid controller 7, and the speed command to the internal combustion engine 2, the torque command to the generator 9, and the motor 4 A torque command is issued (step S1).
  • a battery output control ON signal is output in response to an input of a long-time vehicle maximum output request (power extension mode ON signal) from the driver (step S2).
  • a preset battery output control target value is read out by the input of the battery output control ON signal, and is subjected to arithmetic processing using the battery detection value.
  • a torque correction value is output.
  • the motor 4 is driven by the main circuit battery 15 in addition to the power of the internal combustion engine 2 in accordance with the generator torque command 2 corrected by the generator torque correction value, and travels for a certain period (step S3). ). Thereafter, when the estimated battery SOC value detected from the main circuit battery 15 falls below the SOC lower limit value in the extension mode sequence unit 26, a battery output zero control ON signal is output (step S4).
  • the generator torque command is corrected so that the output of the main circuit battery 15 becomes zero by the input of the battery output zero control ON signal (step S5).
  • the output zero becomes the target value, but in reality, it is not completely zero due to a measurement error or the like. Since the main circuit battery 15 is electrically disconnected in a low SOC state, that is, in a state where the charging capacity is low at a predetermined value (for example, the minimum value), the DC link voltage is low and there is room for the high voltage.
  • the target value of the battery output be in a charging direction (a direction in which the energy of the DC link 11 is so low that the DC link voltage rises) slightly smaller than zero.
  • the voltage is slightly increased to give a margin with respect to the preset protection voltage of the DC link voltage. Can have. Therefore, the generator 9 generates slightly more power than the power consumed by the motor 4.
  • step S6 If the battery output detection value becomes zero in the battery output zero mode (step S6), a torque command value hold signal is output from the flip-flop circuit 86, and the holding units 34 and 37 shown in FIG. The machine torque command value and the motor torque command value are held, and the vehicle request torque is also held (step S7). However, if a load fluctuation caused by an auxiliary machine occurs during this hold and a battery output detection value greater than a predetermined threshold value is detected from the main circuit battery 15, the hold of each torque command value is once released. Then, the battery output zero control may be performed again.
  • the generator torque command value and the motor torque command value are held, and after a predetermined time has elapsed, a battery open signal (disconnect signal) is sent to the contactor 16 to electrically disconnect the main circuit battery 15 from the DC link 11 ( Step S8). By this separation, the mode 1 is shifted to the mode 2.
  • the DC link voltage control in the mode 2 is started after a certain period of time (step S9). If an auxiliary load fluctuation occurs before the voltage control is started and the change rate of the DC voltage is equal to or greater than a predetermined threshold, the DC link voltage control may be started without waiting for a certain period.
  • the generator torque command, the motor torque command, and the main circuit battery 15 in the battery output zero control are determined under the condition where the vehicle required torque is constant and the load fluctuation due to the auxiliary machine or the like does not occur.
  • the generator torque command and the motor torque command by voltage control in the disconnected state are substantially the same.
  • the main circuit battery 15 can be seamlessly disconnected from the DC link 11 while keeping the vehicle output constant.
  • mode changeover switch 29 ... Adding unit, 31 ... Division unit, 32 ... Multiplication unit, 33 ... Subtraction unit, 34, 37 ... Holding unit, 34a, 34b ... Input terminal, 34c Output terminal, 41 ... battery output control unit. 46 ... PI control unit, 78 ... Schmitt trigger unit, 79 ... reversing unit, 81 ... comparing unit, 82 ... memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Provided is a vehicle which is equipped with an internal combustion engine (2), a motor (4), and a main circuit battery (15) for driving the motor (4), controls the output of the main circuit battery (15), and electrically separates the battery. Thus, a vehicle equipped with: an internal combustion engine (2) for outputting mechanical energy for driving an axle (5); a power generator (9) for converting some of the mechanical energy into electrical energy; a motor (4) which is connected to a DC link and drives the axle (5) using electrical energy; a main circuit battery (15) which is connected in parallel to the DC link (11), and drives the motor (4); and a control unit (7) for controlling in a manner such that the electrical energy generated by the power generator (9) and the consumed electrical energy are substantially identical to one another, and electrically separating the battery from the DC link (11) while the main circuit battery (15) is neither charging nor discharging.

Description

車両vehicle
 本発明に係る実施形態は、動力源として内燃機関と主回路バッテリーが搭載される車両に関する。 Embodiments according to the present invention relate to a vehicle on which an internal combustion engine and a main circuit battery are mounted as a power source.
 一般に、車輪を回転させる動力源となる内燃機関に加えて、バッテリーを搭載しモータを第2の動力源として用いるハイブリッド車両が知られている。例えば、特許文献1には、エンジンにより回転駆動される駆動軸にリングギアを設けて、減速ギアを介して又は直接的に、モータを取り付けたハイブリッド自動車が提案されている。このハイブリッド自動車においては、動力配分統合機構を用いて、エンジンの動力の一部を駆動軸に伝達すると共に、残余の動力を発電機に伝達して、モータ、バッテリー及びその他の電子機器を駆動又は充電するための電力に変換している。 In general, in addition to an internal combustion engine that serves as a power source for rotating wheels, a hybrid vehicle that is equipped with a battery and that uses a motor as a second power source is known. For example, Patent Document 1 proposes a hybrid vehicle in which a ring gear is provided on a drive shaft that is rotationally driven by an engine, and a motor is attached via a reduction gear or directly. In this hybrid vehicle, a part of the engine power is transmitted to the drive shaft using the power distribution and integration mechanism, and the remaining power is transmitted to the generator to drive the motor, battery and other electronic devices. It is converted into electric power for charging.
 このハイブリッド自動車の駆動制御において、アクセルの開度に従う出力すべきエンジン要求パワーは、駆動軸を回転させるための車軸要求パワーと、バッテリー充放電要求パワーと、駆動機構や各機器(エアコン等の補機)による損失パワーから算出される。 In the drive control of this hybrid vehicle, the engine required power to be output according to the accelerator opening is the axle required power for rotating the drive shaft, the battery charge / discharge required power, the drive mechanism and each device (such as an air conditioner). Calculated from the power loss.
特開2009-96360号公報JP 2009-96360 A
 前述した特許文献1におけるハイブリッド自動車の駆動制御は、バッテリー出力をフィードバックする制御ではないため、駆動機器や各機器における損失変動や補機の負荷変動が影響して、適正なバッテリーの充放電要求パワーが得られない事態が想定される。 The drive control of the hybrid vehicle in Patent Document 1 described above is not control that feeds back the battery output. Therefore, the power consumption required for charging / discharging the battery appropriately is affected by the loss fluctuation of the driving equipment and each equipment and the load fluctuation of the auxiliary equipment. The situation that cannot be obtained is assumed.
 また、発電機が出力する電流電圧を変換する変換器(コンバータ)は、時間定格を長くする程、高い変換能力が求められる。高い変換能力は、コスト高やサイズが大きくなることを招く。これに対して、バッテリーを補助に用いることにより、コンバータの負担が軽減される。しかしながら、バッテリーは、化石燃料に比べてエネルギー密度が低く、定常的な補助としては期待できない。 Also, the converter that converts the current voltage output from the generator is required to have a higher conversion capability as the time rating is increased. High conversion capacity leads to high cost and large size. On the other hand, the burden on the converter is reduced by using the battery as an auxiliary. However, batteries have lower energy density than fossil fuels and cannot be expected as regular assistance.
 バッテリーは、駆動のための放電によりSOC(State Of Charge:充電率)が規定値以下に低下しても、直ちに充電できない状況であれば、コンバータとインバータをゲートオフした後、バッテリーを電気的に切り離している。その切り離して一定期間の経過後に、再度、コンバータとインバータをゲートオンして、運転を再開する。この切り離しに掛かる期間中において、車両が登坂状況であれば、補助的な動力の伝達が中断されると共に速度低下が生じる上、運転を再開した際に、急なトルク変化等により、車両に急な速度変化や衝撃を与える事態が生じる。 If the battery cannot be charged immediately even if the SOC (State Of Charge) decreases below the specified value due to discharge for driving, the battery is electrically disconnected after the converter and inverter are gated off. ing. After that, after a certain period of time has elapsed, the converter and the inverter are gated on again to resume operation. If the vehicle is in a hill-climbing state during the separation period, the transmission of auxiliary power is interrupted and the speed decreases, and the vehicle suddenly changes due to a sudden torque change when the operation is resumed. The situation where a speed change and a shock are given arises.
 そこで、内燃機関及びモータを動力源とし、モータを駆動するためのバッテリーにより動力分割機構のコンバータの負担を軽減し、車両最大出力を維持しつつ、バッテリー出力を制御する車両を提供する。 Therefore, there is provided a vehicle that uses an internal combustion engine and a motor as a power source, reduces the burden on the converter of the power split mechanism by a battery for driving the motor, and controls the battery output while maintaining the maximum vehicle output.
 実施形態による車両は、車軸を駆動する機械エネルギーを出力する内燃機関と、前記機械エネルギーの一部を電気エネルギーに変換する発電機と、前記発電機により発電された前記電気エネルギーを伝達する直流リンクと、前記直流リンクに電気的に接続され、前記発電機からの前記電気エネルギーが供給されて回転軸の回転で前記車軸の駆動力を加えるモータと、前記直流リンクに電気的に並列に接続される主回路バッテリーと、前記発電機により発電される電気エネルギーと、前記モータの駆動に要する電気エネルギーを含み消費される電気エネルギーとを略一致させる制御を行い、充放電の無い状態で前記主回路バッテリーと前記直流リンクとを電気的に切り離す制御部と、を具備する。 The vehicle according to the embodiment includes an internal combustion engine that outputs mechanical energy that drives an axle, a generator that converts part of the mechanical energy into electric energy, and a DC link that transmits the electric energy generated by the generator. And a motor that is electrically connected to the DC link, is supplied with the electrical energy from the generator and applies a driving force of the axle by rotation of a rotating shaft, and is electrically connected in parallel to the DC link. The main circuit battery, the electric energy generated by the generator, and the electric energy that is consumed including the electric energy required for driving the motor are controlled to be substantially the same, and the main circuit is in a state without charge / discharge. A controller that electrically disconnects the battery and the DC link.
図1は、一実施形態に係るハイブリッド車両の駆動システムにおけるモード1の概念的な構成を示すブロック図である。FIG. 1 is a block diagram showing a conceptual configuration of mode 1 in a hybrid vehicle drive system according to an embodiment. 図2は、一実施形態に係るハイブリッド車両の駆動システムにおけるモード2の概念的な構成を示すブロック図である。FIG. 2 is a block diagram showing a conceptual configuration of mode 2 in the hybrid vehicle drive system according to the embodiment. 図3Aは、ハイブリッドコントローラの一部を概念的に示すブロック図である。FIG. 3A is a block diagram conceptually showing a part of the hybrid controller. 図3Bは、図3Aのハイブリッドコントローラにおける残り部分を示す部分ブロック図である。FIG. 3B is a partial block diagram showing the remaining part of the hybrid controller of FIG. 3A. 図4は、車両の駆動システムのモード切り替えについて説明するためのフローチャートである。FIG. 4 is a flowchart for explaining mode switching of the vehicle drive system. 図5Aは、駆動システムのモード1の発電機/モータトルク指令演算について説明するためのブロック図である。FIG. 5A is a block diagram for explaining generator / motor torque command calculation in mode 1 of the drive system. 図5Bは、図5Aに示す駆動システム内のバッテリー出力制御部の詳細な構成を示すブロック図である。FIG. 5B is a block diagram showing a detailed configuration of a battery output control unit in the drive system shown in FIG. 5A. 図6は、駆動システムのモード2の発電機/モータトルク指令演算について説明するためのブロック図である。FIG. 6 is a block diagram for explaining the generator / motor torque command calculation in mode 2 of the drive system. 図7は、駆動システムのエクステンションモードシーケンスについて説明するためのブロック図である。FIG. 7 is a block diagram for explaining an extension mode sequence of the drive system. 図8は、駆動システムの内燃機関の動作ポイントを概念的に示す図である。FIG. 8 is a diagram conceptually showing operating points of the internal combustion engine of the drive system.
 以下、図面を参照して本発明の実施形態について詳細に説明する。 
 図1は、一実施形態に係るハイブリッド車両の駆動システムにおけるモード1の概念的な構成を示すブロック図、図2は、モード2の概念的な構成を示すブロック図である。 
 本実施形態の車両は、内燃機関及び主回路バッテリーにより駆動されるモータを動力源とするハイブリッド車両であり、図1及び図2は、ハイブリッド車両の駆動システムを概念的に示している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram showing a conceptual configuration of mode 1 in a hybrid vehicle drive system according to an embodiment, and FIG. 2 is a block diagram showing a conceptual configuration of mode 2. As shown in FIG.
The vehicle of the present embodiment is a hybrid vehicle that uses a motor driven by an internal combustion engine and a main circuit battery as a power source, and FIGS. 1 and 2 conceptually show a drive system of the hybrid vehicle.
 この駆動システム1は、主たる動力源となる内燃機関2と、内燃機関2により発生させた機械エネルギーを分割及び結合する動力伝達システム3と、動力伝達システム3内に設けられ補助的動力源となるモータ4と、動力伝達システム3と車軸5を介して連結するホイール6と、駆動システム1内の構成部位の制御を行うハイブリッドコントローラ[制御部]7と、で構成される。ここで、内燃機関2は、ガソリンエンジンやディーゼルエンジン等のエンジンやガスタービン等の内部で化石燃料を燃焼させて機械エネルギーを発生する動力源である。この例では、主たる動力源を内燃機関2とし、補助的な動力源をモータとして説明しているが、反対に、主たる動力源をモータ4とし、補助的な動力源を内燃機関2とする構成も可能である。 The drive system 1 includes an internal combustion engine 2 as a main power source, a power transmission system 3 that divides and combines mechanical energy generated by the internal combustion engine 2, and an auxiliary power source provided in the power transmission system 3. The motor 4, the wheel 6 connected to the power transmission system 3 via the axle 5, and a hybrid controller [control unit] 7 that controls the components in the drive system 1. Here, the internal combustion engine 2 is a power source that generates mechanical energy by burning fossil fuel inside an engine such as a gasoline engine or a diesel engine, a gas turbine, or the like. In this example, the main power source is the internal combustion engine 2 and the auxiliary power source is a motor. However, the main power source is the motor 4 and the auxiliary power source is the internal combustion engine 2. Is also possible.
 動力伝達システム3は、機械エネルギーを少なくとも二分する動力分割機構8と、分割された一方の機械エネルギーを交流、例えば3相交流の電気エネルギーに変換する発電機9と、発電機9を制御し交流から直流の電流電圧を生成するコンバータ10と、直流の電流電圧(電力)を伝送するための直流リンク11と、直流から交流、例えば3相交流の電流電圧を生成し、モータ4を制御するインバータ12と、モータ4により発生された補助的機械エネルギーと動力分割機構8に分割されて伝達部材13により伝達される他方の機械エネルギーとを結合する動力結合機構14と、で構成される。この動力結合機構14により結合された機械エネルギーは、車軸5を介してホイール6を回転させる。尚、以下の説明において、機械エネルギー及び電気エネルギーは、区分の必要が無い場合には、動力又はパワーと称して説明する。 The power transmission system 3 includes a power split mechanism 8 that at least bisects mechanical energy, a generator 9 that converts one of the split mechanical energy into AC, for example, three-phase AC electrical energy, and controls the generator 9 for AC. Converter 10 for generating DC current voltage from DC, DC link 11 for transmitting DC current voltage (power), and inverter for generating AC to AC, for example, three-phase AC current voltage from DC and controlling motor 4 12, and a power coupling mechanism 14 that couples auxiliary mechanical energy generated by the motor 4 and the other mechanical energy that is divided into the power split mechanism 8 and transmitted by the transmission member 13. The mechanical energy coupled by the power coupling mechanism 14 rotates the wheel 6 via the axle 5. In the following description, mechanical energy and electrical energy will be referred to as power or power when there is no need for division.
 本実施形態における動力分割機構8及び動力結合機構14は、遊星ギア機構で構成されている。この遊星ギア機構は、公知であり、例えば、サンギアSと、サンギアSに外接したプラネタリアギアPと、プラネタリアギアPが内接したリングギアRと、プラネタリアギアの軌道に沿って回転するプラネタリキャリアCと、を備えている。本実施形態では、プラネタリキャリアCは、内燃機関2で生成された機械エネルギーにより回転する。サンギアSの回転動力は発電機9へ伝達される。リングギアRの回転動力は伝達部材13を通じて動力結合機構14に伝達される。 The power split mechanism 8 and the power coupling mechanism 14 in the present embodiment are configured with a planetary gear mechanism. This planetary gear mechanism is known, for example, a sun gear S, a planetary gear P circumscribing the sun gear S, a ring gear R inscribed by the planetary gear P, and a planetary carrier C that rotates along the orbit of the planetary gear. And. In the present embodiment, the planetary carrier C is rotated by mechanical energy generated by the internal combustion engine 2. The rotational power of the sun gear S is transmitted to the generator 9. The rotational power of the ring gear R is transmitted to the power coupling mechanism 14 through the transmission member 13.
 発電機9は、動力分割機構8のサンギアSを介して供給される機械エネルギーPを電気エネルギーに変換する。発電機9は、例えば、サンギアSと回転軸を連結するモータであり、3相交流電力を出力する。 
 コンバータ10は、発電機9による発電動作を制御する制御機能を有し、発電機9から出力された3相交流電力を直流電力に変換する。
The generator 9 converts mechanical energy P supplied through the sun gear S of the power split mechanism 8 into electrical energy. The generator 9 is, for example, a motor that connects the sun gear S and the rotating shaft, and outputs three-phase AC power.
The converter 10 has a control function for controlling the power generation operation by the generator 9 and converts the three-phase AC power output from the generator 9 into DC power.
 また、インバータ12は、直流リンク11から供給された直流電力を交流電力に変換してモータ4へ出力する。また、インバータ12は、回生動作するモータ4から供給された交流電力を直流電力に変換して直流リンク11へ出力する。 
 モータ4は、インバータ12から供給される交流電力により駆動され、電気エネルギーを機械エネルギーに変換して動力結合機構14へ出力する。
Further, the inverter 12 converts the DC power supplied from the DC link 11 into AC power and outputs the AC power to the motor 4. Further, the inverter 12 converts AC power supplied from the motor 4 that performs a regenerative operation into DC power and outputs the DC power to the DC link 11.
The motor 4 is driven by AC power supplied from the inverter 12, converts electric energy into mechanical energy, and outputs the mechanical energy to the power coupling mechanism 14.
 さらに、コンバータ10とインバータ12を連結する直流リンク11には、主回路バッテリー(BAT)15がコンタクタ16を介して接続される。コンタクタ16は、公知な電磁接触器であり、電磁力を利用した開放により、主回路バッテリー15を電気的に切り離すことができる。 Furthermore, a main circuit battery (BAT) 15 is connected via a contactor 16 to the DC link 11 connecting the converter 10 and the inverter 12. The contactor 16 is a known electromagnetic contactor and can electrically disconnect the main circuit battery 15 by opening using electromagnetic force.
 この直流リンク11には、エアコン等の補機に電気エネルギーを供給する補機パワーユニット(APU)17が接続されている。主回路バッテリー15は、充電池で有り、例えば、複数の2次電池セルを含む組電池で構成され、発電機9による充填が可能である。主回路バッテリー15は、ハイブリッドコントローラ7へバッテリー温度、SOC推定値、及びバッテリー出力検出値等の情報を提供し、補機パワーユニット17は、ハイブリッドコントローラ7へ補機消費電力検出値を提供する。 The DC link 11 is connected to an auxiliary power unit (APU) 17 that supplies electric energy to an auxiliary machine such as an air conditioner. The main circuit battery 15 is a rechargeable battery, and is composed of, for example, an assembled battery including a plurality of secondary battery cells, and can be charged by the generator 9. The main circuit battery 15 provides the hybrid controller 7 with information such as battery temperature, estimated SOC value, and battery output detection value, and the auxiliary machine power unit 17 provides the auxiliary power consumption detection value to the hybrid controller 7.
 ハイブリッドコントローラ7は、演算機能やメモリ機能を有する情報処理機器(例えば、コンピュータ等)及びメモリにより構成され、図3A及び図3Bには、一例となるブロック構成を示す。このハイブリッドコントローラ7は、システムパワー/車両要求トルク演算部21と、内燃機関出力演算部22と、内燃機関動作点決定部23と、モード1発電機/モータトルク指令演算部(以下、モード1演算部と称する)24と、モード2発電機/モータトルク指令演算部(以下、モード2演算部と称する)25と、エクステンションモードシーケンス部26と、モード切替スイッチ27,28とを有している。 The hybrid controller 7 includes an information processing device (for example, a computer) having a calculation function and a memory function, and a memory. FIGS. 3A and 3B show block configurations as an example. The hybrid controller 7 includes a system power / vehicle required torque calculation unit 21, an internal combustion engine output calculation unit 22, an internal combustion engine operating point determination unit 23, a mode 1 generator / motor torque command calculation unit (hereinafter referred to as mode 1 calculation). 24), a mode 2 generator / motor torque command calculation unit (hereinafter referred to as mode 2 calculation unit) 25, an extension mode sequence unit 26, and mode changeover switches 27 and 28.
 このハイブリッドコントローラ7には、前述したバッテリー温度、SOC推定値、バッテリー出力検出値及び補機消費電力検出値の他に、モータ4からモータ回転数が提供され、さらに、共に運転者の指示によるトルク要求・解除指令及びパワーエクステンションモードON/OFF指令が入力される。 In addition to the battery temperature, estimated SOC value, detected battery output value, and detected auxiliary machine power consumption value, the hybrid controller 7 is provided with the motor rotation speed from the motor 4, and torque according to the driver's instructions. A request / release command and a power extension mode ON / OFF command are input.
 以下、本実施形態の車両における、それぞれの指令及び信号の流れについて説明する。 
 図3A及び図3Bにおいて、システムパワー/車両要求トルク演算部21は、運転者が車両の運転状況(登坂や加減速等)に応じた運転操作から出されるトルク要求・解除指令とモータ4の回転数の情報とに基づき、どの程度の動力(パワー)が必要であるかを示唆するシステムパワー要求と、車両要求トルクが出力される。
Hereinafter, each command and signal flow in the vehicle of the present embodiment will be described.
In FIG. 3A and FIG. 3B, the system power / vehicle required torque calculation unit 21 rotates the torque of the motor 4 and a torque request / release command issued by the driver from a driving operation according to the driving state of the vehicle (such as climbing or acceleration / deceleration) Based on the numerical information, a system power request indicating how much power is required and a vehicle required torque are output.
 このシステムパワー要求と、主回路バッテリー15の残容量となるSOC(State Of Charge:充電率)推定値及びバッテリー温度の情報に基づき、内燃機関出力演算部22により内燃機関要求出力値が演算される。この演算結果は、加算部29により後述する内燃機関出力補正値が加えられて、補正された内燃機関要求出力値として算出される。さらに、内燃機関動作点決定部23は、この内燃機関要求出力値を用いて、図8に示す動作ポイントに従った内燃機関2へ速度指令を出力する。 Based on this system power request, SOC (StateSOOf Charge: charge rate) estimated value that is the remaining capacity of the main circuit battery 15 and battery temperature information, the internal combustion engine output calculation unit 22 calculates the internal combustion engine required output value. . This calculation result is calculated as a corrected internal combustion engine required output value by adding an internal combustion engine output correction value, which will be described later, by the adder 29. Further, the internal combustion engine operating point determination unit 23 outputs a speed command to the internal combustion engine 2 according to the operating point shown in FIG. 8 using the internal combustion engine required output value.
 図8は、駆動システムの内燃機関の動作ポイントを概念的に示す図である。 
 図8は、内燃機関回転数に対する内燃機関出力による内燃機関の最適動作ラインを示している。ここでは、最適動作ライン上に任意に離散的に設定された内燃機関動作ポイント101a,101b,101cを示している。この例では、バッテリー出力性能で許容される範囲内で効率の高い領域に内燃機関動作ポイント101aを設定している。
FIG. 8 is a diagram conceptually showing operating points of the internal combustion engine of the drive system.
FIG. 8 shows an optimum operation line of the internal combustion engine based on the internal combustion engine output with respect to the internal combustion engine speed. Here, internal combustion engine operation points 101a, 101b, and 101c arbitrarily and discretely set on the optimal operation line are shown. In this example, the internal combustion engine operating point 101a is set in a region where the efficiency is high within the range allowed by the battery output performance.
 エクステンションモードシーケンス部26には、運転者の操作によるエクステンションモードの設定・解除を指令するパワーエクステンションモードON/OFF指令と、主回路バッテリー15からのバッテリー出力検出信号値がそれぞれ入力される。エクステンションモードシーケンス部26は、モード1演算部24へバッテリー出力制御ON信号、バッテリー出力制御OFF信号及びトルク指令値ホールド信号を出力し、モード切替スイッチ27,28の切替端子にモード切替(電圧制御開始)信号を出力し、コンタクタ16にバッテリー開放信号を出力する。尚、主回路バッテリーの開放とは、直流リンク11から主回路バッテリー15を電気的に切り離すことを意味し、バッテリー開放信号とは、電気的に切り離すことを指示する信号である。また、パワーエクステンションモードは、車両最大出力の長時間化の要求により設定されるモードである。 The extension mode sequence unit 26 receives a power extension mode ON / OFF command for commanding the setting / cancellation of the extension mode by the driver's operation and a battery output detection signal value from the main circuit battery 15. The extension mode sequence unit 26 outputs a battery output control ON signal, a battery output control OFF signal, and a torque command value hold signal to the mode 1 calculation unit 24, and performs mode switching (voltage control start) to the switching terminals of the mode changeover switches 27 and 28. ) Signal is output, and a battery open signal is output to the contactor 16. The opening of the main circuit battery means that the main circuit battery 15 is electrically disconnected from the DC link 11, and the battery opening signal is a signal for instructing to electrically disconnect. Further, the power extension mode is a mode set in response to a request for a longer vehicle maximum output.
 モード1演算部24は、モータ4からモータ回転数が入力され、発電機9から発電機回転数が入力される。さらに、このモード1演算部24には、システムパワー/車両要求トルク演算部21から車両要求トルク、主回路バッテリー15からバッテリー出力検出値が入力される。また前述したように、モード1演算部24には、エクステンションモードシーケンス部26からバッテリー出力制御ON信号、バッテリー出力ゼロ制御ON信号及びトルク指令値ホールド信号が入力される。また、モード1演算部24は、加算部29へ内燃機関出力補正値を出力し、図3Bに示すモード切替スイッチ27の入力端子に、発電機トルク指令[モード1]を出力し、同様にモード切替スイッチ28の入力端子に、モータトルク指令[モード1]を出力する。 The mode 1 calculation unit 24 receives the motor rotational speed from the motor 4 and the generator rotational speed from the generator 9. Further, the mode 1 calculation unit 24 receives the vehicle request torque from the system power / vehicle request torque calculation unit 21 and the battery output detection value from the main circuit battery 15. As described above, the battery output control ON signal, the battery output zero control ON signal, and the torque command value hold signal are input to the mode 1 calculation unit 24 from the extension mode sequence unit 26. Further, the mode 1 calculating unit 24 outputs the internal combustion engine output correction value to the adding unit 29, and outputs the generator torque command [mode 1] to the input terminal of the mode switch 27 shown in FIG. 3B. The motor torque command [mode 1] is output to the input terminal of the changeover switch 28.
 図3Bに示すモード2演算部25は、モータ4からモータ回転数が入力され、発電機9から発電機回転数が入力され、及び、システムパワー/車両要求トルク演算部21から車両要求トルクが入力される。さらに、このモード2演算部25には、コンバータ10から電圧制御による発電機トルク指令値が入力され、インバータ12から電圧制御によるモータトルク値が入力される。 3B, the motor rotation speed is input from the motor 4, the generator rotation speed is input from the generator 9, and the vehicle request torque is input from the system power / vehicle request torque calculation section 21. Is done. Further, a generator torque command value by voltage control is input from the converter 10 to the mode 2 calculation unit 25, and a motor torque value by voltage control is input from the inverter 12.
 また、モード2演算部25は、モード切替スイッチ27,28の入力端子に、それぞれ発電機トルク指令[モード2]とモータトルク指令[モード2]を出力する。さらに、モード2演算部25は、コンバータ10へ発電機電圧制御ON指令を出力し、インバータ12へモータ電圧制御ON指令を出力する。 The mode 2 calculation unit 25 outputs a generator torque command [mode 2] and a motor torque command [mode 2] to the input terminals of the mode changeover switches 27 and 28, respectively. Further, mode 2 calculation unit 25 outputs a generator voltage control ON command to converter 10 and outputs a motor voltage control ON command to inverter 12.
 次に、図5A及び図5Bを参照して、モード1演算部24における信号及び指令の信号処理について詳細に説明する。 
 まず、除算部31は、加算部29から出力された補正された燃料機関要求出力値が、内燃機関2から出力された内燃機関回転数、又は、発電機とモータ回転数の検出値とリングギアのギア数Grとサンギアのギア数Gsより計算した内燃機関回転数で除算され、内燃機関トルク要求として算出する。尚、内燃機関の(プラネタリキャリア)回転数)=(モータ回転数×Gr+発電機回転数×Gs)/(Gr+Gs)とする。次に、乗算部32は、この内燃機関トルク要求に対して、-Gs/(Gr+Gs)の比を乗算して発電機トルク指令1を算出する。
Next, with reference to FIGS. 5A and 5B, the signal processing of the signals and commands in the mode 1 calculation unit 24 will be described in detail.
First, the dividing unit 31 uses the corrected fuel engine required output value output from the adding unit 29 as the internal combustion engine speed output from the internal combustion engine 2 or the detected value of the generator and motor speed and the ring gear. Is divided by the number of revolutions of the internal combustion engine calculated from the number of gears Gr and the number of gears Gs of the sun gear, and is calculated as an internal combustion engine torque request. The (planetary carrier) rotation speed of the internal combustion engine) = (motor rotation speed × Gr + generator rotation speed × Gs) / (Gr + Gs). Next, the multiplying unit 32 multiplies the internal combustion engine torque request by a ratio of −Gs / (Gr + Gs) to calculate the generator torque command 1.
 さらに、減算部33において、発電機トルク指令1から、後述するバッテリー出力制御部による発電機トルク補正値が減算されて、発電機トルク指令2として出力される。 Further, in the subtracting unit 33, a generator torque correction value by a battery output control unit described later is subtracted from the generator torque command 1 and output as a generator torque command 2.
 この発電機トルク指令2は、保持部34の入力端子34aに入力する。保持部34の他の入力端子34bは、出力端子34cと帰還接続され、出力信号がフィードバックされる。保持部34は、エクステンションモードシーケンス部26からのトルク指令値ホールド信号により切替操作され、発電機トルク指令2又は、これまでの発電機トルク指令[モード1]の何れかの信号が発電機トルク指令[モード1]として出力される。この例では、保持部34は、トルク指令値ホールド信号が入力されると、これまでの発電機トルク指令[モード1]を保持する。 The generator torque command 2 is input to the input terminal 34a of the holding unit 34. The other input terminal 34b of the holding unit 34 is feedback-connected to the output terminal 34c, and the output signal is fed back. The holding unit 34 is switched by a torque command value hold signal from the extension mode sequence unit 26, and either the generator torque command 2 or the signal of the generator torque command [mode 1] so far is set as the generator torque command. Output as [Mode 1]. In this example, when the torque command value hold signal is input, the holding unit 34 holds the generator torque command [mode 1] so far.
 また、発電機トルク指令2は、分岐して、乗算部35により-Gr/Gsの比が乗算されてリングギアトルクとして算出される。減算部36で車両要求トルクからリングギアトルクが減算され、モータトルク指令として出力される。 Further, the generator torque command 2 branches and is multiplied by a ratio of −Gr / Gs by the multiplication unit 35 to be calculated as a ring gear torque. The ring gear torque is subtracted from the vehicle required torque by the subtracting unit 36 and output as a motor torque command.
 このモータトルク指令は、保持部37の入力端子37aに入力する。保持部37の他の入力端子37bは、出力端子37cと帰還接続され、出力信号がフィードバックされる。保持部37は、エクステンションモードシーケンス部26からのトルク指令値ホールド信号により切替操作され、モータトルク指令又は、これまでのモータトルク指令[モード1]の何れかの指令がモータトルク指令[モード1]として出力される。この例では、保持部37は、トルク指令値ホールド信号が入力されると、これまでのモータトルク指令[モード1]を保持する。 The motor torque command is input to the input terminal 37a of the holding unit 37. The other input terminal 37b of the holding unit 37 is feedback-connected to the output terminal 37c, and the output signal is fed back. The holding unit 37 is switched by a torque command value hold signal from the extension mode sequence unit 26, and either the motor torque command or the command of the motor torque command [mode 1] so far is sent to the motor torque command [mode 1]. Is output as In this example, when the torque command value hold signal is input, the holding unit 37 holds the motor torque command [mode 1] so far.
 次に、図5Bに示すバッテリー出力制御部41について説明する。 
 このバッテリー出力制御部41は、バッテリー開放(電気的切り離し)を行うためのバッテリー出力ゼロを含む予め定めたバッテリー出力目標値(以下、目標値と称する)となるように制御するための発電機トルク補正値を出力する。尚、ここでいうバッテリー出力ゼロは、完全なゼロに限定されるものではなく、ゼロに近ければ、実用上の問題は発生しない。
Next, the battery output control unit 41 shown in FIG. 5B will be described.
The battery output control unit 41 is a generator torque for controlling to a predetermined battery output target value (hereinafter referred to as a target value) including a battery output zero for battery release (electrical disconnection). Outputs the correction value. Note that the battery output zero here is not limited to complete zero, and if it is close to zero, no practical problem occurs.
 まず、切替部42は、バッテリー出力制御ON信号により、バッテリー出力検出値と0値を切り替えて出力する。ここでは、切替部42は、バッテリー出力制御ON信号の入力により、バッテリー出力検出値を出力する。 First, the switching unit 42 switches and outputs the battery output detection value and the 0 value in response to the battery output control ON signal. Here, the switching unit 42 outputs the battery output detection value in response to the input of the battery output control ON signal.
 また、切替部43は、バッテリー出力制御ON信号により、バッテリー出力の目標値と0値を切り替えて、切替部44の入力端に出力する。ここでは、切替部43は、バッテリー出力制御ON信号の入力により、バッテリー出力の目標値を出力する。さらに、切替部44は、バッテリー出力ゼロ制御ON信号により、切替部43からの目標値と0値を切り替えて出力する。ここでは、切替部44は、バッテリー出力ゼロ制御ON信号の入力により、0値を出力する。 Further, the switching unit 43 switches the target value and 0 value of the battery output by the battery output control ON signal, and outputs it to the input terminal of the switching unit 44. Here, the switching unit 43 outputs the target value of the battery output in response to the input of the battery output control ON signal. Further, the switching unit 44 switches between the target value and the zero value from the switching unit 43 and outputs them according to the battery output zero control ON signal. Here, the switching unit 44 outputs a zero value in response to the input of the battery output zero control ON signal.
 次に、減算部45は、切替部42から出力されたバッテリー出力検出値に対して、切替部44から出力された目標値又は、0値を減算して、PI制御部46へ出力する。PI制御部46では、バッテリー出力検出値又は、バッテリー出力検出値から目標値を減算した値に対して、PI制御により直流リンクパワー補正値を生成する。乗算部47は、この直流リンクパワー補正値にサンギアのギア数Gsを乗算し、その乗算結果を除算部48に出力する。 Next, the subtraction unit 45 subtracts the target value or 0 value output from the switching unit 44 from the battery output detection value output from the switching unit 42 and outputs the result to the PI control unit 46. The PI control unit 46 generates a DC link power correction value by PI control for the battery output detection value or a value obtained by subtracting the target value from the battery output detection value. The multiplication unit 47 multiplies the DC link power correction value by the gear number Gs of the sun gear, and outputs the multiplication result to the division unit 48.
 また、乗算部49において、モータ回転数にリングギアのギア数Grを乗算し、加算部51に出力すると、共に、乗算部50において、発電機回転数にサンギアのギア数Gsを乗算して、加算部51に出力する。 In addition, when the multiplication unit 49 multiplies the motor rotation number by the gear number Gr of the ring gear and outputs it to the addition unit 51, the multiplication unit 50 multiplies the generator rotation number by the sun gear number Gs, It outputs to the addition part 51.
 加算部51は、それぞれの乗算部49、50からの出力値を加算し、その加算結果を除算部48に出力する。除算部48は、直流リンクパワー補正値とサンギアのギア数Gsの乗算結果を、加算部51による加算結果で除算し、発電機トルク補正値として算出する。この発電機トルク補正値は、減算部33及び乗算部53に出力される。乗算部53では、発電機トルク補正値に1/Gsを乗算して、乗算部54に出力する。乗算部54においては、加算部51の加算結果に乗算部53の乗算結果に掛け合わせて内燃機関出力補正値として出力する。また、加算部51の加算結果に対して、除算部52において、1/(gr+Gs)で除算することで内燃機関回転数が生成され、前述した除算部31へ出力される。 The addition unit 51 adds the output values from the multiplication units 49 and 50, and outputs the addition result to the division unit 48. The division unit 48 divides the multiplication result of the DC link power correction value and the sun gear gear number Gs by the addition result by the addition unit 51 to calculate a generator torque correction value. This generator torque correction value is output to the subtraction unit 33 and the multiplication unit 53. Multiplier 53 multiplies the generator torque correction value by 1 / Gs and outputs the result to multiplier 54. The multiplication unit 54 multiplies the addition result of the addition unit 51 by the multiplication result of the multiplication unit 53 and outputs the result as an internal combustion engine output correction value. Further, the division unit 52 divides the addition result of the addition unit 51 by 1 / (gr + Gs) to generate the internal combustion engine speed, and outputs it to the division unit 31 described above.
 本実施形態における主回路バッテリー15が直流リンクに接続された状態であるモード1では、電気エネルギー(消費パワーと発電パワー)の概念的な釣り合いについては、図1の矢印に示すように、Pinv_max+Papu_max=Pcnv1+Pbatとなる。尚、消費パワーは、モータ4及び補機パワーユニット(APU)17の駆動に必要な電気エネルギーを消費パワーとし、発電機9及び主回路バッテリー15から供給される電気エネルギーを消費パワーとする。 In the mode 1 in which the main circuit battery 15 is connected to the DC link in the present embodiment, the conceptual balance of electric energy (power consumption and power generation power) is Pinv_max + Papu_max = Pcnv1 + Pbat. Note that the consumed power is the electric energy necessary for driving the motor 4 and the auxiliary power unit (APU) 17 and the electric energy supplied from the generator 9 and the main circuit battery 15 is the consumed power.
 次に、図6を参照して、モード2演算部25における信号及び指令の信号処理について詳細に説明する。図6は、駆動システムのモード2の発電機/モータトルク指令演算のための構成を示している。 
 まず、シュミットトリガ部78は、モータの回転と駆動電圧の間に生じるヒステリシス特性を利用した閾値検出を行い、モータ電圧制御ON信号を出力する。また、反転部(NOT回路)79を用いて、モータ電圧制御ON信号を反転させて発電機電圧制御ON信号を生成する。
Next, with reference to FIG. 6, the signal processing of the signal and command in the mode 2 calculation unit 25 will be described in detail. FIG. 6 shows a configuration for a generator / motor torque command calculation in mode 2 of the drive system.
First, the Schmitt trigger unit 78 performs threshold detection using hysteresis characteristics generated between the rotation of the motor and the drive voltage, and outputs a motor voltage control ON signal. Further, the inverter voltage (ON circuit) 79 is used to invert the motor voltage control ON signal to generate the generator voltage control ON signal.
 次に、発電機トルクにおいては、乗算器61によりシステムパワー/車両要求トルク演算部21からの車両要求トルクとモータ回転数とを掛け合わせて、車両駆動に必要なパワー(モータパワー)を求めて加算部62に出力する。加算部62は、乗算器61により求めた車両駆動に必要なパワーと補機消費電力を加算する。 Next, with respect to the generator torque, the multiplier 61 multiplies the vehicle required torque from the system power / vehicle required torque calculation unit 21 and the motor rotational speed to obtain the power (motor power) necessary for driving the vehicle. The result is output to the adder 62. The adder 62 adds the power required for driving the vehicle and the auxiliary machine power consumption obtained by the multiplier 61.
 また、乗算部65は、発電機回転数に-1を乗算して正負を反転させて加算部67に出力する。また、乗算部66では、モータ回転数に、Gr/Gsの比を乗算し、加算部67に出力する。この加算部67では、乗算部65及び乗算部66による乗算結果をそれぞれ加算する。除算部63は、加算部62によるモータ動力を加算部67による回転数で除算することで発電機トルク指令FFを出力する。 Also, the multiplication unit 65 multiplies the generator rotational speed by −1 to invert the sign and outputs the result to the addition unit 67. In addition, the multiplication unit 66 multiplies the motor rotation number by the ratio of Gr / Gs and outputs the result to the addition unit 67. The adder 67 adds the multiplication results of the multiplier 65 and the multiplier 66, respectively. The division unit 63 outputs the generator torque command FF by dividing the motor power by the addition unit 62 by the rotation speed by the addition unit 67.
 次に、加算部71は、電圧制御によるモータトルク指令と、後述するモータトルク指令FFとを加算したモータトルク指令を乗算部72に出力する。乗算部72は、このモータトルク指令に、Gs/Grの比を乗算し、切替部73の入力端に出力する。切替部73の他の入力端には、0値が入力されており、反転部79からの発電機電圧制御ON信号により切替制御される。切替部73は、発電機電圧制御ON信号が入力すると、0値を出力する。 Next, the adding unit 71 outputs a motor torque command obtained by adding a motor torque command based on voltage control and a motor torque command FF described later to the multiplying unit 72. The multiplier 72 multiplies the motor torque command by a ratio of Gs / Gr and outputs the command to the input terminal of the switching unit 73. A 0 value is input to the other input terminal of the switching unit 73, and the switching is controlled by a generator voltage control ON signal from the inverting unit 79. When the generator voltage control ON signal is input, the switching unit 73 outputs a zero value.
 さらに、切替部73の出力(モータトルク指令又は0値)は、加算部64により、除算部63からの発電機トルク指令FFと加算されて、発電機トルク指令(モード2)として出力される。 Furthermore, the output (motor torque command or 0 value) of the switching unit 73 is added by the adding unit 64 to the generator torque command FF from the dividing unit 63 and output as a generator torque command (mode 2).
 また、モータトルクにおいて、乗算器68は、車両要求トルクと発電機回転数を掛け合わせて、発電機動力を算出して加算部69に出力する。加算部69は、乗算器68による発電機動力に、補機消費電力を加算し、除算部70に出力する。除算部70では、発電機動力を加算部67の回転数を除算することで、モータトルク指令FFを算出する。 Also, in the motor torque, the multiplier 68 multiplies the vehicle request torque and the generator rotational speed to calculate the generator power and outputs it to the adder 69. The adder 69 adds auxiliary machine power consumption to the generator power generated by the multiplier 68 and outputs the result to the divider 70. The division unit 70 calculates the motor torque command FF by dividing the generator power by the rotational speed of the addition unit 67.
 また、加算部74は、発電機トルク指令FFと電圧制御による発電機トルク指令とを加算し、乗算器75に出力する。乗算器75は、加算されたトルク指令にGr/Gsの比を乗算して、切替部76の入力端に出力する。切替部76の他の入力端には、0値が入力されており、シュミットトリガ部78からのモータ電圧制御ON信号により切替制御される。切替部76は、モータ電圧制御ON信号が入力すると、0値を出力する。 Further, the adding unit 74 adds the generator torque command FF and the generator torque command by voltage control, and outputs the result to the multiplier 75. The multiplier 75 multiplies the added torque command by a ratio of Gr / Gs and outputs the result to the input terminal of the switching unit 76. A zero value is input to the other input terminal of the switching unit 76, and the switching is controlled by a motor voltage control ON signal from the Schmitt trigger unit 78. When the motor voltage control ON signal is input, the switching unit 76 outputs a 0 value.
 さらに、切替部76の出力(発電機トルク指令又は0値)は、加算部77により、除算部70からのモータトルク指令FFと加算されて、モータトルク指令(モード2)として出力される。 Furthermore, the output (generator torque command or 0 value) of the switching unit 76 is added by the adding unit 77 to the motor torque command FF from the dividing unit 70 and output as a motor torque command (mode 2).
 本実施形態における主回路バッテリー15が直流リンクに切り離された状態であるモード2では、電気エネルギー(消費パワーと発電パワー)の概念的な釣り合いについては、図2の矢印に示すように、Pinv_max+Papu_max=Pcnv2(>Pcnv1)となる。 In the mode 2 in which the main circuit battery 15 in the present embodiment is disconnected to the DC link, the conceptual balance of electric energy (consumed power and generated power) is expressed as Pinv_max + Papu_max = Pcnv2 (> Pcnv1)
 次に、図7を参照して、エクステンションモードシーケンス部26のモード設定に関する信号及び指令の信号処理について、詳細に説明する。図7は、駆動システムのエクステンションモードシーケンスについて説明するためのブロック図である。 
 比較部81において、主回路バッテリー15からのSOC推定信号と、メモリ82に格納される任意に設定されたSOC下限値(SOC_min)とを比較し、SOC推定信号≦SOC下限値であった場合には、アンド回路(論理積回路)83の入力端に1信号を出力する。
Next, with reference to FIG. 7, signal processing of signals and commands related to mode setting of the extension mode sequence unit 26 will be described in detail. FIG. 7 is a block diagram for explaining an extension mode sequence of the drive system.
The comparison unit 81 compares the SOC estimation signal from the main circuit battery 15 with an arbitrarily set SOC lower limit value (SOC_min) stored in the memory 82, and when SOC estimation signal ≦ SOC lower limit value is satisfied. Outputs one signal to the input terminal of the AND circuit (logical product circuit) 83.
 また、パワーエクステンションモードON信号は、モード設定を要望する運転者の操作により発信され、アンド回路83の入力端への入力信号及びバッテリー出力制御ON信号として出力される。 
 アンド回路83は、パワーエクステンションモードON信号と比較部81からの出力信号(1信号)が入力されると、バッテリー出力ゼロ制御ON信号を出力する。
The power extension mode ON signal is transmitted by the operation of a driver who desires mode setting, and is output as an input signal to the input terminal of the AND circuit 83 and a battery output control ON signal.
When the power extension mode ON signal and the output signal (one signal) from the comparison unit 81 are input, the AND circuit 83 outputs a battery output zero control ON signal.
 また、バッテリー出力検出値は、一致回路(一致論理回路)84の入力端及び、絶対値回路(abs回路)87にそれぞれ入力する。一致回路84の他の入力端には0値が入力されており、バッテリー出力検出値が0値の時に、一致回路84は、アンド回路85の入力端に1信号を出力する。アンド回路85の他の入力端には、バッテリー出力ゼロ制御ON信号が入力され、一致回路84からの1信号が同時に入力した際に、フリップフロップ回路86へS(セット)信号として出力される。このフリップフロップ回路86は、後述するオア回路90からR(リセット)信号が入力され、トルク指令値ホールド信号(Q)として出力する。またトルク指令値ホールド信号は、オンディレイ回路91に入力して、予め設定した時間後に、バッテリー開放信号として出力する。 The battery output detection value is input to the input terminal of the coincidence circuit (coincidence logic circuit) 84 and the absolute value circuit (abs circuit) 87, respectively. The zero value is input to the other input terminal of the coincidence circuit 84, and the coincidence circuit 84 outputs one signal to the input terminal of the AND circuit 85 when the battery output detection value is zero. A battery output zero control ON signal is inputted to the other input terminal of the AND circuit 85, and when one signal from the coincidence circuit 84 is inputted simultaneously, it is outputted to the flip-flop circuit 86 as an S (set) signal. The flip-flop circuit 86 receives an R (reset) signal from an OR circuit 90 described later and outputs it as a torque command value hold signal (Q). The torque command value hold signal is input to the on-delay circuit 91 and is output as a battery release signal after a preset time.
 また、絶対値回路87は、バッテリー出力検出値の絶対値を比較回路88の入力端に出力する。比較回路88は、他の入力端には、メモリ89から予め設定されたトルク指令ホールド解除閾値が入力され、バッテリー出力検出値≧トルク指令ホールド解除閾値の比較が行われる。バッテリー出力検出値≧トルク指令ホールド解除閾値の時に、オア回路90の入力端に1信号が出力される。オア回路90の他の入力端には、後述する電圧制御開始信号が入力され、この開始信号または比較回路88からの1信号が入力した際に、R信号をフリップフロップ回路86へ出力する。 The absolute value circuit 87 outputs the absolute value of the battery output detection value to the input terminal of the comparison circuit 88. The comparison circuit 88 receives a preset torque command hold release threshold value from the memory 89 at the other input terminal, and compares battery output detection value ≧ torque command hold release threshold value. When the battery output detection value ≧ the torque command hold release threshold value, one signal is output to the input terminal of the OR circuit 90. A voltage control start signal, which will be described later, is input to the other input terminal of the OR circuit 90. When this start signal or one signal from the comparison circuit 88 is input, the R signal is output to the flip-flop circuit 86.
 また、直流リンク電圧検出値は、微分回路(d/dt)94に入力し、さらに微分回路94から絶対値回路(abs)95に入力する。絶対値回路95で絶対値処理された直流リンク電圧検出値は、比較回路96で、メモリ97から予め設定された電圧変化率最大値と比較される。この比較が直流リンク電圧検出値≧電圧変化率最大値であった場合には、アンド回路98の入力端に1信号が出力される。この比較により、直流リンク電圧の検出値から演算した変化率の絶対値が電圧変化率最大値以上となった場合、バッテリー開放信号は、設定期間を待たずに、直流リンク電圧制御を開始する。 Also, the DC link voltage detection value is input to the differentiation circuit (d / dt) 94, and further input from the differentiation circuit 94 to the absolute value circuit (abs) 95. The detected DC link voltage value subjected to the absolute value processing by the absolute value circuit 95 is compared with a voltage change rate maximum value preset from the memory 97 by the comparison circuit 96. If this comparison is DC link voltage detection value ≧ voltage change rate maximum value, one signal is output to the input terminal of the AND circuit 98. As a result of this comparison, when the absolute value of the rate of change calculated from the detected value of the DC link voltage becomes equal to or greater than the maximum voltage change rate, the battery open signal starts DC link voltage control without waiting for the set period.
 アンド回路98のその他の入力端には、オンディレイ回路91からのバッテリー開放信号が入力され、比較回路96から1信号と同時に入力された場合には、オア回路93の入力端に出力される。 The battery open signal from the on-delay circuit 91 is input to the other input terminal of the AND circuit 98, and when it is input simultaneously with one signal from the comparison circuit 96, it is output to the input terminal of the OR circuit 93.
 また、オンディレイ回路91からのバッテリー開放信号は、オンディレイ回路92でさらに、設定時間を遅延させて、オア回路93の他の入力端に入力する。オア回路93は、バッテリー開放信号または、アンド回路98からの1信号が入力した際に、電圧制御開始信号を出力する。 The battery open signal from the on-delay circuit 91 is further delayed by a set time by the on-delay circuit 92 and input to the other input terminal of the OR circuit 93. The OR circuit 93 outputs a voltage control start signal when the battery open signal or one signal from the AND circuit 98 is input.
 この様に構成された車両の駆動システムにおいて、主回路バッテリー15を直流リンク11から電気的に切り離す場合、主回路バッテリー15が利用されていない状態の時に行う必要がある。従来では、直流リンク11に流れる電流を遮断し、切り離していたが、本実施形態では、発電機により発電される電気エネルギー(発電電力パワー)とモータ等の消費電気エネルギーを含んだ、負荷側によって消費される電気エネルギー(消費電力パワー)とが同一又は、略一致させるように制御して、つりあいを取ることで、主回路バッテリー15を非出力状態(又は、充放電の無い状態)にして、直流リンク11から切り離しを行っている。例えば、車両速度即ち、車両要求トルクを一定に保持して補機等に起因する負荷変動がないバッテリー出力ゼロ制御を行うように、モード1における発電機トルク指令及びモータトルク指令と、モード2の主回路バッテリー15が切り離された時の直流リンク電圧制御による発電機及びモータトルク指令とを一致させることである。 In the vehicle drive system configured as described above, when the main circuit battery 15 is electrically disconnected from the DC link 11, it is necessary to perform it when the main circuit battery 15 is not used. Conventionally, the current flowing through the DC link 11 is cut off and disconnected, but in this embodiment, the load side including electric energy generated by the generator (generated power power) and consumed electric energy such as a motor is used. By controlling so that the consumed electric energy (power consumption power) is the same or substantially the same, and taking balance, the main circuit battery 15 is brought into a non-output state (or a state without charge / discharge), Disconnecting from the DC link 11 is performed. For example, the generator torque command and the motor torque command in mode 1 and the mode 2 command so that the vehicle speed, that is, the vehicle required torque is kept constant and the battery output zero control without load fluctuation caused by the auxiliary machine or the like is performed. This is to match the generator and motor torque commands by DC link voltage control when the main circuit battery 15 is disconnected.
 このような手法により、主回路バッテリー15を直流リンク11からシームレスに切り離すことが可能となる。よって、主回路バッテリー15により動力分割機構のコンバータの負担を軽減し、車両最大出力を維持しつつ、バッテリー出力を制御する。このような切り離しを実現することで、主回路バッテリー15の切り離しに掛かる期間中において、モータによる補助的な動力の伝達が中断されることなく継続され、車両が登坂状況であっても速度低下が生じることなく、運転を再開した時の、トルク変化が防止される。 By such a method, the main circuit battery 15 can be seamlessly disconnected from the DC link 11. Therefore, the main circuit battery 15 reduces the burden on the converter of the power split mechanism and controls the battery output while maintaining the maximum vehicle output. By realizing such disconnection, auxiliary power transmission by the motor is continued without interruption during the period of disconnection of the main circuit battery 15, and the speed is reduced even when the vehicle is in a climbing situation. Without occurrence, torque change when operation is resumed is prevented.
 詳細には、図3Aに示すように、まず、運転者によるトルク要求・解除指令とモータ回転数より、システムパワー要求と車両要求トルクが演算される。次に、システムパワー要求とバッテリーSOC推定値及びバッテリー温度から、内燃機関要求出力を演算する。内燃機関2は、バッテリーSOCとバッテリー温度により決定されるバッテリー最大出力の制約条件のもと、極力、図8に示すように、内燃機関2の効率が高いポイントで出力させる。つまり、基本的には、バッテリー出力を明示的に制御しない。内燃機関要求出力決定後、効率が高くなる動作点を決め、内燃機関速度指令を決定する。 Specifically, as shown in FIG. 3A, first, a system power request and a vehicle required torque are calculated from a torque request / release command by the driver and the motor rotation speed. Next, the internal combustion engine required output is calculated from the system power request, the estimated battery SOC value, and the battery temperature. The internal combustion engine 2 outputs power at a point where the efficiency of the internal combustion engine 2 is as high as possible, as shown in FIG. 8, under the constraint condition of the maximum battery output determined by the battery SOC and the battery temperature. That is, basically, the battery output is not explicitly controlled. After determining the required output of the internal combustion engine, an operating point at which efficiency is increased is determined, and an internal combustion engine speed command is determined.
 主回路バッテリー15が電気的に接続される(モード1)においては、図5A,5Bに示すように、発電機9とモータ4のトルク指令を決定する。内燃機関要求出力を内燃機関回転数で除して、内燃機関トルク要求を計算し、この内燃機関トルク要求に-Gs/(Gr+Gs)を乗算して(Gs:サンギア歯数、Gr:リングギア歯数)内燃機関トルク要求につりあう発電機トルク指令1を演算する。発電機トルク指令1にバッテリー出力制御による発電機トルク補正値を減算し、発電機トルク指令2を演算する。次に、発電機トルク指令2に-Gr/Gsを乗算して内燃機関から伝わるリングギアトルクを演算する。車両要求トルクからリングギアトルク減算し、モータトルク指令を演算する。 When the main circuit battery 15 is electrically connected (mode 1), torque commands for the generator 9 and the motor 4 are determined as shown in FIGS. 5A and 5B. The internal combustion engine required output is divided by the internal combustion engine speed to calculate the internal combustion engine torque request, and this internal combustion engine torque request is multiplied by -Gs / (Gr + Gs) (Gs: number of sun gear teeth, Gr: ring gear teeth) Number) A generator torque command 1 that balances the internal combustion engine torque request is calculated. A generator torque command 2 is calculated by subtracting a generator torque correction value by battery output control from the generator torque command 1. Next, the ring gear torque transmitted from the internal combustion engine is calculated by multiplying the generator torque command 2 by -Gr / Gs. The ring gear torque is subtracted from the vehicle request torque to calculate a motor torque command.
 次に、主回路バッテリー15が電気的に接続される時のバッテリー出力制御について説明する。 
 直流リンク11における発電機による発電パワーとモータ等の負荷側の消費パワーとのつりあいは、式(1)で表される。
Next, battery output control when the main circuit battery 15 is electrically connected will be described.
The balance between the power generated by the generator in the DC link 11 and the power consumed on the load side of the motor or the like is expressed by equation (1).
Figure JPOXMLDOC01-appb-M000001
 ここで、Tgref:発電機トルク指令(N・m)、ωg:発電機角速度(rad/s)、Tmref:モータトルク指令(N・m)、ωm:モータ角速度(rad/s)、Pbat:バッテリー出力 (+充電、-放電)(kW)、Papu:補機消費電力(kW)、Ploss:発電機、モータ、インバータ、コンバータの損失(kW)とする。 
 また、トルクの関係式は、式(2)で表される。
Figure JPOXMLDOC01-appb-M000001
Where Tgref: Generator torque command (Nm), ωg: Generator angular velocity (rad / s), Tmref: Motor torque command (Nm), ωm: Motor angular velocity (rad / s), Pbat: Battery Output (+ charge, -discharge) (kW), Papu: Auxiliary machine power consumption (kW), Ploss: Generator, motor, inverter, converter loss (kW).
Further, the relational expression of torque is expressed by Expression (2).
Figure JPOXMLDOC01-appb-M000002
 ここで、Tref:車両要求トルク(N・m)とする。
Figure JPOXMLDOC01-appb-M000002
Here, Tref: vehicle required torque (N · m).
 式(1)、式(2)よりTmrefを消去すると、Tgref1は式(3)で表される。 If Tmref is deleted from Equation (1) and Equation (2), Tgref1 is expressed by Equation (3).
Figure JPOXMLDOC01-appb-M000003
 ここで、バッテリー充電電力をΔPbatだけ増やす場合を考えると、式(4)にて表現できる。発電機トルク補正値ΔTGrefは、式(5)で表される。
Figure JPOXMLDOC01-appb-M000003
Here, considering the case where the battery charging power is increased by ΔPbat, it can be expressed by equation (4). The generator torque correction value ΔTGref is expressed by equation (5).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 発電機トルク補正値と、内燃機関トルク補正値ΔTの関係は、式(6)で表される。
Figure JPOXMLDOC01-appb-M000005
The relationship between the generator torque correction value and the internal combustion engine torque correction value ΔT is expressed by equation (6).
Figure JPOXMLDOC01-appb-M000006
 次に、図4に示すフローチャートを参照して、このように構成された車両の駆動システムのモード切り替え(バッテリー切り離し)を駆動制御について説明する。
Figure JPOXMLDOC01-appb-M000006
Next, with reference to a flowchart shown in FIG. 4, drive control for mode switching (battery disconnection) of the vehicle drive system configured as described above will be described.
 通常制御モードにおいては、運転者から車両の速度を変化させるためのトルク要求・解除指令がハイブリッドコントローラ7に入力され、内燃機関2への速度指令、発電機9へのトルク指令及びモータ4へのトルク指令が出される(ステップS1)。 In the normal control mode, a torque request / release command for changing the vehicle speed is input from the driver to the hybrid controller 7, and the speed command to the internal combustion engine 2, the torque command to the generator 9, and the motor 4 A torque command is issued (step S1).
 次に、図7に示すように、運転者から車両最大出力の長時間化要求(パワーエクステンションモードON信号)の入力により、バッテリー出力制御ON信号が出力される(ステップS2)。次に、図5Bに示すバッテリー出力制御部41において、バッテリー出力制御ON信号の入力により、予め設定されたバッテリー出力制御目標値が読み出されて、バッテリー検出値を用いて演算処理され、発電機トルク補正値が出力される。 Next, as shown in FIG. 7, a battery output control ON signal is output in response to an input of a long-time vehicle maximum output request (power extension mode ON signal) from the driver (step S2). Next, in the battery output control unit 41 shown in FIG. 5B, a preset battery output control target value is read out by the input of the battery output control ON signal, and is subjected to arithmetic processing using the battery detection value. A torque correction value is output.
 バッテリー出力制御モードとして、この発電機トルク補正値により補正された発電機トルク指令2に従い、内燃機関2の動力に加えて、主回路バッテリー15によるモータ4を駆動させて一定期間走行する(ステップS3)。その後、エクステンションモードシーケンス部26において、主回路バッテリー15から検出されたバッテリーSOC推定値がSOC下限値を下回った際に、バッテリー出力ゼロ制御ON信号が出力される(ステップS4)。 As the battery output control mode, the motor 4 is driven by the main circuit battery 15 in addition to the power of the internal combustion engine 2 in accordance with the generator torque command 2 corrected by the generator torque correction value, and travels for a certain period (step S3). ). Thereafter, when the estimated battery SOC value detected from the main circuit battery 15 falls below the SOC lower limit value in the extension mode sequence unit 26, a battery output zero control ON signal is output (step S4).
 次に、図5Bに示すバッテリー出力制御部41において、バッテリー出力ゼロ制御ON信号の入力により、主回路バッテリー15の出力がゼロとなるように、発電機トルク指令を補正する(ステップS5)。このバッテリー出力ゼロモードにおいて、出力ゼロが目標値となるが、実際には、測定誤差等により完全にゼロにはならない。主回路バッテリー15は、SOCの低い状況、即ち充電容量が所定値(例えば、最小値)の低い状態で電気的に切り離すため、直流リンク電圧が低く、高電圧の方に余裕がある。このため、バッテリー出力の目標値は、ゼロよりも微小に充電方向(直流リンク11のエネルギーがあまり、直流リンク電圧が上昇する方向)とするのが望ましい。直流リンク電圧を微小に上昇させることで、予め設定されている直流リンク電圧の保護電圧に対して、電圧を微小に上昇させて余裕を持たせることで、動作の確実性や安全面で余裕を持つことができる。よって、発電機9は、モータ4が消費する電力よりもやや多めの電力を発電する。 Next, in the battery output control unit 41 shown in FIG. 5B, the generator torque command is corrected so that the output of the main circuit battery 15 becomes zero by the input of the battery output zero control ON signal (step S5). In this battery output zero mode, the output zero becomes the target value, but in reality, it is not completely zero due to a measurement error or the like. Since the main circuit battery 15 is electrically disconnected in a low SOC state, that is, in a state where the charging capacity is low at a predetermined value (for example, the minimum value), the DC link voltage is low and there is room for the high voltage. For this reason, it is desirable that the target value of the battery output be in a charging direction (a direction in which the energy of the DC link 11 is so low that the DC link voltage rises) slightly smaller than zero. By slightly increasing the DC link voltage, the voltage is slightly increased to give a margin with respect to the preset protection voltage of the DC link voltage. Can have. Therefore, the generator 9 generates slightly more power than the power consumed by the motor 4.
 バッテリー出力ゼロモードにおいて、バッテリー出力検出値がゼロとなったならば(ステップS6)、フリップフロップ回路86からトルク指令値ホールド信号を出力し、図5Aに示す保持部34,37において、現在の発電機トルク指令値及びモータトルク指令値をホールドし、車両要求トルクもホールドする(ステップS7)。但し、このホールド時に、補機を起因とする負荷変動が発生して、主回路バッテリー15から予め定めた閾値以上のバッテリー出力検出値が検出された場合、一旦、各トルク指令値のホールドを解除し、バッテリー出力ゼロ制御を再度行ってもよい。発電機トルク指令値及びモータトルク指令値をホールドを行い、所定時間が経過した後に、コンタクタ16にバッテリー開放信号(切り離し信号)を送出し、主回路バッテリー15を直流リンク11から電気的に切り離す(ステップS8)。この切り離しによりモード1からモード2に移行する。 If the battery output detection value becomes zero in the battery output zero mode (step S6), a torque command value hold signal is output from the flip-flop circuit 86, and the holding units 34 and 37 shown in FIG. The machine torque command value and the motor torque command value are held, and the vehicle request torque is also held (step S7). However, if a load fluctuation caused by an auxiliary machine occurs during this hold and a battery output detection value greater than a predetermined threshold value is detected from the main circuit battery 15, the hold of each torque command value is once released. Then, the battery output zero control may be performed again. The generator torque command value and the motor torque command value are held, and after a predetermined time has elapsed, a battery open signal (disconnect signal) is sent to the contactor 16 to electrically disconnect the main circuit battery 15 from the DC link 11 ( Step S8). By this separation, the mode 1 is shifted to the mode 2.
 次に、主回路バッテリー15を切り離したのち、一定期間をおいて、モード2における直流リンク電圧制御を開始する(ステップS9)。電圧制御を開始する前に補機負荷変動が発生し、直流電圧の変化率が、あらかじめ定めた閾値以上となった場合は、一定期間を待たず、直流リンク電圧制御を開始してもよい。 Next, after disconnecting the main circuit battery 15, the DC link voltage control in the mode 2 is started after a certain period of time (step S9). If an auxiliary load fluctuation occurs before the voltage control is started and the change rate of the DC voltage is equal to or greater than a predetermined threshold, the DC link voltage control may be started without waiting for a certain period.
 以上のように、車両要求トルクが一定で、且つ、補機等による負荷変動が発生していない状況下で、バッテリー出力ゼロ制御における発電機トルク指令及び、モータトルク指令と、主回路バッテリー15が切り離された状態における電圧制御による発電機トルク指令及びモータトルク指令とは、略一致する。これにより、車両出力を一定としながら、シームレスに主回路バッテリー15を直流リンク11から切り離すことが可能できる。 As described above, the generator torque command, the motor torque command, and the main circuit battery 15 in the battery output zero control are determined under the condition where the vehicle required torque is constant and the load fluctuation due to the auxiliary machine or the like does not occur. The generator torque command and the motor torque command by voltage control in the disconnected state are substantially the same. As a result, the main circuit battery 15 can be seamlessly disconnected from the DC link 11 while keeping the vehicle output constant.
 1…駆動システム、2…内燃機関、3…動力伝達システム、4…モータ、5…車軸、6…ホイール、7…ハイブリッドコントローラ、8…動力分割機構、9…発電機、10…コンバータ、11…直流リンク、12…インバータ、13…伝達部材、14…動力結合機構、15…主回路バッテリー、16…コンタクタ、17…補機パワーユニット、21…システムパワー/車両要求トルク演算部、22…内燃機関出力演算部、23…内燃機関動作点決定部、24…発電機/モータトルク指令演算部、25…発電機/モータトルク指令演算部、26…エクステンションモードシーケンス部、27,28…モード切替スイッチ、29…加算部、31…除算部、32…乗算部、33…減算部、34,37…保持部、34a,34b…入力端子、34c…出力端子、41…バッテリー出力制御部。46…PI制御部、78…シュミットトリガ部、79…反転部、81…比較部、82…メモリ。 DESCRIPTION OF SYMBOLS 1 ... Drive system, 2 ... Internal combustion engine, 3 ... Power transmission system, 4 ... Motor, 5 ... Axle, 6 ... Wheel, 7 ... Hybrid controller, 8 ... Power split mechanism, 9 ... Generator, 10 ... Converter, 11 ... DC link, 12 ... inverter, 13 ... transmission member, 14 ... power coupling mechanism, 15 ... main circuit battery, 16 ... contactor, 17 ... auxiliary power unit, 21 ... system power / vehicle required torque calculation unit, 22 ... internal combustion engine output Calculation unit, 23 ... operating point determination unit for internal combustion engine, 24 ... generator / motor torque command calculation unit, 25 ... generator / motor torque command calculation unit, 26 ... extension mode sequence unit, 27, 28 ... mode changeover switch, 29 ... Adding unit, 31 ... Division unit, 32 ... Multiplication unit, 33 ... Subtraction unit, 34, 37 ... Holding unit, 34a, 34b ... Input terminal, 34c Output terminal, 41 ... battery output control unit. 46 ... PI control unit, 78 ... Schmitt trigger unit, 79 ... reversing unit, 81 ... comparing unit, 82 ... memory.

Claims (7)

  1.  車軸を駆動する機械エネルギーを出力する内燃機関と、
     前記機械エネルギーの一部を電気エネルギーに変換する発電機と、
     前記発電機により発電された前記電気エネルギーを伝達する直流リンクと、
     前記直流リンクに電気的に接続され、前記発電機からの前記電気エネルギーが供給されて回転軸の回転で前記車軸の駆動力を加えるモータと、
     前記直流リンクに電気的に並列に接続される主回路バッテリーと、
     前記発電機により発電される前記電気エネルギーと、前記モータの駆動に要する電気エネルギーを含み消費される電気エネルギーとを略一致させる制御を行い、充放電の無い状態で前記主回路バッテリーと前記直流リンクとを電気的に切り離す制御部と、
    を具備する車両。
    An internal combustion engine that outputs mechanical energy to drive the axle;
    A generator that converts part of the mechanical energy into electrical energy;
    A DC link for transmitting the electrical energy generated by the generator;
    A motor that is electrically connected to the DC link, is supplied with the electrical energy from the generator, and applies a driving force of the axle by rotation of a rotating shaft;
    A main circuit battery electrically connected in parallel to the DC link;
    The main circuit battery and the direct current link are controlled in a state where there is no charge / discharge by performing a control to substantially match the electric energy generated by the generator with the electric energy consumed and consumed including the electric energy required for driving the motor. A control unit for electrically disconnecting and
    A vehicle comprising:
  2.  前記車両は、さらに、
     サンギア及びリングギアを含むギア機構を備え、前記機械エネルギーを分割する動力分割機構と、
     前記発電機と前記直流リンクの間に介在し、前記発電機の動作を制御するコンバータと、
     前記コンバータと前記直流リンクを介して接続し、前記モータに電気エネルギーを供給するインバータと、
     前記制御部からの制御で前記直流リンクと前記主回路バッテリーとを電気的に切り離し可能なコンタクタと、
     前記直流リンクと接続し、前記車軸の駆動を除く、所定の動作を行う補機と、
     前記モータが発生させた機械エネルギーと、前記動力分割機構から分割して伝達された機械エネルギーとを結合し、前記車軸を駆動する動力結合機構と、
    を具備し、
     前記制御部は、
     さらに、前記主回路バッテリーの出力の目標値と、前記主回路バッテリーから出力された検出値とから直流リンクエネルギー補正値を演算し、
     前記直流リンクエネルギー補正値と、前記サンギアのギア数及び前記リングギアのギア数と、前記モータの回転数及び前記発電機の回転数と、により発電機トルク補正値を演算し、
     前記発電機トルク補正値と、前記サンギア及び前記リングギアのそれぞれのギア数と、前記モータ及び前記発電機の回転数にて内燃機関出力を補正し、
     車両要求トルクを満たしつつ、前記主回路バッテリーの出力を目標値に制御する、請求項1に記載の車両。
    The vehicle further includes:
    A power split mechanism comprising a gear mechanism including a sun gear and a ring gear, and splitting the mechanical energy;
    A converter interposed between the generator and the DC link to control the operation of the generator;
    An inverter connected to the converter via the DC link and supplying electrical energy to the motor;
    A contactor capable of electrically disconnecting the DC link and the main circuit battery by control from the control unit;
    An auxiliary machine connected to the DC link and performing a predetermined operation excluding driving of the axle;
    A power coupling mechanism that couples the mechanical energy generated by the motor and the mechanical energy divided and transmitted from the power split mechanism, and drives the axle;
    Comprising
    The controller is
    Further, a DC link energy correction value is calculated from a target value of the output of the main circuit battery and a detection value output from the main circuit battery,
    A generator torque correction value is calculated from the DC link energy correction value, the number of gears of the sun gear and the number of gears of the ring gear, the number of rotations of the motor and the number of rotations of the generator,
    The internal combustion engine output is corrected by the generator torque correction value, the number of gears of the sun gear and the ring gear, and the rotational speed of the motor and the generator,
    The vehicle according to claim 1, wherein an output of the main circuit battery is controlled to a target value while satisfying a vehicle required torque.
  3.  前記制御部は、
     前記主回路バッテリーの充放電の無い状態で、
     前記モータのトルク指令及び車両要求トルクをホールドした状態で予め定めた期間の経過後に、前記コンタクタを開放して前記直流リンクから前記主回路バッテリーを電気的に切り離し、
     前記コンタクタを開放して予め定めた期間の経過後に、前記直流リンクの電圧制御を開始し、前記車両要求トルクの前記ホールドを解除することで、前記車両要求トルクを満たしつつ、シームレスに前記主回路バッテリーを前記直流リンクから切り離すことを特徴とする請求項2に記載の車両。
    The controller is
    With no charge / discharge of the main circuit battery,
    After the elapse of a predetermined period in a state where the torque command of the motor and the vehicle request torque are held, the contactor is opened to electrically disconnect the main circuit battery from the DC link,
    After the contactor is opened and a predetermined period elapses, voltage control of the DC link is started, and the hold of the vehicle required torque is released, so that the main circuit can be seamlessly satisfied while satisfying the vehicle required torque. The vehicle according to claim 2, wherein a battery is disconnected from the DC link.
  4.  前記制御部は、
     車両最大出力の長時間化要求を受けて、バッテリー出力制御信号を出力し、
     前記モータへ前記主回路バッテリーから目標値で放電し、充電率が所定値に至った後、前記発電機が発生する電気エネルギーと前記消費する電気エネルギーとを略一致させる制御を行った際に、前記モータのトルク指令及び車両要求トルクのホールドを行う請求項2に記載の車両。
    The controller is
    In response to a request for a longer vehicle maximum output, a battery output control signal is output,
    When the motor is discharged from the main circuit battery at a target value, and after the charging rate reaches a predetermined value, the electric energy generated by the generator and the electric energy consumed are substantially matched, The vehicle according to claim 2, wherein the motor torque command and vehicle required torque are held.
  5.  前記制御部は、前記主回路バッテリーを前記直流リンクから切り離す際、前記発電機により発電される電気エネルギーと、前記消費される電気エネルギーとを略一致させる制御を行い、
     前記主回路バッテリーの出力の目標値を、検出誤差を含む範囲で充電方向に設定し、前記主回路バッテリーを切り離し後に、前記直流リンクに掛かる直流リンク電圧を前記直流リンク電圧の保護電圧に対して微小に上昇させる請求項3に記載の車両。
    The control unit, when disconnecting the main circuit battery from the DC link, performs control to substantially match the electric energy generated by the generator and the consumed electric energy,
    The target value of the output of the main circuit battery is set in the charging direction within a range including a detection error, and after disconnecting the main circuit battery, the DC link voltage applied to the DC link is set to the protection voltage of the DC link voltage. The vehicle according to claim 3, wherein the vehicle is slightly raised.
  6.  前記制御部は、
     前記主回路バッテリーを前記直流リンクから電気的に切り離す際に、前記発電機と前記モータのトルク指令、及び前記車両要求トルクをホールドした後、
     前記補機による補機負荷変動が発生して、主回路バッテリー出力検出値の絶対値が予め設定したトルク指令ホールド解除閾値を超えた場合に、前記ホールドを解除して、再度、前記主回路バッテリーの出力がゼロになる制御を行う請求項4に記載の車両。
    The controller is
    When electrically disconnecting the main circuit battery from the DC link, after holding the torque command of the generator and the motor, and the vehicle required torque,
    When an auxiliary machine load fluctuation occurs due to the auxiliary machine, and the absolute value of the main circuit battery output detection value exceeds a preset torque command hold release threshold value, the hold is released, and the main circuit battery is released again. The vehicle according to claim 4, wherein control is performed so that the output of the vehicle becomes zero.
  7.  前記制御部は、
     前記主回路バッテリーを前記直流リンクから切り離す際に、前記コンタクタを開放させるバッテリー開放信号を出力した後に予め定めた設定期間を待機し、
     前記直流リンクに掛かる直流リンク電圧の検出値から変化率の絶対値を演算し、演算結果が電圧変化率最大値以上となった場合、
     前記バッテリー開放信号の出力後に予め定めた設定期間の終了を待たずに、直流リンク電圧制御を開始することを特徴とする請求項4に記載の車両。
    The controller is
    When disconnecting the main circuit battery from the DC link, after waiting for a predetermined set period after outputting a battery open signal to open the contactor,
    When the absolute value of the rate of change is calculated from the detected value of the DC link voltage applied to the DC link, and the calculation result is equal to or greater than the voltage change rate maximum value,
    5. The vehicle according to claim 4, wherein the DC link voltage control is started without waiting for the end of a predetermined setting period after the battery open signal is output.
PCT/JP2016/076809 2016-09-12 2016-09-12 Vehicle WO2018047341A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/076809 WO2018047341A1 (en) 2016-09-12 2016-09-12 Vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/076809 WO2018047341A1 (en) 2016-09-12 2016-09-12 Vehicle

Publications (1)

Publication Number Publication Date
WO2018047341A1 true WO2018047341A1 (en) 2018-03-15

Family

ID=61561736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076809 WO2018047341A1 (en) 2016-09-12 2016-09-12 Vehicle

Country Status (1)

Country Link
WO (1) WO2018047341A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172139A (en) * 2009-01-23 2010-08-05 Nissan Motor Co Ltd Device and method for drive controlling vehicle
JP2011015603A (en) * 2009-06-02 2011-01-20 Honda Motor Co Ltd Control device of load drive system
JP2013133041A (en) * 2011-12-27 2013-07-08 Toyota Motor Corp Hybrid vehicle and method of controlling the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172139A (en) * 2009-01-23 2010-08-05 Nissan Motor Co Ltd Device and method for drive controlling vehicle
JP2011015603A (en) * 2009-06-02 2011-01-20 Honda Motor Co Ltd Control device of load drive system
JP2013133041A (en) * 2011-12-27 2013-07-08 Toyota Motor Corp Hybrid vehicle and method of controlling the same

Similar Documents

Publication Publication Date Title
US8930098B2 (en) Clutch control device of hybrid vehicle
US11267455B2 (en) Vehicle control device
US9085296B2 (en) Hybrid vehicle and control method thereof
JP6070934B2 (en) Hybrid vehicle travel mode switching control device
US8742718B2 (en) Charging apparatus for vehicle
CN109624962B (en) Hybrid vehicle
US9162671B2 (en) Hybrid vehicle control unit
JP5131175B2 (en) Electric vehicle and control method thereof
JP6768813B2 (en) vehicle
JP7020144B2 (en) Electric vehicle and control method of electric vehicle
CN102844956A (en) Control device for electricity storage device and vehicle for mounting same
US9868448B2 (en) Hybrid vehicle
US10160444B2 (en) Vehicle
JP6343599B2 (en) Drive device
US11230183B2 (en) Vehicle drive system
JP2008295300A (en) Power restrictions arrangement of vehicle equipped with capacitor
US20190111909A1 (en) Hybrid vehicle
WO2008133154A1 (en) Electrical apparatus and method of controlling the same
JP2008189236A (en) Control device of hybrid vehicle
JP5069484B2 (en) Control device for hybrid vehicle
US9573581B2 (en) Hybrid vehicle
JP6844460B2 (en) Rechargeable battery system
WO2018047341A1 (en) Vehicle
EP3474432B1 (en) Drive device
JP6322417B2 (en) Voltage fluctuation control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16915759

Country of ref document: EP

Kind code of ref document: A1