WO2018142441A1 - Axial gap rotary electric machine - Google Patents

Axial gap rotary electric machine Download PDF

Info

Publication number
WO2018142441A1
WO2018142441A1 PCT/JP2017/003289 JP2017003289W WO2018142441A1 WO 2018142441 A1 WO2018142441 A1 WO 2018142441A1 JP 2017003289 W JP2017003289 W JP 2017003289W WO 2018142441 A1 WO2018142441 A1 WO 2018142441A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
axial gap
type rotating
electrical machine
rotating electrical
Prior art date
Application number
PCT/JP2017/003289
Other languages
French (fr)
Japanese (ja)
Inventor
恭永 米岡
高橋 秀一
利文 鈴木
酒井 亨
高橋 大作
大地 野村
潤 櫻井
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to PCT/JP2017/003289 priority Critical patent/WO2018142441A1/en
Priority to JP2018565087A priority patent/JP6857670B2/en
Priority to CN201780078964.XA priority patent/CN110089010A/en
Publication of WO2018142441A1 publication Critical patent/WO2018142441A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof

Definitions

  • the present invention relates to an axial gap type rotating electrical machine in which a rotor and a stator are opposed in the axial direction.
  • the axial gap type rotating electrical machine has a structure in which the rotor and the stator are opposed to each other in the axial direction, the axial length can be shortened compared to the radial gap type, and the rotating electrical machine itself can be made thinner. On the other hand, in the production and assembly, it is necessary to adjust the gap between the rotor and the stator.
  • Patent Document 1 discloses a 1 rotor-2 stator type axial gap type rotating electrical machine, in which a crankshaft is provided on one side of a crankshaft supported by a crankcase via a bearing, and an adapter is attached to the tapershaft. A first stator case including the first stator is attached to the crankcase. Next, a rotor is assembled to the adapter fixed to the taper shaft, and a shim having a predetermined thickness dimension is sandwiched between the adapter and the rotor in order to adjust an air gap between the rotor and the stator. And the structure attached with respect to a 1st stator case is disclosed so that the 2nd stator case provided with the 2nd stator may pinch
  • Patent Document 1 the shim is sandwiched and adjusted to adjust the air gap between the rotor and the stator. After the assembly, the rotor and the stator are covered with the first and second stator cases. There is a problem that the air gap cannot be visually confirmed. Therefore, after assembling, it cannot be determined whether the air gap is defective, and there is a concern that the defect rate increases.
  • the present invention is an axial gap type rotating electrical machine, which is a rotor that rotates about a main shaft, and a stator that is disposed to face the rotor in the main shaft direction.
  • a stator that fixes the stator, and a bracket that is coupled to the housing and that holds the bearing and the rotor is rotatably held.
  • the rotor and the stator are disposed inside the housing, and the rotor and the stator are disposed between the rotor and the stator. It was set as the structure which has a through-hole located in the radial direction extension line of an air gap in a housing.
  • an axial gap type rotating electrical machine capable of visually confirming an air gap after assembly.
  • FIG. 3 is a schematic diagram showing only a cross section on one side with respect to the main shaft of the axial gap type rotating electric machine in the first embodiment.
  • FIG. 3 is a schematic diagram of a configuration viewed from a through hole of the axial gap type rotating electric machine in Example 1, and is a diagram in the case where the through hole shape is a circle.
  • FIG. 3 is a schematic diagram of a configuration viewed from a through hole of an axial gap type rotating electrical machine in Example 1, and is a view when the through hole shape is an ellipse.
  • FIG. 2 is a schematic diagram of a configuration viewed from a through hole of an axial gap type rotating electrical machine in Example 1, and is a diagram in the case where the through hole shape is a horizontally long rectangle.
  • FIG. 3 is a schematic diagram of a configuration viewed from a through hole of the axial gap type rotating electric machine in Example 1, and is a diagram in the case where the through hole shape is a horizontally long rectangle.
  • FIG. 2 is a schematic diagram of a configuration viewed from a through hole of an axial gap type rotating electrical machine in Example 1, and is a view when the through hole shape is a rectangle.
  • FIG. 2 is a schematic diagram of a configuration viewed from a through hole of an axial gap type rotating electric machine in Example 1, and is a view when the through hole shape is a vertically long ellipse.
  • FIG. 2 is a schematic diagram of a configuration viewed from a through hole of an axial gap type rotating electric machine in Example 1, and is a diagram in the case where the through hole shape is a vertically long rectangle.
  • FIG. 3 is a schematic diagram showing the position of a through hole when the axial gap type rotating electrical machine in the first embodiment is viewed from the main axis direction, and is a view in the case where there is a through hole at one place on the upper surface. It is a schematic diagram showing the position of the through hole which looked at the axial gap type rotary electric machine in Example 1 from the main-axis direction, and is a figure in case a through hole exists in one side surface. It is a schematic diagram showing the position of the through-hole which looked at the axial gap type rotary electric machine in Example 1 from the main-axis direction, and is a figure in case a through-hole exists in two opposing side surfaces.
  • FIG. 2 is a schematic diagram showing the positions of through holes when the axial gap type rotating electrical machine in the first embodiment is viewed from the main axis direction, and is a view in the case where there are through holes at two locations on an upper surface and a side surface. It is a schematic diagram showing the position of the through-hole which looked at the axial gap type rotary electric machine in Example 1 from the main-axis direction, and is a figure in case a through-hole exists in two diagonal directions.
  • FIG. 3 is a schematic diagram showing the positions of through holes when the axial gap type rotating electrical machine in the first embodiment is viewed from the main axis direction, and is a diagram in the case where there are through holes at three locations on the upper surface and the opposite side surfaces.
  • FIG. 3 is a schematic diagram showing the positions of through holes when the axial gap type rotating electrical machine in the first embodiment is viewed from the main axis direction, and is a diagram in the case where there are through holes at three locations on the upper surface and the opposite side surfaces.
  • FIG. 3 is a schematic diagram showing the positions of through holes when the axial gap type rotating electrical machine in the first embodiment is viewed from the main axis direction, and is a view in the case where there are through holes at three equal pitches on the side surface.
  • FIG. 3 is a schematic diagram showing the position of a through hole when the axial gap type rotating electrical machine in the first embodiment is viewed from the main axis direction, and is a view when there is no terminal box. It is a schematic diagram which shows only the cross section of the one side with respect to the main axis
  • FIG. 21 is a perspective view showing a positional relationship among a stator, a rotor, and a housing of a conventional axial gap type rotating electrical machine.
  • the configuration of the axial gap type rotating electrical machine includes a combination of 1 stator 1 rotor type, 1 stator 2 rotor type, 2 stator 1 rotor type, and the like. In this embodiment, a description will be given by taking a 1 stator 2 rotor type as an example. .
  • the housing 40 basically has a cylindrical shape extending in the main axis direction, but a cross-sectional view is shown for explanation.
  • the stator 30 and the rotor 20 are arranged inside the cylinder of the housing 40.
  • the stator 30 is disposed and fixed in the axial center portion of the housing 40, and the two rotors 20 are disposed so as to face the stator 30 and sandwich the stator 30 in the main shaft direction (not shown).
  • FIG. 22 is a perspective view showing the structure of the stator 30 and the rotor 20 of a conventional axial gap type rotating electrical machine.
  • the stator 30 includes an iron core 31, a bobbin 32, and a coil 33, and is filled with an insulating resin so as to fill a space between them, thereby forming an integral stator.
  • the stator 30 is held by the housing 40 with an adhesive strength of insulating resin, and the housing 40 is configured so as not to come off in the axial direction of the stator 30 by providing a step on the inner side thereof, and a notch is partially cut in the rotational direction.
  • the groove or protrusion is provided so that it does not rotate in the rotation direction.
  • the rotor 20 includes a rotor yoke 22 and a permanent magnet 21.
  • FIG. 23 is a schematic diagram showing only a cross section on one side with respect to the main shaft 60, showing the positional relationship of the stator, rotor, and housing of a conventional axial gap type rotating electrical machine.
  • a stator 30 composed of an iron core 31 and a coil 33 is filled with an insulating resin, molded with a mold 35, and fixed to a housing 40.
  • the two rotors 20 constituted by the rotor yoke 22 and the permanent magnet 21 are arranged so as to sandwich the stator 30 in the direction of the main shaft 60.
  • the rotor 20 is rotatably held by a bearing 65 disposed on a bracket 50 coupled to the housing 40.
  • Reference numeral 34 denotes a crossover wire drawn from the coil 33 of the stator 30, which is also filled with an insulating resin and is molded with a mold 35.
  • the stator 30 and the rotor 20 are assembled into the housing 40, it is necessary to adjust the air gap 25 between the rotor 20 and the stator 30, and a shim is inserted so as to be a distance calculated in advance.
  • the assembly adjustment is performed, after the assembly, since the rotor 20 and the stator 30 are covered with the housing 40, there is a problem that the air gap cannot be visually confirmed after the assembly. Therefore, there is no way to check whether the air gap is normally formed after assembly, and there is a concern that the defect rate increases if it is defective.
  • a through hole is provided in the housing 40 so that the air gap between the rotor 20 and the stator 30 can be seen through the through hole.
  • FIG. 1 is a schematic diagram showing only a cross section on one side with respect to the main shaft of the axial gap type rotating electrical machine in the present embodiment.
  • the same components as those in FIG. 23 are denoted by the same reference numerals, and the description thereof is omitted.
  • 1 is different from FIG. 23 in that a through hole 70 is provided in the housing 40.
  • the through hole 70 is located on the radial extension line of the air gap 25 between the rotor 20 and the stator 30, and is disposed on the housing 40 so that the air gap 25 can be seen.
  • the through hole 70 is preferably arranged so as to be positioned directly above the air gap 25 in the main axis direction.
  • FIG. 1 there is only one through hole 70 in the direction of the main shaft 60, and only the air gap 25 between the right rotor 20 and the stator 30 on the paper surface of FIG. This is because there is a crossover 34 at the upper position of the air gap 25 between the rotor 20 and the stator 30 on the left side of FIG. is there.
  • the connecting wire 34 is arranged so as to be distributed to the left and right in the circumference of the stator 30 on the paper surface, or the connecting wire 34 is arranged in the circumferential direction of the stator 30 so as not to protrude into the air gap 25 portion. If it comprises, the air gap 25 of the rotor 20 on either side can be visually observed by providing the two through-holes 70 in the direction of the main shaft 60.
  • FIG. 2 is a schematic diagram of the configuration viewed from the through hole of the axial gap type rotating electrical machine in the present embodiment.
  • the through hole 70 has a circular shape, and preferably has a shape and size into which a gauge for measuring the air gap 25 can be inserted.
  • the through hole 70 is preferably arranged so that the air gap 25 is positioned at the center of the through hole 70. By making it circular shape, there exists an effect that a process is easy.
  • FIG. 3 is a schematic view of a configuration viewed from the through hole of the axial gap type rotating electric machine in the present embodiment, and shows a case where the through hole shape is an ellipse.
  • FIG. 5 is a schematic diagram of a configuration viewed from the through hole of the axial gap type rotating electric machine in the present embodiment, and shows a case where the through hole shape is rectangular.
  • the through hole 70 By making the through hole 70 a rectangle having two sides along the cross section of the rotor 20 and the stator 30, the air gap 25 is parallel, in other words, the rotor 20 is arranged in parallel to the stator 30. There is an effect that it can be confirmed visually. In addition, in the case of the same diameter compared to a circle, there is an effect that it is easy to see because the visible range is wide. It is also possible to check whether there are any abnormalities in the appearance of the rotor 20 and the stator 30.
  • FIG. 6 is a schematic diagram of a configuration viewed from the through hole of the axial gap type rotating electric machine in the present embodiment, and shows a case where the through hole shape is a vertically long ellipse.
  • the housing can be shared even when the air gap position and the air gap length are changed by changing the configuration of the rotor / stator. Can do. Further, the same effect can be obtained even when a vertically long rectangle is used as shown in FIG.
  • the through hole is not limited to the shape shown in FIGS. 2 to 7, and may have a shape other than a circle or a rectangle as long as the side surface of the rotor / stator and the air gap length can be confirmed.
  • it may be an ellipse or polygon that is oblique to the axial direction.
  • FIG. 8 is a schematic diagram showing the position of the through hole 70 when the axial gap type rotating electrical machine in the present embodiment is viewed from the main axis direction.
  • 45 is a housing leg, which has a terminal box 41 in the upper part of the axial gap type rotating electrical machine, and a through hole 70 is also provided in one upper part.
  • FIG. 9 is a schematic diagram showing the position of the through hole 70 when the axial gap type rotating electric machine in the present embodiment is viewed from the main axis direction, and shows a case where the through hole 70 is provided at one side of the housing 40. 9 has an effect that the axial gap type rotating electrical machine can be thinned in the axial direction. Therefore, by providing the through hole 70 at a position different from the position of the terminal box 41, the feature that it can be thinned in the axial direction is utilized. Can do.
  • FIG. 10 is a schematic diagram showing the position of the through hole 70 when the axial gap type rotating electrical machine in the present embodiment is viewed from the main axis direction, and shows a case where there are through holes at two opposite side surfaces of the housing 40.
  • a clearance gauge is used to form the back of the air gap 25. Can be confirmed.
  • FIG. 11 is a schematic diagram showing the positions of the through holes when the axial gap type rotating electrical machine in the present embodiment is viewed from the main axis direction, and shows a case where there are through holes at two locations on the upper surface and the side surface.
  • FIGS. 8 and 9 the same effects as in FIG. 10 are obtained.
  • FIG. 12 is a schematic diagram showing the positions of through holes when the axial gap type rotating electrical machine in the present embodiment is viewed from the main axis direction, and is a diagram in the case where there are through holes in two diagonal directions. In addition to the same effect as in FIG. 11, there is an effect that it can be easily confirmed when viewing the air gap 25 through the through hole 70 from FIG. 11.
  • FIG. 13 is a schematic diagram showing the positions of the through holes when the axial gap type rotating electrical machine in the present embodiment is viewed from the main axis direction, and shows a case where there are through holes at three locations on the upper surface and the opposite side surfaces. Since the through-holes that can be observed compared to FIG. 11 are increased, it is possible to confirm the air gap 25 and the distortion on the stator side in a wider range.
  • FIG. 14 is a schematic diagram showing the positions of through holes when the axial gap type rotating electrical machine in the present embodiment is viewed from the main axis direction, and shows a case where there are through holes at three equal pitches on the side surface. Compared to FIG. 13, since there are through holes at an equal pitch, it is possible to check the air gap 25 and the distortion on the stator side in a wider range.
  • FIG. 15 is a schematic diagram showing the position of the through hole when the axial gap type rotating electrical machine in the present embodiment is viewed from the main axis direction, and shows an example in which there is no terminal box.
  • the through holes 70 are not provided at an equal pitch, but are provided at a plurality of locations. As shown in FIGS. 8 to 15, the presence / absence of the terminal box and the position and number of the through holes 70 may be changed according to the situation where the motor is installed. Moreover, when providing two or more, it is not necessary to provide at equal pitch.
  • the housing is provided with a through hole, and the air gap between the rotor and the stator can be seen through the through hole. Therefore, after the stator and the rotor are assembled in the housing, however, since the air gap can be visually confirmed, it can be confirmed whether the air gap is normally formed after assembly, and the defect rate can be reduced.
  • the present embodiment has a through hole cap that closes the through hole provided in the first embodiment, and describes a point that prevents intrusion of dust and foreign matters by closing the through hole in cases other than visual confirmation of the air gap. .
  • FIG. 16 is a schematic view showing only a cross section on one side with respect to the main shaft in a configuration in which a through-hole cap is attached to a through-hole of the axial gap type rotating electric machine in the present embodiment.
  • the same components as those in FIG. 16 is different from FIG. 1 in that a through hole cap 74 is provided in the through hole 70.
  • a through hole cap 74 is provided in the through hole 70.
  • the through hole cap 74 may be metal or resin.
  • the rotation state can be observed from the outside. It is also possible to detect rotation by providing a striped pattern on the circumferential surface of the rotor and monitoring with a sensor from the outside through the transparent member of the through-hole cap 74. It is also possible to detect rotation by providing a sensor in the through-hole cap 74 and monitoring with the sensor.
  • FIG. 17 is a schematic view showing only a cross section on one side with respect to the main shaft in a configuration in which a housing temperature sensor is attached to the through-hole cap 74 of FIG.
  • a housing temperature sensor 75 in the through-hole cap 74, there is no need to separately provide a mounting seat for the housing temperature sensor 75. If a separate mounting seat is provided in the axial direction, the shaft length increases.
  • the magnetic pole radial direction is reduced with respect to the same radial dimension without the mounting seat, so that the problem that the magnetic pole area is reduced and the output is reduced can be solved. Also, there is an effect that removal is easy.
  • FIG. 18 is a schematic view showing only a cross section on one side with respect to the main shaft in a configuration in which a temperature sensor for housing inside air is attached to the through-hole cap 74 of FIG.
  • a temperature sensor for housing inside air is attached to the through-hole cap 74 of FIG.
  • FIG. 18 by providing the inside air temperature sensor 76 in the through-hole cap 74, there is no need to separately provide a mounting seat for the inside air temperature sensor 76, and as in FIG. It can be solved and has the effect of being easy to remove.
  • a magnetic pole position detection sensor instead of the inside air temperature sensor 76, a magnetic pole position detection sensor, a rotation detection sensor, or a position detection sensor may be attached to detect rotation.
  • FIG. 19 is a schematic diagram showing only a cross section on one side with respect to the main shaft in a configuration in which a through hole is provided in the through hole cap of FIG. 16 and a sensor wire 78 is taken out.
  • a sensor wire 78 from a sensor such as a thermocouple attached to the stator 30 is taken out from a through hole of a through hole cap / lead wire bush 77 provided with a through hole.
  • FIG. 20 is a schematic view showing only a cross section on one side with respect to the main shaft in a configuration in which the through hole 70 of FIG. 16 is a screw hole and a suspension bolt 79 is attached as a through hole cap.
  • the combined use of the through hole cap and the suspension bolt 79 has an effect that it is not necessary to separately provide a suspension bolt.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiment has been described by taking an example of a 1-stator 2-rotor type axial gap type rotating electrical machine, it is obvious that the 1-stator 1-rotor type and 2-stator 1-rotor type can also be applied.
  • the configuration shown in FIGS. 2 to 7 may be replaced with through holes having different shapes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Motor Or Generator Frames (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

A conventional axial gap rotary electric machine has a problem in that after the rotary electric machine is assembled, an air gap between a rotor and a stator cannot be visually observed, and hence it cannot be determined whether the air gap is defective after the assembly, which leads to an increase in the failure rate. In order to solve the problem, the axial gap rotary electric machine according to the present invention includes: a rotor which rotates about a main shaft; a stator which is disposed to be opposed to the rotor in a main shaft direction; a housing which fixes the stator; and a bracket which is coupled to the housing to hold a bearing and to which the rotor is rotatably held, and the axial gap rotary electric machine has a configuration in which the rotor and the stator are arranged inside the housing and the housing has a through hole located on a radially extending line of an air gap between the rotor and the stator.

Description

アキシャルギャップ型回転電機Axial gap type rotating electrical machine
 本発明は軸方向にロータとステータを対向させたアキシャルギャップ型回転電機に関する。 The present invention relates to an axial gap type rotating electrical machine in which a rotor and a stator are opposed in the axial direction.
 アキシャルギャップ型回転電機は、軸方向にロータとステータを対向させた構造であるため、ラジアルギャップ型に比べて軸方向長さを短くでき、回転電機自体を薄型化できる特徴がある。一方、その製造組み立てにおいては、ロータとステータ間のギャップ調整を行なう必要がある。 Since the axial gap type rotating electrical machine has a structure in which the rotor and the stator are opposed to each other in the axial direction, the axial length can be shortened compared to the radial gap type, and the rotating electrical machine itself can be made thinner. On the other hand, in the production and assembly, it is necessary to adjust the gap between the rotor and the stator.
 本技術分野の背景技術として、特開2015-61394号公報(特許文献1)がある。特許文献1では、1ロータ-2ステータ型のアキシャルギャップ型回転電機が開示され、クランクケースに軸受を介して支持されるクランク軸の一方にテーパ軸が設けられ、テーパ軸にはアダプタが取り付けられ、第1のステータを備えた第1のステータケースが、クランクケースに対して取り付けられる。次いで、テーパ軸に固定されるアダプタには、ロータが組み付けられ、アダプタとロータとの間には、ロータとステータとの間のエアギャップを調整するため所定の厚み寸法を備えるシムが挟み込まれる。そして、第2のステータを備えた第2のステータケースがロータを挟み込むように、第1のステータケースに対して取り付けられる構成が開示されている。 As a background art in this technical field, there is JP-A-2015-61394 (Patent Document 1). Patent Document 1 discloses a 1 rotor-2 stator type axial gap type rotating electrical machine, in which a crankshaft is provided on one side of a crankshaft supported by a crankcase via a bearing, and an adapter is attached to the tapershaft. A first stator case including the first stator is attached to the crankcase. Next, a rotor is assembled to the adapter fixed to the taper shaft, and a shim having a predetermined thickness dimension is sandwiched between the adapter and the rotor in order to adjust an air gap between the rotor and the stator. And the structure attached with respect to a 1st stator case is disclosed so that the 2nd stator case provided with the 2nd stator may pinch | interpose a rotor.
特開2015-61394号公報Japanese Patent Laying-Open No. 2015-61394
 特許文献1では、ロータとステータとの間のエアギャップを調整するためにシムを挟み込み組立て調整するが、組立て後は、ロータとステータは第1、第2のステータケースで覆われるため、組立て後にエアギャップを目視確認できないという問題がある。そのため、組立てた後にエアギャップが不良であるかの判定が出来ず、不良率が増加するという懸念がある。 In Patent Document 1, the shim is sandwiched and adjusted to adjust the air gap between the rotor and the stator. After the assembly, the rotor and the stator are covered with the first and second stator cases. There is a problem that the air gap cannot be visually confirmed. Therefore, after assembling, it cannot be determined whether the air gap is defective, and there is a concern that the defect rate increases.
本発明は、上記背景技術及び課題に鑑み、その一例を挙げるならば、アキシャルギャップ型回転電機であって、主軸を中心に回転するロータと、主軸方向にロータと対向して配置されたステータと、ステータを固定するハウジングと、ハウジングに結合され軸受を保持しロータが回転可能に保持されているブラケットと、を有し、ハウジングの内側にロータとステータが配置され、ロータとステータとの間のエアギャップの径方向延長線上に位置する貫通穴をハウジングに有する構成とした。 In view of the above-described background art and problems, the present invention is an axial gap type rotating electrical machine, which is a rotor that rotates about a main shaft, and a stator that is disposed to face the rotor in the main shaft direction. A stator that fixes the stator, and a bracket that is coupled to the housing and that holds the bearing and the rotor is rotatably held. The rotor and the stator are disposed inside the housing, and the rotor and the stator are disposed between the rotor and the stator. It was set as the structure which has a through-hole located in the radial direction extension line of an air gap in a housing.
 本発明によれば、組立て後にエアギャップを目視確認できるアキシャルギャップ型回転電機を提供できる。 According to the present invention, it is possible to provide an axial gap type rotating electrical machine capable of visually confirming an air gap after assembly.
実施例1におけるアキシャルギャップ型回転電機の主軸に対して片側の断面のみを示す模式図である。FIG. 3 is a schematic diagram showing only a cross section on one side with respect to the main shaft of the axial gap type rotating electric machine in the first embodiment. 実施例1におけるアキシャルギャップ型回転電機の貫通穴から見た構成の模式図であり、貫通穴形状が円の場合の図である。FIG. 3 is a schematic diagram of a configuration viewed from a through hole of the axial gap type rotating electric machine in Example 1, and is a diagram in the case where the through hole shape is a circle. 実施例1におけるアキシャルギャップ型回転電機の貫通穴から見た構成の模式図であり、貫通穴形状が楕円の場合の図である。FIG. 3 is a schematic diagram of a configuration viewed from a through hole of an axial gap type rotating electrical machine in Example 1, and is a view when the through hole shape is an ellipse. 実施例1におけるアキシャルギャップ型回転電機の貫通穴から見た構成の模式図であり、貫通穴形状が横長の矩形の場合の図である。FIG. 2 is a schematic diagram of a configuration viewed from a through hole of an axial gap type rotating electrical machine in Example 1, and is a diagram in the case where the through hole shape is a horizontally long rectangle. 実施例1におけるアキシャルギャップ型回転電機の貫通穴から見た構成の模式図であり、貫通穴形状が矩形の場合の図である。FIG. 2 is a schematic diagram of a configuration viewed from a through hole of an axial gap type rotating electrical machine in Example 1, and is a view when the through hole shape is a rectangle. 実施例1におけるアキシャルギャップ型回転電機の貫通穴から見た構成の模式図であり、貫通穴形状が縦長の楕円の場合の図である。FIG. 2 is a schematic diagram of a configuration viewed from a through hole of an axial gap type rotating electric machine in Example 1, and is a view when the through hole shape is a vertically long ellipse. 実施例1におけるアキシャルギャップ型回転電機の貫通穴から見た構成の模式図であり、貫通穴形状が縦長の矩形の場合の図である。FIG. 2 is a schematic diagram of a configuration viewed from a through hole of an axial gap type rotating electric machine in Example 1, and is a diagram in the case where the through hole shape is a vertically long rectangle. 実施例1におけるアキシャルギャップ型回転電機を主軸方向から見た貫通穴の位置を表す模式図であり、上面の1箇所に貫通穴がある場合の図である。FIG. 3 is a schematic diagram showing the position of a through hole when the axial gap type rotating electrical machine in the first embodiment is viewed from the main axis direction, and is a view in the case where there is a through hole at one place on the upper surface. 実施例1におけるアキシャルギャップ型回転電機を主軸方向から見た貫通穴の位置を表す模式図であり、側面1箇所に貫通穴がある場合の図である。It is a schematic diagram showing the position of the through hole which looked at the axial gap type rotary electric machine in Example 1 from the main-axis direction, and is a figure in case a through hole exists in one side surface. 実施例1におけるアキシャルギャップ型回転電機を主軸方向から見た貫通穴の位置を表す模式図であり、対向する側面2箇所に貫通穴がある場合の図である。It is a schematic diagram showing the position of the through-hole which looked at the axial gap type rotary electric machine in Example 1 from the main-axis direction, and is a figure in case a through-hole exists in two opposing side surfaces. 実施例1におけるアキシャルギャップ型回転電機を主軸方向から見た貫通穴の位置を表す模式図であり、上面と側面の2箇所に貫通穴がある場合の図である。FIG. 2 is a schematic diagram showing the positions of through holes when the axial gap type rotating electrical machine in the first embodiment is viewed from the main axis direction, and is a view in the case where there are through holes at two locations on an upper surface and a side surface. 実施例1におけるアキシャルギャップ型回転電機を主軸方向から見た貫通穴の位置を表す模式図であり、斜め方向2箇所に貫通穴がある場合の図である。It is a schematic diagram showing the position of the through-hole which looked at the axial gap type rotary electric machine in Example 1 from the main-axis direction, and is a figure in case a through-hole exists in two diagonal directions. 実施例1におけるアキシャルギャップ型回転電機を主軸方向から見た貫通穴の位置を表す模式図であり、上面及び対向する側面の3箇所に貫通穴がある場合の図である。FIG. 3 is a schematic diagram showing the positions of through holes when the axial gap type rotating electrical machine in the first embodiment is viewed from the main axis direction, and is a diagram in the case where there are through holes at three locations on the upper surface and the opposite side surfaces. 実施例1におけるアキシャルギャップ型回転電機を主軸方向から見た貫通穴の位置を表す模式図であり、側面の等ピッチの3箇所に貫通穴がある場合の図である。FIG. 3 is a schematic diagram showing the positions of through holes when the axial gap type rotating electrical machine in the first embodiment is viewed from the main axis direction, and is a view in the case where there are through holes at three equal pitches on the side surface. 実施例1におけるアキシャルギャップ型回転電機を主軸方向から見た貫通穴の位置を表す模式図であり、端子箱がない場合の図である。FIG. 3 is a schematic diagram showing the position of a through hole when the axial gap type rotating electrical machine in the first embodiment is viewed from the main axis direction, and is a view when there is no terminal box. 実施例2におけるアキシャルギャップ型回転電機の貫通穴に貫通穴キャップを取り付けた構成の、主軸に対して片側の断面のみを示す模式図である。It is a schematic diagram which shows only the cross section of the one side with respect to the main axis | shaft of the structure which attached the through-hole cap to the through-hole of the axial gap type rotary electric machine in Example 2. FIG. 図16の貫通穴キャップにハウジング用温度センサを取り付けた構成の、主軸に対して片側の断面のみを示す模式図である。It is a schematic diagram which shows only the cross section of the one side with respect to a main axis | shaft of the structure which attached the temperature sensor for housings to the through-hole cap of FIG. 図16の貫通穴キャップにハウジング内気用温度センサを取り付けた構成の、主軸に対して片側の断面のみを示す模式図である。It is a schematic diagram which shows only the cross section of the one side with respect to a main axis | shaft of the structure which attached the temperature sensor for housing inside air to the through-hole cap of FIG. 図16の貫通穴キャップに貫通穴を開けセンサ線を取り出した構成の、主軸に対して片側の断面のみを示す模式図である。It is a schematic diagram which shows only the cross section of the one side with respect to a main axis | shaft of the structure which opened the through-hole to the through-hole cap of FIG. 16, and took out the sensor wire. 図16の貫通穴をネジ穴とし、貫通穴キャップとして吊りボルトを取り付けた構成の、主軸に対して片側の断面のみを示す模式図である。It is a schematic diagram which shows only the cross section of the one side with respect to a main axis | shaft of the structure which used the through-hole of FIG. 16 as the screw hole, and attached the suspension bolt as a through-hole cap. 従来のアキシャルギャップ型回転電機のステータ、ロータ、ハウジングの位置関係を示す斜視図である。It is a perspective view which shows the positional relationship of the stator, rotor, and housing of the conventional axial gap type rotary electric machine. 従来のアキシャルギャップ型回転電機のモータ部の構造を示す斜視図である。It is a perspective view which shows the structure of the motor part of the conventional axial gap type rotary electric machine. 従来のアキシャルギャップ型回転電機のステータ、ロータ、ハウジングの位置関係を示す、主軸に対して片側の断面のみを示す模式図である。It is a schematic diagram which shows only the cross section of the one side with respect to a main axis | shaft which shows the positional relationship of the stator of the conventional axial gap type rotary electric machine, a rotor, and a housing.
 以下、本発明を適用した実施例を図面を用いて説明する。 Hereinafter, embodiments to which the present invention is applied will be described with reference to the drawings.
 まず、本発明の前提となる、アキシャルギャップ型回転電機について説明する。 First, an axial gap type rotating electrical machine that is a premise of the present invention will be described.
 図21は、従来のアキシャルギャップ型回転電機のステータ、ロータ、ハウジングの位置関係を示す斜視図である。アキシャルギャップ型回転電機の構成としては、1ステータ1ロータ型、1ステータ2ロータ型、2ステータ1ロータ型、などの組み合わせがあるが、本実施例では、1ステータ2ロータ型を例にとって説明する。 FIG. 21 is a perspective view showing a positional relationship among a stator, a rotor, and a housing of a conventional axial gap type rotating electrical machine. The configuration of the axial gap type rotating electrical machine includes a combination of 1 stator 1 rotor type, 1 stator 2 rotor type, 2 stator 1 rotor type, and the like. In this embodiment, a description will be given by taking a 1 stator 2 rotor type as an example. .
 図21において、ハウジング40は、基本的に主軸方向に延伸する円筒形状となるが、説明のために断面図を示している。そのハウジング40の円筒内側にステータ30とロータ20を配置する構造となる。ステータ30は、ハウジング40の軸方向中央部に配置、固定され、2つのロータ20が、図示しない主軸方向にステータ30と対向しステータ30を挟む形で配置される。 21, the housing 40 basically has a cylindrical shape extending in the main axis direction, but a cross-sectional view is shown for explanation. The stator 30 and the rotor 20 are arranged inside the cylinder of the housing 40. The stator 30 is disposed and fixed in the axial center portion of the housing 40, and the two rotors 20 are disposed so as to face the stator 30 and sandwich the stator 30 in the main shaft direction (not shown).
 図22は、従来のアキシャルギャップ型回転電機のステータ30とロータ20の構造を示す斜視図である。図22に示すように、ステータ30は、鉄心31、ボビン32、コイル33からなり、それらの間の空間を埋めるように絶縁樹脂が充填されて一体のステータとなる。ステータ30は絶縁樹脂の接着強度でハウジング40に保持され、ハウジング40は、その内側には段差を設けてステータ30の軸方向に外れないように構成し、また、回転方向一部に切り欠きなどの溝、または突起を設け、回転方向にも回転しないような構造とする。ロータ20は、ロータヨーク22と永久磁石21によって構成される。 FIG. 22 is a perspective view showing the structure of the stator 30 and the rotor 20 of a conventional axial gap type rotating electrical machine. As shown in FIG. 22, the stator 30 includes an iron core 31, a bobbin 32, and a coil 33, and is filled with an insulating resin so as to fill a space between them, thereby forming an integral stator. The stator 30 is held by the housing 40 with an adhesive strength of insulating resin, and the housing 40 is configured so as not to come off in the axial direction of the stator 30 by providing a step on the inner side thereof, and a notch is partially cut in the rotational direction. The groove or protrusion is provided so that it does not rotate in the rotation direction. The rotor 20 includes a rotor yoke 22 and a permanent magnet 21.
 図23は、従来のアキシャルギャップ型回転電機のステータ、ロータ、ハウジングの位置関係を示す、主軸60に対して片側の断面のみを示す模式図である。図23において、鉄心31、コイル33で構成されるステータ30が絶縁樹脂で充填されてモールド35で成形されてハウジング40に固定されている。また、ロータヨーク22と永久磁石21によって構成される2つのロータ20が主軸60方向にステータ30を挟む形で配置される。また、ハウジング40に結合されたブラケット50に配置された軸受65でロータ20が回転可能に保持されている。なお、34はステータ30のコイル33から引き出された渡り線であって、これも絶縁樹脂で充填されてモールド35で成形される。 FIG. 23 is a schematic diagram showing only a cross section on one side with respect to the main shaft 60, showing the positional relationship of the stator, rotor, and housing of a conventional axial gap type rotating electrical machine. In FIG. 23, a stator 30 composed of an iron core 31 and a coil 33 is filled with an insulating resin, molded with a mold 35, and fixed to a housing 40. Further, the two rotors 20 constituted by the rotor yoke 22 and the permanent magnet 21 are arranged so as to sandwich the stator 30 in the direction of the main shaft 60. The rotor 20 is rotatably held by a bearing 65 disposed on a bracket 50 coupled to the housing 40. Reference numeral 34 denotes a crossover wire drawn from the coil 33 of the stator 30, which is also filled with an insulating resin and is molded with a mold 35.
 ここで、ステータ30とロータ20をハウジング40に組み込む際には、ロータ20とステータ30との間のエアギャップ25を調整する必要があり、予め計算した距離になるようにシムを挟み込む等して組立て調整するが、組立て後は、ロータ20とステータ30はハウジング40で覆われるため、組立て後にエアギャップを目視確認できないという問題がある。そのため、組立て後に正常にエアギャップが形成されているかの確認を行う手立てがなく、不良であった場合は不良率が増加するという懸念がある。 Here, when the stator 30 and the rotor 20 are assembled into the housing 40, it is necessary to adjust the air gap 25 between the rotor 20 and the stator 30, and a shim is inserted so as to be a distance calculated in advance. Although the assembly adjustment is performed, after the assembly, since the rotor 20 and the stator 30 are covered with the housing 40, there is a problem that the air gap cannot be visually confirmed after the assembly. Therefore, there is no way to check whether the air gap is normally formed after assembly, and there is a concern that the defect rate increases if it is defective.
 そこで、本実施例のアキシャルギャップ型回転電機においては、ハウジング40に貫通穴を設け、その貫通穴を介してロータ20とステータ30との間のエアギャップを目視できるように構成した。 Therefore, in the axial gap type rotating electric machine of the present embodiment, a through hole is provided in the housing 40 so that the air gap between the rotor 20 and the stator 30 can be seen through the through hole.
 図1に、本実施例におけるアキシャルギャップ型回転電機の主軸に対して片側の断面のみを示す模式図を示す。図1において、図23と同じ構成には同じ符号を付し、その説明は省略する。図1において、図23と異なる点は、ハウジング40に貫通穴70を設けた点である。図1に示すように、貫通穴70は、ロータ20とステータ30との間のエアギャップ25の径方向延長線上に位置し、エアギャップ25を目視できるようにハウジング40上に配置される。なお、貫通穴70は、主軸方向で、エアギャップ25の真上に位置するように配置されるのが望ましい。 FIG. 1 is a schematic diagram showing only a cross section on one side with respect to the main shaft of the axial gap type rotating electrical machine in the present embodiment. In FIG. 1, the same components as those in FIG. 23 are denoted by the same reference numerals, and the description thereof is omitted. 1 is different from FIG. 23 in that a through hole 70 is provided in the housing 40. As shown in FIG. 1, the through hole 70 is located on the radial extension line of the air gap 25 between the rotor 20 and the stator 30, and is disposed on the housing 40 so that the air gap 25 can be seen. The through hole 70 is preferably arranged so as to be positioned directly above the air gap 25 in the main axis direction.
 また、図1において、貫通穴70は主軸60方向に1つしかなく、図1紙面上の右側のロータ20とステータ30との間のエアギャップ25のみを目視できる。これは、図1紙面上の左側のロータ20とステータ30との間のエアギャップ25の紙面上部の位置には渡り線34があるため、貫通穴を設けてもエアギャップ25を目視できないからである。なお、渡り線34を紙面上でステータ30の1周で左右に振り分けるように配置するか、または、渡り線34をエアギャップ25部分にはみ出さないように、ステータ30の周方向に配置するように構成すれば、貫通穴70を主軸60方向に2つ設けることで、左右のロータ20のエアギャップ25を目視できる。 Further, in FIG. 1, there is only one through hole 70 in the direction of the main shaft 60, and only the air gap 25 between the right rotor 20 and the stator 30 on the paper surface of FIG. This is because there is a crossover 34 at the upper position of the air gap 25 between the rotor 20 and the stator 30 on the left side of FIG. is there. In addition, the connecting wire 34 is arranged so as to be distributed to the left and right in the circumference of the stator 30 on the paper surface, or the connecting wire 34 is arranged in the circumferential direction of the stator 30 so as not to protrude into the air gap 25 portion. If it comprises, the air gap 25 of the rotor 20 on either side can be visually observed by providing the two through-holes 70 in the direction of the main shaft 60.
 図2は、本実施例におけるアキシャルギャップ型回転電機の貫通穴から見た構成の模式図である。図2においては、貫通穴70は円形状としており、エアギャップ25を測定するためのゲージが挿入できる形状、大きさが望ましい。また、貫通穴70は、エアギャップ25が貫通穴70の中心に位置するように配置するのが望ましい。円形状とすることで、加工が簡単であるという効果がある。 FIG. 2 is a schematic diagram of the configuration viewed from the through hole of the axial gap type rotating electrical machine in the present embodiment. In FIG. 2, the through hole 70 has a circular shape, and preferably has a shape and size into which a gauge for measuring the air gap 25 can be inserted. The through hole 70 is preferably arranged so that the air gap 25 is positioned at the center of the through hole 70. By making it circular shape, there exists an effect that a process is easy.
 図3は、本実施例におけるアキシャルギャップ型回転電機の貫通穴から見た構成の模式図であり、貫通穴形状が楕円の場合を示している。貫通穴70をエアギャップ25に沿って長円とすることで、エアギャップ25を広い範囲にわたって一覧できる効果がある。なお、図4のようにエアギャップの長手方向に横長の矩形としても同様の効果を得ることができる。 FIG. 3 is a schematic view of a configuration viewed from the through hole of the axial gap type rotating electric machine in the present embodiment, and shows a case where the through hole shape is an ellipse. By making the through hole 70 an ellipse along the air gap 25, there is an effect that the air gap 25 can be listed over a wide range. Note that the same effect can be obtained by using a horizontally long rectangle in the longitudinal direction of the air gap as shown in FIG.
 図5は、本実施例におけるアキシャルギャップ型回転電機の貫通穴から見た構成の模式図であり、貫通穴形状が矩形の場合を示している。貫通穴70をロータ20とステータ30の断面に沿った2辺をもつ矩形とすることで、エアギャップ25が平行になっているか、言い換えれば、ステータ30に対してロータ20が平行に配置されているかを目視で確認できる効果がある。また、円形に比べて、同じ直径の場合、見える範囲が広いので見やすいという効果がある。また、ロータ20やステータ30の外観に異常がないか等の確認も可能である。 FIG. 5 is a schematic diagram of a configuration viewed from the through hole of the axial gap type rotating electric machine in the present embodiment, and shows a case where the through hole shape is rectangular. By making the through hole 70 a rectangle having two sides along the cross section of the rotor 20 and the stator 30, the air gap 25 is parallel, in other words, the rotor 20 is arranged in parallel to the stator 30. There is an effect that it can be confirmed visually. In addition, in the case of the same diameter compared to a circle, there is an effect that it is easy to see because the visible range is wide. It is also possible to check whether there are any abnormalities in the appearance of the rotor 20 and the stator 30.
 図6は、本実施例におけるアキシャルギャップ型回転電機の貫通穴から見た構成の模式図であり、貫通穴形状が縦長の楕円の場合を示している。貫通穴70をエアギャップ25の長手方向と直交する方向に長円とすることで、ロータ・ステータの構成を変えてエアギャップ位置やエアギャップ長を変更した場合にも、ハウジングを共用化することができる。また、図7のように縦長の矩形としても同様の効果を得ることができる。 FIG. 6 is a schematic diagram of a configuration viewed from the through hole of the axial gap type rotating electric machine in the present embodiment, and shows a case where the through hole shape is a vertically long ellipse. By making the through hole 70 an ellipse in a direction perpendicular to the longitudinal direction of the air gap 25, the housing can be shared even when the air gap position and the air gap length are changed by changing the configuration of the rotor / stator. Can do. Further, the same effect can be obtained even when a vertically long rectangle is used as shown in FIG.
 もちろん、本実施例において、貫通穴は図2から図7の形状に限らず、ロータ・ステータの側面およびエアギャップ長が確認できる大きさがあれば円形・矩形以外の形状でも構わない。例えば、軸方向に対して斜めの長円あるいは多角形でもよい。 Of course, in the present embodiment, the through hole is not limited to the shape shown in FIGS. 2 to 7, and may have a shape other than a circle or a rectangle as long as the side surface of the rotor / stator and the air gap length can be confirmed. For example, it may be an ellipse or polygon that is oblique to the axial direction.
 図8は、本実施例におけるアキシャルギャップ型回転電機を主軸方向から見た貫通穴70の位置を表す模式図である。図8において、45はハウジング脚であって、アキシャルギャップ型回転電機の上部に端子箱41を有しており、貫通穴70も上部に1箇所設けている。貫通穴70を上部に設けることで、貫通穴70を介してエアギャップ25を目視する際に楽に確認ができるという効果がある。また、端子箱41と同じ面に配置することで、端子箱41によって風の流れが遮られるため、ほこり等が入りづらいという効果がある。なお、貫通穴70が1箇所であっても、ロータを回転させることでロータ側のゆがみも確認することが可能である。 FIG. 8 is a schematic diagram showing the position of the through hole 70 when the axial gap type rotating electrical machine in the present embodiment is viewed from the main axis direction. In FIG. 8, 45 is a housing leg, which has a terminal box 41 in the upper part of the axial gap type rotating electrical machine, and a through hole 70 is also provided in one upper part. By providing the through hole 70 in the upper part, there is an effect that it can be easily confirmed when the air gap 25 is visually observed through the through hole 70. Moreover, since the flow of a wind is interrupted by the terminal box 41 by arrange | positioning on the same surface as the terminal box 41, there exists an effect that dust etc. do not enter easily. In addition, even if the through-hole 70 is one place, it is possible to check the distortion on the rotor side by rotating the rotor.
 図9は、本実施例におけるアキシャルギャップ型回転電機を主軸方向から見た貫通穴70の位置を表す模式図であり、ハウジング40の側面1箇所に貫通穴70がある場合を示している。図9の構成は、アキシャルギャップ型回転電機は軸方向に薄くできるという効果があるので、端子箱41の位置と異なる位置に貫通穴70を設けることで、軸方向に薄くできるという特徴を生かすことができる。 FIG. 9 is a schematic diagram showing the position of the through hole 70 when the axial gap type rotating electric machine in the present embodiment is viewed from the main axis direction, and shows a case where the through hole 70 is provided at one side of the housing 40. 9 has an effect that the axial gap type rotating electrical machine can be thinned in the axial direction. Therefore, by providing the through hole 70 at a position different from the position of the terminal box 41, the feature that it can be thinned in the axial direction is utilized. Can do.
 図10は、本実施例におけるアキシャルギャップ型回転電機を主軸方向から見た貫通穴70の位置を表す模式図であり、ハウジング40の対向する側面2箇所に貫通穴がある場合を示している。端子箱41の位置と異なる位置に貫通穴70を設けるという点で、図9と同様の効果があるのに加え、また、複数の貫通穴70を有するので、スキマゲージで、エアギャップ25の奥まで確認できる。また、複数の貫通穴70からの確認で、ロータ側に加え、ステータ側のゆがみも確認することが可能である。 FIG. 10 is a schematic diagram showing the position of the through hole 70 when the axial gap type rotating electrical machine in the present embodiment is viewed from the main axis direction, and shows a case where there are through holes at two opposite side surfaces of the housing 40. In addition to having the same effect as in FIG. 9 in that the through hole 70 is provided at a position different from the position of the terminal box 41, and also having a plurality of through holes 70, a clearance gauge is used to form the back of the air gap 25. Can be confirmed. In addition, it is possible to confirm distortion on the stator side in addition to the rotor side by confirmation from the plurality of through holes 70.
 図11は、本実施例におけるアキシャルギャップ型回転電機を主軸方向から見た貫通穴の位置を表す模式図であり、上面と側面の2箇所に貫通穴がある場合を示している。図8、図9と同様の効果があるのに加え、図10と同様の効果がある。 FIG. 11 is a schematic diagram showing the positions of the through holes when the axial gap type rotating electrical machine in the present embodiment is viewed from the main axis direction, and shows a case where there are through holes at two locations on the upper surface and the side surface. In addition to the same effects as in FIGS. 8 and 9, the same effects as in FIG. 10 are obtained.
 図12は、本実施例におけるアキシャルギャップ型回転電機を主軸方向から見た貫通穴の位置を表す模式図であり、斜め方向2箇所に貫通穴がある場合の図である。図11と同様の効果があるのに加え、図11より、貫通穴70を介してエアギャップ25を目視する際に楽に確認ができるという効果がある。 FIG. 12 is a schematic diagram showing the positions of through holes when the axial gap type rotating electrical machine in the present embodiment is viewed from the main axis direction, and is a diagram in the case where there are through holes in two diagonal directions. In addition to the same effect as in FIG. 11, there is an effect that it can be easily confirmed when viewing the air gap 25 through the through hole 70 from FIG. 11.
 図13は、本実施例におけるアキシャルギャップ型回転電機を主軸方向から見た貫通穴の位置を表す模式図であり、上面及び対向する側面の3箇所に貫通穴がある場合を示している。図11に比べて観察できる貫通穴が増加した分、より広範囲にエアギャップ25および、ステータ側のゆがみを確認することが可能である。 FIG. 13 is a schematic diagram showing the positions of the through holes when the axial gap type rotating electrical machine in the present embodiment is viewed from the main axis direction, and shows a case where there are through holes at three locations on the upper surface and the opposite side surfaces. Since the through-holes that can be observed compared to FIG. 11 are increased, it is possible to confirm the air gap 25 and the distortion on the stator side in a wider range.
 図14は、本実施例におけるアキシャルギャップ型回転電機を主軸方向から見た貫通穴の位置を表す模式図であり、側面の等ピッチの3箇所に貫通穴がある場合を示している。図13に比べて、等ピッチに貫通穴があるため、より広範囲にエアギャップ25および、ステータ側のゆがみを確認することが可能となる。 FIG. 14 is a schematic diagram showing the positions of through holes when the axial gap type rotating electrical machine in the present embodiment is viewed from the main axis direction, and shows a case where there are through holes at three equal pitches on the side surface. Compared to FIG. 13, since there are through holes at an equal pitch, it is possible to check the air gap 25 and the distortion on the stator side in a wider range.
 図15は、本実施例におけるアキシャルギャップ型回転電機を主軸方向から見た貫通穴の位置を表す模式図であり、端子箱がない場合の例を示している。貫通穴70は等ピッチではなく、複数個所設けられている。これら図8から図15のように、モータを設置する状況に合わせて端子箱の有無、貫通穴70の位置および個数を変更しても構わない。また、複数個設ける場合も、等ピッチに設けなくともよい。 FIG. 15 is a schematic diagram showing the position of the through hole when the axial gap type rotating electrical machine in the present embodiment is viewed from the main axis direction, and shows an example in which there is no terminal box. The through holes 70 are not provided at an equal pitch, but are provided at a plurality of locations. As shown in FIGS. 8 to 15, the presence / absence of the terminal box and the position and number of the through holes 70 may be changed according to the situation where the motor is installed. Moreover, when providing two or more, it is not necessary to provide at equal pitch.
 以上のように、本実施例では、ハウジングに貫通穴を設け、その貫通穴を介してロータとステータとの間のエアギャップを目視できるように構成したので、ステータとロータをハウジングに組み込んだ後でもエアギャップを目視確認できるので、組立て後に正常にエアギャップが形成されているかの確認を行なうことが出来、不良率が低減できるという効果がある。 As described above, in this embodiment, the housing is provided with a through hole, and the air gap between the rotor and the stator can be seen through the through hole. Therefore, after the stator and the rotor are assembled in the housing, However, since the air gap can be visually confirmed, it can be confirmed whether the air gap is normally formed after assembly, and the defect rate can be reduced.
 本実施例は、実施例1で設けた貫通穴を塞ぐ貫通穴キャップを有し、エアギャップの目視確認以外の場合には、貫通穴を塞ぐことでほこりや異物の侵入を防ぐ点について説明する。 The present embodiment has a through hole cap that closes the through hole provided in the first embodiment, and describes a point that prevents intrusion of dust and foreign matters by closing the through hole in cases other than visual confirmation of the air gap. .
 図16は、本実施例におけるアキシャルギャップ型回転電機の貫通穴に貫通穴キャップを取り付けた構成の、主軸に対して片側の断面のみを示す模式図である。図16において、図1と同じ構成には同じ符号を付し、その説明は省略する。図16において、図1と異なる点は、貫通穴70に貫通穴キャップ74を設けた点である。図12に示すように、貫通穴70に貫通穴キャップ74を設けることで、貫通穴70を介したエアギャップの目視確認を行なう以外の場合には、貫通穴70を貫通穴キャップ74で塞ぐことで、ほこりや異物の侵入を防ぐことが出来る。貫通穴キャップ74は金属、樹脂でもよい。また、貫通穴キャップ74を透明部材とすれば、回転状態が外部から観察できる。また、ロータ周面に縞模様を設け貫通穴キャップ74の透明部材を介して外部からセンサで監視することで回転検出することも可能である。また、貫通穴キャップ74にセンサを設け、そのセンサで監視することで回転検出することも可能である。 FIG. 16 is a schematic view showing only a cross section on one side with respect to the main shaft in a configuration in which a through-hole cap is attached to a through-hole of the axial gap type rotating electric machine in the present embodiment. In FIG. 16, the same components as those in FIG. 16 is different from FIG. 1 in that a through hole cap 74 is provided in the through hole 70. As shown in FIG. 12, by providing a through-hole cap 74 in the through-hole 70, the through-hole 70 is closed with the through-hole cap 74 in cases other than performing visual confirmation of the air gap through the through-hole 70. This prevents dust and foreign objects from entering. The through hole cap 74 may be metal or resin. If the through-hole cap 74 is a transparent member, the rotation state can be observed from the outside. It is also possible to detect rotation by providing a striped pattern on the circumferential surface of the rotor and monitoring with a sensor from the outside through the transparent member of the through-hole cap 74. It is also possible to detect rotation by providing a sensor in the through-hole cap 74 and monitoring with the sensor.
 図17は、図16の貫通穴キャップ74にハウジング用温度センサを取り付けた構成の、主軸に対して片側の断面のみを示す模式図である。図17において、ハウジング用温度センサ75を貫通穴キャップ74に設けることで、ハウジング用温度センサ75用の取付け座を別途設ける必要がなく、別途取付け座を軸方向に設けると軸長が増加し、径方向に設けると取付け座を設けない同じ径寸法に対して磁極の径方向が減少するため磁極面積が減少し出力低下が生じるという問題を解決することが出来る。また、取り外しが簡単という効果もある。 FIG. 17 is a schematic view showing only a cross section on one side with respect to the main shaft in a configuration in which a housing temperature sensor is attached to the through-hole cap 74 of FIG. In FIG. 17, by providing the housing temperature sensor 75 in the through-hole cap 74, there is no need to separately provide a mounting seat for the housing temperature sensor 75. If a separate mounting seat is provided in the axial direction, the shaft length increases. When provided in the radial direction, the magnetic pole radial direction is reduced with respect to the same radial dimension without the mounting seat, so that the problem that the magnetic pole area is reduced and the output is reduced can be solved. Also, there is an effect that removal is easy.
 図18は、図16の貫通穴キャップ74にハウジング内気用温度センサを取り付けた構成の、主軸に対して片側の断面のみを示す模式図である。図18において、内気用温度センサ76を貫通穴キャップ74に設けることで、内気用温度センサ76用の取付け座を別途設ける必要がなく、図17と同様に、軸長増加や出力低下の問題を解決出来、取り外しが簡単という効果がある。 FIG. 18 is a schematic view showing only a cross section on one side with respect to the main shaft in a configuration in which a temperature sensor for housing inside air is attached to the through-hole cap 74 of FIG. In FIG. 18, by providing the inside air temperature sensor 76 in the through-hole cap 74, there is no need to separately provide a mounting seat for the inside air temperature sensor 76, and as in FIG. It can be solved and has the effect of being easy to remove.
 また、内気用温度センサ76の代わりに、磁極位置検出センサや回転検出センサ、位置検出センサを取り付けて回転検出してもよい。 Alternatively, instead of the inside air temperature sensor 76, a magnetic pole position detection sensor, a rotation detection sensor, or a position detection sensor may be attached to detect rotation.
 図19は、図16の貫通穴キャップに貫通穴を設けセンサ線78を取り出した構成の、主軸に対して片側の断面のみを示す模式図である。図19において、ステータ30に貼り付けた熱電対等のセンサからのセンサ線78を、貫通穴を設けた貫通穴キャップ兼引出線用ブッシュ77の貫通穴から取り出すように構成している。これにより、センサ線78を取り出すための穴を別途設ける必要がないという効果がある。 FIG. 19 is a schematic diagram showing only a cross section on one side with respect to the main shaft in a configuration in which a through hole is provided in the through hole cap of FIG. 16 and a sensor wire 78 is taken out. In FIG. 19, a sensor wire 78 from a sensor such as a thermocouple attached to the stator 30 is taken out from a through hole of a through hole cap / lead wire bush 77 provided with a through hole. Thereby, there is an effect that it is not necessary to separately provide a hole for taking out the sensor wire 78.
 図20は、図16の貫通穴70をネジ穴とし、貫通穴キャップとして吊りボルト79を取り付けた構成の、主軸に対して片側の断面のみを示す模式図である。図20において、貫通穴キャップと吊りボルト79を兼用することで、別途吊りボルトを設ける必要がないという効果がある。 FIG. 20 is a schematic view showing only a cross section on one side with respect to the main shaft in a configuration in which the through hole 70 of FIG. 16 is a screw hole and a suspension bolt 79 is attached as a through hole cap. In FIG. 20, the combined use of the through hole cap and the suspension bolt 79 has an effect that it is not necessary to separately provide a suspension bolt.
 以上実施例について説明したが、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は1ステータ2ロータ型のアキシャルギャップ型回転電機を例に説明したが、1ステータ1ロータ型や2ステータ1ロータ型でも適用できるのは明らかである。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、例えば、図2から図7に示した形状が異なる貫通穴に置き換えてもよい。また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加、削除、置換をすることも可能である。 Although the embodiments have been described above, the present invention is not limited to the above-described embodiments, and includes various modifications. For example, although the above-described embodiment has been described by taking an example of a 1-stator 2-rotor type axial gap type rotating electrical machine, it is obvious that the 1-stator 1-rotor type and 2-stator 1-rotor type can also be applied. Moreover, it is possible to replace a part of the configuration of a certain embodiment with the configuration of another embodiment. For example, the configuration shown in FIGS. 2 to 7 may be replaced with through holes having different shapes. It is also possible to add the configuration of another embodiment to the configuration of one embodiment. Moreover, it is also possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
20:ロータ、21:永久磁石、22:ロータヨーク、25:エアギャップ、30:ステータ、31:鉄心、32:ボビン、33:コイル、34:渡り線、35:モールド、40:ハウジング、41:端子箱、45:ハウジング脚、50:ブラケット、60:主軸、65:軸受、70:貫通穴、74:貫通穴キャップ、75、76:温度センサ、77:貫通穴キャップ兼引出線用ブッシュ、78:センサ線、79:吊りボルト 20: Rotor, 21: Permanent magnet, 22: Rotor yoke, 25: Air gap, 30: Stator, 31: Iron core, 32: Bobbin, 33: Coil, 34: Crossover, 35: Mold, 40: Housing, 41: Terminal Box, 45: Housing leg, 50: Bracket, 60: Main shaft, 65: Bearing, 70: Through hole, 74: Through hole cap, 75, 76: Temperature sensor, 77: Bush for through hole cap and lead wire, 78: Sensor wire 79: Suspension bolt

Claims (12)

  1.  主軸を中心に回転するロータと、
     前記主軸方向に前記ロータと対向して配置されたステータと、
     前記ステータを固定するハウジングと、
     前記ハウジングに結合され軸受を保持し前記ロータが回転可能に保持されているブラケットと、を有し、
     前記ハウジングの内側に前記ロータと前記ステータが配置され、前記ロータと前記ステータとの間のエアギャップの径方向延長線上に位置する貫通穴を前記ハウジングに有することを特徴とするアキシャルギャップ型回転電機。
    A rotor that rotates about a main shaft;
    A stator disposed facing the rotor in the main axis direction;
    A housing for fixing the stator;
    A bracket coupled to the housing and holding a bearing and the rotor being rotatably held;
    An axial gap type rotating electrical machine characterized in that the rotor and the stator are disposed inside the housing, and the housing has a through hole located on a radial extension line of an air gap between the rotor and the stator. .
  2.  請求項1記載のアキシャルギャップ型回転電機であって、
     前記貫通穴は円形状であり、前記エアギャップを測定するためのゲージが挿入可能な大きさを有することを特徴とするアキシャルギャップ型回転電機。
    The axial gap type rotating electrical machine according to claim 1,
    The axial gap type rotating electrical machine is characterized in that the through hole is circular and has a size into which a gauge for measuring the air gap can be inserted.
  3.  請求項1記載のアキシャルギャップ型回転電機であって、
     前記ハウジングは前記主軸方向に延伸する円筒形状であって、
     前記ハウジングに設けたハウジング脚側を前記ハウジングの下部としたとき、前記ハウジングの上部に端子箱を有し、
     前記ハウジング上の前記貫通穴の位置を前記主軸方向から見て前記端子箱の位置としたことを特徴とするアキシャルギャップ型回転電機。
    The axial gap type rotating electrical machine according to claim 1,
    The housing has a cylindrical shape extending in the main axis direction,
    When the housing leg side provided in the housing is the lower part of the housing, it has a terminal box on the upper part of the housing,
    An axial gap type rotating electrical machine characterized in that the position of the through hole on the housing is the position of the terminal box as viewed from the main axis direction.
  4.  請求項1記載のアキシャルギャップ型回転電機であって、
     前記ハウジングは前記主軸方向に延伸する円筒形状であって、
     前記ハウジングに設けたハウジング脚側を前記ハウジングの下部としたとき、前記ハウジング上の前記貫通穴の位置を前記主軸方向から見て前記ハウジングの側面としたことを特徴とするアキシャルギャップ型回転電機。
    The axial gap type rotating electrical machine according to claim 1,
    The housing has a cylindrical shape extending in the main axis direction,
    An axial gap type rotating electrical machine characterized in that when the housing leg side provided in the housing is the lower part of the housing, the position of the through hole on the housing is the side surface of the housing when viewed from the main axis direction.
  5.  請求項1記載のアキシャルギャップ型回転電機であって、
     前記ハウジングは前記主軸方向に延伸する円筒形状であって、
     前記ハウジングに設けたハウジング脚側を前記ハウジングの下部としたとき、前記ハウジングの上部に端子箱を有し、
     前記ハウジング上の前記貫通穴の位置を前記主軸方向から見て前記端子箱の位置からずらした位置としたことを特徴とするアキシャルギャップ型回転電機。
    The axial gap type rotating electrical machine according to claim 1,
    The housing has a cylindrical shape extending in the main axis direction,
    When the housing leg side provided in the housing is the lower part of the housing, it has a terminal box on the upper part of the housing,
    An axial gap type rotating electrical machine characterized in that the position of the through hole on the housing is shifted from the position of the terminal box when viewed from the main axis direction.
  6.  請求項4記載のアキシャルギャップ型回転電機であって、
     前記ハウジング上の前記貫通穴の位置を前記主軸方向から見て前記ハウジングの対向する側面2箇所としたことを特徴とするアキシャルギャップ型回転電機。
    An axial gap type rotating electrical machine according to claim 4,
    An axial gap type rotating electrical machine characterized in that the positions of the through holes on the housing are two opposite side surfaces of the housing when viewed from the main axis direction.
  7.  請求項1記載のアキシャルギャップ型回転電機であって、
     前記ハウジングは前記主軸方向に延伸する円筒形状であって、
     前記ハウジングに設けたハウジング脚側を前記ハウジングの下部としたとき、前記ハウジング上の前記貫通穴の位置を前記主軸方向から見て前記ハウジングの側面の等ピッチの3箇所としたことを特徴とするアキシャルギャップ型回転電機。
    The axial gap type rotating electrical machine according to claim 1,
    The housing has a cylindrical shape extending in the main axis direction,
    When the housing leg side provided in the housing is the lower part of the housing, the positions of the through holes on the housing are three places at equal pitches on the side surface of the housing when viewed from the main axis direction. Axial gap type rotating electrical machine.
  8.  請求項1記載のアキシャルギャップ型回転電機であって、
     前記貫通穴に貫通穴キャップを取り付けたことを特徴とするアキシャルギャップ型回転電機。
    The axial gap type rotating electrical machine according to claim 1,
    An axial gap type rotating electric machine, wherein a through hole cap is attached to the through hole.
  9.  請求項8記載のアキシャルギャップ型回転電機であって、
     前記貫通穴キャップにハウジング用温度センサまたは内気用温度センサを取り付けたことを特徴とするアキシャルギャップ型回転電機。
    An axial gap type rotating electrical machine according to claim 8,
    An axial gap type rotating electrical machine, wherein a housing temperature sensor or an inside air temperature sensor is attached to the through hole cap.
  10.  請求項8記載のアキシャルギャップ型回転電機であって、
     前記貫通穴キャップに貫通穴を設け、センサ線を取り出す構成としたことを特徴とするアキシャルギャップ型回転電機。
    An axial gap type rotating electrical machine according to claim 8,
    An axial gap type rotating electrical machine characterized in that a through hole is provided in the through hole cap and a sensor wire is taken out.
  11.  請求項1記載のアキシャルギャップ型回転電機であって、
     前記貫通穴をネジ穴とし、該ネジ穴に吊りボルトを取り付けた構成としたことを特徴とするアキシャルギャップ型回転電機。
    The axial gap type rotating electrical machine according to claim 1,
    An axial gap type rotating electrical machine characterized in that the through hole is a screw hole and a suspension bolt is attached to the screw hole.
  12.  請求項8記載のアキシャルギャップ型回転電機であって、
     前記貫通穴キャップは透明部材であることを特徴とするアキシャルギャップ型回転電機。
    An axial gap type rotating electrical machine according to claim 8,
    The axial gap type rotating electrical machine, wherein the through hole cap is a transparent member.
PCT/JP2017/003289 2017-01-31 2017-01-31 Axial gap rotary electric machine WO2018142441A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/003289 WO2018142441A1 (en) 2017-01-31 2017-01-31 Axial gap rotary electric machine
JP2018565087A JP6857670B2 (en) 2017-01-31 2017-01-31 Axial gap type rotary electric machine
CN201780078964.XA CN110089010A (en) 2017-01-31 2017-01-31 Axial-gap rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/003289 WO2018142441A1 (en) 2017-01-31 2017-01-31 Axial gap rotary electric machine

Publications (1)

Publication Number Publication Date
WO2018142441A1 true WO2018142441A1 (en) 2018-08-09

Family

ID=63040394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003289 WO2018142441A1 (en) 2017-01-31 2017-01-31 Axial gap rotary electric machine

Country Status (3)

Country Link
JP (1) JP6857670B2 (en)
CN (1) CN110089010A (en)
WO (1) WO2018142441A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021164217A (en) * 2020-03-31 2021-10-11 株式会社アーミス Axial gap type motor
WO2023048227A1 (en) * 2021-09-27 2023-03-30 株式会社デンソー Rotary electric machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598266U (en) * 1982-07-01 1984-01-19 三菱電機株式会社 Electric motor with brake
JPH0567169U (en) * 1991-04-04 1993-09-03 三菱電機株式会社 Rotating electric machine
JP2011250537A (en) * 2010-05-25 2011-12-08 Daikin Ind Ltd Axial gap motor, fluid machine, and fluid machine assembly method
WO2015159332A1 (en) * 2014-04-14 2015-10-22 株式会社日立産機システム Axial-gap dynamo-electric machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60181155U (en) * 1985-04-30 1985-12-02 株式会社三協精機製作所 small electric motor
JP3017953B2 (en) * 1996-07-24 2000-03-13 株式会社東芝 Motor rotor and method of manufacturing the same
EP2267871B1 (en) * 2009-06-24 2012-08-22 Converteam Technology Ltd Suspension structures
JP6290013B2 (en) * 2014-06-24 2018-03-07 株式会社日立産機システム Rotating electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598266U (en) * 1982-07-01 1984-01-19 三菱電機株式会社 Electric motor with brake
JPH0567169U (en) * 1991-04-04 1993-09-03 三菱電機株式会社 Rotating electric machine
JP2011250537A (en) * 2010-05-25 2011-12-08 Daikin Ind Ltd Axial gap motor, fluid machine, and fluid machine assembly method
WO2015159332A1 (en) * 2014-04-14 2015-10-22 株式会社日立産機システム Axial-gap dynamo-electric machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021164217A (en) * 2020-03-31 2021-10-11 株式会社アーミス Axial gap type motor
JP7558523B2 (en) 2020-03-31 2024-10-01 株式会社アーミス Axial gap motor
WO2023048227A1 (en) * 2021-09-27 2023-03-30 株式会社デンソー Rotary electric machine

Also Published As

Publication number Publication date
CN110089010A (en) 2019-08-02
JP6857670B2 (en) 2021-04-14
JPWO2018142441A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
JP5262583B2 (en) Resolver integrated rotary electric machine and rotor core
JP2006340537A (en) Axial air gap electric motor
WO2017141412A1 (en) Axial gap rotary electric machine
WO2017077585A1 (en) Electric motor
JP5267751B1 (en) Rotating electric machine
US6867518B2 (en) Sealed motor and method of employing same
WO2018142441A1 (en) Axial gap rotary electric machine
JP2015116025A (en) Rotary electric machine
JP3623724B2 (en) Rotating electric machine
JP2013093985A (en) Stator fixing structure
JP2021058078A (en) Motor and blower
JP6138489B2 (en) Permanent magnet synchronous machine and method for manufacturing and assembling the same
JP2012100425A (en) Outer rotor electric motor
JP2008312369A (en) Motor and manufacturing method of motor
JP5564885B2 (en) Permanent magnet type rotating electric machine
AU2016339430A1 (en) Electric motor and blower
JP2017011930A (en) Dynamo-electric machine and manufacturing method for dynamo-electric machine
JP5232573B2 (en) motor
JP5704211B2 (en) Permanent magnet type rotating electric machine
WO2018142442A1 (en) Axial gap rotary electric machine
JP2014180108A (en) Dynamo-electric machine
JP3671928B2 (en) Outer rotor structure of rotating electrical machine
WO2016170608A1 (en) Axial gap rotary electric machine
US20200185984A1 (en) Stator element, stator assembly, motor, and electromechanical device
JP2018098943A (en) Rotary electric machine and manufacturing method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565087

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894697

Country of ref document: EP

Kind code of ref document: A1