WO2017141412A1 - Axial gap rotary electric machine - Google Patents

Axial gap rotary electric machine Download PDF

Info

Publication number
WO2017141412A1
WO2017141412A1 PCT/JP2016/054774 JP2016054774W WO2017141412A1 WO 2017141412 A1 WO2017141412 A1 WO 2017141412A1 JP 2016054774 W JP2016054774 W JP 2016054774W WO 2017141412 A1 WO2017141412 A1 WO 2017141412A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
axial gap
electrical machine
rotating electrical
rotor
Prior art date
Application number
PCT/JP2016/054774
Other languages
French (fr)
Japanese (ja)
Inventor
恭永 米岡
利文 鈴木
高橋 秀一
博洋 床井
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to JP2017567904A priority Critical patent/JPWO2017141412A1/en
Priority to PCT/JP2016/054774 priority patent/WO2017141412A1/en
Publication of WO2017141412A1 publication Critical patent/WO2017141412A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings

Definitions

  • the present invention relates to an axial gap rotating electrical machine, and more particularly to an axial gap rotating electrical machine in which a bearing is disposed between a stator and a rotor.
  • the gap management between the stator and the rotor is important from the viewpoint of performance and reliability.
  • Patent Document 1 discloses a gap length holding method for an axial gap rotating machine. More specifically, the stator, two rotors arranged so as to sandwich the stator from both sides in the axial direction, a rotating shaft that rotates together with the rotor, and thermal expansion in the axial direction of the stator are managed. A free side armature plate (first plate) and a fixed side armature plate (second plate) are provided at both ends of the stator in the axial direction, and the end of the rotating shaft on the fixed side armature plate side is a thrust bearing. The structure is such that it is axially supported on the frame and the end on the free armature plate side is axially supported on the frame by a radial bearing (cylindrical roller bearing).
  • the armature core is positioned, and the armature core and the rotor are provided by providing the fixed-side bearing on the second plate side where the variation in the distance from the rotor is relatively smaller than the first plate side.
  • the structure which stabilizes the position (specifically distance between axial gap surfaces) is disclosed.
  • Patent Document 1 the one that holds the gap (gap length) between the stator and the rotor is only absorption of the load by the fixed-side bearing. Therefore, considering the difference in the axial thermal expansion of the stator and the axial movement difference of the two rotors due to the thermal expansion of the rotating shaft, precise and complex machining accuracy and assembly accuracy are required, which improves workability and productivity. There are challenges. In particular, there is no mechanical or structural shield between the stator and the rotor, and there remains a problem in reliability of securing a gap.
  • gap management can be facilitated by inserting a metal or resin spacer between the stator and the rotor to secure the gap, but the spacer is inserted between the rotor and the fixed object. Therefore, there is a possibility that the gap length varies due to wear and heat generation and loss due to friction occur.
  • a technique capable of improving workability and productivity and managing the gap with high accuracy is desired.
  • a stator having a magnetic flux end surface in the direction of the rotation axis, and a plurality of core members arranged in an annular shape in contact with the rotation shaft around the rotation axis, and a rotor facing the magnetic flux end surface in the direction of the rotation axis.
  • An axial gap rotating electrical machine in which the rotating shaft rotates together with the rotor, and is disposed between the stator of the rotating shaft and the rotor, and the end surface on the rotational axis side of the stator end surface facing the rotor
  • a rotating body that is in contact with the axially facing surfaces of the one side wheel that contacts the stator, the other side wheel that contacts the rotor end surface facing the stator, and the one side wheel and the other side wheel. And having a bearing that rotates the other wheel as the rotating shaft rotates.
  • gap management, workability, and productivity of an axial gap rotating electrical machine are improved.
  • the reliability and performance of securing the gap between the stator and the rotor can be maintained.
  • FIG. 1 is an exploded perspective view schematically showing a structure of an electronic machine for an axial gap rotating electrical machine according to a first embodiment to which the present invention is applied. It is a schematic diagram which shows the example of a process which applies mold resin to the stator of the axial gap rotary electric machine by Example 1.
  • FIG. 3 is a partial cross-sectional view in the rotation axis direction of the axial gap rotating electrical machine according to the first embodiment.
  • FIG. 3 is an enlarged schematic diagram of a configuration example in the vicinity of a thrust bearing of the axial gap rotating electrical machine according to the first embodiment. It is a schematic diagram which shows the example of the cap dimension measurement location by a comparative example.
  • FIG. 4 is a schematic diagram illustrating an example of a gap dimension measurement location according to Example 1.
  • FIG. It is a partial cross-sectional view of the axial direction of the axial gap rotating electrical machine according to the second embodiment to which the present invention is applied. It is a rotation direction fragmentary sectional view of the axial gap rotary electric machine by Example 3 to which this invention is applied.
  • FIG. 1 schematically shows an armature configuration of an axial gap rotating electrical machine 1A according to a first embodiment to which the present invention is applied.
  • the axial gap rotating electrical machine 1A includes a stator 100 that mainly generates a rotating magnetic flux in the axial direction, and two rotors 200 that are disposed so as to sandwich the stator 100 from the axial direction.
  • a 1-stator / 2-rotor configuration is applied, but the present invention is not limited to this, and there is at least one such as 1-stator / 1-rotor, 2-stator / 1-rotor, 2-stator-3-rotor, etc.
  • the present invention can be applied to a configuration including a stator and one rotor. Further, it may be an electric motor or a generator.
  • the stator 100 is formed by arranging a plurality of core members 140 in an annular shape around the rotation axis.
  • the core member 140 includes a columnar core 110, a bobbin 120 that insulates the radial outer periphery of the column, and a coil 130.
  • the core 110 is an iron core obtained by various methods such as cutting, powder compaction, or laminating plate-like pieces.
  • a core made of a laminate of foil strips made of amorphous metal is applied.
  • the core 110 is laminated with foil strips that gradually increase in width in the rotational direction from the axial center side toward the radially outer side.
  • the width in the radial direction may be changed and the foil strips may be stacked in the rotational direction.
  • the core 110 is exemplified as a column having a substantially trapezoidal cross-sectional shape, but various configurations in which the cross-section has a circular shape, another rectangular shape, or a different cross-sectional shape in the axial direction can also be applied.
  • the bobbin 100 is made of an insulating material such as resin, has an inner cylinder having a size that roughly matches the outer diameter shape of the core 110 in the radial direction, and covers the outer periphery of the outer diameter.
  • the bobbin 100 may be configured to be divided in the axial direction or the radial direction, or another insulator (application of insulating paper or an insulating agent) may be applied instead of the bobbin 100.
  • a coil 130 made of copper or aluminum is wound around an outer cylinder on the back side of the inner cylinder of the bobbin 100.
  • the coils 130 of the adjacent core members 140 are arranged in a non-contact manner in consideration of insulation in the plurality of core members 140 arranged in an annular shape around the rotation axis.
  • a mold resin for covering and fixing the core members 140 is provided, and the stator 100 is fixed in the housing 300 by the mold resin.
  • FIG. 2 is a side sectional view schematically showing an example of the molding resin process.
  • the housing 300 is a housing having an inner cylindrical space that encloses part or all of the stator 100, the rotor 200, the rotating shaft 201, and the like.
  • Each core member 140 is placed on the outer periphery of a cylindrical inner diameter mold 510 in which a lower mold 500 substantially matching the inner cylinder diameter of the housing 300 is inserted from one opening and a through shaft through which the rotation shaft penetrates the stator 100 is formed. Deploy. Thereafter, an upper mold (not shown) having the same diameter as the lower mold is inserted from the other opening of the housing 300.
  • a mold resin 104 is formed along an annular shape.
  • the stator 100 has an annular mold resin on the outer periphery.
  • the stator 100 is fixed in the housing by enclosing the resin between each core member 140 and the inner peripheral wall of the housing 300.
  • the housing 300 has one or a plurality of through holes 310 at the outer peripheral position facing the radial direction of the core member 140, and the stator 100 is fixed inside the housing by the mold resin that enters the through holes 310. It comes to secure.
  • the position of the through hole 310 is preferably a position in which part or all of the through hole 310 overlaps any one of the regions extending in the radial direction by the axial width of the molded resin.
  • the through-hole 310 can be used also as an outlet of a leader line, and there may be a plurality of through-holes 310.
  • the fixing of the core members 140 is not limited to the mold resin.
  • the outer peripheral ends of the adjacent core members 140 are connected to each other by a plate-like member or a fitting, or the ring is integrally connected by a ring. It may be configured to be fixed with screws, bolts, pins or the like from the outer cylinder side or the inner cylinder side of 300.
  • another mold resin may be applied to the annularly arranged core member 140, and then placed in the housing 300 and fixed with a bolt or the like, and various methods can be applied.
  • the rotor 200 includes a magnet 220 made of various magnetic materials such as ferrite and neodymium, and a yoke 210 that supports the magnet 220 from the outside in the axial direction.
  • the magnet 220 is formed by annularly arranging a plurality of fan-shaped magnet pieces with the rotation axis as the center. The poles of adjacent magnet pieces are arranged in different directions in the axial direction.
  • the yoke 210 is an annular member made of metal or the like, has a flat surface that substantially matches the annular shape of the magnet 220, and supports one axial surface of the magnet 220.
  • support walls having a thickness that is the same as or different from the thickness of the magnet 220 are provided on the outer periphery of the magnet 220 to further support the radial circumferential surface of the magnet 220.
  • the yoke 210 and the magnet 220 may be fixed with an adhesive.
  • the yoke 210 has a through hole 205 in the center on the shaft center side, and fixes the rotor 200 and the rotary shaft 201 by press-fitting or engagement by unevenness.
  • FIG. 3 shows a partial cross section in the axial direction of the axial gap rotating electrical machine 1A.
  • the housing 300 is connected to the brackets 400a and 400b at both axial openings.
  • Radial bearings 202a and 202b are arranged in the center of the brackets 400a and 400b, and the rotary shaft 201 is rotatably supported.
  • the center of the stator 100 having the mold resin 104 has a shaft through hole 107 in the axial direction, and the rotating shaft 201 penetrates without contact.
  • the present embodiment is characterized in that a bearing having an equivalent or strong (advantageous) axial stress resistance compared to the radial direction is disposed in the vicinity of both axial openings of the axial through hole 107.
  • a thrust bearing, an angular bearing, a conical roller bearing, or the like can be applied as a bearing having a relatively high stress resistance in the axial direction.
  • the thrust bearings 240a and 240b are described.
  • FIG. 4 shows an enlarged view around the thrust bearing 240.
  • the stator-side ring 241b comes into contact with the mold resin end face in the predetermined width-diameter direction from the opening end of the shaft through hole 107.
  • the stator-side ring 241b which is a ring on one side of the thrust bearing, is formed on the contact surface with the mold resin, for example, a notch or irregularity that engages in the stress, adhesive, or rotational direction of the bearing or rotor press-fitted into the rotating shaft. Etc., and the rotation is limited. Further, as shown in FIG.
  • the inner diameter of the stator side wheel 241 b on the axial center side is larger than the outer diameter of the rotating shaft 201 and is preferably not in contact with the rotating shaft 201.
  • the rotation shaft 201 can also realize a non-contact state by reducing the diameter of the portion facing the stator side wheel 241b in the axial direction. .
  • the rotor-side ring 242b which is the other-side ring of the thrust bearing 240, comes into contact with the surface near the root of the rotation axis of the rotor yoke 210b via an annular spacer 230b made of metal or resin.
  • the contact surfaces in the axial direction of the rotor-side ring 242b of the rotor yoke 210b, the spacer 230b, and the thrust bearing 240b are fixed by, for example, stress for press-fitting, adhesive, or notches or irregularities that engage in the rotational direction.
  • the inner diameter on the shaft center side of the wheel on the shaft end side is substantially the same as the outer diameter of the rotating shaft 201, and is fixed in contact with the rotating shaft 201. If positioning is possible, the shaft center side inner diameter of the wheel on the shaft end side may be larger than the outer diameter of the rotating shaft and may be non-contact.
  • the axial thicknesses of the thrust bearings 240a and 240b and the spacers 230a and 230b are in contact with the axial base surfaces of the yoke 210a and the yoke 210b, and the axial end surfaces of the stator 100 and the stators of the magnets 220a and 220b.
  • the gap in the axial direction can be secured by determining the dimensions in advance so that a predetermined gap is formed between the opposite surfaces.
  • the error of each member can also be adjusted by increasing the number of spacers 230 or not attaching them at all.
  • the axial thickness of the spacers 230a and 230b is preferably smaller than the axial thickness of the thrust bearing 240 or the axial thickness of any one of the rings.
  • the axial thickness may be equal to or greater than these.
  • the position where the spacer is attached is not only between the yoke 210 and the rotor-side ring 242b, but also between the stator-side ring 241 and the stator 100 (spacer 242c) or It can also be installed in both of them.
  • the thrust bearing 240 (and the spacer 230 as necessary) between the stator 100 and the rotor 200, the gap length between the stator and the rotor can be secured and the performance can be maintained. . Even if the fixed state between the rotor 200 and the rotating shaft 201 is loosened due to secular change or the like and the rotor 200 is slightly displaced in the axial direction, the thrust bearing 240 or the like restricts the movement to the stator 100 side, and the magnet Maintenance of the magnetic flux surface such as the surface and the stator end surface can be reliably performed. The same effect can be expected when the housing fixing state of the stator 100 is loosened.
  • the thrust bearings 240 are provided on both sides in the axial direction across the stator 100, the one thrust bearing 240 restricts the movement of the rotor 200 and the like toward the stator 100 and the other The thrust bearing 240 prevents the rotor 200 and the like from separating from the stator 100 side, and ensures that the predetermined gap length is maintained.
  • the gap length can be adjusted by increasing / decreasing the spacer 230, the gap length can be easily changed only by adjusting the error of the member or by increasing / decreasing the spacer 230. Below, the point which becomes easy for such gap adjustment and assembly property is demonstrated using FIG.5 and FIG.6.
  • FIG. 5 shows the configuration of a comparative example in which the thrust bearings 240a and 240b are not used, unlike the axial gap rotating electrical machine 1A of the first embodiment shown in FIG. Since it is difficult to measure the gap length between the stator and the rotor after assembly, it is necessary to measure the dimensions of each part and calculate the gap length before assembly.
  • FIG. 7 the axial direction fragmentary sectional view of the axial gap rotary electric machine 1B is shown.
  • the rotor 200 is a single stator / one rotor type and that the stator 110 has a stator back yoke 111 on the end surface on the side opposite to the rotor of the core 110.
  • a back yoke (relay) is formed on the opposite side in the axial direction, and the magnetic flux It is designed to increase the density efficiency.
  • the gap length can be secured by inserting the thrust bearing 240 between the mold resin 104 near the shaft through hole 107 of the stator 100 and the rotor 200.
  • [J] is a dimension measurement place necessary to obtain a desired gap length. That is, the horizontal width between the axial extension line of the magnet 220 facing the stator 100 and the axial extension line of the surface of the thrust bearing 240 facing the rotor-side ring 242 is measured.
  • FIG. 8 is a partial sectional view in the axial direction of the axial gap rotating electrical machine 1C.
  • the main difference from the other embodiments is that there is one rotor 200 and the stator 100 is a so-called two-stator / one-rotor type.
  • One of the stators 100 is fixed to the housing 300 by the mold resin 104 as in the other embodiments, and the other is resin-molded separately, and then inserted into the housing 300 and fixed by bolts, engaging portions or adhesives. It is a point that has come to do.
  • the two stators 100A and 100B have the stator back yokes 111a and 111b on the end surfaces of the cores 110a and 110b on the opposite side of the rotor 200 and the axially facing surface, as in the second embodiment.
  • stator-side rings 241 a and 241 b of the thrust bearings 240 a and 240 b are in contact with the portion of the mold resin 104 in the vicinity of the opening of the shaft through hole 107 of both the stators 100, and are not in contact with the rotating shaft 201.
  • the axial end surfaces of the rotor-side rings 242a and 242b are in contact with the yoke 210 via the spacers 230a and 230b and are not in contact with or in contact with the rotating shaft 201 (see FIG. 4).
  • the gap between the stator and the rotor can be secured easily by managing the spacers 230a and 230b based on the dimension measurement of [L] and [K]. be able to.
  • stator having a mold resin that integrally covers the core members has been described.
  • the core members can be made of metal or the like without using the mold resin.
  • the present invention can also be applied to a stator having a configuration in which each core member 140 is exposed in a ring shape by a connecting member.
  • 1A, 1B, 1C Axial gap rotating electrical machine
  • 100 Stator
  • 107 Shaft through hole
  • 110, 110a, 100b ... Stator core 111, 111a, 111b
  • Stator back yoke 120 ... Bobbin
  • Coil , 140 core member

Abstract

In order to improve operability and productivity in an axial gap rotary electric machine and ensure the gap length between the stator and rotors, this axial gap rotary electric machine has a stator, which has magnetic flux end surfaces in the direction of a rotary shaft and is formed by arranging multiple core members in a circular arrangement centered on the rotary shaft and not in contact with the rotary shaft, and rotors the surfaces of which oppose the magnetic flux end surfaces in the direction of the rotary shaft, and the rotary shaft rotates together with the rotors. In addition, this axial gap rotary electric machine has bearings having one-side wheels, which are arranged between the stator and the rotor on the rotary shaft, and which contact the rotary-shaft-side end surface of the stator end surface opposing the rotor, other-side wheels, which are arranged between the stator and the rotor on the rotary shaft, and which contact the rotor end surface opposing the stator, and rolling bodies, which contact the axial-direction opposing surfaces of the one-side wheels and the other-side wheels, and the other-side wheels rotate in conjunction with the rotation of the rotary shaft.

Description

アキシャルギャップ回転電機Axial gap rotating electric machine
 本発明はアキシャルギャップ回転電機に係り、ステータとロータの間に軸受を配置するアキシャルギャップ回転電機に関する。 The present invention relates to an axial gap rotating electrical machine, and more particularly to an axial gap rotating electrical machine in which a bearing is disposed between a stator and a rotor.
 固定子と回転子が、アキシャル方向に所定のギャップを介して軸方向で対向するアキシャルギャップ回転電機において、固定子・回転子間のギャップ管理は性能面及び信頼性の面から重要である。 In an axial gap rotating electrical machine in which the stator and the rotor face each other in the axial direction with a predetermined gap in the axial direction, the gap management between the stator and the rotor is important from the viewpoint of performance and reliability.
 特許文献1は、アキシャルギャップ回転機のギャップ長保持方法を開示する。より具体的には、固定子と、軸方向両側から固定子を挟むように配置した2つの回転子と、回転子と共回りする回転軸と、固定子の軸方向への熱膨張を管理する自由側電機子プレート(第1プレート)及び固定側電機子プレート(第2プレート)を固定子軸方向両端部に有し、更に、回転軸の固定側電機子プレート側の端部をスラスト軸受でフレームに軸支し、自由側電機子プレート側の端部をラジアル軸受(円筒ころ軸受)でフレームに軸支する構成をとる。これによって、電機子コアが位置決めされ、回転子との距離の変動が、第1プレート側よりも相対的に小さくなる第2プレート側に、固定側軸受を設けることで、電機子コアと回転子の位置(詳しくはアキシャルギャップ面間距離)を安定させる構成を開示する。 Patent Document 1 discloses a gap length holding method for an axial gap rotating machine. More specifically, the stator, two rotors arranged so as to sandwich the stator from both sides in the axial direction, a rotating shaft that rotates together with the rotor, and thermal expansion in the axial direction of the stator are managed. A free side armature plate (first plate) and a fixed side armature plate (second plate) are provided at both ends of the stator in the axial direction, and the end of the rotating shaft on the fixed side armature plate side is a thrust bearing. The structure is such that it is axially supported on the frame and the end on the free armature plate side is axially supported on the frame by a radial bearing (cylindrical roller bearing). Accordingly, the armature core is positioned, and the armature core and the rotor are provided by providing the fixed-side bearing on the second plate side where the variation in the distance from the rotor is relatively smaller than the first plate side. The structure which stabilizes the position (specifically distance between axial gap surfaces) is disclosed.
特開2012-152019号公報JP 2012-152019 A
 しかしながら、特許文献1は、固定子と回転子の間の隙間(ギャップ長)を保持するものが、固定側軸受による荷重の吸収のみである。したがって、固定子の軸方向熱膨張差や回転軸の熱膨張による2つのロータの軸方向移動差などを考慮すれば精密且つ複雑な機械加工精度及び組立精度が必要となり、作業性・生産性に課題がある。特に、固定子と回転子の間は、機械的・構造的な遮蔽物がなく、ギャップ確保という信頼性に課題が残る。 However, in Patent Document 1, the one that holds the gap (gap length) between the stator and the rotor is only absorption of the load by the fixed-side bearing. Therefore, considering the difference in the axial thermal expansion of the stator and the axial movement difference of the two rotors due to the thermal expansion of the rotating shaft, precise and complex machining accuracy and assembly accuracy are required, which improves workability and productivity. There are challenges. In particular, there is no mechanical or structural shield between the stator and the rotor, and there remains a problem in reliability of securing a gap.
 この点、ギャップ確保のために、固定子と回転子の間に金属や樹脂等のスペーサを挿入することでギャップ管理を容易にすることができるが、スペーサは回転体と固定物の間に挿入するため、摩耗によるギャップ長変動を招来すると共に摩擦による熱の発生やロスを招来する虞がある。
  作業性や生産性が向上し又精度よくギャップを管理し得る技術が望まれる。
In this respect, gap management can be facilitated by inserting a metal or resin spacer between the stator and the rotor to secure the gap, but the spacer is inserted between the rotor and the fixed object. Therefore, there is a possibility that the gap length varies due to wear and heat generation and loss due to friction occur.
A technique capable of improving workability and productivity and managing the gap with high accuracy is desired.
 上記課題を解決するために、例えば、請求の範囲に記載の構成を適用する。即ち回転軸方向に磁束端面を有し、該回転軸を中心に複数のコアメンバが該回転軸と非接触で環状配置してなるステータと、前記磁束端面と回転軸方向で面対向するロータとを有し、前記回転軸が前記ロータと共回りするアキシャルギャップ回転電機であって、前記回転軸の前記ステータと前記ロータの間に配置し、前記ロータに面対向するステータ端面の回転軸心側端面と接触する一方側の輪と、前記ステータに面対向するロータ端面と接触する他方側の輪と、前記一方側の輪と前記他方側の輪の軸方向の対向面に夫々当接する回転体を有し、前記回転軸の回転にともなって、前記他方輪が回転する軸受を有する構成である。 In order to solve the above problems, for example, the configuration described in the claims is applied. That is, a stator having a magnetic flux end surface in the direction of the rotation axis, and a plurality of core members arranged in an annular shape in contact with the rotation shaft around the rotation axis, and a rotor facing the magnetic flux end surface in the direction of the rotation axis. An axial gap rotating electrical machine in which the rotating shaft rotates together with the rotor, and is disposed between the stator of the rotating shaft and the rotor, and the end surface on the rotational axis side of the stator end surface facing the rotor A rotating body that is in contact with the axially facing surfaces of the one side wheel that contacts the stator, the other side wheel that contacts the rotor end surface facing the stator, and the one side wheel and the other side wheel. And having a bearing that rotates the other wheel as the rotating shaft rotates.
 本発明の一側面によれば、アキシャルギャップ回転電機のギャップ管理及び作業性や生産性が向上する。又ステータ・ロータ間のギャップ確保の信頼性や性能を維持することができる。
  本発明の他の課題・構成・効果は以下の記載から明らかになる。
According to one aspect of the present invention, gap management, workability, and productivity of an axial gap rotating electrical machine are improved. In addition, the reliability and performance of securing the gap between the stator and the rotor can be maintained.
Other problems, configurations, and effects of the present invention will become apparent from the following description.
本発明を適用した実施例1によるアキシャルギャップ回転電機の電子機の構造を模式的に示す展開斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an exploded perspective view schematically showing a structure of an electronic machine for an axial gap rotating electrical machine according to a first embodiment to which the present invention is applied. 実施例1によるアキシャルギャップ回転電機の固定子にモールド樹脂を施す工程例を示す模式図であるIt is a schematic diagram which shows the example of a process which applies mold resin to the stator of the axial gap rotary electric machine by Example 1. 実施例1によるアキシャルギャップ回転電機の回転軸方向部分断面図である。FIG. 3 is a partial cross-sectional view in the rotation axis direction of the axial gap rotating electrical machine according to the first embodiment. 実施例1によるアキシャルギャップ回転電機のスラスト軸受付近の構成例を拡大した模式図である。FIG. 3 is an enlarged schematic diagram of a configuration example in the vicinity of a thrust bearing of the axial gap rotating electrical machine according to the first embodiment. 比較例によるキャップ寸法測定箇所の例を示す模式図である。It is a schematic diagram which shows the example of the cap dimension measurement location by a comparative example. 実施例1によるギャップ寸法測定箇所の例を示す模式図である。4 is a schematic diagram illustrating an example of a gap dimension measurement location according to Example 1. FIG. 本発明を適用した実施例2によるアキシャルギャップ回転電機の回転軸方向部分断面図である。It is a partial cross-sectional view of the axial direction of the axial gap rotating electrical machine according to the second embodiment to which the present invention is applied. 本発明を適用した実施例3によるアキシャルギャップ回転電機の回転方向部分断面図である。It is a rotation direction fragmentary sectional view of the axial gap rotary electric machine by Example 3 to which this invention is applied.
 以下、発明を実施するための形態を、図面を用いて説明する。 Hereinafter, modes for carrying out the invention will be described with reference to the drawings.
 図1に本発明を適用した実施例1によるアキシャルギャップ回転電機1Aの電機子構成を模式的に示す。アキシャルギャップ回転電機1Aは、主に軸方向に回転磁束を生成するステータ100と、これを軸方向から挟むように配置する2つのロータ200を有する。本実施例では、1ステータ・2ロータ構成を適用するが、本発明はこれに限定されるものではなく、1ステータ・1ロータ、2ステータ・1ロータ、2ステータ・3ロータ等、少なくとも1つのステータと、1つのロータを備える構成に適用できるものである。また、電動機であっても発電機であってもよい。 FIG. 1 schematically shows an armature configuration of an axial gap rotating electrical machine 1A according to a first embodiment to which the present invention is applied. The axial gap rotating electrical machine 1A includes a stator 100 that mainly generates a rotating magnetic flux in the axial direction, and two rotors 200 that are disposed so as to sandwich the stator 100 from the axial direction. In this embodiment, a 1-stator / 2-rotor configuration is applied, but the present invention is not limited to this, and there is at least one such as 1-stator / 1-rotor, 2-stator / 1-rotor, 2-stator-3-rotor, etc. The present invention can be applied to a configuration including a stator and one rotor. Further, it may be an electric motor or a generator.
 ステータ100は、複数のコアメンバ140が、回転軸を中心として環状に配置してなる。コアメンバ140は、柱体形状のコア110、柱体の径方向外周を絶縁するボビン120、コイル130からなる。コア110は、削出し、圧粉又は板状片の積層といった種々の手法により得る鉄心であり、本実施例では、アモルファス金属からなる箔帯片の積層体からなるコアを適用する。例えば、コア110は、回転方向幅が軸心側から径方向外側に向かうにつれて徐々に大となる箔帯片を積層する。他の態様例としては、径方向の幅を変化させ、箔帯片を回転方向に積層するものでもよい。コア110は、概略台形状の断面形状を有する柱体として例示するが、断面が円形や他の矩形又は軸方向で異なる断面形状となる種々の構成を適用することもできる。 The stator 100 is formed by arranging a plurality of core members 140 in an annular shape around the rotation axis. The core member 140 includes a columnar core 110, a bobbin 120 that insulates the radial outer periphery of the column, and a coil 130. The core 110 is an iron core obtained by various methods such as cutting, powder compaction, or laminating plate-like pieces. In this embodiment, a core made of a laminate of foil strips made of amorphous metal is applied. For example, the core 110 is laminated with foil strips that gradually increase in width in the rotational direction from the axial center side toward the radially outer side. As another example, the width in the radial direction may be changed and the foil strips may be stacked in the rotational direction. The core 110 is exemplified as a column having a substantially trapezoidal cross-sectional shape, but various configurations in which the cross-section has a circular shape, another rectangular shape, or a different cross-sectional shape in the axial direction can also be applied.
 ボビン100は、樹脂等の絶縁材からなり、コア110の径方向外径形状に概略一致する大きさの内筒を有し、外径外周を覆うようになっている。なお、ボビン100が軸方向や径方向で分割する構成であってもよいし、ボビン100に代えて他の絶縁物(絶縁紙や絶縁剤の塗布)を適用してもよい。
  ボビン100の内筒裏側である外筒に、銅やアルミからなるコイル130を巻き回す様になっている。
The bobbin 100 is made of an insulating material such as resin, has an inner cylinder having a size that roughly matches the outer diameter shape of the core 110 in the radial direction, and covers the outer periphery of the outer diameter. The bobbin 100 may be configured to be divided in the axial direction or the radial direction, or another insulator (application of insulating paper or an insulating agent) may be applied instead of the bobbin 100.
A coil 130 made of copper or aluminum is wound around an outer cylinder on the back side of the inner cylinder of the bobbin 100.
 回転軸を中心に環状に配置された複数のコアメンバ140は、絶縁を考慮して、隣接するコアメンバ140のコイル130が非接触で配置するようになっている。本実施例では、各コアメンバ140同士を被覆・固定するモールド樹脂を備え、更に、モールド樹脂によってステータ100を、ハウジング300内に固定するようになっている。 The coils 130 of the adjacent core members 140 are arranged in a non-contact manner in consideration of insulation in the plurality of core members 140 arranged in an annular shape around the rotation axis. In this embodiment, a mold resin for covering and fixing the core members 140 is provided, and the stator 100 is fixed in the housing 300 by the mold resin.
 図2に、モールド樹脂の工程例を模式的に表わす側断面図を示す。ハウジング300は、ステータ100、ロータ200、回転軸201等の一部又は全部を内包する内筒空間を有する筺体である。このハウジング300の内筒径に概略一致するモールド下型500を、一方開口から挿入し、回転軸がステータ100を貫通する貫通部を形成する筒状の内径型510の外周に、各コアメンバ140を配置する。その後、ハウジング300の他方開口から、モールド下型と同径のモールド上型(不図示)を挿入する。ハウジング300、モールド下型500、内径型510及びモールド上型によって囲まれた各コアメンバ140に対し、型の軸方向外側から樹脂を封入し、各コアメンバ140間や軸方向端面の一部又は全部に、環状形状に沿ったモールド樹脂104が形成されるようになっている。換言すれば、ステータ100が、外周に環状形状のモールド樹脂を有することになる。 FIG. 2 is a side sectional view schematically showing an example of the molding resin process. The housing 300 is a housing having an inner cylindrical space that encloses part or all of the stator 100, the rotor 200, the rotating shaft 201, and the like. Each core member 140 is placed on the outer periphery of a cylindrical inner diameter mold 510 in which a lower mold 500 substantially matching the inner cylinder diameter of the housing 300 is inserted from one opening and a through shaft through which the rotation shaft penetrates the stator 100 is formed. Deploy. Thereafter, an upper mold (not shown) having the same diameter as the lower mold is inserted from the other opening of the housing 300. For each core member 140 surrounded by the housing 300, the mold lower mold 500, the inner diameter mold 510, and the mold upper mold, resin is sealed from the outside in the axial direction of the mold, and between each core member 140 and part or all of the axial end surface. A mold resin 104 is formed along an annular shape. In other words, the stator 100 has an annular mold resin on the outer periphery.
 同時に、各コアメンバ140とハウジング300内周壁間にも樹脂を封入することで、ステータ100をハウジング内に固定するようになっている。また本実施例では、ハウジング300は、コアメンバ140の径方向と対向する外周位置に、1又は複数の貫通孔310を有し、貫通孔310に侵入するモールド樹脂によって、ステータ100のハウジング内固定を確保するようになっている。貫通孔310の位置は、ハウジング300において、モールドされた樹脂の軸方向幅分、径方向に延長した領域の何れかに一部又は全部が重なる位置であるのが好ましい。また、貫通孔310は、引出線の引出口としても利用可能であり、複数であってもよい。 At the same time, the stator 100 is fixed in the housing by enclosing the resin between each core member 140 and the inner peripheral wall of the housing 300. Further, in this embodiment, the housing 300 has one or a plurality of through holes 310 at the outer peripheral position facing the radial direction of the core member 140, and the stator 100 is fixed inside the housing by the mold resin that enters the through holes 310. It comes to secure. The position of the through hole 310 is preferably a position in which part or all of the through hole 310 overlaps any one of the regions extending in the radial direction by the axial width of the molded resin. Moreover, the through-hole 310 can be used also as an outlet of a leader line, and there may be a plurality of through-holes 310.
 なお、各コアメンバ140の固定はモールド樹脂に限定するものではなく、例えば、隣接するコアメンバ140の外周端部同士を板状部材や嵌め込み等で連結する構成やリングで一体に連結する構成とし、ハウジング300の外筒側或いは内筒側からネジ、ボルト、ピン等で固定する構成であってもよい。或いは環状配置したコアメンバ140に別にモールド樹脂を施し、その後、ハウジング300に配置してボルト等で固定等してもよく、種々の手法が適用できる。 The fixing of the core members 140 is not limited to the mold resin. For example, the outer peripheral ends of the adjacent core members 140 are connected to each other by a plate-like member or a fitting, or the ring is integrally connected by a ring. It may be configured to be fixed with screws, bolts, pins or the like from the outer cylinder side or the inner cylinder side of 300. Alternatively, another mold resin may be applied to the annularly arranged core member 140, and then placed in the housing 300 and fixed with a bolt or the like, and various methods can be applied.
 図1に戻り、ロータ200は、フェライトやネオジウム等種々の磁性体からなる磁石220と、これを軸方向の外側から支持するヨーク210を有する。磁石220は、回転軸を中心とする扇形の複数の磁石片が環状に配置してなる。隣接する磁石片の極が軸方向で互いに異なる向きで配置するようになっている。 1, the rotor 200 includes a magnet 220 made of various magnetic materials such as ferrite and neodymium, and a yoke 210 that supports the magnet 220 from the outside in the axial direction. The magnet 220 is formed by annularly arranging a plurality of fan-shaped magnet pieces with the rotation axis as the center. The poles of adjacent magnet pieces are arranged in different directions in the axial direction.
 ヨーク210は金属製等の環状部材であり、磁石220の環状形状に概略一致する平面を備え、磁石220の軸方向一方面を支持する。また、磁石220の内輪及び外輪形状に沿って、これらの外周に磁石220の厚さと同一又は異なる厚さの支持壁を備え、磁石220の径方向周面を更に支持するようになっている。なお、ヨーク210と磁石220を接着剤で固定してもよい。また、ヨーク210は、軸心側中央に、貫通孔205を有し、圧入や凹凸による係合などによってロータ200と、回転軸201とを固定するようになっている。 The yoke 210 is an annular member made of metal or the like, has a flat surface that substantially matches the annular shape of the magnet 220, and supports one axial surface of the magnet 220. In addition, along the inner ring and outer ring shapes of the magnet 220, support walls having a thickness that is the same as or different from the thickness of the magnet 220 are provided on the outer periphery of the magnet 220 to further support the radial circumferential surface of the magnet 220. The yoke 210 and the magnet 220 may be fixed with an adhesive. Further, the yoke 210 has a through hole 205 in the center on the shaft center side, and fixes the rotor 200 and the rotary shaft 201 by press-fitting or engagement by unevenness.
 図3に、アキシャルギャップ回転電機1Aの軸方向部分断面を示す。ハウジング300は、軸方向両端開口において、ブラケット400a、400bと接続する。ブラケット400a、400bの中央には、ラジアル軸受202a、202bが配置し、回転軸201を回転可能に軸支する。 FIG. 3 shows a partial cross section in the axial direction of the axial gap rotating electrical machine 1A. The housing 300 is connected to the brackets 400a and 400b at both axial openings. Radial bearings 202a and 202b are arranged in the center of the brackets 400a and 400b, and the rotary shaft 201 is rotatably supported.
 モールド樹脂104を有するステータ100の中央は、軸方向に軸貫通孔107を有し、回転軸201が非接触で貫通するようになっている。本実施例は、この軸貫通孔107の軸方向の両開口付近に、径方向に比して軸方向の応力耐性が同等乃至強い(有利な)軸受を配置することを特徴の一つとする。軸方向の応力耐性が比較的ある軸受としては、スラスト軸受、アンギュラ軸受、円錐コロ軸受等を適用することができ、本実施例では、スラスト軸受240a及び240bを適用するものとして説明する。 The center of the stator 100 having the mold resin 104 has a shaft through hole 107 in the axial direction, and the rotating shaft 201 penetrates without contact. The present embodiment is characterized in that a bearing having an equivalent or strong (advantageous) axial stress resistance compared to the radial direction is disposed in the vicinity of both axial openings of the axial through hole 107. A thrust bearing, an angular bearing, a conical roller bearing, or the like can be applied as a bearing having a relatively high stress resistance in the axial direction. In this embodiment, the thrust bearings 240a and 240b are described.
 図4に、スラスト軸受240付近の拡大図を示す。一方のスラスト軸受240bで説明すれば、ステータ側の輪241bは、軸貫通孔107の開口端から所定幅径方向のモールド樹脂端面に接触する。スラスト軸受の一方側の輪であるステータ側の輪241bは、モールド樹脂との接触面において、例えば回転軸に圧入された軸受やロータに対する応力、接着剤或いは回転方向に係合する切欠きや凹凸等により固定され、回転が制限される。また、図4(a)に示す様に、ステータ側の輪241bの軸心側の内径は、回転軸201の外径よりも大であり、回転軸201とは非接触であるのが好ましい。他の態様例としては、図4(b)に示す様に、回転軸201が、ステータ側の輪241bと軸心方向で対向する部分を小径となることで非接触状態を実現することもできる。 FIG. 4 shows an enlarged view around the thrust bearing 240. In the case of one thrust bearing 240b, the stator-side ring 241b comes into contact with the mold resin end face in the predetermined width-diameter direction from the opening end of the shaft through hole 107. The stator-side ring 241b, which is a ring on one side of the thrust bearing, is formed on the contact surface with the mold resin, for example, a notch or irregularity that engages in the stress, adhesive, or rotational direction of the bearing or rotor press-fitted into the rotating shaft. Etc., and the rotation is limited. Further, as shown in FIG. 4A, the inner diameter of the stator side wheel 241 b on the axial center side is larger than the outer diameter of the rotating shaft 201 and is preferably not in contact with the rotating shaft 201. As another example, as shown in FIG. 4 (b), the rotation shaft 201 can also realize a non-contact state by reducing the diameter of the portion facing the stator side wheel 241b in the axial direction. .
 他方、スラスト軸受240の他方側の輪であるロータ側の輪242bは、金属乃至樹脂からなる環状のスペーサ230bを介して、ロータヨーク210bの回転軸心側付け根付近の面と接触する。ロータヨーク210b、スペーサ230b及びスラスト軸受240bのロータ側の輪242bの各軸方向接触面は、例えば、圧入に対する応力、接着剤或いは回転方向に係合する切欠きや凹凸等により固定される。また、軸端側の輪の軸心側の内径は、回転軸201の外径と概略同径であり、回転軸201と接触固定されるようになっている。なお、位置決めが可能であれば、軸端側の輪の軸心側内径は、回転軸の外径よりも大として非接触であってもよい。 On the other hand, the rotor-side ring 242b, which is the other-side ring of the thrust bearing 240, comes into contact with the surface near the root of the rotation axis of the rotor yoke 210b via an annular spacer 230b made of metal or resin. The contact surfaces in the axial direction of the rotor-side ring 242b of the rotor yoke 210b, the spacer 230b, and the thrust bearing 240b are fixed by, for example, stress for press-fitting, adhesive, or notches or irregularities that engage in the rotational direction. Further, the inner diameter on the shaft center side of the wheel on the shaft end side is substantially the same as the outer diameter of the rotating shaft 201, and is fixed in contact with the rotating shaft 201. If positioning is possible, the shaft center side inner diameter of the wheel on the shaft end side may be larger than the outer diameter of the rotating shaft and may be non-contact.
 スラスト軸受240a及び240bと、スペーサ230a及び230bとの軸方向厚さは、ヨーク210a及びヨーク210bの軸方向付け根面と接触した状態で、ステータ100の軸方向端面と、磁石220a及び220bのステータとの対向面との間に所定のギャップが生ずるように、予め寸法を決めておくことでアキシャル方向のギャップを確保することができるようになっている。スペーサ230を複数に増やしたり或いは全く取り付けなかったりすることで、各部材の誤差を調整することもできる。 The axial thicknesses of the thrust bearings 240a and 240b and the spacers 230a and 230b are in contact with the axial base surfaces of the yoke 210a and the yoke 210b, and the axial end surfaces of the stator 100 and the stators of the magnets 220a and 220b. The gap in the axial direction can be secured by determining the dimensions in advance so that a predetermined gap is formed between the opposite surfaces. The error of each member can also be adjusted by increasing the number of spacers 230 or not attaching them at all.
 なお、本実施例において、スぺーサ230aや230bの軸方向厚みは、スラスト軸受240の軸方向厚み或いは何れかの輪の軸方向厚みよりも小であるのが好ましいが、本発明はこれに限定するものではなく、これらと同等或いは以上の軸方向の厚みがあってもよい。更に、図4(b)に点線で示すように、スペーサを取り付ける位置も、ヨーク210とロータ側の輪242bの間のみならず、ステータ側の輪241とステータ100との間(スペーサ242c)或いはこれら両方に設置するようにすることもできる。 In the present embodiment, the axial thickness of the spacers 230a and 230b is preferably smaller than the axial thickness of the thrust bearing 240 or the axial thickness of any one of the rings. There is no limitation, and the axial thickness may be equal to or greater than these. Further, as shown by a dotted line in FIG. 4B, the position where the spacer is attached is not only between the yoke 210 and the rotor-side ring 242b, but also between the stator-side ring 241 and the stator 100 (spacer 242c) or It can also be installed in both of them.
 本実施例によれば、ステータ100とロータ200の間にスラスト軸受240(必要に応じてスペーサ230も)設置することで、ステータ・ロータ間のギャップ長が確保され、性能も維持することができる。経年変化等によりロータ200と回転軸201との固定状態が弛緩等してロータ200が軸方向に若干ずれる状態になっても、スラスト軸受240等が、ステータ100側への移動を制限し、磁石面及びステータ端面といった、磁束面の保守を確実に行うことができる。また、ステータ100のハウジング固定状態が緩んだ場合にも同様の効果を期待できる。 According to the present embodiment, by installing the thrust bearing 240 (and the spacer 230 as necessary) between the stator 100 and the rotor 200, the gap length between the stator and the rotor can be secured and the performance can be maintained. . Even if the fixed state between the rotor 200 and the rotating shaft 201 is loosened due to secular change or the like and the rotor 200 is slightly displaced in the axial direction, the thrust bearing 240 or the like restricts the movement to the stator 100 side, and the magnet Maintenance of the magnetic flux surface such as the surface and the stator end surface can be reliably performed. The same effect can be expected when the housing fixing state of the stator 100 is loosened.
 また、本実施例によれば、ステータ100を挟んで軸方向両側にスラスト軸受240を有することから、一方のスラスト軸受240が、ロータ200等がステータ100側に移動するのを制限すると共に、他方のスラスト軸受240が、ロータ200等がステータ100側から離間するのを防止し、所定ギャップ長を維持が確実となる。 Further, according to the present embodiment, since the thrust bearings 240 are provided on both sides in the axial direction across the stator 100, the one thrust bearing 240 restricts the movement of the rotor 200 and the like toward the stator 100 and the other The thrust bearing 240 prevents the rotor 200 and the like from separating from the stator 100 side, and ensures that the predetermined gap length is maintained.
 また、ステータ・ロータ間のギャップ確保のために、スペーサのみを設置る場合のような摩擦ロスがなく、性能も確保できる。更には、少なくともスラスト軸受230のステータ側の輪241が、回転軸201に非接触であることで、回転による軸受の輪と回転軸との摩擦ロスがない。 Also, in order to secure the gap between the stator and the rotor, there is no friction loss as in the case of installing only the spacer, and the performance can be secured. Furthermore, since at least the stator-side ring 241 of the thrust bearing 230 is not in contact with the rotating shaft 201, there is no friction loss between the bearing ring and the rotating shaft due to rotation.
 さらに、本実施例では予めスラスト軸受240等の軸方向幅が規定されているため、組み立て面でもギャップ確保が容易になるという効果を期待することができる。また、スペーサ230の増減によってもギャップ長を調節できるため、部材の誤差の調節やスペーサ230の増減のみでギャップ長の変更を行うことも容易にできる。以下に、かかるギャップ調整及び組立性が容易になる点について、図5及び図6を用いて説明する。 Furthermore, in this embodiment, since the axial width of the thrust bearing 240 and the like is defined in advance, it can be expected that the gap can be easily secured even on the assembly surface. Further, since the gap length can be adjusted by increasing / decreasing the spacer 230, the gap length can be easily changed only by adjusting the error of the member or by increasing / decreasing the spacer 230. Below, the point which becomes easy for such gap adjustment and assembly property is demonstrated using FIG.5 and FIG.6.
 図5は、図3に示す実施例1のアキシャルギャップ回転電機1Aとは異なり、スラスト軸受240a、240bを使用しない場合の比較例の構成を示す。組み立て後に、ステータ・ロータ間のギャップ長を測定するのは困難であることから、組み立て前に各部品の寸法を測定し、ギャップ長を算出する必要がある。 FIG. 5 shows the configuration of a comparative example in which the thrust bearings 240a and 240b are not used, unlike the axial gap rotating electrical machine 1A of the first embodiment shown in FIG. Since it is difficult to measure the gap length between the stator and the rotor after assembly, it is necessary to measure the dimensions of each part and calculate the gap length before assembly.
 図5に示す様に、スラスト軸受240を設置しないでギャップ長の確保を行う場合、〔A〕~〔H〕の合計8箇所の寸法を測定し、組み立て後のギャップ長を算出する。その結果から、所望するギャップ長となるように、組み立てを行う。この方法の場合、測定及び算出の工程が多くなり、更には各部材の組み付けに高精度が要求される。
  また、回転軸201等が軸方向に移動するのを制限するために、少なくともラジアル軸受202aの外輪が、ロータ200等側に移動するのを制限する軸受固定板410等を設ける必要性も高まる。
As shown in FIG. 5, when the gap length is ensured without installing the thrust bearing 240, the total eight dimensions [A] to [H] are measured, and the assembled gap length is calculated. As a result, assembly is performed so that a desired gap length is obtained. In the case of this method, the measurement and calculation steps are increased, and furthermore, high accuracy is required for assembling each member.
In addition, in order to limit the movement of the rotary shaft 201 and the like in the axial direction, it is also necessary to provide a bearing fixing plate 410 and the like that limit at least the movement of the outer ring of the radial bearing 202a toward the rotor 200 and the like.
 これに対し、図6に示す様に、スラスト軸受240a、240bを利用する場合、ロータとステータ間に軸受が挿入されるため、確実にギャップ長を確保できる。また、軸受の寸法精度が高ければ(一般には精度が高い。)、所望するギャップ長が得られるスペーサの厚みの算出に必要となる寸法測定箇所は〔G〕、〔H〕の2点のみとなる。これにより、工数が低減でき、信頼性も向上する。また、軸方向の荷重(アキシャル荷重)をスラスト軸受240が受けるため、軸受固定板410等も不要となる。このように本実施例によれば、ギャップ長の調整及び組立工程も簡便となる。 On the other hand, as shown in FIG. 6, when the thrust bearings 240a and 240b are used, since the bearing is inserted between the rotor and the stator, the gap length can be surely ensured. Also, if the bearing has high dimensional accuracy (generally high accuracy), only two points [G] and [H] are necessary for measuring the thickness of the spacer to obtain the desired gap length. Become. Thereby, a man-hour can be reduced and reliability can also be improved. Further, since the thrust bearing 240 receives an axial load (axial load), the bearing fixing plate 410 and the like are not required. Thus, according to the present embodiment, the adjustment of the gap length and the assembly process are also simplified.
 次に、本発明を適用した実施例2によるアキシャルギャップ回転電機1Bを説明する。なお、以下の説明において、実施例1と機能が共通する部材には同一符号を付し、詳細な説明を省略する場合がある。
  図7に、アキシャルギャップ回転電機1Bの軸方向部分断面図を示す。実施例1とのの主な相違点は、ロータ200が1つの1ステータ・1ロータ型である点と、コア110の反ロータ側端面に、ステータバックヨーク111を有する点とである。1ステータ・1ロータ型の場合、ステータ100の磁束面がロータ200と対向するのが主に軸方向の一方となるために、軸方向の反対側にバックヨーク(継鉄)を構成し、磁束密度の効率化を図るようになっている。
Next, an axial gap rotating electrical machine 1B according to a second embodiment to which the present invention is applied will be described. In the following description, members having the same functions as those of the first embodiment are denoted by the same reference numerals, and detailed description may be omitted.
In FIG. 7, the axial direction fragmentary sectional view of the axial gap rotary electric machine 1B is shown. The main differences from the first embodiment are that the rotor 200 is a single stator / one rotor type and that the stator 110 has a stator back yoke 111 on the end surface on the side opposite to the rotor of the core 110. In the case of the 1-stator / 1-rotor type, since the magnetic flux surface of the stator 100 is opposed to the rotor 200 mainly in one axial direction, a back yoke (relay) is formed on the opposite side in the axial direction, and the magnetic flux It is designed to increase the density efficiency.
 本実施例でも実施例1と同様に、ステータ100の軸貫通孔107付近のモールド樹脂104とロータ200の間にスラスト軸受240を挿入することで、ギャップ長を確保できる。また、所望するギャップ長を得るのに必要となる寸法測定箇所は、〔J〕のみである。即ち磁石220のステータ100との対表面の軸方向延長線と、ロータ200がスラスト軸受240のロータ側の輪242と対向する面の軸方向延長線との間の水平方向幅を測定し、これに基づいてスペーサ230の厚みを管理することで容易にギャップの調節を行うことができる。 In this embodiment, as in the first embodiment, the gap length can be secured by inserting the thrust bearing 240 between the mold resin 104 near the shaft through hole 107 of the stator 100 and the rotor 200. In addition, only [J] is a dimension measurement place necessary to obtain a desired gap length. That is, the horizontal width between the axial extension line of the magnet 220 facing the stator 100 and the axial extension line of the surface of the thrust bearing 240 facing the rotor-side ring 242 is measured. By managing the thickness of the spacer 230 based on the above, the gap can be easily adjusted.
 次に、本発明を適用した実施例3によるアキシャルギャップ回転電機1Cを説明する。なお、以下の説明において、実施例1或いは2と機能が共通する部材には同一符号を付し、詳細な説明を省略する場合がある。
  図8に、アキシャルギャップ回転電機1Cの軸方向部分断面図を示す。他の実施例との主な相違点は、ロータ200が1つで、ステータ100が2つの所謂2ステータ・1ロータ型である。また、ステータ100の一方が、他の実施例と同様にモールド樹脂104によってハウジング300と固定され、他方が別に樹脂モールドされた後、ハウジング300に挿入されてボルト、係合部乃至接着剤によって固定するようになっている点である。
Next, an axial gap rotating electrical machine 1C according to a third embodiment to which the present invention is applied will be described. In the following description, members having the same functions as those of the first or second embodiment are denoted by the same reference numerals, and detailed description may be omitted.
FIG. 8 is a partial sectional view in the axial direction of the axial gap rotating electrical machine 1C. The main difference from the other embodiments is that there is one rotor 200 and the stator 100 is a so-called two-stator / one-rotor type. One of the stators 100 is fixed to the housing 300 by the mold resin 104 as in the other embodiments, and the other is resin-molded separately, and then inserted into the housing 300 and fixed by bolts, engaging portions or adhesives. It is a point that has come to do.
 2つのステータ100A及び100Bは、実施例2と同様に、ロータ200と軸方向対向面と反対側のコア110a及びbの端面にステータバックヨーク111a、111bを有する。 The two stators 100A and 100B have the stator back yokes 111a and 111b on the end surfaces of the cores 110a and 110b on the opposite side of the rotor 200 and the axially facing surface, as in the second embodiment.
 スラスト軸受240a及び240b夫々のステータ側の輪241a及び241bの軸方向端面は、両ステータ100の軸貫通孔107開口近傍のモールド樹脂104部分と接触し、回転軸201とは非接触である。反対に、ロータ側の輪242a及びbの軸方向端面は、スペーサ230a、230bを介してヨーク210と接触状態であるとともに回転軸201と非接触乃至接触状態である(図4参照)。 The axial end surfaces of the stator-side rings 241 a and 241 b of the thrust bearings 240 a and 240 b are in contact with the portion of the mold resin 104 in the vicinity of the opening of the shaft through hole 107 of both the stators 100, and are not in contact with the rotating shaft 201. On the other hand, the axial end surfaces of the rotor- side rings 242a and 242b are in contact with the yoke 210 via the spacers 230a and 230b and are not in contact with or in contact with the rotating shaft 201 (see FIG. 4).
 実施例3の場合であっても、ステータ・ロータ間ギャップを確保するのには、〔L〕及び〔K〕の寸法計測に基づいて、スペーサ230aや230bを管理等することで容易に実現することができる。 Even in the case of the third embodiment, the gap between the stator and the rotor can be secured easily by managing the spacers 230a and 230b based on the dimension measurement of [L] and [K]. be able to.
 以上、本発明を実施するための形態について説明したが、本発明は上記種々の例に限定されるものではなく、その趣旨を逸脱しない範囲において、種々の変形が可能である。例えば、上記実施例の一部又は全部を他の実施例に置換することや、構成の一部を省略することも可能である。 As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to the said various example, A various deformation | transformation is possible in the range which does not deviate from the meaning. For example, a part or all of the above-described embodiments can be replaced with other embodiments, or a part of the configuration can be omitted.
 例えば、上記実施例では、コアメンバ同士を一体に覆うモールド樹脂を有するステータの例を説明したが、本発明はこれに限定するものではなく、モールド樹脂を使用せずに、コアメンバ同士を金属等の連結部材で環状に連結し、各コアメンバ140が露出する構成のステータであっても適用できるものである。この場合、スラスト軸受のステータ側の輪241と接触する部分に、金属、ケイ素材、樹脂或いはゴム等からなる環状のあて板部材等を介して接触部分の強度確保や保守を図るのが好ましい。更に、スラスト軸受のステータ側の輪241と、コア110やコイル130との絶縁(絶縁材や構造的離間等)は十分に確保するのが好ましい。 For example, in the above embodiment, an example of a stator having a mold resin that integrally covers the core members has been described. However, the present invention is not limited to this, and the core members can be made of metal or the like without using the mold resin. The present invention can also be applied to a stator having a configuration in which each core member 140 is exposed in a ring shape by a connecting member. In this case, it is preferable to secure and maintain the strength of the contact portion through an annular contact plate member made of metal, a silica material, resin, rubber, or the like at a portion that contacts the stator-side ring 241 of the thrust bearing. Furthermore, it is preferable to ensure sufficient insulation (insulating material, structural separation, etc.) between the stator-side ring 241 of the thrust bearing and the core 110 and the coil 130.
 また、上記実施例では、ステータ100がハウジング300に固定されている状態で回転子200、回転軸201を組み付ける構成例について説明したが、本発明はこれに限定するものではなく、ステータ100、ロータ200及び回転軸201を先に組立、その後、所望のケーシング、ハウジング又はフレームに設置する場合にも適用でき、同様の効果を期待することができる。 Moreover, in the said Example, although the structural example which assembles the rotor 200 and the rotating shaft 201 in the state in which the stator 100 was being fixed to the housing 300 was demonstrated, this invention is not limited to this, The stator 100, rotor The present invention can also be applied to the case where 200 and the rotary shaft 201 are assembled first, and then installed in a desired casing, housing, or frame, and similar effects can be expected.
 1A・1B・1C…アキシャルギャップ回転電機、100…ステータ、107…軸貫通孔、110・110a・100b…ステータコア、111・111a・111b…ステータバックヨーク、120…ボビン、130・130a・130b…コイル、140…コアメンバ、200…ロータ、201…回転軸、202・202a・202b…ラジアル軸受、210・210a・210b…ロータヨーク、220・220a・220b…磁石、230・230a・230b…スペーサ、240・240a・240b…スラスト軸受、241・241a・241b…ステータ側の輪、242・242a・242b・242c…ロータ側の輪、300…ハウジング、301…貫通孔、400・400a・400b…エンドブラケット、410…軸受固定板、500…下型、510…内径型、A…負荷側ラジアル軸受挿入部端面ーハウジング負荷側端面間の距離、B…ハウジング負荷側端面―負荷側樹脂端面間の距離、C…ハウジング反負荷側端面―反負荷側樹脂端面間の距離、D…ハウジング両端面間の距離、E…シャフト負荷側ラジアル軸受突き当て部~シャフト負荷側ロータヨーク突き当て部間の距離、F…シャフト負荷側ラジアル軸受突き当て部~シャフト反負荷側ロータヨーク突き当て部の距離、G…負荷側ロータヨーク対向面~負荷側マグネット対向面間の距離、H…反負荷側ロータヨーク対向面~反負荷側マグネット対向面間の距離、J…ロータヨーク対向面~マグネット対向面間の距離、K…ロータヨーク負荷側対向面~マグネット負荷側対向面間の距離、L…ロータヨーク反負荷側対向面~マグネット反負荷側対向面間の距離 1A, 1B, 1C: Axial gap rotating electrical machine, 100: Stator, 107: Shaft through hole, 110, 110a, 100b ... Stator core, 111, 111a, 111b ... Stator back yoke, 120 ... Bobbin, 130 / 130a / 130b ... Coil , 140: core member, 200: rotor, 201: rotating shaft, 202 / 202a / 202b ... radial bearing, 210 / 210a / 210b ... rotor yoke, 220 / 220a / 220b ... magnet, 230 / 230a / 230b ... spacer, 240 / 240a 240b: Thrust bearings 241, 241a, 241b: Stator side wheel, 242, 242a, 242b, 242c ... Rotor side wheel, 300: Housing, 301: Through hole, 400, 400a, 400b ... End bracket, 410 ... axis Fixed plate, 500 ... lower mold, 510 ... inner diameter type, A ... distance between load side radial bearing insertion end surface and housing load side end surface, B ... distance between housing load side end surface and load side resin end surface, C ... housing anti-load The distance between the side end surface and the anti-load side resin end surface, D: Distance between both end surfaces of the housing, E: Distance between the shaft load side radial bearing butting portion and the shaft load side rotor yoke butting portion, F: Shaft load side radial bearing Distance between the abutting part and the shaft counter load side rotor yoke abutting part, G: Distance between the load side rotor yoke facing surface and the load side magnet facing surface, H: Distance between the anti load side rotor yoke facing surface and the anti load side magnet facing surface , J: Distance between rotor yoke facing surface and magnet facing surface, K: Distance between rotor yoke load side facing surface and magnet load side facing surface, L: Rotor yo The distance between the click counter-load-side opposing face-magnet non-load-side opposing face

Claims (12)

  1.  回転軸方向に磁束端面を有し、該回転軸を中心に複数のコアメンバが該回転軸と非接触で環状配置してなるステータと、前記磁束端面と回転軸方向で面対向するロータとを有し、前記回転軸が前記ロータと共回りするアキシャルギャップ回転電機であって、
     前記回転軸の前記ステータと前記ロータの間に配置し、
     前記ロータに面対向するステータ端面の回転軸心側端面と接触する一方側の輪と、
     前記ステータに面対向するロータ端面と接触する他方側の輪と、
     前記一方側の輪と前記他方側の輪の軸方向の対向面に夫々当接する回転体を有し、
     前記回転軸の回転にともなって、前記他方輪が回転する軸受を有するアキシャルギャップ回転電機。
    A stator having a magnetic flux end surface in the direction of the rotation axis, and a plurality of core members arranged in an annular shape without contact with the rotation shaft around the rotation axis, and a rotor facing the magnetic flux end surface in the direction of the rotation axis. And an axial gap rotating electrical machine in which the rotating shaft rotates together with the rotor,
    Arranged between the stator and the rotor of the rotating shaft;
    A ring on one side in contact with the end surface on the rotation axis side of the stator end surface facing the rotor;
    A ring on the other side in contact with the rotor end surface facing the stator;
    A rotating body that abuts against the opposing surfaces in the axial direction of the one side wheel and the other side wheel;
    An axial gap rotating electrical machine having a bearing that rotates the other wheel as the rotating shaft rotates.
  2.  請求項1に記載のアキシャルギャップ回転電機であって、
     前記ステータの径方向外周側で該ステータを固定する内筒空間を有する筺体を更に有するものであるアキシャルギャップ回転電機。
    The axial gap rotating electrical machine according to claim 1,
    An axial gap rotating electrical machine further comprising a housing having an inner cylindrical space for fixing the stator on a radially outer peripheral side of the stator.
  3.  請求項2に記載のアキシャルギャップ回転電機であって、
     前記筺体が、前記内空間に前記ロータ及び前記軸受を内包するものであるアキシャルギャップ回転電機。
    The axial gap rotating electrical machine according to claim 2,
    An axial gap rotating electrical machine in which the housing includes the rotor and the bearing in the inner space.
  4.  請求項2又は3に記載のアキシャルギャップ回転電機であって、
     前記内筒空間が、ネジ、ボルト又はピンを介して前記ステータを固定するものであるアキシャルギャップ回転電機。
    An axial gap rotating electrical machine according to claim 2 or 3,
    An axial gap rotating electrical machine in which the inner cylinder space fixes the stator via screws, bolts, or pins.
  5.  請求項1に記載のアキシャルギャップ回転電機であって、
     前記複数のコアメンバの外周の一部又は全部を覆い、回転軸を中心とした配置に沿って前記ステータを環状に覆うモールド樹脂を更に有し、
     前記軸受の一方の輪が、前記モールド樹脂を介してステータ端面の回転軸心側端面と接触するものであるアキシャルギャップ回転電機。
    The axial gap rotating electrical machine according to claim 1,
    Covering a part or all of the outer periphery of the plurality of core members, further comprising a mold resin that annularly covers the stator along an arrangement around the rotation axis,
    An axial gap rotating electrical machine in which one ring of the bearing is in contact with the end surface on the rotation axis side of the stator end surface through the mold resin.
  6.  請求項4に記載のアキシャルギャップ回転電機であって、
     前記ステータの径方向外周側で該ステータを固定する内筒空間を有する筺体を更に有するものであるアキシャルギャップ回転電機。
    The axial gap rotating electrical machine according to claim 4,
    An axial gap rotating electrical machine further comprising a housing having an inner cylindrical space for fixing the stator on a radially outer peripheral side of the stator.
  7.  請求項4に記載のアキシャルギャップ回転電機であって、
     前記内筒空間が、前記モールド樹脂によって前記を固定するものであるアキシャルギャップ回転電機。
    The axial gap rotating electrical machine according to claim 4,
    An axial gap rotating electrical machine in which the inner cylindrical space is fixed by the mold resin.
  8.  請求項1に記載のアキシャルギャップ回転電機であって、
     前記他方側の輪が、少なくとも1つのスペーサを介して、前記ロータ端面と接触するものであるアキシャルギャップ回転電機。
    The axial gap rotating electrical machine according to claim 1,
    An axial gap rotating electrical machine in which the other wheel contacts the rotor end face via at least one spacer.
  9.  請求項1に記載のアキシャルギャップ回転電機であって、
     前記一方側の輪が、少なくとも1つのスペーサを介して、前記ステータ端面と接触するものであるアキシャルギャップ回転電機。
    The axial gap rotating electrical machine according to claim 1,
    An axial gap rotating electrical machine in which the ring on the one side is in contact with the end face of the stator via at least one spacer.
  10.  請求項8又は9に記載のアキシャルギャップ回転電機であって、
     前記スペーサの回転軸方向の厚みが、前記軸受の回転軸方向の厚みよりも小であるアキシャルギャップ回転電機。
    An axial gap rotating electrical machine according to claim 8 or 9,
    An axial gap rotating electrical machine in which the thickness of the spacer in the rotation axis direction is smaller than the thickness of the bearing in the rotation axis direction.
  11.  請求項8又は9に記載のアキシャルギャップ回転電機であって、
     前記スペーサの回転軸方向の厚みが、前記一方側の輪又は前記他方側の輪の回転軸方向の厚みよりも小であるアキシャルギャップ回転電機。
    An axial gap rotating electrical machine according to claim 8 or 9,
    An axial gap rotating electrical machine in which a thickness of the spacer in the rotation axis direction is smaller than a thickness of the one wheel or the other wheel in the rotation axis direction.
  12.  請求項1に記載のアキシャルギャップ回転電機であって、
     前記軸受が、スラスト軸受、円錐コロ軸受又はアンギュラ軸受であるアキシャルギャップ回転電機。
    The axial gap rotating electrical machine according to claim 1,
    An axial gap rotating electrical machine, wherein the bearing is a thrust bearing, a conical roller bearing, or an angular bearing.
PCT/JP2016/054774 2016-02-19 2016-02-19 Axial gap rotary electric machine WO2017141412A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017567904A JPWO2017141412A1 (en) 2016-02-19 2016-02-19 Axial gap rotating electric machine
PCT/JP2016/054774 WO2017141412A1 (en) 2016-02-19 2016-02-19 Axial gap rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/054774 WO2017141412A1 (en) 2016-02-19 2016-02-19 Axial gap rotary electric machine

Publications (1)

Publication Number Publication Date
WO2017141412A1 true WO2017141412A1 (en) 2017-08-24

Family

ID=59624841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054774 WO2017141412A1 (en) 2016-02-19 2016-02-19 Axial gap rotary electric machine

Country Status (2)

Country Link
JP (1) JPWO2017141412A1 (en)
WO (1) WO2017141412A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2023641B1 (en) * 2019-08-14 2021-02-24 Atlas Technologies Holding Bv Improved electric motor/generator.
WO2022113404A1 (en) * 2020-11-25 2022-06-02 住友電気工業株式会社 Motor manufacturing method
WO2022244482A1 (en) * 2021-05-20 2022-11-24 住友電気工業株式会社 Motor and method for manufacturing motor
WO2022270397A1 (en) * 2021-06-21 2022-12-29 住友電気工業株式会社 Motor and motor production method
EP4142125A1 (en) * 2021-08-26 2023-03-01 Universidad de Alcalá (UAH) Miniaturized electromagnetic rotary actuator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017003865A1 (en) * 2017-04-21 2018-10-25 Lenze Drives Gmbh Electric machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02246756A (en) * 1989-03-17 1990-10-02 Hitachi Ltd Axial gap type motor and bearing therefor
JPH0652625A (en) * 1992-07-31 1994-02-25 Alps Electric Co Ltd Spindle motor
JP2012182862A (en) * 2011-02-28 2012-09-20 Fujitsu General Ltd Axial gap motor
WO2015162819A1 (en) * 2014-04-25 2015-10-29 株式会社日立産機システム Axial air-gap rotary electric machine
JP2015228780A (en) * 2014-06-03 2015-12-17 株式会社日立製作所 Axial gap type rotary electric machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02246756A (en) * 1989-03-17 1990-10-02 Hitachi Ltd Axial gap type motor and bearing therefor
JPH0652625A (en) * 1992-07-31 1994-02-25 Alps Electric Co Ltd Spindle motor
JP2012182862A (en) * 2011-02-28 2012-09-20 Fujitsu General Ltd Axial gap motor
WO2015162819A1 (en) * 2014-04-25 2015-10-29 株式会社日立産機システム Axial air-gap rotary electric machine
JP2015228780A (en) * 2014-06-03 2015-12-17 株式会社日立製作所 Axial gap type rotary electric machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2023641B1 (en) * 2019-08-14 2021-02-24 Atlas Technologies Holding Bv Improved electric motor/generator.
WO2022113404A1 (en) * 2020-11-25 2022-06-02 住友電気工業株式会社 Motor manufacturing method
WO2022244482A1 (en) * 2021-05-20 2022-11-24 住友電気工業株式会社 Motor and method for manufacturing motor
WO2022270397A1 (en) * 2021-06-21 2022-12-29 住友電気工業株式会社 Motor and motor production method
EP4142125A1 (en) * 2021-08-26 2023-03-01 Universidad de Alcalá (UAH) Miniaturized electromagnetic rotary actuator
WO2023025939A1 (en) 2021-08-26 2023-03-02 Universidad De Alcala (Uah) Miniaturized wirelessly powered electromagnetic rotary actuator

Also Published As

Publication number Publication date
JPWO2017141412A1 (en) 2018-10-18

Similar Documents

Publication Publication Date Title
WO2017141412A1 (en) Axial gap rotary electric machine
JP5879121B2 (en) Axial gap rotating electric machine
WO2011114594A1 (en) Permanent magnet-type rotary generator
US10050480B2 (en) Axial flux machine having a lightweight design
WO2016088200A1 (en) Rotating electric machine stator core, rotating electric machine, and rotating electric machine manufacturing method
JP2010246171A (en) Axial gap type dynamo-electric machine
US8786155B2 (en) Axial gap rotating electrical machine
JP6584331B2 (en) Single-phase brushless motor and method for manufacturing single-phase brushless motor
JP6545393B2 (en) Conscious pole rotor, motor and air conditioner
WO2017077585A1 (en) Electric motor
WO2014115255A1 (en) Axial gap type rotating electric machine
JP7145613B2 (en) Rotating electric machine, blower, and method for manufacturing rotating electric machine
JP2006050853A (en) Motor
KR102527294B1 (en) Axial field flow rotating machine
JP2019129638A (en) Stator, rotary electric machine, and vehicle
KR101097398B1 (en) Rotor for Interior Permanent Magnet type motor
JP2019208360A (en) Motor, method of manufacturing the same, vacuum cleaner including the same, and method of manufacturing the same
JP2014161185A (en) Rotary electric machine and air blower including the same
WO2011114758A1 (en) Stator and dynamo-electric machine
WO2017175461A1 (en) Axial gap rotary electric machine
JP2005312124A (en) Structure of rotary electric machine
JP5564885B2 (en) Permanent magnet type rotating electric machine
WO2022009774A1 (en) Rotating electric machine and method for manufacturing rotating electric machine
JP3671928B2 (en) Outer rotor structure of rotating electrical machine
JP5704211B2 (en) Permanent magnet type rotating electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890553

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017567904

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16890553

Country of ref document: EP

Kind code of ref document: A1