WO2018139638A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2018139638A1
WO2018139638A1 PCT/JP2018/002695 JP2018002695W WO2018139638A1 WO 2018139638 A1 WO2018139638 A1 WO 2018139638A1 JP 2018002695 W JP2018002695 W JP 2018002695W WO 2018139638 A1 WO2018139638 A1 WO 2018139638A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
base material
display device
film
liquid crystal
Prior art date
Application number
PCT/JP2018/002695
Other languages
French (fr)
Japanese (ja)
Inventor
弘昌 橋本
拓也 三浦
村上 俊秀
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020197019169A priority Critical patent/KR102638928B1/en
Priority to CN201880004902.9A priority patent/CN110050210A/en
Priority to JP2018564685A priority patent/JP6977737B2/en
Publication of WO2018139638A1 publication Critical patent/WO2018139638A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices

Definitions

  • the present invention relates to a display device.
  • Display devices are installed in various electronic devices ranging from mobile devices to large-sized TVs.
  • a liquid crystal display device has been generally used as the display device.
  • organic electroluminescence display devices hereinafter sometimes referred to as “organic EL display devices” as a display device
  • organic EL display devices as a display device
  • a touch panel is often used for the display window of the display device.
  • touch panels the multi-touch function that enlarges or reduces the image by hitting, flipping, and picking the screen with your fingertips, as well as excellent visibility and durability.
  • the popularity of touch panels is high. In order to meet such demands, various studies have been conducted as shown in Patent Documents 1 to 14.
  • a polarizing plate is bonded to a glass substrate of a display element via an adhesive or an adhesive.
  • a polarizing plate is usually manufactured with a configuration in which a polarizer protective film is laminated on both sides of a polarizer in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol-based resin film.
  • the polarizer protective film include a cyclic olefin film and a triacetylcellulose film.
  • a polarizer protective film is normally laminated
  • the polarizing plate is bonded so as to reach the periphery of the glass substrate of the display element.
  • the polarizer protective film may undergo dimensional changes due to the influence of the humidity and temperature of the external environment and the pressure-sensitive adhesive or adhesive used.
  • the polarizing plate protruding from the edge of the glass substrate of the display element is cut without damaging the glass substrate. Things have been done.
  • a “roll-to-panel manufacturing method” in which a roll-shaped polarizing plate and a panel including a display element are directly bonded has been adopted.
  • the roll-shaped polarizing plate manufactured by such a roll-to-panel manufacturing method is cut into a desired dimension.
  • the touch panel is generally provided with a translucent cover panel that is disposed in the display window and functions as a dielectric.
  • the capacitive film sensor is normally adhere
  • This film sensor is provided on the surface of the base material, the first electrode portion provided on the surface on one side (observer side) of the base material, and the other side (display device side) of the base material. A second electrode portion. In such a film sensor, a desired portion of the surface on one side and the surface on the other side of the substrate is cut to form a conductive wiring having conductivity.
  • Examples of the method for cutting out the polarizer protective film and the polarizing plate into a desired shape include a mechanical cutting method using a knife and a laser cutting method using laser light.
  • a mechanical cutting method using a knife and a laser cutting method using laser light.
  • invisible scratches and non-uniform residual stress may be caused. Under such circumstances, in recent years, it is required to adopt a laser cutting method.
  • the polarizing plates used there are also required to be thinner, lighter, more flexible and higher performance. ing.
  • these requirements are difficult to achieve simply by thinning the components of the polarizing plate such as the polarizer, the pressure-sensitive adhesive layer, the adhesive layer, and the polarizer protective film.
  • the polarizing plate is made thinner, the polarizer is easily broken in the stretching direction, the polarizer and the polarizer protective film are deteriorated by the adhesive or the adhesive, or the polarizing plate is curved.
  • the handleability was inferior, or the tear strength was low and the peelability was poor. Under such circumstances, there is a demand for a polarizing plate that is thin and lightweight but has durability superior to the current situation.
  • the present inventor has found that the polarizer protective film can be cut with a laser beam by providing the polarizer protective film with a substrate containing a laser absorbent.
  • the present invention has been completed. That is, the present invention includes the following.
  • a display device comprising a polarizer protective film, a polarizer, a retardation film and a display element in this order,
  • the polarizer protective film contains a laser absorber and a substrate that can function as a ⁇ / 4 plate, The display device, wherein the retardation film has an in-plane retardation Re (550) at a wavelength of 550 nm of 90 nm to 150 nm.
  • the base material has a first base material layer having an in-plane retardation Re (550) of 10 nm or less at a wavelength of 550 nm, and a second base material having an in-plane retardation Re (550) at a wavelength of 550 nm of 90 nm to 150 nm.
  • a base material layer, and a conductive layer formed on at least one surface of the first base material layer [1] The display device according to [1], wherein the laser absorbent is contained in one or both of the first base material layer and the second base material layer. [3] The base material is formed on at least one surface of the first base material layer that can function as a ⁇ / 4 plate, the second base material layer that can function as a ⁇ / 2 plate, and the first base material layer. And can function as a broadband ⁇ / 4 plate, [1] The display device according to [1], wherein the laser absorbent is contained in one or both of the first base material layer and the second base material layer.
  • the display device according to [3], wherein the second base material layer is formed of a cured product of a liquid crystal composition containing a liquid crystal compound.
  • One or both of the first base material layer and the second base material layer are A first outer layer; A second outer layer; The display device according to any one of [2] to [4], including an intermediate layer provided between the first outer layer and the second outer layer.
  • the intermediate layer includes an ultraviolet absorber.
  • the first outer layer is formed by a first outer resin having a glass transition temperature Tg O1,
  • the second outer layer is formed with a second outer resin having a glass transition temperature Tg O2,
  • the intermediate layer is formed of an intermediate resin having a glass transition temperature Tg C ;
  • the glass transition temperature Tg O1 of the first outer resin is lower than the glass transition temperature Tg C of the intermediate resin,
  • the glass transition temperature Tg O2 of the second outer resin the lower the glass transition temperature Tg C of the intermediate resin, [5] or [6]
  • the difference Tg C ⁇ Tg O1 between the glass transition temperature Tg O1 of the first outer resin and the glass transition temperature Tg C of the intermediate resin is 30 ° C. or more.
  • the retardation film is formed of a cured product of a liquid crystal composition containing a liquid crystal compound,
  • the in-plane retardation Re (450) of the retardation film at a wavelength of 450 nm and the in-plane retardation Re (550) of the retardation film at a wavelength of 550 nm are Re (450) / Re (550) ⁇ 1.0.
  • FIG. 7 is a cross-sectional view schematically showing an example of an organic EL display device as a display device according to another embodiment of the present invention.
  • FIG. 8 is a cross-sectional view schematically showing an example of an organic EL display device as a display device according to another embodiment of the present invention.
  • FIG. 9 is a cross-sectional view schematically showing an example of an organic EL display device as a display device according to another embodiment of the present invention.
  • ultraviolet light indicates light having a wavelength of 10 nm to 400 nm unless otherwise specified.
  • the “long” shape refers to a shape having a length of 5 times or more, preferably 10 times or more, and specifically a roll. It refers to the shape of a film having such a length that it can be wound up and stored or transported.
  • the upper limit of the length of the long shape is not particularly limited, and can be, for example, 100,000 times or less with respect to the width.
  • nx represents a refractive index in a direction (in-plane direction) perpendicular to the thickness direction of the film and the layer and giving the maximum refractive index.
  • ny represents the refractive index in the in-plane direction of the film and the layer and in a direction perpendicular to the nx direction.
  • nz represents the refractive index in the thickness direction of the film and the layer.
  • d represents the thickness of a film and a layer.
  • the measurement wavelength is 550 nm unless otherwise specified.
  • the front direction of a surface means the normal direction of the surface, and specifically refers to the direction of the polar angle 0 ° and the azimuth angle 0 ° of the surface.
  • the “reverse wavelength dispersion characteristic” means that the in-plane retardations Re (450) and Re (550) at wavelengths of 450 nm and 550 nm have a relationship of Re (450) ⁇ Re (550). Satisfying.
  • the slow axis of the film and layer represents the slow axis in the plane of the film and layer.
  • the angle formed by the optical axis (polarization absorption axis, polarization transmission axis, slow axis, etc.) of each film or layer in a member having a plurality of films or layers is the above film or layer unless otherwise specified. Represents the angle when viewed from the thickness direction.
  • (meth) acryloyl group includes acryloyl group, methacryloyl group, and combinations thereof.
  • a resin having a positive intrinsic birefringence value means a resin in which the refractive index in the stretching direction is larger than the refractive index in the direction perpendicular thereto unless otherwise specified.
  • the resin having a negative intrinsic birefringence value means a resin having a refractive index in the stretching direction that is smaller than a refractive index in a direction orthogonal thereto unless otherwise specified.
  • the intrinsic birefringence value can be calculated from the dielectric constant distribution.
  • polarizing plate “ ⁇ / 2 plate” and “ ⁇ / 4 plate” are not limited to rigid members, unless otherwise specified, such as a resin film. The member which has is also included.
  • FIG. 1 is a cross-sectional view schematically showing a display device 10 according to an embodiment of the present invention.
  • the display apparatus 10 which concerns on one Embodiment of this invention is equipped with the polarizer protective film 110, the polarizer 120, the phase difference film 130, and the display element 140 in this order.
  • the part which consists of the polarizer protective film 110 and the polarizer 120 functions as a polarizing plate.
  • the polarizer protective film 110 includes a substrate 111 that can absorb laser light.
  • the base material 111 absorbs the laser light in the portion irradiated with the laser light, and the material of the base material 111 in the portion can be sublimated.
  • the polarizer protective film 110 includes an optional element (not shown) other than the base material 111, when the laser light is irradiated, the optional element is heated by the material of the sublimated base material 111 to be melted or sublimated. Can result. Therefore, the polarizer protective film 110 can be easily cut by the laser light.
  • the polarizer protective film 110 When the polarizer protective film 110 is cut in a state where it is bonded to the polarizer 120 and the retardation film 130, the polarizer protective film is usually generated by heat generated by the substrate 111 absorbing laser light. Not only 110 but also the polarizer 120 and the retardation film 130 can be easily cut.
  • the display device 10 can be manufactured through the step of cutting the polarizer protective film 110 using laser light. According to the cutting
  • the cut surface is observed.
  • the cut surface can be evaluated by the following evaluation method.
  • the polarizer protective film 110 and the polarizer 120 are removed from the display device as an integrated laminate without separating them.
  • This laminated body is bonded to a glass plate (for example, thickness 0.7 mm) through an adhesive.
  • a laser beam is irradiated from the polarizer protective film side.
  • the said cut surface can be evaluated by observing the cut surface of a polarizer protective film under a microscope in the state irradiated with the laser beam.
  • the substrate included in the polarizer protective film contains a laser absorber.
  • the polarizer protective film may contain arbitrary layers combining with a base material.
  • the absorbance of laser light can be measured using the “ATR method”.
  • the “ATR method” is a method of obtaining an absorption spectrum on the surface of the measurement target by irradiating the measurement target with laser light having an arbitrary wavelength and measuring light totally reflected on the surface of the measurement target. . Within the wavelength range of the irradiated laser beam, the absorbance of light having an arbitrary wavelength is measured using the ATR method, and the average absorbance can be obtained by calculating the average value of the obtained absorbances.
  • the laser absorber a compound capable of absorbing laser light used for cutting can be used.
  • infrared laser light is often used industrially as laser light.
  • the infrared laser beam refers to a laser beam having a wavelength in the infrared range of 760 nm or more and less than 1 mm. Therefore, it is preferable to use a compound that can absorb infrared laser light as the laser absorber.
  • CO 2 laser light having a wavelength in the range of 9 ⁇ m to 11 ⁇ m is widely used because it has few cracks and chips on the cut surface and good workability.
  • CO 2 laser light there are two types, one with a wavelength of 10.6 ⁇ m and one with a wavelength of 9.4 ⁇ m.
  • one with a wavelength of 9.4 ⁇ m should be used.
  • the melt projects or melts and deforms on the cut end face of the polarizing plate. Since this can be suppressed, the cut end face becomes smooth. Therefore, it is preferable to use a compound capable of absorbing laser light having a wavelength in the range of 9 ⁇ m to 11 ⁇ m as the laser absorber. In particular, it is preferable to use a compound having absorption maximums at 9.4 ⁇ m and 10.6 ⁇ m.
  • Preferable laser absorbers include ester compounds.
  • the ester compound is usually a polar compound, and can effectively absorb laser light having a wavelength in the range of 9 ⁇ m to 11 ⁇ m.
  • Examples of the ester compound include a phosphoric acid ester compound, a carboxylic acid ester compound, a phthalic acid ester compound, and an adipic acid ester compound.
  • a carboxylic acid ester compound is preferable from the viewpoint of particularly efficiently absorbing CO 2 laser light.
  • ester compounds described above those containing an aromatic ring in the molecule are preferable, and those having an ester bond bonded to the aromatic ring are particularly preferable.
  • Such an ester compound can absorb laser light more efficiently. Therefore, among the ester compounds described above, aromatic carboxylic acid esters are preferable, and benzoic acid esters such as diethylene glycol dibenzoate and pentaerythritol tetrabenzoate are particularly preferable because of excellent laser light absorption efficiency. Examples of such ester compounds include those described in International Publication No. 2016/31776.
  • the laser absorber is preferably one that can function as a plasticizer.
  • plasticizers can easily penetrate between polymer molecules in the resin.
  • a polar laser absorber when a polar laser absorber is mixed with a base material containing a polar polymer, it can be well dispersed in the resin without forming a sea-island structure. Therefore, when the layer contained in the base material is formed of the resin, it is possible to suppress the local absorption of the laser light, and thus it is possible to improve the ease of cutting as the whole base material.
  • a polar substance and a non-polar substance are mixed, they are difficult to mix with each other, and thus haze may occur in the entire substrate.
  • Laser absorbers such as ester compounds may be used alone or in any combination of two or more.
  • the molecular weight of the laser absorber is preferably 300 or more, more preferably 400 or more, particularly preferably 500 or more, preferably 2200 or less, more preferably 1800 or less, and particularly preferably 1400 or less.
  • the molecular weight of the laser absorbent is preferably 300 or more, more preferably 400 or more, particularly preferably 500 or more, preferably 2200 or less, more preferably 1800 or less, and particularly preferably 1400 or less.
  • the melting point of the laser absorber is preferably 20 ° C. or higher, more preferably 60 ° C. or higher, particularly preferably 100 ° C. or higher, preferably 180 ° C. or lower, more preferably 150 ° C. or lower, particularly preferably 120 ° C. or lower. .
  • the melting point of the laser absorbent is preferably 20 ° C. or higher, more preferably 60 ° C. or higher, particularly preferably 100 ° C. or higher, preferably 180 ° C. or lower, more preferably 150 ° C. or lower, particularly preferably 120 ° C. or lower. .
  • the laser absorber may be contained uniformly in the thickness direction of the substrate.
  • the base material when the base material is a film having a single layer structure including only one layer, it is preferable that the base material uniformly contains a laser absorber.
  • the base material when the base material is a film having a multilayer structure including a plurality of layers, all the layers included in the base material may contain a laser absorber.
  • the laser absorbent may be unevenly distributed in the thickness direction of the base material, and thus may be contained only in a part of the base material.
  • the base material when the base material is a film having a multilayer structure, only a part of the layers included in the base material may contain a laser absorber.
  • the content of the laser absorbent in the substrate can be arbitrarily set as long as the polarizer protective film can be cut with a laser beam. Therefore, it is preferable to set appropriately the content rate of the laser absorber of the layer containing a laser absorber among the layers contained in a base material in the range which can be cut
  • the content of the laser absorbent in the substrate is preferably set depending on whether the polymer contained in the substrate is nonpolar or polar.
  • the content of the laser absorber in the layer containing the laser absorber is preferably 0.1 wt% or more, more preferably 1 wt% or more, The amount is particularly preferably 2% by weight or more, preferably 10% by weight or less, more preferably 9% by weight or less, and particularly preferably 8% by weight or less.
  • the base material can be imparted with a property capable of efficiently absorbing laser light without impairing the original optical characteristics and mechanical characteristics of the base material.
  • the haze of a base material can be made low by setting it as an upper limit or less, transparency of a polarizer protective film can be made favorable. Furthermore, when the polarizer protective film is cut by laser light, it is possible to prevent the cross section of the cut polarizer protective film from becoming locally high temperature and causing large deformation due to heat melting.
  • the content of the laser absorber in the layer containing the laser absorber is mixed more than when the polymer contained in the substrate is nonpolar, although it depends on the mixing conditions. be able to.
  • the property of efficiently absorbing laser light can be imparted to the substrate by the laser absorbent. Further, from the viewpoint of making it difficult to impair the original characteristics of the base material (for example, in-plane retardation and dimensional stability), it is desirable not to add too much laser absorber.
  • the dimensional stability of the film can be evaluated by the following evaluation method.
  • the film cut into 150 mm ⁇ 150 mm is used as a test piece, and the dimensions of the long film in the MD direction (flow direction) and the TD direction (width direction) are measured. Thereafter, the film is placed horizontally on a talc bath in a gear oven maintained at 150 ° C., and the deformation amounts in the MD direction and the TD direction after heating for 30 minutes are measured.
  • the dimensional stability can be evaluated by this deformation amount.
  • the substrate usually contains a polymer in combination with the laser absorber described above.
  • the substrate is usually a film provided with one or more resin layers containing a polymer, and part or all of the resin layers contain a laser absorber.
  • a base material contains the polymer which has crystallinity from a viewpoint of improving solvent resistance, diffraction resistance, and tear strength.
  • the polymer having crystallinity refers to a polymer having a melting point Mp.
  • the polymer having the melting point Mp means a polymer whose melting point Mp can be observed with a differential scanning calorimeter (DSC).
  • the base material preferably contains a nonpolar alicyclic structure-containing polymer as a polymer from the viewpoint of low hygroscopicity and low water vapor permeability. Therefore, the base material is preferably a film having a single layer structure or a multilayer structure including a resin layer containing an alicyclic structure-containing polymer.
  • the alicyclic structure-containing polymer is a polymer having an alicyclic structure in the repeating unit. Since the alicyclic structure-containing polymer is excellent in mechanical strength, the impact strength of the polarizer protective film can be effectively increased. Moreover, since the alicyclic structure-containing polymer has low hygroscopicity, the water vapor transmission rate of the polarizer protective film can be effectively reduced. Furthermore, the alicyclic structure-containing polymer is usually excellent in transparency, dimensional stability and lightness.
  • the ratio of the repeating unit having an alicyclic structure in the alicyclic structure-containing polymer is preferably 30% by weight or more, more preferably 50% by weight or more, still more preferably 70% by weight or more, and particularly preferably 90% by weight. That's it. Heat resistance can be improved by increasing the ratio of the repeating unit having an alicyclic structure as described above.
  • the remainder other than the structural unit having an alicyclic structure is not particularly limited and may be appropriately selected according to the purpose of use.
  • the alicyclic structure-containing polymer either a polymer having crystallinity or a polymer having no crystallinity may be used, or both may be used in combination.
  • the impact strength, solvent resistance, diffraction resistance, and tear strength of the polarizer protective film can be particularly increased.
  • the manufacturing cost of a polarizer protective film can be lowered
  • Examples of the alicyclic structure-containing polymer having crystallinity include the following polymer ( ⁇ ) to polymer ( ⁇ ). Among these, the polymer ( ⁇ ) is preferable as the alicyclic structure-containing polymer having crystallinity because a polarizer protective film having excellent heat resistance can be easily obtained.
  • Polymer ( ⁇ ) A hydrogenated product of polymer ( ⁇ ) having crystallinity.
  • Polymer ( ⁇ ) An addition polymer of a cyclic olefin monomer having crystallinity.
  • Polymer ( ⁇ ) a hydrogenated product of polymer ( ⁇ ), etc., having crystallinity.
  • the alicyclic structure-containing polymer having crystallinity is a ring-opening polymer of dicyclopentadiene having crystallinity, and a hydrogenated product of a ring-opening polymer of dicyclopentadiene. It is more preferable to have crystallinity, and a hydrogenated product of a ring-opening polymer of dicyclopentadiene that has crystallinity is particularly preferable.
  • the ring-opening polymer of dicyclopentadiene means that the proportion of structural units derived from dicyclopentadiene relative to all structural units is usually 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more, More preferably, it refers to a polymer of 100% by weight.
  • the polymer having an alicyclic structure having crystallinity may not be crystallized before the polarizer protective film is produced.
  • the alicyclic structure-containing polymer having crystallinity contained in the base material can usually have a high crystallinity by being crystallized.
  • the specific crystallinity range can be appropriately selected according to the desired performance, but is preferably 10% or more, more preferably 15% or more.
  • the heat resistance of the polarizer protective film can be evaluated by the heat resistant temperature.
  • the heat-resistant temperature of the polarizer protective film is usually 160 ° C. or higher, preferably 180 ° C. or higher, more preferably 200 ° C. or higher. The higher the heat-resistant temperature, the better, so there is no upper limit on the heat-resistant temperature, but in the case of a crystalline polymer, the melting point is Tm or less.
  • the heat resistant temperature of the film can be evaluated by the following evaluation method. In a state where no tension is applied to the film as the sample, the film is allowed to stand for 10 minutes in an atmosphere at a certain temperature Tx. Thereafter, the surface state of the film is confirmed visually. When unevenness is not confirmed in the shape of the surface of the film, it can be seen that the heat resistant temperature of the film is equal to or higher than the temperature Tx.
  • the solvent resistance of the film can be evaluated by the following evaluation method.
  • a film (50 mm ⁇ 10 mm sample) as a sample is cut out and 1 ml of a predetermined solvent is applied.
  • One minute after application the solvent resistance can be evaluated by observing the appearance change of the film.
  • a solvent used for an adhesive or an adhesive can be used.
  • the solvent include aliphatic hydrocarbons such as hexane, cyclohexane and octane; aromatic hydrocarbons such as toluene and xylene; alcohols such as ethanol, 1-propanol, isopropanol, 1-butanol and cyclohexanol; methyl ethyl ketone And ketones such as methyl isobutyl ketone and cyclohexanone; esters such as ethyl acetate, butyl acetate and isobutyl acetate; monocyclics such as limonene;
  • a polarizer protective film and a polarizer are bonded by the adhesive or adhesive containing a solvent.
  • the polarizer protective film does not have resistance to the solvent, the quality of the polarizing plate is deteriorated, and as a result, the display quality of the display device may be lowered.
  • the alicyclic structure-containing polymer having crystallinity is used, a polarizer protective film having excellent solvent resistance can be obtained, and the above-described deterioration in quality can be suppressed.
  • the polarizing plate obtained by laminating the polarizer protective film and the polarizer through an adhesive or adhesive has deteriorated the quality, has two polarizing plates placed on a polarizing microscope. When one of the polarizing plates is rotated, it can be evaluated by the clarity of black and white and the presence or absence of light leakage.
  • the melting point Mp of the alicyclic structure-containing polymer having crystallinity is preferably 200 ° C. or higher, more preferably 230 ° C. or higher, and preferably 290 ° C. or lower.
  • the polarizer protective film is preferably excellent in folding resistance.
  • the folding resistance of the polarizer protective film can be expressed by folding resistance.
  • the folding resistance of the polarizer protective film provided with the substrate containing the alicyclic structure-containing polymer having crystallinity is usually 2000 times or more, preferably 2200 times or more, more preferably 2400 times or more. Since the higher folding resistance is more preferable, the upper limit of folding resistance is not limited, but the folding resistance is normally 100000 times or less.
  • the folding resistance can be measured by the following method by an MIT folding resistance test according to JISP8115 “Paper and paperboard—Folding strength test method—MIT testing machine method”.
  • a test piece having a width of 15 mm ⁇ 0.1 mm and a length of about 110 mm is cut out from the film as a sample. At this time, the test piece is prepared so that the direction in which the film is stretched more strongly is parallel to the side of about 110 mm of the test piece. Then, using a MIT folding resistance tester (“No.
  • the alicyclic structure-containing polymer having no crystallinity includes, for example, (1) a norbornene polymer, (2) a monocyclic olefin polymer, (3) a cyclic conjugated diene polymer, and (4) vinyl.
  • examples thereof include alicyclic hydrocarbon polymers and hydrogenated products thereof.
  • a norbornene polymer and this hydrogenated product are more preferable from the viewpoint of transparency and moldability.
  • polystyrene resin one type may be used alone, or two or more types may be used in combination at any ratio.
  • the glass transition temperature Tg of the polymer is preferably 80 ° C. or higher, more preferably 85 ° C. or higher, still more preferably 100 ° C. or higher, preferably 250 ° C. or lower, more preferably 170 ° C. or lower.
  • a polymer having a glass transition temperature in such a range is not easily deformed or stressed when used at high temperatures, and has excellent durability.
  • the weight average molecular weight (Mw) of the polymer is preferably 1,000 or more, more preferably 2,000 or more, still more preferably 10,000 or more, particularly preferably 25,000 or more, preferably 1,000,000. 000 or less, more preferably 500,000 or less, still more preferably 100,000 or less, particularly preferably 80,000 or less, particularly preferably 50,000 or less.
  • a polymer having such a weight average molecular weight has an excellent balance between moldability and heat resistance.
  • the molecular weight distribution (Mw / Mn) of the polymer is preferably 1.0 or more, more preferably 1.2 or more, particularly preferably 1.5 or more, preferably 10 or less, more preferably 4.0 or less, More preferably, it is 3.5 or less.
  • Mn represents a number average molecular weight.
  • a polymer having such a molecular weight distribution is excellent in moldability.
  • the polymer content in the substrate can be arbitrarily set according to the characteristics required of the polarizer protective film. Therefore, it is preferable to set appropriately the content rate of the said polymer in the layer containing a polymer among the layers contained in a base material according to the characteristic calculated
  • the content of the polymer in the polymer-containing layer is preferably 50% by weight or more, more preferably 70% by weight or more, further preferably 80% by weight or more, and particularly preferably 90% by weight. That's it.
  • FIG. 2 is a cross-sectional view schematically showing an example of a resin layer that can be included in the substrate.
  • the resin layer 200 included in the base material preferably has a first outer layer 210, a second outer layer 220, and the first outer layer 210 and the second outer layer 220. And an intermediate layer 230 provided.
  • the resin layer 200 may include any layer other than the first outer layer 210, the intermediate layer 230, and the second outer layer 220 as necessary. However, from the viewpoint of reducing the thickness, the resin layer 200 may include any layer.
  • a layer having a three-layer structure not provided is preferable. In such a resin layer 200, normally, the first outer layer 210 and the intermediate layer 230 are in direct contact with no other layers in between, and the intermediate layer 230 and the second outer layer 220 are in between. Directly touching without intervening other layers.
  • the resin layer 200 including the first outer layer 210, the second outer layer 220, and the intermediate layer 230 includes a laser absorber
  • this laser absorber is usually included in the intermediate layer 230. Since the laser absorber contained in the intermediate layer 230 is prevented from moving by the first outer layer 210 and the second outer layer 220, the resin layer 200 can suppress bleed-out of the laser absorber.
  • the intermediate layer 230 is usually formed of a resin containing a polymer.
  • the resin forming the intermediate layer 230 is appropriately referred to as “intermediate resin”.
  • the polymer contained in the intermediate resin it is preferable to use a thermoplastic polymer because the resin layer 200 is easily manufactured.
  • a polymer an alicyclic structure-containing polymer is preferable because of excellent mechanical properties, heat resistance, transparency, low hygroscopicity, dimensional stability, and lightness.
  • a polymer may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the intermediate layer 230 may include a laser absorber as described above.
  • the amount of the laser absorbent in the intermediate layer 230 can be appropriately set from the range described above as the range of the content of the laser absorbent in the layer containing the laser absorbent among the layers contained in the substrate.
  • the amount of the laser absorber in the intermediate layer 230 is preferably 0.1% by weight or more, particularly preferably 1.0% by weight or more, preferably 10.0% by weight or less, and particularly preferably 8.0%. % By weight or less.
  • the intermediate layer 230 can further include an optional component in combination with the polymer and the laser absorber.
  • an ultraviolet absorber is mentioned, for example. Since the intermediate layer 230 containing the ultraviolet absorber can prevent the transmission of ultraviolet rays, it is possible to suppress deterioration of the members included in the display device due to the ultraviolet rays. Therefore, coloring of the polarizer by ultraviolet rays contained in external light can be suppressed, and the lifetime of the display element can be increased by suppressing ultraviolet rays from the backlight. Further, when the intermediate layer 230 includes an ultraviolet absorber, it is possible to suppress the bleed-out of the ultraviolet absorber, so that the concentration of the ultraviolet absorber in the intermediate layer 230 can be increased or the type of the ultraviolet absorber can be selected. You can increase the width. Therefore, even if the thickness of the resin layer 200 is thin, it is possible to increase the ability to suppress ultraviolet light transmission.
  • a laser absorber and an ultraviolet absorber it is possible to suppress changes in characteristics such as in-plane retardation and cut-out dimensions of the resin, and to impart a property capable of efficiently absorbing laser light to the substrate.
  • changes in the physical properties (in-plane retardation, dimensional change, internal haze, etc.) of the substrate can be suppressed.
  • film thickness unevenness can be reduced in the film forming process.
  • effects such as suppression of the change in physical properties can be obtained remarkably.
  • the total amount of the laser absorber and the ultraviolet absorber in the intermediate layer 230 is preferably 8.0% by weight or more, particularly preferably 10.0% by weight or more, preferably 20.0% by weight or less, particularly preferably 16.0. % By weight or less.
  • benzotriazole ultraviolet absorber examples include 2,2′-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol], 2 -(3,5-di-tert-butyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (2H-benzotriazol-2-yl) -p-cresol, 2- (2H-benzotriazole-2 -Yl) -4,6-bis (1-methyl-1-phenylethyl) phenol, 2-benzotriazol-2-yl-4,6-di-tert-butylphenol, 2- [5-chloro (2H)- Benzotriazol-2-yl] -4-methyl-6- (tert-butyl) phenol, 2- (2H-benzotriazol-2-yl) -4,6-di- ert-Butylphenol, 2- (2H-benzotriazol-2-yl
  • Examples of the phthalocyanine-based ultraviolet absorber include materials described in Japanese Patent Nos. 4403257 and 3286905, and examples of commercially available products include “FDB001” and “FDB002” manufactured by Yamada Chemical Industries, Ltd. Or the like.
  • UV absorbers are “LA-F70” manufactured by ASDEKA, a triazine UV absorber; Oriental Chemical Industry “UA-3701”, an azomethine UV absorber; and a benzotriazole UV absorber.
  • examples thereof include “Tinuvin 326” manufactured by BASF and “LA-31” manufactured by ADEKA. Since these are particularly excellent in the ability to absorb ultraviolet rays, the resin layer 200 having a high ultraviolet blocking ability can be obtained even if the amount is small.
  • the amount of the UV absorber in the intermediate layer 230 is preferably 3% by weight or more, more preferably 4% by weight or more, particularly preferably 5% by weight or more, preferably 20% by weight or less, more preferably 18% by weight or less. Particularly preferably, it is 16% by weight or less.
  • the amount of the ultraviolet absorber is not less than the lower limit of the above range, the resin layer 200 can effectively suppress the transmission of ultraviolet rays. Moreover, it is easy to make the light transmittance in the visible wavelength of the resin layer 200 high because the quantity of an ultraviolet-ray is below the upper limit of the said range.
  • optional components include, for example, colorants such as pigments and dyes; plasticizers; fluorescent brighteners; dispersants; lubricants; thermal stabilizers; light stabilizers; A compounding agent such as a surfactant.
  • colorants such as pigments and dyes
  • plasticizers such as plasticizers
  • fluorescent brighteners such as fluorescent brighteners
  • dispersants such as lubricants
  • thermal stabilizers such as thermal stabilizers
  • light stabilizers such as a surfactant.
  • a compounding agent such as a surfactant.
  • One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • the glass transition temperature Tg C of the intermediate resin is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, particularly preferably 140 ° C. or higher, preferably 180 ° C. or lower, more preferably 170 ° C. or lower, particularly preferably 165 ° C. It is as follows.
  • the glass transition temperature Tg C of the intermediate resin falls within the above range, so that changes in physical properties such as retardation of the intermediate layer 230 can be suppressed, or the film thickness can be stabilized during the production of the intermediate layer 230 to reduce film thickness unevenness. Can be made possible.
  • the thickness T 230 of the intermediate layer 230, the ratio T 230 / T 200 thickness T 230 of the intermediate layer 230 to the thickness T 200 of the resin layer 200 is preferably set to fall in a predetermined range.
  • the thickness ratio T 230 / T 200 is preferably 1/4 or more, more preferably 2/4 or more, preferably 80/82 or less, more preferably 79/82 or less, and particularly preferably. Is 78/82 or less.
  • the thickness ratio is equal to or greater than the lower limit, the resin layer 200 can effectively absorb laser light.
  • the intermediate layer 230 contains an ultraviolet absorber, the transmission of ultraviolet rays can be effectively suppressed.
  • the first outer layer 210 is usually formed of a resin containing a polymer.
  • the resin forming the first outer layer 210 is appropriately referred to as “first outer resin”.
  • the first outer resin preferably has a lower content of the laser absorbent than the intermediate resin contained in the intermediate layer 230, and more preferably does not contain the laser absorbent. Further, the first outer resin preferably has a lower UV absorber content than the intermediate resin contained in the intermediate layer 230, and more preferably does not contain the UV absorber.
  • the same polymer as that contained in the intermediate resin is preferably used. Thereby, it is easy to increase the adhesive strength between the intermediate layer 230 and the first outer layer 210, or to suppress the reflection of light at the interface between the intermediate layer 230 and the first outer layer 210.
  • the amount of polymer in the first outer layer 210 is preferably 90.0 wt% to 100 wt%, more preferably 95.0 wt% to 100 wt%.
  • the first outer resin may further contain an optional component in combination with the polymer.
  • an optional component in combination with the polymer.
  • middle layer 230 can contain is mentioned, for example.
  • the method for adjusting the difference Tg C -Tg O1 in the glass transition temperature is not particularly limited.
  • the glass transition temperature Tg C of the intermediate resin can be adjusted by the type and amount of the component other than the polymer. Therefore, the glass transition temperature difference Tg C -Tg O1 may be adjusted by adjusting the type and amount of components other than the polymer contained in the intermediate resin.
  • the thickness of the first outer layer 210 is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, particularly preferably 7 ⁇ m or more, preferably 15 ⁇ m or less, more preferably 13 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
  • the thickness of the 1st outer side layer 210 is more than the lower limit of the said range, the bleed-out of the component contained in the intermediate
  • the resin layer 200 can be made thin.
  • the second outer layer 220 is usually formed of a resin containing a polymer.
  • the resin forming the second outer layer 220 is appropriately referred to as “second outer resin”.
  • the second outer resin any resin selected from the range of resins described as the first outer resin can be used. Therefore, the content component of the second outer resin can be selected and applied from the range described as the content component of the first outer resin. Thereby, the same advantage as described in the description of the first outer layer 210 can be obtained.
  • the glass transition temperature Tg O2 of the second outer resin is preferably lower than the glass transition temperature Tg C of the intermediate resin.
  • the difference Tg C -Tg O 2 between the glass transition temperature Tg O 2 of the second outer resin and the glass transition temperature Tg C of the intermediate resin is preferably 30 ° C. or higher, more preferably 33 ° C. or higher, particularly preferably 35 ° C. or higher. It is. Thereby, the amount of bleeding of the additive contained in the intermediate resin into the second outer resin can be suppressed.
  • the upper limit of the glass transition temperature difference Tg C -Tg O 2 is preferably 55 ° C. or lower, more preferably 50 ° C. or lower, and particularly preferably 45 ° C. or lower.
  • the difference Tg C -Tg O 2 in the glass transition temperature is not more than the above upper limit, the adhesion between the second outer resin and the intermediate resin can be improved.
  • the glass transition temperature difference Tg C -Tg O 2 can be adjusted by the same method as the glass transition temperature difference Tg C -Tg O 1 , for example.
  • the second outer resin may be a resin different from the first outer resin, or may be the same resin as the first outer resin. Among these, it is preferable to use the same resin as the first outer resin and the second outer resin. By using the same resin as the first outer resin and the second outer resin, the manufacturing cost of the resin layer 200 can be suppressed, and curling of the substrate can be suppressed.
  • the thickness of the second outer layer 220 can be any thickness selected from the range described as the thickness range of the first outer layer 210. Thereby, the same advantage as described in the description of the thickness of the first outer layer 210 can be obtained.
  • the thickness of the second outer layer 220 is preferably the same as that of the first outer layer 210 in order to suppress curling of the substrate.
  • the resin layer included in the base material is not limited to a multilayer structure layer including two or more layers like the resin layer 200 shown in FIG. 2, and is a single layer structure layer including only one layer. May be.
  • the resin layer may be a single-layered layer formed of a resin containing a polymer and a laser absorber, and further containing an optional component such as an ultraviolet absorber as necessary.
  • the above-described intermediate layer itself may be used alone as a resin layer.
  • the amount of the volatile component contained in the resin layer is preferably 0.1% by weight or less, more preferably 0.05% by weight or less, and further preferably 0.02% by weight or less.
  • the amount of the volatile component is within the above range, the dimensional stability of the resin layer is improved, and the change with time in optical characteristics such as retardation can be reduced. Furthermore, the deterioration of the polarizer and the display device can be suppressed, and the display of the display device can be stably and satisfactorily maintained for a long time.
  • the volatile component is a substance having a molecular weight of 200 or less. Examples of volatile components include residual monomers and solvents.
  • the amount of volatile components can be quantified by analyzing by gas chromatography as the sum of substances having a molecular weight of 200 or less.
  • the saturated water absorption rate of the resin layer is preferably 0.05% or less, more preferably 0.03% or less, particularly preferably 0.01% or less, and ideally 0%. Since the saturated water absorption rate of the resin layer is thus low, it is possible to suppress changes over time in the optical characteristics of the resin layer.
  • the saturated water absorption rate of the resin layer can be measured according to the following procedure according to JIS K7209.
  • the resin layer is dried at 50 ° C. for 24 hours and allowed to cool in a desiccator. Next, the weight (M1) of the dried resin layer is measured.
  • This resin layer is immersed in water in a room at a temperature of 23 ° C. and a relative humidity of 50% for 24 hours to saturate the resin layer with water. Thereafter, the resin layer is taken out of the water, and the weight (M2) of the resin layer after being immersed for 24 hours is measured. From the measured values of these weights, the saturated water absorption rate of the resin layer can be obtained by the following formula.
  • Saturated water absorption (%) [(M2 ⁇ M1) / M1] ⁇ 100 (%)
  • the thickness of the resin layer is preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more, particularly preferably 25 ⁇ m or more, preferably 50 ⁇ m or less, more preferably 45 ⁇ m or less, and particularly preferably 40 ⁇ m or less.
  • the resin layer 200 including the first outer layer 210, the intermediate layer 230, and the second outer layer 220 as shown in FIG. 2 is manufactured by a manufacturing method including a step of forming a resin for forming each layer into a film shape.
  • the resin molding method include a co-extrusion method and a co-casting method. Among these molding methods, the coextrusion method is preferable because it is excellent in production efficiency and hardly causes volatile components to remain in the obtained resin layer.
  • the resin layer included in the base material may be a stretched film. Therefore, for example, the resin layer 200 including the first outer layer 210, the intermediate layer 230, and the second outer layer 220 as shown in FIG. 2 is formed into a film by the above-described method and then subjected to a stretching process. It may be.
  • the stretched film is a film that has been subjected to a stretching treatment, and usually the polymer in the film is oriented by the stretching treatment. Therefore, the stretched film can have optical characteristics corresponding to the orientation of the polymer, so that optical characteristics such as retardation can be easily adjusted.
  • the stretched film can usually be reduced in thickness by stretching, a wide film can be obtained, or the mechanical strength can be improved. Therefore, the base material which has a suitable attribute can be easily obtained by using a stretched film as a resin layer.
  • the base material may include an optically anisotropic layer formed of a cured product of a liquid crystal composition containing a liquid crystal compound.
  • liquid crystal composition includes not only a material containing two or more types of components but also a material containing only one type of liquid crystal compound.
  • the cured product of the liquid crystal composition has optical anisotropy corresponding to the liquid crystal compound, and thus the optically anisotropic layer formed of the cured product has a predetermined in-plane retardation.
  • the optically anisotropic layer included in the base material may be referred to as a “first optically anisotropic layer”.
  • the polymerizable liquid crystal compound examples include compounds such as a liquid crystal compound having a polymerizable group, a compound capable of forming a side chain type liquid crystal polymer, and a discotic liquid crystal compound. Among them, light such as visible light, ultraviolet light, and infrared light is used. A photopolymerizable compound that can be polymerized by irradiating is preferred.
  • the liquid crystal compound having a polymerizable group include, for example, JP-A Nos. 11-513360, 2002-030042, 2004-204190, 2005-263789, and 2007-119415. And rod-like liquid crystal compounds having a polymerizable group described in JP-A No. 2007-186430 and the like.
  • side chain type liquid crystal polymer compound examples include side chain type liquid crystal polymer compounds described in JP-A No. 2003-177242. Further, examples of preferable liquid crystal compounds include “LC242” manufactured by BASF and the like.
  • LC242 manufactured by BASF and the like.
  • JP-A-8-50206 literature (C. Destrade et al., Mol. Cryst. Liq. Cryst., Vol. 71, page 111 (1981); edited by the Chemical Society of Japan) , Quarterly Chemistry Review, No. 22, Liquid Crystal Chemistry, Chapter 5, Chapter 10, Section 2 (1994); J. Zhang et al., J. Am. Chem. Soc., Vol. 116, page 2655 ( 1994)); J. Lehn et al., J. Chem. Soc., Chem. Commun., Page 1794 (1985).
  • a liquid crystal compound may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the liquid crystal compound may be a reverse wavelength dispersive liquid crystal compound.
  • the reverse wavelength dispersive liquid crystal compound refers to a liquid crystal compound exhibiting reverse wavelength dispersion characteristics when homogeneously oriented.
  • the liquid crystal compound is homogeneously aligned means that a layer containing the liquid crystal compound is formed and the major axis direction of the mesogens of the molecules of the liquid crystal compound in the layer is aligned in one direction parallel to the plane of the layer. It means to make it.
  • the liquid crystal compound contains a plurality of types of mesogens having different alignment directions, the direction in which the longest type of mesogens is aligned is the alignment direction.
  • a compound containing a main chain mesogen and a side chain mesogen bonded to the main chain mesogen in the molecule of the compound is preferably used as the liquid crystal compound, and more preferably used as the reverse wavelength dispersive liquid crystal compound.
  • the reverse wavelength dispersive liquid crystal compound containing a main chain mesogen and a side chain mesogen the side chain mesogen can be aligned in a direction different from the main chain mesogen in a state where the reverse wavelength dispersive liquid crystal compound is aligned.
  • Examples of the reverse wavelength dispersible liquid crystal compound having polymerizability include compounds represented by the following formula (I).
  • Y 1 to Y 8 are each independently a chemical single bond, —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • G 1 and G 2 each independently represent a divalent aliphatic group having 1 to 20 carbon atoms, which may have a substituent.
  • the aliphatic group includes one or more —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, —O—C per aliphatic group.
  • ( ⁇ O) —O—, —NR 2 —C ( ⁇ O) —, —C ( ⁇ O) —NR 2 —, —NR 2 —, or —C ( ⁇ O) — may be present. Good. However, the case where two or more of —O— or —S— are adjacent to each other is excluded.
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • a y is a hydrogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, A cycloalkyl group having 3 to 12 carbon atoms which may have a substituent, an alkynyl group having 2 to 20 carbon atoms which may have a substituent, —C ( ⁇ O) —R 3 , —SO 2
  • R 3 has an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and a substituent. Or a cycloalkyl group having 3 to 12 carbon atoms or an aromatic hydrocarbon ring group having 5 to 12 carbon atoms.
  • R 4 represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group, or a 4-methylphenyl group.
  • R 9 is an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and an optionally substituted carbon.
  • a 1 represents a trivalent aromatic group which may have a substituent.
  • a 2 and A 3 each independently represent a C 3-30 divalent alicyclic hydrocarbon group which may have a substituent.
  • a 4 and A 5 each independently represents a divalent aromatic group having 6 to 30 carbon atoms which may have a substituent.
  • Q 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • each m independently represents 0 or 1.
  • liquid crystal compound represented by the formula (I) examples include compounds described in International Publication No. 2014/069515, International Publication No. 2015/064581, and the like.
  • the liquid crystal compound may be a forward wavelength dispersive liquid crystal compound.
  • the forward wavelength dispersible liquid crystal compound refers to a liquid crystal compound that exhibits forward wavelength dispersion characteristics when homogeneously oriented.
  • Examples of the forward wavelength dispersible liquid crystal compound having polymerizability include compounds represented by the following formula (II). R 3x -C 3x -D 3x -C 5x -M x -C 6x -D 4x -C 4x -R 4x formula (II)
  • D 3x and D 4x each independently represent a single bond, a linear or branched alkylene group having 1 to 20 carbon atoms, and a straight chain having 1 to 20 carbon atoms. It represents a group selected from the group consisting of a chain or branched alkylene oxide group.
  • C 3x to C 6x are each independently a single bond, —O—, —S—, —SS—, —CO—, —CS—, —OCO—, —CH 2.
  • M x represents a mesogenic group.
  • Suitable mesogenic groups M x are unsubstituted or optionally substituted azomethines, azoxys, phenyls, biphenyls, terphenyls, naphthalenes, anthracenes, benzoates, cyclohexanecarboxylic acids 2-4 skeletons selected from the group consisting of acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines, phenyldioxanes, tolans, alkenylcyclohexylbenzonitriles, O—, —S—, —S—S—, —CO—, —CS—, —OCO—, —CH 2 —, —OCH 2 —, —CH ⁇ N—N ⁇ CH
  • Examples of the substituent that the mesogenic group M x may have include, for example, a halogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, a cyano group, a nitro group, —O—R 5x , —O—.
  • R 5x and R 7x represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the alkyl group includes —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, —O—C. ( ⁇ O) —O—, —NR 6x —C ( ⁇ O) —, —C ( ⁇ O) —NR 6x —, —NR 6x —, or —C ( ⁇ O) — may be present.
  • R 6x represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Examples of the substituent in the “optionally substituted alkyl group having 1 to 10 carbon atoms” include, for example, a halogen atom, a hydroxyl group, a carboxyl group, a cyano group, an amino group, and 1 to 6 carbon atoms.
  • Examples thereof include a carbonyloxy group and an alkoxycarbonyloxy group having 2 to 7 carbon atoms.
  • liquid crystal compound represented by the formula (II) examples include rod-like liquid crystal compounds described in International Publication No. 2016/002765.
  • liquid crystal compound may be used alone, or two or more types may be used in combination at any ratio.
  • the amount of the liquid crystal compound in the liquid crystal composition can be arbitrarily set within a range in which a desired first optically anisotropic layer can be obtained, preferably 1% by weight or more, more preferably 5% by weight or more, and particularly preferably 10% by weight. Further, it is preferably 100% by weight or less, more preferably 80% by weight or less, and particularly preferably 60% by weight or less.
  • the first optically anisotropic layer is a layer formed of a cured product of a liquid crystal composition containing the above liquid crystal compound, and usually contains cured liquid crystal molecules obtained from the liquid crystal compound.
  • the “cured liquid crystal molecule” means a molecule of the compound when the compound capable of exhibiting the liquid crystal phase is turned into a solid while exhibiting the liquid crystal phase.
  • the cured liquid crystal molecules contained in the first optically anisotropic layer are usually polymers obtained by polymerizing a liquid crystal compound. Therefore, the first optically anisotropic layer usually comprises a polymer obtained by polymerizing a liquid crystal compound, and is a resin layer that can contain any component as necessary.
  • Such a 1st optically anisotropic layer can have the optical anisotropy according to the orientation state of the said hardening liquid crystal molecule.
  • the optical anisotropy of the first optical anisotropic layer can be expressed by in-plane retardation.
  • the specific in-plane retardation of the first optical anisotropic layer can be set according to the in-plane retardation that the first optical anisotropic layer should have.
  • a support is prepared, and a layer of a liquid crystal composition is formed on the surface of the support.
  • a resin film is usually used.
  • a thermoplastic resin can be used. Among these, a resin containing an alicyclic structure-containing polymer and a cellulose ester resin are preferred from the viewpoints of transparency, low hygroscopicity, dimensional stability, and lightness.
  • the surface of the support may be subjected to a treatment for imparting alignment regulating force in order to promote the alignment of the liquid crystal compound in the liquid crystal composition layer.
  • the alignment regulating force of a certain surface means the property of that surface capable of aligning the liquid crystal compound in the liquid crystal composition.
  • a step of aligning the liquid crystal compound contained in the layer may be performed as necessary.
  • the liquid crystal compound is usually aligned in a direction corresponding to the alignment regulating force of the surface of the support by applying an alignment treatment to the liquid crystal composition layer.
  • the alignment treatment is usually performed by heating the liquid crystal composition layer to a predetermined alignment temperature.
  • the conditions for the alignment treatment can be appropriately set according to the properties of the liquid crystal composition to be used. As a specific example of the conditions for the alignment treatment, the treatment may be performed under a temperature condition of 50 ° C. to 160 ° C. for 30 seconds to 5 minutes.
  • the liquid crystal composition layer is cured to obtain a first optically anisotropic layer.
  • the liquid crystal compound is usually polymerized to cure the liquid crystal composition layer.
  • a method for polymerizing the liquid crystal compound a method suitable for the properties of the components contained in the liquid crystal composition can be selected.
  • the polymerization method include a method of irradiating active energy rays and a thermal polymerization method. Among them, the method of irradiating with active energy rays is preferable because heating is unnecessary and the polymerization reaction can proceed at room temperature.
  • the irradiated active energy rays can include light such as visible light, ultraviolet light, and infrared light, and arbitrary energy rays such as electron beams.
  • the temperature at the time of ultraviolet irradiation is preferably not higher than the glass transition temperature of the support, preferably not higher than 150 ° C., more preferably not higher than 100 ° C., particularly preferably not higher than 80 ° C.
  • the lower limit of the temperature during ultraviolet irradiation can be 15 ° C. or higher.
  • the irradiation intensity of ultraviolet rays is preferably 0.1 mW / cm 2 or more, more preferably 0.5 mW / cm 2 or more, preferably 1000 mW / cm 2 or less, more preferably 600 mW / cm 2 or less.
  • the first optically anisotropic layer thus obtained may be peeled off from the support if necessary.
  • the base material may include a conductive layer in combination with the resin layer.
  • the conductive layer is usually provided on one side or both sides of the resin layer included in the substrate. Since the resin layer is generally excellent in flexibility, a touch panel in which input with a finger is smooth can be realized by using a base material provided with a conductive layer on the resin layer.
  • a base material containing an alicyclic structure-containing polymer the excellent heat resistance and low hygroscopicity of the alicyclic structure-containing polymer can be utilized. hard.
  • a layer containing at least one conductive material selected from the group consisting of conductive metal oxides, conductive nanowires, metal meshes, and conductive polymers can be used.
  • Conductive layers containing conductive metal oxides are vapor deposition, sputtering, ion plating, ion beam assisted vapor deposition, arc discharge plasma vapor deposition, thermal CVD, plasma CVD, plating, and combinations thereof.
  • the film formation method can be used. Among these, the vapor deposition method and the sputtering method are preferable, and the sputtering method is particularly preferable. In the sputtering method, since a conductive layer having a uniform thickness can be formed, it is possible to suppress the generation of locally thin portions in the conductive layer.
  • the conductive nanowire is a conductive substance having a needle-like or thread-like shape and a diameter of nanometer.
  • the conductive nanowire may be linear or curved.
  • Such a conductive nanowire can form a good electrical conduction path even with a small amount of conductive nanowires by forming gaps between the conductive nanowires and forming a mesh.
  • a small conductive layer can be realized.
  • the conductive wire has a mesh shape, an opening is formed in the mesh space, so that a conductive layer having high light transmittance can be obtained.
  • a conductive layer containing conductive nanowires it is usually possible to obtain a substrate having excellent bending resistance.
  • the ratio between the thickness d and the length L of the conductive nanowire is preferably 10 to 100,000, more preferably 50 to 100,000, and particularly preferably 100 to 100,000. 10,000.
  • the conductive nanowires having a large aspect ratio are used in this way, the conductive nanowires can cross well and high conductivity can be expressed by a small amount of conductive nanowires. As a result, a substrate having excellent transparency can be obtained.
  • the thickness of the conductive nanowire means the diameter when the cross section of the conductive nanowire is circular, the short diameter when the cross section of the conductive nanowire is circular, and the polygonal shape Means the longest diagonal.
  • the thickness and length of the conductive nanowire can be measured by a scanning electron microscope or a transmission electron microscope.
  • the length of the conductive nanowire is preferably 2.5 ⁇ m to 1000 ⁇ m, more preferably 10 ⁇ m to 500 ⁇ m, and particularly preferably 20 ⁇ m to 100 ⁇ m. Thereby, the electroconductivity of a conductive layer can be improved.
  • the conductive layer containing a conductive polymer can be formed, for example, by applying a conductive composition containing a conductive polymer and drying it.
  • JP, 2011-175601, A can be referred to for a conductive layer containing a conductive polymer.
  • the conductive layer may be formed in the entire in-plane direction of the base material, but may be patterned in a predetermined pattern.
  • the shape of the pattern of the conductive layer is preferably a pattern that operates well as a touch panel (for example, a capacitive touch panel). For example, JP 2011-511357 A, JP 2010-164938 A, JP 2008-310550 A And the patterns described in JP-A No. 2003-511799 and JP-A 2010-541109.
  • the light transmittance of the conductive layer in the wavelength range of 400 nm to 700 nm is preferably 85% or more, more preferably 90% or more, and further preferably 95% or more.
  • the thickness of the conductive layer is preferably 0.01 ⁇ m to 10 ⁇ m, more preferably 0.05 ⁇ m to 3 ⁇ m, and particularly preferably 0.1 ⁇ m to 1 ⁇ m.
  • the base material preferably has a small haze from the viewpoint of enhancing the image clarity of the display device.
  • the specific haze of the substrate is preferably 1% or less, more preferably 0.8% or less, and particularly preferably 0.5% or less.
  • the haze can be measured using a turbidimeter in accordance with JIS K7361-1997.
  • the thickness of the substrate is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, particularly preferably 20 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, particularly preferably 60 ⁇ m or less. It is.
  • the thickness of each layer is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, particularly preferably 20 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and particularly preferably 60 ⁇ m or less. .
  • FIG. 3 is a cross-sectional view schematically showing a base material 300 as an example.
  • the substrate 300 according to this example has a first substrate layer 310 having a small in-plane retardation Re (550) at a wavelength of 550 nm and a large in-plane retardation Re (550) at a wavelength of 550 nm.
  • 2nd base material layer 320 and the conductive layer 330 formed in at least one surface 310U of the 1st base material layer 310 are included.
  • the laser absorbent is included in one or both of the first base material layer 310 and the second base material layer 320.
  • the conductive layer 330 is formed on one surface 310U of the first base material layer 310, but the conductive layer 330 is formed on the other surface 310D of the first base material layer 310. It may be formed on both surfaces 310U and 310D of the first base material layer 310.
  • the first base material layer 310 is preferably an optically isotropic layer. Therefore, the in-plane retardation Re (550) and the thickness direction retardation Rth (550) of the first base material layer 310 at a wavelength of 550 nm of the first base material layer are preferably small. Specifically, the in-plane retardation Re (550) at a wavelength of 550 nm of the first base material layer 310 is preferably 10 nm or less, more preferably 5 nm or less, particularly preferably 4 nm or less, and ideally 0 nm. is there.
  • the retardation Rth (550) in the thickness direction at a wavelength of 550 nm of the first base material layer 310 is preferably 15 nm or less, more preferably 13 nm or less, and particularly preferably 10 nm or less.
  • the lower limit is not particularly limited and is ideally 0 nm, but is usually 5 nm or more.
  • the first base material layer 310 may have a single layer structure or a multilayer structure. Examples of the first substrate layer 310 include an alicyclic structure-containing polymer film (for example, ZEONOR film (manufactured by ZEON Corporation)), a triacetyl cellulose (TAC) film, and the like.
  • the in-plane retardation Re (550) of the second base material layer 320 at a wavelength of 550 nm is preferably 90 nm or more, more preferably 100 nm or more, particularly preferably 110 nm or more, preferably 150 nm or less, more preferably 145 nm. Hereinafter, it is particularly preferably 140 nm or less.
  • the second base material layer include an obliquely stretched film (Zeonor film ZD series, manufactured by Nippon Zeon Co., Ltd.).
  • the first base material layer 310 and the second base material layer 320 include a first outer layer, a second outer layer, the first outer layer and the first base layer.
  • It is a resin layer having a multilayer structure including an intermediate layer provided between two outer layers (see FIG. 2).
  • the component contained in the intermediate layer hardly causes bleed out. Therefore, when the intermediate layer includes a component that easily causes bleed-out, the base material 300 can be manufactured while suppressing contamination of the manufacturing equipment due to the bleed-out. Therefore, the laser absorber and the ultraviolet absorber as an optional component are preferably included in the intermediate layer.
  • the thickness of one or both of the first base material layer 310 and the second base material layer 320 is preferably 10 ⁇ m to 60 ⁇ m, more preferably 15 ⁇ m to 55 ⁇ m, and particularly preferably 20 ⁇ m to 50 ⁇ m.
  • the self-supporting property of the polarizer protective film itself can be maintained, and the rigidity of the polarizer protective film can be maintained. Can be maintained.
  • FIG. 4 is a cross-sectional view schematically showing a base material 400 as an example.
  • the base material 400 according to this example includes a first base material layer 410 that can function as a ⁇ / 4 plate, a second base material layer 420 that can function as a ⁇ / 2 plate, and a first base material. And a conductive layer 430 formed on at least one surface 410U of the layer 410.
  • the laser absorbent is included in one or both of the first base material layer 410 and the second base material layer 420.
  • the conductive layer 430 is formed on one surface 410U of the first base material layer 410, but the conductive layer 430 is formed on the other surface 410D of the first base material layer 410. It may be formed on both surfaces 410U and 410D of the first base material layer 410.
  • the first base material layer 410 is a layer that can function as a ⁇ / 4 plate. Therefore, the first base material layer 410 has in-plane retardation within a predetermined range at a wavelength of 550 nm. Specifically, the in-plane retardation of the first base material layer 410 at a wavelength of 550 nm is usually 110 nm or more, preferably 120 nm or more, more preferably 125 nm or more, and usually 165 nm or less, preferably 155 nm or less, more preferably 150 nm or less.
  • the second base material layer 420 is a layer that can function as a ⁇ / 2 plate.
  • the ⁇ / 2 plate refers to a layer having in-plane retardation within a predetermined range at a wavelength of 550 nm.
  • the in-plane retardation of the ⁇ / 2 plate at a wavelength of 550 nm is usually 240 nm or more, preferably 250 nm or more, usually 300 nm or less, preferably 280 nm or less, and particularly preferably 265 nm or less. Therefore, the second base material layer 420 that can function as a ⁇ / 2 plate refers to a layer having in-plane retardation in the above range at a wavelength of 550 nm.
  • the base material 400 can function as a broadband ⁇ / 4 plate.
  • the broadband ⁇ / 4 plate refers to a ⁇ / 4 plate that exhibits reverse wavelength dispersion characteristics. Since the broadband ⁇ / 4 plate can exhibit the function as the ⁇ / 4 plate in a wide wavelength range, the display device including the base material 400 that can function as the broadband ⁇ / 4 plate particularly intends for an image observed from the front direction. The coloring which is not performed can be suppressed. Further, by combining a polarizer protective film including a base material 400 that can function as a broadband ⁇ / 4 plate with a polarizer, a circularly polarizing plate that can function in a wide wavelength range can be realized.
  • the crossing angle formed by the slow axis of the first base material layer 410 and the slow axis of the second base material layer 420 is appropriate. It is preferable to adjust to the range.
  • the slow axis of the first base material layer 410 that can function as a ⁇ / 4 plate and the slow axis of the second base material layer 420 that can function as a ⁇ / 2 plate are represented by the above formula (X).
  • the crossing angle formed by the slow axis of the first base material layer 410 that can function as a ⁇ / 4 plate and the slow axis of the second base material layer 420 that can function as a ⁇ / 2 plate is preferably Is at least 55 °, more preferably at least 57 °, particularly preferably at least 59 °, preferably at most 65 °, more preferably at most 63 °, particularly preferably at most 61 °.
  • the second base material layer 420 is preferably a first optical anisotropic layer formed of a cured product of a liquid crystal composition containing a liquid crystal compound.
  • a first optical anisotropic layer formed of a cured product of a liquid crystal composition containing a liquid crystal compound.
  • the first optical anisotropic layer As the base material 400, the second base material layer 420, the thin base material layer 400 having particularly excellent heat resistance can be obtained.
  • the resin layer containing a laser absorber is normally used.
  • first base material layer 410 and the second base material layer 420 are a first outer layer, a second outer layer, and the first base material layer.
  • a resin layer having a multilayer structure including an outer layer and an intermediate layer provided between the second outer layer is preferable (see FIG. 2).
  • the laser absorber and the ultraviolet absorber as an optional component are contained in the intermediate layer.
  • the thickness of one or both of the first base material layer 410 and the second base material layer 420 is preferably 10 ⁇ m to 60 ⁇ m, similarly to the first structural example of the base material.
  • the polarizer protective film may further include an arbitrary layer in combination with the base material.
  • the arbitrary layer include an adhesive layer, an adhesive layer, a hard coat layer, an index matching layer, an easy adhesion layer, an antiglare layer, and an antireflection layer.
  • the polarizer protective film preferably has a high light transmittance at a visible wavelength from the viewpoint of improving the display quality of the display device.
  • the light transmittance of the polarizer protective film in the wavelength range of 400 nm to 700 nm is preferably 85% to 100%, more preferably 87% to 100%, and particularly preferably 90% to 100%.
  • the light transmittance at a wavelength of 380 nm is preferably 1% or less, more preferably 0.5% or less, and particularly preferably 0.05. % Or less.
  • the light transmittance can be controlled by an ultraviolet absorber.
  • the polarizer protective film preferably has a small haze from the viewpoint of enhancing the image clarity of the display device.
  • the haze of the polarizer protective film is preferably 1% or less, more preferably 0.8% or less, and particularly preferably 0.5% or less.
  • the thickness of the polarizer protective film is not particularly limited, but is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, particularly preferably 20 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and particularly preferably 60 ⁇ m or less. It is.
  • a polarizer is an optical member having a polarization transmission axis and a polarization absorption axis. This polarizer can absorb linearly polarized light having a vibration direction parallel to the polarization absorption axis and pass linearly polarized light having a vibration direction parallel to the polarization transmission axis.
  • the vibration direction of linearly polarized light means the vibration direction of the electric field of linearly polarized light.
  • a polarizer for example, a film of an appropriate vinyl alcohol polymer such as polyvinyl alcohol or partially formalized polyvinyl alcohol, a dyeing treatment with a dichroic substance such as iodine and a dichroic dye, a stretching treatment, a crosslinking treatment, etc.
  • This linear polarizer is preferably excellent in the degree of polarization.
  • the thickness of the linear polarizer is generally 5 ⁇ m to 80 ⁇ m, but is not limited thereto.
  • the slow axis of the base material of the polarizer protective film and the transmission axis of the polarizer are: It is preferable that they intersect.
  • the crossing angle between the slow axis of the substrate and the transmission axis of the polarizer is preferably within a predetermined range.
  • the specific range of the crossing angle is preferably 45 ° ⁇ 5 °, more preferably 45 ° ⁇ 3 °, and particularly preferably 45 ° ⁇ 1 °.
  • the linearly polarized light that has passed through the polarizer and entered the polarizer protective film can be converted into circularly polarized light by a base material that can function as a ⁇ / 4 plate.
  • a base material that can function as a ⁇ / 4 plate.
  • the retardation film is a film having an in-plane retardation Re (550) of 90 nm to 150 nm at a wavelength of 550 nm. More specifically, the in-plane retardation Re (550) at a wavelength of 550 nm of the retardation film is preferably 90 nm or more, more preferably 95 nm or more, particularly preferably 100 nm or more, preferably 150 nm or less, more preferably 145 nm. Hereinafter, it is particularly preferably 140 nm or less.
  • a retardation film having in-plane retardation Re (550) in such a range can function as a ⁇ / 4 plate. Therefore, a circularly polarizing plate can be obtained by a combination of a retardation film and a polarizer.
  • the crossing angle between the slow axis of the retardation film and the transmission axis of the polarizer is preferably within a predetermined range.
  • the specific range of the crossing angle is preferably 45 ° ⁇ 5 °, more preferably 45 ° ⁇ 3 °, and particularly preferably 45 ° ⁇ 1 °.
  • the retardation film for example, a film formed of a resin can be used.
  • a resin forming the retardation film a polymer and a resin containing an optional component other than the polymer as necessary can be used. Therefore, as a retardation film, a film containing a polymer and optional components as required can be used.
  • a single layer structure film or a multilayer structure film may be used.
  • the polymer for example, any polymer selected from the range described as the polymer that can be contained in the substrate can be used, and among them, the alicyclic structure-containing polymer is preferable.
  • a retardation film containing an alicyclic structure-containing polymer By using a retardation film containing an alicyclic structure-containing polymer, a display device having excellent durability can be obtained by utilizing the excellent properties of the alicyclic structure-containing polymer.
  • the amount of the polymer in the retardation film is preferably 90.0 wt% to 100 wt%, more preferably 95.0 wt% to 100 wt%. By setting the amount of the polymer within the above range, the heat-and-moisture resistance and mechanical strength of the retardation film can be effectively increased.
  • the same component as mentioned as an arbitrary component which can be contained in a base material for example is mentioned.
  • the retardation film preferably includes a stretched film.
  • This stretched film is a film obtained by subjecting a resin film to a stretching treatment, and usually the stretched film itself can be used as a retardation film. By using a stretched film, a retardation film can be easily obtained.
  • an optically anisotropic layer formed of a cured product of a liquid crystal composition containing a liquid crystal compound may be used as the retardation film.
  • the optical anisotropic layer as the retardation film may be referred to as a “second optical anisotropic layer”.
  • the second optical anisotropic layer a layer included in the range described as the first optical anisotropic layer can be arbitrarily used.
  • durability can be increased, and even if it is thin, it is easy to obtain a large retardation. Therefore, by using the second optical anisotropic layer as a retardation film, Thinning can be achieved.
  • the in-plane retardation Re (450) at a wavelength of 450 nm of the retardation film and the in-plane retardation Re (550) at a wavelength of 550 nm of the retardation film are: It is preferable to satisfy Re (450) / Re (550) ⁇ 1.0.
  • a retardation film having a retardation satisfying Re (450) / Re (550) ⁇ 1.0 can function as a broadband ⁇ / 4 plate. Therefore, it is possible to obtain a circularly polarizing plate that can function in a wide wavelength range by combining the retardation film and the polarizer.
  • a retardation film having a retardation satisfying Re (450) / Re (550) ⁇ 1.0 is obtained by using, for example, a liquid crystal composition containing a reverse wavelength dispersion liquid crystal as a material of the second optical anisotropic layer. Obtainable.
  • the thickness of the retardation film can be appropriately adjusted so that the optical properties such as retardation can be in a desired range, preferably 1.0 ⁇ m or more, more preferably 3.0 ⁇ m or more, particularly preferably 5.0 ⁇ m or more, Preferably it is 100 micrometers or less, More preferably, it is 80 micrometers or less, Most preferably, it is 55 micrometers or less.
  • Display element There are various types of display elements depending on the type of display device. Examples of typical display elements include liquid crystal cells and organic electroluminescence elements (hereinafter sometimes referred to as “organic EL elements” as appropriate).
  • the liquid crystal cell is, for example, in-plane switching (IPS) mode, vertical alignment (VA) mode, multi-domain vertical alignment (MVA) mode, continuous spin wheel alignment (CPA) mode, hybrid alignment nematic (HAN) mode, twisted nematic
  • IPS in-plane switching
  • VA vertical alignment
  • MVA multi-domain vertical alignment
  • CPA continuous spin wheel alignment
  • HAN hybrid alignment nematic
  • TN TN
  • STN super twisted nematic
  • OBC optical compensated bend
  • Such a liquid crystal cell is usually provided as a display element in a liquid crystal display device.
  • An organic EL element usually includes a transparent electrode layer, a light emitting layer, and an electrode layer in this order, and the light emitting layer can generate light when a voltage is applied from the transparent electrode layer and the electrode layer.
  • the material constituting the organic light emitting layer include polyparaphenylene vinylene-based, polyfluorene-based, and polyvinyl carbazole-based materials.
  • the light emitting layer may have a stack of layers having different emission colors or a mixed layer in which a different dye is doped in a certain dye layer.
  • the organic EL element may include functional layers such as a barrier layer, a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, an equipotential surface forming layer, and a charge generation layer.
  • a barrier layer such as a barrier layer, a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, an equipotential surface forming layer, and a charge generation layer.
  • Such an organic EL element is usually provided as a display element in an organic EL display device.
  • the display device may include an arbitrary member other than the above-described polarizer protective film, polarizer, retardation film, and display element as necessary.
  • the optional member include a protective film; an optical compensation film for a liquid crystal cell; an adhesive layer and a pressure-sensitive adhesive layer that adhere members included in the display device; and the like.
  • the display device described above usually includes a step of preparing a polarizer protective film; a step of bonding the polarizer protective film and the polarizer directly or via an arbitrary layer; a polarizer and a retardation film directly or A step of bonding through an arbitrary layer; a step of bonding the retardation film and the display element directly or through an arbitrary layer; a step of cutting the polarizer protective film with a laser beam; Can be manufactured.
  • the order of the steps is arbitrary. For example, you may perform the process of bonding a polarizer protective film and a polarizer after the process of cut
  • the step of cutting the polarizer protective film simultaneously with the polarizer and the retardation film May be performed.
  • the display device can usually be manufactured by a manufacturing method including a step of cutting the polarizer protective film with laser light.
  • the conventional polarizer protective film has a film that does not have sufficient absorption of laser light to be cut, but the polarizer protective film having a base material containing a laser absorber can be used alone or
  • cutting with a laser beam is possible in a state of being bonded to another member such as a polarizer and a retardation film. Therefore, generation of cutting residue can be suppressed or the cut surface can be smoothed, so that a display device with excellent display quality can be obtained.
  • polarizer protective film since it is a heat-resistant polarizer protective film, a dimensional change is small even in cutting with a laser beam, and a display device with excellent display quality can be obtained. Moreover, since it is a polarizer protective film with solvent resistance, even when it bonds through an adhesive agent, degradation of a polarizer protective film is small and the display apparatus excellent in display quality can be obtained.
  • a laser beam having a wavelength that can be absorbed by the laser absorber can be used.
  • laser light having a wavelength in the infrared region is preferable because it is widely spread as industrial equipment.
  • laser light having a wavelength in the range of 9 ⁇ m to 12 ⁇ m is preferable because an output suitable for cutting the polarizer protective film can be efficiently obtained and introduced at a relatively low cost.
  • a laser beam having a wavelength of 9 ⁇ m to 11 ⁇ m is more preferable, and a laser beam having a wavelength of 9 ⁇ m to 9.5 ⁇ m is particularly preferable.
  • Laser light having such a wavelength can be stably output when a carbon dioxide laser device is used as the laser device.
  • the laser light a Gaussian mode laser light or a laser light having a top hat energy distribution may be used.
  • the laser light it is preferable to use laser light exhibiting a top hat-shaped energy distribution in at least one orientation.
  • the cut surface of the polarizer protective film can be usually a steep surface that is nearly perpendicular to the main surface of the polarizer protective film.
  • the laser beam which shows energy distribution of a top hat shape is used, normally the rise of the resin of the film in the vicinity of a cut surface can be suppressed.
  • the laser beam may be a continuous laser beam or a pulsed laser beam, but a pulsed laser beam is preferred from the viewpoint of cutting while suppressing the generation of heat.
  • the laser beam When cutting, the laser beam is usually irradiated so that the irradiation point of the laser beam scans the surface of the polarizer protective film along a desired line. Thereby, a polarizer protective film can be cut
  • the laser light irradiation device may be moved, the polarizer protective film may be moved, and the irradiation device and the polarizer protection. Both of the films may be moved.
  • FIG. 5 is a cross-sectional view schematically showing an example of a liquid crystal display device 50 as a display device according to an embodiment of the present invention.
  • the liquid crystal display device 50 includes a light source 510; a light source side polarizer 520; a liquid crystal cell 530 as a display element; a retardation film 540; a viewing side polarizer 550; A polarizer protective film 570 including a base material 560 that can function as a / 4 plate is provided in this order.
  • FIG. 5 is a cross-sectional view schematically showing an example of a liquid crystal display device 50 as a display device according to an embodiment of the present invention.
  • the liquid crystal display device 50 includes a light source 510; a light source side polarizer 520; a liquid crystal cell 530 as a display element; a retardation film 540; a viewing side polarizer 550;
  • a polarizer protective film 570 including a base material 560 that can function as a / 4 plate is provided
  • the base material 560 is the 2nd base material layer 561 as a 1st optically anisotropic layer formed with the hardened
  • the structure is not limited to this example.
  • a polarizer that is emitted from a light source 510 and includes a light source side polarizer 520, a liquid crystal cell 530, a retardation film 540, a viewing side polarizer 550, and a base material 560 that can function as a ⁇ / 4 plate.
  • An image is displayed by the light that has passed through the protective film 570. Since the optical compensation is performed by the retardation film 540, the liquid crystal display device 50 can obtain a sufficiently wide viewing angle.
  • the light for displaying an image is linearly polarized when it passes through the viewing-side polarizer 550, but is converted into circularly polarized light by passing through the base material 560 of the polarizer protective film 570. Therefore, in the liquid crystal display device 50, an image is displayed by circularly polarized light. Therefore, when viewed through polarized sunglasses, the image can be visually recognized.
  • the conductive layer 566 can function as a circuit member such as an electrode for a touch panel and wiring. Therefore, it is possible to realize the liquid crystal display device 50 including a touch panel.
  • the touch panel is provided on the display device so that the user can input information by touching a predetermined location while referring to the image displayed on the display surface of the display device as necessary. Input device.
  • Examples of the touch panel operation detection method include a resistance film method, an electromagnetic induction mode, and a capacitance method, and a capacitive touch panel is particularly preferable.
  • the conductive layer 566 is provided at a position outside (viewing side) the viewing side polarizer 550 of the liquid crystal display device 50, an out-cell type touch panel can be obtained.
  • the polarizer protective film 570 has a base material 560 containing a laser absorber. Therefore, the liquid crystal display device 50 can be manufactured by a manufacturing method including a step of cutting the polarizer protective film 570 with a laser beam. Therefore, when the polarizer protective film 570 is cut, it is possible to suppress the generation of cutting residue and to smooth the cut surface, and thus it is possible to realize excellent display quality.
  • FIG. 6 is a cross-sectional view schematically showing an example of an organic EL display device 60 as a display device according to another embodiment of the present invention.
  • the organic EL display device 60 includes an organic EL element 610 as a display element; a retardation film 620 having a predetermined in-plane retardation and functioning as a ⁇ / 4 plate; a polarizer 630; And a polarizer protective film 650 including a base material 640 that includes a laser absorber and can function as a ⁇ / 4 plate.
  • a polarizer protective film 650 including a base material 640 that includes a laser absorber and can function as a ⁇ / 4 plate.
  • the substrate 640 includes a first outer layer 641, an intermediate layer 642 containing a laser absorber, and a second outer layer 643 in this order; a second substrate layer 644; first outer layer 645, laser absorption
  • first outer layer 646 containing an agent and a first base material layer 648 provided with a second outer layer 647 in this order
  • a conductive layer 649 provided in this order from the polarizer 630 side are shown.
  • the structure of the layer 640 is not limited to this example.
  • the organic EL display device 60 only a part of the linearly polarized light passes through the polarizer 630 and passes through the retardation film 620, and becomes circularly polarized light.
  • the circularly polarized light is reflected by a component (such as a reflective electrode (not shown) in the organic EL element 610) that reflects light in the display device, and passes through the retardation film 620 again, whereby incident linearly polarized light is reflected.
  • the linearly polarized light has a vibration direction orthogonal to the vibration direction and does not pass through the polarizer 630. Thereby, an antireflection function is achieved (for the principle of antireflection in an organic EL display device, see Japanese Patent Application Laid-Open No. 9-127858).
  • the light was emitted from the organic EL element 610 and passed through the polarizer protective film 650 including the retardation film 620, the polarizer 630, and the base material 640 that can function as a ⁇ / 4 plate.
  • An image is displayed by light.
  • the light for displaying an image is linearly polarized when it passes through the polarizer 630, but is converted into circularly polarized light by passing through the base material 640 of the polarizer protective film 650. Therefore, in the organic EL display device 60, an image is displayed by circularly polarized light. Therefore, when viewed through polarized sunglasses, the image can be visually recognized.
  • the conductive layer 649 can function as a circuit member such as an electrode for a touch panel and wiring. Therefore, it is possible to realize the organic EL display device 60 including a touch panel.
  • the polarizer protective film 650 has a base material 640 containing a laser absorber. Therefore, since the organic EL display device 60 can be manufactured by a manufacturing method including a step of cutting the polarizer protective film 650 with laser light, the display quality is excellent as in the liquid crystal display device 50. Can be realized.
  • FIG. 7 is a cross-sectional view schematically showing an example of an organic EL display device 70 as a display device according to still another embodiment of the present invention.
  • the organic EL display device 70 is provided in the same manner as the organic EL display device 60 shown in FIG. 6 except that a polarizer protective film 700 is provided instead of the polarizer protective film 650.
  • the organic EL display device 70 shown in FIG. 7 includes an organic EL element 610 as a display element; a retardation film 620 that has a predetermined in-plane retardation and can function as a ⁇ / 4 plate; and a polarizer 630.
  • a polarizer protective film 700 including a substrate 710 that includes a laser absorber and can function as a ⁇ / 4 plate.
  • the base material 710 includes a first outer layer 721, an intermediate layer 722 containing a laser absorber, and a second outer layer 723 in this order, a second base material layer 720; a first base material layer 730 containing a laser absorber; In addition, a conductive layer 740; is provided in this order from the polarizer 630 side.
  • the second base material layer 720 preferably has a large in-plane retardation Re (550) as described in the first configuration example of the base material. Among them, the second base material layer 720 is a ⁇ / 4 plate.
  • the 1st base material layer 730 has small in-plane retardation Re (550) as demonstrated in the 1st structural example of a base material, Especially, the said 1st base material layer 730 is optical etc. It is preferable to have an in-plane retardation Re (550) of 10 nm or less so that it can function as an isotropic layer.
  • Such an organic EL display device 70 can obtain the same advantages as the organic EL display device 60 shown in FIG.
  • FIG. 8 is a cross-sectional view schematically showing an example of an organic EL display device 80 as a display device according to another embodiment of the present invention.
  • the organic EL display device 80 is provided in the same manner as the organic EL display device 60 shown in FIG. 6 except that the polarizer protective film 800 is provided instead of the polarizer protective film 650.
  • the organic EL display device 80 includes an organic EL element 610 as a display element; a retardation film 620 that has a predetermined in-plane retardation and can function as a ⁇ / 4 plate; a polarizer 630; and a laser.
  • the base material 810 includes the third base material layer 850 containing a laser absorbent between the first base material layer 730 and the second base material layer 720, and the organic EL display shown in FIG. It is provided in the same manner as the base material 710 of the device 70.
  • the substrate 810 includes a first outer layer 721, an intermediate layer 722 including a laser absorber, and a second outer layer 723 in this order, a second substrate layer 720; a third substrate including a laser absorber.
  • a layer 850; a first base material layer 730 containing a laser absorber; and a conductive layer 740; are provided in this order from the polarizer 630 side.
  • the third base material layer 850 is similar to the first base material layer described in the first configuration example of the base material. It is preferable to have an in-plane retardation Re (550) of 10 nm or less.
  • an organic EL display device 80 can obtain the same advantages as the organic EL display device 60 shown in FIG.
  • FIG. 9 is a cross-sectional view schematically showing an example of an organic EL display device 90 as a display device according to another embodiment of the present invention.
  • the organic EL display device 90 is provided in the same manner as the organic EL display device 60 shown in FIG. 6 except that a polarizer protective film 900 is provided instead of the polarizer protective film 650.
  • the organic EL display device 90 includes an organic EL element 610 as a display element; a retardation film 620 that has a predetermined in-plane retardation and can function as a ⁇ / 4 plate; a polarizer 630; and a laser.
  • the base material 910 includes the fourth base material layer 960 containing a laser absorbent on the opposite side of the second base material layer 720 from the first base material layer 730, and the organic EL shown in FIG. It is provided in the same manner as the base material 710 of the display device 70.
  • the substrate 910 includes a first outer layer 961, a middle layer 962 that may contain a laser absorber, and a second outer layer 963 in this order, a fourth substrate layer 960; a first outer layer 721.
  • a second base material layer 720 comprising an intermediate layer 722 containing a laser absorber and a second outer layer 723 in this order; a first base material layer 730 containing a laser absorber; and a conductive layer 740; from the polarizer 630 side. Prepare in this order.
  • Such an organic EL display device 90 can obtain the same advantages as the organic EL display device 60 shown in FIG.
  • the second base material layer 720 is configured so that the function as a broadband ⁇ / 4 plate can be exhibited by the combination of the second base material layer 720 and the fourth base material layer 960. Can function as a ⁇ / 4 plate, and the fourth base material layer 960 can function as a ⁇ / 2 plate.
  • the in-plane retardation of the second base material layer 720 and the fourth base material layer 960 and the crossing angle formed by the slow axis are the first base material layer 410 and the second base material in the second structural example of the base material. It can be the same as the material layer 420 (see FIG. 4).
  • the circularly polarizing plate or polarizing plate produced in the examples or comparative examples was placed on a slider as an evaluation sample.
  • a CO 2 laser beam having a wavelength of 9.4 ⁇ m was applied to the surface of the evaluation sample on the side of the polarizer protective film.
  • the output of the laser beam was adjusted so that a portion other than the glass plate of the evaluation sample could be cut. Specifically, the output of the laser beam is initially set to a low output and gradually increased. When the portion other than the glass plate of the evaluation sample can be cut or the glass plate is broken, the laser beam is irradiated. Stopped. After irradiation with laser light as described above, the evaluation sample was observed and evaluated according to the following criteria.
  • A A portion other than the glass plate of the evaluation sample could be cut without damaging the glass plate, and the cut surface was flat and in a good cut state.
  • B A portion other than the glass plate of the evaluation sample could be cut without damaging the glass plate. However, the cut surface of the polarizer included in the evaluation sample had irregularities or bulges in the resin due to heat melting.
  • C The evaluation sample could not be cut, or the glass plate was broken.
  • A The polarizer forming the polarizing plate was not cracked or cracked at all.
  • B The polarizer forming the polarizing plate had 20 or less cracks.
  • C The polarizer forming the polarizing plate had 20 or more cracks.
  • thermoplastic resin (J3) produced in Production Example 2 was dried at 100 ° C. for 5 hours.
  • the dried thermoplastic resin (J3) was supplied to an extruder and melted in the extruder.
  • the molten thermoplastic resin (J3) was extruded through a polymer pipe and a polymer filter into a sheet form from a T die onto a casting drum.
  • the extruded thermoplastic resin (J3) was cooled to obtain a pre-stretch base material (Q0) having a thickness of 145 ⁇ m and an in-plane retardation Re (550) of 8 nm.
  • the obtained base material (Q0) before stretching was wound up to obtain a roll.
  • the base material (Q0) before stretching was drawn from the roll of the base material (Q0) before stretching.
  • the drawn base material (Q0) before stretching was supplied to a tenter stretching machine and subjected to an oblique stretching process to obtain a stretched film.
  • the oblique stretching process refers to a stretching process in an oblique direction that is neither parallel nor perpendicular to the film width direction.
  • the stretching ratio was 4.0 times, and the stretching temperature was 155 ° C.
  • the obtained stretched film had an angle of 45 ° with respect to the width direction of the stretched film.
  • the stretched film had an in-plane retardation Re (550) of 125 nm and a thickness of 36 ⁇ m.
  • the obtained stretched film was wound up and collected as a ⁇ / 4 plate (Q1).
  • a thermoplastic resin (J0) was introduced and melted as a thermoplastic resin for forming the first outer layer and the second outer layer.
  • the molten thermoplastic resin (J0) was supplied to the single-layer die through a feed block under the conditions of an extruder outlet temperature of 285 ° C. and an extruder gear pump rotation speed of 4 rpm.
  • the first outer layer forming resin layer, the intermediate layer forming resin layer, and the second outer layer forming resin layer are discharged into a film shape including three layers.
  • the thermoplastic resins (J0) and (J3) were coextruded from the single layer die at 280 ° C.
  • the thermoplastic resins (J0) and (J3) discharged from the single-layer die were cast on a cooling roll whose temperature was adjusted to 150 ° C. to obtain a base material (Q2) before stretching having a thickness of 70 ⁇ m.
  • This base material (Q2) before stretching comprises a first outer layer (thickness 17.5 ⁇ m) made of thermoplastic resin (J0) / an intermediate layer (thickness 35 ⁇ m) made of thermoplastic resin (J3) / thermoplastic resin (J0). It was the film which consists of 2 types 3 layers of the 2nd outer side layer (thickness 17.5 micrometers) which consists of. Here, 2 types and 3 layers represent the structure of a 3 layer film composed of 2 types of resins.
  • the obtained base material before stretching (Q2) was wound up to obtain a roll.
  • the base material (Q2) before stretching was pulled out from the roll of the base material (Q2) before stretching.
  • the drawn base material (Q2) before stretching was supplied to a tenter stretching machine and subjected to an oblique stretching process to obtain a stretched film.
  • the stretching ratio was 1.47 times, and the stretching temperature was 140 ° C.
  • the obtained stretched film had an angle of 45 ° with respect to the width direction of the stretched film.
  • the obliquely stretched film had an in-plane retardation Re (550) of 104 nm and a thickness of 48 ⁇ m.
  • the stretched film obtained was wound up and collected as a ⁇ / 4 plate (Q3).
  • thermoplastic resin (J0) used in Production Example 1 was dried at 100 ° C. for 5 hours.
  • the dried thermoplastic resin (J0) was supplied to an extruder and melted in the extruder.
  • the molten thermoplastic resin (J0) was extruded through a polymer pipe and a polymer filter into a sheet form from a T die onto a casting drum.
  • the extruded thermoplastic resin (J0) was cooled to obtain a base material (H0) before stretching having a thickness of 70 ⁇ m.
  • the obtained base material (H0) before stretching was wound up to obtain a roll.
  • the base material (H0) before stretching was pulled out from the roll of the base material (H0) before stretching.
  • the drawn base material (H0) before stretching was supplied to a tenter stretching machine and subjected to an oblique stretching process to obtain an intermediate film.
  • the stretching ratio was 1.65 times, and the stretching temperature was 140 ° C.
  • a longitudinal stretching process was performed to obtain a stretched film.
  • the longitudinal stretching process refers to a stretching process in the longitudinal direction of the film.
  • the stretching ratio was 1.45 times, and the stretching temperature was 135 ° C.
  • the obtained stretched film had an angle of 75 ° with respect to the width direction of the stretched film.
  • the stretched film had an in-plane retardation Re (550) of 245 nm and a thickness of 30 ⁇ m.
  • the obtained stretched film was wound up and collected as a ⁇ / 2 plate (H1).
  • a polymerizable liquid crystal compound represented by the following formula (A1) was prepared.
  • This liquid crystal compound is a reverse wavelength dispersive liquid crystal compound.
  • 21.25 parts of the liquid crystal compound represented by the formula (A1), 0.11 part of a surfactant (“Surflon S420” manufactured by AGC Seimi Chemical Co.), 0.64 part of a polymerization initiator (“IRGACURE379” manufactured by BASF) And 78.00 parts of a solvent (cyclopentanone, manufactured by Nippon Zeon Co., Ltd.) were mixed to prepare a liquid crystal composition A.
  • a ⁇ / 2 plate (H1) as a stretched film obtained in Production Example 5 was prepared as a support.
  • the support was fed from a roll and transported in the longitudinal direction at room temperature of 25 ° C.
  • the liquid crystal composition A was directly applied on the transported support using a die coater to form a layer of the liquid crystal composition A.
  • the layer of the liquid crystal composition A was subjected to an alignment treatment at 110 ° C. for 2.5 minutes. Then, under a nitrogen atmosphere (oxygen concentration of 0.1% or less), ultraviolet rays having an integrated light quantity of 1000 mJ / cm 2 are irradiated to the side opposite to the layer of the liquid crystal composition A of the support, whereby the liquid crystal composition A The layer was irradiated.
  • the layer of the liquid crystal composition A was cured by irradiation with ultraviolet rays, and an optically anisotropic layer having a dry film thickness of 4.4 ⁇ m was formed.
  • the optically anisotropic layer was a layer formed of a cured product of the liquid crystal composition A, and contained homogeneously aligned cured liquid crystal molecules.
  • the angle formed by the slow axis of the optically anisotropic layer with respect to the width direction of the film was 75 °.
  • the optically anisotropic layer had an in-plane retardation Re (550) of 240 nm and functioned as a ⁇ / 2 plate. Therefore, this optically anisotropic layer was a ⁇ / 2 plate (H3).
  • the optically anisotropic layer was a layer formed of a cured product of the liquid crystal composition A, and contained homogeneously aligned cured liquid crystal molecules.
  • the angle formed by the slow axis of the optically anisotropic layer with respect to the width direction of the film was 45 °.
  • the optically anisotropic layer had an in-plane retardation Re (550) of 139 nm and functioned as a ⁇ / 4 plate.
  • Re (450) / Re (550) of the optically anisotropic layer was 0.83. Therefore, this optically anisotropic layer was a ⁇ / 4 plate (Q4).
  • thermoplastic resin for forming the first outer layer and the second outer layer a thermoplastic resin (J2) was used instead of the thermoplastic resin (J0). Except for the above, a substrate before stretching (Q5) having a thickness of 70 ⁇ m was obtained in the same manner as in the method for producing a substrate before stretching (Q2) in Production Example 4.
  • This base material (Q5) before stretching is composed of a first outer layer (thickness 17.5 ⁇ m) made of thermoplastic resin (J2) / an intermediate layer (thickness 35 ⁇ m) made of thermoplastic resin (J3) / thermoplastic resin (J2). It was the film which consists of 2 types and 3 layers of the 2nd outer side layer (thickness 17.5 micrometers) which consists of.
  • the obtained base material before stretching (Q5) was wound up to obtain a roll.
  • the base material (Q5) before stretching was drawn from the roll of the base material (Q5) before stretching.
  • the drawn base material (Q5) before stretching was supplied to a tenter stretching machine and subjected to an oblique stretching process to obtain a stretched film.
  • the stretching ratio was 2.0 times, and the stretching temperature was 180 ° C.
  • the obtained stretched film had an angle of 45 ° with respect to the width direction of the stretched film.
  • the obliquely stretched film had an in-plane retardation Re (550) of 130 nm and a thickness of 35 ⁇ m.
  • the stretched film obtained was wound up and collected as a ⁇ / 4 plate (Q6).
  • Example 1 A ⁇ / 4 plate (Q1) manufactured in Production Example 3 was prepared as a polarizer protective film.
  • Example 3 The base material before stretching (Q0) having optical isotropy obtained in Production Example 3 and the ⁇ / 4 plate (Q1) obtained in Production Example 3 were passed through an adhesive (“CS9621T” manufactured by Nitto Denko Corporation). And laminated to obtain a laminate.
  • This laminate was used as a polarizer protective film instead of the ⁇ / 4 plate (Q1) used in Example 1. Except for the above, a circularly polarizing plate (P3) was produced in the same manner as in Example 1.
  • the crossing angle between the slow axis of the ⁇ / 4 plate (Q1) of the laminate and the transmission axis of the polarizer was 45 °.
  • Example 4 The ⁇ / 4 plate (Q1) obtained in Production Example 3 and the ⁇ / 2 plate (H1) obtained in Production Example 5 were bonded via an adhesive (“CS9621T” manufactured by Nitto Denko Corporation), and the broadband A ⁇ / 4 plate was obtained.
  • This broadband ⁇ / 4 plate was used as a polarizer protective film instead of the ⁇ / 4 plate (Q1) used in Example 1.
  • a circularly polarizing plate (P4) was produced in the same manner as in Example 1 except for the above items.
  • Example 7 Instead of the ⁇ / 4 plate (Q1) used in Example 1, the ⁇ / 4 plate (Q6) manufactured in Production Example 9 was used as the polarizer protective film. Except for the above, a circularly polarizing plate (P7) was produced in the same manner as in Example 1. In the obtained circularly polarizing plate (P7), the crossing angle between the slow axis of the ⁇ / 4 plate (Q6) and the transmission axis of the polarizer was 45 °. As a result of evaluating the workability of this circularly polarizing plate (P7) by laser light, it was “B” standard. Moreover, as a result of evaluating durability by a heat cycle test, it was “A” standard.
  • Example 1 As a polarizer protective film, instead of the ⁇ / 4 plate (Q1) used in Example 1, a film before stretching (Zeonor film ZF14-100, manufactured by Nippon Zeon Co., Ltd., thickness 100 ⁇ m, resin Glass transition temperature 136 ° C.) was used. This pre-stretch film was an optically isotropic film made of a resin containing an alicyclic structure-containing polymer. A polarizing plate (P7) was produced in the same manner as in Example 1 except for the above items. As a result of evaluating the workability of this polarizing plate (P7) by laser light, it was “C” standard. Moreover, as a result of evaluating durability by a heat cycle test, it was “C” standard.
  • Example 2 As a polarizer protective film, instead of the ⁇ / 4 plate (Q1) used in Example 1, an obliquely stretched film containing no laser absorber (“obliquely stretched phase difference film” manufactured by Nippon Zeon Co., Ltd., thickness 47 ⁇ m, in-plane The retardation Re (550) was 125 nm, and the angle formed by the slow axis with respect to the width direction of the film was 45 °.
  • This obliquely stretched film was a commercially available film made of a resin containing an alicyclic structure-containing polymer.
  • a circularly polarizing plate (P8) was produced in the same manner as in Example 1 except for the above items. As a result of evaluating the workability of this circularly polarizing plate (P8) by laser light, it was “C” standard. Moreover, as a result of evaluating durability by a heat cycle test, it was “C” standard.
  • Example 8 The ⁇ produced in Production Example 4 via an adhesive (“CS9621T” manufactured by Nitto Denko Corporation) on the surface opposite to the ⁇ / 4 plate (Q1) of the circularly polarizing plate (P1) produced in Example 1 / 4 plate (Q3) was bonded as a retardation film.
  • the visual recognition side member (T1) provided with a polarizer protective film, an adhesive, a polarizer, an adhesive, a glass plate, an adhesive, and a retardation film in this order was manufactured.
  • the crossing angle between the transmission axis of the polarizer and the slow axis of the retardation film was 45 °.
  • Example 9 The ⁇ produced in Production Example 8 via an adhesive (“CS9621T” manufactured by Nitto Denko Corporation) on the surface opposite to the ⁇ / 4 plate (Q1) of the circularly polarizing plate (P1) produced in Example 1 / 4 plate (Q4) was bonded as a retardation film.
  • the visual recognition side member (T2) provided with a polarizer protective film, an adhesive, a polarizer, an adhesive, a glass plate, an adhesive, and a retardation film in this order was manufactured.
  • the crossing angle between the transmission axis of the polarizer and the slow axis of the retardation film was 45 °.
  • a commercially available OLED smartphone (“G Flex LGL23" manufactured by LG Electronics) having a viewing-side polarizing plate and an organic EL display element in this order was prepared.
  • the viewing side polarizing plate of this smartphone was peeled off, and a viewing side member (T2) was attached instead.
  • the viewing side member (T2) was attached so that the polarizer protective film was directed to the viewing side.
  • an organic EL display device including a circularly polarizing plate was obtained.
  • the luminance of the organic EL display device during black display and white display was 6.2 cd / m 2 and 305 cd / m 2 , respectively.
  • the display screen was viewed from the front direction in a state where the organic EL display device was displayed in black under the daylight on a sunny day. As a result, there was no reflection of external light on the display screen, and the display screen was black. Furthermore, when the display screen was visually observed from an oblique direction (polar angle 45 °, omnidirectional), changes in reflectance and color due to the azimuth were not observed.

Abstract

Provided is a display device comprising, in this order, a polarizer protection film, a polarizer, a retardation film, and a display element, wherein the polarizer protection film includes a substrate containing a laser absorbing agent and being capable of serving as a λ/4 plate, and the in-plane retardation Re (550) of the retardation film at a wavelength of 550 nm is 90-150 nm.

Description

表示装置Display device
 本発明は、表示装置に関する。 The present invention relates to a display device.
 モバイル機器から大型テレビまで、様々な電子機器に表示装置が設けられる。この表示装置としては、従来、液晶表示装置を用いることが一般的であった。しかし、近年では、ノートパソコン、携帯電話等のモバイル機器を中心に、表示装置として有機エレクトロルミネッセンス表示装置(以下、適宜「有機EL表示装置」ということがある。)を用いた電子機器が増加傾向にある。 Display devices are installed in various electronic devices ranging from mobile devices to large-sized TVs. Conventionally, a liquid crystal display device has been generally used as the display device. However, in recent years, electronic devices using organic electroluminescence display devices (hereinafter sometimes referred to as “organic EL display devices” as a display device) as a display device have been increasing mainly in mobile devices such as notebook computers and mobile phones. It is in.
 モバイル機器のデザイン性及び携帯性を改善する観点から、モバイル機器のモジュール全体の薄型化及び軽量化が求められている。また、テレビにおいては大型化が求められている。さらに、表示装置においては、一般に、表示画面の高繊細化が求められる。そのため、これらの表示装置に用いられる光学フィルム及び偏光板も、薄膜化、広幅化及び高品質化が求められている。また、表示装置の表示窓には、タッチパネルが使用されることが多い。いくつかの方式のタッチパネルの中で、指先で画面を叩く、弾く、摘むという操作で画像を拡大又は縮小させるマルチタッチ機能や、視認性、耐久性に優れていることから、静電容量方式のタッチパネルの人気が高い。このような要求に応えるため、特許文献1~14に示すように、様々な検討が行われている。 From the viewpoint of improving the design and portability of mobile devices, it is required to make the entire mobile device modules thinner and lighter. In addition, televisions are required to be large. Further, in a display device, it is generally required to make the display screen highly delicate. Therefore, an optical film and a polarizing plate used in these display devices are also required to be thinned, widened, and improved in quality. A touch panel is often used for the display window of the display device. Among several types of touch panels, the multi-touch function that enlarges or reduces the image by hitting, flipping, and picking the screen with your fingertips, as well as excellent visibility and durability. The popularity of touch panels is high. In order to meet such demands, various studies have been conducted as shown in Patent Documents 1 to 14.
国際公開第2016/31776号International Publication No. 2016/31776 特開2014-191006号公報JP 2014-191006 A 特開2010-76181号公報JP 2010-76181 A 特許第5821155号公報Japanese Patent No. 582155 国際公開第2016/200956号International Publication No. 2016/200956 国際公開第2014/185000号International Publication No. 2014/185000 特開平10-10523号公報Japanese Patent Laid-Open No. 10-10523 特開平1-204092号公報Japanese Patent Laid-Open No. 1-204092 特開平3-174512号公報JP-A-3-174512 特開2009-122454号公報JP 2009-122454 A 特開2005-181615号公報JP 2005-181615 A 特開2015-031753号公報Japanese Patent Laid-Open No. 2015-031753 特開平05-100114号公報Japanese Patent Laid-Open No. 05-100114 特開平10-68816号公報Japanese Patent Laid-Open No. 10-68816
 一般に、表示装置の製造プロセスにおいては、偏光板を表示素子のガラス基板に粘着剤又は接着剤を介して貼合する。偏光板は、通常、ポリビニルアルコール系樹脂フィルムに二色性色素が吸着配向された偏光子の両面に、偏光子保護フィルムを積層した構成で製造されている。偏光子保護フィルムとしては、環状オレフィンフィルム及びトリアセチルセルロースフィルムが代表的である。また、偏光子保護フィルムは、通常、水又は有機溶媒を含む液状の粘着剤又は接着剤を介して、偏光子の両面に積層される。 Generally, in a manufacturing process of a display device, a polarizing plate is bonded to a glass substrate of a display element via an adhesive or an adhesive. A polarizing plate is usually manufactured with a configuration in which a polarizer protective film is laminated on both sides of a polarizer in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol-based resin film. Typical examples of the polarizer protective film include a cyclic olefin film and a triacetylcellulose film. Moreover, a polarizer protective film is normally laminated | stacked on both surfaces of a polarizer through the liquid adhesive or adhesive agent containing water or an organic solvent.
 偏光板は、表示素子のガラス基板の周縁に至るように貼合されることが望ましい。しかし、偏光子保護フィルムは、外部環境の湿度及び温度、並びに使用する粘着剤又は接着剤等の影響により、寸法変化をおこすことがある。この寸法変化への対策として、予め、表示素子の周縁よりも大きいサイズの偏光板を貼合したのち、表示素子のガラス基板の端部からはみ出た偏光板を、ガラス基板を傷つけることなく切断することが行われている。 It is desirable that the polarizing plate is bonded so as to reach the periphery of the glass substrate of the display element. However, the polarizer protective film may undergo dimensional changes due to the influence of the humidity and temperature of the external environment and the pressure-sensitive adhesive or adhesive used. As a countermeasure against this dimensional change, after pasting a polarizing plate having a size larger than the periphery of the display element in advance, the polarizing plate protruding from the edge of the glass substrate of the display element is cut without damaging the glass substrate. Things have been done.
 また、表示装置の画面サイズに合わせて、自由自在にガラス基板を傷つけることなく偏光板を所望の形状に切断することが求められる。 Also, it is required to freely cut the polarizing plate into a desired shape without damaging the glass substrate according to the screen size of the display device.
 さらには、近年、特に、表示装置の製造工程において、ロール状の偏光板と表示素子を備えるパネルとを直接貼合する「ロールtoパネル製法」が採用されている。このようなロールtoパネル製法で製造されたロール状偏光板は、所望の寸法に切断される。 Furthermore, in recent years, particularly in the manufacturing process of display devices, a “roll-to-panel manufacturing method” in which a roll-shaped polarizing plate and a panel including a display element are directly bonded has been adopted. The roll-shaped polarizing plate manufactured by such a roll-to-panel manufacturing method is cut into a desired dimension.
 また、画面サイズの大型化に伴って、フィルムの幅を広くしたいという要求がある。この要求に対して、溶融流延法及び溶液流延法などにより製造されたロール状の原反フィルムの幅方向端部をクリップで固定して、横延伸することにより、広幅な延伸フィルムが製造されている。しかし、その延伸フィルムの両端部は、クリップ痕があるため、通常は、その不要な部分を切断することが求められる。 Also, as the screen size increases, there is a demand to increase the width of the film. In response to this requirement, a wide stretched film is produced by fixing the width direction end of the roll-shaped raw film produced by the melt casting method and the solution casting method with a clip and transversely stretching. Has been. However, since both ends of the stretched film have clip marks, it is usually required to cut the unnecessary portions.
 一方、タッチパネルは、一般に、表示窓に配置され誘電体として機能する透光性を有したカバーパネルを備える。そして、このカバーパネルの裏面には、通常、静電容量方式のフィルムセンサーが、粘着層又は接着層を介して接着されている。このフィルムセンサーは、基材と、基材の一方の側(観察者側)の面上に設けられた第1電極部と、基材の他方の側(表示装置の側)の面上に設けられた第2電極部と、を有している。そして、このようなフィルムセンサーでは、基材の一方の側の面および他方の側の面の所望の部分を切断し、導電性を有した引き回し配線を形成することが行われている。 On the other hand, the touch panel is generally provided with a translucent cover panel that is disposed in the display window and functions as a dielectric. And the capacitive film sensor is normally adhere | attached on the back surface of this cover panel through the adhesion layer or the contact bonding layer. This film sensor is provided on the surface of the base material, the first electrode portion provided on the surface on one side (observer side) of the base material, and the other side (display device side) of the base material. A second electrode portion. In such a film sensor, a desired portion of the surface on one side and the surface on the other side of the substrate is cut to form a conductive wiring having conductivity.
 偏光子保護フィルム及び偏光板を所望の形状に切り出す方法としては、例えば、ナイフを用いた機械的切断方法、及び、レーザー光を用いたレーザー切断方法が挙げられる。しかし、機械的な切断加工を行った場合、目には見えない傷や残留応力の不均一化を招くことがある。このような事情から、近年では、レーザー切断方法の採用が求められる。 Examples of the method for cutting out the polarizer protective film and the polarizing plate into a desired shape include a mechanical cutting method using a knife and a laser cutting method using laser light. However, when mechanical cutting is performed, invisible scratches and non-uniform residual stress may be caused. Under such circumstances, in recent years, it is required to adopt a laser cutting method.
 さらに、表示装置の薄膜化、軽量化、フレキシブル化、高品質化及び高精細化の要求に伴い、そこに使用される偏光板についても薄膜化、軽量化、フレキシブル化、高性能化が要求されている。しかし、これらの要求は、ただ単に偏光子、粘着層、接着層及び偏光子保護フィルム等の偏光板の構成要素を薄くしても、達成は難しい。具体的には、偏光板の構成要素を薄くすると、偏光子が延伸方向に裂け易くなったり、粘着剤又は接着剤の成分によって偏光子及び偏光子保護フィルムが劣化したり、偏光板を湾曲させる時及び偏光板をリワークする時の取扱い性が劣ったり、引き裂き強度が低くなって剥離性に乏しくなったりする傾向があった。このような事情から、薄く軽量でありながらも、現状よりも優れた耐久性を有する偏光板が求められている。 Furthermore, along with the demands for thinner, lighter, more flexible, higher quality and higher definition display devices, the polarizing plates used there are also required to be thinner, lighter, more flexible and higher performance. ing. However, these requirements are difficult to achieve simply by thinning the components of the polarizing plate such as the polarizer, the pressure-sensitive adhesive layer, the adhesive layer, and the polarizer protective film. Specifically, when the polarizing plate is made thinner, the polarizer is easily broken in the stretching direction, the polarizer and the polarizer protective film are deteriorated by the adhesive or the adhesive, or the polarizing plate is curved. At the time of reworking the polarizing plate, there was a tendency that the handleability was inferior, or the tear strength was low and the peelability was poor. Under such circumstances, there is a demand for a polarizing plate that is thin and lightweight but has durability superior to the current situation.
 ところが、材料の種類によっては、使用環境(湿度、温度、紫外線など)及び使用形態(貼合に使用される接着剤や折り曲げ使用など)によって、十分な耐久性が得られないことがあった。例えば、使用環境又は使用形態が過酷であったり、使用環境又は使用形態が変動したりすると、その影響によって、偏光板の耐熱性、耐湿性、耐光性、耐溶媒性、耐回折性、耐引裂き性、寸法安定性などの性質が、必ずしも十分ではないことがあった。 However, depending on the type of material, sufficient durability may not be obtained depending on the usage environment (humidity, temperature, ultraviolet rays, etc.) and usage form (adhesive used for bonding, bending use, etc.). For example, when the usage environment or usage pattern is severe, or the usage environment or usage pattern changes, the influence of the heat resistance, moisture resistance, light resistance, solvent resistance, diffraction resistance, tear resistance, etc. Properties such as property and dimensional stability may not always be sufficient.
 また、偏光子保護フィルムをレーザー光で切断することが困難である場合がある。仮に強引にレーザー光で切断すると、偏光板に切断カスが混入することがあった。また、偏光子保護フィルムの切断面の盛り上がりが発生し、こうして製造された偏光板において偏光子保護フィルム層が浮き上がり、耐湿性が低下することがあった。そのため、偏光子保護フィルムの加工性には、課題があった。
 本発明は、前記の課題に鑑みて創案されたものであって、レーザー光によって切断可能な偏光子保護フィルムを備え、且つ、使用環境及び使用形態に対する耐久性に優れた偏光板を備える表示装置を提供することを目的とする。
Moreover, it may be difficult to cut | disconnect a polarizer protective film with a laser beam. If it is forcibly cut with a laser beam, cutting residue may be mixed into the polarizing plate. Moreover, the rising of the cut surface of the polarizer protective film occurred, and the polarizer protective film layer floated in the polarizing plate thus produced, resulting in a decrease in moisture resistance. Therefore, there was a problem with the workability of the polarizer protective film.
The present invention has been invented in view of the above-described problems, and includes a polarizer protective film that can be cut by a laser beam, and a display device that includes a polarizing plate that is excellent in durability against use environment and use form. The purpose is to provide.
 本発明者は、前記の課題を解決するべく鋭意検討した結果、偏光子保護フィルムにレーザー吸収剤を含む基材を設けることにより、偏光子保護フィルムのレーザー光による切断が可能となることを見い出し、本発明を完成させた。
 すなわち、本発明は、下記のものを含む。
As a result of intensive studies to solve the above problems, the present inventor has found that the polarizer protective film can be cut with a laser beam by providing the polarizer protective film with a substrate containing a laser absorbent. The present invention has been completed.
That is, the present invention includes the following.
 〔1〕 偏光子保護フィルム、偏光子、位相差フィルム及び表示素子をこの順に備える表示装置であって、
 前記偏光子保護フィルムが、レーザー吸収剤を含み且つλ/4板として機能できる基材を含み、
 前記位相差フィルムの波長550nmにおける面内レターデーションRe(550)が、90nm~150nmである、表示装置。
 〔2〕 前記基材が、波長550nmにおける面内レターデーションRe(550)が10nm以下である第一基材層と、波長550nmにおける面内レターデーションRe(550)が90nm~150nmである第二基材層と、前記第一基材層の少なくとも一方の面に形成された導電層とを含み、
 前記レーザー吸収剤が、前記第一基材層及び前記第二基材層の一方又は両方に含まれる、〔1〕記載の表示装置。
 〔3〕 前記基材が、λ/4板として機能できる第一基材層と、λ/2板として機能できる第二基材層と、前記第一基材層の少なくとも一方の面に形成された導電層とを含み、且つ、広帯域λ/4板として機能でき、
 前記レーザー吸収剤が、前記第一基材層及び前記第二基材層の一方又は両方に含まれる、〔1〕記載の表示装置。
 〔4〕 前記第二基材層が、液晶性化合物を含む液晶組成物の硬化物で形成されている、〔3〕記載の表示装置。
 〔5〕 前記第一基材層及び前記第二基材層の一方又は両方が、
 第一外側層と、
 第二外側層と、
 前記第一外側層及び前記第二外側層の間に設けられた中間層と、を含む、〔2〕~〔4〕のいずれか一項に記載の表示装置。
 〔6〕 前記中間層が、紫外線吸収剤を含む、〔5〕記載の表示装置。
 〔7〕 前記第一外側層が、ガラス転移温度TgO1を有する第一外側樹脂で形成され、
 前記第二外側層が、ガラス転移温度TgO2を有する第二外側樹脂で形成され、
 前記中間層が、ガラス転移温度Tgを有する中間樹脂で形成され、
 前記第一外側樹脂のガラス転移温度TgO1が、前記中間樹脂のガラス転移温度Tgよりも低く、
 前記第二外側樹脂のガラス転移温度TgO2が、前記中間樹脂のガラス転移温度Tgよりも低い、〔5〕又は〔6〕記載の表示装置。
 〔8〕 前記第一外側樹脂のガラス転移温度TgO1と、前記中間樹脂のガラス転移温度Tgとの差Tg-TgO1が、30℃以上であり、
 前記第二外側樹脂のガラス転移温度TgO2と、前記中間樹脂のガラス転移温度Tgとの差Tg-TgO2が、30℃以上である、〔7〕記載の表示装置。
 〔9〕 前記第一基材層及び前記第二基材層の一方又は両方の厚みが、10μm~60μmである、〔2〕~〔8〕のいずれか一項に記載の表示装置。
 〔10〕 前記基材の遅相軸と前記偏光子の透過軸とが交差している、〔1〕~〔9〕のいずれか一項に記載の表示装置。
 〔11〕 前記基材の遅相軸と前記偏光子の透過軸との交差角が、45°±5°である、〔10〕記載の表示装置。
 〔12〕 前記基材が、結晶性を有する重合体を含む、〔1〕~〔11〕のいずれか一項に記載の表示装置。
 〔13〕 前記基材及び前記位相差フィルムが、それぞれ、脂環式構造含有重合体を含む、請求項〔1〕~〔12〕のいずれか一項に記載の表示装置。
 〔14〕 前記基材及び前記位相差フィルムが、それぞれ、延伸フィルムを含む、〔1〕~〔13〕のいずれか一項に記載の表示装置。
 〔15〕 前記位相差フィルムが、液晶性化合物を含む液晶組成物の硬化物で形成されていて、
 前記位相差フィルムの波長450nmにおける面内レターデーションRe(450)と、前記位相差フィルムの波長550nmにおける面内レターデーションRe(550)とが、Re(450)/Re(550)<1.0を満たす、〔1〕~〔12〕のいずれか一項に記載の表示装置。
 〔16〕 前記表示素子が、液晶セルである、〔1〕~〔15〕のいずれか一項に記載の表示装置。
 〔17〕 前記表示素子が、有機エレクトロルミネッセンス素子である、〔1〕~〔15〕のいずれか一項に記載の表示装置。
[1] A display device comprising a polarizer protective film, a polarizer, a retardation film and a display element in this order,
The polarizer protective film contains a laser absorber and a substrate that can function as a λ / 4 plate,
The display device, wherein the retardation film has an in-plane retardation Re (550) at a wavelength of 550 nm of 90 nm to 150 nm.
[2] The base material has a first base material layer having an in-plane retardation Re (550) of 10 nm or less at a wavelength of 550 nm, and a second base material having an in-plane retardation Re (550) at a wavelength of 550 nm of 90 nm to 150 nm. A base material layer, and a conductive layer formed on at least one surface of the first base material layer,
[1] The display device according to [1], wherein the laser absorbent is contained in one or both of the first base material layer and the second base material layer.
[3] The base material is formed on at least one surface of the first base material layer that can function as a λ / 4 plate, the second base material layer that can function as a λ / 2 plate, and the first base material layer. And can function as a broadband λ / 4 plate,
[1] The display device according to [1], wherein the laser absorbent is contained in one or both of the first base material layer and the second base material layer.
[4] The display device according to [3], wherein the second base material layer is formed of a cured product of a liquid crystal composition containing a liquid crystal compound.
[5] One or both of the first base material layer and the second base material layer are
A first outer layer;
A second outer layer;
The display device according to any one of [2] to [4], including an intermediate layer provided between the first outer layer and the second outer layer.
[6] The display device according to [5], wherein the intermediate layer includes an ultraviolet absorber.
[7] The first outer layer is formed by a first outer resin having a glass transition temperature Tg O1,
The second outer layer is formed with a second outer resin having a glass transition temperature Tg O2,
The intermediate layer is formed of an intermediate resin having a glass transition temperature Tg C ;
The glass transition temperature Tg O1 of the first outer resin is lower than the glass transition temperature Tg C of the intermediate resin,
The glass transition temperature Tg O2 of the second outer resin, the lower the glass transition temperature Tg C of the intermediate resin, [5] or [6] The display device according.
[8] The difference Tg C −Tg O1 between the glass transition temperature Tg O1 of the first outer resin and the glass transition temperature Tg C of the intermediate resin is 30 ° C. or more.
[7] The display device according to [7], wherein a difference Tg C -Tg O2 between the glass transition temperature Tg O2 of the second outer resin and the glass transition temperature Tg C of the intermediate resin is 30 ° C or higher.
[9] The display device according to any one of [2] to [8], wherein the thickness of one or both of the first base material layer and the second base material layer is 10 μm to 60 μm.
[10] The display device according to any one of [1] to [9], wherein a slow axis of the substrate intersects a transmission axis of the polarizer.
[11] The display device according to [10], wherein the crossing angle between the slow axis of the substrate and the transmission axis of the polarizer is 45 ° ± 5 °.
[12] The display device according to any one of [1] to [11], wherein the base material includes a crystalline polymer.
[13] The display device according to any one of [1] to [12], wherein the base material and the retardation film each include an alicyclic structure-containing polymer.
[14] The display device according to any one of [1] to [13], wherein the base material and the retardation film each include a stretched film.
[15] The retardation film is formed of a cured product of a liquid crystal composition containing a liquid crystal compound,
The in-plane retardation Re (450) of the retardation film at a wavelength of 450 nm and the in-plane retardation Re (550) of the retardation film at a wavelength of 550 nm are Re (450) / Re (550) <1.0. The display device according to any one of [1] to [12], wherein:
[16] The display device according to any one of [1] to [15], wherein the display element is a liquid crystal cell.
[17] The display device according to any one of [1] to [15], wherein the display element is an organic electroluminescence element.
 本発明によれば、レーザー光によって切断可能な偏光子保護フィルムを備え、且つ、使用環境及び使用形態に対する耐久性に優れた偏光板を備える表示装置を提供できる。 According to the present invention, it is possible to provide a display device that includes a polarizer protective film that can be cut by a laser beam, and a polarizing plate that is excellent in durability for use environment and use form.
図1は、本発明の一実施形態に係る表示装置を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a display device according to an embodiment of the present invention. 図2は、基材に含まれうる樹脂層の一例を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing an example of a resin layer that can be included in the substrate. 図3は、一例としての基材を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing a base material as an example. 図4は、一例としての基材を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing a base material as an example. 図5は、本発明の一実施形態に係る表示装置としての液晶表示装置の一例を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing an example of a liquid crystal display device as a display device according to an embodiment of the present invention. 図6は、本発明の別の一実施形態に係る表示装置としての有機EL表示装置の一例を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing an example of an organic EL display device as a display device according to another embodiment of the present invention. 図7は、本発明の更に別の一実施形態に係る表示装置としての有機EL表示装置の一例を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing an example of an organic EL display device as a display device according to another embodiment of the present invention. 図8は、本発明の更に別の一実施形態に係る表示装置としての有機EL表示装置の一例を模式的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing an example of an organic EL display device as a display device according to another embodiment of the present invention. 図9は、本発明の更に別の一実施形態に係る表示装置としての有機EL表示装置の一例を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing an example of an organic EL display device as a display device according to another embodiment of the present invention.
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be described in detail with reference to embodiments and examples. However, the present invention is not limited to the following embodiments and exemplifications, and can be implemented with any modifications without departing from the scope of the claims of the present invention and the equivalents thereof.
 以下の説明において、「紫外線」とは、別に断らない限り、波長が10nm~400nmの光を示す。 In the following description, “ultraviolet light” indicates light having a wavelength of 10 nm to 400 nm unless otherwise specified.
 以下の説明において、「長尺」の形状とは、幅に対して、5倍以上の長さを有する形状をいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムの形状をいう。長尺の形状の長さの上限は、特に制限は無く、例えば、幅に対して10万倍以下としうる。 In the following description, the “long” shape refers to a shape having a length of 5 times or more, preferably 10 times or more, and specifically a roll. It refers to the shape of a film having such a length that it can be wound up and stored or transported. The upper limit of the length of the long shape is not particularly limited, and can be, for example, 100,000 times or less with respect to the width.
 以下の説明において、フィルム及び層の面内レターデーションReは、別に断らない限り、Re=(nx-ny)×dで表される値である。また、フィルム及び層の厚み方向のレターデーションRthは、別に断らない限り、Rth={(nx+ny)/2-nz}×dで表される値である。ここで、nxは、フィルム及び層の厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表す。nyは、フィルム及び層の前記面内方向であってnxの方向に直交する方向の屈折率を表す。nzは、フィルム及び層の厚み方向の屈折率を表す。dは、フィルム及び層の厚みを表す。測定波長は、別に断らない限り、550nmである。 In the following description, the in-plane retardation Re of the film and the layer is a value represented by Re = (nx−ny) × d unless otherwise specified. Further, the retardation Rth in the thickness direction of the film and layer is a value represented by Rth = {(nx + ny) / 2−nz} × d unless otherwise specified. Here, nx represents a refractive index in a direction (in-plane direction) perpendicular to the thickness direction of the film and the layer and giving the maximum refractive index. ny represents the refractive index in the in-plane direction of the film and the layer and in a direction perpendicular to the nx direction. nz represents the refractive index in the thickness direction of the film and the layer. d represents the thickness of a film and a layer. The measurement wavelength is 550 nm unless otherwise specified.
 以下の説明において、ある面の正面方向とは、別に断らない限り、当該面の法線方向を意味し、具体的には前記面の極角0°且つ方位角0°の方向を指す。 In the following description, unless otherwise specified, the front direction of a surface means the normal direction of the surface, and specifically refers to the direction of the polar angle 0 ° and the azimuth angle 0 ° of the surface.
 以下の説明において、別に断らない限り、「順波長分散特性」とは、波長450nm及び550nmにおける面内レターデーションRe(450)及びRe(550)が、Re(450)>Re(550)の関係を満たすことをいう。 In the following description, unless otherwise specified, the “forward wavelength dispersion characteristic” means that the in-plane retardations Re (450) and Re (550) at wavelengths of 450 nm and 550 nm have a relationship of Re (450)> Re (550). Satisfying.
 以下の説明において、別に断らない限り、「逆波長分散特性」とは、波長450nm及び550nmにおける面内レターデーションRe(450)及びRe(550)が、Re(450)<Re(550)の関係を満たすことをいう。 In the following description, unless otherwise specified, the “reverse wavelength dispersion characteristic” means that the in-plane retardations Re (450) and Re (550) at wavelengths of 450 nm and 550 nm have a relationship of Re (450) <Re (550). Satisfying.
 以下の説明において、フィルム及び層の遅相軸とは、別に断らない限り、当該フィルム及び層の面内における遅相軸を表す。 In the following description, unless otherwise indicated, the slow axis of the film and layer represents the slow axis in the plane of the film and layer.
 以下の説明において、複数のフィルム又は層を備える部材における各フィルム又は層の光学軸(偏光吸収軸、偏光透過軸、遅相軸等)がなす角度は、別に断らない限り、前記のフィルム又は層を厚み方向から見たときの角度を表す。 In the following description, the angle formed by the optical axis (polarization absorption axis, polarization transmission axis, slow axis, etc.) of each film or layer in a member having a plurality of films or layers is the above film or layer unless otherwise specified. Represents the angle when viewed from the thickness direction.
 以下の説明において、別に断らない限り、用語「(メタ)アクリロイル基」は、アクリロイル基、メタクリロイル基及びこれらの組み合わせを包含する。 In the following description, unless otherwise specified, the term “(meth) acryloyl group” includes acryloyl group, methacryloyl group, and combinations thereof.
 以下の説明において、正の固有複屈折値を有する樹脂とは、別に断らない限り、延伸方向の屈折率がそれに直交する方向の屈折率よりも大きくなる樹脂を意味する。また、負の固有複屈折値を有する樹脂とは、別に断らない限り、延伸方向の屈折率がそれに直交する方向の屈折率よりも小さくなる樹脂を意味する。固有複屈折値は、誘電率分布から計算しうる。 In the following description, a resin having a positive intrinsic birefringence value means a resin in which the refractive index in the stretching direction is larger than the refractive index in the direction perpendicular thereto unless otherwise specified. Further, the resin having a negative intrinsic birefringence value means a resin having a refractive index in the stretching direction that is smaller than a refractive index in a direction orthogonal thereto unless otherwise specified. The intrinsic birefringence value can be calculated from the dielectric constant distribution.
 以下の説明において、「偏光板」、「λ/2板」及び「λ/4板」とは、別に断らない限り、剛直な部材だけでなく、例えば樹脂製のフィルムのように可撓性を有する部材も含む。 In the following description, “polarizing plate”, “λ / 2 plate” and “λ / 4 plate” are not limited to rigid members, unless otherwise specified, such as a resin film. The member which has is also included.
[1.概要]
 図1は、本発明の一実施形態に係る表示装置10を模式的に示す断面図である。
 図1に示すように、本発明の一実施形態に係る表示装置10は、偏光子保護フィルム110、偏光子120、位相差フィルム130及び表示素子140を、この順に備える。このうち、偏光子保護フィルム110及び偏光子120からなる部分が、偏光板として機能する。
[1. Overview]
FIG. 1 is a cross-sectional view schematically showing a display device 10 according to an embodiment of the present invention.
As shown in FIG. 1, the display apparatus 10 which concerns on one Embodiment of this invention is equipped with the polarizer protective film 110, the polarizer 120, the phase difference film 130, and the display element 140 in this order. Among these, the part which consists of the polarizer protective film 110 and the polarizer 120 functions as a polarizing plate.
 前記の偏光子保護フィルム110は、レーザー光を吸収できる基材111を含む。基材111は、レーザー光を照射された部分においてレーザー光を吸収し、その部分の基材111の材料を昇華されることができる。また、偏光子保護フィルム110が基材111以外の任意要素(図示せず。)を含む場合、レーザー光が照射されると、昇華した基材111の材料によって任意要素が加熱され、溶融又は昇華を生じることができる。よって、偏光子保護フィルム110は、レーザー光によって容易に切断されることができる。また、偏光子保護フィルム110を、偏光子120及び位相差フィルム130と貼り合わせた状態で切断を行う場合には、通常、基材111がレーザー光を吸収して生じる熱により、偏光子保護フィルム110だけでなく偏光子120及び位相差フィルム130も容易に切断することが可能である。 The polarizer protective film 110 includes a substrate 111 that can absorb laser light. The base material 111 absorbs the laser light in the portion irradiated with the laser light, and the material of the base material 111 in the portion can be sublimated. In addition, when the polarizer protective film 110 includes an optional element (not shown) other than the base material 111, when the laser light is irradiated, the optional element is heated by the material of the sublimated base material 111 to be melted or sublimated. Can result. Therefore, the polarizer protective film 110 can be easily cut by the laser light. When the polarizer protective film 110 is cut in a state where it is bonded to the polarizer 120 and the retardation film 130, the polarizer protective film is usually generated by heat generated by the substrate 111 absorbing laser light. Not only 110 but also the polarizer 120 and the retardation film 130 can be easily cut.
 このように、表示装置10は、レーザー光による偏光子保護フィルム110の切断工程を経て、製造することが可能である。レーザー光による偏光子保護フィルム110の切断によれば、切断カスの発生を抑制したり、切断面を滑らかにしたりできる。これにより、偏光子保護フィルム110を備えた表示装置10において、表示品位を高めることが可能である。 As described above, the display device 10 can be manufactured through the step of cutting the polarizer protective film 110 using laser light. According to the cutting | disconnection of the polarizer protective film 110 by a laser beam, generation | occurrence | production of a cutting waste can be suppressed or a cut surface can be made smooth. Thereby, in the display apparatus 10 provided with the polarizer protective film 110, it is possible to improve display quality.
 偏光子保護フィルム110のレーザー光による切断しやすさを評価するために、その切断面を観察するが、その切断面は、下記の評価方法で評価できる。
 偏光子保護フィルム110及び偏光子120を、両者を分離せず一体の積層体として、表示装置から取り外す。この積層体を、ガラス板(例えば厚さ0.7mm)に、接着剤を介して貼合する。その後、偏光子保護フィルム側からレーザー光を照射する。このようにレーザー光を照射した状態で、偏光子保護フィルムの切断面を顕微鏡観察することで、前記切断面を評価できる。
In order to evaluate the ease of cutting of the polarizer protective film 110 by laser light, the cut surface is observed. The cut surface can be evaluated by the following evaluation method.
The polarizer protective film 110 and the polarizer 120 are removed from the display device as an integrated laminate without separating them. This laminated body is bonded to a glass plate (for example, thickness 0.7 mm) through an adhesive. Then, a laser beam is irradiated from the polarizer protective film side. Thus, the said cut surface can be evaluated by observing the cut surface of a polarizer protective film under a microscope in the state irradiated with the laser beam.
[2.偏光子保護フィルム]
 レーザー光の吸収を可能にするために、偏光子保護フィルムに含まれる基材は、レーザー吸収剤を含む。また、偏光子保護フィルムは、基材に組み合わせて任意の層を含んでいてもよい。
[2. Polarizer protective film]
In order to enable absorption of laser light, the substrate included in the polarizer protective film contains a laser absorber. Moreover, the polarizer protective film may contain arbitrary layers combining with a base material.
[2.1.基材]
 基材としては、レーザー光による切断が可能なフィルムを用いうる。レーザー光による切断が可能なフィルムとしては、例えば、1)レーザー光の平均吸光度が高い重合体を含むフィルム、及び、2)レーザー光の平均吸光度が低い重合体と、レーザー吸収剤とを含むフィルムが挙げられる。しかし、一般的に、レーザー光の平均吸光度が高い重合体は、極性を有し、吸湿性が高い傾向がある。そのため、基材としては、レーザー光の平均吸光度が低い重合体と、レーザー吸収剤とを含むフィルムが好ましい。
[2.1. Base material]
As the substrate, a film that can be cut by a laser beam can be used. Examples of the film that can be cut by laser light include 1) a film containing a polymer having a high average absorbance of laser light, and 2) a film containing a polymer having a low average absorbance of laser light and a laser absorber. Is mentioned. However, in general, a polymer having a high average absorbance of laser light has a polarity and tends to be highly hygroscopic. Therefore, as a base material, the film containing a polymer with a low average light absorbency of a laser beam and a laser absorber is preferable.
 レーザー光の吸光度は、「ATR法」を用いて測定することができる。「ATR法」とは、測定対象に対して任意の波長を有するレーザー光を照射し、測定対象の表面で全反射する光を測定することによって、測定対象の表面における吸収スペクトルを得る方法である。照射されるレーザー光の波長範囲内において、任意の波長を有する光の吸光度を、ATR法を用いて測定し、得られた吸光度の平均値を算出することによって平均吸光度として求めることができる。 The absorbance of laser light can be measured using the “ATR method”. The “ATR method” is a method of obtaining an absorption spectrum on the surface of the measurement target by irradiating the measurement target with laser light having an arbitrary wavelength and measuring light totally reflected on the surface of the measurement target. . Within the wavelength range of the irradiated laser beam, the absorbance of light having an arbitrary wavelength is measured using the ATR method, and the average absorbance can be obtained by calculating the average value of the obtained absorbances.
[2.1.1.基材に含まれるレーザー吸収剤]
 レーザー吸収剤としては、切断に用いるレーザー光を吸収できる化合物を用いることができる。一般に、工業的にはレーザー光として赤外線レーザー光を用いることが多い。ここで、赤外線レーザー光とは、760nm以上1mm未満の赤外線範囲の波長を有するレーザー光をいう。よって、レーザー吸収剤としては、赤外線レーザー光を吸収可能な化合物を用いることが好ましい。特に、赤外線レーザー光としては、切断面の割れ及び欠けが少なく、作業性が良好であるので、9μm~11μmの範囲に波長を有するCOレーザー光が広く用いられている。COレーザー光には、波長が10.6μmのものと、波長が9.4μmのものがあり、偏光子保護フィルム及び偏光板の切断加工においては、波長が9.4μmのものを用いることが推奨される。例えば10.6μmのレーザー波長を用いて切断加工した場合に比べ、9.4μmのレーザー波長を用いて切断加工する場合には、偏光板の切断端面に溶融物が突起したり溶融変形したりすることを抑制できるので、切断端面が平滑になる。そのため、レーザー吸収剤としても、9μm~11μmの範囲に波長を有するレーザー光を吸収可能な化合物を用いることが好ましい。特に9.4μmと10.6μmに吸収極大を有する化合物を用いるのが好ましい。
[2.1.1. Laser absorber contained in substrate]
As the laser absorber, a compound capable of absorbing laser light used for cutting can be used. In general, infrared laser light is often used industrially as laser light. Here, the infrared laser beam refers to a laser beam having a wavelength in the infrared range of 760 nm or more and less than 1 mm. Therefore, it is preferable to use a compound that can absorb infrared laser light as the laser absorber. In particular, as infrared laser light, CO 2 laser light having a wavelength in the range of 9 μm to 11 μm is widely used because it has few cracks and chips on the cut surface and good workability. There are two types of CO 2 laser light, one with a wavelength of 10.6 μm and one with a wavelength of 9.4 μm. In cutting processing of a polarizer protective film and a polarizing plate, one with a wavelength of 9.4 μm should be used. Recommended. For example, in the case of cutting using a laser wavelength of 9.4 μm as compared with the case of cutting using a laser wavelength of 10.6 μm, the melt projects or melts and deforms on the cut end face of the polarizing plate. Since this can be suppressed, the cut end face becomes smooth. Therefore, it is preferable to use a compound capable of absorbing laser light having a wavelength in the range of 9 μm to 11 μm as the laser absorber. In particular, it is preferable to use a compound having absorption maximums at 9.4 μm and 10.6 μm.
 好ましいレーザー吸収剤としては、エステル化合物が挙げられる。エステル化合物は、通常、極性を有する化合物であり、9μm~11μmの範囲に波長を有するレーザー光を効果的に吸収することができる。エステル化合物としては、例えば、リン酸エステル化合物、カルボン酸エステル化合物、フタル酸エステル化合物、アジピン酸エステル化合物などが挙げられる。中でも、COレーザー光を特に効率良く吸収できるようにする観点から、カルボン酸エステル化合物が好ましい。 Preferable laser absorbers include ester compounds. The ester compound is usually a polar compound, and can effectively absorb laser light having a wavelength in the range of 9 μm to 11 μm. Examples of the ester compound include a phosphoric acid ester compound, a carboxylic acid ester compound, a phthalic acid ester compound, and an adipic acid ester compound. Among these, a carboxylic acid ester compound is preferable from the viewpoint of particularly efficiently absorbing CO 2 laser light.
 上述したエステル化合物の中でも、分子中に芳香環を含むものが好ましく、この芳香環にエステル結合が結合しているものが特に好ましい。このようなエステル化合物は、レーザー光をより効率良く吸収できる。したがって、上述したエステル化合物の中でも、芳香族カルボン酸エステルが好ましく、中でもレーザー光の吸収効率に優れることからジエチレングリコールジベンゾエート及びペンタエリスリトールテトラベンゾエート等の安息香酸エステルが特に好ましい。
 このようなエステル化合物としては、例えば、国際公開第2016/31776号に記載のものが挙げられる。
Among the ester compounds described above, those containing an aromatic ring in the molecule are preferable, and those having an ester bond bonded to the aromatic ring are particularly preferable. Such an ester compound can absorb laser light more efficiently. Therefore, among the ester compounds described above, aromatic carboxylic acid esters are preferable, and benzoic acid esters such as diethylene glycol dibenzoate and pentaerythritol tetrabenzoate are particularly preferable because of excellent laser light absorption efficiency.
Examples of such ester compounds include those described in International Publication No. 2016/31776.
 さらに、レーザー吸収剤は、可塑剤として機能できるものが好ましい。一般に、可塑剤は樹脂中において重合体分子の間に容易に入り込める。特に、極性を有するレーザー吸収剤を、極性を有する重合体を含む基材に混合する場合は、海島構造を作ること無く樹脂に良好に分散できる。そのため、樹脂によって基材に含まれる層を形成した場合に、レーザー光の吸収が局所的になることを抑制できるので、基材全体としての切断し易さを向上させることが可能である。一般的に、極性の物質と非極性の物質とを混合する場合、お互い混ざりにくいので、基材全体としてヘイズを生じることがある。 Furthermore, the laser absorber is preferably one that can function as a plasticizer. In general, plasticizers can easily penetrate between polymer molecules in the resin. In particular, when a polar laser absorber is mixed with a base material containing a polar polymer, it can be well dispersed in the resin without forming a sea-island structure. Therefore, when the layer contained in the base material is formed of the resin, it is possible to suppress the local absorption of the laser light, and thus it is possible to improve the ease of cutting as the whole base material. Generally, when a polar substance and a non-polar substance are mixed, they are difficult to mix with each other, and thus haze may occur in the entire substrate.
 エステル化合物等のレーザー吸収剤は、1種類を単独で用いてもよく、2種類以上を任意に組み合わせて用いてもよい。 Laser absorbers such as ester compounds may be used alone or in any combination of two or more.
 レーザー吸収剤の分子量は、好ましくは300以上、より好ましくは400以上、特に好ましくは500以上であり、好ましくは2200以下、より好ましくは1800以下、特に好ましくは1400以下である。レーザー吸収剤の分子量を前記範囲の下限値以上にすることにより、レーザー吸収剤のブリードアウトを抑制することができる。また、上限値以下にすることにより、レーザー吸収剤を可塑剤として機能し易くさせることができ、更に熱がかかってからのレーザー吸収剤の分子の動き出しを早くできるので、偏光子保護フィルムの切断を容易にすることができる。 The molecular weight of the laser absorber is preferably 300 or more, more preferably 400 or more, particularly preferably 500 or more, preferably 2200 or less, more preferably 1800 or less, and particularly preferably 1400 or less. By setting the molecular weight of the laser absorbent to be equal to or higher than the lower limit of the above range, bleeding out of the laser absorbent can be suppressed. In addition, by making the laser absorbent less than the upper limit, the laser absorbent can be made to function easily as a plasticizer, and the movement of the laser absorbent molecules can be accelerated after heat is applied, so that the polarizer protective film can be cut. Can be made easier.
 レーザー吸収剤の融点は、好ましくは20℃以上、より好ましくは60℃以上、特に好ましくは100℃以上であり、好ましくは180℃以下、より好ましくは150℃以下、特に好ましくは120℃以下である。レーザー吸収剤の融点を前記範囲の下限値以上にすることにより、レーザー吸収剤のブリードアウトを抑制することができる。また、上限値以下にすることにより、レーザー吸収剤を可塑剤として機能し易くさせることができ、更に熱がかかってからのレーザー吸収剤の分子の動き出しを早くできるので、偏光子保護フィルムの切断を容易にすることができる。 The melting point of the laser absorber is preferably 20 ° C. or higher, more preferably 60 ° C. or higher, particularly preferably 100 ° C. or higher, preferably 180 ° C. or lower, more preferably 150 ° C. or lower, particularly preferably 120 ° C. or lower. . By setting the melting point of the laser absorbent to be equal to or higher than the lower limit of the above range, bleeding out of the laser absorbent can be suppressed. In addition, by making the laser absorbent less than the upper limit, the laser absorbent can be made to function easily as a plasticizer, and the movement of the laser absorbent molecules can be accelerated after heat is applied, so that the polarizer protective film can be cut. Can be made easier.
 レーザー吸収剤は、基材の厚み方向において、均一に含まれていてもよい。例えば、基材が1層のみを含む単層構造のフィルムである場合、当該基材がレーザー吸収剤を均一に含んでいることが好ましい。また、基材が複数の層を含む複層構造のフィルムである場合、当該基材に含まれる全ての層がレーザー吸収剤を含んでいてもよい。
 また、レーザー吸収剤は、基材の厚み方向において偏在化していてもよく、よって基材の一部のみに含まれていてもよい。例えば、基材が複層構造のフィルムである場合、当該基材に含まれる一部の層のみがレーザー吸収剤を含んでいてもよい。
The laser absorber may be contained uniformly in the thickness direction of the substrate. For example, when the base material is a film having a single layer structure including only one layer, it is preferable that the base material uniformly contains a laser absorber. Moreover, when the base material is a film having a multilayer structure including a plurality of layers, all the layers included in the base material may contain a laser absorber.
Further, the laser absorbent may be unevenly distributed in the thickness direction of the base material, and thus may be contained only in a part of the base material. For example, when the base material is a film having a multilayer structure, only a part of the layers included in the base material may contain a laser absorber.
 基材におけるレーザー吸収剤の含有率は、偏光子保護フィルムのレーザー光による切断が可能な範囲で、任意に設定しうる。よって、基材に含まれる層のうち、レーザー吸収剤を含む層のレーザー吸収剤の含有率は、偏光子保護フィルムのレーザー光による切断が可能な範囲で適切に設定することが好ましい。特に、基材におけるレーザー吸収剤の含有率は、基材が含む重合体が非極性であるか、極性であるかに応じて、設定することが好ましい。 The content of the laser absorbent in the substrate can be arbitrarily set as long as the polarizer protective film can be cut with a laser beam. Therefore, it is preferable to set appropriately the content rate of the laser absorber of the layer containing a laser absorber among the layers contained in a base material in the range which can be cut | disconnected by the laser beam of a polarizer protective film. In particular, the content of the laser absorbent in the substrate is preferably set depending on whether the polymer contained in the substrate is nonpolar or polar.
 具体的には、基材が含む重合体が非極性の場合は、レーザー吸収剤を含む層のレーザー吸収剤の含有率は、好ましくは0.1重量%以上、より好ましくは1重量%以上、特に好ましくは2重量%以上であり、好ましくは10重量%以下、より好ましくは9重量%以下、特に好ましくは8重量%以下である。レーザー吸収剤の含有率を前記範囲の下限値以上にすることにより、基材の本来の光学特性、機械的特性を損なうことなく、基材にレーザー光を効率良く吸収できる性質を付与できる。また、上限値以下にすることにより、基材のヘイズを低くできるので、偏光子保護フィルムの透明性を良好にできる。さらに、レーザー光によって偏光子保護フィルムを切断した時に、切断した偏光子保護フィルムの断面が局所的に高温になって熱溶けによる大きな変形が生じることを抑制できる。 Specifically, when the polymer contained in the substrate is nonpolar, the content of the laser absorber in the layer containing the laser absorber is preferably 0.1 wt% or more, more preferably 1 wt% or more, The amount is particularly preferably 2% by weight or more, preferably 10% by weight or less, more preferably 9% by weight or less, and particularly preferably 8% by weight or less. By setting the content of the laser absorbent to be equal to or higher than the lower limit of the above range, the base material can be imparted with a property capable of efficiently absorbing laser light without impairing the original optical characteristics and mechanical characteristics of the base material. Moreover, since the haze of a base material can be made low by setting it as an upper limit or less, transparency of a polarizer protective film can be made favorable. Furthermore, when the polarizer protective film is cut by laser light, it is possible to prevent the cross section of the cut polarizer protective film from becoming locally high temperature and causing large deformation due to heat melting.
 基材が含む重合体が極性の場合は、レーザー吸収剤を含む層のレーザー吸収剤の含有率は、混合条件にもよるが、基材が含む重合体が非極性の場合よりも多く混合することができる。レーザー吸収剤により基材にレーザー光を効率良く吸収できる性質を付与できる。また、基材の本来の特性(例えば面内レターデーションや寸法安定性など)を損ない難くする観点から、レーザー吸収剤は多く入れ過ぎないことが望ましい。 When the polymer contained in the substrate is polar, the content of the laser absorber in the layer containing the laser absorber is mixed more than when the polymer contained in the substrate is nonpolar, although it depends on the mixing conditions. be able to. The property of efficiently absorbing laser light can be imparted to the substrate by the laser absorbent. Further, from the viewpoint of making it difficult to impair the original characteristics of the base material (for example, in-plane retardation and dimensional stability), it is desirable not to add too much laser absorber.
 フィルムの寸法安定性は、下記の評価方法によって評価できる。
 150mm×150mmに裁断したフィルムを試験片とし、長尺のフィルムのMD方向(流れ方向)とTD方向(幅方向)の寸法を計測する。その後、150℃に保持したギヤーオーブン中のタルクバス上にフィルムを水平に置き、30分加熱後のMD方向とTD方向の変形量を測定する。この変形量により、寸法安定性を評価できる。
The dimensional stability of the film can be evaluated by the following evaluation method.
The film cut into 150 mm × 150 mm is used as a test piece, and the dimensions of the long film in the MD direction (flow direction) and the TD direction (width direction) are measured. Thereafter, the film is placed horizontally on a talc bath in a gear oven maintained at 150 ° C., and the deformation amounts in the MD direction and the TD direction after heating for 30 minutes are measured. The dimensional stability can be evaluated by this deformation amount.
[2.1.2.基材に含まれうる重合体]
 基材は、上述したレーザー吸収剤に組み合わせて、通常、重合体を含む。具体的には、基材は、通常、重合体を含む一又は二以上の樹脂層を備えたフィルムであり、前記の樹脂層のうちの一部又は全てが、レーザー吸収剤を含む。この際、基材は、耐溶媒性、耐回折性及び引裂き強度を高める観点から、結晶性を有する重合体を含むことが好ましい。特に、結晶性を有する重合体のフィルム、及び、非晶性の重合体のフィルムを、同じ波長で同じ出力のレーザー光で切断した場合には、結晶性を有する重合体のフィルムの方がカールを生じ難い。よって、この観点からも、結晶性を有する重合体が好ましい。ここで、結晶性を有する重合体とは、融点Mpを有する重合体をいう。融点Mpを有する重合体とは、すなわち、示差走査熱量計(DSC)で融点Mpを観測することができる重合体をいう。
[2.1.2. Polymer that can be contained in substrate]
The substrate usually contains a polymer in combination with the laser absorber described above. Specifically, the substrate is usually a film provided with one or more resin layers containing a polymer, and part or all of the resin layers contain a laser absorber. Under the present circumstances, it is preferable that a base material contains the polymer which has crystallinity from a viewpoint of improving solvent resistance, diffraction resistance, and tear strength. In particular, when a crystalline polymer film and an amorphous polymer film are cut with a laser beam having the same wavelength and the same output, the crystalline polymer film is curled. It is hard to produce. Therefore, from this viewpoint, a polymer having crystallinity is preferable. Here, the polymer having crystallinity refers to a polymer having a melting point Mp. The polymer having the melting point Mp means a polymer whose melting point Mp can be observed with a differential scanning calorimeter (DSC).
 また、基材は、低吸湿性及び低水蒸気透過性などの観点から、重合体として非極性の脂環式構造含有重合体を含むことが好ましい。したがって、基材は、脂環式構造含有重合体を含む樹脂層を備えた単層構造又は複層構造のフィルムであることが好ましい。 The base material preferably contains a nonpolar alicyclic structure-containing polymer as a polymer from the viewpoint of low hygroscopicity and low water vapor permeability. Therefore, the base material is preferably a film having a single layer structure or a multilayer structure including a resin layer containing an alicyclic structure-containing polymer.
 脂環式構造含有重合体は、繰り返し単位中に脂環式構造を有する重合体である。脂環式構造含有重合体は、機械的強度に優れるので、偏光子保護フィルムの衝撃強度を効果的に高めることができる。また、脂環式構造含有重合体は、吸湿性が低いので、偏光子保護フィルムの水蒸気透過率を効果的に小さくできる。さらに、脂環式構造含有重合体は、通常、透明性、寸法安定性及び軽量性に優れる。 The alicyclic structure-containing polymer is a polymer having an alicyclic structure in the repeating unit. Since the alicyclic structure-containing polymer is excellent in mechanical strength, the impact strength of the polarizer protective film can be effectively increased. Moreover, since the alicyclic structure-containing polymer has low hygroscopicity, the water vapor transmission rate of the polarizer protective film can be effectively reduced. Furthermore, the alicyclic structure-containing polymer is usually excellent in transparency, dimensional stability and lightness.
 脂環式構造含有重合体としては、例えば、環状オレフィンを単量体として用いた重合反応によって得ることができる重合体又はその水素添加物などが挙げられる。また、前記の脂環式構造含有重合体としては、主鎖中に脂環式構造を含有する重合体、及び、側鎖に脂環式構造を含有する重合体のいずれも用いることができる。脂環式構造としては、例えば、シクロアルカン構造、シクロアルケン構造等が挙げられるが、熱安定性等の観点からシクロアルカン構造が好ましい。 Examples of the alicyclic structure-containing polymer include a polymer that can be obtained by a polymerization reaction using a cyclic olefin as a monomer, or a hydrogenated product thereof. Moreover, as said alicyclic structure containing polymer, both the polymer which contains alicyclic structure in a principal chain, and the polymer which contains alicyclic structure in a side chain can be used. Examples of the alicyclic structure include a cycloalkane structure and a cycloalkene structure, and a cycloalkane structure is preferable from the viewpoint of thermal stability.
 1つの脂環式構造に含まれる炭素原子の数は、好ましくは4個以上、より好ましくは5個以上、より好ましくは6個以上であり、好ましくは30個以下、より好ましくは20個以下、特に好ましくは15個以下である。1つの脂環式構造に含まれる炭素原子の数が上記範囲内にあることで、機械的強度、耐熱性、及び成形性が高度にバランスされる。 The number of carbon atoms contained in one alicyclic structure is preferably 4 or more, more preferably 5 or more, more preferably 6 or more, preferably 30 or less, more preferably 20 or less, Particularly preferred is 15 or less. When the number of carbon atoms contained in one alicyclic structure is within the above range, mechanical strength, heat resistance, and moldability are highly balanced.
 脂環式構造含有重合体中の脂環式構造を有する繰り返し単位の割合は、好ましくは30重量%以上、より好ましくは50重量%以上、更に好ましくは70重量%以上、特に好ましくは90重量%以上である。脂環式構造を有する繰り返し単位の割合を前記のように多くすることにより、耐熱性を高めることができる。
 また、脂環式構造含有重合体において、脂環式構造を有する構造単位以外の残部は、格別な限定はなく、使用目的に応じて適宜選択しうる。
The ratio of the repeating unit having an alicyclic structure in the alicyclic structure-containing polymer is preferably 30% by weight or more, more preferably 50% by weight or more, still more preferably 70% by weight or more, and particularly preferably 90% by weight. That's it. Heat resistance can be improved by increasing the ratio of the repeating unit having an alicyclic structure as described above.
In the alicyclic structure-containing polymer, the remainder other than the structural unit having an alicyclic structure is not particularly limited and may be appropriately selected according to the purpose of use.
 脂環式構造含有重合体としては、結晶性を有するもの、及び、結晶性を有さないもののいずれを用いてもよく、両者を組み合わせて用いてもよい。結晶性を有する脂環式構造含有重合体を用いることにより、偏光子保護フィルムの衝撃強度、耐溶媒性、耐回折性、引裂き強度を特に高めることができる。また、結晶性を有さない脂環式構造含有重合体を用いることにより、偏光子保護フィルムの製造コストを下げることができる。 As the alicyclic structure-containing polymer, either a polymer having crystallinity or a polymer having no crystallinity may be used, or both may be used in combination. By using an alicyclic structure-containing polymer having crystallinity, the impact strength, solvent resistance, diffraction resistance, and tear strength of the polarizer protective film can be particularly increased. Moreover, the manufacturing cost of a polarizer protective film can be lowered | hung by using the alicyclic structure containing polymer which does not have crystallinity.
 結晶性を有する脂環式構造含有重合体としては、例えば、下記の重合体(α)~重合体(δ)が挙げられる。これらの中でも、耐熱性に優れる偏光子保護フィルムが得られ易いことから、結晶性を有する脂環式構造含有重合体としては、重合体(β)が好ましい。
 重合体(α):環状オレフィン単量体の開環重合体であって、結晶性を有するもの。
 重合体(β):重合体(α)の水素添加物であって、結晶性を有するもの。
 重合体(γ):環状オレフィン単量体の付加重合体であって、結晶性を有するもの。
 重合体(δ):重合体(γ)の水素添加物等であって、結晶性を有するもの。
Examples of the alicyclic structure-containing polymer having crystallinity include the following polymer (α) to polymer (δ). Among these, the polymer (β) is preferable as the alicyclic structure-containing polymer having crystallinity because a polarizer protective film having excellent heat resistance can be easily obtained.
Polymer (α): A ring-opening polymer of a cyclic olefin monomer having crystallinity.
Polymer (β): A hydrogenated product of polymer (α) having crystallinity.
Polymer (γ): An addition polymer of a cyclic olefin monomer having crystallinity.
Polymer (δ): a hydrogenated product of polymer (γ), etc., having crystallinity.
 具体的には、結晶性を有する脂環式構造含有重合体としては、ジシクロペンタジエンの開環重合体であって結晶性を有するもの、及び、ジシクロペンタジエンの開環重合体の水素添加物であって結晶性を有するものがより好ましく、ジシクロペンタジエンの開環重合体の水素添加物であって結晶性を有するものが特に好ましい。ここで、ジシクロペンタジエンの開環重合体とは、全構造単位に対するジシクロペンタジエン由来の構造単位の割合が、通常50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上、さらに好ましくは100重量%の重合体をいう。 Specifically, the alicyclic structure-containing polymer having crystallinity is a ring-opening polymer of dicyclopentadiene having crystallinity, and a hydrogenated product of a ring-opening polymer of dicyclopentadiene. It is more preferable to have crystallinity, and a hydrogenated product of a ring-opening polymer of dicyclopentadiene that has crystallinity is particularly preferable. Here, the ring-opening polymer of dicyclopentadiene means that the proportion of structural units derived from dicyclopentadiene relative to all structural units is usually 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more, More preferably, it refers to a polymer of 100% by weight.
 結晶性を有する脂環式構造含有重合体は、偏光子保護フィルムを製造するよりも前においては、結晶化していなくてもよい。しかし、偏光子保護フィルムが製造された後においては、基材に含まれる結晶性を有する脂環式構造含有重合体は、通常、結晶化していることにより、高い結晶化度を有することができる。具体的な結晶化度の範囲は所望の性能に応じて適宜選択しうるが、好ましくは10%以上、より好ましくは15%以上である。基材に含まれる脂環式構造含有重合体の結晶化度を前記範囲の下限値以上にすることにより、偏光子保護フィルムに高い耐熱性及び耐溶媒性を付与することができる。結晶化度は、X線回折法によって測定しうる。 The polymer having an alicyclic structure having crystallinity may not be crystallized before the polarizer protective film is produced. However, after the polarizer protective film is manufactured, the alicyclic structure-containing polymer having crystallinity contained in the base material can usually have a high crystallinity by being crystallized. . The specific crystallinity range can be appropriately selected according to the desired performance, but is preferably 10% or more, more preferably 15% or more. By setting the crystallinity of the alicyclic structure-containing polymer contained in the base material to be not less than the lower limit of the above range, high heat resistance and solvent resistance can be imparted to the polarizer protective film. Crystallinity can be measured by X-ray diffraction.
 偏光子保護フィルムの耐熱性は、耐熱温度によって評価できる。偏光子保護フィルムの耐熱温度は、通常160℃以上、好ましくは180℃以上、より好ましくは200℃以上である。耐熱温度は高いほど好ましいため、耐熱温度の上限に制限は無いが、結晶性の重合体の場合は融点Tm以下である。 The heat resistance of the polarizer protective film can be evaluated by the heat resistant temperature. The heat-resistant temperature of the polarizer protective film is usually 160 ° C. or higher, preferably 180 ° C. or higher, more preferably 200 ° C. or higher. The higher the heat-resistant temperature, the better, so there is no upper limit on the heat-resistant temperature, but in the case of a crystalline polymer, the melting point is Tm or less.
 フィルムの耐熱温度は、下記の評価方法によって評価できる。
 試料としてのフィルムに張力を掛けない状態で、そのフィルムをある温度Txの雰囲気下で10分放置する。その後、目視でフィルムの面状を確認する。フィルムの表面の形状に凹凸が確認できなかった場合、そのフィルムの耐熱温度が前記の温度Tx以上であることが分かる。
The heat resistant temperature of the film can be evaluated by the following evaluation method.
In a state where no tension is applied to the film as the sample, the film is allowed to stand for 10 minutes in an atmosphere at a certain temperature Tx. Thereafter, the surface state of the film is confirmed visually. When unevenness is not confirmed in the shape of the surface of the film, it can be seen that the heat resistant temperature of the film is equal to or higher than the temperature Tx.
 フィルムの耐溶媒性は、下記の評価方法によって評価できる。
 試料としてのフィルム(50mm×10mmのサンプル)を切り出し、所定の溶媒を1ml塗布する。塗布から1分後に、フィルムの外観変化の有無を観察して、耐溶媒性を評価できる。
The solvent resistance of the film can be evaluated by the following evaluation method.
A film (50 mm × 10 mm sample) as a sample is cut out and 1 ml of a predetermined solvent is applied. One minute after application, the solvent resistance can be evaluated by observing the appearance change of the film.
 偏光子保護フィルムが耐性を有する溶媒としては、粘着剤又は接着剤に使用される溶媒を用いることができる。この溶媒の具体例としては、ヘキサン、シクロヘキサン、オクタンなどの脂肪族炭化水素;トルエン、キシレンなどの芳香族炭化水素;エタノール、1-プロパノール、イソプロパノール、1-ブタノール、シクロヘキサノールなどのアルコール類;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、酢酸イソブチルなどのエステル類;リモネン等の単環状類などが挙げられる。 As the solvent having resistance to the polarizer protective film, a solvent used for an adhesive or an adhesive can be used. Specific examples of the solvent include aliphatic hydrocarbons such as hexane, cyclohexane and octane; aromatic hydrocarbons such as toluene and xylene; alcohols such as ethanol, 1-propanol, isopropanol, 1-butanol and cyclohexanol; methyl ethyl ketone And ketones such as methyl isobutyl ketone and cyclohexanone; esters such as ethyl acetate, butyl acetate and isobutyl acetate; monocyclics such as limonene;
 一般に、偏光板を製造する場合、偏光子保護フィルムと偏光子とは、溶媒を含む粘着剤又は接着剤で貼合される。この際、仮に、偏光子保護フィルムが溶媒に対する耐性を有していないと、偏光板の品位が劣化し、その結果、表示装置の表示品位が低下することが考えられる。しかし、結晶性を有する脂環式構造含有重合体を用いれば、耐溶媒性に優れる偏光子保護フィルムが得られるので、前記のような品位低下を抑制することができる。
 偏光子保護フィルムと偏光子とを粘着剤又は接着剤を介して貼合して得られた偏光板が品位の劣化を生じているか否かは、2枚の偏光板を偏光顕微鏡上に配置し、一方の偏光板を回転させた時に白黒の明確性及び光抜けの有無で評価できる。
Generally, when manufacturing a polarizing plate, a polarizer protective film and a polarizer are bonded by the adhesive or adhesive containing a solvent. At this time, if the polarizer protective film does not have resistance to the solvent, the quality of the polarizing plate is deteriorated, and as a result, the display quality of the display device may be lowered. However, if the alicyclic structure-containing polymer having crystallinity is used, a polarizer protective film having excellent solvent resistance can be obtained, and the above-described deterioration in quality can be suppressed.
Whether or not the polarizing plate obtained by laminating the polarizer protective film and the polarizer through an adhesive or adhesive has deteriorated the quality, has two polarizing plates placed on a polarizing microscope. When one of the polarizing plates is rotated, it can be evaluated by the clarity of black and white and the presence or absence of light leakage.
 結晶性を有する脂環式構造含有重合体の融点Mpは、好ましくは200℃以上、より好ましくは230℃以上であり、好ましくは290℃以下である。このような融点Mpを有する結晶性を有する脂環式構造含有重合体を用いることによって、成形性と耐熱性とのバランスに更に優れた偏光子保護フィルムを得ることができる。 The melting point Mp of the alicyclic structure-containing polymer having crystallinity is preferably 200 ° C. or higher, more preferably 230 ° C. or higher, and preferably 290 ° C. or lower. By using an alicyclic structure-containing polymer having crystallinity having such a melting point Mp, a polarizer protective film having a further excellent balance between moldability and heat resistance can be obtained.
 結晶性を有する脂環式構造含有重合体は、耐折性に優れる。よって、偏光子保護フィルムは、好ましくは、耐折性に優れる。偏光子保護フィルムの耐折性は、具体的には、耐折度で表しうる。結晶性を有する脂環式構造含有重合体を含む基材を備えた偏光子保護フィルムの耐折度は、通常2000回以上、好ましくは2200回以上、より好ましくは2400回以上である。耐折度は高いほど好ましいため、耐折度の上限に制限は無いが、耐折度は通常は100000回以下である。 An alicyclic structure-containing polymer having crystallinity is excellent in folding resistance. Therefore, the polarizer protective film is preferably excellent in folding resistance. Specifically, the folding resistance of the polarizer protective film can be expressed by folding resistance. The folding resistance of the polarizer protective film provided with the substrate containing the alicyclic structure-containing polymer having crystallinity is usually 2000 times or more, preferably 2200 times or more, more preferably 2400 times or more. Since the higher folding resistance is more preferable, the upper limit of folding resistance is not limited, but the folding resistance is normally 100000 times or less.
 耐折度は、JISP8115「紙及び板紙-耐折強さ試験方法-MIT試験機法」に準拠したMIT耐折試験により、下記の方法で測定しうる。
 試料としてのフィルムから、幅15mm±0.1mm、長さ約110mmの試験片を切り出す。この際、フィルムがより強く延伸された方向が試験片の約110mmの辺と平行になるように試験片を作製する。そして、MIT耐折度試験機(安田精機製作所製「No.307」)を用いて、荷重9.8N、屈曲部の曲率0.38±0.02mm、折り曲げ角度135°±2°、折り曲げ速度175回/分の条件で、試験片の幅方向に折れ目が現れるように前記の試験片を折り曲げる。この折り曲げを継続し、試験片が破断するまでの往復折り曲げ回数を測定する。
The folding resistance can be measured by the following method by an MIT folding resistance test according to JISP8115 “Paper and paperboard—Folding strength test method—MIT testing machine method”.
A test piece having a width of 15 mm ± 0.1 mm and a length of about 110 mm is cut out from the film as a sample. At this time, the test piece is prepared so that the direction in which the film is stretched more strongly is parallel to the side of about 110 mm of the test piece. Then, using a MIT folding resistance tester (“No. 307” manufactured by Yasuda Seiki Seisakusho), the load is 9.8 N, the curvature of the bent portion is 0.38 ± 0.02 mm, the bending angle is 135 ° ± 2 °, and the bending speed is Under the condition of 175 times / minute, the test piece is bent so that a fold appears in the width direction of the test piece. This bending is continued, and the number of reciprocal bendings until the test piece breaks is measured.
 前記のような結晶性を有する脂環式構造含有重合体は、例えば、国際公開第2016/067893号に記載の方法により、製造しうる。 The alicyclic structure-containing polymer having crystallinity as described above can be produced, for example, by the method described in International Publication No. 2016/066873.
 他方、結晶性を有さない脂環式構造含有重合体は、例えば、(1)ノルボルネン重合体、(2)単環の環状オレフィン重合体、(3)環状共役ジエン重合体、(4)ビニル脂環式炭化水素重合体、及びこれらの水素添加物などが挙げられる。これらの中でも、透明性及び成形性の観点から、ノルボルネン重合体及びこの水素添加物がより好ましい。 On the other hand, the alicyclic structure-containing polymer having no crystallinity includes, for example, (1) a norbornene polymer, (2) a monocyclic olefin polymer, (3) a cyclic conjugated diene polymer, and (4) vinyl. Examples thereof include alicyclic hydrocarbon polymers and hydrogenated products thereof. Among these, a norbornene polymer and this hydrogenated product are more preferable from the viewpoint of transparency and moldability.
 ノルボルネン重合体としては、例えば、ノルボルネンモノマーの開環重合体、ノルボルネンモノマーと開環共重合可能なその他のモノマーとの開環共重合体、及びそれらの水素添加物;ノルボルネンモノマーの付加重合体、ノルボルネンモノマーと共重合可能なその他のモノマーとの付加共重合体などが挙げられる。これらの中でも、透明性の観点から、ノルボルネンモノマーの開環重合体水素添加物が特に好ましい。
 上記の脂環式構造含有重合体は、例えば特開2002-321302号公報に開示されている重合体から選ばれる。
Examples of norbornene polymers include, for example, ring-opening polymers of norbornene monomers, ring-opening copolymers of norbornene monomers with other monomers capable of ring-opening copolymerization, and hydrogenated products thereof; addition polymers of norbornene monomers; Examples include addition copolymers with other monomers copolymerizable with norbornene monomers. Among these, a ring-opening polymer hydrogenated product of norbornene monomer is particularly preferable from the viewpoint of transparency.
The above alicyclic structure-containing polymer is selected from, for example, polymers disclosed in JP-A No. 2002-321302.
 結晶性を有さない脂環式構造含有重合体を含む樹脂としては、様々な商品が市販されているので、それらのうち、所望の特性を有するものを適宜選択し、使用しうる。かかる市販品の例としては、商品名「ZEONOR」(日本ゼオン株式会社製)、「アートン」(JSR株式会社製)、「アペル」(三井化学株式会社製)、「TOPAS」(ポリプラスチック社製)の製品群が挙げられる。 As a resin containing an alicyclic structure-containing polymer having no crystallinity, various products are commercially available. Among them, those having desired characteristics can be appropriately selected and used. Examples of such commercial products are “ZEONOR” (manufactured by ZEON CORPORATION), “ARTON” (manufactured by JSR Corporation), “Apel” (manufactured by Mitsui Chemicals), “TOPAS” (manufactured by Polyplastics Co., Ltd.). ) Product group.
 上述したものの中でも、重合体としては、低吸湿性及び低い水蒸気透過性の観点から、非極性で、当該重合体単独ではレーザー光の平均吸光度が低いものが好ましい。このようにレーザー光の平均吸光度が低い重合体を用いた場合に、低吸湿性による寸法安定性、及び、レーザー吸収剤を組み合わせたことによる効果を特に有効に活用できる。このようにレーザー光の平均吸光度が低い重合体としては、日本ゼオン社製「ZEONOR」が挙げられる。波長9.2μm~10.8μmにおいて前記「ZEONOR」からなる環状オレフィンフィルムの平均吸光度を測定したところ、0.05であった。 Among the above-mentioned polymers, from the viewpoint of low hygroscopicity and low water vapor permeability, the polymer is preferably nonpolar, and the polymer alone has a low average absorbance of laser light. Thus, when a polymer having a low average absorbance of laser light is used, the dimensional stability due to low hygroscopicity and the effect obtained by combining the laser absorbent can be used particularly effectively. Examples of the polymer having a low average absorbance of laser light include “ZEONOR” manufactured by Nippon Zeon Co., Ltd. The average absorbance of the cyclic olefin film comprising “ZEONOR” measured at a wavelength of 9.2 μm to 10.8 μm was 0.05.
 重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 As the polymer, one type may be used alone, or two or more types may be used in combination at any ratio.
 重合体のガラス転移温度Tgは、好ましくは80℃以上、より好ましくは85℃以上、更に好ましくは100℃以上であり、好ましくは250℃以下、より好ましくは170℃以下である。ガラス転移温度がこのような範囲にある重合体は、高温下での使用における変形及び応力が生じ難く、耐久性に優れる。 The glass transition temperature Tg of the polymer is preferably 80 ° C. or higher, more preferably 85 ° C. or higher, still more preferably 100 ° C. or higher, preferably 250 ° C. or lower, more preferably 170 ° C. or lower. A polymer having a glass transition temperature in such a range is not easily deformed or stressed when used at high temperatures, and has excellent durability.
 重合体の重量平均分子量(Mw)は、好ましくは1,000以上、より好ましくは2,000以上、更に好ましくは10,000以上、特に好ましくは25,000以上であり、好ましくは1,000,000以下、より好ましくは500,000以下、更に好ましくは100,000以下、中でも好ましくは80,000以下、特に好ましくは50,000以下である。このような重量平均分子量を有する重合体は、成形加工性と耐熱性とのバランスに優れる。 The weight average molecular weight (Mw) of the polymer is preferably 1,000 or more, more preferably 2,000 or more, still more preferably 10,000 or more, particularly preferably 25,000 or more, preferably 1,000,000. 000 or less, more preferably 500,000 or less, still more preferably 100,000 or less, particularly preferably 80,000 or less, particularly preferably 50,000 or less. A polymer having such a weight average molecular weight has an excellent balance between moldability and heat resistance.
 重合体の分子量分布(Mw/Mn)は、好ましくは1.0以上、より好ましくは1.2以上、特に好ましくは1.5以上であり、好ましくは10以下、より好ましくは4.0以下、更に好ましくは3.5以下である。ここで、Mnは数平均分子量を表す。このような分子量分布を有する重合体は、成形加工性に優れる。 The molecular weight distribution (Mw / Mn) of the polymer is preferably 1.0 or more, more preferably 1.2 or more, particularly preferably 1.5 or more, preferably 10 or less, more preferably 4.0 or less, More preferably, it is 3.5 or less. Here, Mn represents a number average molecular weight. A polymer having such a molecular weight distribution is excellent in moldability.
 前記の重量平均分子量(Mw)及び数平均分子量(Mn)は、溶媒としてシクロヘキサンを用いたゲル・パーミエーション・クロマトグラフィーにより、ポリイソプレンまたはポリスチレン換算の重量平均分子量として測定しうる。但し、試料がシクロヘキサンに溶解しない場合には、ゲル・パーミエーション・クロマトグラフィーの溶媒としてトルエンを用いてもよい。 The aforementioned weight average molecular weight (Mw) and number average molecular weight (Mn) can be measured as polyisoprene or polystyrene equivalent weight average molecular weight by gel permeation chromatography using cyclohexane as a solvent. However, when the sample does not dissolve in cyclohexane, toluene may be used as a solvent for gel permeation chromatography.
 基材における重合体の含有率は、偏光子保護フィルムに求められる特性に応じて、任意に設定しうる。よって、基材に含まれる層のうち、重合体を含む層での当該重合体の含有率は、偏光子保護フィルムに求められる特性に応じて適切に設定することが好ましい。具体的には、重合体を含む層での当該重合体の含有率は、好ましくは50重量%以上、より好ましくは70重量%以上、更に好ましは80重量%以上、特に好ましくは90重量%以上である。 The polymer content in the substrate can be arbitrarily set according to the characteristics required of the polarizer protective film. Therefore, it is preferable to set appropriately the content rate of the said polymer in the layer containing a polymer among the layers contained in a base material according to the characteristic calculated | required by a polarizer protective film. Specifically, the content of the polymer in the polymer-containing layer is preferably 50% by weight or more, more preferably 70% by weight or more, further preferably 80% by weight or more, and particularly preferably 90% by weight. That's it.
[2.1.3.基材に含まれうる樹脂層]
 図2は、基材に含まれうる樹脂層の一例を模式的に示す断面図である。図2に示すように、基材に含まれる樹脂層200は、好ましくは、第一外側層210と、第二外側層220と、前記の第一外側層210及び第二外側層220の間に設けられた中間層230と、を含む。この樹脂層200は、必要に応じて、第一外側層210、中間層230及び第二外側層220以外の任意の層を備えていてもよいが、厚みを薄くする観点から、任意の層を備えない3層構造の層であることが好ましい。このような樹脂層200では、通常、第一外側層210と中間層230とは、間に他の層を介することなく直接に接しており、中間層230と第二外側層220とは、間に他の層を介することなく直接に接している。
[2.1.3. Resin layer that can be contained in substrate]
FIG. 2 is a cross-sectional view schematically showing an example of a resin layer that can be included in the substrate. As shown in FIG. 2, the resin layer 200 included in the base material preferably has a first outer layer 210, a second outer layer 220, and the first outer layer 210 and the second outer layer 220. And an intermediate layer 230 provided. The resin layer 200 may include any layer other than the first outer layer 210, the intermediate layer 230, and the second outer layer 220 as necessary. However, from the viewpoint of reducing the thickness, the resin layer 200 may include any layer. A layer having a three-layer structure not provided is preferable. In such a resin layer 200, normally, the first outer layer 210 and the intermediate layer 230 are in direct contact with no other layers in between, and the intermediate layer 230 and the second outer layer 220 are in between. Directly touching without intervening other layers.
 図2に示すように第一外側層210と第二外側層220と中間層230とを含む樹脂層200がレーザー吸収剤を含む場合、このレーザー吸収剤は、通常、中間層230に含まれる。中間層230に含まれるレーザー吸収剤は、第一外側層210及び第二外側層220によって移動を妨げられるので、前記の樹脂層200では、レーザー吸収剤のブリードアウトを抑制できる。 As shown in FIG. 2, when the resin layer 200 including the first outer layer 210, the second outer layer 220, and the intermediate layer 230 includes a laser absorber, this laser absorber is usually included in the intermediate layer 230. Since the laser absorber contained in the intermediate layer 230 is prevented from moving by the first outer layer 210 and the second outer layer 220, the resin layer 200 can suppress bleed-out of the laser absorber.
 中間層230は、通常、重合体を含む樹脂によって形成される。以下、中間層230を形成する樹脂を、適宜「中間樹脂」という。中間樹脂に含まれる重合体としては、樹脂層200の製造が容易であることから、熱可塑性の重合体を用いることが好ましい。このような重合体としては、機械特性、耐熱性、透明性、低吸湿性、寸法安定性及び軽量性に優れることから、脂環式構造含有重合体が好ましい。また、重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 中間層230における重合体の含有率は、好ましくは80.0重量%以上、より好ましくは82.0重量%以上、特に好ましくは85.0重量%以上であり、好ましくは97.0重量%以下、より好ましくは96.0重量%以下、特に好ましくは95.0重量%以下である。
The intermediate layer 230 is usually formed of a resin containing a polymer. Hereinafter, the resin forming the intermediate layer 230 is appropriately referred to as “intermediate resin”. As the polymer contained in the intermediate resin, it is preferable to use a thermoplastic polymer because the resin layer 200 is easily manufactured. As such a polymer, an alicyclic structure-containing polymer is preferable because of excellent mechanical properties, heat resistance, transparency, low hygroscopicity, dimensional stability, and lightness. Moreover, a polymer may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
The content of the polymer in the intermediate layer 230 is preferably 80.0% by weight or more, more preferably 82.0% by weight or more, particularly preferably 85.0% by weight or more, preferably 97.0% by weight or less. More preferably, it is 96.0% by weight or less, particularly preferably 95.0% by weight or less.
 また、中間層230は、前記のように、レーザー吸収剤を含みうる。中間層230におけるレーザー吸収剤の量は、基材に含まれる層のうちレーザー吸収剤を含む層のレーザー吸収剤の含有率の範囲として上述した範囲から、適切に設定しうる。具体的には、中間層230におけるレーザー吸収剤の量は、好ましくは0.1重量%以上、特に好ましくは1.0重量%以上、好ましくは10.0重量%以下、特に好ましくは8.0重量%以下である。 In addition, the intermediate layer 230 may include a laser absorber as described above. The amount of the laser absorbent in the intermediate layer 230 can be appropriately set from the range described above as the range of the content of the laser absorbent in the layer containing the laser absorbent among the layers contained in the substrate. Specifically, the amount of the laser absorber in the intermediate layer 230 is preferably 0.1% by weight or more, particularly preferably 1.0% by weight or more, preferably 10.0% by weight or less, and particularly preferably 8.0%. % By weight or less.
 中間層230は、重合体及びレーザー吸収剤に組み合わせて、更に任意の成分を含みうる。任意の成分としては、例えば、紫外線吸収剤が挙げられる。紫外線吸収剤を含む中間層230は、紫外線の透過を妨げることができるので、表示装置に含まれる部材の紫外線による劣化を抑制することが可能である。したがって、外光に含まれる紫外線による偏光子の着色を抑制したり、バックライトからの紫外線を抑制して表示素子の長寿命化を達成したりすることができる。また、中間層230が紫外線吸収剤を含む場合には、紫外線吸収剤のブリードアウトの抑制が可能であるので、中間層230における紫外線吸収剤の濃度を高めたり、紫外線吸収剤の種類の選択の幅を広げたりできる。よって、樹脂層200の厚みが薄くても、紫外線の透過抑制能力を高めることが可能である。 The intermediate layer 230 can further include an optional component in combination with the polymer and the laser absorber. As an arbitrary component, an ultraviolet absorber is mentioned, for example. Since the intermediate layer 230 containing the ultraviolet absorber can prevent the transmission of ultraviolet rays, it is possible to suppress deterioration of the members included in the display device due to the ultraviolet rays. Therefore, coloring of the polarizer by ultraviolet rays contained in external light can be suppressed, and the lifetime of the display element can be increased by suppressing ultraviolet rays from the backlight. Further, when the intermediate layer 230 includes an ultraviolet absorber, it is possible to suppress the bleed-out of the ultraviolet absorber, so that the concentration of the ultraviolet absorber in the intermediate layer 230 can be increased or the type of the ultraviolet absorber can be selected. You can increase the width. Therefore, even if the thickness of the resin layer 200 is thin, it is possible to increase the ability to suppress ultraviolet light transmission.
 さらに、レーザー吸収剤と紫外線吸収剤とを組み合わせることで、樹脂の面内レターデーション及び切り出した寸法等の特性の変化を抑え、基材にレーザー光を効率良く吸収できる性質を付与できる。また、基材の物性(面内レターデーション、寸法変化、内部ヘイズ等)の変化を抑制することができる。さらに、製膜プロセスにおいて膜厚ムラを小さくすることができる。特に、結晶性を有する重合体を、レーザー吸収剤及び紫外線吸収剤と組み合わせた場合に、前記の物性変化の抑制等の作用を顕著に得ることができる。一般に、レーザー光の平均吸光度が低い非極性の重合体(例えば、脂環式構造含有重合体)を極性の化合物(例えば、エステル化合物)と混合しても、分散性が不十分となり、前記の物性変化が生じ易い傾向があるというのが、当業者の技術的認識であった。よって、前記の作用は、従来の技術常識からすれば意外なものである。レーザー吸収剤と紫外線吸収剤とを組み合わせて用いることによりこのような効果が得られる理由はよく分かっていないが、適度なレーザー吸収剤と紫外線吸収剤とが、中間層230において可塑剤のように働き、製膜プロセルに対して有利な効果をもたらしているものと考えられる。 Furthermore, by combining a laser absorber and an ultraviolet absorber, it is possible to suppress changes in characteristics such as in-plane retardation and cut-out dimensions of the resin, and to impart a property capable of efficiently absorbing laser light to the substrate. In addition, changes in the physical properties (in-plane retardation, dimensional change, internal haze, etc.) of the substrate can be suppressed. Furthermore, film thickness unevenness can be reduced in the film forming process. In particular, when a polymer having crystallinity is combined with a laser absorber and an ultraviolet absorber, effects such as suppression of the change in physical properties can be obtained remarkably. In general, even when a nonpolar polymer (for example, an alicyclic structure-containing polymer) having a low average absorbance of laser light is mixed with a polar compound (for example, an ester compound), dispersibility becomes insufficient, It was the technical recognition of those skilled in the art that there is a tendency for the physical property change to occur easily. Therefore, the above action is unexpected from the conventional technical common sense. The reason why such an effect can be obtained by using a combination of a laser absorber and an ultraviolet absorber is not well understood, but an appropriate laser absorber and an ultraviolet absorber are like a plasticizer in the intermediate layer 230. It is thought that this has an advantageous effect on the film forming process.
 中間層230におけるレーザー吸収剤と紫外線吸収剤の合計量は、好ましくは8.0重量%以上、特に好ましくは10.0重量%以上、好ましくは20.0重量%以下、特に好ましくは16.0重量%以下である。レーザー吸収剤と紫外線吸収剤の合計量が前記範囲に収まることにより、樹脂のレターデーション等の物性変化を抑え、コンパウンド製造時にダイスからの漏れも少なく、フィッシュアイの発生抑制や樹脂の焼けを抑制することができる。 The total amount of the laser absorber and the ultraviolet absorber in the intermediate layer 230 is preferably 8.0% by weight or more, particularly preferably 10.0% by weight or more, preferably 20.0% by weight or less, particularly preferably 16.0. % By weight or less. By keeping the total amount of laser absorber and ultraviolet absorber within the above range, it is possible to suppress changes in physical properties such as retardation of the resin, less leakage from the die during compound production, and suppression of fish eye generation and resin burning. can do.
 紫外線吸収剤としては、紫外線を吸収できる化合物を用いうる。通常、このような紫外線吸収剤として、有機化合物を用いる。以下、有機化合物としての紫外線吸収剤を「有機紫外線吸収剤」ということがある。有機紫外線吸収剤を用いることにより、通常は、基材の可視波長における光線透過率を高めたり、基材のヘイズを小さくしたりできる。そのため、表示装置の表示性能を良好にできる。 As the ultraviolet absorber, a compound that can absorb ultraviolet rays can be used. Usually, an organic compound is used as such an ultraviolet absorber. Hereinafter, an ultraviolet absorber as an organic compound may be referred to as an “organic ultraviolet absorber”. By using an organic ultraviolet absorber, it is usually possible to increase the light transmittance at a visible wavelength of the base material or to reduce the haze of the base material. Therefore, the display performance of the display device can be improved.
 有機紫外線吸収剤としては、例えば、トリアジン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、アクリロニトリル系紫外線吸収剤、サリシレート系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、アゾメチン系紫外線吸収剤、インドール系紫外線吸収剤、ナフタルイミド系紫外線吸収剤、フタロシアニン系紫外線吸収剤等が挙げられる。 Examples of organic UV absorbers include triazine UV absorbers, benzophenone UV absorbers, benzotriazole UV absorbers, acrylonitrile UV absorbers, salicylate UV absorbers, cyanoacrylate UV absorbers, and azomethine UV absorbers. Examples thereof include an absorbent, an indole ultraviolet absorber, a naphthalimide ultraviolet absorber, and a phthalocyanine ultraviolet absorber.
 トリアジン系紫外線吸収剤としては、例えば、1,3,5-トリアジン環を有する化合物が好ましい。トリアジン系紫外線吸収剤の具体例としては、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(へキシル)オキシ]-フェノール、2,4-ビス(2-ヒドロキシ-4-ブトキシフェニル)-6-(2,4-ジブトキシフェニル)-1,3,5-トリアジン等が挙げられる。このようなトリアジン系紫外線吸収剤の市販品としては、例えば、チバスペシャリティーケミカルズ社製「チヌビン1577」、ADEKA社製「LA-F70」、「LA-46」などが挙げられる。 As the triazine-based ultraviolet absorber, for example, a compound having a 1,3,5-triazine ring is preferable. Specific examples of triazine-based ultraviolet absorbers include 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl) oxy] -phenol, 2,4-bis And (2-hydroxy-4-butoxyphenyl) -6- (2,4-dibutoxyphenyl) -1,3,5-triazine. Examples of such commercially available triazine ultraviolet absorbers include “Tinuvin 1577” manufactured by Ciba Specialty Chemicals, “LA-F70” and “LA-46” manufactured by ADEKA.
 ベンゾトリアゾール系紫外線吸収剤としては、例えば、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]、2-(3,5-ジ-tert-ブチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール、2-ベンゾトリアゾール-2-イル-4,6-ジ-tert-ブチルフェノール、2-[5-クロロ(2H)-ベンゾトリアゾール-2-イル]-4-メチル-6-(tert-ブチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-tert-ブチルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4-メチル-6-(3,4,5,6-テトラヒドロフタルイミジルメチル)フェノール、メチル3-(3-(2H-ベンゾトリアゾール-2-イル)-5-tert-ブチル-4-ヒドロキシフェニル)プロピオネート/ポリエチレングリコール300の反応生成物、2-(2H-ベンゾトリアゾール-2-イル)-6-(直鎖および側鎖ドデシル)-4-メチルフェノール等が挙げられる。このようなトリアゾール系紫外線吸収剤の市販品としては、例えば、ADEKA社製「アデカスタブLA-31」、チバスペシャリティーケミカルズ社製「TINUVIN326」などが挙げられる。 Examples of the benzotriazole ultraviolet absorber include 2,2′-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol], 2 -(3,5-di-tert-butyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (2H-benzotriazol-2-yl) -p-cresol, 2- (2H-benzotriazole-2 -Yl) -4,6-bis (1-methyl-1-phenylethyl) phenol, 2-benzotriazol-2-yl-4,6-di-tert-butylphenol, 2- [5-chloro (2H)- Benzotriazol-2-yl] -4-methyl-6- (tert-butyl) phenol, 2- (2H-benzotriazol-2-yl) -4,6-di- ert-Butylphenol, 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol, 2- (2H-benzotriazol-2-yl) -4-methyl -6- (3,4,5,6-tetrahydrophthalimidylmethyl) phenol, methyl 3- (3- (2H-benzotriazol-2-yl) -5-tert-butyl-4-hydroxyphenyl) propionate / Examples include the reaction product of polyethylene glycol 300, 2- (2H-benzotriazol-2-yl) -6- (linear and side chain dodecyl) -4-methylphenol, and the like. Examples of commercially available products of such triazole ultraviolet absorbers include “ADEKA STAB LA-31” manufactured by ADEKA and “TINUVIN 326” manufactured by Ciba Specialty Chemicals.
 アゾメチン系紫外線吸収剤としては、例えば、特許第3366697号公報に記載の材料を例示することができ、市販品としては、例えば、オリエント化学社製「BONASORB UA-3701」などが挙げられる。 Examples of the azomethine-based ultraviolet absorber include materials described in Japanese Patent No. 336697, and examples of commercially available products include “BONASORB UA-3701” manufactured by Orient Chemical Co., Ltd.
 インドール系紫外線吸収剤としては、例えば、特許第2846091号公報に記載の材料を例示することができ、市販品としては、例えば、オリエント化学社製「BONASORB UA-3911」、「BONASORB UA-3912」などが挙げられる。 Examples of indole ultraviolet absorbers include materials described in Japanese Patent No. 2846091. Examples of commercially available products include “BONASORB UA-3911” and “BONASORB UA-3912” manufactured by Orient Chemical Co., Ltd. Etc.
 フタロシアニン系紫外線吸収剤としては、例えば、特許第4403257号公報、特許第3286905号公報に記載の材料を例示することができ、市販品としては、例えば、山田化学工業社製「FDB001」、「FDB002」などが挙げられる。 Examples of the phthalocyanine-based ultraviolet absorber include materials described in Japanese Patent Nos. 4403257 and 3286905, and examples of commercially available products include “FDB001” and “FDB002” manufactured by Yamada Chemical Industries, Ltd. Or the like.
 特に好ましい紫外線吸収剤としては、トリアジン系紫外線吸収剤であるASDEKA社製「LA-F70」;アゾメチン系紫外線吸収剤であるオリエンタル化学工業「UA-3701」;並びに、ベンゾトリアゾール系紫外線吸収剤であるBASF社製「Tinuvin326」及びADEKA社製「LA-31」が挙げられる。これらは、紫外線吸収能力に特に優れるので、量が少なくても高い紫外線遮断能力を有する樹脂層200を得ることができる。 Particularly preferred UV absorbers are “LA-F70” manufactured by ASDEKA, a triazine UV absorber; Oriental Chemical Industry “UA-3701”, an azomethine UV absorber; and a benzotriazole UV absorber. Examples thereof include “Tinuvin 326” manufactured by BASF and “LA-31” manufactured by ADEKA. Since these are particularly excellent in the ability to absorb ultraviolet rays, the resin layer 200 having a high ultraviolet blocking ability can be obtained even if the amount is small.
 紫外線吸収剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 As the ultraviolet absorber, one type may be used alone, or two or more types may be used in combination at any ratio.
 中間層230における紫外線吸収剤の量は、好ましくは3重量%以上、より好ましくは4重量%以上、特に好ましくは5重量%以上であり、好ましくは20重量%以下、より好ましくは18重量%以下、特に好ましくは16重量%以下である。紫外線吸収剤の量が、前記範囲の下限値以上であることにより、樹脂層200によって紫外線の透過を効果的に抑制できる。また、紫外線の量が、前記範囲の上限値以下であることによって、樹脂層200の可視波長における光線透過率を高くし易い。また、樹脂層200の製造時に、紫外線吸収剤による樹脂のゲル化を抑制できるので、樹脂層200でのフィッシュアイの発生を抑制し易い。ここで、フィッシュアイとは、層の内部に生じうる異物のことをいう。 The amount of the UV absorber in the intermediate layer 230 is preferably 3% by weight or more, more preferably 4% by weight or more, particularly preferably 5% by weight or more, preferably 20% by weight or less, more preferably 18% by weight or less. Particularly preferably, it is 16% by weight or less. When the amount of the ultraviolet absorber is not less than the lower limit of the above range, the resin layer 200 can effectively suppress the transmission of ultraviolet rays. Moreover, it is easy to make the light transmittance in the visible wavelength of the resin layer 200 high because the quantity of an ultraviolet-ray is below the upper limit of the said range. Moreover, since the gelation of the resin by the ultraviolet absorber can be suppressed at the time of manufacturing the resin layer 200, it is easy to suppress the generation of fish eyes in the resin layer 200. Here, the fish eye refers to a foreign substance that can be generated inside the layer.
 さらに、任意の成分の別の例としては、例えば、顔料、染料等の着色剤;可塑剤;蛍光増白剤;分散剤;滑剤;熱安定剤;光安定剤;帯電防止剤;酸化防止剤;界面活性剤等の配合剤が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Further, other examples of optional components include, for example, colorants such as pigments and dyes; plasticizers; fluorescent brighteners; dispersants; lubricants; thermal stabilizers; light stabilizers; A compounding agent such as a surfactant. One of these may be used alone, or two or more of these may be used in combination at any ratio.
 中間樹脂のガラス転移温度Tgは、好ましくは100℃以上、より好ましくは120℃以上、特に好ましくは140℃以上であり、好ましくは180℃以下、より好ましくは170℃以下、特に好ましくは165℃以下である。中間樹脂のガラス転移温度Tgが、前記範囲に収まることにより、中間層230のレターデーションなどの物性変化を抑えたり、中間層230の製造時に膜厚を安定させて膜厚ムラの少ない製膜を可能にしたりできる。 The glass transition temperature Tg C of the intermediate resin is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, particularly preferably 140 ° C. or higher, preferably 180 ° C. or lower, more preferably 170 ° C. or lower, particularly preferably 165 ° C. It is as follows. The glass transition temperature Tg C of the intermediate resin falls within the above range, so that changes in physical properties such as retardation of the intermediate layer 230 can be suppressed, or the film thickness can be stabilized during the production of the intermediate layer 230 to reduce film thickness unevenness. Can be made possible.
 中間層230の厚みT230は、樹脂層200の厚みT200に対する中間層230の厚みT230の比T230/T200が、所定の範囲に収まるように設定されることが好ましい。具体的には、前記の厚み比T230/T200は、好ましくは1/4以上、より好ましくは2/4以上であり、好ましくは80/82以下、より好ましくは79/82以下、特に好ましくは78/82以下である。厚み比が、前記下限値以上であることにより、樹脂層200によってレーザー光を効果的に吸収できる。また、中間層230が紫外線吸収剤を含む場合には、紫外線の透過を効果的に抑制できる。また、厚み比が、前記上限値以下であることにより、第一外側層210及び第二外側層220を厚くできるので、レーザー吸収剤及び紫外線吸収剤のブリードアウトを安定して抑制したり、樹脂層200の製造を容易に行ったりできる。 The thickness T 230 of the intermediate layer 230, the ratio T 230 / T 200 thickness T 230 of the intermediate layer 230 to the thickness T 200 of the resin layer 200 is preferably set to fall in a predetermined range. Specifically, the thickness ratio T 230 / T 200 is preferably 1/4 or more, more preferably 2/4 or more, preferably 80/82 or less, more preferably 79/82 or less, and particularly preferably. Is 78/82 or less. When the thickness ratio is equal to or greater than the lower limit, the resin layer 200 can effectively absorb laser light. Moreover, when the intermediate layer 230 contains an ultraviolet absorber, the transmission of ultraviolet rays can be effectively suppressed. Further, since the first outer layer 210 and the second outer layer 220 can be thickened when the thickness ratio is equal to or less than the upper limit value, the bleeding out of the laser absorber and the ultraviolet absorber can be stably suppressed, or the resin The layer 200 can be easily manufactured.
 複数の層を含む樹脂層での各層の厚みは、次の方法で測定しうる。樹脂層をエポキシ樹脂で包埋して、試料片を用意する。この試料片を、ミクロトームを用いて厚み0.05μmにスライスする。その後、スライスにより現れた断面を顕微鏡を用いて観察することで、樹脂層に含まれる各層の厚みを測定しうる。 The thickness of each layer in the resin layer including a plurality of layers can be measured by the following method. A resin layer is embedded with an epoxy resin to prepare a sample piece. This sample piece is sliced to a thickness of 0.05 μm using a microtome. Then, the thickness of each layer contained in the resin layer can be measured by observing the cross section that appears by slicing using a microscope.
 第一外側層210は、通常、重合体を含む樹脂で形成される。以下、第一外側層210を形成する樹脂を、適宜「第一外側樹脂」という。第一外側樹脂は、中間層230に含まれる中間樹脂よりもレーザー吸収剤の含有率が低いことが好ましく、レーザー吸収剤を含まないことがより好ましい。さらに、第一外側樹脂は、中間層230に含まれる中間樹脂よりも紫外線吸収剤の含有率が低いことが好ましく、紫外線吸収剤を含まないことがより好ましい。 The first outer layer 210 is usually formed of a resin containing a polymer. Hereinafter, the resin forming the first outer layer 210 is appropriately referred to as “first outer resin”. The first outer resin preferably has a lower content of the laser absorbent than the intermediate resin contained in the intermediate layer 230, and more preferably does not contain the laser absorbent. Further, the first outer resin preferably has a lower UV absorber content than the intermediate resin contained in the intermediate layer 230, and more preferably does not contain the UV absorber.
 第一外側樹脂に含まれる重合体としては、中間樹脂に含まれる重合体と同一の重合体を用いることが好ましい。これにより、中間層230と第一外側層210との接着強度を高めたり、中間層230と第一外側層210との界面での光の反射を抑制したりし易い。
 第一外側層210における重合体の量は、好ましくは90.0重量%~100重量%、より好ましくは95.0重量%~100重量%である。
As the polymer contained in the first outer resin, the same polymer as that contained in the intermediate resin is preferably used. Thereby, it is easy to increase the adhesive strength between the intermediate layer 230 and the first outer layer 210, or to suppress the reflection of light at the interface between the intermediate layer 230 and the first outer layer 210.
The amount of polymer in the first outer layer 210 is preferably 90.0 wt% to 100 wt%, more preferably 95.0 wt% to 100 wt%.
 第一外側樹脂は、重合体に組み合わせて、更に任意の成分を含みうる。任意の成分としては、例えば、中間層230が含みうる任意の成分として挙げたのと同様の成分が挙げられる。 The first outer resin may further contain an optional component in combination with the polymer. As an arbitrary component, the same component as mentioned as an arbitrary component which the intermediate | middle layer 230 can contain is mentioned, for example.
 第一外側樹脂のガラス転移温度TgO1は、中間樹脂のガラス転移温度Tgよりも低いことが好ましい。さらに、第一外側樹脂のガラス転移温度TgO1と中間樹脂のガラス転移温度Tgとの差Tg-TgO1は、好ましくは30℃以上、より好ましくは33℃以上、特に好ましくは35℃以上である。ガラス転移温度の差Tg-TgO1が前記範囲に収まることにより、中間樹脂に含まれる添加剤の第一外側樹脂へのブリード量を抑制することができる。ガラス転移温度の差Tg-TgO1の上限は、好ましくは55℃以下、より好ましくは50℃以下、特に好ましくは45℃以下である。ガラス転移温度の差Tg-TgO1が前記の上限値以下であることにより、第一外側樹脂と中間樹脂の密着性を向上させることができる。 The glass transition temperature Tg O1 of the first outer resin is preferably lower than the glass transition temperature Tg C of the intermediate resin. Further, the difference Tg C −Tg O1 between the glass transition temperature Tg O1 of the first outer resin and the glass transition temperature Tg C of the intermediate resin is preferably 30 ° C. or higher, more preferably 33 ° C. or higher, particularly preferably 35 ° C. or higher. It is. When the glass transition temperature difference Tg C -Tg O1 falls within the above range, the amount of bleed of the additive contained in the intermediate resin into the first outer resin can be suppressed. The upper limit of the glass transition temperature difference Tg C -Tg O1 is preferably 55 ° C. or less, more preferably 50 ° C. or less, and particularly preferably 45 ° C. or less. When the difference in glass transition temperature Tg C -Tg O1 is not more than the above upper limit value, the adhesion between the first outer resin and the intermediate resin can be improved.
 ガラス転移温度の差Tg-TgO1を上述した条件で調整する方法は、特に制限は無い。例えば、中間樹脂が重合体以外の成分(例えば、レーザー吸収剤、任意の成分)を含む場合、その重合体以外の成分の種類及び量によって、中間樹脂のガラス転移温度Tgを調整できる。そこで、中間樹脂が含む重合体以外の成分の種類及び量の調整によって、前記のガラス転移温度の差Tg-TgO1を調整してもよい。 The method for adjusting the difference Tg C -Tg O1 in the glass transition temperature is not particularly limited. For example, when the intermediate resin contains a component other than the polymer (for example, a laser absorber, optional component), the glass transition temperature Tg C of the intermediate resin can be adjusted by the type and amount of the component other than the polymer. Therefore, the glass transition temperature difference Tg C -Tg O1 may be adjusted by adjusting the type and amount of components other than the polymer contained in the intermediate resin.
 第一外側層210の厚みは、好ましくは3μm以上、より好ましくは5μm以上、特に好ましくは7μm以上であり、好ましくは15μm以下、より好ましくは13μm以下、特に好ましくは10μm以下である。第一外側層210の厚みが、前記範囲の下限値以上であることにより、中間層230に含まれる成分のブリードアウトを効果的に抑制できる。また、第一外側層210の厚みが、前記範囲の上限値以下であることにより、樹脂層200を薄くできる。 The thickness of the first outer layer 210 is preferably 3 μm or more, more preferably 5 μm or more, particularly preferably 7 μm or more, preferably 15 μm or less, more preferably 13 μm or less, and particularly preferably 10 μm or less. When the thickness of the 1st outer side layer 210 is more than the lower limit of the said range, the bleed-out of the component contained in the intermediate | middle layer 230 can be suppressed effectively. Moreover, when the thickness of the 1st outer side layer 210 is below the upper limit of the said range, the resin layer 200 can be made thin.
 第二外側層220は、通常、重合体を含む樹脂で形成される。以下、第二外側層220を形成する樹脂を、適宜「第二外側樹脂」という。第二外側樹脂としては、第一外側樹脂として説明した樹脂の範囲から選択される任意の樹脂を用いうる。したがって、第二外側樹脂の含有成分は、第一外側樹脂の含有成分として説明した範囲から選択して適用しうる。これにより、第一外側層210の説明に記載したのと同様の利点を得ることができる。 The second outer layer 220 is usually formed of a resin containing a polymer. Hereinafter, the resin forming the second outer layer 220 is appropriately referred to as “second outer resin”. As the second outer resin, any resin selected from the range of resins described as the first outer resin can be used. Therefore, the content component of the second outer resin can be selected and applied from the range described as the content component of the first outer resin. Thereby, the same advantage as described in the description of the first outer layer 210 can be obtained.
 第二外側樹脂のガラス転移温度TgO2は、中間樹脂のガラス転移温度Tgよりも低いことが好ましい。さらに、第二外側樹脂のガラス転移温度TgO2と中間樹脂のガラス転移温度Tgとの差Tg-TgO2は、好ましくは30℃以上、より好ましくは33℃以上、特に好ましくは35℃以上である。これにより、中間樹脂に含まれる添加剤の第二外側樹脂へのブリード量を抑制することができる。ガラス転移温度の差Tg-TgO2の上限は、好ましくは55℃以下、より好ましくは50℃以下、特に好ましくは45℃以下である。ガラス転移温度の差Tg-TgO2が前記の上限値以下であることにより、第二外側樹脂と中間樹脂の密着性を向上させることができる。
 前記のガラス転移温度の差Tg-TgO2は、例えば、ガラス転移温度の差Tg-TgO1と同様の方法で調整できる。
The glass transition temperature Tg O2 of the second outer resin is preferably lower than the glass transition temperature Tg C of the intermediate resin. Further, the difference Tg C -Tg O 2 between the glass transition temperature Tg O 2 of the second outer resin and the glass transition temperature Tg C of the intermediate resin is preferably 30 ° C. or higher, more preferably 33 ° C. or higher, particularly preferably 35 ° C. or higher. It is. Thereby, the amount of bleeding of the additive contained in the intermediate resin into the second outer resin can be suppressed. The upper limit of the glass transition temperature difference Tg C -Tg O 2 is preferably 55 ° C. or lower, more preferably 50 ° C. or lower, and particularly preferably 45 ° C. or lower. When the difference Tg C -Tg O 2 in the glass transition temperature is not more than the above upper limit, the adhesion between the second outer resin and the intermediate resin can be improved.
The glass transition temperature difference Tg C -Tg O 2 can be adjusted by the same method as the glass transition temperature difference Tg C -Tg O 1 , for example.
 第二外側樹脂は、第一外側樹脂と異なる樹脂であってもよく、第一外側樹脂と同一の樹脂であってもよい。中でも、第一外側樹脂及び第二外側樹脂として同一の樹脂を用いることが好ましい。第一外側樹脂及び第二外側樹脂として同一の樹脂を用いることにより、樹脂層200の製造コストを抑制したり、基材のカールを抑制したりできる。 The second outer resin may be a resin different from the first outer resin, or may be the same resin as the first outer resin. Among these, it is preferable to use the same resin as the first outer resin and the second outer resin. By using the same resin as the first outer resin and the second outer resin, the manufacturing cost of the resin layer 200 can be suppressed, and curling of the substrate can be suppressed.
 第二外側層220の厚みは、第一外側層210の厚みの範囲として説明した範囲から選択される任意の厚みにしうる。これにより、第一外側層210の厚みの説明で記載したのと同様の利点を得ることができる。中でも、基材のカールを抑制するためには、第二外側層220の厚みは、第一外側層210と同一にすることが好ましい。 The thickness of the second outer layer 220 can be any thickness selected from the range described as the thickness range of the first outer layer 210. Thereby, the same advantage as described in the description of the thickness of the first outer layer 210 can be obtained. In particular, the thickness of the second outer layer 220 is preferably the same as that of the first outer layer 210 in order to suppress curling of the substrate.
 また、基材に含まれる樹脂層は、図2に示した樹脂層200のように2層以上の層を含む複層構造の層に限られず、1層のみを含む単層構造の層であってもよい。例えば、樹脂層は、重合体及びレーザー吸収剤を含み、更に必要に応じて紫外線吸収剤等の任意の成分を含む樹脂によって形成された単層構造の層であってもよい。具体例を挙げると、上述した中間層自体を、単独で、樹脂層として用いてもよい。 Further, the resin layer included in the base material is not limited to a multilayer structure layer including two or more layers like the resin layer 200 shown in FIG. 2, and is a single layer structure layer including only one layer. May be. For example, the resin layer may be a single-layered layer formed of a resin containing a polymer and a laser absorber, and further containing an optional component such as an ultraviolet absorber as necessary. As a specific example, the above-described intermediate layer itself may be used alone as a resin layer.
 樹脂層が含む揮発性成分の量は、好ましくは0.1重量%以下、より好ましくは0.05重量%以下、さらに好ましくは0.02重量%以下である。揮発性成分の量が前記範囲にあることにより、樹脂層の寸法安定性が向上し、レターデーション等の光学特性の経時変化を小さくすることができる。さらには、偏光子及び表示装置の劣化を抑制でき、長期的に表示装置の表示を安定で良好に保つことができる。ここで、揮発性成分は、分子量200以下の物質である。揮発性成分としては、例えば、残留単量体及び溶媒などが挙げられる。揮発性成分の量は、分子量200以下の物質の合計として、ガスクロマトグラフィーにより分析することにより定量しうる。 The amount of the volatile component contained in the resin layer is preferably 0.1% by weight or less, more preferably 0.05% by weight or less, and further preferably 0.02% by weight or less. When the amount of the volatile component is within the above range, the dimensional stability of the resin layer is improved, and the change with time in optical characteristics such as retardation can be reduced. Furthermore, the deterioration of the polarizer and the display device can be suppressed, and the display of the display device can be stably and satisfactorily maintained for a long time. Here, the volatile component is a substance having a molecular weight of 200 or less. Examples of volatile components include residual monomers and solvents. The amount of volatile components can be quantified by analyzing by gas chromatography as the sum of substances having a molecular weight of 200 or less.
 樹脂層の飽和吸水率は、好ましくは0.05%以下、より好ましくは0.03%以下、特に好ましくは0.01%以下であり、理想的にはゼロ%である。樹脂層の飽和吸水率がこのように低いことにより、樹脂層の光学特性の継時的な変化を抑制することができる。 The saturated water absorption rate of the resin layer is preferably 0.05% or less, more preferably 0.03% or less, particularly preferably 0.01% or less, and ideally 0%. Since the saturated water absorption rate of the resin layer is thus low, it is possible to suppress changes over time in the optical characteristics of the resin layer.
 樹脂層の飽和吸水率は、JIS K7209に従い、下記の手順で測定しうる。
 樹脂層を50℃で24時間乾燥し、デシケータ中で放冷する。次いで、乾燥した樹脂層の重量(M1)を測定する。
 この樹脂層を、温度23℃、相対湿度50%の室内で24時間水に浸漬し樹脂層を水で飽和させる。その後、水から樹脂層を取り出し、24時間浸漬後の樹脂層の重量(M2)を測定する。
 これらの重量の測定値から、次式により、樹脂層の飽和吸水率を求めうる。
 飽和吸水率(%)=[(M2-M1)/M1]×100(%)
The saturated water absorption rate of the resin layer can be measured according to the following procedure according to JIS K7209.
The resin layer is dried at 50 ° C. for 24 hours and allowed to cool in a desiccator. Next, the weight (M1) of the dried resin layer is measured.
This resin layer is immersed in water in a room at a temperature of 23 ° C. and a relative humidity of 50% for 24 hours to saturate the resin layer with water. Thereafter, the resin layer is taken out of the water, and the weight (M2) of the resin layer after being immersed for 24 hours is measured.
From the measured values of these weights, the saturated water absorption rate of the resin layer can be obtained by the following formula.
Saturated water absorption (%) = [(M2−M1) / M1] × 100 (%)
 樹脂層の厚みは、好ましくは15μm以上、より好ましくは20μm以上、特に好ましくは25μm以上であり、好ましくは50μm以下、より好ましくは45μm以下、特に好ましくは40μm以下である。 The thickness of the resin layer is preferably 15 μm or more, more preferably 20 μm or more, particularly preferably 25 μm or more, preferably 50 μm or less, more preferably 45 μm or less, and particularly preferably 40 μm or less.
 樹脂層の製造方法に制限は無い。例えば、図2に示したような第一外側層210、中間層230及び第二外側層220を備える樹脂層200は、各層を形成するための樹脂をフィルム状に成形する工程を含む製造方法により、製造しうる。樹脂の成形方法としては、例えば、共押出法及び共流延法などが挙げられる。これらの成形方法の中でも、共押出法は、製造効率に優れ、得られた樹脂層に揮発性成分を残留させ難いので、好ましい。 There is no limitation on the method for producing the resin layer. For example, the resin layer 200 including the first outer layer 210, the intermediate layer 230, and the second outer layer 220 as shown in FIG. 2 is manufactured by a manufacturing method including a step of forming a resin for forming each layer into a film shape. Can be manufactured. Examples of the resin molding method include a co-extrusion method and a co-casting method. Among these molding methods, the coextrusion method is preferable because it is excellent in production efficiency and hardly causes volatile components to remain in the obtained resin layer.
 また、基材が含む樹脂層は、延伸フィルムであってもよい。よって、例えば、図2に示したような第一外側層210、中間層230及び第二外側層220を備える樹脂層200は、上述した方法によってフィルム状に成形した後で、延伸処理を施されたものであってもよい。延伸フィルムは、延伸処理を施されたフィルムであり、通常は、当該フィルム中の重合体が前記の延伸処理によって配向している。そのため、延伸フィルムは重合体の配向に応じた光学特性を有することができるので、レターデーション等の光学特性を容易に調整することができる。また、延伸フィルムは、通常、延伸によって厚みを薄くされたり、広幅なフィルムを得られたり、機械的強度を向上させられたりできる。よって、樹脂層として延伸フィルムを用いることにより、好適な属性を有する基材を容易に得ることができる。 Further, the resin layer included in the base material may be a stretched film. Therefore, for example, the resin layer 200 including the first outer layer 210, the intermediate layer 230, and the second outer layer 220 as shown in FIG. 2 is formed into a film by the above-described method and then subjected to a stretching process. It may be. The stretched film is a film that has been subjected to a stretching treatment, and usually the polymer in the film is oriented by the stretching treatment. Therefore, the stretched film can have optical characteristics corresponding to the orientation of the polymer, so that optical characteristics such as retardation can be easily adjusted. In addition, the stretched film can usually be reduced in thickness by stretching, a wide film can be obtained, or the mechanical strength can be improved. Therefore, the base material which has a suitable attribute can be easily obtained by using a stretched film as a resin layer.
[2.1.4.基材に含まれうる光学異方性層]
 基材は、液晶性化合物を含む液晶組成物の硬化物で形成された光学異方性層を含んでいてもよい。ここで、用語「液晶組成物」は、2種類以上の成分を含む材料だけでなく、1種類の液晶化合物のみを含む材料を包含する。通常、液晶組成物の硬化物は、液晶性化合物に応じた光学異方性を有するので、前記の硬化物で形成された光学異方性層は、所定の面内レターデーションを有する。以下の説明では、位相差フィルムに含まれうる光学異方性層と区別するため、基材に含まれる光学異方性層を「第一光学異方性層」ということがある。
[2.1.4. Optically anisotropic layer that can be contained in substrate]
The base material may include an optically anisotropic layer formed of a cured product of a liquid crystal composition containing a liquid crystal compound. Here, the term “liquid crystal composition” includes not only a material containing two or more types of components but also a material containing only one type of liquid crystal compound. Usually, the cured product of the liquid crystal composition has optical anisotropy corresponding to the liquid crystal compound, and thus the optically anisotropic layer formed of the cured product has a predetermined in-plane retardation. In the following description, in order to distinguish from the optically anisotropic layer that can be included in the retardation film, the optically anisotropic layer included in the base material may be referred to as a “first optically anisotropic layer”.
 液晶化合物は、液晶組成物に配合し配向させた際に、液晶相を呈しうる化合物である。このような液晶化合物として、通常は、重合性の液晶化合物を用いる。ここで、重合性の液晶化合物とは、液晶相を呈した状態で液晶組成物中で重合し、液晶相における分子の配向を維持したまま重合体となりうる液晶化合物である。 A liquid crystal compound is a compound that can exhibit a liquid crystal phase when blended and aligned in a liquid crystal composition. As such a liquid crystal compound, a polymerizable liquid crystal compound is usually used. Here, the polymerizable liquid crystal compound is a liquid crystal compound that is polymerized in a liquid crystal composition in a state of exhibiting a liquid crystal phase, and can be a polymer while maintaining molecular orientation in the liquid crystal phase.
 重合性の液晶化合物としては、重合性基を有する液晶化合物、側鎖型液晶ポリマーを形成しうる化合物、円盤状液晶化合物などの化合物が挙げられ、中でも、可視光線、紫外線、及び赤外線等の光を照射することによって重合しうる光重合性の化合物が好ましい。重合性基を有する液晶化合物としては、例えば、特開平11-513360号公報、特開2002-030042号公報、特開2004-204190号公報、特開2005-263789号公報、特開2007-119415号公報、特開2007-186430号公報などに記載された重合性基を有する棒状液晶化合物などが挙げられる。また、側鎖型液晶ポリマー化合物としては、例えば、特開2003-177242号公報などに記載の側鎖型液晶ポリマー化合物などが挙げられる。また、好ましい液晶化合物の例を製品名で挙げると、BASF社製「LC242」等が挙げられる。円盤状液晶化合物の具体例としては、特開平8-50206号公報、文献(C. Destrade et al., Mol. Cryst. Liq. Cryst., vol. 71, page 111 (1981) ;日本化学会編、季刊化学総説、No.22、液晶の化学、第5章、第10章第2節(1994);J. Zhang et al., J. Am. Chem. Soc., vol. 116, page 2655 (1994));J. Lehn et al., J.Chem.Soc.,Chem.Commun., page 1794 (1985)に記載されている。液晶化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the polymerizable liquid crystal compound include compounds such as a liquid crystal compound having a polymerizable group, a compound capable of forming a side chain type liquid crystal polymer, and a discotic liquid crystal compound. Among them, light such as visible light, ultraviolet light, and infrared light is used. A photopolymerizable compound that can be polymerized by irradiating is preferred. Examples of the liquid crystal compound having a polymerizable group include, for example, JP-A Nos. 11-513360, 2002-030042, 2004-204190, 2005-263789, and 2007-119415. And rod-like liquid crystal compounds having a polymerizable group described in JP-A No. 2007-186430 and the like. Examples of the side chain type liquid crystal polymer compound include side chain type liquid crystal polymer compounds described in JP-A No. 2003-177242. Further, examples of preferable liquid crystal compounds include “LC242” manufactured by BASF and the like. As specific examples of the discotic liquid crystal compound, JP-A-8-50206, literature (C. Destrade et al., Mol. Cryst. Liq. Cryst., Vol. 71, page 111 (1981); edited by the Chemical Society of Japan) , Quarterly Chemistry Review, No. 22, Liquid Crystal Chemistry, Chapter 5, Chapter 10, Section 2 (1994); J. Zhang et al., J. Am. Chem. Soc., Vol. 116, page 2655 ( 1994)); J. Lehn et al., J. Chem. Soc., Chem. Commun., Page 1794 (1985). A liquid crystal compound may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 液晶化合物は、逆波長分散性液晶化合物であってもよい。ここで、逆波長分散性液晶化合物とは、ホモジニアス配向した場合に、逆波長分散特性を示す液晶化合物をいう。また、液晶化合物をホモジニアス配向させる、とは、当該液晶化合物を含む層を形成し、その層における液晶化合物の分子のメソゲンの長軸方向を、前記層の面に平行なある一の方向に配向させることをいう。液晶化合物が配向方向の異なる複数種類のメソゲンを含む場合は、それらのうち最も長い種類のメソゲンが配向する方向が、前記の配向方向となる。液晶化合物がホモジニアス配向しているか否か、及びその配向方向は、AxoScan(Axometrics社製)に代表されるような位相差計を用いた遅相軸方向の測定と、遅相軸方向における入射角毎のレターデーション分布の測定とにより確認しうる。液晶組成物が含む液晶化合物の一部又は全部として、逆波長分散性液晶化合物を用いることにより、逆波長分散特性を示す第一光学異方性層を容易に得ることができる。 The liquid crystal compound may be a reverse wavelength dispersive liquid crystal compound. Here, the reverse wavelength dispersive liquid crystal compound refers to a liquid crystal compound exhibiting reverse wavelength dispersion characteristics when homogeneously oriented. Also, the liquid crystal compound is homogeneously aligned means that a layer containing the liquid crystal compound is formed and the major axis direction of the mesogens of the molecules of the liquid crystal compound in the layer is aligned in one direction parallel to the plane of the layer. It means to make it. When the liquid crystal compound contains a plurality of types of mesogens having different alignment directions, the direction in which the longest type of mesogens is aligned is the alignment direction. Whether or not the liquid crystal compound is homogeneously aligned and the alignment direction are determined by measuring the slow axis direction using a phase difference meter represented by AxoScan (manufactured by Axometrics) and the incident angle in the slow axis direction. It can be confirmed by measuring the retardation distribution for each. By using a reverse wavelength dispersive liquid crystal compound as a part or all of the liquid crystal compound included in the liquid crystal composition, a first optical anisotropic layer exhibiting reverse wavelength dispersion characteristics can be easily obtained.
 例えば、当該化合物の分子中に、主鎖メソゲンと、前記主鎖メソゲンに結合した側鎖メソゲンとを含む化合物を、液晶化合物として用いることが好ましく、逆波長分散性液晶化合物として用いることがより好ましい。主鎖メソゲン及び側鎖メソゲンを含む前記の逆波長分散性液晶化合物は、当該逆波長分散性液晶化合物が配向した状態において、側鎖メソゲンが主鎖メソゲンと異なる方向に配向しうる。このような場合、複屈折は主鎖メソゲンに対応する屈折率と側鎖メソゲンに対応する屈折率との差として発現するので、結果として、逆波長分散性液晶化合物は、ホモジニアス配向した場合に、逆波長分散特性を示すことができる。 For example, a compound containing a main chain mesogen and a side chain mesogen bonded to the main chain mesogen in the molecule of the compound is preferably used as the liquid crystal compound, and more preferably used as the reverse wavelength dispersive liquid crystal compound. . In the reverse wavelength dispersive liquid crystal compound containing a main chain mesogen and a side chain mesogen, the side chain mesogen can be aligned in a direction different from the main chain mesogen in a state where the reverse wavelength dispersive liquid crystal compound is aligned. In such a case, birefringence appears as the difference between the refractive index corresponding to the main chain mesogen and the refractive index corresponding to the side chain mesogen, and as a result, when the reverse wavelength dispersive liquid crystal compound is homogeneously oriented, Inverse chromatic dispersion characteristics can be shown.
 重合性を有する逆波長分散性液晶化合物としては、例えば、下記式(I)で表される化合物が挙げられる。 Examples of the reverse wavelength dispersible liquid crystal compound having polymerizability include compounds represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 前記式(I)において、Y~Yは、それぞれ独立して、化学的な単結合、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-O-C(=O)-NR-、-NR-C(=O)-O-、-NR-C(=O)-NR-、-O-NR-、又は、-NR-O-を表す。ここで、Rは、水素原子又は炭素数1~6のアルキル基を表す。 In the formula (I), Y 1 to Y 8 are each independently a chemical single bond, —O—, —S—, —O—C (═O) —, —C (═O) —. O—, —O—C (═O) —O—, —NR 1 —C (═O) —, —C (═O) —NR 1 —, —O—C (═O) —NR 1 —, —NR 1 —C (═O) —O—, —NR 1 —C (═O) —NR 1 —, —O—NR 1 —, or —NR 1 —O— is represented. Here, R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
 前記式(I)において、G及びGは、それぞれ独立して、置換基を有していてもよい、炭素数1~20の二価の脂肪族基を表す。また、前記脂肪族基には、1つの脂肪族基当たり1以上の-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-NR-、又は、-C(=O)-が介在していてもよい。ただし、-O-又は-S-がそれぞれ2以上隣接して介在する場合を除く。ここで、Rは、水素原子又は炭素数1~6のアルキル基を表す。 In the formula (I), G 1 and G 2 each independently represent a divalent aliphatic group having 1 to 20 carbon atoms, which may have a substituent. The aliphatic group includes one or more —O—, —S—, —O—C (═O) —, —C (═O) —O—, —O—C per aliphatic group. (═O) —O—, —NR 2 —C (═O) —, —C (═O) —NR 2 —, —NR 2 —, or —C (═O) — may be present. Good. However, the case where two or more of —O— or —S— are adjacent to each other is excluded. Here, R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
 前記式(I)において、Z及びZは、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素数2~10のアルケニル基を表す。 In the formula (I), Z 1 and Z 2 each independently represents an alkenyl group having 2 to 10 carbon atoms which may be substituted with a halogen atom.
 前記式(I)において、Aは、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。「芳香環」は、Huckel則に従う広義の芳香族性を有する環状構造、すなわち、π電子を(4n+2)個有する環状共役構造、及びチオフェン、フラン、ベンゾチアゾール等に代表される、硫黄、酸素、窒素等のヘテロ原子の孤立電子対がπ電子系に関与して芳香族性を示す環状構造を意味する。 In the formula (I), A x represents an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring. “Aromatic ring” means a cyclic structure having a broad sense of aromaticity according to the Huckle rule, that is, a cyclic conjugated structure having (4n + 2) π electrons, and sulfur, oxygen, typified by thiophene, furan, benzothiazole, etc. It means a cyclic structure in which a lone electron pair of a hetero atom such as nitrogen is involved in the π-electron system and exhibits aromaticity.
 前記式(I)において、Aは、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有していてもよい炭素数2~20のアルキニル基、-C(=O)-R、-SO-R、-C(=S)NH-R、又は、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。ここで、Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、又は、炭素数5~12の芳香族炭化水素環基を表す。Rは、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、フェニル基、又は、4-メチルフェニル基を表す。Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、又は、置換基を有していてもよい炭素数5~20の芳香族基を表す。前記A及びAが有する芳香環は、置換基を有していてもよい。また、前記AとAは、一緒になって、環を形成していてもよい。 In the formula (I), A y is a hydrogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, A cycloalkyl group having 3 to 12 carbon atoms which may have a substituent, an alkynyl group having 2 to 20 carbon atoms which may have a substituent, —C (═O) —R 3 , —SO 2 An organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of —R 4 , —C (═S) NH—R 9 , or an aromatic hydrocarbon ring and an aromatic heterocyclic ring; To express. Here, R 3 has an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and a substituent. Or a cycloalkyl group having 3 to 12 carbon atoms or an aromatic hydrocarbon ring group having 5 to 12 carbon atoms. R 4 represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group, or a 4-methylphenyl group. R 9 is an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and an optionally substituted carbon. It represents a cycloalkyl group having 3 to 12 carbon atoms or an aromatic group having 5 to 20 carbon atoms which may have a substituent. The aromatic ring which said Ax and Ay have may have a substituent. A x and A y may be combined to form a ring.
 前記式(I)において、Aは、置換基を有していてもよい三価の芳香族基を表す。
 前記式(I)において、A及びAは、それぞれ独立して、置換基を有していてもよい炭素数3~30の二価の脂環式炭化水素基を表す。
 前記式(I)において、A及びAは、それぞれ独立して、置換基を有していてもよい、炭素数6~30の二価の芳香族基を表す。
 前記式(I)において、Qは、水素原子、又は、置換基を有していてもよい炭素数1~6のアルキル基を表す。
 前記式(I)において、mは、それぞれ独立に、0又は1を表す。
In the formula (I), A 1 represents a trivalent aromatic group which may have a substituent.
In the formula (I), A 2 and A 3 each independently represent a C 3-30 divalent alicyclic hydrocarbon group which may have a substituent.
In the formula (I), A 4 and A 5 each independently represents a divalent aromatic group having 6 to 30 carbon atoms which may have a substituent.
In the formula (I), Q 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
In the formula (I), each m independently represents 0 or 1.
 式(I)で表される液晶化合物としては、例えば、国際公開第2014/069515号、国際公開第2015/064581号などに記載された化合物が挙げられる。 Examples of the liquid crystal compound represented by the formula (I) include compounds described in International Publication No. 2014/069515, International Publication No. 2015/064581, and the like.
 また、液晶化合物は、順波長分散性液晶化合物であってもよい。ここで、順波長分散性液晶化合物とは、ホモジニアス配向した場合に、順波長分散特性を示す液晶化合物をいう。液晶組成物が含む液晶化合物の一部又は全部として、順波長分散性液晶化合物を用いることにより、順波長分散特性を有する第一光学異方性層を容易に得ることができる。 Further, the liquid crystal compound may be a forward wavelength dispersive liquid crystal compound. Here, the forward wavelength dispersible liquid crystal compound refers to a liquid crystal compound that exhibits forward wavelength dispersion characteristics when homogeneously oriented. By using a forward wavelength dispersible liquid crystal compound as part or all of the liquid crystal compound contained in the liquid crystal composition, a first optical anisotropic layer having forward wavelength dispersion characteristics can be easily obtained.
 重合性を有する順波長分散性液晶化合物としては、例えば、下記式(II)で表される化合物が挙げられる。
 R3x-C3x-D3x-C5x-M-C6x-D4x-C4x-R4x 式(II)
Examples of the forward wavelength dispersible liquid crystal compound having polymerizability include compounds represented by the following formula (II).
R 3x -C 3x -D 3x -C 5x -M x -C 6x -D 4x -C 4x -R 4x formula (II)
 式(II)において、R3x及びR4xは、それぞれ独立して、反応性基を示す。R3x及びR4xは、例えば、(メタ)アクリロイル基、エポキシ基、チオエポキシ基、オキセタン基、チエタニル基、アジリジニル基、ピロール基、フマレート基、シンナモイル基、イソシアネート基、イソチオシアネート基、アミノ基、ヒドロキシル基、カルボキシル基、アルコキシシリル基、オキサゾリン基、メルカプト基、ビニル基、アリル基等が挙げられる。 In formula (II), R 3x and R 4x each independently represent a reactive group. R 3x and R 4x are, for example, (meth) acryloyl group, epoxy group, thioepoxy group, oxetane group, thietanyl group, aziridinyl group, pyrrole group, fumarate group, cinnamoyl group, isocyanate group, isothiocyanate group, amino group, hydroxyl group Group, carboxyl group, alkoxysilyl group, oxazoline group, mercapto group, vinyl group, allyl group and the like.
 式(II)において、D3x及びD4xは、それぞれ独立して、単結合、炭素原子数1~20個の直鎖状又は分岐鎖状のアルキレン基、及び炭素原子数1~20個の直鎖状又は分岐鎖状のアルキレンオキサイド基からなる群より選択される基を表す。 In the formula (II), D 3x and D 4x each independently represent a single bond, a linear or branched alkylene group having 1 to 20 carbon atoms, and a straight chain having 1 to 20 carbon atoms. It represents a group selected from the group consisting of a chain or branched alkylene oxide group.
 式(II)において、C3x~C6xは、それぞれ独立して、単結合、-O-、-S-、-S-S-、-CO-、-CS-、-OCO-、-CH-、-OCH-、-CH=N-N=CH-、-NHCO-、-OCOO-、-CHCOO-、及び-CHOCO-からなる群より選択される基を表す。 In the formula (II), C 3x to C 6x are each independently a single bond, —O—, —S—, —SS—, —CO—, —CS—, —OCO—, —CH 2. -, - OCH 2 -, - CH = N-N = CH -, - NHCO -, - OCOO -, - CH 2 COO-, and represents a group selected from the group consisting of -CH 2 OCO-.
 式(II)においてMは、メソゲン基を表す。好適なメソゲン基Mは、非置換又は置換基を有していてもよい、アゾメチン類、アゾキシ類、フェニル類、ビフェニル類、ターフェニル類、ナフタレン類、アントラセン類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類、アルケニルシクロヘキシルベンゾニトリル類からなる群より選択された2~4個の骨格を、-O-、-S-、-S-S-、-CO-、-CS-、-OCO-、-CH-、-OCH-、-CH=N-N=CH-、-NHCO-、-OCOO-、-CHCOO-、及び-CHOCO-等の結合基によって結合されて形成される。 In the formula (II), M x represents a mesogenic group. Suitable mesogenic groups M x are unsubstituted or optionally substituted azomethines, azoxys, phenyls, biphenyls, terphenyls, naphthalenes, anthracenes, benzoates, cyclohexanecarboxylic acids 2-4 skeletons selected from the group consisting of acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines, phenyldioxanes, tolans, alkenylcyclohexylbenzonitriles, O—, —S—, —S—S—, —CO—, —CS—, —OCO—, —CH 2 —, —OCH 2 —, —CH═N—N═CH—, —NHCO—, — OCOO -, - CH 2 COO-, and is formed are joined by a linking group of -CH 2 OCO- or the like.
 メソゲン基Mが有しうる置換基としては、例えば、ハロゲン原子、置換基を有してもよい炭素数1~10のアルキル基、シアノ基、ニトロ基、-O-R5x、-O-C(=O)-R5x、-C(=O)-O-R5x、-O-C(=O)-O-R5x、-NR5x-C(=O)-R5x、-C(=O)-NR5x7x、または-O-C(=O)-NR5x7xが挙げられる。ここで、R5x及びR7xは、水素原子又は炭素数1~10のアルキル基を表す。R5x及びR7xがアルキル基である場合、当該アルキル基には、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR6x-C(=O)-、-C(=O)-NR6x-、-NR6x-、または-C(=O)-が介在していてもよい(ただし、-O-および-S-がそれぞれ2以上隣接して介在する場合を除く。)。ここで、R6xは、水素原子または炭素数1~6のアルキル基を表す。 Examples of the substituent that the mesogenic group M x may have include, for example, a halogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, a cyano group, a nitro group, —O—R 5x , —O—. C (═O) —R 5x , —C (═O) —O—R 5x , —O—C (═O) —O—R 5x , —NR 5x —C (═O) —R 5x , —C (═O) —NR 5x R 7x , or —O—C (═O) —NR 5x R 7x . Here, R 5x and R 7x represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. When R 5x and R 7x are alkyl groups, the alkyl group includes —O—, —S—, —O—C (═O) —, —C (═O) —O—, —O—C. (═O) —O—, —NR 6x —C (═O) —, —C (═O) —NR 6x —, —NR 6x —, or —C (═O) — may be present. (However, the case where two or more of —O— and —S— are adjacent to each other is excluded). Here, R 6x represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
 前記「置換基を有してもよい炭素数1~10個のアルキル基」における置換基としては、例えば、ハロゲン原子、ヒドロキシル基、カルボキシル基、シアノ基、アミノ基、炭素原子数1~6個のアルコキシ基、炭素原子数2~8個のアルコキシアルコキシ基、炭素原子数3~15個のアルコキシアルコキシアルコキシ基、炭素原子数2~7個のアルコキシカルボニル基、炭素原子数2~7個のアルキルカルボニルオキシ基、炭素原子数2~7個のアルコキシカルボニルオキシ基等が挙げられる。 Examples of the substituent in the “optionally substituted alkyl group having 1 to 10 carbon atoms” include, for example, a halogen atom, a hydroxyl group, a carboxyl group, a cyano group, an amino group, and 1 to 6 carbon atoms. An alkoxy group having 2 to 8 carbon atoms, an alkoxyalkoxyalkoxy group having 3 to 15 carbon atoms, an alkoxycarbonyl group having 2 to 7 carbon atoms, and an alkyl having 2 to 7 carbon atoms Examples thereof include a carbonyloxy group and an alkoxycarbonyloxy group having 2 to 7 carbon atoms.
 式(II)で表される液晶化合物としては、例えば、国際公開第2016/002765号などに記載された棒状液晶性化合物が挙げられる。 Examples of the liquid crystal compound represented by the formula (II) include rod-like liquid crystal compounds described in International Publication No. 2016/002765.
 また、液晶化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Also, one type of liquid crystal compound may be used alone, or two or more types may be used in combination at any ratio.
 液晶組成物における液晶化合物の量は、所望の第一光学異方性層が得られる範囲で任意に設定でき、好ましくは1重量%以上、より好ましくは5重量%以上、特に好ましくは10重量%以上であり、また、好ましくは100重量%以下、より好ましくは80重量%以下、特に好ましくは60重量%以下である。 The amount of the liquid crystal compound in the liquid crystal composition can be arbitrarily set within a range in which a desired first optically anisotropic layer can be obtained, preferably 1% by weight or more, more preferably 5% by weight or more, and particularly preferably 10% by weight. Further, it is preferably 100% by weight or less, more preferably 80% by weight or less, and particularly preferably 60% by weight or less.
 液晶組成物は、液晶化合物に組み合わせて、任意の成分を含んでいてもよい。任意の成分としては、例えば、重合開始剤、界面活性剤、溶媒、金属、金属錯体、染料、顔料、蛍光材料、燐光材料、レベリング剤、チキソ剤、ゲル化剤、多糖類、赤外線吸収剤、抗酸化剤、イオン交換樹脂、酸化チタン等の金属酸化物等が挙げられる。任意の成分については、国際公開第2015/064581号を参照しうる。 The liquid crystal composition may contain an arbitrary component in combination with the liquid crystal compound. Optional components include, for example, polymerization initiators, surfactants, solvents, metals, metal complexes, dyes, pigments, fluorescent materials, phosphorescent materials, leveling agents, thixotropic agents, gelling agents, polysaccharides, infrared absorbers, Examples thereof include antioxidants, ion exchange resins, and metal oxides such as titanium oxide. Reference may be made to WO 2015/064581 for optional ingredients.
 第一光学異方性層は、前記の液晶化合物を含む液晶組成物の硬化物で形成された層であり、通常、液晶化合物から得られる硬化液晶分子を含む。ここで、「硬化液晶分子」とは、液晶相を呈しうる化合物を、液晶相を呈した状態のまま固体とした際の当該化合物の分子を意味する。第一光学異方性層が含む硬化液晶分子は、通常、液晶化合物を重合させてなる重合体である。よって、第一光学異方性層は、通常は、液晶化合物を重合させてなる重合体を含み、必要に応じて任意の成分を含みうる樹脂の層となっている。そして、このような第一光学異方性層は、前記の硬化液晶分子の配向状態に応じた光学異方性を有しうる。第一光学異方性層の光学異方性は、面内レターデーションによって表すことができる。第一光学異方性層の具体的な面内レターデーションは、第一光学異方性層が有するべき面内レターデーションに応じて設定できる。 The first optically anisotropic layer is a layer formed of a cured product of a liquid crystal composition containing the above liquid crystal compound, and usually contains cured liquid crystal molecules obtained from the liquid crystal compound. Here, the “cured liquid crystal molecule” means a molecule of the compound when the compound capable of exhibiting the liquid crystal phase is turned into a solid while exhibiting the liquid crystal phase. The cured liquid crystal molecules contained in the first optically anisotropic layer are usually polymers obtained by polymerizing a liquid crystal compound. Therefore, the first optically anisotropic layer usually comprises a polymer obtained by polymerizing a liquid crystal compound, and is a resin layer that can contain any component as necessary. And such a 1st optically anisotropic layer can have the optical anisotropy according to the orientation state of the said hardening liquid crystal molecule. The optical anisotropy of the first optical anisotropic layer can be expressed by in-plane retardation. The specific in-plane retardation of the first optical anisotropic layer can be set according to the in-plane retardation that the first optical anisotropic layer should have.
 第一光学異方性層の厚みは、レターデーション等の光学特性を所望の範囲にできるように適宜調整でき、好ましくは0.5μm以上、より好ましくは1.0μm以上であり、好ましくは10μm以下、より好ましくは7μm以下、特に好ましくは5μm以下である。 The thickness of the first optically anisotropic layer can be adjusted as appropriate so that the optical properties such as retardation can be in a desired range, preferably 0.5 μm or more, more preferably 1.0 μm or more, and preferably 10 μm or less. More preferably, it is 7 μm or less, particularly preferably 5 μm or less.
 第一光学異方性層は、通常、支持体上に液晶組成物の層を形成する工程と、液晶組成物の層を硬化させて第一光学異方性層を得る工程と、を含む製造方法によって、製造できる。 The first optically anisotropic layer usually comprises a step of forming a liquid crystal composition layer on a support and a step of curing the liquid crystal composition layer to obtain a first optically anisotropic layer. It can be manufactured by a method.
 この製造方法では、支持体を用意し、その支持体の面に、液晶組成物の層を形成する。支持体として、通常は、樹脂フィルムを用いる。樹脂としては、熱可塑性樹脂を用いることができる。中でも、透明性、低吸湿性、寸法安定性及び軽量性の観点から、脂環式構造含有重合体を含む樹脂、及び、セルロースエステル樹脂が好ましい。 In this production method, a support is prepared, and a layer of a liquid crystal composition is formed on the surface of the support. As the support, a resin film is usually used. As the resin, a thermoplastic resin can be used. Among these, a resin containing an alicyclic structure-containing polymer and a cellulose ester resin are preferred from the viewpoints of transparency, low hygroscopicity, dimensional stability, and lightness.
 支持体の表面には、液晶組成物の層における液晶化合物の配向を促進するため、配向規制力を付与するための処理が施されていてもよい。ここで、ある面の配向規制力とは、液晶組成物中の液晶化合物を配向させうる、その面の性質をいう。 The surface of the support may be subjected to a treatment for imparting alignment regulating force in order to promote the alignment of the liquid crystal compound in the liquid crystal composition layer. Here, the alignment regulating force of a certain surface means the property of that surface capable of aligning the liquid crystal compound in the liquid crystal composition.
 配向規制力を付与するための処理としては、例えば、ラビング処理、配向層形成処理、イオンビーム配向処理、延伸処理などが挙げられ、中でも、延伸処理が好ましい。支持体に適切な条件で延伸処理を施すことにより、支持体に含まれる重合体の分子を配向させることができる。これにより、支持体に含まれる重合体の分子の配向方向に液晶化合物を配向させる配向規制力を、支持体の表面に付与できる。 Examples of the treatment for imparting the orientation regulating force include a rubbing treatment, an orientation layer forming treatment, an ion beam orientation treatment, and a stretching treatment. Among them, the stretching treatment is preferable. By subjecting the support to stretching under appropriate conditions, the polymer molecules contained in the support can be oriented. Thereby, the alignment control force which orientates a liquid crystal compound in the alignment direction of the molecule | numerator of the polymer contained in a support body can be provided to the surface of a support body.
 支持体の延伸は、支持体に異方性を付与して、当該支持体に遅相軸を発現させられるように行うことが好ましい。これにより、通常は、支持体の遅相軸と平行又は垂直な方向に液晶化合物を配向させる配向規制力が、支持体の表面に付与される。例えば、支持体の材料として正の固有複屈折値を有する樹脂を用いた場合、通常は、支持体に含まれる重合体の分子が延伸方向に配向することにより延伸方向に平行な遅相軸が発現するので、支持体の遅相軸と平行な方向に液晶化合物を配向させる配向規制力が、支持体の表面に付与される。したがって、支持体の延伸方向は、液晶化合物を配向させようとする所望の配向方向に応じて設定しうる。 The stretching of the support is preferably performed so that anisotropy is imparted to the support so that the slow axis can be expressed in the support. Thereby, usually, an alignment regulating force for aligning the liquid crystal compound in a direction parallel or perpendicular to the slow axis of the support is applied to the surface of the support. For example, when a resin having a positive intrinsic birefringence value is used as the support material, the slow axis parallel to the stretching direction is usually obtained by orienting the polymer molecules contained in the support in the stretching direction. Therefore, the alignment regulating force for aligning the liquid crystal compound in a direction parallel to the slow axis of the support is imparted to the surface of the support. Therefore, the extending direction of the support can be set according to the desired alignment direction in which the liquid crystal compound is to be aligned.
 延伸倍率は、延伸後の支持体の複屈折Δnが所望の範囲となるように設定しうる。延伸後の支持体の複屈折Δnは、好ましくは0.000050以上、より好ましくは0.000070以上であり、好ましくは0.007500以下、より好ましくは0.007000以下である。延伸後の支持体の複屈折Δnが前記範囲の下限値以上であることにより、当該支持体の表面に良好な配向規制力を付与できる。前記の延伸は、テンター延伸機などの延伸機を用いて行いうる。 The stretching ratio can be set so that the birefringence Δn of the support after stretching falls within a desired range. The birefringence Δn of the support after stretching is preferably 0.000050 or more, more preferably 0.000070 or more, preferably 0.007500 or less, more preferably 0.007000 or less. When the birefringence Δn of the support after stretching is not less than the lower limit of the above range, it is possible to impart a good alignment regulating force to the surface of the support. The stretching can be performed using a stretching machine such as a tenter stretching machine.
 前記のような支持体としては、長尺のフィルムを用いることが好ましい。支持体として長尺のフィルムを用いることにより、第一光学異方性層の生産性を向上させることができる。この際、支持体の厚みは、生産性の向上、薄型化及び軽量化を容易にする観点から、好ましくは1μm以上、より好ましくは5μm以上、特に好ましくは30μm以上であり、好ましくは1000μm以下、より好ましくは300μm以下、特に好ましくは100μm以下である。 It is preferable to use a long film as the support. By using a long film as the support, the productivity of the first optically anisotropic layer can be improved. At this time, the thickness of the support is preferably 1 μm or more, more preferably 5 μm or more, particularly preferably 30 μm or more, preferably 1000 μm or less, from the viewpoint of facilitating productivity improvement, thinning and weight reduction. More preferably, it is 300 micrometers or less, Most preferably, it is 100 micrometers or less.
 また、支持体としては、上述した樹脂層を用いてもよい。基材に含まれるべき樹脂層を支持体として用いることにより、基材の材料とは別に支持体を用意する必要が無くなるので、基材の製造コストを低くすることができる。 Further, as the support, the above-described resin layer may be used. By using the resin layer to be included in the base material as a support, it is not necessary to prepare a support separately from the material of the base material, so that the manufacturing cost of the base material can be reduced.
 液晶組成物の層の形成は、通常、塗工法によって行う。具体的には、支持体の表面に、液晶組成物を塗工して、液晶組成物の層を形成する。塗工方法としては、例えば、カーテンコーティング法、押し出しコーティング法、ロールコーティング法、スピンコーティング法、ディップコーティング法、バーコーティング法、スプレーコーティング法、スライドコーティング法、印刷コーティング法、グラビアコーティング法、ダイコーティング法、ギャップコーティング法、及びディッピング法が挙げられる。塗工される液晶組成物の層の厚みは、第一光学異方性層に求められる所望の厚みに応じて適切に設定しうる。 The formation of the liquid crystal composition layer is usually carried out by a coating method. Specifically, the liquid crystal composition is applied to the surface of the support to form a liquid crystal composition layer. Examples of coating methods include curtain coating, extrusion coating, roll coating, spin coating, dip coating, bar coating, spray coating, slide coating, print coating, gravure coating, and die coating. Method, gap coating method, and dipping method. The thickness of the layer of the liquid crystal composition to be applied can be appropriately set according to a desired thickness required for the first optical anisotropic layer.
 液晶組成物の層を形成した後で、必要に応じて、液晶組成物の層を乾燥させる工程を行ってもよい。かかる乾燥は、自然乾燥、加熱乾燥、減圧乾燥、減圧加熱乾燥等の乾燥方法で達成しうる。かかる乾燥により、液晶組成物の層から、溶媒を除去することができる。 After forming the liquid crystal composition layer, if necessary, a step of drying the liquid crystal composition layer may be performed. Such drying can be achieved by a drying method such as natural drying, heat drying, reduced pressure drying, and reduced pressure heat drying. By such drying, the solvent can be removed from the liquid crystal composition layer.
 また、液晶組成物の層を形成した後で、必要に応じて、当該層に含まれる液晶化合物を配向させる工程を行ってもよい。この工程では、通常は、液晶組成物の層に配向処理を施すことにより、支持体の面の配向規制力に応じた方向に液晶化合物を配向させる。配向処理は、通常、液晶組成物の層を、所定の配向温度に加熱することによって、行う。この配向処理の条件は、使用する液晶組成物の性質に応じて適切に設定しうる。配向処理の条件の具体例を挙げると、50℃~160℃の温度条件において、30秒間~5分間処理する条件としうる。 In addition, after forming the liquid crystal composition layer, a step of aligning the liquid crystal compound contained in the layer may be performed as necessary. In this step, the liquid crystal compound is usually aligned in a direction corresponding to the alignment regulating force of the surface of the support by applying an alignment treatment to the liquid crystal composition layer. The alignment treatment is usually performed by heating the liquid crystal composition layer to a predetermined alignment temperature. The conditions for the alignment treatment can be appropriately set according to the properties of the liquid crystal composition to be used. As a specific example of the conditions for the alignment treatment, the treatment may be performed under a temperature condition of 50 ° C. to 160 ° C. for 30 seconds to 5 minutes.
 ただし、液晶化合物の配向は、液晶組成物の塗工により直ちに達成される場合がありえる。そのため、液晶化合物を配向させたい場合でも、配向処理は、必ずしも液晶組成物の層に施さなくてもよい。 However, alignment of the liquid crystal compound may be achieved immediately by application of the liquid crystal composition. Therefore, even when it is desired to align the liquid crystal compound, the alignment treatment is not necessarily performed on the layer of the liquid crystal composition.
 必要に応じて液晶組成物の層の乾燥、及び、液晶化合物の配向を行った後で、前記液晶組成物の層を硬化させて、第一光学異方性層を得る工程を行う。この工程では、通常、液晶化合物を重合させて、液晶組成物の層を硬化させる。液晶化合物の重合方法としては、液晶組成物に含まれる成分の性質に適合した方法を選択しうる。重合方法としては、例えば、活性エネルギー線を照射する方法、及び、熱重合法が挙げられる。中でも、加熱が不要であり、室温で重合反応を進行させられるので、活性エネルギー線を照射する方法が好ましい。ここで、照射される活性エネルギー線には、可視光線、紫外線、及び赤外線等の光、並びに電子線等の任意のエネルギー線が含まれうる。 If necessary, after drying the liquid crystal composition layer and aligning the liquid crystal compound, the liquid crystal composition layer is cured to obtain a first optically anisotropic layer. In this step, the liquid crystal compound is usually polymerized to cure the liquid crystal composition layer. As a method for polymerizing the liquid crystal compound, a method suitable for the properties of the components contained in the liquid crystal composition can be selected. Examples of the polymerization method include a method of irradiating active energy rays and a thermal polymerization method. Among them, the method of irradiating with active energy rays is preferable because heating is unnecessary and the polymerization reaction can proceed at room temperature. Here, the irradiated active energy rays can include light such as visible light, ultraviolet light, and infrared light, and arbitrary energy rays such as electron beams.
 なかでも、操作が簡便なことから、紫外線等の光を照射する方法が好ましい。紫外線照射時の温度は、支持体のガラス転移温度以下とすることが好ましく、好ましくは150℃以下、より好ましくは100℃以下、特に好ましくは80℃以下である。紫外線照射時の温度の下限は、15℃以上としうる。紫外線の照射強度は、好ましくは0.1mW/cm以上、より好ましくは0.5mW/cm以上であり、好ましくは1000mW/cm以下、より好ましくは600mW/cm以下である。 Among these, a method of irradiating light such as ultraviolet rays is preferable because the operation is simple. The temperature at the time of ultraviolet irradiation is preferably not higher than the glass transition temperature of the support, preferably not higher than 150 ° C., more preferably not higher than 100 ° C., particularly preferably not higher than 80 ° C. The lower limit of the temperature during ultraviolet irradiation can be 15 ° C. or higher. The irradiation intensity of ultraviolet rays is preferably 0.1 mW / cm 2 or more, more preferably 0.5 mW / cm 2 or more, preferably 1000 mW / cm 2 or less, more preferably 600 mW / cm 2 or less.
 こうして得られた第一光学異方性層は、必要に応じて、支持体から剥がして用いてもよい。 The first optically anisotropic layer thus obtained may be peeled off from the support if necessary.
[2.1.5.基材に含まれうる導電層]
 基材は、樹脂層に組み合わせて、導電層を含んでいてもよい。導電層は、通常、基材に含まれる樹脂層の片面又は両面に設けられる。樹脂層は、一般に可撓性に優れるので、樹脂層上に導電層を備えた基材を用いることにより、指での入力が円滑なタッチパネルを実現できる。特に、脂環式構造含有重合体を含む基材では、その脂環式構造含有重合体の優れた耐熱性及び低吸湿性を活用できるので、高温又は高湿度の環境においてカール等の変形を生じ難い。
[2.1.5. Conductive layer that can be included in substrate]
The base material may include a conductive layer in combination with the resin layer. The conductive layer is usually provided on one side or both sides of the resin layer included in the substrate. Since the resin layer is generally excellent in flexibility, a touch panel in which input with a finger is smooth can be realized by using a base material provided with a conductive layer on the resin layer. In particular, in a base material containing an alicyclic structure-containing polymer, the excellent heat resistance and low hygroscopicity of the alicyclic structure-containing polymer can be utilized. hard.
 導電層としては、例えば、導電性金属酸化物、導電性ナノワイヤ、金属メッシュ及び導電性ポリマーからなる群より選ばれる少なくとも1種の導電材料を含む層を用いうる。 As the conductive layer, for example, a layer containing at least one conductive material selected from the group consisting of conductive metal oxides, conductive nanowires, metal meshes, and conductive polymers can be used.
 導電性金属酸化物としては、例えば、ITO(インジウム錫オキサイド)、IZO(インジウム亜鉛オキサイド)、ZnO(酸化亜鉛)、IWO(インジウムタングステンオキサイド)、ITiO(インジウムチタニウムオキサイド)、AZO(アルミニウム亜鉛オキサイド)、GZO(ガリウム亜鉛オキサイド)、XZO(亜鉛系特殊酸化物)、IGZO(インジウムガリウム亜鉛オキサイド)等が挙げられる。これらの中でも、光線透過性及び耐久性の観点より、ITOが特に好ましい。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the conductive metal oxide include ITO (indium tin oxide), IZO (indium zinc oxide), ZnO (zinc oxide), IWO (indium tungsten oxide), ITiO (indium titanium oxide), and AZO (aluminum zinc oxide). , GZO (gallium zinc oxide), XZO (zinc-based special oxide), IGZO (indium gallium zinc oxide), and the like. Among these, ITO is particularly preferable from the viewpoints of light transmittance and durability. One of these may be used alone, or two or more of these may be used in combination at any ratio.
 導電性金属酸化物を含む導電層は、蒸着法、スパッタリング法、イオンプレーティング法、イオンビームアシスト蒸着法、アーク放電プラズマ蒸着法、熱CVD法、プラズマCVD法、鍍金法、及びこれらの組み合わせ等の成膜方法によって、形成しうる。これらの中でも、蒸着法及びスパッタリング法が好ましく、スパッタリング法が特に好ましい。スパッタリング法では、厚みが均一な導電層を形成できるので、導電層に局所的に薄い部分が発生することを抑制できる。 Conductive layers containing conductive metal oxides are vapor deposition, sputtering, ion plating, ion beam assisted vapor deposition, arc discharge plasma vapor deposition, thermal CVD, plasma CVD, plating, and combinations thereof. The film formation method can be used. Among these, the vapor deposition method and the sputtering method are preferable, and the sputtering method is particularly preferable. In the sputtering method, since a conductive layer having a uniform thickness can be formed, it is possible to suppress the generation of locally thin portions in the conductive layer.
 導電性ナノワイヤとは、形状が針状または糸状であり、径がナノメートルサイズの導電性物質をいう。導電性ナノワイヤは直線状であってもよく、曲線状であってもよい。このような導電性ナノワイヤは、導電性ナノワイヤ同士が隙間を形成して網の目状となることにより、少量の導電性ナノワイヤであっても良好な電気伝導経路を形成することができ、電気抵抗の小さい導電層を実現できる。また、導電性ワイヤは、網の目状となることにより、網の目の隙間に開口部を形成するので、光透過率の高い導電層を得ることができる。さらに、導電性ナノワイヤを含む導電層を用いることにより、通常は、耐屈曲性に優れる基材を得ることができる。 The conductive nanowire is a conductive substance having a needle-like or thread-like shape and a diameter of nanometer. The conductive nanowire may be linear or curved. Such a conductive nanowire can form a good electrical conduction path even with a small amount of conductive nanowires by forming gaps between the conductive nanowires and forming a mesh. A small conductive layer can be realized. In addition, since the conductive wire has a mesh shape, an opening is formed in the mesh space, so that a conductive layer having high light transmittance can be obtained. Furthermore, by using a conductive layer containing conductive nanowires, it is usually possible to obtain a substrate having excellent bending resistance.
 導電性ナノワイヤの太さdと長さLとの比(アスペクト比:L/d)は、好ましくは10~100,000であり、より好ましくは50~100,000であり、特に好ましくは100~10,000である。このようにアスペクト比の大きい導電性ナノワイヤを用いれば、導電性ナノワイヤが良好に交差して、少量の導電性ナノワイヤにより高い導電性を発現させることができる。その結果、透明性に優れる基材を得ることができる。ここで、「導電性ナノワイヤの太さ」とは、導電性ナノワイヤの断面が円状である場合はその直径を意味し、楕円状である場合はその短径を意味し、多角形である場合は最も長い対角線を意味する。導電性ナノワイヤの太さおよび長さは、走査型電子顕微鏡または透過型電子顕微鏡によって測定しうる。 The ratio between the thickness d and the length L of the conductive nanowire (aspect ratio: L / d) is preferably 10 to 100,000, more preferably 50 to 100,000, and particularly preferably 100 to 100,000. 10,000. When conductive nanowires having a large aspect ratio are used in this way, the conductive nanowires can cross well and high conductivity can be expressed by a small amount of conductive nanowires. As a result, a substrate having excellent transparency can be obtained. Here, “the thickness of the conductive nanowire” means the diameter when the cross section of the conductive nanowire is circular, the short diameter when the cross section of the conductive nanowire is circular, and the polygonal shape Means the longest diagonal. The thickness and length of the conductive nanowire can be measured by a scanning electron microscope or a transmission electron microscope.
 導電性ナノワイヤの太さは、好ましくは500nm未満であり、より好ましくは200nm未満であり、更に好ましくは10nm~100nmであり、特に好ましくは10nm~50nmである。これにより、導電層の透明性を高めることができる。 The thickness of the conductive nanowire is preferably less than 500 nm, more preferably less than 200 nm, still more preferably 10 nm to 100 nm, and particularly preferably 10 nm to 50 nm. Thereby, the transparency of a conductive layer can be improved.
 導電性ナノワイヤの長さは、好ましくは2.5μm~1000μmであり、より好ましくは10μm~500μmであり、特に好ましくは20μm~100μmである。これにより、導電層の導電性を高めることができる。 The length of the conductive nanowire is preferably 2.5 μm to 1000 μm, more preferably 10 μm to 500 μm, and particularly preferably 20 μm to 100 μm. Thereby, the electroconductivity of a conductive layer can be improved.
 導電性ナノワイヤとしては、例えば、金属により構成される金属ナノワイヤ、カーボンナノチューブを含む導電性ナノワイヤ等が挙げられる。 Examples of conductive nanowires include metal nanowires made of metal, conductive nanowires containing carbon nanotubes, and the like.
 導電層における導電性ナノワイヤの含有率は、導電層の全重量に対して、好ましくは80重量%~100重量%であり、より好ましくは85重量%~99重量%である。これにより、導電性および光透過性に優れる導電層を得ることができる。 The content of the conductive nanowire in the conductive layer is preferably 80% by weight to 100% by weight, more preferably 85% by weight to 99% by weight, with respect to the total weight of the conductive layer. Thereby, the electroconductive layer excellent in electroconductivity and light transmittance can be obtained.
 導電性ナノワイヤを含む導電層は、導電性ナノワイヤを溶媒に分散させて得られた導電性ナノワイヤ分散液を塗工及び乾燥させることにより、製造しうる。 The conductive layer containing conductive nanowires can be produced by coating and drying a conductive nanowire dispersion obtained by dispersing conductive nanowires in a solvent.
 金属メッシュとは、格子状に形成された金属細線である。金属メッシュに含まれる金属としては、導電性の高い金属が好ましい。好適な金属の例としては、金、白金、銀及び銅が挙げられ、なかでも好ましくは銀、銅及び金であり、より好ましくは銀である。これらの金属は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The metal mesh is a thin metal wire formed in a lattice shape. As the metal contained in the metal mesh, a highly conductive metal is preferable. Examples of suitable metals include gold, platinum, silver and copper, among which silver, copper and gold are preferred, and silver is more preferred. These metals may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 金属メッシュを含む導電層は、例えば、銀塩を含む導電層形成用組成物を塗工し、露光処理及び現像処理によって金属細線を所定の格子パターンに形成することにより、形成できる。また、金属メッシュを含む導電層は、金属微粒子を含む導電層形成用組成物を所定のパターンに印刷することによっても、形成できる。このような導電層及びその形成方法の詳細については、特開2012-18634号公報、特開2003-331654号公報を参照しうる。 The conductive layer containing a metal mesh can be formed, for example, by applying a conductive layer forming composition containing a silver salt and forming fine metal wires in a predetermined lattice pattern by exposure processing and development processing. The conductive layer containing a metal mesh can also be formed by printing a conductive layer forming composition containing metal fine particles in a predetermined pattern. JP-A-2012-18634 and JP-A-2003-331654 may be referred to for details of such a conductive layer and a method for forming the conductive layer.
 導電性ポリマーとしては、例えば、ポリチオフェン系ポリマー、ポリアセチレン系ポリマー、ポリパラフェニレン系ポリマー、ポリアニリン系ポリマー、ポリパラフェニレンビニレン系ポリマー、ポリピロール系ポリマー、ポリフェニレン系ポリマー、アクリル系ポリマーで変性されたポリエステル系ポリマー等が挙げられる。中でも、ポリチオフェン系ポリマー、ポリアセチレン系ポリマー、ポリパラフェニレン系ポリマー、ポリアニリン系ポリマー、ポリパラフェニレンビニレン系ポリマーおよびポリピロール系ポリマーが好ましい。その中でも、特に、ポリチオフェン系ポリマーが好ましい。ポリチオフェン系ポリマーを用いることにより、透明性及び化学的安定性に優れる導電層を得ることができる。ポリチオフェン系ポリマーの具体例としては、ポリチオフェン;ポリ(3-ヘキシルチオフェン)等のポリ(3-C1-8アルキル-チオフェン);ポリ(3,4-エチレンジオキシチオフェン)、ポリ(3,4-プロピレンジオキシチオフェン)、ポリ[3,4-(1,2-シクロヘキシレン)ジオキシチオフェン]等のポリ(3,4-(シクロ)アルキレンジオキシチオフェン);ポリチエニレンビニレン等が挙げられる。
 また、前記の導電性ポリマーは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Examples of conductive polymers include polythiophene polymers, polyacetylene polymers, polyparaphenylene polymers, polyaniline polymers, polyparaphenylene vinylene polymers, polypyrrole polymers, polyphenylene polymers, and polyester polymers modified with acrylic polymers. Examples thereof include polymers. Among these, polythiophene polymers, polyacetylene polymers, polyparaphenylene polymers, polyaniline polymers, polyparaphenylene vinylene polymers, and polypyrrole polymers are preferable. Among these, a polythiophene polymer is particularly preferable. By using a polythiophene polymer, a conductive layer having excellent transparency and chemical stability can be obtained. Specific examples of the polythiophene-based polymer include: polythiophene; poly (3-C 1-8 alkyl-thiophene) such as poly (3-hexylthiophene); poly (3,4-ethylenedioxythiophene), poly (3,4 -Propylenedioxythiophene), poly [3,4- (1,2-cyclohexylene) dioxythiophene] and other poly (3,4- (cyclo) alkylenedioxythiophene); polythienylene vinylene and the like .
Moreover, the said conductive polymer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 導電性ポリマーを含む導電層は、例えば、導電性ポリマーを含む導電性組成物を塗工し、乾燥することにより形成しうる。導電性ポリマーを含む導電層については、特開2011-175601号公報を参照しうる。 The conductive layer containing a conductive polymer can be formed, for example, by applying a conductive composition containing a conductive polymer and drying it. JP, 2011-175601, A can be referred to for a conductive layer containing a conductive polymer.
 導電層は、基材の面内方向の全体に形成されていてもよいが、所定のパターンにパターン化されていてもよい。導電層のパターンの形状は、タッチパネル(例えば、静電容量方式タッチパネル)として良好に動作するパターンが好ましく、例えば、特表2011-511357号公報、特開2010-164938号公報、特開2008-310550号公報、特表2003-511799号公報、特表2010-541109号公報に記載のパターンが挙げられる。 The conductive layer may be formed in the entire in-plane direction of the base material, but may be patterned in a predetermined pattern. The shape of the pattern of the conductive layer is preferably a pattern that operates well as a touch panel (for example, a capacitive touch panel). For example, JP 2011-511357 A, JP 2010-164938 A, JP 2008-310550 A And the patterns described in JP-A No. 2003-511799 and JP-A 2010-541109.
 導電層の表面抵抗値は、好ましくは2000Ω/□以下、より好ましくは1500Ω/□以下、特に好ましくは1000Ω/□以下である。導電層の表面抵抗値がこのように低いことにより、基材を用いて高性能のタッチパネルを実現できる。導電層の表面抵抗値の下限に特段の制限は無いが、製造が容易であることから、好ましくは100Ω/□以上、より好ましくは200Ω/□以上、特に好ましくは300Ω/□以上である。 The surface resistance value of the conductive layer is preferably 2000Ω / □ or less, more preferably 1500Ω / □ or less, and particularly preferably 1000Ω / □ or less. When the surface resistance value of the conductive layer is thus low, a high-performance touch panel can be realized using a base material. Although there is no particular limitation on the lower limit of the surface resistance value of the conductive layer, it is preferably 100Ω / □ or more, more preferably 200Ω / □ or more, and particularly preferably 300Ω / □ or more because of easy production.
 導電層の波長400nm~700nmの範囲における光線透過率は、好ましくは85%以上であり、より好ましくは90%以上であり、さらに好ましくは95%以上である。 The light transmittance of the conductive layer in the wavelength range of 400 nm to 700 nm is preferably 85% or more, more preferably 90% or more, and further preferably 95% or more.
 導電層の厚みは、好ましくは0.01μm~10μm、より好ましくは0.05μm~3μm、特に好ましくは0.1μm~1μmである。 The thickness of the conductive layer is preferably 0.01 μm to 10 μm, more preferably 0.05 μm to 3 μm, and particularly preferably 0.1 μm to 1 μm.
[2.1.6.基材の光学特性及び厚み]
 上述した基材は、通常、λ/4板として機能できる。ここで、λ/4板とは、波長550nmにおいて所定の範囲の面内レターデーションを有する部材をいう。具体的には、λ/4板の波長550nmにおける面内レターデーションは、通常110nm以上、好ましくは120nm以上、より好ましくは125nm以上であり、通常165nm以下、好ましくは155nm以下、より好ましくは150nm以下である。したがって、λ/4板として機能できる基材とは、波長550nmにおいて前記範囲の面内レターデーションを有する基材をいう。λ/4板として機能できる基材を偏光子と組み合わせることにより、円偏光板を得ることができる。
[2.1.6. Optical properties and thickness of substrate]
The substrate described above can usually function as a λ / 4 plate. Here, the λ / 4 plate refers to a member having in-plane retardation within a predetermined range at a wavelength of 550 nm. Specifically, the in-plane retardation of the λ / 4 plate at a wavelength of 550 nm is usually 110 nm or more, preferably 120 nm or more, more preferably 125 nm or more, and usually 165 nm or less, preferably 155 nm or less, more preferably 150 nm or less. It is. Therefore, a base material that can function as a λ / 4 plate refers to a base material having in-plane retardation in the above range at a wavelength of 550 nm. A circularly polarizing plate can be obtained by combining a substrate that can function as a λ / 4 plate with a polarizer.
 基材は、表示装置の表示品位を高くする観点から、可視波長における光線透過率が高いことが好ましい。例えば、波長400nm~700nmの範囲における基材の光線透過率は、好ましくは85%~100%、より好ましくは87%~100%、特に好ましくは90%~100%である。 The base material preferably has a high light transmittance at a visible wavelength from the viewpoint of improving the display quality of the display device. For example, the light transmittance of the substrate in the wavelength range of 400 nm to 700 nm is preferably 85% to 100%, more preferably 87% to 100%, and particularly preferably 90% to 100%.
 基材は、表示装置の画像鮮明性を高める観点から、ヘイズが小さいことが好ましい。基材の具体的なヘイズは、好ましくは1%以下、より好ましくは0.8%以下、特に好ましくは0.5%以下である。ヘイズは、JIS K7361-1997に準拠して、濁度計を用いて測定しうる。 The base material preferably has a small haze from the viewpoint of enhancing the image clarity of the display device. The specific haze of the substrate is preferably 1% or less, more preferably 0.8% or less, and particularly preferably 0.5% or less. The haze can be measured using a turbidimeter in accordance with JIS K7361-1997.
 基材が単層の場合、その基材の厚みは、好ましくは10μm以上、より好ましくは15μm以上、特に好ましくは20μm以上であり、好ましくは100μm以下、より好ましくは80μm以下、特に好ましくは60μm以下である。基材が複層の場合、各層の厚みは、好ましくは10μm以上、より好ましくは15μm以上、特に好ましくは20μm以上であり、好ましくは100μm以下、より好ましくは80μm以下、特に好ましくは60μm以下である。 When the substrate is a single layer, the thickness of the substrate is preferably 10 μm or more, more preferably 15 μm or more, particularly preferably 20 μm or more, preferably 100 μm or less, more preferably 80 μm or less, particularly preferably 60 μm or less. It is. When the substrate is a multilayer, the thickness of each layer is preferably 10 μm or more, more preferably 15 μm or more, particularly preferably 20 μm or more, preferably 100 μm or less, more preferably 80 μm or less, and particularly preferably 60 μm or less. .
[2.1.7.基材の第一の構成例]
 以下、基材の具体的な構成例を、図面を示して説明する。
 図3は、一例としての基材300を模式的に示す断面図である。図3に示すように、この例に係る基材300は、波長550nmにおける面内レターデーションRe(550)が小さい第一基材層310と、波長550nmにおける面内レターデーションRe(550)が大きい第二基材層320と、第一基材層310の少なくとも一方の面310Uに形成された導電層330とを含む。そして、レーザー吸収剤は、第一基材層310及び第二基材層320の一方又は両方に含まれている。図3には、第一基材層310の一方の面310Uに導電層330が形成された例を示したが、導電層330は、第一基材層310の他方の面310Dに形成されていてもよく、第一基材層310の両方の面310U及び310Dに形成されていてもよい。
[2.1.7. First structural example of substrate]
Hereinafter, a specific configuration example of the substrate will be described with reference to the drawings.
FIG. 3 is a cross-sectional view schematically showing a base material 300 as an example. As shown in FIG. 3, the substrate 300 according to this example has a first substrate layer 310 having a small in-plane retardation Re (550) at a wavelength of 550 nm and a large in-plane retardation Re (550) at a wavelength of 550 nm. 2nd base material layer 320 and the conductive layer 330 formed in at least one surface 310U of the 1st base material layer 310 are included. The laser absorbent is included in one or both of the first base material layer 310 and the second base material layer 320. FIG. 3 shows an example in which the conductive layer 330 is formed on one surface 310U of the first base material layer 310, but the conductive layer 330 is formed on the other surface 310D of the first base material layer 310. It may be formed on both surfaces 310U and 310D of the first base material layer 310.
 第一基材層310は光学等方性の層であることが好ましい。よって、第一基材層の波長550nmにおける第一基材層310の面内レターデーションRe(550)及び厚み方向のレターデーションRth(550)は小さいことが好ましい。具体的には、第一基材層310の波長550nmにおける面内レターデーションRe(550)は、好ましくは10nm以下、より好ましくは5nm以下、特に好ましくは4nm以下であり、理想的には0nmである。また、第一基材層310の波長550nmにおける厚み方向のレターデーションRth(550)は、好ましくは15nm以下、より好ましくは13nm以下、特に好ましくは10nm以下である。下限は、特段の制限は無く、理想的には0nmであるが、通常5nm以上である。このように第一基材層310が光学等方性であることにより、表示装置に用いた場合に表示画面の着色を抑制したり、視野角特性を改善したりすることができる。第一基材層310は単層構造であっても、複層構造であってもよい。第一基材層310としては、脂環式構造含有重合体フィルム(例えば、ゼオノアフィルム(日本ゼオン社製))やトリアセチルセルロース(TAC)フィルムなどが挙げられる。 The first base material layer 310 is preferably an optically isotropic layer. Therefore, the in-plane retardation Re (550) and the thickness direction retardation Rth (550) of the first base material layer 310 at a wavelength of 550 nm of the first base material layer are preferably small. Specifically, the in-plane retardation Re (550) at a wavelength of 550 nm of the first base material layer 310 is preferably 10 nm or less, more preferably 5 nm or less, particularly preferably 4 nm or less, and ideally 0 nm. is there. The retardation Rth (550) in the thickness direction at a wavelength of 550 nm of the first base material layer 310 is preferably 15 nm or less, more preferably 13 nm or less, and particularly preferably 10 nm or less. The lower limit is not particularly limited and is ideally 0 nm, but is usually 5 nm or more. Thus, when the 1st base material layer 310 is optically isotropic, when it uses for a display apparatus, coloring of a display screen can be suppressed or a viewing angle characteristic can be improved. The first base material layer 310 may have a single layer structure or a multilayer structure. Examples of the first substrate layer 310 include an alicyclic structure-containing polymer film (for example, ZEONOR film (manufactured by ZEON Corporation)), a triacetyl cellulose (TAC) film, and the like.
 また、波長550nmにおける第二基材層320の面内レターデーションRe(550)は、好ましくは90nm以上、より好ましくは100nm以上、特に好ましくは110nm以上であり、好ましくは150nm以下、より好ましくは145nm以下、特に好ましくは140nm以下である。第二基材層としては、例えば、斜め延伸フィルム(ゼオノアフィルムZDシリーズ、日本ゼオン社製)などが挙げられる。
 このようなレターデーションを有する第一基材層310及び第二基材層320を組み合わせることにより、λ/4板として機能できる基材300を実現することができる。
The in-plane retardation Re (550) of the second base material layer 320 at a wavelength of 550 nm is preferably 90 nm or more, more preferably 100 nm or more, particularly preferably 110 nm or more, preferably 150 nm or less, more preferably 145 nm. Hereinafter, it is particularly preferably 140 nm or less. Examples of the second base material layer include an obliquely stretched film (Zeonor film ZD series, manufactured by Nippon Zeon Co., Ltd.).
By combining the first base material layer 310 and the second base material layer 320 having such retardation, a base material 300 that can function as a λ / 4 plate can be realized.
 前記の基材300の好ましい実施形態として、第一基材層310及び第二基材層320の一方又は両方が、第一外側層と、第二外側層と、前記の第一外側層及び第二外側層の間に設けられた中間層とを含む複層構造の樹脂層である(図2参照)。このような樹脂層では、中間層に含まれる成分は、ブリードアウトを生じ難い。よって、中間層がブリードアウトを生じ易い成分を含む場合に、前記ブリードアウトによる製造設備の汚れを抑制しながら基材300の製造が可能となる。よって、レーザー吸収剤及び任意の成分としての紫外線吸収剤は、中間層に含まれることが好ましい。 As a preferred embodiment of the base material 300, one or both of the first base material layer 310 and the second base material layer 320 include a first outer layer, a second outer layer, the first outer layer and the first base layer. It is a resin layer having a multilayer structure including an intermediate layer provided between two outer layers (see FIG. 2). In such a resin layer, the component contained in the intermediate layer hardly causes bleed out. Therefore, when the intermediate layer includes a component that easily causes bleed-out, the base material 300 can be manufactured while suppressing contamination of the manufacturing equipment due to the bleed-out. Therefore, the laser absorber and the ultraviolet absorber as an optional component are preferably included in the intermediate layer.
 上述した基材300において、第一基材層310及び第二基材層320の一方又は両方の厚みは、好ましくは10μm~60μm、より好ましくは15μm~55μm、特に好ましくは20μm~50μmである。第一基材層310及び第二基材層320の一方又は両方の厚みが前記の範囲に収まることにより、偏光子保護フィルム自体の自己支持性を保持することができ、偏光子保護フィルムの剛性を維持することができる。 In the base material 300 described above, the thickness of one or both of the first base material layer 310 and the second base material layer 320 is preferably 10 μm to 60 μm, more preferably 15 μm to 55 μm, and particularly preferably 20 μm to 50 μm. When the thickness of one or both of the first base material layer 310 and the second base material layer 320 falls within the above range, the self-supporting property of the polarizer protective film itself can be maintained, and the rigidity of the polarizer protective film can be maintained. Can be maintained.
[2.1.8.第二の構成例]
 以下、基材の別の具体的な構成例を、図面を示して説明する。
 図4は、一例としての基材400を模式的に示す断面図である。図4に示すように、この例に係る基材400は、λ/4板として機能できる第一基材層410と、λ/2板として機能できる第二基材層420と、第一基材層410の少なくとも一方の面410Uに形成された導電層430とを含む。そして、レーザー吸収剤は、第一基材層410及び第二基材層420の一方又は両方に含まれている。図4には、第一基材層410の一方の面410Uに導電層430が形成された例を示したが、導電層430は、第一基材層410の他方の面410Dに形成されていてもよく、第一基材層410の両方の面410U及び410Dに形成されていてもよい。
[2.1.8. Second configuration example]
Hereinafter, another specific configuration example of the substrate will be described with reference to the drawings.
FIG. 4 is a cross-sectional view schematically showing a base material 400 as an example. As shown in FIG. 4, the base material 400 according to this example includes a first base material layer 410 that can function as a λ / 4 plate, a second base material layer 420 that can function as a λ / 2 plate, and a first base material. And a conductive layer 430 formed on at least one surface 410U of the layer 410. The laser absorbent is included in one or both of the first base material layer 410 and the second base material layer 420. FIG. 4 shows an example in which the conductive layer 430 is formed on one surface 410U of the first base material layer 410, but the conductive layer 430 is formed on the other surface 410D of the first base material layer 410. It may be formed on both surfaces 410U and 410D of the first base material layer 410.
 第一基材層410は、λ/4板として機能できる層である。よって、第一基材層410は、波長550nmにおいて所定の範囲の面内レターデーションを有する。具体的には、第一基材層410の波長550nmにおける面内レターデーションは、通常110nm以上、好ましくは120nm以上、より好ましくは125nm以上であり、通常165nm以下、好ましくは155nm以下、より好ましくは150nm以下である。 The first base material layer 410 is a layer that can function as a λ / 4 plate. Therefore, the first base material layer 410 has in-plane retardation within a predetermined range at a wavelength of 550 nm. Specifically, the in-plane retardation of the first base material layer 410 at a wavelength of 550 nm is usually 110 nm or more, preferably 120 nm or more, more preferably 125 nm or more, and usually 165 nm or less, preferably 155 nm or less, more preferably 150 nm or less.
 第二基材層420は、λ/2板として機能できる層である。ここで、λ/2板とは、波長550nmにおいて所定の範囲の面内レターデーションを有する層をいう。具体的には、λ/2板の波長550nmにおける面内レターデーションは、通常240nm以上、好ましくは250nm以上であり、通常300nm以下、好ましくは280nm以下、特に好ましくは265nm以下である。したがって、λ/2板として機能できる第二基材層420とは、波長550nmにおいて前記範囲の面内レターデーションを有する層をいう。 The second base material layer 420 is a layer that can function as a λ / 2 plate. Here, the λ / 2 plate refers to a layer having in-plane retardation within a predetermined range at a wavelength of 550 nm. Specifically, the in-plane retardation of the λ / 2 plate at a wavelength of 550 nm is usually 240 nm or more, preferably 250 nm or more, usually 300 nm or less, preferably 280 nm or less, and particularly preferably 265 nm or less. Therefore, the second base material layer 420 that can function as a λ / 2 plate refers to a layer having in-plane retardation in the above range at a wavelength of 550 nm.
 λ/4板として機能できる第一基材層410と、λ/2板として機能できる第二基材層420とを組み合わせて含むことにより、基材400は、広帯域λ/4板として機能できる。ここで、広帯域λ/4板とは、逆波長分散特性を示すλ/4板をいう。広帯域λ/4板は、広範な波長範囲においてλ/4板としての機能を発揮できるので、広帯域λ/4板として機能できる基材400を含む表示装置は、特に正面方向から観察した画像の意図しない色付きを抑制できる。また、広帯域λ/4板として機能できる基材400を含む偏光子保護フィルムを偏光子と組み合わせることによって、広い波長範囲において機能できる円偏光板を実現することができる。 By including the first base material layer 410 that can function as a λ / 4 plate and the second base material layer 420 that can function as a λ / 2 plate, the base material 400 can function as a broadband λ / 4 plate. Here, the broadband λ / 4 plate refers to a λ / 4 plate that exhibits reverse wavelength dispersion characteristics. Since the broadband λ / 4 plate can exhibit the function as the λ / 4 plate in a wide wavelength range, the display device including the base material 400 that can function as the broadband λ / 4 plate particularly intends for an image observed from the front direction. The coloring which is not performed can be suppressed. Further, by combining a polarizer protective film including a base material 400 that can function as a broadband λ / 4 plate with a polarizer, a circularly polarizing plate that can function in a wide wavelength range can be realized.
 ただし、基材400が広帯域λ/4板として機能できるようにするために、第一基材層410の遅相軸と第二基材層420の遅相軸とがなす交差角は、適切な範囲に調整することが好ましい。
 一般に、ある基準方向に対して角度θ(λ/4)をなす遅相軸を有するλ/4板と、前記基準方向に対して角度θ(λ/2)をなす遅相軸を有するλ/2板とを組み合わせた複層フィルムが、式(X):「θ(λ/4)=2θ(λ/2)+45°」を満たす場合、この複層フィルムは、広い波長範囲において当該複層フィルムを通過する正面方向の光にその光の波長の略1/4波長の面内レターデーションを与えうる広帯域λ/4板となる(特開2007-004120号公報参照)。よって、λ/4板として機能できる第一基材層410と、λ/2板として機能できる第二基材層420との組み合わせによって広帯域λ/4板として機能できる基材400を得る観点から、λ/4板として機能できる第一基材層410の遅相軸と、λ/2板として機能できる第二基材層420の遅相軸との間に、前記式(X)で表されるのに近い関係を満たすことが好ましい。このような観点から、λ/4板として機能できる第一基材層410の遅相軸と、λ/2板として機能できる第二基材層420の遅相軸とがなす交差角は、好ましくは55°以上、より好ましくは57°以上、特に好ましくは59°以上であり、好ましくは65°以下、より好ましくは63°以下、特に好ましくは61°以下である。
However, in order to allow the base material 400 to function as a broadband λ / 4 plate, the crossing angle formed by the slow axis of the first base material layer 410 and the slow axis of the second base material layer 420 is appropriate. It is preferable to adjust to the range.
In general, a λ / 4 plate having a slow axis that forms an angle θ (λ / 4) with respect to a reference direction, and λ / that has a slow axis that forms an angle θ (λ / 2) with respect to the reference direction. When the multilayer film combining the two plates satisfies the formula (X): “θ (λ / 4) = 2θ (λ / 2) + 45 °”, the multilayer film is in the wide wavelength range. This is a broadband λ / 4 plate capable of giving in-plane retardation of approximately ¼ wavelength of the wavelength of the light passing through the film to the front direction (see Japanese Patent Application Laid-Open No. 2007-004120). Therefore, from the viewpoint of obtaining the base material 400 that can function as a broadband λ / 4 plate by combining the first base material layer 410 that can function as a λ / 4 plate and the second base material layer 420 that can function as a λ / 2 plate. The slow axis of the first base material layer 410 that can function as a λ / 4 plate and the slow axis of the second base material layer 420 that can function as a λ / 2 plate are represented by the above formula (X). It is preferable to satisfy a relationship close to. From such a viewpoint, the crossing angle formed by the slow axis of the first base material layer 410 that can function as a λ / 4 plate and the slow axis of the second base material layer 420 that can function as a λ / 2 plate is preferably Is at least 55 °, more preferably at least 57 °, particularly preferably at least 59 °, preferably at most 65 °, more preferably at most 63 °, particularly preferably at most 61 °.
 前記の基材400の好ましい実施形態として、第二基材層420は、液晶性化合物を含む液晶組成物の硬化物で形成された第一光学異方性層であることが好ましい。通常、液晶組成物の硬化物によれば、耐久性を上げることができ、更には薄くても大きなレターデーションを得やすい。よって、第二基材層420として第一光学異方性層を用いることにより、特に耐熱性の優れた薄い基材層400を得ることができる。
 第二基材層420として第一光学異方性層を用いる場合、第一基材層410としては、通常、レーザー吸収剤を含む樹脂層を用いる。
As a preferred embodiment of the base material 400, the second base material layer 420 is preferably a first optical anisotropic layer formed of a cured product of a liquid crystal composition containing a liquid crystal compound. Usually, according to the hardened | cured material of a liquid crystal composition, durability can be raised and it is easy to obtain a large retardation even if it is thin. Therefore, by using the first optical anisotropic layer as the second base material layer 420, the thin base material layer 400 having particularly excellent heat resistance can be obtained.
When using a 1st optically anisotropic layer as the 2nd base material layer 420, as the 1st base material layer 410, the resin layer containing a laser absorber is normally used.
 また、前記の基材400の別の好ましい実施形態として、第一基材層410及び第二基材層420の一方又は両方が、第一外側層と、第二外側層と、前記の第一外側層及び第二外側層の間に設けられた中間層とを含む複層構造の樹脂層であることが好ましい(図2参照)。このような樹脂層では、ブリードアウトを抑制する観点から、レーザー吸収剤及び任意の成分としての紫外線吸収剤は、中間層に含まれることが好ましい。 Moreover, as another preferable embodiment of the base material 400, one or both of the first base material layer 410 and the second base material layer 420 are a first outer layer, a second outer layer, and the first base material layer. A resin layer having a multilayer structure including an outer layer and an intermediate layer provided between the second outer layer is preferable (see FIG. 2). In such a resin layer, from the viewpoint of suppressing bleed-out, it is preferable that the laser absorber and the ultraviolet absorber as an optional component are contained in the intermediate layer.
 上述した基材400において、第一基材層410及び第二基材層420の一方又は両方の厚みは、基材の第一の構成例と同様に、好ましくは10μm~60μmである。 In the base material 400 described above, the thickness of one or both of the first base material layer 410 and the second base material layer 420 is preferably 10 μm to 60 μm, similarly to the first structural example of the base material.
[2.2.任意の層]
 偏光子保護フィルムは、基材に組み合わせて、更に任意の層を含んでいてもよい。任意の層としては、例えば、粘着層、接着層、ハードコート層、インデックスマッチング層、易接着層、防眩層、反射防止層などが挙げられる。
[2.2. Any layer]
The polarizer protective film may further include an arbitrary layer in combination with the base material. Examples of the arbitrary layer include an adhesive layer, an adhesive layer, a hard coat layer, an index matching layer, an easy adhesion layer, an antiglare layer, and an antireflection layer.
[2.3.偏光子保護フィルムの特性及び厚み]
 偏光子保護フィルムは、表示装置の表示品位を高くする観点から、可視波長における光線透過率が高いことが好ましい。例えば、波長400nm~700nmの範囲における偏光子保護フィルムの光線透過率は、好ましくは85%~100%、より好ましくは87%~100%、特に好ましくは90%~100%である。
[2.3. Characteristics and thickness of polarizer protective film]
The polarizer protective film preferably has a high light transmittance at a visible wavelength from the viewpoint of improving the display quality of the display device. For example, the light transmittance of the polarizer protective film in the wavelength range of 400 nm to 700 nm is preferably 85% to 100%, more preferably 87% to 100%, and particularly preferably 90% to 100%.
 また、偏光子の外光およびバックライトからの紫外線による劣化を抑制するために、波長380nmにおける光線透過率は、好ましくは1%以下、より好ましくは0.5%以下、特に好ましくは0.05%以下である。光線透過率は紫外線吸収剤により制御できる。 In order to suppress deterioration of the polarizer due to external light and ultraviolet rays from the backlight, the light transmittance at a wavelength of 380 nm is preferably 1% or less, more preferably 0.5% or less, and particularly preferably 0.05. % Or less. The light transmittance can be controlled by an ultraviolet absorber.
 偏光子保護フィルムは、表示装置の画像鮮明性を高める観点から、ヘイズが小さいことが好ましい。偏光子保護フィルムのヘイズは、好ましくは1%以下、より好ましくは0.8%以下、特に好ましくは0.5%以下である。 The polarizer protective film preferably has a small haze from the viewpoint of enhancing the image clarity of the display device. The haze of the polarizer protective film is preferably 1% or less, more preferably 0.8% or less, and particularly preferably 0.5% or less.
 偏光子保護フィルムの厚みは、特段の制限は無いが、好ましくは10μm以上、より好ましくは15μm以上、特に好ましくは20μm以上であり、好ましくは100μm以下、より好ましくは80μm以下、特に好ましくは60μm以下である。 The thickness of the polarizer protective film is not particularly limited, but is preferably 10 μm or more, more preferably 15 μm or more, particularly preferably 20 μm or more, preferably 100 μm or less, more preferably 80 μm or less, and particularly preferably 60 μm or less. It is.
[3.偏光子]
 偏光子は、偏光透過軸及び偏光吸収軸を有する光学部材である。この偏光子は、偏光吸収軸と平行な振動方向を有する直線偏光を吸収し、偏光透過軸と平行な振動方向を有する直線偏光を通過させることができる。ここで、直線偏光の振動方向とは、直線偏光の電場の振動方向を意味する。
[3. Polarizer]
A polarizer is an optical member having a polarization transmission axis and a polarization absorption axis. This polarizer can absorb linearly polarized light having a vibration direction parallel to the polarization absorption axis and pass linearly polarized light having a vibration direction parallel to the polarization transmission axis. Here, the vibration direction of linearly polarized light means the vibration direction of the electric field of linearly polarized light.
 偏光子としては、例えば、ポリビニルアルコール、部分ホルマール化ポリビニルアルコール等の適切なビニルアルコール系重合体のフィルムに、ヨウ素及び二色性染料等の二色性物質による染色処理、延伸処理、架橋処理等の適切な処理を適切な順序及び方式で施したフィルムを用いうる。この直線偏光子は、偏光度に優れるものが好ましい。直線偏光子の厚みは、5μm~80μmが一般的であるが、これに限定されない。 As a polarizer, for example, a film of an appropriate vinyl alcohol polymer such as polyvinyl alcohol or partially formalized polyvinyl alcohol, a dyeing treatment with a dichroic substance such as iodine and a dichroic dye, a stretching treatment, a crosslinking treatment, etc. The film which performed the appropriate process of these by the appropriate order and system can be used. This linear polarizer is preferably excellent in the degree of polarization. The thickness of the linear polarizer is generally 5 μm to 80 μm, but is not limited thereto.
 λ/4板として機能できる基材を含む偏光子保護フィルムと偏光子との組み合わせによって円偏光板を得る観点から、偏光子保護フィルムの基材の遅相軸と偏光子の透過軸とは、交差していることが好ましい。この際、基材の遅相軸と偏光子の透過軸との交差角は、所定の範囲に収まることが好ましい。前記の交差角の具体的範囲は、好ましくは45°±5°、より好ましくは45°±3°、特に好ましくは45°±1°である。交差角を前記の範囲に調整されていると、偏光子を透過して偏光子保護フィルムに進入した直線偏光を、λ/4板として機能できる基材によって、円偏光に変換することができる。偏光子を透過して偏光子保護フィルムに進入した直線偏光を円偏光に変換することで、偏光子保護フィルムを視認側に配置した表示装置では、偏光サングラスを通してみた場合でも、表示品位を落とすことなく表示装置を見ることができる。 From the viewpoint of obtaining a circularly polarizing plate by combining a polarizer protective film containing a base material that can function as a λ / 4 plate and a polarizer, the slow axis of the base material of the polarizer protective film and the transmission axis of the polarizer are: It is preferable that they intersect. At this time, the crossing angle between the slow axis of the substrate and the transmission axis of the polarizer is preferably within a predetermined range. The specific range of the crossing angle is preferably 45 ° ± 5 °, more preferably 45 ° ± 3 °, and particularly preferably 45 ° ± 1 °. When the crossing angle is adjusted to the above range, the linearly polarized light that has passed through the polarizer and entered the polarizer protective film can be converted into circularly polarized light by a base material that can function as a λ / 4 plate. By converting the linearly polarized light that has passed through the polarizer and entered the polarizer protective film into circularly polarized light, the display device with the polarizer protective film arranged on the viewer side can degrade the display quality even when viewed through polarized sunglasses. You can see the display without.
[4.位相差フィルム]
 位相差フィルムは、波長550nmにおける面内レターデーションRe(550)が90nm~150nmのフィルムである。より詳細には、位相差フィルムの波長550nmにおける面内レターデーションRe(550)は、好ましくは90nm以上、より好ましくは95nm以上、特に好ましくは100nm以上であり、好ましくは150nm以下、より好ましくは145nm以下、特に好ましくは140nm以下である。このような範囲の面内レターデーションRe(550)を有する位相差フィルムは、λ/4板として機能できる。よって、位相差フィルムと偏光子との組み合わせにより、円偏光板を得ることができる。
[4. Retardation film]
The retardation film is a film having an in-plane retardation Re (550) of 90 nm to 150 nm at a wavelength of 550 nm. More specifically, the in-plane retardation Re (550) at a wavelength of 550 nm of the retardation film is preferably 90 nm or more, more preferably 95 nm or more, particularly preferably 100 nm or more, preferably 150 nm or less, more preferably 145 nm. Hereinafter, it is particularly preferably 140 nm or less. A retardation film having in-plane retardation Re (550) in such a range can function as a λ / 4 plate. Therefore, a circularly polarizing plate can be obtained by a combination of a retardation film and a polarizer.
 位相差フィルムと偏光子との組み合わせによって円偏光板を得る観点から、位相差フィルムの遅相軸と偏光子の透過軸とは、交差していることが好ましい。この際、位相差フィルムの遅相軸と偏光子の透過軸との交差角は、所定の範囲に収まることが好ましい。前記の交差角の具体的範囲は、好ましくは45°±5°、より好ましくは45°±3°、特に好ましくは45°±1°である。交差角を前記の範囲に調整されていると、偏光子を透過して位相差フィルムに進入した直線偏光を、その位相差フィルムによって、円偏光に変換することができる。 From the viewpoint of obtaining a circularly polarizing plate by combining a retardation film and a polarizer, it is preferable that the slow axis of the retardation film and the transmission axis of the polarizer intersect. At this time, the crossing angle between the slow axis of the retardation film and the transmission axis of the polarizer is preferably within a predetermined range. The specific range of the crossing angle is preferably 45 ° ± 5 °, more preferably 45 ° ± 3 °, and particularly preferably 45 ° ± 1 °. When the crossing angle is adjusted to the above range, linearly polarized light that has passed through the polarizer and entered the retardation film can be converted into circularly polarized light by the retardation film.
 前記の位相差フィルムとしては、例えば、樹脂によって形成されたフィルムを用いうる。位相差フィルムを形成する樹脂としては、重合体と、必要に応じて重合体以外の任意の成分を含む樹脂を用いることができる。よって、位相差フィルムとしては、重合体及び必要に応じて任意の成分を含むフィルムを用いることができる。このフィルムとしては、単層構造のフィルムを用いてもよく、複層構造のフィルムを用いてもよい。 As the retardation film, for example, a film formed of a resin can be used. As the resin forming the retardation film, a polymer and a resin containing an optional component other than the polymer as necessary can be used. Therefore, as a retardation film, a film containing a polymer and optional components as required can be used. As this film, a single layer structure film or a multilayer structure film may be used.
 重合体としては、例えば、基材に含まれうる重合体として説明した範囲から選択される任意の重合体を用いることができ、中でも、脂環式構造含有重合体が好ましい。脂環式構造含有重合体を含む位相差フィルムを用いることにより、脂環式構造含有重合体の優れた性質を活用して、耐久性に優れた表示装置を得ることができる。
 位相差フィルムにおける重合体の量は、好ましくは90.0重量%~100重量%、より好ましくは95.0重量%~100重量%である。重合体の量を前記範囲にすることにより、位相差フィルムの耐湿熱性及び機械的強度を効果的に高めることができる。
 また、任意の成分としては、例えば、基材に含まれうる任意の成分として挙げたのと同様の成分が挙げられる。
As the polymer, for example, any polymer selected from the range described as the polymer that can be contained in the substrate can be used, and among them, the alicyclic structure-containing polymer is preferable. By using a retardation film containing an alicyclic structure-containing polymer, a display device having excellent durability can be obtained by utilizing the excellent properties of the alicyclic structure-containing polymer.
The amount of the polymer in the retardation film is preferably 90.0 wt% to 100 wt%, more preferably 95.0 wt% to 100 wt%. By setting the amount of the polymer within the above range, the heat-and-moisture resistance and mechanical strength of the retardation film can be effectively increased.
Moreover, as an arbitrary component, the same component as mentioned as an arbitrary component which can be contained in a base material, for example is mentioned.
 位相差フィルムは、好ましくは延伸フィルムを含む。この延伸フィルムは、樹脂フィルムに延伸処理を施して得られたフィルムであり、通常は、延伸フィルム自体を位相差フィルムとして用いることができる。延伸フィルムを用いることにより、位相差フィルムを容易に得ることができる。 The retardation film preferably includes a stretched film. This stretched film is a film obtained by subjecting a resin film to a stretching treatment, and usually the stretched film itself can be used as a retardation film. By using a stretched film, a retardation film can be easily obtained.
 また、位相差フィルムとしては、例えば、液晶性化合物を含む液晶組成物の硬化物で形成された光学異方性層を用いてもよい。以下の説明では、基材に含まれうる第一光学異方性層と区別するため、位相差フィルムとしての光学異方性層を「第二光学異方性層」ということがある。第二光学異方性層としては、第一光学異方性層として説明した範囲に含まれる層を任意に用いうる。通常、液晶組成物の硬化物によれば、耐久性を上げることができ、薄くても大きなレターデーションを得やすいので、位相差フィルムとして第二光学異方性層を用いることにより、表示装置の薄型化を達成できる。 Also, as the retardation film, for example, an optically anisotropic layer formed of a cured product of a liquid crystal composition containing a liquid crystal compound may be used. In the following description, in order to distinguish from the first optical anisotropic layer that can be included in the substrate, the optical anisotropic layer as the retardation film may be referred to as a “second optical anisotropic layer”. As the second optical anisotropic layer, a layer included in the range described as the first optical anisotropic layer can be arbitrarily used. Usually, according to the cured product of the liquid crystal composition, durability can be increased, and even if it is thin, it is easy to obtain a large retardation. Therefore, by using the second optical anisotropic layer as a retardation film, Thinning can be achieved.
 位相差フィルムが第二光学異方性層である場合、位相差フィルムの波長450nmにおける面内レターデーションRe(450)と、位相差フィルムの波長550nmにおける面内レターデーションRe(550)とが、Re(450)/Re(550)<1.0を満たすことが好ましい。Re(450)/Re(550)<1.0を満たすレターデーションを有する位相差フィルムは、広帯域λ/4板として機能できる。そのため、位相差フィルムと偏光子との組み合わせにより、広い波長範囲において機能できる円偏光板を得ることが可能である。Re(450)/Re(550)<1.0を満たすレターデーションを有する位相差フィルムは、例えば、第二光学異方性層の材料として、逆波長分散液晶を含む液晶組成物を用いることにより得ることができる。 When the retardation film is the second optically anisotropic layer, the in-plane retardation Re (450) at a wavelength of 450 nm of the retardation film and the in-plane retardation Re (550) at a wavelength of 550 nm of the retardation film are: It is preferable to satisfy Re (450) / Re (550) <1.0. A retardation film having a retardation satisfying Re (450) / Re (550) <1.0 can function as a broadband λ / 4 plate. Therefore, it is possible to obtain a circularly polarizing plate that can function in a wide wavelength range by combining the retardation film and the polarizer. A retardation film having a retardation satisfying Re (450) / Re (550) <1.0 is obtained by using, for example, a liquid crystal composition containing a reverse wavelength dispersion liquid crystal as a material of the second optical anisotropic layer. Obtainable.
 位相差フィルムの厚みは、レターデーション等の光学特性を所望の範囲にできるように適宜調整でき、好ましくは1.0μm以上、より好ましくは3.0μm以上、特に好ましくは5.0μm以上であり、好ましくは100μm以下、より好ましくは80μm以下、特に好ましくは55μm以下である。 The thickness of the retardation film can be appropriately adjusted so that the optical properties such as retardation can be in a desired range, preferably 1.0 μm or more, more preferably 3.0 μm or more, particularly preferably 5.0 μm or more, Preferably it is 100 micrometers or less, More preferably, it is 80 micrometers or less, Most preferably, it is 55 micrometers or less.
[5.表示素子]
 表示素子としては、表示装置の種類に応じて様々なものがある。代表的な表示素子の例としては、液晶セル及び有機エレクトロルミネッセンス素子(以下、適宜「有機EL素子」ということがある。)が挙げられる。
[5. Display element]
There are various types of display elements depending on the type of display device. Examples of typical display elements include liquid crystal cells and organic electroluminescence elements (hereinafter sometimes referred to as “organic EL elements” as appropriate).
 液晶セルは、例えば、インプレーンスイッチング(IPS)モード、バーチカルアラインメント(VA)モード、マルチドメインバーチカルアラインメント(MVA)モード、コンティニュアスピンホイールアラインメント(CPA)モード、ハイブリッドアラインメントネマチック(HAN)モード、ツイステッドネマチック(TN)モード、スーパーツイステッドネマチック(STN)モード、オプチカルコンペンセイテッドベンド(OCB)モードなど、任意のモードの液晶セルを用いうる。このような液晶セルは、通常、液晶表示装置に表示素子として設けられる。 The liquid crystal cell is, for example, in-plane switching (IPS) mode, vertical alignment (VA) mode, multi-domain vertical alignment (MVA) mode, continuous spin wheel alignment (CPA) mode, hybrid alignment nematic (HAN) mode, twisted nematic A liquid crystal cell of any mode such as (TN) mode, super twisted nematic (STN) mode, or optical compensated bend (OCB) mode can be used. Such a liquid crystal cell is usually provided as a display element in a liquid crystal display device.
 有機EL素子は、通常、透明電極層、発光層及び電極層をこの順に備え、透明電極層及び電極層から電圧を印加されることにより発光層が光を生じうる。有機発光層を構成する材料の例としては、ポリパラフェニレンビニレン系、ポリフルオレン系、およびポリビニルカルバゾール系の材料を挙げることができる。また、発光層は、複数の発光色が異なる層の積層体、あるいはある色素の層に異なる色素がドーピングされた混合層を有していてもよい。さらに、有機EL素子は、バリア層、正孔注入層、正孔輸送層、電子注入層、電子輸送層、等電位面形成層、電荷発生層等の機能層を備えていてもよい。このような有機EL素子は、通常、有機EL表示装置に表示素子として設けられる。 An organic EL element usually includes a transparent electrode layer, a light emitting layer, and an electrode layer in this order, and the light emitting layer can generate light when a voltage is applied from the transparent electrode layer and the electrode layer. Examples of the material constituting the organic light emitting layer include polyparaphenylene vinylene-based, polyfluorene-based, and polyvinyl carbazole-based materials. In addition, the light emitting layer may have a stack of layers having different emission colors or a mixed layer in which a different dye is doped in a certain dye layer. Furthermore, the organic EL element may include functional layers such as a barrier layer, a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, an equipotential surface forming layer, and a charge generation layer. Such an organic EL element is usually provided as a display element in an organic EL display device.
[6.任意の部材]
 表示装置は、必要に応じて、上述した偏光子保護フィルム、偏光子、位相差フィルム及び表示素子以外に任意の部材を備えていてもよい。
 任意の部材としては、例えば、保護フィルム;液晶セル用の光学補償フィルム;表示装置が含む部材同士を接着する接着剤層及び粘着剤層;などが挙げられる。
[6. Any member]
The display device may include an arbitrary member other than the above-described polarizer protective film, polarizer, retardation film, and display element as necessary.
Examples of the optional member include a protective film; an optical compensation film for a liquid crystal cell; an adhesive layer and a pressure-sensitive adhesive layer that adhere members included in the display device; and the like.
[7.製造方法]
 上述した表示装置は、通常、偏光子保護フィルムを用意する工程;偏光子保護フィルムと偏光子とを、直接又は任意の層を介して貼り合わせる工程;偏光子と位相差フィルムとを、直接又は任意の層を介して貼り合わせる工程;位相差フィルムと表示素子とを、直接又は任意の層を介して貼り合わせる工程;偏光子保護フィルムを、レーザー光によって切断する工程;を含む製造方法によって、製造できる。
[7. Production method]
The display device described above usually includes a step of preparing a polarizer protective film; a step of bonding the polarizer protective film and the polarizer directly or via an arbitrary layer; a polarizer and a retardation film directly or A step of bonding through an arbitrary layer; a step of bonding the retardation film and the display element directly or through an arbitrary layer; a step of cutting the polarizer protective film with a laser beam; Can be manufactured.
 前記の製造方法において、各工程の順番は任意である。例えば、偏光子保護フィルムを単独で切断する工程の後で、偏光子保護フィルムと偏光子とを貼り合わせる工程を行ってもよい。また、例えば、偏光子保護フィルムと偏光子とを貼り合わせる工程、及び、偏光子と位相差フィルムとを貼り合わせる工程の後で、偏光子及び位相差フィルムと同時に偏光子保護フィルムを切断する工程を行ってもよい。 In the above manufacturing method, the order of the steps is arbitrary. For example, you may perform the process of bonding a polarizer protective film and a polarizer after the process of cut | disconnecting a polarizer protective film independently. In addition, for example, after the step of bonding the polarizer protective film and the polarizer and the step of bonding the polarizer and the retardation film, the step of cutting the polarizer protective film simultaneously with the polarizer and the retardation film May be performed.
 前記のように、通常、表示装置は、レーザー光によって偏光子保護フィルムを切断する工程を含む製造方法で製造できる。従来の偏光子保護フィルムには切断されるのに充分なレーザー光の吸収を有さないフィルムがあったが、レーザー吸収剤を含む基材を有する偏光子保護フィルムは、単独の状態で、又は、偏光子及び位相差フィルム等の他の部材と貼り合わせた状態で、レーザー光による切断が可能である。よって、切断カスの発生を抑制したり、切断面を滑らかにしたりできるので、表示品位に優れた表示装置を得ることができる。また、耐熱性の有る偏光子保護フィルムであるので、レーザー光による切断においても寸法変化が小さく、表示品位に優れた表示装置を得ることができる。また、耐溶媒性の有る偏光子保護フィルムであるので、接着剤を介して貼合した場合でも偏光子保護フィルムの劣化は小さく、表示品位に優れた表示装置を得ることができる。 As described above, the display device can usually be manufactured by a manufacturing method including a step of cutting the polarizer protective film with laser light. The conventional polarizer protective film has a film that does not have sufficient absorption of laser light to be cut, but the polarizer protective film having a base material containing a laser absorber can be used alone or In addition, cutting with a laser beam is possible in a state of being bonded to another member such as a polarizer and a retardation film. Therefore, generation of cutting residue can be suppressed or the cut surface can be smoothed, so that a display device with excellent display quality can be obtained. Moreover, since it is a heat-resistant polarizer protective film, a dimensional change is small even in cutting with a laser beam, and a display device with excellent display quality can be obtained. Moreover, since it is a polarizer protective film with solvent resistance, even when it bonds through an adhesive agent, degradation of a polarizer protective film is small and the display apparatus excellent in display quality can be obtained.
 レーザー光としては、レーザー吸収剤が吸収可能な波長のレーザー光を用いることができる。中でも、工業設備として広く普及していることから、赤外領域の波長を有するレーザー光が好ましい。その中でも、偏光子保護フィルムの切断に適した出力が効率的に得られ、且つ、比較的安価に導入可能であることから、9μm~12μmの範囲内の波長のレーザー光が好ましい。特に、9μm~11μmの波長のレーザー光がより好ましく、9μm以上9.5μm以下の波長のレーザー光が特に好ましい。このような波長のレーザー光は、レーザー装置として炭酸ガスレーザー装置を用いる場合に安定して出力することができる。 As the laser beam, a laser beam having a wavelength that can be absorbed by the laser absorber can be used. Among them, laser light having a wavelength in the infrared region is preferable because it is widely spread as industrial equipment. Among these, laser light having a wavelength in the range of 9 μm to 12 μm is preferable because an output suitable for cutting the polarizer protective film can be efficiently obtained and introduced at a relatively low cost. In particular, a laser beam having a wavelength of 9 μm to 11 μm is more preferable, and a laser beam having a wavelength of 9 μm to 9.5 μm is particularly preferable. Laser light having such a wavelength can be stably output when a carbon dioxide laser device is used as the laser device.
 レーザー光としては、ガウシアンモードのレーザー光を用いてもよく、トップハット状のエネルギー分布を有するレーザー光を用いてもよい。中でも、レーザー光としては、少なくとも一の方位において、トップハット状のエネルギー分布を示すレーザー光を用いることが好ましい。トップハット状のエネルギー分布を有するレーザー光を用いることにより、通常は、偏光子保護フィルムの切断面を、当該偏光子保護フィルムの主面に対して垂直に近い急峻な面にできる。また、トップハット状のエネルギー分布を示すレーザー光を用いると、通常は、切断面の近傍におけるフィルムの樹脂の盛り上がりを抑制できる。 As the laser light, a Gaussian mode laser light or a laser light having a top hat energy distribution may be used. Among these, as the laser light, it is preferable to use laser light exhibiting a top hat-shaped energy distribution in at least one orientation. By using laser light having a top-hat-like energy distribution, the cut surface of the polarizer protective film can be usually a steep surface that is nearly perpendicular to the main surface of the polarizer protective film. Moreover, when the laser beam which shows energy distribution of a top hat shape is used, normally the rise of the resin of the film in the vicinity of a cut surface can be suppressed.
 レーザー光は、連続レーザー光でもよく、パルスレーザー光でもよいが、熱の発生を抑えて切断加工を行う観点では、パルスレーザー光が好ましい。 The laser beam may be a continuous laser beam or a pulsed laser beam, but a pulsed laser beam is preferred from the viewpoint of cutting while suppressing the generation of heat.
 切断の際には、通常、レーザー光の照射点が偏光子保護フィルムの表面を所望の線に沿って走査するように、レーザー光を照射する。これにより、切断したい形状に偏光子保護フィルムを切断できる。この際、レーザー光の照射点に偏光子保護フィルムの表面を移動させるために、レーザー光の照射装置を移動させてもよく、偏光子保護フィルムを移動させてもよく、照射装置及び偏光子保護フィルムの両方を移動させてもよい。 When cutting, the laser beam is usually irradiated so that the irradiation point of the laser beam scans the surface of the polarizer protective film along a desired line. Thereby, a polarizer protective film can be cut | disconnected in the shape to cut | disconnect. At this time, in order to move the surface of the polarizer protective film to the irradiation point of the laser light, the laser light irradiation device may be moved, the polarizer protective film may be moved, and the irradiation device and the polarizer protection. Both of the films may be moved.
[8.表示装置の具体的な実施形態]
 以下、表示装置の更に具体的な実施形態を説明するが、表示装置の構造は、下記の実施形態に限定されるものでは無い。
[8. Specific Embodiment of Display Device]
Hereinafter, more specific embodiments of the display device will be described, but the structure of the display device is not limited to the following embodiments.
 図5は、本発明の一実施形態に係る表示装置としての液晶表示装置50の一例を模式的に示す断面図である。
 図5に示すように、液晶表示装置50は、光源510;光源側偏光子520;表示素子としての液晶セル530;位相差フィルム540;視認側偏光子550;及び、レーザー吸収剤を含み且つλ/4板として機能できる基材560を含む偏光子保護フィルム570;をこの順に備える。また、図5では、基材560が、液晶組成物の硬化物で形成された第一光学異方性層としての第二基材層561;第一外側層562、レーザー吸収剤を含む中間層563、及び、第二外側層564をこの順に備えた第一基材層565;並びに、導電層566;を視認側偏光子550側からこの順に備えている例を示すが、基材層560の構造は、この例に限定されない。
FIG. 5 is a cross-sectional view schematically showing an example of a liquid crystal display device 50 as a display device according to an embodiment of the present invention.
As shown in FIG. 5, the liquid crystal display device 50 includes a light source 510; a light source side polarizer 520; a liquid crystal cell 530 as a display element; a retardation film 540; a viewing side polarizer 550; A polarizer protective film 570 including a base material 560 that can function as a / 4 plate is provided in this order. Moreover, in FIG. 5, the base material 560 is the 2nd base material layer 561 as a 1st optically anisotropic layer formed with the hardened | cured material of the liquid-crystal composition; First outer layer 562, The intermediate | middle layer containing a laser absorber. 563 and a first base material layer 565 having a second outer layer 564 in this order; and a conductive layer 566; are shown in this order from the viewing side polarizer 550 side. The structure is not limited to this example.
 液晶表示装置50においては、光源510から発せられ、光源側偏光子520、液晶セル530、位相差フィルム540、視認側偏光子550、並びに、λ/4板として機能できる基材560を含む偏光子保護フィルム570を通過した光によって、画像が表示される。位相差フィルム540によって光学補償が行われるので、前記の液晶表示装置50では、十分に広い視野角が得られる。また、画像を表示する光は、視認側偏光子550を通過した時点では直線偏光であるが、偏光子保護フィルム570の基材560を通過することによって円偏光に変換される。したがって、前記の液晶表示装置50では、円偏光によって画像が表示されるので、偏光サングラスを通して見た場合に、画像を視認することが可能である。 In the liquid crystal display device 50, a polarizer that is emitted from a light source 510 and includes a light source side polarizer 520, a liquid crystal cell 530, a retardation film 540, a viewing side polarizer 550, and a base material 560 that can function as a λ / 4 plate. An image is displayed by the light that has passed through the protective film 570. Since the optical compensation is performed by the retardation film 540, the liquid crystal display device 50 can obtain a sufficiently wide viewing angle. The light for displaying an image is linearly polarized when it passes through the viewing-side polarizer 550, but is converted into circularly polarized light by passing through the base material 560 of the polarizer protective film 570. Therefore, in the liquid crystal display device 50, an image is displayed by circularly polarized light. Therefore, when viewed through polarized sunglasses, the image can be visually recognized.
 また、この液晶表示装置50において、導電層566が、タッチパネル用の電極、配線等の回路部材として機能できる。よって、タッチパネルを備えた液晶表示装置50を実現することが可能である。ここでは、タッチパネルとは、表示装置に設けられ、必要に応じて表示装置の表示面に表示された画像を参照しながら、所定の箇所に使用者が触れることで情報の入力を行えるように設けられた入力装置である。タッチパネルの操作検出方式の例としては、抵抗膜方式、電磁誘導様式及び静電容量方式等の方式が挙げられ、特に静電容量方式のタッチパネルが好ましい。図5に示す例においては、導電層566が液晶表示装置50の視認側偏光子550よりも外側(視認側)の位置に設けられるので、アウトセル型のタッチパネルを得ることができる。 Further, in the liquid crystal display device 50, the conductive layer 566 can function as a circuit member such as an electrode for a touch panel and wiring. Therefore, it is possible to realize the liquid crystal display device 50 including a touch panel. Here, the touch panel is provided on the display device so that the user can input information by touching a predetermined location while referring to the image displayed on the display surface of the display device as necessary. Input device. Examples of the touch panel operation detection method include a resistance film method, an electromagnetic induction mode, and a capacitance method, and a capacitive touch panel is particularly preferable. In the example shown in FIG. 5, since the conductive layer 566 is provided at a position outside (viewing side) the viewing side polarizer 550 of the liquid crystal display device 50, an out-cell type touch panel can be obtained.
 上述した液晶表示装置50においては、偏光子保護フィルム570が、レーザー吸収剤を含む基材560を有している。そのため、前記の液晶表示装置50の製造は、偏光子保護フィルム570をレーザー光によって切断する工程を含む製造方法によって行うことが可能である。したがって、偏光子保護フィルム570の切断の際、切断カスの発生を抑制したり、切断面を滑らかにしたりできるので、優れた表示品位を実現することが可能である。 In the liquid crystal display device 50 described above, the polarizer protective film 570 has a base material 560 containing a laser absorber. Therefore, the liquid crystal display device 50 can be manufactured by a manufacturing method including a step of cutting the polarizer protective film 570 with a laser beam. Therefore, when the polarizer protective film 570 is cut, it is possible to suppress the generation of cutting residue and to smooth the cut surface, and thus it is possible to realize excellent display quality.
 図6は、本発明の別の一実施形態に係る表示装置としての有機EL表示装置60の一例を模式的に示す断面図である。
 図6に示すように、有機EL表示装置60は、表示素子としての有機EL素子610;所定の面内レターデーションを有してλ/4板として機能できる位相差フィルム620;偏光子630;及び、レーザー吸収剤を含み且つλ/4板として機能できる基材640を含む偏光子保護フィルム650;をこの順に備える。また、図6では、基材640が、第一外側層641、レーザー吸収剤を含む中間層642、第二外側層643をこの順に備える第二基材層644;第一外側層645、レーザー吸収剤を含む中間層646、及び、第二外側層647をこの順に備えた第一基材層648;並びに、導電層649;を偏光子630側からこの順に備えている例を示すが、基材層640の構造は、この例に限定されない。
FIG. 6 is a cross-sectional view schematically showing an example of an organic EL display device 60 as a display device according to another embodiment of the present invention.
As shown in FIG. 6, the organic EL display device 60 includes an organic EL element 610 as a display element; a retardation film 620 having a predetermined in-plane retardation and functioning as a λ / 4 plate; a polarizer 630; And a polarizer protective film 650 including a base material 640 that includes a laser absorber and can function as a λ / 4 plate. In FIG. 6, the substrate 640 includes a first outer layer 641, an intermediate layer 642 containing a laser absorber, and a second outer layer 643 in this order; a second substrate layer 644; first outer layer 645, laser absorption An example in which an intermediate layer 646 containing an agent and a first base material layer 648 provided with a second outer layer 647 in this order; and a conductive layer 649; provided in this order from the polarizer 630 side are shown. The structure of the layer 640 is not limited to this example.
 有機EL表示装置60においては、装置外部から入射した光は、その一部の直線偏光のみが偏光子630を通過し、それが位相差フィルム620を通過することにより円偏光となる。円偏光は、表示装置内の光を反射する構成要素(有機EL素子610中の反射電極(図示せず)等)により反射され、再び位相差フィルム620を通過することにより、入射した直線偏光の振動方向と直交する振動方向を有する直線偏光となり、偏光子630を通過しなくなる。これにより、反射防止の機能が達成される(有機EL表示装置における反射防止の原理は、特開平9-127885号公報参照)。 In the organic EL display device 60, only a part of the linearly polarized light passes through the polarizer 630 and passes through the retardation film 620, and becomes circularly polarized light. The circularly polarized light is reflected by a component (such as a reflective electrode (not shown) in the organic EL element 610) that reflects light in the display device, and passes through the retardation film 620 again, whereby incident linearly polarized light is reflected. The linearly polarized light has a vibration direction orthogonal to the vibration direction and does not pass through the polarizer 630. Thereby, an antireflection function is achieved (for the principle of antireflection in an organic EL display device, see Japanese Patent Application Laid-Open No. 9-127858).
 また、この有機EL表示装置60においては、有機EL素子610から発せられ、位相差フィルム620、偏光子630、並びに、λ/4板として機能できる基材640を含む偏光子保護フィルム650を通過した光によって、画像が表示される。画像を表示する光は、偏光子630を通過した時点では直線偏光であるが、偏光子保護フィルム650の基材640を通過することによって円偏光に変換される。したがって、前記の有機EL表示装置60では、円偏光によって画像が表示されるので、偏光サングラスを通して見た場合に、画像を視認することが可能である。 Further, in the organic EL display device 60, the light was emitted from the organic EL element 610 and passed through the polarizer protective film 650 including the retardation film 620, the polarizer 630, and the base material 640 that can function as a λ / 4 plate. An image is displayed by light. The light for displaying an image is linearly polarized when it passes through the polarizer 630, but is converted into circularly polarized light by passing through the base material 640 of the polarizer protective film 650. Therefore, in the organic EL display device 60, an image is displayed by circularly polarized light. Therefore, when viewed through polarized sunglasses, the image can be visually recognized.
 また、この有機EL表示装置60において、導電層649が、タッチパネル用の電極、配線等の回路部材として機能できる。よって、タッチパネルを備えた有機EL表示装置60を実現することが可能である。 In the organic EL display device 60, the conductive layer 649 can function as a circuit member such as an electrode for a touch panel and wiring. Therefore, it is possible to realize the organic EL display device 60 including a touch panel.
 上述した有機EL表示装置60においては、偏光子保護フィルム650が、レーザー吸収剤を含む基材640を有している。そのため、前記の有機EL表示装置60の製造は、偏光子保護フィルム650をレーザー光によって切断する工程を含む製造方法によって行うことが可能であるので、液晶表示装置50と同様に、優れた表示品位を実現することが可能である。 In the organic EL display device 60 described above, the polarizer protective film 650 has a base material 640 containing a laser absorber. Therefore, since the organic EL display device 60 can be manufactured by a manufacturing method including a step of cutting the polarizer protective film 650 with laser light, the display quality is excellent as in the liquid crystal display device 50. Can be realized.
 図7は、本発明の更に別の一実施形態に係る表示装置としての有機EL表示装置70の一例を模式的に示す断面図である。
 図7に示すように、有機EL表示装置70は、偏光子保護フィルム650の代わりに偏光子保護フィルム700を備えること以外は、図6に示した有機EL表示装置60と同様に設けられている。具体的には、図7に示す有機EL表示装置70は、表示素子としての有機EL素子610;所定の面内レターデーションを有してλ/4板として機能できる位相差フィルム620;偏光子630;及び、レーザー吸収剤を含み且つλ/4板として機能できる基材710を含む偏光子保護フィルム700;をこの順に備える。
FIG. 7 is a cross-sectional view schematically showing an example of an organic EL display device 70 as a display device according to still another embodiment of the present invention.
As shown in FIG. 7, the organic EL display device 70 is provided in the same manner as the organic EL display device 60 shown in FIG. 6 except that a polarizer protective film 700 is provided instead of the polarizer protective film 650. . Specifically, the organic EL display device 70 shown in FIG. 7 includes an organic EL element 610 as a display element; a retardation film 620 that has a predetermined in-plane retardation and can function as a λ / 4 plate; and a polarizer 630. And a polarizer protective film 700 including a substrate 710 that includes a laser absorber and can function as a λ / 4 plate.
 また、基材710は、第一外側層721、レーザー吸収剤を含む中間層722、第二外側層723をこの順に備える第二基材層720;レーザー吸収剤を含む第一基材層730;並びに、導電層740;を偏光子630側からこの順に備える。第二基材層720は、基材の第一の構成例で説明したように大きい面内レターデーションRe(550)を有することが好ましく、中でも、当該第二基材層720がλ/4板として機能できる面内レターデーションRe(550)を有することが特に好ましい。また、第一基材層730は、基材の第一の構成例で説明したように小さい面内レターデーションRe(550)を有することが好ましく、中でも、当該第一基材層730が光学等方性の層として機能できるように、10nm以下の面内レターデーションRe(550)を有することが好ましい。このような有機EL表示装置70は、図6に示した有機EL表示装置60と同様の利点を得ることができる。 Moreover, the base material 710 includes a first outer layer 721, an intermediate layer 722 containing a laser absorber, and a second outer layer 723 in this order, a second base material layer 720; a first base material layer 730 containing a laser absorber; In addition, a conductive layer 740; is provided in this order from the polarizer 630 side. The second base material layer 720 preferably has a large in-plane retardation Re (550) as described in the first configuration example of the base material. Among them, the second base material layer 720 is a λ / 4 plate. It is particularly preferable to have in-plane retardation Re (550) that can function as Moreover, it is preferable that the 1st base material layer 730 has small in-plane retardation Re (550) as demonstrated in the 1st structural example of a base material, Especially, the said 1st base material layer 730 is optical etc. It is preferable to have an in-plane retardation Re (550) of 10 nm or less so that it can function as an isotropic layer. Such an organic EL display device 70 can obtain the same advantages as the organic EL display device 60 shown in FIG.
 図8は、本発明の更に別の一実施形態に係る表示装置としての有機EL表示装置80の一例を模式的に示す断面図である。
 図8に示すように、有機EL表示装置80は、偏光子保護フィルム650の代わりに偏光子保護フィルム800を備えること以外は、図6に示した有機EL表示装置60と同様に設けられている。具体的には、有機EL表示装置80は、表示素子としての有機EL素子610;所定の面内レターデーションを有してλ/4板として機能できる位相差フィルム620;偏光子630;及び、レーザー吸収剤を含み且つλ/4板として機能できる基材810を含む偏光子保護フィルム800;をこの順に備える。
FIG. 8 is a cross-sectional view schematically showing an example of an organic EL display device 80 as a display device according to another embodiment of the present invention.
As shown in FIG. 8, the organic EL display device 80 is provided in the same manner as the organic EL display device 60 shown in FIG. 6 except that the polarizer protective film 800 is provided instead of the polarizer protective film 650. . Specifically, the organic EL display device 80 includes an organic EL element 610 as a display element; a retardation film 620 that has a predetermined in-plane retardation and can function as a λ / 4 plate; a polarizer 630; and a laser. A polarizer protective film 800 including a base material 810 that includes an absorber and can function as a λ / 4 plate.
 また、基材810は、第一基材層730と第二基材層720との間に、レーザー吸収剤を含む第三基材層850を備えること以外は、図7に示した有機EL表示装置70の基材710と同様に設けられている。具体的には、基材810は、第一外側層721、レーザー吸収剤を含む中間層722、第二外側層723をこの順に備える第二基材層720;レーザー吸収剤を含む第三基材層850;レーザー吸収剤を含む第一基材層730;並びに、導電層740;を偏光子630側からこの順に備える。第三基材層850は、当該第三基材層850が光学等方性の層として機能できるようにするため、基材の第一の構成例で説明した第一基材層と同様に、10nm以下の面内レターデーションRe(550)を有することが好ましい。このような有機EL表示装置80は、図6に示した有機EL表示装置60と同様の利点を得ることができる。 Moreover, the base material 810 includes the third base material layer 850 containing a laser absorbent between the first base material layer 730 and the second base material layer 720, and the organic EL display shown in FIG. It is provided in the same manner as the base material 710 of the device 70. Specifically, the substrate 810 includes a first outer layer 721, an intermediate layer 722 including a laser absorber, and a second outer layer 723 in this order, a second substrate layer 720; a third substrate including a laser absorber. A layer 850; a first base material layer 730 containing a laser absorber; and a conductive layer 740; are provided in this order from the polarizer 630 side. In order to allow the third base material layer 850 to function as an optically isotropic layer, the third base material layer 850 is similar to the first base material layer described in the first configuration example of the base material. It is preferable to have an in-plane retardation Re (550) of 10 nm or less. Such an organic EL display device 80 can obtain the same advantages as the organic EL display device 60 shown in FIG.
 図9は、本発明の更に別の一実施形態に係る表示装置としての有機EL表示装置90の一例を模式的に示す断面図である。
 図9に示すように、有機EL表示装置90は、偏光子保護フィルム650の代わりに偏光子保護フィルム900を備えること以外は、図6に示した有機EL表示装置60と同様に設けられている。具体的には、有機EL表示装置90は、表示素子としての有機EL素子610;所定の面内レターデーションを有してλ/4板として機能できる位相差フィルム620;偏光子630;及び、レーザー吸収剤を含み且つλ/4板として機能できる基材910を含む偏光子保護フィルム900;をこの順に備える。
FIG. 9 is a cross-sectional view schematically showing an example of an organic EL display device 90 as a display device according to another embodiment of the present invention.
As shown in FIG. 9, the organic EL display device 90 is provided in the same manner as the organic EL display device 60 shown in FIG. 6 except that a polarizer protective film 900 is provided instead of the polarizer protective film 650. . Specifically, the organic EL display device 90 includes an organic EL element 610 as a display element; a retardation film 620 that has a predetermined in-plane retardation and can function as a λ / 4 plate; a polarizer 630; and a laser. A polarizer protective film 900 including a base material 910 that includes an absorber and can function as a λ / 4 plate.
 また、基材910は、第二基材層720の第一基材層730とは反対側に、レーザー吸収剤を含む第四基材層960を備えること以外は、図7に示した有機EL表示装置70の基材710と同様に設けられている。具体的には、基材910は、第一外側層961、レーザー吸収剤を含んでいてもよい中間層962、第二外側層963をこの順に備える第四基材層960;第一外側層721、レーザー吸収剤を含む中間層722、第二外側層723をこの順に備える第二基材層720;レーザー吸収剤を含む第一基材層730;並びに、導電層740;を偏光子630側からこの順に備える。このような有機EL表示装置90は、図6に示した有機EL表示装置60と同様の利点を得ることができる。特に、この有機EL表示装置90では、第二基材層720と第四基材層960との組み合わせによって広帯域λ/4板としての機能を発揮できるようにするために、第二基材層720がλ/4板として機能でき、且つ、第四基材層960がλ/2板として機能できることが好ましい。この際、第二基材層720及び第四基材層960の面内レターデーション及び遅相軸のなす交差角は、基材の第二の構成例における第一基材層410及び第二基材層420と同様にしうる(図4参照)。 Moreover, the base material 910 includes the fourth base material layer 960 containing a laser absorbent on the opposite side of the second base material layer 720 from the first base material layer 730, and the organic EL shown in FIG. It is provided in the same manner as the base material 710 of the display device 70. Specifically, the substrate 910 includes a first outer layer 961, a middle layer 962 that may contain a laser absorber, and a second outer layer 963 in this order, a fourth substrate layer 960; a first outer layer 721. A second base material layer 720 comprising an intermediate layer 722 containing a laser absorber and a second outer layer 723 in this order; a first base material layer 730 containing a laser absorber; and a conductive layer 740; from the polarizer 630 side. Prepare in this order. Such an organic EL display device 90 can obtain the same advantages as the organic EL display device 60 shown in FIG. In particular, in the organic EL display device 90, the second base material layer 720 is configured so that the function as a broadband λ / 4 plate can be exhibited by the combination of the second base material layer 720 and the fourth base material layer 960. Can function as a λ / 4 plate, and the fourth base material layer 960 can function as a λ / 2 plate. At this time, the in-plane retardation of the second base material layer 720 and the fourth base material layer 960 and the crossing angle formed by the slow axis are the first base material layer 410 and the second base material in the second structural example of the base material. It can be the same as the material layer 420 (see FIG. 4).
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to the following examples, and can be implemented with any modifications without departing from the scope of the claims of the present invention and the equivalents thereof.
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温常圧大気中において行った。 In the following description, “%” and “part” representing the amount are based on weight unless otherwise specified. Further, the operations described below were performed in a normal temperature and pressure atmosphere unless otherwise specified.
[レターデーションの測定方法]
 面内レターデーションの測定は、位相差計(Axometrics社製「AxoScan」)を用いて行った。
[Measurement method of retardation]
The in-plane retardation was measured using a phase difference meter (“AxoScan” manufactured by Axometrics).
[レーザー光による加工性の評価方法]
 実施例又は比較例で製造した円偏光板又は偏光板を、評価サンプルとして、スライダー上に置いた。評価サンプルの偏光子保護フィルム側の面に、波長9.4μmのCOレーザー光を当てた。レーザー光の出力は、評価サンプルのガラス板以外の部分が切断できるよう調整した。具体的には、レーザー光の出力は、最初は低出力に設定し、次第に上げていき、評価サンプルのガラス板以外の部分が切断できた時点又はガラス板が割れた時点でレーザー光の照射を停止した。前記のようにレーザー光を照射した後で評価サンプルを観察し、下記の基準で評価した。
 「A」:ガラス板を傷つけずに、評価サンプルのガラス板以外の部分を切断でき、切断面が平坦で良好な切断状態であった。
 「B」:ガラス板を傷つけずに評価サンプルのガラス板以外の部分を切断できた。しかし、評価サンプルに含まれる偏光子の切断面に、熱溶けによる凹凸又は樹脂の盛り上がりがあった。
 「C」:評価サンプルが切断できないか、もしくは、ガラス板が割れた。
[Method for evaluating processability with laser light]
The circularly polarizing plate or polarizing plate produced in the examples or comparative examples was placed on a slider as an evaluation sample. A CO 2 laser beam having a wavelength of 9.4 μm was applied to the surface of the evaluation sample on the side of the polarizer protective film. The output of the laser beam was adjusted so that a portion other than the glass plate of the evaluation sample could be cut. Specifically, the output of the laser beam is initially set to a low output and gradually increased. When the portion other than the glass plate of the evaluation sample can be cut or the glass plate is broken, the laser beam is irradiated. Stopped. After irradiation with laser light as described above, the evaluation sample was observed and evaluated according to the following criteria.
“A”: A portion other than the glass plate of the evaluation sample could be cut without damaging the glass plate, and the cut surface was flat and in a good cut state.
“B”: A portion other than the glass plate of the evaluation sample could be cut without damaging the glass plate. However, the cut surface of the polarizer included in the evaluation sample had irregularities or bulges in the resin due to heat melting.
“C”: The evaluation sample could not be cut, or the glass plate was broken.
[円偏光板、偏光板のヒートサイクル試験による耐久性の評価方法]
 実施例又は比較例で製造した円偏光板又は偏光板を評価サンプルとして、冷熱衝撃装置(エスペック社製「TSA-71L-A」)を用いてヒートサイクル試験を行った。このヒートサイクル試験では、温度-45℃で30分冷却し、次いで温度85℃で30分加熱する連続動作を1サイクルとし、50サイクルの冷却及び加熱を行った。このヒートサイクル試験の後、評価サンプルである円偏光板又は偏光板の全長にわたるワレ発生状況を目視により観察し、下記の基準で評価した。
  「A」:偏光板を形成する偏光子に全く亀裂及び割れはなかった。
  「B」:偏光板を形成する偏光子に20本以下の割れがあった。
  「C」:偏光板を形成する偏光子に20本以上の割れがあった。
[Durability evaluation method by heat cycle test of circularly polarizing plate and polarizing plate]
Using the circularly polarizing plate or the polarizing plate produced in the example or comparative example as an evaluation sample, a heat cycle test was conducted using a thermal shock device (“TSA-71L-A” manufactured by Espec). In this heat cycle test, a continuous operation of cooling at a temperature of −45 ° C. for 30 minutes and then heating at a temperature of 85 ° C. for 30 minutes was defined as one cycle, and 50 cycles of cooling and heating were performed. After this heat cycle test, the crack generation state over the entire length of the circularly polarizing plate or the polarizing plate as an evaluation sample was visually observed and evaluated according to the following criteria.
“A”: The polarizer forming the polarizing plate was not cracked or cracked at all.
“B”: The polarizer forming the polarizing plate had 20 or less cracks.
“C”: The polarizer forming the polarizing plate had 20 or more cracks.
[製造例1.熱可塑性樹脂(J1)の製造]
 ノルボルネン重合体(日本ゼオン社製、ガラス転移温度Tg=126℃)としての熱可塑性樹脂(J0)のペレットを、100℃で5時間乾燥させた。乾燥させたペレット100部と、レーザー吸収剤(ペンタエリスリトールテトラベンゾエート、分子量552、融点102.0℃~106.0℃)5.0部とを、二軸押出機により混合した。得られた混合物を、単軸押出機に接続されたホッパーへ投入し、単軸押出機から溶融押し出して、熱可塑性樹脂(J1)を得た。この熱可塑性樹脂(J1)のガラス転移温度Tgは、105℃であった。
[Production Example 1. Production of thermoplastic resin (J1)]
The pellets of thermoplastic resin (J0) as a norbornene polymer (manufactured by ZEON Corporation, glass transition temperature Tg = 126 ° C.) were dried at 100 ° C. for 5 hours. 100 parts of the dried pellets and 5.0 parts of a laser absorber (pentaerythritol tetrabenzoate, molecular weight 552, melting point 102.0 ° C. to 106.0 ° C.) were mixed by a twin screw extruder. The obtained mixture was put into a hopper connected to a single screw extruder and melt-extruded from the single screw extruder to obtain a thermoplastic resin (J1). The glass transition temperature Tg of this thermoplastic resin (J1) was 105 ° C.
[製造例2.熱可塑性樹脂(J3)の製造]
 製造例1で用いた熱可塑性樹脂(J0)の代わりに、ノルボルネン重合体(日本ゼオン社製、ガラス転移温度Tg=163℃)としての熱可塑性樹脂(J2)を用いた。また、レーザー吸収剤に加えて、更にベンゾトリアゾール系紫外線吸収剤(ADEKA社製「LA-31」)12.0部を添加した。以上の事項以外は、製造例1と同様にして、熱可塑性樹脂(J3)を得た。この熱可塑性樹脂(J3)のガラス転移温度Tgは、126℃であった。
[Production Example 2. Production of thermoplastic resin (J3)]
Instead of the thermoplastic resin (J0) used in Production Example 1, a thermoplastic resin (J2) as a norbornene polymer (manufactured by Nippon Zeon Co., Ltd., glass transition temperature Tg = 163 ° C.) was used. In addition to the laser absorber, 12.0 parts of a benzotriazole ultraviolet absorber (“LA-31” manufactured by ADEKA) was further added. Except for the above, a thermoplastic resin (J3) was obtained in the same manner as in Production Example 1. The glass transition temperature Tg of this thermoplastic resin (J3) was 126 ° C.
[製造例3.λ/4板(Q1)の製造]
 製造例2で製造した熱可塑性樹脂(J3)を、100℃で5時間乾燥させた。乾燥させた熱可塑性樹脂(J3)を、押出機に供給し、押出機内で溶融させた。溶融した熱可塑性樹脂(J3)を、ポリマーパイプおよびポリマーフィルターを通し、Tダイからキャスティングドラム上にシート状に押し出した。押し出された熱可塑性樹脂(J3)を冷却して、厚み145μm、面内レターデーションRe(550)が8nmの延伸前基材(Q0)を得た。得られた延伸前基材(Q0)を巻き取り、ロールを得た。
[Production Example 3. Production of λ / 4 plate (Q1)]
The thermoplastic resin (J3) produced in Production Example 2 was dried at 100 ° C. for 5 hours. The dried thermoplastic resin (J3) was supplied to an extruder and melted in the extruder. The molten thermoplastic resin (J3) was extruded through a polymer pipe and a polymer filter into a sheet form from a T die onto a casting drum. The extruded thermoplastic resin (J3) was cooled to obtain a pre-stretch base material (Q0) having a thickness of 145 μm and an in-plane retardation Re (550) of 8 nm. The obtained base material (Q0) before stretching was wound up to obtain a roll.
 次いで、延伸前基材(Q0)のロールから、延伸前基材(Q0)を引き出した。引き出された延伸前基材(Q0)を、テンター延伸機に供給し、斜め延伸処理を行なって、延伸フィルムを得た。斜め延伸処理とは、フィルムの幅方向に平行でも垂直でもない斜め方向への延伸処理をいう。この斜め延伸処理における延伸倍率は4.0倍、延伸温度は155℃とした。得られた延伸フィルムは、その遅相軸が当該延伸フィルムの幅方向に対してなす角度が45°であった。また、延伸フィルムの面内レターデーションRe(550)は125nm、厚みは36μmであった。得られた延伸フィルムをλ/4板(Q1)として巻き取り、回収した。 Next, the base material (Q0) before stretching was drawn from the roll of the base material (Q0) before stretching. The drawn base material (Q0) before stretching was supplied to a tenter stretching machine and subjected to an oblique stretching process to obtain a stretched film. The oblique stretching process refers to a stretching process in an oblique direction that is neither parallel nor perpendicular to the film width direction. In this oblique stretching process, the stretching ratio was 4.0 times, and the stretching temperature was 155 ° C. The obtained stretched film had an angle of 45 ° with respect to the width direction of the stretched film. The stretched film had an in-plane retardation Re (550) of 125 nm and a thickness of 36 μm. The obtained stretched film was wound up and collected as a λ / 4 plate (Q1).
[製造例4.λ/4板(Q3)の製造]
 目開き3μmのリーフディスク形状のポリマーフィルターを備える、ダブルフライト型単軸押出機(スクリューの直径D=50mm、スクリューの有効長さLとスクリューの直径Dとの比L/D=28)を用意した。この単軸押出機に、中間層形成用の樹脂として、製造例2で製造した熱可塑性樹脂(J3)を導入し、溶融させた。溶融させた熱可塑性樹脂(J3)を、押出機出口温度260℃、押出機のギヤポンプの回転数10rpmの条件で、フィードブロックを介して、単層ダイに供給した。この単層ダイのダイスリップの算術平均粗さRaは、0.1μmであった。
[Production Example 4. Production of λ / 4 plate (Q3)]
A double flight type single screw extruder (screw diameter D = 50 mm, effective screw length L / screw diameter D ratio L / D = 28) equipped with a 3 μm leaf disk polymer filter did. Into this single screw extruder, the thermoplastic resin (J3) produced in Production Example 2 was introduced and melted as the resin for forming the intermediate layer. The molten thermoplastic resin (J3) was supplied to the single-layer die through the feed block under the conditions of an extruder outlet temperature of 260 ° C. and an extruder gear pump rotation speed of 10 rpm. The arithmetic average roughness Ra of the die slip of this single-layer die was 0.1 μm.
 他方、目開き3μmのリーフディスク形状のポリマーフィルターを備える、単軸押出機(スクリューの直径D=50mm、スクリューの有効長さLとスクリューの直径Dとの比L/D=28)を用意した。この単軸押出機に、第一外側層及び第二外側層形成用の熱可塑性樹脂として、熱可塑性樹脂(J0)を導入し、溶融させた。溶融させた熱可塑性樹脂(J0)を、押出機出口温度285℃、押出機のギヤポンプの回転数4rpmの条件で、フィードブロックを介して、前記の単層ダイに供給した。 On the other hand, a single screw extruder (screw diameter D = 50 mm, effective screw length L / screw diameter D ratio L / D = 28) equipped with a leaf disk-shaped polymer filter with an opening of 3 μm was prepared. . Into this single screw extruder, a thermoplastic resin (J0) was introduced and melted as a thermoplastic resin for forming the first outer layer and the second outer layer. The molten thermoplastic resin (J0) was supplied to the single-layer die through a feed block under the conditions of an extruder outlet temperature of 285 ° C. and an extruder gear pump rotation speed of 4 rpm.
 次いで、第一外側層形成用の樹脂の層、中間層形成用の樹脂の層、及び、第二外側層形成用の樹脂の層の3層を含むフィルム状に吐出されるように、前記の熱可塑性樹脂(J0)及び(J3)を、前記の単層ダイから280℃で共押し出しした。そして、単層ダイから吐出された熱可塑性樹脂(J0)及び(J3)を、150℃に温度調整された冷却ロールにキャストして、厚さ70μmの延伸前基材(Q2)を得た。この延伸前基材(Q2)は、熱可塑性樹脂(J0)からなる第一外側層(厚み17.5μm)/熱可塑性樹脂(J3)からなる中間層(厚み35μm)/熱可塑性樹脂(J0)からなる第二外側層(厚み17.5μm)の2種3層からなるフィルムであった。ここで、2種3層とは、2種類の樹脂からなる3層構造のフィルムの構造を表す。得られた延伸前基材(Q2)を巻き取り、ロールを得た。 Next, the first outer layer forming resin layer, the intermediate layer forming resin layer, and the second outer layer forming resin layer are discharged into a film shape including three layers. The thermoplastic resins (J0) and (J3) were coextruded from the single layer die at 280 ° C. Then, the thermoplastic resins (J0) and (J3) discharged from the single-layer die were cast on a cooling roll whose temperature was adjusted to 150 ° C. to obtain a base material (Q2) before stretching having a thickness of 70 μm. This base material (Q2) before stretching comprises a first outer layer (thickness 17.5 μm) made of thermoplastic resin (J0) / an intermediate layer (thickness 35 μm) made of thermoplastic resin (J3) / thermoplastic resin (J0). It was the film which consists of 2 types 3 layers of the 2nd outer side layer (thickness 17.5 micrometers) which consists of. Here, 2 types and 3 layers represent the structure of a 3 layer film composed of 2 types of resins. The obtained base material before stretching (Q2) was wound up to obtain a roll.
 次いで、延伸前基材(Q2)のロールから、延伸前基材(Q2)を引き出した。引き出した延伸前基材(Q2)を、テンター延伸機に供給し、斜め延伸処理を行なって、延伸フィルムを得た。この斜め延伸処理における延伸倍率は1.47倍、延伸温度は140℃とした。得られた延伸フィルムは、その遅相軸が当該延伸フィルムの幅方向に対してなす角度が45°であった。また、斜め延伸フィルムの面内レターデーションRe(550)は104nm、厚みは48μmであった。得られた延伸フィルムをλ/4板(Q3)として巻き取り、回収した。 Next, the base material (Q2) before stretching was pulled out from the roll of the base material (Q2) before stretching. The drawn base material (Q2) before stretching was supplied to a tenter stretching machine and subjected to an oblique stretching process to obtain a stretched film. In this oblique stretching process, the stretching ratio was 1.47 times, and the stretching temperature was 140 ° C. The obtained stretched film had an angle of 45 ° with respect to the width direction of the stretched film. The obliquely stretched film had an in-plane retardation Re (550) of 104 nm and a thickness of 48 μm. The stretched film obtained was wound up and collected as a λ / 4 plate (Q3).
[製造例5.λ/2板(H1)の製造]
 製造例1で使用した熱可塑性樹脂(J0)を、100℃で5時間乾燥させた。乾燥させた熱可塑性樹脂(J0)を、押出機に供給し、押出機内で溶融させた。溶融した熱可塑性樹脂(J0)を、ポリマーパイプおよびポリマーフィルターを通し、Tダイからキャスティングドラム上にシート状に押し出した。押し出された熱可塑性樹脂(J0)を冷却して、厚み70μmの延伸前基材(H0)を得た。得られた延伸前基材(H0)を巻き取り、ロールを得た。
[Production Example 5. Production of λ / 2 plate (H1)]
The thermoplastic resin (J0) used in Production Example 1 was dried at 100 ° C. for 5 hours. The dried thermoplastic resin (J0) was supplied to an extruder and melted in the extruder. The molten thermoplastic resin (J0) was extruded through a polymer pipe and a polymer filter into a sheet form from a T die onto a casting drum. The extruded thermoplastic resin (J0) was cooled to obtain a base material (H0) before stretching having a thickness of 70 μm. The obtained base material (H0) before stretching was wound up to obtain a roll.
 次いで、延伸前基材(H0)のロールから、延伸前基材(H0)を引き出した。引き出された延伸前基材(H0)を、テンター延伸機に供給し、斜め延伸処理を行なって、中間フィルムを得た。この斜め延伸処理における延伸倍率は1.65倍、延伸温度は140℃とした。得られた中間フィルムを、長手方向に連続的に搬送しながら、縦延伸処理を行って、延伸フィルムを得た。縦延伸処理とは、フィルムの長手方向への延伸処理をいう。この縦延伸処理における延伸倍率は1.45倍、延伸温度は135℃とした。得られた延伸フィルムは、その遅相軸が当該延伸フィルムの幅方向に対してなす角度が75°であった。また、延伸フィルムの面内レターデーションRe(550)は245nm、厚みは30μmであった。得られた延伸フィルムをλ/2板(H1)として巻き取り、回収した。 Next, the base material (H0) before stretching was pulled out from the roll of the base material (H0) before stretching. The drawn base material (H0) before stretching was supplied to a tenter stretching machine and subjected to an oblique stretching process to obtain an intermediate film. In this oblique stretching process, the stretching ratio was 1.65 times, and the stretching temperature was 140 ° C. While the obtained intermediate film was continuously conveyed in the longitudinal direction, a longitudinal stretching process was performed to obtain a stretched film. The longitudinal stretching process refers to a stretching process in the longitudinal direction of the film. In this longitudinal stretching process, the stretching ratio was 1.45 times, and the stretching temperature was 135 ° C. The obtained stretched film had an angle of 75 ° with respect to the width direction of the stretched film. The stretched film had an in-plane retardation Re (550) of 245 nm and a thickness of 30 μm. The obtained stretched film was wound up and collected as a λ / 2 plate (H1).
[製造例6.λ/2板(H2)の製造]
 製造例4で得られた延伸前基材(Q2)のロールから、延伸前基材(Q2)を引き出した。引き出した延伸前基材(Q2)を、テンター延伸機に供給し、斜め延伸処理を行なって、中間フィルムを得た。この斜め延伸処理における延伸倍率は1.7倍、延伸温度は131℃とした。得られた中間フィルムを、長手方向に連続的に搬送しながら、縦延伸処理を行って、延伸フィルムを得た。この縦延伸処理における延伸倍率は1.5倍、延伸温度は125℃とした。得られた延伸フィルムは、その遅相軸が当該延伸フィルムの幅方向に対してなす角度が75°であった。また、延伸フィルムの面内レターデーションRe(550)は245nm、厚みは27μmであった。得られた延伸フィルムをλ/2板(H2)として巻き取り、回収した。
[Production Example 6. Production of λ / 2 plate (H2)]
The base material (Q2) before stretching was drawn from the roll of the base material (Q2) before stretching obtained in Production Example 4. The drawn base material (Q2) before stretching was supplied to a tenter stretching machine and subjected to an oblique stretching process to obtain an intermediate film. In this oblique stretching process, the stretching ratio was 1.7 times, and the stretching temperature was 131 ° C. While the obtained intermediate film was continuously conveyed in the longitudinal direction, a longitudinal stretching process was performed to obtain a stretched film. In this longitudinal stretching process, the stretching ratio was 1.5 times, and the stretching temperature was 125 ° C. The obtained stretched film had an angle of 75 ° with respect to the width direction of the stretched film. The stretched film had an in-plane retardation Re (550) of 245 nm and a thickness of 27 μm. The obtained stretched film was wound up and collected as a λ / 2 plate (H2).
[製造例7.λ/2板(H3)の製造]
 下記式(A1)で表される重合性の液晶化合物を用意した。この液晶化合物は、逆波長分散性液晶化合物である。この式(A1)で表される液晶化合物21.25部、界面活性剤(AGCセイミケミカル社製「サーフロンS420」)0.11部、重合開始剤(BASF社製「IRGACURE379」)0.64部、及び、溶媒(シクロペンタノン、日本ゼオン社製)78.00部を混合し、液晶組成物Aを調製した。
[Production Example 7. Production of λ / 2 plate (H3)]
A polymerizable liquid crystal compound represented by the following formula (A1) was prepared. This liquid crystal compound is a reverse wavelength dispersive liquid crystal compound. 21.25 parts of the liquid crystal compound represented by the formula (A1), 0.11 part of a surfactant (“Surflon S420” manufactured by AGC Seimi Chemical Co.), 0.64 part of a polymerization initiator (“IRGACURE379” manufactured by BASF) And 78.00 parts of a solvent (cyclopentanone, manufactured by Nippon Zeon Co., Ltd.) were mixed to prepare a liquid crystal composition A.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 支持体として、製造例5で得られた延伸フィルムとしてのλ/2板(H1)を用意した。前記支持体をロールから繰り出し、室温25℃において、その長手方向に搬送した。搬送される支持体上に、液晶組成物Aを、ダイコーターを用いて直接に塗布し、液晶組成物Aの層を形成した。液晶組成物Aの層に、110℃、2.5分間の条件で、配向処理を施した。その後、窒素雰囲気下(酸素濃度0.1%以下)で、積算光量1000mJ/cmの紫外線を、支持体の液晶組成物Aの層とは反対側に照射することによって、液晶組成物Aの層に照射した。紫外線の照射により液晶組成物Aの層が硬化されて、乾燥膜厚4.4μmの光学異方性層が形成された。これにより、支持体と、当該支持体上に形成された光学異方性層とを備える複層フィルムを得た。前記の光学異方性層は、液晶組成物Aの硬化物で形成された層であり、ホモジニアス配向した硬化液晶分子を含んでいた。光学異方性層の遅相軸がフィルムの幅方向に対してなす角度は75°であった。また、光学異方性層は、240nmの面内レターデーションRe(550)を有し、λ/2板として機能するものであった。そこで、この光学異方性層を、λ/2板(H3)とした。 A λ / 2 plate (H1) as a stretched film obtained in Production Example 5 was prepared as a support. The support was fed from a roll and transported in the longitudinal direction at room temperature of 25 ° C. The liquid crystal composition A was directly applied on the transported support using a die coater to form a layer of the liquid crystal composition A. The layer of the liquid crystal composition A was subjected to an alignment treatment at 110 ° C. for 2.5 minutes. Then, under a nitrogen atmosphere (oxygen concentration of 0.1% or less), ultraviolet rays having an integrated light quantity of 1000 mJ / cm 2 are irradiated to the side opposite to the layer of the liquid crystal composition A of the support, whereby the liquid crystal composition A The layer was irradiated. The layer of the liquid crystal composition A was cured by irradiation with ultraviolet rays, and an optically anisotropic layer having a dry film thickness of 4.4 μm was formed. This obtained the multilayer film provided with a support body and the optically anisotropic layer formed on the said support body. The optically anisotropic layer was a layer formed of a cured product of the liquid crystal composition A, and contained homogeneously aligned cured liquid crystal molecules. The angle formed by the slow axis of the optically anisotropic layer with respect to the width direction of the film was 75 °. The optically anisotropic layer had an in-plane retardation Re (550) of 240 nm and functioned as a λ / 2 plate. Therefore, this optically anisotropic layer was a λ / 2 plate (H3).
[製造例8.λ/4板(Q4)の製造]
 脂環式構造含有重合体製の市販の斜め延伸フィルム(遅相軸が幅方向に対してなす角度が45°、厚み60μm、面内レターデーションRe(550)は141nm)を用意した。この市販の斜め延伸フィルムを、製造例7で用いたλ/2板(H1)の代わりに、支持体として用いた。また、支持体上に形成する液晶組成物Aの層の厚みを、乾燥膜厚2.2μmの光学異方性層が得られるように変更した。以上の事項以外は、製造例7と同様にして、支持体と、当該支持体上に形成された光学異方性層とを備える複層フィルムを得た。前記の光学異方性層は、液晶組成物Aの硬化物で形成された層であり、ホモジニアス配向した硬化液晶分子を含んでいた。光学異方性層の遅相軸がフィルムの幅方向に対してなす角度は45°であった。また、光学異方性層は、139nmの面内レターデーションRe(550)を有し、λ/4板として機能するものであった。また、この光学異方性層のRe(450)/Re(550)は、0.83であった。そこで、この光学異方性層を、λ/4板(Q4)とした。
[Production Example 8. Production of λ / 4 plate (Q4)]
A commercially available obliquely stretched film made of an alicyclic structure-containing polymer (the angle formed by the slow axis with respect to the width direction is 45 °, the thickness is 60 μm, and the in-plane retardation Re (550) is 141 nm) was prepared. This commercially available diagonally stretched film was used as a support instead of the λ / 2 plate (H1) used in Production Example 7. Further, the thickness of the liquid crystal composition A layer formed on the support was changed so that an optically anisotropic layer having a dry film thickness of 2.2 μm was obtained. Except for the above, a multilayer film including a support and an optically anisotropic layer formed on the support was obtained in the same manner as in Production Example 7. The optically anisotropic layer was a layer formed of a cured product of the liquid crystal composition A, and contained homogeneously aligned cured liquid crystal molecules. The angle formed by the slow axis of the optically anisotropic layer with respect to the width direction of the film was 45 °. The optically anisotropic layer had an in-plane retardation Re (550) of 139 nm and functioned as a λ / 4 plate. In addition, Re (450) / Re (550) of the optically anisotropic layer was 0.83. Therefore, this optically anisotropic layer was a λ / 4 plate (Q4).
[製造例9.λ/4板(Q6)の製造]
 第一外側層及び第二外側層形成用の熱可塑性樹脂として、熱可塑性樹脂(J0)の代わりに、熱可塑性樹脂(J2)を用いた。以上の事項以外は製造例4における延伸前基材(Q2)の製造方法と同様にして、厚み70μmの延伸前基材(Q5)を得た。この延伸前基材(Q5)は、熱可塑性樹脂(J2)からなる第一外側層(厚み17.5μm)/熱可塑性樹脂(J3)からなる中間層(厚み35μm)/熱可塑性樹脂(J2)からなる第二外側層(厚み17.5μm)の2種3層からなるフィルムであった。得られた延伸前基材(Q5)を巻き取り、ロールを得た。
[Production Example 9. Production of λ / 4 plate (Q6)]
As a thermoplastic resin for forming the first outer layer and the second outer layer, a thermoplastic resin (J2) was used instead of the thermoplastic resin (J0). Except for the above, a substrate before stretching (Q5) having a thickness of 70 μm was obtained in the same manner as in the method for producing a substrate before stretching (Q2) in Production Example 4. This base material (Q5) before stretching is composed of a first outer layer (thickness 17.5 μm) made of thermoplastic resin (J2) / an intermediate layer (thickness 35 μm) made of thermoplastic resin (J3) / thermoplastic resin (J2). It was the film which consists of 2 types and 3 layers of the 2nd outer side layer (thickness 17.5 micrometers) which consists of. The obtained base material before stretching (Q5) was wound up to obtain a roll.
 次いで、延伸前基材(Q5)のロールから、延伸前基材(Q5)を引き出した。引き出した延伸前基材(Q5)を、テンター延伸機に供給し、斜め延伸処理を行なって、延伸フィルムを得た。この斜め延伸処理における延伸倍率は2.0倍、延伸温度は180℃とした。得られた延伸フィルムは、その遅相軸が当該延伸フィルムの幅方向に対してなす角度が45°であった。また、斜め延伸フィルムの面内レターデーションRe(550)は130nm、厚みは35μmであった。得られた延伸フィルムをλ/4板(Q6)として巻き取り、回収した。 Next, the base material (Q5) before stretching was drawn from the roll of the base material (Q5) before stretching. The drawn base material (Q5) before stretching was supplied to a tenter stretching machine and subjected to an oblique stretching process to obtain a stretched film. In this oblique stretching process, the stretching ratio was 2.0 times, and the stretching temperature was 180 ° C. The obtained stretched film had an angle of 45 ° with respect to the width direction of the stretched film. The obliquely stretched film had an in-plane retardation Re (550) of 130 nm and a thickness of 35 μm. The stretched film obtained was wound up and collected as a λ / 4 plate (Q6).
[実施例1]
 偏光子保護フィルムとして、製造例3で製造したλ/4板(Q1)を用意した。この偏光子保護フィルム、粘着剤(日東電工社製「CS9621T」)、偏光子(サンリッツ社製「HLC2-5618S」、厚さ180μm、幅方向に対して0°の方向に透過軸を有する)、粘着剤(日東電工社製「CS9621T」)、及びガラス板(厚さ0.7mm)を、この順に積層して、円偏光板(P1)を製造した。得られた円偏光板(P1)において、λ/4板(Q1)の遅相軸と偏光子の透過軸との交差角は45°であった。この円偏光板(P1)のレーザー光による加工性を評価した結果、「A」基準であった。また、ヒートサイクル試験により耐久性を評価した結果、「A」基準であった。
[Example 1]
A λ / 4 plate (Q1) manufactured in Production Example 3 was prepared as a polarizer protective film. This polarizer protective film, adhesive (“CS9621T” manufactured by Nitto Denko Corporation), polarizer (“HLC2-5618S” manufactured by Sanlitz Co., Ltd., thickness 180 μm, having a transmission axis in the direction of 0 ° with respect to the width direction), A pressure-sensitive adhesive (“CS9621T” manufactured by Nitto Denko Corporation) and a glass plate (thickness 0.7 mm) were laminated in this order to produce a circularly polarizing plate (P1). In the obtained circularly polarizing plate (P1), the crossing angle between the slow axis of the λ / 4 plate (Q1) and the transmission axis of the polarizer was 45 °. As a result of evaluating the workability of this circularly polarizing plate (P1) by laser light, it was “A” standard. Moreover, as a result of evaluating durability by a heat cycle test, it was “A” standard.
[実施例2]
 偏光子保護フィルムとして、実施例1で用いたλ/4板(Q1)の代わりに、製造例4で製造したλ/4板(Q3)を用いた。以上の事項以外は、実施例1と同様にして、円偏光板(P2)を製造した。得られた円偏光板(P2)において、λ/4板(Q3)の遅相軸と偏光子の透過軸との交差角は45°であった。この円偏光板(P2)のレーザー光による加工性を評価した結果、「B」基準であった。また、ヒートサイクル試験により耐久性を評価した結果、「B」基準であった。
[Example 2]
As the polarizer protective film, the λ / 4 plate (Q3) produced in Production Example 4 was used instead of the λ / 4 plate (Q1) used in Example 1. Except for the above, a circularly polarizing plate (P2) was produced in the same manner as in Example 1. In the obtained circularly polarizing plate (P2), the crossing angle between the slow axis of the λ / 4 plate (Q3) and the transmission axis of the polarizer was 45 °. As a result of evaluating the workability of this circularly polarizing plate (P2) by laser light, it was “B” standard. Moreover, as a result of evaluating durability by a heat cycle test, it was a “B” standard.
[実施例3]
 製造例3で得た光学等方性を有する延伸前基材(Q0)と、製造例3で得たλ/4板(Q1)とを、粘着剤(日東電工社製「CS9621T」)を介して貼合して、積層体を得た。この積層体を、実施例1で用いたλ/4板(Q1)の代わりに、偏光子保護フィルムとして用いた。以上の事項以外は、実施例1と同様にして、円偏光板(P3)を製造した。得られた円偏光板(P3)において、積層体のλ/4板(Q1)の遅相軸と偏光子の透過軸との交差角は45°であった。この円偏光板(P3)のレーザー光による加工性を評価した結果、「A」基準であった。また、ヒートサイクル試験により耐久性を評価した結果、「A」基準であった。
[Example 3]
The base material before stretching (Q0) having optical isotropy obtained in Production Example 3 and the λ / 4 plate (Q1) obtained in Production Example 3 were passed through an adhesive (“CS9621T” manufactured by Nitto Denko Corporation). And laminated to obtain a laminate. This laminate was used as a polarizer protective film instead of the λ / 4 plate (Q1) used in Example 1. Except for the above, a circularly polarizing plate (P3) was produced in the same manner as in Example 1. In the obtained circularly polarizing plate (P3), the crossing angle between the slow axis of the λ / 4 plate (Q1) of the laminate and the transmission axis of the polarizer was 45 °. As a result of evaluating the workability of this circularly polarizing plate (P3) by laser light, it was “A” standard. Moreover, as a result of evaluating durability by a heat cycle test, it was “A” standard.
[実施例4]
 製造例3で得たλ/4板(Q1)と製造例5で得たλ/2板(H1)とを、粘着剤(日東電工社製「CS9621T」)を介して貼合して、広帯域λ/4板を得た。この広帯域λ/4板を、実施例1で用いたλ/4板(Q1)の代わりに、偏光子保護フィルムとして用いた。以上の事項以外は、実施例1と同様にして、円偏光板(P4)を製造した。得られた円偏光板(P4)において、広帯域λ/4板のλ/4板(Q1)の遅相軸とλ/2板(H1)の遅相軸との交差角は60°であった。また、λ/2板(H1)の遅相軸と偏光子の透過軸との交差角は15°であった。この円偏光板(P4)のレーザー光による加工性を評価した結果、「A」基準であった。また、ヒートサイクル試験により耐久性を評価した結果、「A」基準であった。
[Example 4]
The λ / 4 plate (Q1) obtained in Production Example 3 and the λ / 2 plate (H1) obtained in Production Example 5 were bonded via an adhesive (“CS9621T” manufactured by Nitto Denko Corporation), and the broadband A λ / 4 plate was obtained. This broadband λ / 4 plate was used as a polarizer protective film instead of the λ / 4 plate (Q1) used in Example 1. A circularly polarizing plate (P4) was produced in the same manner as in Example 1 except for the above items. In the obtained circularly polarizing plate (P4), the crossing angle between the slow axis of the λ / 4 plate (Q1) of the broadband λ / 4 plate and the slow axis of the λ / 2 plate (H1) was 60 °. . The crossing angle between the slow axis of the λ / 2 plate (H1) and the transmission axis of the polarizer was 15 °. As a result of evaluating the workability of this circularly polarizing plate (P4) by laser light, it was “A” standard. Moreover, as a result of evaluating durability by a heat cycle test, it was “A” standard.
[実施例5]
 製造例3で得たλ/4板(Q1)と製造例6で得たλ/2板(H2)とを、粘着剤(日東電工社製「CS9621T」)を介して貼合して、広帯域λ/4板を得た。この広帯域λ/4板を、実施例1で用いたλ/4板(Q1)の代わりに、偏光子保護フィルムとして用いた。以上の事項以外は、実施例1と同様にして、円偏光板(P5)を製造した。得られた円偏光板(P5)において、広帯域λ/4板のλ/4板(Q1)の遅相軸とλ/2板(H2)の遅相軸との交差角は60°であった。また、λ/2板(H2)の遅相軸と偏光子の透過軸との交差角は15°であった。この円偏光板(P5)のレーザー光による加工性を評価した結果、「A」基準であった。また、ヒートサイクル試験により耐久性を評価した結果、「A」基準であった。
[Example 5]
The λ / 4 plate (Q1) obtained in Production Example 3 and the λ / 2 plate (H2) obtained in Production Example 6 were bonded together via an adhesive (“CS9621T” manufactured by Nitto Denko Corporation) A λ / 4 plate was obtained. This broadband λ / 4 plate was used as a polarizer protective film instead of the λ / 4 plate (Q1) used in Example 1. A circularly polarizing plate (P5) was produced in the same manner as in Example 1 except for the above items. In the obtained circularly polarizing plate (P5), the crossing angle between the slow axis of the λ / 4 plate (Q1) of the broadband λ / 4 plate and the slow axis of the λ / 2 plate (H2) was 60 °. . The crossing angle between the slow axis of the λ / 2 plate (H2) and the transmission axis of the polarizer was 15 °. As a result of evaluating the workability of this circularly polarizing plate (P5) by laser light, it was “A” standard. Moreover, as a result of evaluating durability by a heat cycle test, it was “A” standard.
[実施例6]
 製造例3で得たλ/4板(Q1)と、製造例7で得た複層フィルムの光学異方性層としてのλ/2板(H3)とを、粘着剤(日東電工社製「CS9621T」)を介して貼合した。その後、複層フィルムの支持体を剥離して、λ/4板(Q1)、粘着剤及びλ/2板(H3)をこの順で備える広帯域λ/4板を得た。この広帯域λ/4板を、実施例1で用いたλ/4板(Q1)の代わりに、偏光子保護フィルムとして用いた。以上の事項以外は、実施例1と同様にして、円偏光板(P6)を製造した。得られた円偏光板(P6)において、広帯域λ/4板のλ/4板(Q1)の遅相軸とλ/2板(H3)の遅相軸の交差角は60°であった。また、λ/2板(H3)の遅相軸と偏光子の透過軸との交差角は15°であった。この円偏光板(P6)のレーザー光による加工性を評価した結果、「A」基準であった。また、ヒートサイクル試験により耐久性を評価した結果、「A」基準であった。
[Example 6]
The λ / 4 plate (Q1) obtained in Production Example 3 and the λ / 2 plate (H3) as the optically anisotropic layer of the multilayer film obtained in Production Example 7 were combined with an adhesive (manufactured by Nitto Denko Corporation “ CS9621T "). Thereafter, the multilayer film support was peeled off to obtain a broadband λ / 4 plate comprising a λ / 4 plate (Q1), an adhesive and a λ / 2 plate (H3) in this order. This broadband λ / 4 plate was used as a polarizer protective film instead of the λ / 4 plate (Q1) used in Example 1. Except for the above, a circularly polarizing plate (P6) was produced in the same manner as in Example 1. In the obtained circularly polarizing plate (P6), the crossing angle of the slow axis of the λ / 4 plate (Q1) of the broadband λ / 4 plate and the slow axis of the λ / 2 plate (H3) was 60 °. The crossing angle between the slow axis of the λ / 2 plate (H3) and the transmission axis of the polarizer was 15 °. As a result of evaluating the workability of this circularly polarizing plate (P6) by laser light, it was “A” standard. Moreover, as a result of evaluating durability by a heat cycle test, it was “A” standard.
[実施例7]
 偏光子保護フィルムとして、実施例1で用いたλ/4板(Q1)の代わりに、製造例9で製造したλ/4板(Q6)を用いた。以上の事項以外は、実施例1と同様にして、円偏光板(P7)を製造した。得られた円偏光板(P7)において、λ/4板(Q6)の遅相軸と偏光子の透過軸との交差角は45°であった。この円偏光板(P7)のレーザー光による加工性を評価した結果、「B」基準であった。また、ヒートサイクル試験により耐久性を評価した結果、「A」基準であった。
[Example 7]
Instead of the λ / 4 plate (Q1) used in Example 1, the λ / 4 plate (Q6) manufactured in Production Example 9 was used as the polarizer protective film. Except for the above, a circularly polarizing plate (P7) was produced in the same manner as in Example 1. In the obtained circularly polarizing plate (P7), the crossing angle between the slow axis of the λ / 4 plate (Q6) and the transmission axis of the polarizer was 45 °. As a result of evaluating the workability of this circularly polarizing plate (P7) by laser light, it was “B” standard. Moreover, as a result of evaluating durability by a heat cycle test, it was “A” standard.
[比較例1]
 偏光子保護フィルムとして、実施例1に用いたλ/4板(Q1)の代わりに、レーザー吸収剤を含まない延伸前フィルム(日本ゼオン社製「ゼオノアフィルムZF14-100」、厚み100μm、樹脂のガラス転移温度136℃)を用いた。この延伸前フィルムは、脂環式構造含有重合体を含む樹脂からなる光学等方性のフィルムであった。以上の事項以外は、実施例1と同様にして、偏光板(P7)を製造した。この偏光板(P7)のレーザー光による加工性を評価した結果、「C」基準であった。また、ヒートサイクル試験により耐久性を評価した結果、「C」基準であった。
[Comparative Example 1]
As a polarizer protective film, instead of the λ / 4 plate (Q1) used in Example 1, a film before stretching (Zeonor film ZF14-100, manufactured by Nippon Zeon Co., Ltd., thickness 100 μm, resin Glass transition temperature 136 ° C.) was used. This pre-stretch film was an optically isotropic film made of a resin containing an alicyclic structure-containing polymer. A polarizing plate (P7) was produced in the same manner as in Example 1 except for the above items. As a result of evaluating the workability of this polarizing plate (P7) by laser light, it was “C” standard. Moreover, as a result of evaluating durability by a heat cycle test, it was “C” standard.
[比較例2]
 偏光子保護フィルムとして、実施例1に用いたλ/4板(Q1)の代わりに、レーザー吸収剤を含まない斜め延伸フィルム(日本ゼオン社製「斜め延伸位相差フィルム」、厚み47μm、面内レターデーションRe(550)は125nm、遅相軸がフィルムの幅方向に対してなす角度は45°)を用いた。この斜め延伸フィルムは、脂環式構造含有重合体を含む樹脂からなる市販のフィルムであった。以上の事項以外は、実施例1と同様にして、円偏光板(P8)を製造した。この円偏光板(P8)のレーザー光による加工性を評価した結果、「C」基準であった。また、ヒートサイクル試験により耐久性を評価した結果、「C」基準であった。
[Comparative Example 2]
As a polarizer protective film, instead of the λ / 4 plate (Q1) used in Example 1, an obliquely stretched film containing no laser absorber (“obliquely stretched phase difference film” manufactured by Nippon Zeon Co., Ltd., thickness 47 μm, in-plane The retardation Re (550) was 125 nm, and the angle formed by the slow axis with respect to the width direction of the film was 45 °. This obliquely stretched film was a commercially available film made of a resin containing an alicyclic structure-containing polymer. A circularly polarizing plate (P8) was produced in the same manner as in Example 1 except for the above items. As a result of evaluating the workability of this circularly polarizing plate (P8) by laser light, it was “C” standard. Moreover, as a result of evaluating durability by a heat cycle test, it was “C” standard.
[実施例8]
 実施例1で製造した円偏光板(P1)のλ/4板(Q1)とは反対側の面に、粘着剤(日東電工社製「CS9621T」)を介して、製造例4で製造したλ/4板(Q3)を位相差フィルムとして貼り合わせた。これにより、偏光子保護フィルム、粘着剤、偏光子、粘着剤、ガラス板、粘着剤及び位相差フィルムをこの順で備える視認側部材(T1)を製造した。得られた視認側部材(T1)において、偏光子の透過軸と位相差フィルムの遅相軸との交差角は、45°であった。
[Example 8]
The λ produced in Production Example 4 via an adhesive (“CS9621T” manufactured by Nitto Denko Corporation) on the surface opposite to the λ / 4 plate (Q1) of the circularly polarizing plate (P1) produced in Example 1 / 4 plate (Q3) was bonded as a retardation film. Thereby, the visual recognition side member (T1) provided with a polarizer protective film, an adhesive, a polarizer, an adhesive, a glass plate, an adhesive, and a retardation film in this order was manufactured. In the obtained viewing side member (T1), the crossing angle between the transmission axis of the polarizer and the slow axis of the retardation film was 45 °.
(画像表示装置の製造)
 視認側偏光板、液晶セル、光源側偏光板、及び光源をこの順に備える市販の液晶表示装置(Apple社製「iPad」(登録商標))を2つ用意した。
 一方の液晶表示装置の表示面部分を分解し、液晶表示装置の視認側偏光板を剥離し、代わりに、視認側部材(T1)を取り付けた。視認側部材(T1)は、偏光子保護フィルムが視認側に向くように取り付けた。これにより、視認側から、視認側部材(T1)、画像表示素子としての液晶セル、光源側偏光板、及び光源をこの順に備える液晶表示装置を得た。
(Manufacture of image display devices)
Two commercially available liquid crystal display devices (“iPad” (registered trademark) manufactured by Apple) equipped with a viewing side polarizing plate, a liquid crystal cell, a light source side polarizing plate, and a light source in this order were prepared.
The display surface part of one liquid crystal display device was disassembled, the viewing side polarizing plate of the liquid crystal display device was peeled off, and a viewing side member (T1) was attached instead. The viewing side member (T1) was attached so that the polarizer protective film was directed to the viewing side. Thereby, the viewing side member (T1), the liquid crystal cell as an image display element, the light source side polarizing plate, and the light source were obtained in this order from the viewing side.
(裸眼観察)
 視認側部材(T1)を取り付けた一方の液晶表示装置について、表示画面の色味および輝度を、裸眼で目視観察した。また、視認側部材(T1)を取り付けていない他方の液晶表示装置について、表示画面の色味および輝度を、裸眼で目視観察した。前記の観察は、表示画面の正面方向において行った。その結果、2つの液晶表示装置の間で、差はほとんど識別できなかった。
(Naked eye observation)
About one liquid crystal display device which attached the visual recognition side member (T1), the color and the brightness of the display screen were visually observed with the naked eye. Moreover, about the other liquid crystal display device which has not attached the visual recognition side member (T1), the color and brightness | luminance of the display screen were visually observed with the naked eye. The above observation was performed in the front direction of the display screen. As a result, the difference between the two liquid crystal display devices was hardly discernable.
(偏光サングラス観察)
 視認側部材(T1)を取り付けた一方の液晶表示装置について、偏光サングラスを装着して、表示画面を観察した。また、視認側部材(T1)を取り付けていない他方の液晶表示装置について、偏光サングラスを装着して、表示画面を観察した。前記の観察は、表示画面の傾斜方向において行った。面の傾斜方向とは、その面に平行でも垂直でもない方向を表す。その結果、視認側部材(T1)を取り付けた一方の液晶表示装置では、表示画面の正面方向に比べ、傾斜方向でもその明るさはほとんど変化しなかった。他方、視認側部材(T1)を取り付けていない他方の液晶表示装置では、表示画面の正面方向に比べ、傾斜方向では明るさが変化して暗くなった。
(Observation of polarized sunglasses)
About one liquid crystal display device which attached the visual recognition side member (T1), the polarized sunglasses were put on and the display screen was observed. Moreover, about the other liquid crystal display device which has not attached the visual recognition side member (T1), polarized sunglasses were mounted | worn and the display screen was observed. The above observation was performed in the tilt direction of the display screen. The inclination direction of a surface represents a direction that is neither parallel nor perpendicular to the surface. As a result, in one liquid crystal display device to which the viewing side member (T1) was attached, its brightness hardly changed even in the tilt direction compared to the front direction of the display screen. On the other hand, in the other liquid crystal display device to which the visual recognition side member (T1) is not attached, the brightness changes in the inclination direction and becomes darker than the front direction of the display screen.
[実施例9]
 実施例1で製造した円偏光板(P1)のλ/4板(Q1)とは反対側の面に、粘着剤(日東電工社製「CS9621T」)を介して、製造例8で製造したλ/4板(Q4)を位相差フィルムとして貼り合わせた。これにより、偏光子保護フィルム、粘着剤、偏光子、粘着剤、ガラス板、粘着剤及び位相差フィルムをこの順で備える視認側部材(T2)を製造した。得られた視認側部材(T2)において、偏光子の透過軸と位相差フィルムの遅相軸との交差角は、45°であった。
[Example 9]
The λ produced in Production Example 8 via an adhesive (“CS9621T” manufactured by Nitto Denko Corporation) on the surface opposite to the λ / 4 plate (Q1) of the circularly polarizing plate (P1) produced in Example 1 / 4 plate (Q4) was bonded as a retardation film. Thereby, the visual recognition side member (T2) provided with a polarizer protective film, an adhesive, a polarizer, an adhesive, a glass plate, an adhesive, and a retardation film in this order was manufactured. In the obtained viewing side member (T2), the crossing angle between the transmission axis of the polarizer and the slow axis of the retardation film was 45 °.
(画像表示装置の製造)
 視認側偏光板及び有機EL表示素子をこの順に備える市販のOLEDスマートフォン(LGエレクトロニクス社製「G FlexLGL23」)を用意した。
 このスマートフォンの視認側偏光板を剥離し、代わりに、視認側部材(T2)を取り付けた。視認側部材(T2)は、偏光子保護フィルムが視認側に向くように取り付けた。これにより、円偏光板を含む有機EL表示装置を得た。この有機EL表示装置の黒表示時及び白表示時の輝度は、それぞれ、6.2cd/m及び305cd/mであった。
(Manufacture of image display devices)
A commercially available OLED smartphone ("G Flex LGL23" manufactured by LG Electronics) having a viewing-side polarizing plate and an organic EL display element in this order was prepared.
The viewing side polarizing plate of this smartphone was peeled off, and a viewing side member (T2) was attached instead. The viewing side member (T2) was attached so that the polarizer protective film was directed to the viewing side. Thereby, an organic EL display device including a circularly polarizing plate was obtained. The luminance of the organic EL display device during black display and white display was 6.2 cd / m 2 and 305 cd / m 2 , respectively.
 晴れた日の外光下において、この有機EL表示装置を黒表示した状態で、表示画面を正面方向から目視した。その結果、表示画面での外光の反射は無く、表示画面は黒色であった。さらに、表示画面を斜め方向(極角45°、全方位)から目視したところ、方位角による反射率及び色味の変化は見られなかった。 The display screen was viewed from the front direction in a state where the organic EL display device was displayed in black under the daylight on a sunny day. As a result, there was no reflection of external light on the display screen, and the display screen was black. Furthermore, when the display screen was visually observed from an oblique direction (polar angle 45 °, omnidirectional), changes in reflectance and color due to the azimuth were not observed.
 10 表示装置
 50 液晶表示装置
 60 有機EL表示装置
 110 偏光子保護フィルム
 111 基材
 120 偏光子
 130 位相差フィルム
 140 表示素子
 200 樹脂層
 210 第一外側層
 220 第二外側層
 230 中間層
 300 基材
 310 第一基材層
 320 第二基材層
 330 導電層
 400 基材
 410 第一基材層
 420 第二基材層
 430 導電層
 510 光源
 520 光源側偏光子
 530 液晶セル
 540 位相差フィルム
 550 視認側偏光子
 560 基材
 561 第二基材層
 562 第一外側層
 563 中間層
 564 第二外側層
 565 第一基材層
 566 導電層
 570 偏光子保護フィルム
 610 有機EL素子
 620 位相差フィルム
 630 偏光子
 640 基材
 641 第一外側層
 642 中間層
 643 第二外側層
 644 第二基材層
 645 第一外側層
 646 中間層
 647 第二外側層
 648 第一基材層
 649 導電層
 650 偏光子保護フィルム
DESCRIPTION OF SYMBOLS 10 Display apparatus 50 Liquid crystal display apparatus 60 Organic EL display apparatus 110 Polarizer protective film 111 Base material 120 Polarizer 130 Phase difference film 140 Display element 200 Resin layer 210 1st outer side layer 220 2nd outer side layer 230 Intermediate layer 300 Base material 310 First base material layer 320 Second base material layer 330 Conductive layer 400 Base material 410 First base material layer 420 Second base material layer 430 Conductive layer 510 Light source 520 Light source side polarizer 530 Liquid crystal cell 540 Phase difference film 550 Viewing side polarization Child 560 Base material 561 Second base material layer 562 First outer layer 563 Intermediate layer 564 Second outer layer 565 First base material layer 566 Conductive layer 570 Polarizer protective film 610 Organic EL element 620 Retardation film 630 Polarizer 640 Base Material 641 First outer layer 642 Intermediate layer 643 Second outer layer 644 Second substrate 645 first outer layer 646 intermediate layer 647 second outer layer 648 polarizer protective film first substrate layer 649 conductive layer 650

Claims (17)

  1.  偏光子保護フィルム、偏光子、位相差フィルム及び表示素子をこの順に備える表示装置であって、
     前記偏光子保護フィルムが、レーザー吸収剤を含み且つλ/4板として機能できる基材を含み、
     前記位相差フィルムの波長550nmにおける面内レターデーションRe(550)が、90nm~150nmである、表示装置。
    A display device comprising a polarizer protective film, a polarizer, a retardation film and a display element in this order,
    The polarizer protective film contains a laser absorber and a substrate that can function as a λ / 4 plate,
    The display device, wherein the retardation film has an in-plane retardation Re (550) at a wavelength of 550 nm of 90 nm to 150 nm.
  2.  前記基材が、波長550nmにおける面内レターデーションRe(550)が10nm以下である第一基材層と、波長550nmにおける面内レターデーションRe(550)が90nm~150nmである第二基材層と、前記第一基材層の少なくとも一方の面に形成された導電層とを含み、
     前記レーザー吸収剤が、前記第一基材層及び前記第二基材層の一方又は両方に含まれる、請求項1記載の表示装置。
    The base material has a first base material layer having an in-plane retardation Re (550) of 10 nm or less at a wavelength of 550 nm, and a second base material layer having an in-plane retardation Re (550) of 90 nm to 150 nm at a wavelength of 550 nm. And a conductive layer formed on at least one surface of the first base material layer,
    The display device according to claim 1, wherein the laser absorbent is included in one or both of the first base material layer and the second base material layer.
  3.  前記基材が、λ/4板として機能できる第一基材層と、λ/2板として機能できる第二基材層と、前記第一基材層の少なくとも一方の面に形成された導電層とを含み、且つ、広帯域λ/4板として機能でき、
     前記レーザー吸収剤が、前記第一基材層及び前記第二基材層の一方又は両方に含まれる、請求項1記載の表示装置。
    The base material is a first base material layer that can function as a λ / 4 plate, a second base material layer that can function as a λ / 2 plate, and a conductive layer formed on at least one surface of the first base material layer. And can function as a broadband λ / 4 plate,
    The display device according to claim 1, wherein the laser absorbent is included in one or both of the first base material layer and the second base material layer.
  4.  前記第二基材層が、液晶性化合物を含む液晶組成物の硬化物で形成されている、請求項3記載の表示装置。 The display device according to claim 3, wherein the second base material layer is formed of a cured product of a liquid crystal composition containing a liquid crystal compound.
  5.  前記第一基材層及び前記第二基材層の一方又は両方が、
     第一外側層と、
     第二外側層と、
     前記第一外側層及び前記第二外側層の間に設けられた中間層と、を含む、請求項2~4のいずれか一項に記載の表示装置。
    One or both of the first substrate layer and the second substrate layer are
    A first outer layer;
    A second outer layer;
    The display device according to claim 2, further comprising an intermediate layer provided between the first outer layer and the second outer layer.
  6.  前記中間層が、紫外線吸収剤を含む、請求項5記載の表示装置。 The display device according to claim 5, wherein the intermediate layer includes an ultraviolet absorber.
  7.  前記第一外側層が、ガラス転移温度TgO1を有する第一外側樹脂で形成され、
     前記第二外側層が、ガラス転移温度TgO2を有する第二外側樹脂で形成され、
     前記中間層が、ガラス転移温度Tgを有する中間樹脂で形成され、
     前記第一外側樹脂のガラス転移温度TgO1が、前記中間樹脂のガラス転移温度Tgよりも低く、
     前記第二外側樹脂のガラス転移温度TgO2が、前記中間樹脂のガラス転移温度Tgよりも低い、請求項5又は6記載の表示装置。
    Wherein the first outer layer is formed by a first outer resin having a glass transition temperature Tg O1,
    The second outer layer is formed with a second outer resin having a glass transition temperature Tg O2,
    The intermediate layer is formed of an intermediate resin having a glass transition temperature Tg C ;
    The glass transition temperature Tg O1 of the first outer resin is lower than the glass transition temperature Tg C of the intermediate resin,
    The second glass transition temperature Tg O2 of the outer resin, the lower the glass transition temperature Tg C of the intermediate resin, the display device according to claim 5 or 6, wherein.
  8.  前記第一外側樹脂のガラス転移温度TgO1と、前記中間樹脂のガラス転移温度Tgとの差Tg-TgO1が、30℃以上であり、
     前記第二外側樹脂のガラス転移温度TgO2と、前記中間樹脂のガラス転移温度Tgとの差Tg-TgO2が、30℃以上である、請求項7記載の表示装置。
    The difference Tg C −Tg O1 between the glass transition temperature Tg O1 of the first outer resin and the glass transition temperature Tg C of the intermediate resin is 30 ° C. or more,
    The display device according to claim 7, wherein a difference Tg C −Tg O 2 between the glass transition temperature Tg O 2 of the second outer resin and the glass transition temperature Tg C of the intermediate resin is 30 ° C. or more.
  9.  前記第一基材層及び前記第二基材層の一方又は両方の厚みが、10μm~60μmである、請求項2~8のいずれか一項に記載の表示装置。 The display device according to any one of claims 2 to 8, wherein a thickness of one or both of the first base material layer and the second base material layer is 10 袖 m to 60 袖 m.
  10.  前記基材の遅相軸と前記偏光子の透過軸とが交差している、請求項1~9のいずれか一項に記載の表示装置。 10. The display device according to claim 1, wherein a slow axis of the base material and a transmission axis of the polarizer intersect.
  11.  前記基材の遅相軸と前記偏光子の透過軸との交差角が、45°±5°である、請求項10記載の表示装置。 The display device according to claim 10, wherein the crossing angle between the slow axis of the substrate and the transmission axis of the polarizer is 45 ° ± 5 °.
  12.  前記基材が、結晶性を有する重合体を含む、請求項1~11のいずれか一項に記載の表示装置。 The display device according to any one of claims 1 to 11, wherein the base material includes a crystalline polymer.
  13.  前記基材及び前記位相差フィルムが、それぞれ、脂環式構造含有重合体を含む、請求項1~12のいずれか一項に記載の表示装置。 The display device according to any one of claims 1 to 12, wherein the base material and the retardation film each contain an alicyclic structure-containing polymer.
  14.  前記基材及び前記位相差フィルムが、それぞれ、延伸フィルムを含む、請求項1~13のいずれか一項に記載の表示装置。 The display device according to any one of claims 1 to 13, wherein the base material and the retardation film each include a stretched film.
  15.  前記位相差フィルムが、液晶性化合物を含む液晶組成物の硬化物で形成されていて、
     前記位相差フィルムの波長450nmにおける面内レターデーションRe(450)と、前記位相差フィルムの波長550nmにおける面内レターデーションRe(550)とが、Re(450)/Re(550)<1.0を満たす、請求項1~12のいずれか一項に記載の表示装置。
    The retardation film is formed of a cured product of a liquid crystal composition containing a liquid crystal compound,
    The in-plane retardation Re (450) of the retardation film at a wavelength of 450 nm and the in-plane retardation Re (550) of the retardation film at a wavelength of 550 nm are Re (450) / Re (550) <1.0. The display device according to any one of claims 1 to 12, which satisfies:
  16.  前記表示素子が、液晶セルである、請求項1~15のいずれか一項に記載の表示装置。 The display device according to any one of claims 1 to 15, wherein the display element is a liquid crystal cell.
  17.  前記表示素子が、有機エレクトロルミネッセンス素子である、請求項1~15のいずれか一項に記載の表示装置。 The display device according to any one of claims 1 to 15, wherein the display element is an organic electroluminescence element.
PCT/JP2018/002695 2017-01-30 2018-01-29 Display device WO2018139638A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197019169A KR102638928B1 (en) 2017-01-30 2018-01-29 display device
CN201880004902.9A CN110050210A (en) 2017-01-30 2018-01-29 Display device
JP2018564685A JP6977737B2 (en) 2017-01-30 2018-01-29 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017014583 2017-01-30
JP2017-014583 2017-01-30

Publications (1)

Publication Number Publication Date
WO2018139638A1 true WO2018139638A1 (en) 2018-08-02

Family

ID=62977907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002695 WO2018139638A1 (en) 2017-01-30 2018-01-29 Display device

Country Status (5)

Country Link
JP (1) JP6977737B2 (en)
KR (1) KR102638928B1 (en)
CN (1) CN110050210A (en)
TW (1) TWI746782B (en)
WO (1) WO2018139638A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021107108A1 (en) * 2019-11-29 2021-06-03 日本ゼオン株式会社 Phase contrast film and method for producing same
CN112946805A (en) * 2019-12-11 2021-06-11 住友化学株式会社 Circular polarizing plate
WO2022045185A1 (en) * 2020-08-25 2022-03-03 富士フイルム株式会社 Circularly polarizing plate, organic electroluminescence display device, and display device
WO2022085726A1 (en) * 2020-10-23 2022-04-28 コニカミノルタ株式会社 Polarizing plate, method for manufacturing same, and method for manufacturing display device
KR20230006920A (en) 2020-07-29 2023-01-11 코니카 미놀타 가부시키가이샤 Optical films, polarizers and liquid crystal displays
CN116572493A (en) * 2023-07-07 2023-08-11 成都希德光安全科技有限公司 Composite laser protection plate and processing technology thereof
CN114730039B (en) * 2019-11-29 2024-04-23 日本瑞翁株式会社 Retardation film and method for producing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005148567A (en) * 2003-11-18 2005-06-09 Sekisui Chem Co Ltd Polarizer protection film, polarizing plate using same and liquid crystal display device
JP2008070635A (en) * 2006-09-14 2008-03-27 Fujifilm Corp Optical compensation sheet, circular polarizing plate, and picture display device
JP2009128836A (en) * 2007-11-28 2009-06-11 Nitto Denko Corp Lengthwise circularly polarizing plate and method for manufacturing the same
JP2009258589A (en) * 2008-03-26 2009-11-05 Sumitomo Chemical Co Ltd Composite polarizing plate, method of manufacturing composite polarizing plate, and liquid crystal display using it
JP2012066410A (en) * 2010-09-21 2012-04-05 Toppan Printing Co Ltd Optical sheet and method for manufacturing the same
JP2013152690A (en) * 2011-12-28 2013-08-08 Nissha Printing Co Ltd Capacitive type touch sensor with optical function
JP2013200333A (en) * 2012-03-23 2013-10-03 Konica Minolta Inc Cellulose acylate laminate film and manufacturing method thereof, and polarizer and liquid crystal display device using the same
WO2016194999A1 (en) * 2015-06-03 2016-12-08 富士フイルム株式会社 Optical film, polarizing plate and image display device

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821155Y2 (en) 1979-02-21 1983-05-04 株式会社明電舎 Conservator shield and support structure in oil-filled electrical equipment
JPH01204092A (en) 1988-02-10 1989-08-16 Nissan Motor Co Ltd Image display device for vehicle
JP2940031B2 (en) 1989-12-04 1999-08-25 セイコーエプソン株式会社 Liquid crystal display device
JP3174367B2 (en) 1991-10-07 2001-06-11 日東電工株式会社 Laminated wave plate and circularly polarizing plate
JPH1010523A (en) 1996-06-24 1998-01-16 Dainippon Printing Co Ltd Liquid crystal display device
JPH1068816A (en) 1996-08-29 1998-03-10 Sharp Corp Phase difference plate and circularly polarizing plate
JP4461795B2 (en) 2003-12-18 2010-05-12 日本ゼオン株式会社 Optical laminate and method for producing optical laminate
CN101283297A (en) * 2005-11-28 2008-10-08 日东电工株式会社 Polarizing plate with optical compensation layer, and image display apparatus using the same
JP4791434B2 (en) 2007-11-15 2011-10-12 日東電工株式会社 Liquid crystal display
JP5347406B2 (en) 2008-09-25 2013-11-20 コニカミノルタ株式会社 Manufacturing method of optical film
JP5569773B2 (en) * 2009-02-23 2014-08-13 住友化学株式会社 Composite polarizing plate and IPS mode liquid crystal display device using the same
JP6136527B2 (en) * 2012-10-29 2017-05-31 大日本印刷株式会社 Optical laminate for front surface of in-cell touch panel liquid crystal element and in-cell touch panel type liquid crystal display device using the same
JP6318465B2 (en) 2013-03-26 2018-05-09 住友化学株式会社 Resin film, polarizing plate using the same, and method for cutting resin film
KR102257958B1 (en) 2013-05-16 2021-05-28 니폰 제온 가부시키가이샤 Display device with capacitive touch panel
JP2015031753A (en) 2013-07-31 2015-02-16 日本ゼオン株式会社 Optical laminate and liquid crystal display device
KR102368381B1 (en) * 2013-08-09 2022-02-28 스미또모 가가꾸 가부시키가이샤 Optical film
TWI637197B (en) * 2013-08-09 2018-10-01 住友化學股份有限公司 Optical film
JP6662294B2 (en) * 2014-08-28 2020-03-11 日本ゼオン株式会社 Optical film
US10655012B2 (en) 2015-06-08 2020-05-19 Aortech International Plc Process for the preparation of polyurethane solutions based on silicon-polycarbonate diols
JP6794181B2 (en) * 2016-08-30 2020-12-02 日東電工株式会社 Polarizer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005148567A (en) * 2003-11-18 2005-06-09 Sekisui Chem Co Ltd Polarizer protection film, polarizing plate using same and liquid crystal display device
JP2008070635A (en) * 2006-09-14 2008-03-27 Fujifilm Corp Optical compensation sheet, circular polarizing plate, and picture display device
JP2009128836A (en) * 2007-11-28 2009-06-11 Nitto Denko Corp Lengthwise circularly polarizing plate and method for manufacturing the same
JP2009258589A (en) * 2008-03-26 2009-11-05 Sumitomo Chemical Co Ltd Composite polarizing plate, method of manufacturing composite polarizing plate, and liquid crystal display using it
JP2012066410A (en) * 2010-09-21 2012-04-05 Toppan Printing Co Ltd Optical sheet and method for manufacturing the same
JP2013152690A (en) * 2011-12-28 2013-08-08 Nissha Printing Co Ltd Capacitive type touch sensor with optical function
JP2013200333A (en) * 2012-03-23 2013-10-03 Konica Minolta Inc Cellulose acylate laminate film and manufacturing method thereof, and polarizer and liquid crystal display device using the same
WO2016194999A1 (en) * 2015-06-03 2016-12-08 富士フイルム株式会社 Optical film, polarizing plate and image display device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021107108A1 (en) * 2019-11-29 2021-06-03 日本ゼオン株式会社 Phase contrast film and method for producing same
CN114730039A (en) * 2019-11-29 2022-07-08 日本瑞翁株式会社 Retardation film and method for producing same
CN114730039B (en) * 2019-11-29 2024-04-23 日本瑞翁株式会社 Retardation film and method for producing same
CN112946805A (en) * 2019-12-11 2021-06-11 住友化学株式会社 Circular polarizing plate
JP2021092687A (en) * 2019-12-11 2021-06-17 住友化学株式会社 Circular polarization plate
JP7374744B2 (en) 2019-12-11 2023-11-07 住友化学株式会社 circular polarizing plate
KR20230006920A (en) 2020-07-29 2023-01-11 코니카 미놀타 가부시키가이샤 Optical films, polarizers and liquid crystal displays
WO2022045185A1 (en) * 2020-08-25 2022-03-03 富士フイルム株式会社 Circularly polarizing plate, organic electroluminescence display device, and display device
WO2022085726A1 (en) * 2020-10-23 2022-04-28 コニカミノルタ株式会社 Polarizing plate, method for manufacturing same, and method for manufacturing display device
CN116572493A (en) * 2023-07-07 2023-08-11 成都希德光安全科技有限公司 Composite laser protection plate and processing technology thereof

Also Published As

Publication number Publication date
JPWO2018139638A1 (en) 2019-11-21
KR20190108564A (en) 2019-09-24
CN110050210A (en) 2019-07-23
TW201827870A (en) 2018-08-01
KR102638928B1 (en) 2024-02-20
JP6977737B2 (en) 2021-12-08
TWI746782B (en) 2021-11-21

Similar Documents

Publication Publication Date Title
WO2018139638A1 (en) Display device
CN110709740B (en) Polarizing plate with phase difference layer and image display device
KR102523072B1 (en) Polarizing plate with optical compensation layer and organic EL panel using the same
US10705385B2 (en) Optical laminate, circularly polarizing plate, touch panel, and image display device
US10705274B2 (en) Optically anisotropic layer and production method therefor, optically anisotropic laminate and production method therefor, optically anisotropic transfer body, polarization plate, and image display device
CN104995553B (en) Image display device
JP6927198B2 (en) Optically anisotropic laminated body, circularly polarizing plate, and image display device
JP7044468B2 (en) An optical laminate and an image display device using the optical laminate
CN108627901B (en) Polarizing plate with antireflection layer and reflection preventing layer and method for producing same
KR20200083567A (en) Long retardation film, long laminate, image display device
JP7093237B2 (en) An optical laminate with a touch sensor layer, an image display device, and a method for manufacturing the optical laminate.
JP2020115226A (en) Polarizing plate with retardation layer, and image display device using the same
CN104981731A (en) Image display device
TWI827658B (en) Polarizing plate with retardation layer and image display device using the polarizing plate with retardation layer
JP2020115227A (en) Polarizing plate with retardation layer and image display using the same
TWI835718B (en) Optical stack, circular polarizing plate, touch panel and image display device
JP2019029005A (en) Optical laminate with touch sensor layer, image display device, and method for manufacturing optical laminate
JP7156294B2 (en) Optically anisotropic layer and its manufacturing method, optically anisotropic laminate and its manufacturing method, optically anisotropic transfer member, polarizing plate, and image display device
CN109307901B (en) Optical laminate with touch sensor layer, image display device, and method for manufacturing optical laminate
JP2020076938A (en) Polarizing plate with retardation layer and image display using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744465

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564685

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197019169

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18744465

Country of ref document: EP

Kind code of ref document: A1