WO2018138979A1 - Resin structure and production method therefor - Google Patents

Resin structure and production method therefor Download PDF

Info

Publication number
WO2018138979A1
WO2018138979A1 PCT/JP2017/037326 JP2017037326W WO2018138979A1 WO 2018138979 A1 WO2018138979 A1 WO 2018138979A1 JP 2017037326 W JP2017037326 W JP 2017037326W WO 2018138979 A1 WO2018138979 A1 WO 2018138979A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded body
resin molded
region
resin
electronic component
Prior art date
Application number
PCT/JP2017/037326
Other languages
French (fr)
Japanese (ja)
Inventor
若浩 川井
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2018138979A1 publication Critical patent/WO2018138979A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24153Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate
    • H01L2224/24195Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being a discrete passive component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present technology relates to an extensible resin structure provided with a wiring circuit and a manufacturing method thereof.
  • flexible wiring circuit boards that can be bent are frequently used due to the increasing demand for miniaturization in portable devices and the like.
  • a wearable device such as a medical device to be attached to the body surface requires a printed circuit board that expands following the movement of the body.
  • a flexible substrate that can be bent is usually formed by laminating a 18 ⁇ m or 35 ⁇ m thick copper foil serving as a wiring circuit on a substrate surface made of polyimide (PI) having a thickness of 25 ⁇ m.
  • PI polyimide
  • the elongation of the copper foil laminated on the surface is small, and for the purpose of sticking to the body surface, etc., if the base material is made of PE (polyethylene) with high expansion / contraction performance, elastomer resin, rubber, etc., the movement of the body There is a possibility that the wiring circuit of the copper foil breaks due to the expansion and contraction of the substrate that has been followed.
  • PE polyethylene
  • Patent Document 1 discloses a flexible substrate bent into a corrugated shape.
  • Patent Document 2 discloses a technique for forming a copper foil wiring circuit in a bellows-fold shape.
  • Japanese Patent Application Laid-Open No. 2004-345322 Patent Document 3
  • Japanese Patent Application Laid-Open No. 2006-270118 Patent Document 4
  • Patent Document 5 discloses an ink composition excellent in followability even with respect to a flexible printing substrate. By forming a wiring circuit using such an ink composition having excellent followability, the wiring circuit is less likely to break even if the substrate is elongated.
  • the flexible substrate is bent into a corrugated shape, so that the flexible substrate is increased in size.
  • the area on the base material surface required for the bellows-folded wiring circuit is increased, leading to an increase in the size of the substrate. That is, with these technologies, it is difficult to reduce the size of the flexible substrate.
  • the substrate can be reduced in size, but the followability to the base material is improved. For this reason, the amount of the additive in the ink composition increases, and the electrical resistance of the wiring circuit increases.
  • the present invention has been made paying attention to the above-described problems, and an object thereof is to provide a resin structure that can be reduced in size and can suppress an increase in electrical resistance of a wiring circuit, and a method for manufacturing the same. It is said.
  • the resin structure includes a resin molded body that can be extended and deformed, and a wiring circuit.
  • the surface of the resin molded body includes an uneven region having an uneven shape.
  • the wiring circuit is formed on the uneven area.
  • the resin molding is a plate having a rectangular shape in plan view.
  • the concavo-convex region has a wave shape in which the ridge portions and the groove portions are alternately continuous.
  • the protrusion and the groove extend along the short direction of the resin molded body.
  • the resin molding is a plate having a rectangular shape in plan view.
  • a plurality of concave or convex portions having a long axis parallel to the longitudinal direction of the resin molded body and having an elliptical shape in plan view are formed.
  • the difference in height between the uppermost point and the lowermost point in the concavo-convex region is 50 ⁇ m or more and 200 ⁇ m or less.
  • the elongation at break of the resin molded body is 1% or more.
  • the resin structure further includes an electronic component.
  • the resin molded body is embedded and fixed so that the electrodes of the electronic component are exposed.
  • the wiring circuit is connected to the electrode.
  • the surface of the resin molded body is positioned around the exposed surface from the resin molded body in the electronic component, and further includes a continuous region continuous to the exposed surface.
  • the uneven area is located around the continuous area and continues to the continuous area.
  • the above-described method for manufacturing a resin structure includes filling a resin material into an inner space of a molding die in which at least a part of the inner surface is processed into a concavo-convex shape, thereby at least a part of the region.
  • the method includes a step of forming a resin molded body having an opposing portion as an uneven region, and a step of forming a wiring circuit on the uneven region of the resin molded body.
  • the method for producing a resin structure described above is such that at least a part of one surface of the sheet is processed into a concavo-convex shape on the one surface, and the electrode faces the one surface.
  • the step of attaching the electronic component and the sheet is placed in the mold, and the resin is filled in the mold so that the electronic component is embedded and the portion facing the at least a part of the region is formed.
  • At least a part of the region of the sheet is embossed into an uneven shape.
  • at least a part of the region of the sheet is processed into a concavo-convex shape by applying an adhesive with different application amounts depending on the position.
  • the electronic component is attached to the sheet using an adhesive.
  • FIG. 3 is a plan view showing a schematic configuration of a resin structure according to Embodiment 1.
  • FIG. FIG. 2 is a cross-sectional view taken along line XX in FIG. It is a figure explaining the manufacturing method of the resin structure which concerns on Embodiment 1.
  • FIG. It is a top view which shows the modification of the lower mold
  • FIG. 5B is a cross-sectional view taken along line XX in FIG. 5A.
  • FIG. 5B is a cross-sectional view taken along the line XI-XI in FIG. 5A.
  • FIG. 6 is a plan view showing a schematic configuration of a resin structure according to Embodiment 2.
  • FIG. 7 is a cross-sectional view taken along line XX in FIG. 6. It is a figure explaining the manufacturing method of the resin structure which concerns on Embodiment 3.
  • FIG. 7 is a plan view showing a schematic configuration of a resin structure according to Embodiment 2.
  • FIG. 7 is a cross-sectional view taken along line XX in FIG. 6. It is a figure explaining the manufacturing method of the resin structure which concerns on Embodiment 3.
  • FIG. 1 is a plan view showing a schematic configuration of a resin structure 100 according to Embodiment 1.
  • FIG. 2 is a cross-sectional view taken along the line XX of FIG.
  • the resin structure 100 is a device that is incorporated in an electronic device such as a wearable portable device and has a main or auxiliary function of the electronic device.
  • Wearable portable devices include, for example, measuring devices that are worn on clothes and measure body surface temperature, and measuring devices that are wrapped around an arm and measure pulse, blood pressure, and the like.
  • the resin structure 100 includes an electronic component 110, a resin molded body 120, and a wiring circuit 130.
  • the electronic component 110 is a passive component such as a chip capacitor or a chip resistor, a semiconductor component such as an IC (Integrated Circuit), an LSI (Large-Scale Integration), or a power transistor, or an electronic component such as a sensor. Although four electronic components 110 are shown in FIG. 1, the number of electronic components 110 is not particularly limited.
  • the resin molded body 120 is made of a stretchable and deformable resin material (for example, an elastomer that is an elastic rubber-like polymer material such as a polyester elastomer, a styrene elastomer, and an olefin elastomer).
  • the elongation percentage at break of the resin molded body 120 is 1% or more, preferably 10% or more.
  • the elongation at break indicates the elongation of the test piece at break relative to the test piece before the test when a tensile test is performed according to JIS K 7162. Since the resin molded body 120 can be extended and deformed, the resin molded body 120 can be extended in accordance with the movement of the human body when the resin structure 100 is incorporated into a wearable portable device.
  • the upper surface 121 includes an uneven region 122 that is an uneven shape.
  • the uneven region 122 is a region in which concave and convex shapes are alternately continued. Specifically, in the cross section of the resin molded body 120 when cut by a plane parallel to the longitudinal direction of the upper surface 121 and parallel to the normal direction of the upper surface 121, the uneven region 122 has a waveform.
  • the uneven region 122 includes a protrusion 123 and a groove 124 extending along the short side direction (short side direction) of the upper surface 121.
  • the protrusions 123 and the grooves 124 are formed alternately and continuously along the longitudinal direction (long side direction) of the upper surface 121.
  • the resin molded body 120 fixes the electronic component 110 by embedding the electronic component 110 therein.
  • the resin molded body 120 has the electronic component 110 embedded so that the electronic component 110 is exposed from the uneven region 122.
  • the resin molded body 120 embeds the electronic component 110 so that the electrode 111 of the electronic component 110 is exposed from the resin molded body 120. That is, the electrode 111 is formed on the exposed surface 112 from the resin molded body 120 in the electronic component 110.
  • the uneven area 122 on the upper surface 121 is continuous with the exposed surface 112 of the electronic component 110.
  • continuous indicates a state where there is no step between the two surfaces.
  • the wiring circuit 130 is formed on the uneven region 122 on the upper surface 121 of the resin molded body 120 and is connected to the electrode 111 of the electronic component 110. Thereby, the electrode 111 of one electronic component 110 and the electrode 111 of another electronic component 110 are connected.
  • the wiring circuit 130 includes a conductive substance (for example, silver (Ag)) and an additive for imparting extensibility.
  • the wiring circuit 130 can be extended and deformed by containing an additive. However, since the electrical resistance of the wiring circuit 130 increases as the amount of the additive increases, the amount of the additive is minimized.
  • the wiring circuit 130 is easily formed by ejecting conductive ink containing silver (Ag) fine particles and an additive using, for example, an ink jet printing method.
  • the ink jet printing method is a printing method in which conductive ink is ejected from nozzles and particulate ink is deposited on the ejection target surface.
  • the wiring circuit 130 may be formed by a method using aerosol or a method using a dispenser.
  • the uneven region 122 has a waveform.
  • the wiring circuit 130 also has the same shape as that of the uneven region 122.
  • the cross section of the wiring circuit 130 when it is cut along a plane parallel to the longitudinal direction (long side direction) of the upper surface 121 and parallel to the normal direction of the uneven region 122 is a waveform.
  • FIG. 3 is a diagram illustrating a method for manufacturing the resin structure 100.
  • FIGS. 3A to 3D are views for explaining first to fourth steps for manufacturing the resin structure 100, respectively.
  • the upper side shows a plan view and the lower side shows a side view.
  • FIG. 3B shows a cross-sectional view.
  • FIG. 3C shows a plan view.
  • the upper side shows a plan view, and the lower side shows a cross-sectional view taken along line XX in the plan view.
  • the electronic component 110 is temporarily fixed by being attached to a temporarily fixed sheet 200 having a rectangular shape in plan view with an adhesive (not shown). At this time, the electronic component 110 is affixed to the temporarily fixed sheet 200 so that the surface on which the electrode 111 is formed is in contact with the temporarily fixed sheet 200.
  • the temporary fixing sheet 200 for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyphenylene sulfide (PPS), or the like can be used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PPS polyphenylene sulfide
  • the temporary fixing sheet 200 is preferably made of a material that transmits ultraviolet rays and has flexibility for reasons described later.
  • Temporary fixing can be performed using, for example, an ultraviolet curable adhesive (not shown) applied to one surface of the temporary fixing sheet 200.
  • an ultraviolet curable adhesive is applied to a temporary fixing sheet 200 made of PET having a thickness of 50 ⁇ m to a thickness of 2 to 3 ⁇ m. This application may be performed using a method such as an ink jet printing method.
  • the electronic component 110 is placed at a predetermined position.
  • the adhesive is cured by irradiating UV light having an intensity of, for example, 3000 mJ / cm 2 from the surface of the temporarily fixed sheet 200 where the electronic component 110 is not disposed, and the electronic component 110 is temporarily attached to the temporarily fixed sheet 200. Fix it.
  • the temporarily fixing sheet 200 on which the electronic component 110 is temporarily fixed is installed inside the mold 300.
  • the mold 300 is composed of a lower mold 31 and an upper mold 32. By bringing the lower mold 31 and the upper mold 32 into close contact with each other, a sealed internal space is formed.
  • the rectangular region 310 on the inner surface of the molding die 300 (here, the surface of the lower die 31) is processed into an uneven shape throughout.
  • the rectangular region 310 has a wave shape in which the ridge portions 311 and the groove portions 312 are alternately continuous.
  • the temporarily fixed sheet 200 is installed on the rectangular region 310 in the mold 300 such that the short side of the temporarily fixed sheet 200 having a rectangular shape in plan view and the extending direction of the protrusion 311 (or the groove 312) are parallel to each other. .
  • the temporarily fixing sheet 200 is installed in the mold 300 such that the surface on which the electronic component 110 is not temporarily fixed is in contact with the inner surface of the mold 300.
  • ⁇ A resin material is injected into the internal space of the mold 300 to perform resin injection molding.
  • the conditions for performing the injection molding may be appropriately selected according to the resin. For example, when a polyester elastomer is used, the injection resin temperature is 240 ° C. and the injection pressure is 100 MPa.
  • the temporary fixing sheet 200 When the resin material is filled in the inner space of the mold 300, the temporary fixing sheet 200 is pushed to the inner surface side of the mold 300 by the pressure from the resin material, and changes into a shape along the inner surface of the mold 300. As described above, the temporarily fixing sheet 200 is placed on the rectangular region 310 having an uneven shape. The surface of the temporarily fixed sheet 200 on which the electronic component 110 is affixed becomes a plane along the surface of the electronic component 110 at the portion where the electronic component 110 is affixed, and as the distance from the end of the electronic component 110 increases. It gradually changes to a shape that matches the uneven shape of the rectangular region 310 of the mold 300.
  • the resin material filled in the internal space of the molding die 300 is molded in a state of surrounding the electronic component 110 in the second step. Therefore, the resin molded body 120 embeds the electronic component 110 therein.
  • the surface of the electronic component 110 that is in contact with the temporarily fixed sheet 200 is exposed from the resin molded body 120.
  • the electronic component 110 is temporarily fixed to the temporary fixing sheet 200 so that the electrode 111 is in contact with the temporary fixing sheet 200, so that the electrode 111 of the electronic component 110 is exposed from the resin molded body 120.
  • the portion of the temporary fixing sheet 200 where the electronic component 110 is not attached is deformed into the same uneven shape as the rectangular region 310 of the mold 300. Therefore, an uneven shape is formed on the surface of the resin molded body 120 that is in contact with the temporarily fixed sheet 200. That is, the uneven shape of the rectangular region 310 of the mold 300 is transferred to the surface of the resin molded body 120 via the temporarily fixed sheet 200. Thereby, as shown in FIG. 3C, an uneven region 122 is formed on the upper surface 121 of the resin molded body 120.
  • the wiring circuit 130 having a predetermined pattern is connected to the electrode 111 of the electronic component 110 on the uneven region 122 of the upper surface 121 of the resin molded body 120. It is formed.
  • the wiring circuit 130 is formed using a conductive material (for example, silver ink) containing an additive for imparting extensibility.
  • the formation method of the wiring circuit 130 is an ink jet printing method, a method using aerosol, a method using a dispenser, or the like. As a result, the wiring circuit 130 can be easily formed, and the degree of freedom in circuit design is increased.
  • the surface of the temporarily fixing sheet 200 on which the electronic component 110 is temporarily fixed becomes a plane along the surface of the electronic component 110 in a portion where the electronic component 110 exists, and gradually increases as the distance from the end of the electronic component 110 increases. Then, the shape changes to the shape corresponding to the uneven shape of the rectangular region 310 of the mold 300. Therefore, the uneven area 122 on the upper surface 121 of the resin molded body 120 is continuous with the exposed surface 112 of the electronic component 110. Thereby, the wiring circuit 130 is formed without disconnection even at the boundary portion between the uneven region 122 and the electronic component 110.
  • the electronic component 110 is easily electrically connected to the wiring circuit 130 without soldering or the like. Since the wiring circuit 130 is connected to the electronic component 110 after the position of the electronic component 110 is determined, the electronic component 110 and the wiring circuit 130 can be more accurately and easily connected than when the electronic component is aligned with a printed circuit board, for example. Can be electrically connected.
  • the resin structure 100 includes the resin molded body 120 that can be extended and deformed and the wiring circuit 130.
  • the surface of the resin molded body 120 includes an uneven region 122 having an uneven shape.
  • the wiring circuit 130 is formed on the uneven region 122.
  • the resin molded body 120 has a rectangular plate shape in plan view.
  • the concavo-convex region 122 has a wave shape in which the ridges 123 and the grooves 124 are alternately continuous.
  • the protrusion 123 and the groove 124 extend along the short direction of the resin molded body 120.
  • the resin molded body 120 When the resin molded body 120 has a rectangular plate shape in plan view, the resin molded body 120 extends the longest when a tensile force is applied along the longitudinal direction (the direction of arrow A in FIG. 2).
  • the uneven region 122 When the resin molded body 120 is elongated and deformed in the longitudinal direction, the uneven region 122 is deformed so that a difference in height between the upper end of the ridge 123 and the lower end of the groove 124 becomes small. That is, as shown by the arrow B shown in the enlarged view of FIG. 2, the uneven region 122 is deformed so that the upper end of the ridge 123 becomes lower and the lower end of the groove 124 becomes higher.
  • the wiring circuit 130 Since the wiring circuit 130 is deformed in accordance with the shape of the uneven region 122, the wiring circuit 130 is similarly deformed so that the height difference of the waveform is reduced. Therefore, the wiring circuit 130 can follow the expansion deformation of the resin molded body 120 in the arrow A direction with only a small deformation amount compared to the expansion amount of the resin molded body 120 in the arrow A direction. Thereby, the breakage of the wiring circuit 130 can be prevented. Furthermore, the amount of the additive for imparting extensibility in the wiring circuit 130 can be reduced, and an increase in electrical resistance of the wiring circuit 130 can be suppressed.
  • the wiring circuit 130 is formed on the uneven region 122 and has a shape along the uneven shape of the uneven region 122.
  • the uneven region 122 in the resin molded body 120 has a wave shape in which the height in the thickness direction of the resin molded body 120 is changed. Therefore, the space required for the wiring circuit 130 is smaller than that of a bellows-folded wiring circuit along a direction parallel to the substrate surface as described in JP2013-187380A. Thereby, the resin structure 100 can be reduced in size.
  • the resin structure 100 further includes an electronic component 110.
  • the resin molded body 120 embeds and fixes the electronic component 110 so that the electrode 111 of the electronic component 110 is exposed.
  • the wiring circuit 130 is connected to the electrode 111. Thereby, an electronic circuit can be comprised by the wiring circuit 130 and the electronic component 110.
  • the concavo-convex shape in the concavo-convex region 122 is a size that can absorb the extension deformation of the resin molded body 120.
  • the concavo-convex shape having a size capable of absorbing the extension deformation of the resin molded body 120 means the following. That is, the surface from the upper end of the protruding portion 123 to the upper end of the adjacent protruding portion 123 in a cross section when the resin molded body 120 is cut in a plane parallel to the longitudinal direction and parallel to the normal direction of the upper surface 121. Is a value obtained by dividing the distance along the pitch by the pitch of the ridge 123 (the linear distance between the upper end of one ridge 123 and the upper end of the adjacent ridge 123). Greater than the maximum value.
  • the assumed elongation rate is set according to the application to which the resin structure 100 is applied.
  • the height difference ⁇ H between the upper end of the ridge 123 (the highest point of the uneven region 122) and the lower end of the groove 124 (the lowest point of the uneven region) is preferably 50 ⁇ m or more and 200 ⁇ m or less.
  • the wiring circuit 130 follows the expansion deformation of the resin molded body 120 in the arrow A direction with only a smaller deformation amount than the expansion amount of the resin molded body 120 in the arrow A direction. can do.
  • the height difference ⁇ H is 200 ⁇ m or less, the uneven region 122 can be easily formed on the surface of the resin molded body 120.
  • the resin structure 100 fills the internal space of the mold 300 in which the rectangular region 310 on the inner surface is processed into a concavo-convex shape with a resin material so that a portion facing the rectangular region 310 via the temporarily fixed sheet 200 is formed in the concavo-convex region.
  • the second step of molding the resin molded body 120 to be 122 and the fourth step of forming the wiring circuit 130 on the uneven region 122 of the resin molded body 120 are provided.
  • the uneven area 122 of the resin molded body 120 is formed when the resin molded body 120 is molded. That is, it is not necessary to separately form the uneven region 122 after the resin molded body 120 is formed, or a separate member for forming the uneven region 122. Thereby, the manufacturing cost of the resin structure 100 can be suppressed low.
  • FIG. 4 is a plan view showing a modification of the rectangular region 310 of the lower mold 31 constituting the mold 300.
  • the rectangular area 310 includes, for example, a first area 316 that overlaps the electronic component 110, a second area 317 having a predetermined width around the first area 316, and the remaining third area 318. Composed.
  • the first region 316 is flat, and the third region 318 has a wave shape in which the protrusions 311 and the groove portions 312 are alternately continuous.
  • the second region 317 is a surface that smoothly connects the flat first region 316 and the wave-shaped third region 318.
  • FIG. 5A is a plan view showing a schematic configuration of a resin molded body 120 molded using the molding die 300 shown in FIG.
  • FIG. 5B is a cross-sectional view taken along line XX in FIG. 5A.
  • FIG. 5C is a cross-sectional view taken along the line XI-XI in FIG. 5A.
  • the XI-XI line overlaps with the protrusion 123.
  • the region facing the second region 317 of the mold 300 in the resin molded body 120 is located around the exposed surface 112 of the electronic component 110 and is continuous with the exposed surface 112. Region 125 is formed.
  • a region of the resin molded body 120 that faces the third region 318 of the mold 300 is an uneven region 122 that is continuous with the continuous region 125.
  • the exposed surface 112 of the electronic component 110 and the uneven area 122 of the resin molded body 120 are formed by the continuous region 125. Smoothly continuous. Therefore, disconnection of the wiring circuit 130 at the boundary between the electronic component 110 and the resin molded body 120 can be more reliably prevented.
  • the wiring circuit 130 is formed in the corrugated uneven region 122 on the upper surface 121 of the resin molded body 120. As a result, when the resin molded body 120 is stretched and deformed, the wiring circuit 130 can follow the stretch deformation of the resin molded body 120 with a deformation amount smaller than the stretch amount of the resin molded body 120.
  • the breakage of the wiring circuit 130 can be suppressed.
  • a resin molded body having a flat surface is stretched, the flat surface does not always stretch uniformly.
  • a partially weak part is a part where chipping has occurred due to, for example, a collision with another part, and is thinner than the other part.
  • the amount of deformation in the part is significantly larger than in other parts, and the wiring circuit formed on the part may be broken. For this reason, it is conceivable to increase the amount of the additive that imparts extensibility in the wiring circuit 130 so that the fracture does not occur even when the deformation concentrates in one weak location. In this case, the electrical resistance of the wiring circuit 130 is increased.
  • the resin structure according to Embodiment 2 has a configuration using this point.
  • FIG. 6 is a plan view showing a schematic configuration of a resin structure 400 according to the second embodiment.
  • FIG. 7 is a cross-sectional view taken along the line XX in FIG.
  • the resin structure 400 is different from the resin structure 100 of the first embodiment in that a resin molded body 420 is provided instead of the resin molded body 120.
  • the resin molded body 420 is plate-shaped and has an upper surface 421 that is rectangular in plan view.
  • the upper surface 421 of the resin molded body 420 includes an uneven region 422 having an uneven shape.
  • the concavo-convex region 422 includes a plurality of planar-view elliptical (that is, elliptical when viewed from the normal direction of the upper surface 421) recesses 423 formed in a matrix and a plane portion 424 between the plurality of recesses 423. Composed.
  • the planar portion 424 between the plurality of recesses 423 is convex when viewed from the recesses 423. Therefore, the uneven region 422 is a region in which concave and convex shapes are alternately continued.
  • the oval concave portion 423 is formed on the upper surface 421 so that the long axis is parallel to the longitudinal direction (long side direction) of the upper surface 421.
  • the depth of the recessed part 423 is 50 micrometers or more and 200 micrometers or less.
  • the electronic component 110 and the wiring circuit 130 have the same configuration as in the first embodiment.
  • the electronic component 110 is embedded in the resin molded body 420 and exposed from the uneven area 422 of the resin molded body 420.
  • An electrode 111 is formed on the exposed surface 112 of the electronic component 110 from the resin molded body 420.
  • the wiring circuit 130 is formed on the uneven region 422 on the upper surface 421 of the resin molded body 420 so as to be connected to the electrode 111 of the electronic component 110.
  • Resin structure 400 is manufactured by the same method as the manufacturing method described in the first embodiment. However, instead of the mold 300 in which a part of the rectangular area 310 on the inner surface is processed into a wave shape, a mold in which elliptical convex portions are formed in a matrix on a part of the rectangular area on the inner surface is used. . As a result, the resin molded body 420 having the uneven surface 422 formed with a plurality of oval concave portions 423 on the upper surface 421, the electronic component 110 embedded in the resin molded body 420, and the uneven region 422 of the resin molded body 420 are formed. A resin structure 400 including the formed wiring circuit 130 can be manufactured.
  • the concave portion 423 is easier to deform than the flat portion 424 because the thickness of the resin molded body 120 is thin.
  • the amount of deformation in each of the plurality of recesses 423 can be made smaller than the amount of deformation at the location where the deformation of the surface of the resin molded body 420 is concentrated at one location. Thereby, the breakage of the wiring circuit 130 can be suppressed, and the amount of the additive for imparting extensibility to the wiring circuit 130 can be reduced, and the increase in the electrical resistance of the wiring circuit 130 can be suppressed.
  • the major axis of the concave portion 423 having an elliptical shape in plan view is parallel to the longitudinal direction of the resin molded body 420. Therefore, the recess 423 is more easily deformed along the longitudinal direction of the resin molded body 420.
  • the amount of elongation deformation of the resin molded body 420 is greatest when a tensile force along the longitudinal direction is applied. Even when a tensile force is applied in the longitudinal direction of the resin molded body 420, each of the plurality of recesses 423 is more easily deformed, so that the deformation of the surface of the resin molded body 420 can be dispersed without being concentrated in one place. it can.
  • the concave portion 423 is easier to deform than the flat portion 424. Therefore, the wiring circuit 130 is preferably formed on the flat portion 424 while avoiding the recess 423. Thereby, the deformation amount of the wiring circuit 130 can be further reduced. As a result, the amount of the additive for imparting extensibility to the wiring circuit 130 can be further reduced, and an increase in electrical resistance of the wiring circuit 130 can be suppressed.
  • the uneven region 422 is composed of a plurality of oval concave portions 423 in plan view and a plane portion 424 between the plurality of concave portions 423, but a matrix is used instead of the plurality of concave portions 423.
  • You may be comprised by the some convex part formed in the shape.
  • the flat portion 424 is easily deformed because the resin molded body 120 is thinner than the convex portion.
  • the flat portion 424 that is easier to deform than the convex portion between the convex portions, when the resin molded body 420 is stretched and deformed, the deformation of the surface of the resin molded body 420 is not concentrated in one place, Distributed. Thereby, the breakage of the wiring circuit 130 can be suppressed, and the amount of the additive for improving the extensibility of the wiring circuit 130 can be reduced, thereby suppressing the increase in the electrical resistance of the wiring circuit 130. .
  • the uneven shape is transferred to the surface of the resin molded body 120 via the temporary fixing sheet 200 using a molding die 300 in which a part of the rectangular region 310 on the inner surface is processed into an uneven shape.
  • the uneven region 122 was formed on the upper surface 121 of the resin molded body 120.
  • region 122 is formed in the upper surface 121 of a resin molding by forming uneven
  • the manufacturing method according to the third embodiment can also be applied to a method for manufacturing the resin molded body 420 shown in the second embodiment.
  • FIG. 8 is a diagram illustrating a method for manufacturing the resin structure 100 according to the third embodiment.
  • FIGS. 8A and 8B show a first step and a second step for manufacturing the resin structure 100, respectively.
  • the upper side shows a plan view and the lower side shows a side view.
  • FIG. 8B shows a cross-sectional view.
  • the electronic component 110 is attached and temporarily fixed to the temporarily fixed sheet 500 having a rectangular shape in plan view with an adhesive (not shown).
  • the electronic component 110 is affixed to the temporarily fixed sheet 500 so that the surface on which the electrode 111 is formed is in contact with the temporarily fixed sheet 500.
  • the temporary fixing sheet 500 for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyphenylene sulfide (PPS), or the like can be used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PPS polyphenylene sulfide
  • the surface on the side where the electronic component 110 is pasted in the temporarily fixed sheet 500 includes a region 510 processed into a concavo-convex shape.
  • the region 510 of the temporarily fixed sheet 500 is processed into an uneven shape by, for example, embossing.
  • embossing either a method of lifting the back surface to float and a method of forming a convex portion by attaching ink or the like to the surface may be used.
  • a temporary fixing sheet 500 having a thickness that prevents the convex portions from being crushed during the injection molding of a resin material described later is used.
  • the uneven shape formed by embossing is the same as the wave shape formed in the mold 300 of the first embodiment.
  • an ultraviolet curable adhesive (not shown) is applied to the temporary fixing sheet 500.
  • an ultraviolet curable adhesive is applied to a thickness of 5 ⁇ m on a temporary fixing sheet 500 made of PET having a thickness of 100 ⁇ m having an embossed region 510. This application may be performed using a method such as an ink jet printing method.
  • the electronic component 110 is installed at a set position.
  • the adhesive is cured by irradiating UV light having an intensity of, for example, 3000 mJ / cm 2 from the surface of the temporarily fixed sheet 500 on which the electronic component 110 is not temporarily fixed, so that the electronic component 110 is attached to the temporarily fixed sheet 500.
  • the temporary fixing sheet 500 is installed in the mold 600 such that the surface on which the electronic component 110 is not temporarily fixed is in contact with the inner surface of the mold 600.
  • the mold 600 includes a lower mold 61 and an upper mold 62. By bringing the lower mold 61 and the upper mold 62 into close contact with each other, a sealed internal space is formed. The inner surface of the mold 600 is flat.
  • ⁇ A resin material is injected into the internal space of the mold 600 to perform resin injection molding.
  • the conditions for performing the injection molding may be appropriately selected according to the resin. For example, when a polyester elastomer is used, the injection molding is performed at an injection resin temperature of 240 ° C. and an injection pressure of 100 MPa.
  • the surface of the temporary fixing sheet 500 is processed into a concavo-convex shape as described above. Therefore, an uneven shape is also formed on the surface of the resin molded body 120 that is in contact with the temporarily fixed sheet 500. That is, the uneven shape formed in the region 510 of the temporarily fixed sheet 500 is transferred to the upper surface 121 of the resin molded body 120, and the uneven region 122 is formed on the upper surface 121.
  • the resin structure 100 in which the wiring circuit 130 is formed on the uneven region 122 of the resin molded body 120 is manufactured. be able to.
  • a temporary fixing sheet having flat surfaces may be used without using the temporary fixing sheet 500 having one surface processed into an uneven shape by embossing.
  • an ultraviolet curable adhesive used for adhering the electronic component 110 is applied to one surface of the temporarily fixed sheet at different application amounts depending on the position. Due to the difference in the amount of coating, the surface of the adhesive becomes uneven. Thereby, the temporarily fixed sheet
  • the step of attaching the electronic component 110 to the temporary fixing sheet and the step of processing the surface of the temporarily fixing sheet into a concavo-convex shape are performed simultaneously. You may do it.
  • An adhesive is applied to a portion where the electronic component 110 is attached to one surface of the temporarily fixing sheet with a uniform thickness, and an adhesive is applied to a portion where the electronic component 110 is not attached depending on the position. Apply.
  • an adhesive agent is hardened by irradiating an ultraviolet-ray from the surface on the side which has not apply
  • one surface of the temporary fixing sheet 500 is divided into a first region where the electronic component 110 is pasted, a second region having a predetermined width around the first region, and the remaining third region.
  • the shape of the surface may be different.
  • the first region is flat, and the third region has a wave shape in which protrusions and grooves are alternately continuous.
  • the second region is a surface that smoothly connects the flat first region and the wavy third region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Structure Of Printed Boards (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

A resin structure (100) comprising an electronic component (110), a resin molded body (120) capable of elongation deformation, and a wiring circuit (130). The resin molded body (120) embeds and fixes the electronic component (110) such that an electrode (111) in the electronic component (110) is exposed. The surface of the resin molded body (120) includes an uneven area (122) having an uneven shape. The wiring circuit (130) is formed upon the uneven area (122) so as to connect to the electrode (111). As a result, the resin structure (100) can be more compact and increase in electrical resistance of the wiring circuit (130) can be suppressed.

Description

樹脂構造体およびその製造方法Resin structure and manufacturing method thereof
 本技術は、配線回路を備えた伸長性のある樹脂構造体およびその製造方法に関する。 The present technology relates to an extensible resin structure provided with a wiring circuit and a manufacturing method thereof.
 近年、携帯機器等における超小型化要求の高まりによって、曲げることが可能な可撓性の配線回路基板(以下、フレキシブル基板という)が多用されるようになっている。さらに、体表面に貼付する医療機器等のウェアラブルデバイスでは、体の動きに追従して伸長する配線回路基板が必要になっている。 In recent years, flexible wiring circuit boards that can be bent (hereinafter, referred to as flexible boards) are frequently used due to the increasing demand for miniaturization in portable devices and the like. Furthermore, a wearable device such as a medical device to be attached to the body surface requires a printed circuit board that expands following the movement of the body.
 従来、曲げることが可能なフレキシブル基板は、通常25μm厚のポリイミド(PI)からなる基材表面に、配線回路となる18μm厚、あるいは35μm厚の銅箔を積層することで構成されている。PI基材を薄くすることにより、ある程度自在な曲げが可能となり、電子機器の小スペースへの基板設置、湾曲面への貼付、あるいは繰り返し曲げのあるロボットアーム関節部等への適用が可能となる。ところが、表面に積層された銅箔の伸びは小さく、体表面への貼付等を目的として、基材を伸縮性能の高いPE(ポリエチレン)、あるいはエラストマー樹脂、ゴム等で構成すると、体の動きに追従した基材の伸縮によって銅箔の配線回路が破断する可能性がある。 Conventionally, a flexible substrate that can be bent is usually formed by laminating a 18 μm or 35 μm thick copper foil serving as a wiring circuit on a substrate surface made of polyimide (PI) having a thickness of 25 μm. By making the PI base material thin, it can be bent to some extent, and can be applied to a small-space board of an electronic device, affixed to a curved surface, or a robot arm joint with repeated bending. . However, the elongation of the copper foil laminated on the surface is small, and for the purpose of sticking to the body surface, etc., if the base material is made of PE (polyethylene) with high expansion / contraction performance, elastomer resin, rubber, etc., the movement of the body There is a possibility that the wiring circuit of the copper foil breaks due to the expansion and contraction of the substrate that has been followed.
 銅箔によって構成された配線回路の破断の対策方法として、特開2011-134884号公報(特許文献1)には、波型に折り曲げられたフレキシブル基板が開示されている。また、特開2013-187380号公報(特許文献2)には、銅箔の配線回路を蛇腹折形状に形成する技術が開示されている。 As a countermeasure against breakage of a wiring circuit composed of copper foil, Japanese Patent Application Laid-Open No. 2011-134484 (Patent Document 1) discloses a flexible substrate bent into a corrugated shape. Japanese Patent Laying-Open No. 2013-187380 (Patent Document 2) discloses a technique for forming a copper foil wiring circuit in a bellows-fold shape.
 銅箔を用いずに配線回路を形成する技術として、特開2004-345322号公報(特許文献3)および特開2006-270118号公報(特許文献4)には、銀などの導電性微粒子を含む導電性インクを用いたインクジェットプリンタにより配線回路を形成する方法が開示されている。特開2013-142151号公報(特許文献5)には、柔軟性を有する被印刷基材に対しても追従性に優れたインク組成物が開示されている。このような追従性に優れたインク組成物を用いて配線回路を形成することにより、基材が伸長したとしても配線回路が破断しにくくなる。 As a technique for forming a wiring circuit without using a copper foil, Japanese Patent Application Laid-Open No. 2004-345322 (Patent Document 3) and Japanese Patent Application Laid-Open No. 2006-270118 (Patent Document 4) include conductive fine particles such as silver. A method of forming a wiring circuit by an ink jet printer using conductive ink is disclosed. Japanese Patent Application Laid-Open No. 2013-142151 (Patent Document 5) discloses an ink composition excellent in followability even with respect to a flexible printing substrate. By forming a wiring circuit using such an ink composition having excellent followability, the wiring circuit is less likely to break even if the substrate is elongated.
特開2011-134884号公報JP 2011-134484 A 特開2013-187380号公報JP 2013-187380 A 特開2004-345322号公報JP 2004-345322 A 特開2006-270118号公報JP 2006-270118 A 特開2013-142151号公報JP 2013-142151 A
 しかしながら、特開2011-134884号公報の技術では、フレキシブル基板を波型に折り曲げるために、フレキシブル基板が大型化する。特開2013-187380号公報に記載の技術では、蛇腹折形状の配線回路に要する基材表面上の面積が大きくなり、基板の大型化につながる。つまり、これらの技術では、フレキシブル基板の小型化が困難となる。 However, in the technique disclosed in Japanese Patent Application Laid-Open No. 2011-134484, the flexible substrate is bent into a corrugated shape, so that the flexible substrate is increased in size. In the technique described in Japanese Patent Application Laid-Open No. 2013-187380, the area on the base material surface required for the bellows-folded wiring circuit is increased, leading to an increase in the size of the substrate. That is, with these technologies, it is difficult to reduce the size of the flexible substrate.
 特開2004-345322号公報または特開2006-270118号公報の技術に特開2013-142151号公報の技術を適用した場合、基板の小型化が可能であるものの、基材への追従性を上げるためにインク組成物中の添加物の量が多くなり、配線回路の電気抵抗が高くなる。 When the technology of Japanese Patent Application Laid-Open No. 2013-142151 is applied to the technology of Japanese Patent Application Laid-Open No. 2004-345322 or 2006-270118, the substrate can be reduced in size, but the followability to the base material is improved. For this reason, the amount of the additive in the ink composition increases, and the electrical resistance of the wiring circuit increases.
 本発明は、上記の問題点に着目してなされたもので、小型化が可能であり、配線回路の電気抵抗の増大を抑制することができる樹脂構造体およびその製造方法を提供することを目的としている。 The present invention has been made paying attention to the above-described problems, and an object thereof is to provide a resin structure that can be reduced in size and can suppress an increase in electrical resistance of a wiring circuit, and a method for manufacturing the same. It is said.
 ある局面に従うと、樹脂構造体は、伸長変形可能な樹脂成形体と、配線回路とを備える。樹脂成形体の表面は、凹凸形状である凹凸領域を含む。配線回路は、凹凸領域の上に形成される。 According to a certain aspect, the resin structure includes a resin molded body that can be extended and deformed, and a wiring circuit. The surface of the resin molded body includes an uneven region having an uneven shape. The wiring circuit is formed on the uneven area.
 好ましくは、樹脂成形体は平面視矩形の板状である。凹凸領域は、突条部と溝部とが交互に連続してなる波形状である。突条部および溝部は、樹脂成形体の短手方向に沿って延びる。 Preferably, the resin molding is a plate having a rectangular shape in plan view. The concavo-convex region has a wave shape in which the ridge portions and the groove portions are alternately continuous. The protrusion and the groove extend along the short direction of the resin molded body.
 好ましくは、樹脂成形体は平面視矩形の板状である。凹凸領域には、樹脂成形体の長手方向に平行な長軸を有する平面視楕円形の複数の凹部または凸部が形成される。 Preferably, the resin molding is a plate having a rectangular shape in plan view. In the concavo-convex region, a plurality of concave or convex portions having a long axis parallel to the longitudinal direction of the resin molded body and having an elliptical shape in plan view are formed.
 好ましくは、凹凸領域における最上点と最下点との高低差は、50μm以上200μm以下である。好ましくは、樹脂成形体の破断時の伸び率が1%以上である。 Preferably, the difference in height between the uppermost point and the lowermost point in the concavo-convex region is 50 μm or more and 200 μm or less. Preferably, the elongation at break of the resin molded body is 1% or more.
 好ましくは、樹脂構造体は、電子部品をさらに備える。樹脂成形体は、電子部品の電極が露出するように、電子部品を埋設して固定する。配線回路は電極に接続する。 Preferably, the resin structure further includes an electronic component. The resin molded body is embedded and fixed so that the electrodes of the electronic component are exposed. The wiring circuit is connected to the electrode.
 好ましくは、樹脂成形体の表面は、電子部品における樹脂成形体からの露出面の周囲に位置するとともに、当該露出面に連続する連続領域をさらに含む。凹凸領域は、連続領域の周囲に位置するとともに、連続領域に連続する。 Preferably, the surface of the resin molded body is positioned around the exposed surface from the resin molded body in the electronic component, and further includes a continuous region continuous to the exposed surface. The uneven area is located around the continuous area and continues to the continuous area.
 別の局面に従うと、上記の樹脂構造体の製造方法は、内面の少なくとも一部の領域が凹凸形状に加工された成形型の内部空間に樹脂材を充填することにより、少なくとも一部の領域に対向する部分を凹凸領域とする樹脂成形体を成形する工程と、樹脂成形体の凹凸領域の上に配線回路を形成する工程とを備える。 According to another aspect, the above-described method for manufacturing a resin structure includes filling a resin material into an inner space of a molding die in which at least a part of the inner surface is processed into a concavo-convex shape, thereby at least a part of the region. The method includes a step of forming a resin molded body having an opposing portion as an uneven region, and a step of forming a wiring circuit on the uneven region of the resin molded body.
 別の局面に従うと、上記の樹脂構造体の製造方法は、一方の面の少なくとも一部の領域が凹凸形状に加工されたシート上の当該一方の面上に、電極が当該一方の面に対向するように電子部品を貼り付ける工程と、シートを成形型内に配置し、成形型内に樹脂を充填させることにより、電子部品を埋設するとともに、上記の少なくとも一部の領域に対向する部分を凹凸領域とする樹脂成形体を成形する工程と、樹脂成形体からシートを剥離し、樹脂成形体の凹凸領域の上に配線回路を形成する工程とを備える。 According to another aspect, the method for producing a resin structure described above is such that at least a part of one surface of the sheet is processed into a concavo-convex shape on the one surface, and the electrode faces the one surface. The step of attaching the electronic component and the sheet is placed in the mold, and the resin is filled in the mold so that the electronic component is embedded and the portion facing the at least a part of the region is formed. A step of forming a resin molded body to be an uneven region; and a step of peeling a sheet from the resin molded body to form a wiring circuit on the uneven region of the resin molded body.
 好ましくは、シートにおける少なくとも一部の領域は凹凸形状にエンボス加工される。好ましくは、シートにおける少なくとも一部の領域は、位置によって塗布量を異ならせて接着剤が塗布されることにより、凹凸形状に加工される。 Preferably, at least a part of the region of the sheet is embossed into an uneven shape. Preferably, at least a part of the region of the sheet is processed into a concavo-convex shape by applying an adhesive with different application amounts depending on the position.
 好ましくは、電子部品を貼り付ける工程において、電子部品は、接着剤を用いてシートに貼り付けられる。 Preferably, in the step of attaching the electronic component, the electronic component is attached to the sheet using an adhesive.
 本開示によれば、小型化が可能であり、配線回路の電気抵抗の増大を抑制することができる樹脂構造体を実現できる。 According to the present disclosure, it is possible to realize a resin structure that can be miniaturized and can suppress an increase in electrical resistance of a wiring circuit.
実施の形態1に係る樹脂構造体の概略的な構成を示す平面図である。3 is a plan view showing a schematic configuration of a resin structure according to Embodiment 1. FIG. 図1のX-X線に沿った矢視断面図である。FIG. 2 is a cross-sectional view taken along line XX in FIG. 実施の形態1に係る樹脂構造体の製造方法を説明する図である。It is a figure explaining the manufacturing method of the resin structure which concerns on Embodiment 1. FIG. 成形型を構成する下型の変形例を示す平面図である。It is a top view which shows the modification of the lower mold | type which comprises a shaping | molding die. 図4に示す成形型を用いて成形された樹脂成形体の概略的な構成を示す平面図である。It is a top view which shows the schematic structure of the resin molded object shape | molded using the shaping | molding die shown in FIG. 図5AのX-X線に沿った矢視断面図である。FIG. 5B is a cross-sectional view taken along line XX in FIG. 5A. 図5AのXI-XI線に沿った矢視断面図である。FIG. 5B is a cross-sectional view taken along the line XI-XI in FIG. 5A. 実施の形態2に係る樹脂構造体の概略的な構成を示す平面図である。6 is a plan view showing a schematic configuration of a resin structure according to Embodiment 2. FIG. 図6のX-X線に沿った矢視断面図である。FIG. 7 is a cross-sectional view taken along line XX in FIG. 6. 実施の形態3に係る樹脂構造体の製造方法を説明する図である。It is a figure explaining the manufacturing method of the resin structure which concerns on Embodiment 3. FIG.
 本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰返さない。また、以下で説明する各実施の形態または変形例は、適宜選択的に組み合わされてもよい。 Embodiments of the present invention will be described in detail with reference to the drawings. Note that the same or corresponding parts in the drawings are denoted by the same reference numerals and description thereof will not be repeated. Each embodiment or modification described below may be selectively combined as appropriate.
 <実施の形態1>
 (樹脂構造体の構成)
 図1および図2を参照して、実施の形態1に係る樹脂構造体100の概略的な構成について説明する。図1は、実施の形態1に係る樹脂構造体100の概略的な構成を示す平面図である。図2は、図1のX-X線に沿った矢視断面図である。
<Embodiment 1>
(Configuration of resin structure)
With reference to FIG. 1 and FIG. 2, the schematic structure of the resin structure 100 which concerns on Embodiment 1 is demonstrated. FIG. 1 is a plan view showing a schematic configuration of a resin structure 100 according to Embodiment 1. FIG. FIG. 2 is a cross-sectional view taken along the line XX of FIG.
 樹脂構造体100は、ウエアラブル携帯機器などの電子機器に組み込まれ、電子機器の主要なまたは補助的な機能を担う装置である。ウエアラブル携帯機器としては、たとえば、衣服に装着され、体の表面温度を計測する計測機器や、腕に巻き付けられ、脈拍や血圧等を計測する計測機器などがある。 The resin structure 100 is a device that is incorporated in an electronic device such as a wearable portable device and has a main or auxiliary function of the electronic device. Wearable portable devices include, for example, measuring devices that are worn on clothes and measure body surface temperature, and measuring devices that are wrapped around an arm and measure pulse, blood pressure, and the like.
 図1および図2に示されるように、樹脂構造体100は、電子部品110と、樹脂成形体120と、配線回路130とを備える。 1 and 2, the resin structure 100 includes an electronic component 110, a resin molded body 120, and a wiring circuit 130.
 電子部品110は、チップ型コンデンサまたはチップ型抵抗などの受動部品、IC(Integrated Circuit)、LSI(Large-Scale Integration)、パワートランジスタなどの半導体部品、センサ等の電子部品である。図1には、4つの電子部品110が示されているが、電子部品110の数は、特に限定されるものではない。 The electronic component 110 is a passive component such as a chip capacitor or a chip resistor, a semiconductor component such as an IC (Integrated Circuit), an LSI (Large-Scale Integration), or a power transistor, or an electronic component such as a sensor. Although four electronic components 110 are shown in FIG. 1, the number of electronic components 110 is not particularly limited.
 樹脂成形体120は、伸長変形可能な樹脂材(たとえば、ポリエステル系エラストマー、スチレン系エラストマー、オレフィン系エラストマーなどの、弾性を有するゴム状の高分子物質であるエラストマー)により構成される。樹脂成形体120の破断時の伸び率は、1%以上であり、好ましくは10%以上である。なお、破断時の伸び率とは、JIS K 7162に従って引張試験を行なったときに、試験前における試験片に対する破断時の試験片の伸び率を示す。樹脂成形体120が伸長変形可能であることにより、樹脂構造体100がウエアラブル携帯機器に組み込まれたときに、樹脂成形体120は、人体の動きに合わせて伸長することができる。 The resin molded body 120 is made of a stretchable and deformable resin material (for example, an elastomer that is an elastic rubber-like polymer material such as a polyester elastomer, a styrene elastomer, and an olefin elastomer). The elongation percentage at break of the resin molded body 120 is 1% or more, preferably 10% or more. The elongation at break indicates the elongation of the test piece at break relative to the test piece before the test when a tensile test is performed according to JIS K 7162. Since the resin molded body 120 can be extended and deformed, the resin molded body 120 can be extended in accordance with the movement of the human body when the resin structure 100 is incorporated into a wearable portable device.
 樹脂成形体120は、所定厚み(たとえば、t1=3mm)の板状であり、平面視矩形の上面121を有している。上面121は、凹凸形状である凹凸領域122を含む。凹凸領域122は、凹状と凸状とが交互に連続する領域である。具体的には、上面121の長手方向に平行であり、かつ、上面121の法線方向に平行な平面で切ったときの樹脂成形体120の断面において、凹凸領域122は波形である。凹凸領域122は、上面121の短手方向(短辺方向)に沿って延びる突条部123と溝部124とを含む。突条部123と溝部124とは、上面121の長手方向(長辺方向)に沿って交互に連続して形成される。 The resin molded body 120 is a plate having a predetermined thickness (for example, t1 = 3 mm), and has an upper surface 121 that is rectangular in plan view. The upper surface 121 includes an uneven region 122 that is an uneven shape. The uneven region 122 is a region in which concave and convex shapes are alternately continued. Specifically, in the cross section of the resin molded body 120 when cut by a plane parallel to the longitudinal direction of the upper surface 121 and parallel to the normal direction of the upper surface 121, the uneven region 122 has a waveform. The uneven region 122 includes a protrusion 123 and a groove 124 extending along the short side direction (short side direction) of the upper surface 121. The protrusions 123 and the grooves 124 are formed alternately and continuously along the longitudinal direction (long side direction) of the upper surface 121.
 樹脂成形体120は、その内部に電子部品110を埋設することで、電子部品110を固定する。樹脂成形体120は、凹凸領域122から電子部品110が露出するように、電子部品110を埋設している。このとき、樹脂成形体120は、電子部品110の電極111が樹脂成形体120から露出するように電子部品110を埋設する。すなわち、電子部品110における樹脂成形体120からの露出面112に電極111が形成される。 The resin molded body 120 fixes the electronic component 110 by embedding the electronic component 110 therein. The resin molded body 120 has the electronic component 110 embedded so that the electronic component 110 is exposed from the uneven region 122. At this time, the resin molded body 120 embeds the electronic component 110 so that the electrode 111 of the electronic component 110 is exposed from the resin molded body 120. That is, the electrode 111 is formed on the exposed surface 112 from the resin molded body 120 in the electronic component 110.
 上面121の凹凸領域122は、電子部品110の露出面112と連続する。ここで、2つの面が「連続する」とは、当該2つの面の間に段差がない状態を示す。 The uneven area 122 on the upper surface 121 is continuous with the exposed surface 112 of the electronic component 110. Here, “continuous” of two surfaces indicates a state where there is no step between the two surfaces.
 配線回路130は、樹脂成形体120の上面121における凹凸領域122の上に形成され、電子部品110の電極111に接続する。これにより、ある電子部品110の電極111と別の電子部品110の電極111とが結線される。 The wiring circuit 130 is formed on the uneven region 122 on the upper surface 121 of the resin molded body 120 and is connected to the electrode 111 of the electronic component 110. Thereby, the electrode 111 of one electronic component 110 and the electrode 111 of another electronic component 110 are connected.
 配線回路130は、導電性物質(たとえば銀(Ag))と、伸長性を付与するための添加物とを含む。配線回路130は、添加物を含むことにより、伸長変形可能である。ただし、添加物の量が増えると配線回路130の電気抵抗が増大するため、添加物の量は最小限に抑えられている。 The wiring circuit 130 includes a conductive substance (for example, silver (Ag)) and an additive for imparting extensibility. The wiring circuit 130 can be extended and deformed by containing an additive. However, since the electrical resistance of the wiring circuit 130 increases as the amount of the additive increases, the amount of the additive is minimized.
 配線回路130は、たとえばインクジェット印刷法を用いて銀(Ag)微粒子と添加物とを含む導電性インクを噴射することにより、容易に形成される。インクジェット印刷法は、導電性インクをノズルから噴射し、粒子状のインクを噴射対象面上に堆積させる印刷方式である。配線回路130は、エアロゾルを用いる方法、またはディスペンサを用いる方法により形成されてもよい。 The wiring circuit 130 is easily formed by ejecting conductive ink containing silver (Ag) fine particles and an additive using, for example, an ink jet printing method. The ink jet printing method is a printing method in which conductive ink is ejected from nozzles and particulate ink is deposited on the ejection target surface. The wiring circuit 130 may be formed by a method using aerosol or a method using a dispenser.
 上述したように、凹凸領域122は波形である。そのため、配線回路130も凹凸領域122の形状と同じ形状を有する。すなわち、上面121の長手方向(長辺方向)に平行であり、かつ、凹凸領域122の法線方向に平行な平面で切ったときの配線回路130における断面は波形である。 As described above, the uneven region 122 has a waveform. For this reason, the wiring circuit 130 also has the same shape as that of the uneven region 122. In other words, the cross section of the wiring circuit 130 when it is cut along a plane parallel to the longitudinal direction (long side direction) of the upper surface 121 and parallel to the normal direction of the uneven region 122 is a waveform.
 (樹脂構造体の製造方法)
 次に、図3を参照して、実施の形態1に係る樹脂構造体100の製造方法の一例について説明する。図3は、樹脂構造体100の製造方法を説明する図である。図3の(a)~(d)には、それぞれ樹脂構造体100を製造するための第1~第4工程を説明するための図が示される。図3の(a)において、上側が平面図、下側が側面図を示している。図3の(b)には断面図が示される。図3の(c)には平面図が示される。図3の(d)において、上側が平面図、下側が平面図におけるX-X線に沿った矢視断面図を示している。
(Production method of resin structure)
Next, an example of a method for manufacturing the resin structure 100 according to Embodiment 1 will be described with reference to FIG. FIG. 3 is a diagram illustrating a method for manufacturing the resin structure 100. FIGS. 3A to 3D are views for explaining first to fourth steps for manufacturing the resin structure 100, respectively. In FIG. 3A, the upper side shows a plan view and the lower side shows a side view. FIG. 3B shows a cross-sectional view. FIG. 3C shows a plan view. In FIG. 3D, the upper side shows a plan view, and the lower side shows a cross-sectional view taken along line XX in the plan view.
  (第1工程)
 図3の(a)に示されるように、まず、電子部品110を、平面視矩形の仮固定シート200に接着剤(図示せず)により貼り付けて仮固定する。このとき、電子部品110は、電極111が形成された面が仮固定シート200に接するように、仮固定シート200に貼り付けられる。
(First step)
As shown in FIG. 3A, first, the electronic component 110 is temporarily fixed by being attached to a temporarily fixed sheet 200 having a rectangular shape in plan view with an adhesive (not shown). At this time, the electronic component 110 is affixed to the temporarily fixed sheet 200 so that the surface on which the electrode 111 is formed is in contact with the temporarily fixed sheet 200.
 仮固定シート200の材料としては、たとえば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリフェニレンサルファイド(PPS)等を用いることができる。仮固定シート200は、後述する理由により、紫外線を透過し、かつ柔軟性を有している材料からなっていることが好ましい。 As a material of the temporary fixing sheet 200, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyphenylene sulfide (PPS), or the like can be used. The temporary fixing sheet 200 is preferably made of a material that transmits ultraviolet rays and has flexibility for reasons described later.
 仮固定は、仮固定シート200の片方の面に塗布した、たとえば紫外線硬化型の接着剤(図示せず)を用いて行なうことができる。たとえば、厚み50μmのPET製の仮固定シート200に、紫外線硬化型の接着剤を2~3μmの厚さで塗布する。この塗布は、インクジェット印刷法などの方法を用いて行なえばよい。その後、電子部品110を予め定められた位置に配置する。そして、仮固定シート200の電子部品110が配置されていない面から、たとえば3000mJ/cmの強度の紫外線を照射することにより、接着剤を硬化して、電子部品110を仮固定シート200に仮固定する。 Temporary fixing can be performed using, for example, an ultraviolet curable adhesive (not shown) applied to one surface of the temporary fixing sheet 200. For example, an ultraviolet curable adhesive is applied to a temporary fixing sheet 200 made of PET having a thickness of 50 μm to a thickness of 2 to 3 μm. This application may be performed using a method such as an ink jet printing method. Thereafter, the electronic component 110 is placed at a predetermined position. Then, the adhesive is cured by irradiating UV light having an intensity of, for example, 3000 mJ / cm 2 from the surface of the temporarily fixed sheet 200 where the electronic component 110 is not disposed, and the electronic component 110 is temporarily attached to the temporarily fixed sheet 200. Fix it.
  (第2工程)
 次に、図3の(b)に示されるように、電子部品110が仮固定された仮固定シート200を成形型300の内部に設置する。成形型300は、下型31と上型32とにより構成される。下型31と上型32とを密着させることにより、密閉された内部空間が形成される。
(Second step)
Next, as shown in FIG. 3B, the temporarily fixing sheet 200 on which the electronic component 110 is temporarily fixed is installed inside the mold 300. The mold 300 is composed of a lower mold 31 and an upper mold 32. By bringing the lower mold 31 and the upper mold 32 into close contact with each other, a sealed internal space is formed.
 成形型300の内面(ここでは下型31の表面)における矩形領域310は、全域が凹凸形状に加工されている。矩形領域310は、突条部311と溝部312とが交互に連続してなる波形状である。仮固定シート200は、平面視矩形の仮固定シート200の短辺と突条部311(または溝部312)の延伸方向とが平行になるように、成形型300における矩形領域310上に設置される。仮固定シート200は、電子部品110が仮固定されていない面が成形型300の内面に接するように、成形型300内に設置される。 The rectangular region 310 on the inner surface of the molding die 300 (here, the surface of the lower die 31) is processed into an uneven shape throughout. The rectangular region 310 has a wave shape in which the ridge portions 311 and the groove portions 312 are alternately continuous. The temporarily fixed sheet 200 is installed on the rectangular region 310 in the mold 300 such that the short side of the temporarily fixed sheet 200 having a rectangular shape in plan view and the extending direction of the protrusion 311 (or the groove 312) are parallel to each other. . The temporarily fixing sheet 200 is installed in the mold 300 such that the surface on which the electronic component 110 is not temporarily fixed is in contact with the inner surface of the mold 300.
 成形型300の内部空間に樹脂材を射出して、樹脂の射出成形を行なう。射出成形を行なう条件は、樹脂に応じて適宜選択されればよく、たとえば、ポリエステル系エラストマーを用いる場合には、射出樹脂温度240℃、射出圧力100MPaである。 ¡A resin material is injected into the internal space of the mold 300 to perform resin injection molding. The conditions for performing the injection molding may be appropriately selected according to the resin. For example, when a polyester elastomer is used, the injection resin temperature is 240 ° C. and the injection pressure is 100 MPa.
 成形型300の内部空間に樹脂材が充填されると、仮固定シート200は、樹脂材からの圧力によって成形型300の内面側に押され、成形型300の内面に沿った形状に変化する。上述したように、仮固定シート200は、凹凸形状の矩形領域310の上に載置される。仮固定シート200における電子部品110が貼り付けられている側の面は、電子部品110が貼り付けられている部分では電子部品110の面に沿った平面となり、電子部品110の端部から離れるに従って徐々に成形型300の矩形領域310の凹凸形状に合わせた形状に変化する。 When the resin material is filled in the inner space of the mold 300, the temporary fixing sheet 200 is pushed to the inner surface side of the mold 300 by the pressure from the resin material, and changes into a shape along the inner surface of the mold 300. As described above, the temporarily fixing sheet 200 is placed on the rectangular region 310 having an uneven shape. The surface of the temporarily fixed sheet 200 on which the electronic component 110 is affixed becomes a plane along the surface of the electronic component 110 at the portion where the electronic component 110 is affixed, and as the distance from the end of the electronic component 110 increases. It gradually changes to a shape that matches the uneven shape of the rectangular region 310 of the mold 300.
  (第3工程)
 次に、第2工程の射出成形により得られた樹脂成形体120を成形型300から取り出し、仮固定シート200を樹脂成形体120から剥離する。
(Third step)
Next, the resin molded body 120 obtained by the injection molding in the second step is taken out from the mold 300 and the temporarily fixed sheet 200 is peeled from the resin molded body 120.
 仮固定シート200には電子部品110が仮固定されているため、第2工程において、成形型300の内部空間に充填された樹脂材は、電子部品110を取り囲んだ状態で成形される。そのため、樹脂成形体120は、電子部品110を埋設する。電子部品110における仮固定シート200に接していた面は、樹脂成形体120から露出する。第1工程において、電極111が仮固定シート200に接するように電子部品110が仮固定シート200に仮固定されるため、電子部品110の電極111が樹脂成形体120から露出する。 Since the electronic component 110 is temporarily fixed to the temporary fixing sheet 200, the resin material filled in the internal space of the molding die 300 is molded in a state of surrounding the electronic component 110 in the second step. Therefore, the resin molded body 120 embeds the electronic component 110 therein. The surface of the electronic component 110 that is in contact with the temporarily fixed sheet 200 is exposed from the resin molded body 120. In the first step, the electronic component 110 is temporarily fixed to the temporary fixing sheet 200 so that the electrode 111 is in contact with the temporary fixing sheet 200, so that the electrode 111 of the electronic component 110 is exposed from the resin molded body 120.
 仮固定シート200における電子部品110が貼り付けられていない部分は、成形型300の矩形領域310と同じ凹凸形状に変形している。そのため、樹脂成形体120において仮固定シート200と接していた面に凹凸形状が形成される。すなわち、成形型300の矩形領域310の凹凸形状は、仮固定シート200を介して樹脂成形体120の表面に転写される。これにより、図3の(c)に示されるように、樹脂成形体120の上面121に、凹凸領域122が形成される。 The portion of the temporary fixing sheet 200 where the electronic component 110 is not attached is deformed into the same uneven shape as the rectangular region 310 of the mold 300. Therefore, an uneven shape is formed on the surface of the resin molded body 120 that is in contact with the temporarily fixed sheet 200. That is, the uneven shape of the rectangular region 310 of the mold 300 is transferred to the surface of the resin molded body 120 via the temporarily fixed sheet 200. Thereby, as shown in FIG. 3C, an uneven region 122 is formed on the upper surface 121 of the resin molded body 120.
  (第4工程)
 図3の(d)に示されるように、第3工程の後、樹脂成形体120の上面121の凹凸領域122上に、電子部品110の電極111と接続するように所定パターンの配線回路130が形成される。
(4th process)
As shown in FIG. 3D, after the third step, the wiring circuit 130 having a predetermined pattern is connected to the electrode 111 of the electronic component 110 on the uneven region 122 of the upper surface 121 of the resin molded body 120. It is formed.
 配線回路130は、伸長性を付与するための添加物を含む導電材料(たとえば、銀インク等)を用いて形成される。配線回路130の形成方法は、インクジェット印刷法、エアロゾルを用いる方法、またはディスペンサを用いる方法等である。これにより、容易に配線回路130を形成することができ、回路設計の自由度が高くなる。 The wiring circuit 130 is formed using a conductive material (for example, silver ink) containing an additive for imparting extensibility. The formation method of the wiring circuit 130 is an ink jet printing method, a method using aerosol, a method using a dispenser, or the like. As a result, the wiring circuit 130 can be easily formed, and the degree of freedom in circuit design is increased.
 第2工程において、仮固定シート200における電子部品110が仮固定された面は、電子部品110が存在する部分では電子部品110の面に沿った平面となり、電子部品110の端部から離れるに従って徐々に成形型300の矩形領域310の凹凸形状に合わせた形状に変化する。そのため、樹脂成形体120の上面121の凹凸領域122は、電子部品110の露出面112と連続する。これにより、配線回路130は、凹凸領域122と電子部品110との境界部分においても断線することなく形成される。 In the second step, the surface of the temporarily fixing sheet 200 on which the electronic component 110 is temporarily fixed becomes a plane along the surface of the electronic component 110 in a portion where the electronic component 110 exists, and gradually increases as the distance from the end of the electronic component 110 increases. Then, the shape changes to the shape corresponding to the uneven shape of the rectangular region 310 of the mold 300. Therefore, the uneven area 122 on the upper surface 121 of the resin molded body 120 is continuous with the exposed surface 112 of the electronic component 110. Thereby, the wiring circuit 130 is formed without disconnection even at the boundary portion between the uneven region 122 and the electronic component 110.
 電子部品110は、半田付け等することなく簡便に配線回路130と電気的に接続される。電子部品110の位置が決定してから、電子部品110に配線回路130を接続するため、たとえばプリント基板に電子部品を位置合わせする場合よりも、正確かつ容易に電子部品110と配線回路130とを電気的に接続することができる。 The electronic component 110 is easily electrically connected to the wiring circuit 130 without soldering or the like. Since the wiring circuit 130 is connected to the electronic component 110 after the position of the electronic component 110 is determined, the electronic component 110 and the wiring circuit 130 can be more accurately and easily connected than when the electronic component is aligned with a printed circuit board, for example. Can be electrically connected.
 (利点)
 以上のように、樹脂構造体100は、伸長変形可能な樹脂成形体120と、配線回路130とを備える。樹脂成形体120の表面は、凹凸形状である凹凸領域122を含む。配線回路130は、凹凸領域122の上に形成される。
(advantage)
As described above, the resin structure 100 includes the resin molded body 120 that can be extended and deformed and the wiring circuit 130. The surface of the resin molded body 120 includes an uneven region 122 having an uneven shape. The wiring circuit 130 is formed on the uneven region 122.
 具体的には、樹脂成形体120は平面視矩形の板状である。凹凸領域122は、突条部123と溝部124とが交互に連続してなる波形状である。突条部123および溝部124は、樹脂成形体120の短手方向に沿って延びる。 Specifically, the resin molded body 120 has a rectangular plate shape in plan view. The concavo-convex region 122 has a wave shape in which the ridges 123 and the grooves 124 are alternately continuous. The protrusion 123 and the groove 124 extend along the short direction of the resin molded body 120.
 樹脂成形体120が平面視矩形の板状である場合、長手方向(図2の矢印Aの方向)に沿った引張力が加わったときに、樹脂成形体120は最も長く伸びる。樹脂成形体120が長手方向に伸長変形した場合、凹凸領域122は、突条部123の上端と溝部124の下端との高低差が小さくなるように変形する。すなわち、図2の拡大図に示す矢印Bに示されるように、凹凸領域122は、突条部123の上端が低くなり、溝部124の下端が高くなるように変形する。配線回路130は、凹凸領域122の形状に合わせて変形するため、同様に波形の高低差が小さくなるように変形する。そのため、配線回路130は、樹脂成形体120の矢印A方向の伸長量に比べて小さい変形量だけで、樹脂成形体120の矢印A方向の伸長変形に追従することができる。これにより、配線回路130の破断を防止することができる。さらに、配線回路130における伸長性を付与するための添加物の量を低くすることができ、配線回路130の電気抵抗の増大を抑制することができる。 When the resin molded body 120 has a rectangular plate shape in plan view, the resin molded body 120 extends the longest when a tensile force is applied along the longitudinal direction (the direction of arrow A in FIG. 2). When the resin molded body 120 is elongated and deformed in the longitudinal direction, the uneven region 122 is deformed so that a difference in height between the upper end of the ridge 123 and the lower end of the groove 124 becomes small. That is, as shown by the arrow B shown in the enlarged view of FIG. 2, the uneven region 122 is deformed so that the upper end of the ridge 123 becomes lower and the lower end of the groove 124 becomes higher. Since the wiring circuit 130 is deformed in accordance with the shape of the uneven region 122, the wiring circuit 130 is similarly deformed so that the height difference of the waveform is reduced. Therefore, the wiring circuit 130 can follow the expansion deformation of the resin molded body 120 in the arrow A direction with only a small deformation amount compared to the expansion amount of the resin molded body 120 in the arrow A direction. Thereby, the breakage of the wiring circuit 130 can be prevented. Furthermore, the amount of the additive for imparting extensibility in the wiring circuit 130 can be reduced, and an increase in electrical resistance of the wiring circuit 130 can be suppressed.
 配線回路130は、凹凸領域122の上に形成され、凹凸領域122の凹凸形状に沿った形となる。樹脂成形体120における凹凸領域122は、樹脂成形体120の厚み方向の高さが変化した波形状である。そのため、特開2013-187380号公報に記載のような基材表面に平行な方向に沿った蛇腹折形状の配線回路に比べて、配線回路130に要するスペースが小さくなる。これにより、樹脂構造体100を小型化することが可能となる。 The wiring circuit 130 is formed on the uneven region 122 and has a shape along the uneven shape of the uneven region 122. The uneven region 122 in the resin molded body 120 has a wave shape in which the height in the thickness direction of the resin molded body 120 is changed. Therefore, the space required for the wiring circuit 130 is smaller than that of a bellows-folded wiring circuit along a direction parallel to the substrate surface as described in JP2013-187380A. Thereby, the resin structure 100 can be reduced in size.
 樹脂構造体100は、電子部品110をさらに備える。樹脂成形体120は、電子部品110の電極111が露出するように、電子部品110を埋設して固定する。配線回路130は電極111に接続する。これにより、配線回路130と電子部品110とにより電子回路を構成することができる。 The resin structure 100 further includes an electronic component 110. The resin molded body 120 embeds and fixes the electronic component 110 so that the electrode 111 of the electronic component 110 is exposed. The wiring circuit 130 is connected to the electrode 111. Thereby, an electronic circuit can be comprised by the wiring circuit 130 and the electronic component 110. FIG.
 凹凸領域122における凹凸形状は、樹脂成形体120の伸長変形を吸収できる大きさである。ここで、樹脂成形体120の伸長変形を吸収できる大きさの凹凸形状とは、以下を意味する。すなわち、長手方向に平行で、かつ上面121の法線方向に平行な平面で樹脂成形体120を切ったときの断面において、突条部123の上端から隣の突条部123の上端までの表面に沿った距離を突条部123のピッチ(ある突条部123の上端と隣の突条部123の上端との直線距離)で割った値が、樹脂成形体120の想定される伸び率の最大値よりも大きい。ここで、想定される伸び率とは、樹脂構造体100が適用される用途に応じて設定される。 The concavo-convex shape in the concavo-convex region 122 is a size that can absorb the extension deformation of the resin molded body 120. Here, the concavo-convex shape having a size capable of absorbing the extension deformation of the resin molded body 120 means the following. That is, the surface from the upper end of the protruding portion 123 to the upper end of the adjacent protruding portion 123 in a cross section when the resin molded body 120 is cut in a plane parallel to the longitudinal direction and parallel to the normal direction of the upper surface 121. Is a value obtained by dividing the distance along the pitch by the pitch of the ridge 123 (the linear distance between the upper end of one ridge 123 and the upper end of the adjacent ridge 123). Greater than the maximum value. Here, the assumed elongation rate is set according to the application to which the resin structure 100 is applied.
 突条部123の上端(凹凸領域122の最上点)と溝部124の下端(凹凸領域の最下点)との高低差ΔHは、50μm以上200μm以下であることが好ましい。高低差ΔHが50μm以上であることにより、配線回路130は、樹脂成形体120の矢印A方向の伸長量に比べてより小さい変形量だけで、樹脂成形体120の矢印A方向の伸長変形に追従することができる。高低差ΔHが200μm以下であることにより、樹脂成形体120の表面に凹凸領域122を容易に形成することができる。 The height difference ΔH between the upper end of the ridge 123 (the highest point of the uneven region 122) and the lower end of the groove 124 (the lowest point of the uneven region) is preferably 50 μm or more and 200 μm or less. When the height difference ΔH is 50 μm or more, the wiring circuit 130 follows the expansion deformation of the resin molded body 120 in the arrow A direction with only a smaller deformation amount than the expansion amount of the resin molded body 120 in the arrow A direction. can do. When the height difference ΔH is 200 μm or less, the uneven region 122 can be easily formed on the surface of the resin molded body 120.
 樹脂構造体100は、内面の矩形領域310が凹凸形状に加工された成形型300の内部空間に樹脂材を充填することにより、仮固定シート200を介して矩形領域310に対向する部分を凹凸領域122とする樹脂成形体120を成形する第2工程と、樹脂成形体120の凹凸領域122の上に配線回路130を形成する第4工程とを備える。樹脂成形体120の凹凸領域122は、樹脂成形体120を成形する際に形成される。つまり、樹脂成形体120を成形した後に別途凹凸領域122を形成する工程や凹凸領域122を形成するための別部材が不要である。これにより、樹脂構造体100の製造コストを低く抑えることができる。 The resin structure 100 fills the internal space of the mold 300 in which the rectangular region 310 on the inner surface is processed into a concavo-convex shape with a resin material so that a portion facing the rectangular region 310 via the temporarily fixed sheet 200 is formed in the concavo-convex region. The second step of molding the resin molded body 120 to be 122 and the fourth step of forming the wiring circuit 130 on the uneven region 122 of the resin molded body 120 are provided. The uneven area 122 of the resin molded body 120 is formed when the resin molded body 120 is molded. That is, it is not necessary to separately form the uneven region 122 after the resin molded body 120 is formed, or a separate member for forming the uneven region 122. Thereby, the manufacturing cost of the resin structure 100 can be suppressed low.
 (変形例)
 図4は、成形型300を構成する下型31の矩形領域310の変形例を示す平面図である。図4に示されるように、矩形領域310は、たとえば、電子部品110と重なる第1領域316と、第1領域316の周囲の所定幅の第2領域317と、残りの第3領域318とにより構成される。第1領域316は平らであり、第3領域318は突条部311と溝部312とが交互に連続してなる波形状である。第2領域317は、平らな第1領域316と波形状の第3領域318とを滑らかに連続させる面である。
(Modification)
FIG. 4 is a plan view showing a modification of the rectangular region 310 of the lower mold 31 constituting the mold 300. FIG. As shown in FIG. 4, the rectangular area 310 includes, for example, a first area 316 that overlaps the electronic component 110, a second area 317 having a predetermined width around the first area 316, and the remaining third area 318. Composed. The first region 316 is flat, and the third region 318 has a wave shape in which the protrusions 311 and the groove portions 312 are alternately continuous. The second region 317 is a surface that smoothly connects the flat first region 316 and the wave-shaped third region 318.
 図5Aは、図4に示す成形型300を用いて成形された樹脂成形体120の概略的な構成を示す平面図である。図5Bは、図5AのX-X線に沿った矢視断面図である。図5Cは、図5AのXI-XI線に沿った矢視断面図である。XI-XI線は突条部123と重なる。 FIG. 5A is a plan view showing a schematic configuration of a resin molded body 120 molded using the molding die 300 shown in FIG. FIG. 5B is a cross-sectional view taken along line XX in FIG. 5A. FIG. 5C is a cross-sectional view taken along the line XI-XI in FIG. 5A. The XI-XI line overlaps with the protrusion 123.
 図5A~図5Cに示されるように、樹脂成形体120において成形型300の第2領域317に対向する領域は、電子部品110の露出面112の周囲に位置し、露出面112と連続する連続領域125となる。樹脂成形体120において成形型300の第3領域318に対向する領域は、凹凸領域122となり、連続領域125と連続する。 As shown in FIGS. 5A to 5C, the region facing the second region 317 of the mold 300 in the resin molded body 120 is located around the exposed surface 112 of the electronic component 110 and is continuous with the exposed surface 112. Region 125 is formed. A region of the resin molded body 120 that faces the third region 318 of the mold 300 is an uneven region 122 that is continuous with the continuous region 125.
 図5A~図5Cに示す樹脂成形体120によれば、電子部品110と樹脂成形体120との境界において、電子部品110の露出面112と樹脂成形体120の凹凸領域122とが連続領域125によって滑らかに連続する。そのため、電子部品110と樹脂成形体120との境界における配線回路130の断線をより確実に防止することができる。 According to the resin molded body 120 shown in FIGS. 5A to 5C, at the boundary between the electronic component 110 and the resin molded body 120, the exposed surface 112 of the electronic component 110 and the uneven area 122 of the resin molded body 120 are formed by the continuous region 125. Smoothly continuous. Therefore, disconnection of the wiring circuit 130 at the boundary between the electronic component 110 and the resin molded body 120 can be more reliably prevented.
 <実施の形態2>
 実施の形態1では、樹脂成形体120の上面121における波形状の凹凸領域122に配線回路130が形成される。これにより、樹脂成形体120が伸長変形したときに、配線回路130は、樹脂成形体120の伸長量に比べて小さい変形量で、樹脂成形体120の伸長変形に追従することができる。
<Embodiment 2>
In the first embodiment, the wiring circuit 130 is formed in the corrugated uneven region 122 on the upper surface 121 of the resin molded body 120. As a result, when the resin molded body 120 is stretched and deformed, the wiring circuit 130 can follow the stretch deformation of the resin molded body 120 with a deformation amount smaller than the stretch amount of the resin molded body 120.
 しかしながら、凹凸領域が波形状とは異なる凹凸形状を有していても、配線回路130の破断を抑制することができる。平らな表面を有する樹脂成形体を伸長させたとき、当該平らな表面は常に一様に伸長するわけではない。樹脂成形体中に部分的に弱い箇所が存在すると、当該箇所の変形量が他の部分よりも大きくなる。部分的に弱い箇所とは、たとえば他の部品との衝突などによって欠けが生じた部分であり、他の部分よりも薄くなっている。このような部分的に弱い箇所が1つだけである場合、当該箇所の変形量が他の部分よりも著しく大きくなり、当該箇所の上に形成された配線回路に破断が生じる可能性がある。そのため、部分的に弱い1箇所に変形が集中したときでも破断が生じないように、配線回路130における伸長性を付与する添加物の量を増やすことが考えられる。この場合、配線回路130の電気抵抗が高くなる。 However, even if the uneven region has an uneven shape different from the wave shape, the breakage of the wiring circuit 130 can be suppressed. When a resin molded body having a flat surface is stretched, the flat surface does not always stretch uniformly. When a weak part exists in the resin molded body, the amount of deformation at the part becomes larger than that of the other part. A partially weak part is a part where chipping has occurred due to, for example, a collision with another part, and is thinner than the other part. When there is only one part that is partially weak, the amount of deformation in the part is significantly larger than in other parts, and the wiring circuit formed on the part may be broken. For this reason, it is conceivable to increase the amount of the additive that imparts extensibility in the wiring circuit 130 so that the fracture does not occur even when the deformation concentrates in one weak location. In this case, the electrical resistance of the wiring circuit 130 is increased.
 本発明者らは、鋭意検討の結果、故意に部分的に弱い箇所を複数形成して、樹脂成形体の表面の変形が1箇所に集中することを避けることにより、樹脂成形体の表面上に形成された配線回路130の破断を抑制できる点を見出した。実施の形態2に係る樹脂構造体は、この点を利用した構成を備える。 As a result of intensive studies, the present inventors intentionally formed a plurality of partially weak spots, and avoids the concentration of deformation on the surface of the resin molded body from being concentrated on one place on the surface of the resin molded body. It has been found that breakage of the formed wiring circuit 130 can be suppressed. The resin structure according to Embodiment 2 has a configuration using this point.
 図6および図7を参照して、実施の形態2に係る樹脂構造体400の構成について説明する。図6は、実施の形態2に係る樹脂構造体400の概略的な構成を示す平面図である。図7は、図6のX-X線に沿った矢視断面図である。 With reference to FIG. 6 and FIG. 7, the structure of the resin structure 400 which concerns on Embodiment 2 is demonstrated. FIG. 6 is a plan view showing a schematic configuration of a resin structure 400 according to the second embodiment. FIG. 7 is a cross-sectional view taken along the line XX in FIG.
 樹脂構造体400は、樹脂成形体120の代わりに樹脂成形体420を備える点で実施の形態1の樹脂構造体100と相違する。樹脂成形体420は、板状であり、平面視矩形の上面421を有する。樹脂成形体420の上面421は、凹凸形状である凹凸領域422を含む。凹凸領域422は、マトリクス状に形成された複数の平面視楕円形(つまり、上面421の法線方向から見たときに楕円形)の凹部423と、複数の凹部423間の平面部424とから構成される。複数の凹部423間の平面部424は、凹部423からみて凸状となる。そのため、凹凸領域422は、凹状と凸状とが交互に連続する領域となる。 The resin structure 400 is different from the resin structure 100 of the first embodiment in that a resin molded body 420 is provided instead of the resin molded body 120. The resin molded body 420 is plate-shaped and has an upper surface 421 that is rectangular in plan view. The upper surface 421 of the resin molded body 420 includes an uneven region 422 having an uneven shape. The concavo-convex region 422 includes a plurality of planar-view elliptical (that is, elliptical when viewed from the normal direction of the upper surface 421) recesses 423 formed in a matrix and a plane portion 424 between the plurality of recesses 423. Composed. The planar portion 424 between the plurality of recesses 423 is convex when viewed from the recesses 423. Therefore, the uneven region 422 is a region in which concave and convex shapes are alternately continued.
 楕円形の凹部423は、長軸が上面421の長手方向(長辺方向)と平行になるように、上面421に形成される。なお、凹部423の深さは、50μm以上200μm以下でることが好ましい。 The oval concave portion 423 is formed on the upper surface 421 so that the long axis is parallel to the longitudinal direction (long side direction) of the upper surface 421. In addition, it is preferable that the depth of the recessed part 423 is 50 micrometers or more and 200 micrometers or less.
 電子部品110および配線回路130は、実施の形態1と同様の構成である。電子部品110は、樹脂成形体420に埋設され、樹脂成形体420の凹凸領域422から露出する。電子部品110における樹脂成形体420からの露出面112には電極111が形成されている。配線回路130は、樹脂成形体420の上面421における凹凸領域422の上に、電子部品110の電極111と接続するように形成される。 The electronic component 110 and the wiring circuit 130 have the same configuration as in the first embodiment. The electronic component 110 is embedded in the resin molded body 420 and exposed from the uneven area 422 of the resin molded body 420. An electrode 111 is formed on the exposed surface 112 of the electronic component 110 from the resin molded body 420. The wiring circuit 130 is formed on the uneven region 422 on the upper surface 421 of the resin molded body 420 so as to be connected to the electrode 111 of the electronic component 110.
 樹脂構造体400は、実施の形態1において説明した製造方法と同じ方法により製造される。ただし、内面の一部の矩形領域310が波形状に加工された成形型300の代わりに、内面の一部の矩形領域に楕円形の凸部がマトリクス状に形成された成形型が使用される。これにより、楕円形の複数の凹部423が形成された凹凸領域422を上面421に有する樹脂成形体420と、樹脂成形体420に埋設された電子部品110と、樹脂成形体420の凹凸領域422に形成された配線回路130とを備えた樹脂構造体400を製造することができる。 Resin structure 400 is manufactured by the same method as the manufacturing method described in the first embodiment. However, instead of the mold 300 in which a part of the rectangular area 310 on the inner surface is processed into a wave shape, a mold in which elliptical convex portions are formed in a matrix on a part of the rectangular area on the inner surface is used. . As a result, the resin molded body 420 having the uneven surface 422 formed with a plurality of oval concave portions 423 on the upper surface 421, the electronic component 110 embedded in the resin molded body 420, and the uneven region 422 of the resin molded body 420 are formed. A resin structure 400 including the formed wiring circuit 130 can be manufactured.
 実施の形態2に係る樹脂構造体400では、凹部423は、平面部424よりも、樹脂成形体120の厚みが薄く変形しやすい。平面部424よりも変形しやすい凹部423が複数形成されていることにより、樹脂成形体420が伸長変形したときに、樹脂成形体420の表面の変形が1箇所に集中せず、分散される。そのため、樹脂成形体420の表面の変形が1箇所に集中したときの当該箇所の変形量より、複数の凹部423の各々における変形量を小さくすることができる。これにより、配線回路130の破断を抑制することができるとともに、配線回路130に伸長性を付与するための添加物の量を低減させて、配線回路130の電気抵抗の増大を抑制することができる。 In the resin structure 400 according to Embodiment 2, the concave portion 423 is easier to deform than the flat portion 424 because the thickness of the resin molded body 120 is thin. By forming a plurality of recesses 423 that are easier to deform than the flat portion 424, when the resin molded body 420 is extended and deformed, the deformation of the surface of the resin molded body 420 is not concentrated in one place but is dispersed. Therefore, the amount of deformation in each of the plurality of recesses 423 can be made smaller than the amount of deformation at the location where the deformation of the surface of the resin molded body 420 is concentrated at one location. Thereby, the breakage of the wiring circuit 130 can be suppressed, and the amount of the additive for imparting extensibility to the wiring circuit 130 can be reduced, and the increase in the electrical resistance of the wiring circuit 130 can be suppressed. .
 また、平面視楕円形の凹部423の長軸は、樹脂成形体420の長手方向と平行である。そのため、凹部423は、樹脂成形体420の長手方向に沿って、より変形しやすい。樹脂成形体420の伸長変形の量は、長手方向に沿った引張力が加わったときに最も大きくなる。樹脂成形体420の長手方向に引張力が加わったときでも、複数の凹部423の各々がより変形しやすいため、樹脂成形体420の表面の変形を1箇所に集中させることなく、分散させることができる。 Further, the major axis of the concave portion 423 having an elliptical shape in plan view is parallel to the longitudinal direction of the resin molded body 420. Therefore, the recess 423 is more easily deformed along the longitudinal direction of the resin molded body 420. The amount of elongation deformation of the resin molded body 420 is greatest when a tensile force along the longitudinal direction is applied. Even when a tensile force is applied in the longitudinal direction of the resin molded body 420, each of the plurality of recesses 423 is more easily deformed, so that the deformation of the surface of the resin molded body 420 can be dispersed without being concentrated in one place. it can.
 凹部423は、平面部424に比べて変形しやすい。そのため、配線回路130は、凹部423を避けて平面部424の上に形成されることが好ましい。これにより、配線回路130の変形量をより小さくすることができる。その結果、配線回路130に伸長性を付与するための添加物の量をさらに低減させて、配線回路130の電気抵抗の増大を抑制することができる。 The concave portion 423 is easier to deform than the flat portion 424. Therefore, the wiring circuit 130 is preferably formed on the flat portion 424 while avoiding the recess 423. Thereby, the deformation amount of the wiring circuit 130 can be further reduced. As a result, the amount of the additive for imparting extensibility to the wiring circuit 130 can be further reduced, and an increase in electrical resistance of the wiring circuit 130 can be suppressed.
 なお、上記の説明では、凹凸領域422は、複数の平面視楕円形の凹部423と、複数の凹部423間の平面部424とから構成されるものとしたが、複数の凹部423の代わりにマトリクス状に形成された複数の凸部によって構成されてもよい。この場合、平面部424は、凸部に対して、樹脂成形体120の厚みが薄く、変形しやすい。凸部よりも変形しやすい平面部424が凸部の間に形成されていることにより、樹脂成形体420が伸長変形したときに、樹脂成形体420の表面の変形が1箇所に集中せず、分散される。これにより、配線回路130の破断を抑制することができるとともに、配線回路130の伸長性を向上させるための添加物の量を低減させて、配線回路130の電気抵抗の増大を抑制することができる。 In the above description, the uneven region 422 is composed of a plurality of oval concave portions 423 in plan view and a plane portion 424 between the plurality of concave portions 423, but a matrix is used instead of the plurality of concave portions 423. You may be comprised by the some convex part formed in the shape. In this case, the flat portion 424 is easily deformed because the resin molded body 120 is thinner than the convex portion. By forming the flat portion 424 that is easier to deform than the convex portion between the convex portions, when the resin molded body 420 is stretched and deformed, the deformation of the surface of the resin molded body 420 is not concentrated in one place, Distributed. Thereby, the breakage of the wiring circuit 130 can be suppressed, and the amount of the additive for improving the extensibility of the wiring circuit 130 can be reduced, thereby suppressing the increase in the electrical resistance of the wiring circuit 130. .
 <実施の形態3>
 実施の形態1には、内面の一部の矩形領域310が凹凸形状に加工された成形型300を用いて、当該凹凸形状を仮固定シート200を介して樹脂成形体120の表面に転写することにより、樹脂成形体120の上面121に凹凸領域122を形成した。これに対し、本実施の形態3では、仮固定シートの表面に凹凸形状を形成することにより、樹脂成形体の上面121に凹凸領域122を形成する。なお、本実施の形態3に係る製造方法は、実施の形態2に示す樹脂成形体420を製造する方法にも適用することができる。
<Embodiment 3>
In the first embodiment, the uneven shape is transferred to the surface of the resin molded body 120 via the temporary fixing sheet 200 using a molding die 300 in which a part of the rectangular region 310 on the inner surface is processed into an uneven shape. Thus, the uneven region 122 was formed on the upper surface 121 of the resin molded body 120. On the other hand, in this Embodiment 3, the uneven | corrugated area | region 122 is formed in the upper surface 121 of a resin molding by forming uneven | corrugated shape in the surface of a temporary fixing sheet. The manufacturing method according to the third embodiment can also be applied to a method for manufacturing the resin molded body 420 shown in the second embodiment.
 図8は、実施の形態3に係る樹脂構造体100の製造方法を説明する図である。図8の(a)(b)には、それぞれ樹脂構造体100を製造するための第1工程および第2工程が示される。図8の(a)において、上側が平面図、下側が側面図を示している。図8の(b)には断面図が示される。 FIG. 8 is a diagram illustrating a method for manufacturing the resin structure 100 according to the third embodiment. FIGS. 8A and 8B show a first step and a second step for manufacturing the resin structure 100, respectively. In FIG. 8A, the upper side shows a plan view and the lower side shows a side view. FIG. 8B shows a cross-sectional view.
 (第1工程)
 図8の(a)に示されるように、まず、平面視矩形状の仮固定シート500に接着剤(図示せず)により電子部品110を貼り付けて仮固定する。電子部品110は、電極111が形成された面が仮固定シート500に接するように、仮固定シート500に貼り付けられる。
(First step)
As shown in FIG. 8A, first, the electronic component 110 is attached and temporarily fixed to the temporarily fixed sheet 500 having a rectangular shape in plan view with an adhesive (not shown). The electronic component 110 is affixed to the temporarily fixed sheet 500 so that the surface on which the electrode 111 is formed is in contact with the temporarily fixed sheet 500.
 仮固定シート500の材料としては、たとえば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリフェニレンサルファイド(PPS)等を用いることができる。 As a material of the temporary fixing sheet 500, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyphenylene sulfide (PPS), or the like can be used.
 仮固定シート500における電子部品110が貼り付けられる側の面は、凹凸形状に加工された領域510を含む。仮固定シート500の領域510は、たとえばエンボス加工により凹凸形状に加工される。エンボス加工として、裏面を押し上げて浮かす方式および表面にインクなどを付着することで凸部を形成する方式のいずれを用いてもよい。なお、裏面を押し上げて浮かす方式の場合、後述する樹脂材の射出成形の際に凸部が押しつぶれない程度の厚みを有する仮固定シート500を用いる。エンボス加工により形成される凹凸形状は、実施の形態1の成形型300に形成される波形状と同じである。 The surface on the side where the electronic component 110 is pasted in the temporarily fixed sheet 500 includes a region 510 processed into a concavo-convex shape. The region 510 of the temporarily fixed sheet 500 is processed into an uneven shape by, for example, embossing. As the embossing, either a method of lifting the back surface to float and a method of forming a convex portion by attaching ink or the like to the surface may be used. In the case of a system in which the back surface is pushed up and floated, a temporary fixing sheet 500 having a thickness that prevents the convex portions from being crushed during the injection molding of a resin material described later is used. The uneven shape formed by embossing is the same as the wave shape formed in the mold 300 of the first embodiment.
 仮固定シート500に、たとえば紫外線硬化型の接着剤(図示せず)を塗布する。たとえば、凹凸形状にエンボス加工された領域510を有する厚み100μmのPET製の仮固定シート500に、紫外線硬化型の接着剤を5μmの厚さで塗布する。この塗布は、インクジェット印刷法などの方法を用いて行なえばよい。その後、電子部品110を設定された位置に設置する。そして、仮固定シート500の電子部品110が仮固定されていない面から、たとえば3000mJ/cmの強度の紫外線を照射することにより、接着剤を硬化して、電子部品110を仮固定シート500に仮固定する。 For example, an ultraviolet curable adhesive (not shown) is applied to the temporary fixing sheet 500. For example, an ultraviolet curable adhesive is applied to a thickness of 5 μm on a temporary fixing sheet 500 made of PET having a thickness of 100 μm having an embossed region 510. This application may be performed using a method such as an ink jet printing method. Thereafter, the electronic component 110 is installed at a set position. Then, the adhesive is cured by irradiating UV light having an intensity of, for example, 3000 mJ / cm 2 from the surface of the temporarily fixed sheet 500 on which the electronic component 110 is not temporarily fixed, so that the electronic component 110 is attached to the temporarily fixed sheet 500. Temporarily fix.
 (第2工程)
 次に、図8の(b)に示されるように、電子部品110が仮固定された仮固定シート500を成形型600の内部に設置する。
(Second step)
Next, as shown in FIG. 8B, the temporarily fixing sheet 500 on which the electronic component 110 is temporarily fixed is placed inside the mold 600.
 仮固定シート500は、電子部品110が仮固定されていない面が成形型600の内面に接するように、成形型600内に設置される。成形型600は、下型61と上型62とにより構成される。下型61と上型62とを密着させることにより、密閉された内部空間が形成される。成形型600の内面は平坦である。 The temporary fixing sheet 500 is installed in the mold 600 such that the surface on which the electronic component 110 is not temporarily fixed is in contact with the inner surface of the mold 600. The mold 600 includes a lower mold 61 and an upper mold 62. By bringing the lower mold 61 and the upper mold 62 into close contact with each other, a sealed internal space is formed. The inner surface of the mold 600 is flat.
 成形型600の内部空間に樹脂材を射出して、樹脂の射出成形を行なう。射出成形を行なう条件は、樹脂に応じて適宜選択されればよく、たとえば、ポリエステル系エラストマーを用いる場合には、射出樹脂温度240℃、射出圧力100MPaで射出成形を行なう。仮固定シート500の表面は、上述したように凹凸形状に加工されている。そのため、樹脂成形体120において仮固定シート500と接していた面にも凹凸形状が形成される。すなわち、仮固定シート500の領域510に形成された凹凸形状が樹脂成形体120の上面121に転写され、上面121に凹凸領域122が形成される。 ¡A resin material is injected into the internal space of the mold 600 to perform resin injection molding. The conditions for performing the injection molding may be appropriately selected according to the resin. For example, when a polyester elastomer is used, the injection molding is performed at an injection resin temperature of 240 ° C. and an injection pressure of 100 MPa. The surface of the temporary fixing sheet 500 is processed into a concavo-convex shape as described above. Therefore, an uneven shape is also formed on the surface of the resin molded body 120 that is in contact with the temporarily fixed sheet 500. That is, the uneven shape formed in the region 510 of the temporarily fixed sheet 500 is transferred to the upper surface 121 of the resin molded body 120, and the uneven region 122 is formed on the upper surface 121.
 第2工程の後、実施の形態1において説明した第3工程および第4工程を実施することにより、樹脂成形体120の凹凸領域122上に配線回路130が形成された樹脂構造体100を製造することができる。 After the second step, by performing the third step and the fourth step described in the first embodiment, the resin structure 100 in which the wiring circuit 130 is formed on the uneven region 122 of the resin molded body 120 is manufactured. be able to.
 なお、第1工程において、エンボス加工により一方の面が凹凸形状に加工された仮固定シート500を用いることなく、両面が平坦な仮固定シートを用いてもよい。この場合、仮固定シートの一方の面に、電子部品110を貼り付けるために用いる紫外線硬化型の接着剤を位置によって塗布量を異ならせて塗布する。塗布量の違いによって、接着剤の表面は凹凸形状となる。これにより、表面が凹凸形状に加工された仮固定シートを作製することができる。 In the first step, a temporary fixing sheet having flat surfaces may be used without using the temporary fixing sheet 500 having one surface processed into an uneven shape by embossing. In this case, an ultraviolet curable adhesive used for adhering the electronic component 110 is applied to one surface of the temporarily fixed sheet at different application amounts depending on the position. Due to the difference in the amount of coating, the surface of the adhesive becomes uneven. Thereby, the temporarily fixed sheet | seat by which the surface was processed into the uneven | corrugated shape can be produced.
 紫外線硬化型の接着剤を用いて仮固定シートの表面を凹凸形状に加工する場合、電子部品110を仮固定シートに貼り付ける工程と、仮固定シートの表面を凹凸形状に加工する工程とを同時に行なってもよい。仮固定シートの一方の面に、電子部品110が貼り付けられる部分には均一な厚みに接着剤を塗布し、電子部品110が貼り付けられない部分には位置によって塗布量を異ならせて接着剤を塗布する。その後、仮固定シートにおける接着剤を塗布していない側の面から紫外線を照射することにより接着剤を硬化させる。これにより、電子部品110を仮固定シートに仮固定すると同時に、仮固定シートにおける電子部品110が存在しない部分を凹凸形状に加工することができる。 When processing the surface of the temporarily fixing sheet into a concavo-convex shape using an ultraviolet curable adhesive, the step of attaching the electronic component 110 to the temporary fixing sheet and the step of processing the surface of the temporarily fixing sheet into a concavo-convex shape are performed simultaneously. You may do it. An adhesive is applied to a portion where the electronic component 110 is attached to one surface of the temporarily fixing sheet with a uniform thickness, and an adhesive is applied to a portion where the electronic component 110 is not attached depending on the position. Apply. Then, an adhesive agent is hardened by irradiating an ultraviolet-ray from the surface on the side which has not apply | coated the adhesive agent in a temporary fixing sheet. Thereby, at the same time that the electronic component 110 is temporarily fixed to the temporarily fixed sheet, a portion of the temporarily fixed sheet where the electronic component 110 does not exist can be processed into an uneven shape.
 なお、仮固定シート500の一方の面を、電子部品110が貼り付けられる第1領域と、第1領域の周囲の所定幅の第2領域と、残りの第3領域とに分割し、各領域の表面の形状を異ならせてもよい。具体的には、第1領域を平らとし、第3領域を突条部と溝部とが交互に連続してなる波形状とする。第2領域を、平らな第1領域と波形状の第3領域とを滑らかに連続させる面とする。これにより、図5A~図5Cに示すように、電子部品110の露出面112と連続する連続領域125と、連続領域125の周囲に位置し、連続領域125と連続する凹凸領域122とを上面121に有する樹脂成形体120を成形することができる。 In addition, one surface of the temporary fixing sheet 500 is divided into a first region where the electronic component 110 is pasted, a second region having a predetermined width around the first region, and the remaining third region. The shape of the surface may be different. Specifically, the first region is flat, and the third region has a wave shape in which protrusions and grooves are alternately continuous. The second region is a surface that smoothly connects the flat first region and the wavy third region. As a result, as shown in FIGS. 5A to 5C, a continuous region 125 that is continuous with the exposed surface 112 of the electronic component 110, and an uneven region 122 that is located around the continuous region 125 and is continuous with the continuous region 125 are formed on the upper surface 121. The resin molded body 120 can be molded.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 32,62 上型、100,400 樹脂構造体、110 電子部品、111 電極、112 露出面、120,420 樹脂成形体、121,421 上面、122,422 凹凸領域、123,311 突条部、124,312 溝部、125 連続領域、130 配線回路、200,500 仮固定シート、300,600 成形型、310 矩形領域、316 第1領域、317 第2領域、318 第3領域、423 凹部、424 平面部、510 領域。 32,62 upper mold, 100,400 resin structure, 110 electronic component, 111 electrode, 112 exposed surface, 120,420 resin molded body, 121,421 upper surface, 122,422 uneven region, 123,311 ridge, 124 , 312 groove part, 125 continuous area, 130 wiring circuit, 200,500 temporary fixing sheet, 300,600 mold, 310 rectangular area, 316 first area, 317 second area, 318 third area, 423 concave part, 424 flat part , 510 area.

Claims (12)

  1.  伸長変形可能な樹脂成形体と、
     配線回路とを備え、
     前記樹脂成形体の表面は、凹凸形状である凹凸領域を含み、
     前記配線回路は、前記凹凸領域の上に形成される、樹脂構造体。
    A stretchable and deformable resin molded body;
    With wiring circuit,
    The surface of the resin molded body includes an uneven region that is an uneven shape,
    The wiring circuit is a resin structure formed on the uneven region.
  2.  前記樹脂成形体は平面視矩形の板状であり、
     前記凹凸領域は、突条部と溝部とが交互に連続してなる波形状であり、
     前記突条部および前記溝部は、前記樹脂成形体の短手方向に沿って延びる、請求項1に記載の樹脂構造体。
    The resin molded body is a rectangular plate in plan view,
    The concavo-convex region has a wave shape in which ridges and grooves are alternately continuous,
    The resin structure according to claim 1, wherein the protrusion and the groove extend along a short direction of the resin molded body.
  3.  前記樹脂成形体は平面視矩形の板状であり、
     前記凹凸領域には、前記樹脂成形体の長手方向に平行な長軸を有する平面視楕円形の複数の凹部または凸部が形成される、請求項1に記載の樹脂構造体。
    The resin molded body is a rectangular plate in plan view,
    2. The resin structure according to claim 1, wherein a plurality of concave or convex portions having a long axis parallel to the longitudinal direction of the resin molded body and having an elliptical shape in plan view are formed in the uneven region.
  4.  前記凹凸領域における最上点と最下点との高低差は、50μm以上200μm以下である、請求項1から3のいずれか1項に記載の樹脂構造体。 4. The resin structure according to claim 1, wherein a difference in height between the uppermost point and the lowermost point in the uneven region is 50 μm or more and 200 μm or less.
  5.  前記樹脂成形体の破断時の伸び率が1%以上である、請求項1から4のいずれか1項に記載の樹脂構造体。 The resin structure according to any one of claims 1 to 4, wherein an elongation percentage at break of the resin molded body is 1% or more.
  6.  電子部品をさらに備え、
     前記樹脂成形体は、前記電子部品の電極が露出するように、前記電子部品を埋設して固定し、
     前記配線回路は前記電極に接続する、請求項1から5のいずれか1項に記載の樹脂構造体。
    Further equipped with electronic components,
    The resin molded body is embedded and fixed so that the electrode of the electronic component is exposed,
    The resin structure according to claim 1, wherein the wiring circuit is connected to the electrode.
  7.  前記樹脂成形体の表面は、前記電子部品における前記樹脂成形体からの露出面の周囲に位置するとともに、当該露出面に連続する連続領域をさらに含み、
     前記凹凸領域は、前記連続領域の周囲に位置するとともに、前記連続領域に連続する、請求項6に記載の樹脂構造体。
    The surface of the resin molded body is located around the exposed surface from the resin molded body in the electronic component, and further includes a continuous region continuous to the exposed surface,
    The resin structure according to claim 6, wherein the uneven region is located around the continuous region and is continuous with the continuous region.
  8.  請求項1から7のいずれか1項に記載の樹脂構造体の製造方法であって、
     内面の少なくとも一部の領域が凹凸形状に加工された成形型の内部空間に樹脂材を充填することにより、前記少なくとも一部の領域に対向する部分を前記凹凸領域とする前記樹脂成形体を成形する工程と、
     前記樹脂成形体の前記凹凸領域の上に前記配線回路を形成する工程とを備える、樹脂構造体の製造方法。
    A method for producing a resin structure according to any one of claims 1 to 7,
    Forming the resin molded body having the concave and convex portion as a portion facing the at least a partial region by filling a resin material into an inner space of a mold in which at least a partial region of the inner surface is processed into a concave and convex shape. And a process of
    Forming the wiring circuit on the uneven region of the resin molded body.
  9.  請求項6または7に記載の樹脂構造体の製造方法であって、
     一方の面の少なくとも一部の領域が凹凸形状に加工されたシート上の当該一方の面上に、電極が当該一方の面に対向するように前記電子部品を貼り付ける工程と、
     前記シートを成形型内に配置し、前記成形型内に樹脂を充填させることにより、前記電子部品を埋設するとともに、前記少なくとも一部の領域に対向する部分を前記凹凸領域とする前記樹脂成形体を成形する工程と、
     前記樹脂成形体から前記シートを剥離し、前記樹脂成形体の前記凹凸領域の上に前記配線回路を形成する工程とを備える、樹脂構造体の製造方法。
    A method for producing a resin structure according to claim 6 or 7,
    A step of affixing the electronic component on the one surface on a sheet in which at least a part of one surface is processed into a concavo-convex shape so that the electrode faces the one surface;
    By placing the sheet in a mold and filling the mold with a resin, the electronic component is embedded, and the portion facing the at least part of the region is the uneven region. Forming the step,
    And a step of peeling the sheet from the resin molded body and forming the wiring circuit on the uneven area of the resin molded body.
  10.  前記シートにおける前記少なくとも一部の領域は凹凸形状にエンボス加工される、請求項9に記載の樹脂構造体の製造方法。 The method for manufacturing a resin structure according to claim 9, wherein the at least a part of the region of the sheet is embossed into an uneven shape.
  11.  前記シートにおける前記少なくとも一部の領域は、位置によって塗布量を異ならせて接着剤が塗布されることにより、凹凸形状に加工される、請求項9に記載の樹脂構造体の製造方法。 The method for producing a resin structure according to claim 9, wherein the at least a part of the region of the sheet is processed into a concavo-convex shape by applying an adhesive with different application amounts depending on positions.
  12.  前記電子部品を貼り付ける工程において、前記電子部品は、前記接着剤を用いて前記シートに貼り付けられる、請求項11に記載の樹脂構造体の製造方法。 The method for manufacturing a resin structure according to claim 11, wherein in the step of attaching the electronic component, the electronic component is attached to the sheet using the adhesive.
PCT/JP2017/037326 2017-01-26 2017-10-16 Resin structure and production method therefor WO2018138979A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-012256 2017-01-26
JP2017012256A JP6720885B2 (en) 2017-01-26 2017-01-26 Wearable portable device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2018138979A1 true WO2018138979A1 (en) 2018-08-02

Family

ID=62979233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037326 WO2018138979A1 (en) 2017-01-26 2017-10-16 Resin structure and production method therefor

Country Status (3)

Country Link
JP (1) JP6720885B2 (en)
TW (1) TWI653913B (en)
WO (1) WO2018138979A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020155605A (en) * 2019-03-20 2020-09-24 大日本印刷株式会社 Wiring substrate and manufacturing method of the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10959326B2 (en) * 2017-11-07 2021-03-23 Dai Nippon Printing Co., Ltd. Stretchable circuit substrate and article
JP7249514B2 (en) * 2019-02-04 2023-03-31 大日本印刷株式会社 Wiring board and method for manufacturing wiring board
JP7320186B2 (en) * 2019-02-12 2023-08-03 大日本印刷株式会社 Wiring board and method for manufacturing wiring board
JP7216911B2 (en) * 2019-02-14 2023-02-02 大日本印刷株式会社 Wiring board and method for manufacturing wiring board
JP7216912B2 (en) * 2019-02-14 2023-02-02 大日本印刷株式会社 Wiring board and method for manufacturing wiring board
JP7486042B2 (en) * 2019-02-14 2024-05-17 大日本印刷株式会社 Wiring board and method for manufacturing the same
JP7312367B2 (en) * 2019-03-11 2023-07-21 大日本印刷株式会社 Wiring board and method for manufacturing wiring board
JP7236052B2 (en) * 2019-03-29 2023-03-09 大日本印刷株式会社 Wiring board and method for manufacturing wiring board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61188957A (en) * 1985-02-18 1986-08-22 Toshiba Corp Manufacture of circuit module
US20140218872A1 (en) * 2013-02-06 2014-08-07 Electronics And Telecommunications Research Institute Electronic circuit and method of fabricating the same
US20140299362A1 (en) * 2013-04-04 2014-10-09 Electronics And Telecommunications Research Institute Stretchable electric device and manufacturing method thereof
JP2015164177A (en) * 2014-01-28 2015-09-10 パナソニックIpマネジメント株式会社 Electronic device and manufacturing method for the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3138987C2 (en) * 1981-09-30 1984-03-29 Siemens AG, 1000 Berlin und 8000 München Device for preventing damage to components or conductor tracks on a circuit board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61188957A (en) * 1985-02-18 1986-08-22 Toshiba Corp Manufacture of circuit module
US20140218872A1 (en) * 2013-02-06 2014-08-07 Electronics And Telecommunications Research Institute Electronic circuit and method of fabricating the same
US20140299362A1 (en) * 2013-04-04 2014-10-09 Electronics And Telecommunications Research Institute Stretchable electric device and manufacturing method thereof
JP2015164177A (en) * 2014-01-28 2015-09-10 パナソニックIpマネジメント株式会社 Electronic device and manufacturing method for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020155605A (en) * 2019-03-20 2020-09-24 大日本印刷株式会社 Wiring substrate and manufacturing method of the same
JP7389958B2 (en) 2019-03-20 2023-12-01 大日本印刷株式会社 Wiring board and wiring board manufacturing method

Also Published As

Publication number Publication date
JP6720885B2 (en) 2020-07-08
TW201828786A (en) 2018-08-01
JP2018120989A (en) 2018-08-02
TWI653913B (en) 2019-03-11

Similar Documents

Publication Publication Date Title
WO2018138979A1 (en) Resin structure and production method therefor
EP2519083A1 (en) Flexible circuit board and manufacturing method thereof
WO2015163082A1 (en) Resin structure having electronic component embedded therein, and method for manufacturing said structure
KR102077258B1 (en) Three-dimensional circuit structure
JP2006128435A (en) Flexible wiring board and electronic apparatus using the same and its manufacturing method
KR101846853B1 (en) Flexible circuit board having rigid dummy
KR102163907B1 (en) Circuit structure
US11004699B2 (en) Electronic device and method for manufacturing the same
JP6658935B2 (en) Circuit structure
CN110024493B (en) Electronic device and method for manufacturing the same
TWI649177B (en) Manufacturing method of resin structure and resin structure
JP7341728B2 (en) flexible circuit board
WO2018163516A1 (en) Electronic device and method for manufacturing same
WO2020124417A1 (en) Flexible panel and manufacturing method for flexible panel
WO2018092408A1 (en) Electronic device and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893579

Country of ref document: EP

Kind code of ref document: A1