WO2018138935A1 - 試験試料が植物病原性真菌を含有するかどうかを判定する方法 - Google Patents

試験試料が植物病原性真菌を含有するかどうかを判定する方法 Download PDF

Info

Publication number
WO2018138935A1
WO2018138935A1 PCT/JP2017/008407 JP2017008407W WO2018138935A1 WO 2018138935 A1 WO2018138935 A1 WO 2018138935A1 JP 2017008407 W JP2017008407 W JP 2017008407W WO 2018138935 A1 WO2018138935 A1 WO 2018138935A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose film
micrometers
test sample
back surface
medium
Prior art date
Application number
PCT/JP2017/008407
Other languages
English (en)
French (fr)
Inventor
幸嗣 瓜生
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to AU2017396004A priority Critical patent/AU2017396004A1/en
Priority to JP2018564091A priority patent/JP6887081B2/ja
Priority to EP17893638.1A priority patent/EP3575405B1/en
Publication of WO2018138935A1 publication Critical patent/WO2018138935A1/ja
Priority to US16/410,362 priority patent/US11168346B2/en
Priority to US17/498,391 priority patent/US11913057B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings

Definitions

  • the present invention relates to a method for determining whether a test sample contains a phytopathogenic fungus.
  • Patent Document 1 discloses a method for measuring filamentous fungi.
  • FIG. 10 shows a cross-sectional view of a microporous membrane support used for the method for measuring filamentous fungi disclosed in Patent Document 1.
  • the method for measuring the number of filamentous fungi disclosed in Patent Document 1 is a method for measuring the number of filamentous fungi in a test material, measuring the number of filamentous fungi in a short period of time, and measuring the number of filamentous fungi.
  • the purpose is to provide a weighing method.
  • This filamentous fungus measurement method is used for imaging the mycelium extending in a plurality of filamentous fungi 13 cultured in liquid culture or the microporous membrane 1 of the microporous membrane support 4, and then measuring the shape and area, By recognizing and analyzing the light emission luminance by the image analysis means 10, the filamentous fungus 13 can be measured in a short period of time.
  • the microporous membrane 1 is sandwiched between the pressing ring 2 and the base 3.
  • Non-Patent Document 1 discloses that a pseudomycelium of Phytophthora sojae, which is a kind of phytopathogenic oomycete, penetrates a PET membrane having a 3 micrometer pore.
  • An object of the present invention is to provide a method for selectively determining whether a test sample contains a phytopathogenic fungus from two types of fungi, a phytopathogenic fungus and a plant non-pathogenic fungus. .
  • a method for determining whether a test sample contains a phytopathogenic fungus comprising the following steps: (A) a step of placing the test sample on the front surface of the substrate having a through hole; here, The substrate comprises a cellulose film on the back surface, The cellulose film does not have through holes, The cellulose film has a thickness of more than 2 micrometers and not more than 3.7 micrometers, and the through hole has a cross-sectional area of not less than 7.065 micrometers and not more than 19.625 micrometers.
  • step (B) After the step (a), the step of standing the test sample, (C) After step (b), a step of observing the back surface of the cellulose film, and (d) In step (c), when a fungus that penetrates the cellulose film is found on the back surface of the film, Determining that the test sample contains the phytopathogenic fungus.
  • the present invention provides a method for selectively determining whether or not a test sample contains a phytopathogenic fungus from two types of fungi, a phytopathogenic fungus and a plant non-pathogenic fungus.
  • FIG. 1 shows a cross-sectional view of the first container 100.
  • FIG. 2 shows a cross-sectional view of a substrate 170 having the cellulose film 104 on the back surface.
  • FIG. 3 shows a cross-sectional view of the first container 100 supplied with the test sample.
  • FIG. 4 shows a cross-sectional view of a substrate 170 with phytopathogenic fungi placed on the surface.
  • FIG. 5 is a cross-sectional view showing a state in which a phytopathogenic fungus has penetrated the through hole 172 and the cellulose film 104.
  • FIG. 6 shows a cross-sectional view of an example of a method for accelerating fungal culture.
  • FIG. 7 shows a cross-sectional view of an example of a method for accelerating fungal culture following FIG. 6.
  • FIG. 8 is a cross-sectional view showing how the fungus is observed from the back surface of the cellulose film 104.
  • FIG. 9 is a cross-sectional view showing a state in which fungi are observed from the back surface of the cellulose film 104.
  • FIG. 10 shows a cross-sectional view of a microporous membrane support used for the method for measuring filamentous fungi disclosed in Patent Document 1.
  • the phytopathogenic fungi belong to the genus Fusarium, Pyricularia, or Colletotrichum, for example.
  • Examples of phytopathogenic fungi are Fusarium oxysporum, Pyricularia grisea, or Colletotrichum gloeosporioides. These phytopathogenic fungi cause root rot, blast, blast, Anthrax, gray mold, and the like. These phytopathogenic fungi kill the plant.
  • Examples of plant non-pathogenic fungi are Saccharomyces cerevisiae, Penicillium chysogeum, or Aspergillus oryzae.
  • phytopathogenicity means having a pathogenicity to plants.
  • plant non-pathogenic means not pathogenic to plants.
  • a fungus is "plant non-pathogenic” if it is pathogenic but not pathogenic to the plant. In other words, a fungus is “plant non-pathogenic” if it does not adversely affect the plant.
  • the prefix “non” included in the term “plant non-pathogenic” does not modify “plant”. The prefix “non” modifies “pathogenicity”.
  • a test sample is placed on the surface on the front side of the substrate 170 having the through holes 172.
  • a cellulose film 104 is attached to the back surface 170 b of the substrate 170.
  • the front surface 104 a of the cellulose film 104 is in contact with the back surface 170 b of the substrate 170.
  • a container 100 is prepared as shown in FIG.
  • the container 100 preferably has a flange 102 at the upper end.
  • the bottom surface of the container 100 is formed from the substrate 170.
  • the substrate 170 includes the cellulose film 104 on the back surface 170 b.
  • the substrate 170 includes a through-hole 172 that penetrates from the front surface 170a to the back surface 170b.
  • the through-hole 172 has a diameter of 3 micrometers or more and 5 micrometers or less.
  • the through-hole 172 has a cross-sectional area of 7.065 microsquare meters or more and 19.625 microsquare meters or less. Note that unlike the substrate 170, the cellulose film 104 does not have through holes.
  • a test sample 200 is supplied into the container 100.
  • the test sample 200 is disposed on the front surface 170a of the substrate 170.
  • the test sample 200 contains the phytopathogenic fungus 202
  • the phytopathogenic fungus 202 is disposed on the front surface 170a of the substrate 170 as shown in FIG.
  • the test sample 200 is a solid, liquid, or gas.
  • the test sample 200 is preferably solid or liquid.
  • solid test sample 200 are soil or crushed plants.
  • Other examples are agricultural materials such as vermiculite, rock wool, or urethane.
  • liquid test samples 200 include agricultural water, solutions used for hydroponics, liquids used to wash plants, liquids extracted from plants, used to wash agricultural materials Liquid after use or after use to wash an operator's clothing or shoes.
  • test sample 200 is allowed to stand for a predetermined incubation time. Desirably, the test sample 200 is allowed to stand for 24 hours. In this way, the fungus is cultured. In other words, the culture time is desirably approximately 24 hours.
  • the importance of the thickness of the cellulose film 104 and the size of the through hole 172 will be described below.
  • the phytopathogenic fungus 202 has a through-hole as shown in FIG. Grows so as to penetrate both 172 and the cellulose film 104. As a result, phytopathogenic fungi 202 appear on the back surface 104 b of the cellulose film 104.
  • the cellulose film 104 has a thickness of 2 micrometers or more and 3.7 micrometers or less.
  • the through-hole 172 has a cross-sectional area of 7.065 microsquare meters or more and 19.625 microsquare meters or less.
  • the plant non-pathogenic fungus hardly penetrates the cellulose film 104.
  • the number of intrusion points is at most 2.7. Therefore, plant non-pathogenic fungi hardly appear on the back surface 104b of the cellulose film 104.
  • the phytopathogenic fungus 202 selectively appears on the back surface 104b.
  • the number of penetration points is at least 7.0. In this way, the phytopathogenic fungus 202 selectively appears outside the container 100.
  • the cellulose film 104 has a thickness exceeding 4.4 micrometers, not only plant non-pathogenic fungi but also plant pathogenic fungi do not penetrate the cellulose film 104. Thus, if the cellulose film 104 has a thickness greater than 4.4 micrometers, selectivity is lost. When the cellulose film 104 has a thickness of less than 0.5 micrometers (including the case where the cellulose film 104 is not provided), not only plant non-pathogenic fungi but also phytopathogenic fungi penetrate the cellulose film 104 ( Alternatively, it is found on the back surface 170b of the substrate 170). Thus, selectivity is lost when the cellulose film 104 has a thickness of less than 0.5 micrometers.
  • the through-hole 172 has a cross-sectional area of less than 7.065 micro square meters (ie, a diameter of less than 3 micrometers), not only plant non-pathogenic fungi but also plant non-pathogenic fungi will not penetrate the cellulose film 104. .
  • the through-hole 172 has a cross-sectional area of greater than 19.625 micrometers (ie, a diameter greater than 5 micrometers)
  • the through-hole 172 has a cross-sectional area of 19.625 micrometers (ie, a diameter of 5 micrometers).
  • the cellulose film 104 is pinned on the back surface 170 b of the substrate 170. As such, the substrate 170 supports the cellulose film 104.
  • the substrate 170 preferably has a plurality of through holes 172.
  • substrate 170 is not limited, As an example, they are 1 micrometer or more and 500 micrometers or less.
  • the cellulose film 104 is very thin. However, when the cellulose film 104 is disposed on such a substrate 170, the cellulose film 104 can be easily handled.
  • a medium can be supplied to the test sample 200.
  • the medium can be supplied into the container 100 containing the test sample 200.
  • the medium is desirably a liquid.
  • the medium can be supplied in step (b).
  • the medium can be supplied prior to step (b).
  • the culture medium can be supplied in step (a).
  • the culture medium may be supplied to the inside of the container 100 before the step (a).
  • FIG. 6 shows another method for accelerating fungal culture.
  • a second container 300 having a liquid medium 302 therein is prepared.
  • the container 100 is referred to as a “first container 100”.
  • the first container 100 is overlaid on the second container 300 such that the lower surface of the flange 102 contacts the upper end of the second container 300.
  • the first container 100 is supported by the upper end of the second container 300.
  • the liquid culture medium 302 is sandwiched between the back surface 104 b of the cellulose film 104 and the bottom surface of the second container 300.
  • the liquid medium 302 may be supplied between the back surface 104 b of the cellulose film 104 and the bottom surface of the second container 300.
  • liquid medium 302 a viscous solid medium can also be used. As shown in FIG. 6, both solid medium 304 and liquid medium 302 can be used. In this case, the liquid medium 302 is sandwiched between the solid medium 304 and the cellulose film 104. As shown in FIG. 5, the cultivation of the phytopathogenic fungi appearing on the back surface 104 b is accelerated by at least one of the liquid medium 302 and the solid medium 304.
  • the back surface 104b of the cellulose film 104 is observed after the step (b). It is desirable that the back surface 104b is observed using an optical microscope.
  • the phytopathogenic fungus 202 appears on the back surface 104 b of the cellulose film 104.
  • plant non-pathogenic fungi do not appear on the back surface 104 b of the cellulose film 104.
  • the phytopathogenic fungus 202 selectively appears on the back surface 104 b of the cellulose film 104.
  • the phytopathogenic fungus 202 penetrates the cellulose film 104.
  • plant non-pathogenic fungi do not penetrate the cellulose film 104. Therefore, plant non-pathogenic fungi do not appear on the back surface 104 b of the cellulose film 104. In this way, the phytopathogenic fungus 202 selectively appears on the back surface 104b. In other words, the phytopathogenic fungus 202 selectively appears outside the first container 100.
  • step (c) it is observed whether phytopathogenic fungi 202 appear on the back surface 104b of the cellulose film 104.
  • phytopathogenic fungus 202 appears on the back surface 104b of the cellulose film 104 as follows.
  • a phytopathogenic fungus 202 is observed optically.
  • the liquid medium 302 and the solid medium 304 are removed from the second container 300.
  • the fungal fluorescent solution 402 is added to the inside of the second container 300.
  • the first container 100 is superimposed on the second container 300 having the fungal fluorescent solution 402 therein.
  • the fungal fluorescent solution 402 may be supplied between the back surface 104 b of the cellulose film 104 and the bottom surface of the second container 300.
  • a part of the phytopathogenic fungus 202 that appears on the back surface 104 b of the cellulose film 104 can be stained with the fungal staining solution 402. Since the second container 300 and the first container 100 are separated by the cellulose film 104, the fungal fluorescent liquid 402 does not spread inside the first container 100. Therefore, plant non-pathogenic fungi contained in the first container 100 are not stained with the fungal fluorescent solution 402.
  • phytopathogenic fungi 202 stained with a fungal fluorescent agent are observed using an epifluorescence microscope 600 disposed under the back surface 104b of the cellulose film 104. Needless to say, the phytopathogenic fungus 202 can be observed without using a fungal fluorescent agent.
  • step (d) if a fungus is found on the back surface 104b of the cellulose film 104 in step (c), it is determined that the test sample contains a phytopathogenic fungus. Needless to say, if no fungus is found on the back surface 104b of the cellulose film 104 in step (c), it is determined that the test sample does not contain a phytopathogenic fungus.
  • Example 1 Fusarium oxysporum culture
  • Fusarium oxysporum a plant pathogen
  • the medium was then allowed to stand for 1 week at a temperature of 25 degrees Celsius. Fusarium oxysporum was given by Associate Professor Shimizu belonging to the Faculty of Applied Biological Sciences, Gifu University.
  • the part including the tip of the mycelium was cut out together with the medium in a size of 1 cm ⁇ 1 cm.
  • the cut out part was immersed in pure water placed on a 12-well plate. The volume of each pure water was 1 milliliter.
  • Experimental Example 1 includes Examples 1A to 1D, Reference Examples 1E to 1F, and Comparative Examples 1G to 1T.
  • Example 1A The first container 100 shown in FIG. 1 was prepared as follows.
  • cellulose obtained from SIGMA-ALDRICH, trade name: Avicel PH-101
  • ionic liquid 1-Butyl-3-methyl imidazolium chloride (available from SIGMA-ALDRICH).
  • the cellulose solution was heated to 60 degrees Celsius.
  • the cellulose solution was applied to the back surface of a container having a polyethylene terephthalate film on the bottom surface (available from Millipore, trade name: Millicell PISP 12R 48) for 30 seconds at a rotation speed of 2000 rpm by a spin coating method.
  • the polyethylene terephthalate film functioned as the substrate 170.
  • the polyethylene terephthalate film randomly had a plurality of through holes 172 having a diameter of 3 micrometers. In this way, a cellulose film 104 having a thickness of 2.0 micrometers was formed on the back side surface of the polyethylene terephthalate film. According to Millipore, the diameter of the through-hole 172 can have an error range of about plus or minus 10%.
  • the container was allowed to stand at room temperature for 12 hours in ethanol. In this way, 1-Butyl-3-methyl imidazolium chloride was replaced with ethanol. In other words, 1-Butyl-3-methyl imidazolium chloride was removed from the cellulose film 104.
  • the container was dried in a vacuum desiccator.
  • the 1st container 100 shown by FIG. 1 was obtained. Note that in FIG. 1, a polyethylene terephthalate film that functions as substrate 170 is not shown.
  • the first container 100 was overlaid on the second container 300.
  • the back surface 104 b of the cellulose film 104 was in contact with the liquid medium 302.
  • water having a volume of 200 microliters was added to the inside of the first container 100.
  • a phytopathogenic aqueous solution containing 200 Fusarium oxysporum spores was added to the inside of the first container 100.
  • the first container 100 was left at a temperature of 25 degrees Celsius for 24 hours.
  • the culture time was 24 hours.
  • the number of mycelium of Fusarium oxysporum that appeared on the back surface 104b of the cellulose film 104 was counted by visual observation through an optical microscope.
  • Example 1A was repeated 15 times.
  • the average value of the number of mycelium of Fusarium oxysporum that appeared on the back surface 104b was 44.9.
  • Example 1B In Example 1B, an experiment similar to Example 1A was performed, except that the diameter of the through hole 172 was 5 micrometers. A container having a bottom surface with a through-hole having a diameter of 5 micrometers was obtained from Millipore under the trade name: PIMP 12R 48.
  • Example 1C In Example 1C, the same experiment as in Example 1A, except that the cellulose solution had a concentration of 3.0% and the cellulose film 104 had a thickness of 3.7 micrometers. Was done.
  • Example 1D In Example 1D, the cellulose solution had a concentration of 3.0%, the cellulose film 104 had a thickness of 3.7 micrometers, and the diameter of the through-hole 172 was 5 micrometers. An experiment similar to Example 1A was performed except that.
  • Reference Example 1E In Reference Example 1E, an experiment similar to Example 1A was performed except that the cellulose solution had a concentration of 1.0% and the cellulose film 104 had a thickness of 0.5 micrometers. It was conducted.
  • Comparative Example 1G In Comparative Example 1G, the cellulose film 104 was not formed (that is, the cellulose film 104 had a thickness of 0 micrometer), and the diameter of the through-hole 172 was 1 micrometer, An experiment similar to Example 1A was performed. A container having a bottom surface with a through-hole having a diameter of 1 micrometer was obtained from Millipore as trade name: PIRP 12R48.
  • Comparative Example 1H In Comparative Example 1H, an experiment similar to Example 1A was performed, except that the cellulose film 104 was not formed (that is, the cellulose film 104 had a thickness of 0 micrometer).
  • Comparative Example 1I In Comparative Example 1I, except that the cellulose film 104 was not formed (that is, the cellulose film 104 had a thickness of 0 micrometer) and the diameter of the through-hole 172 was 5 micrometers, An experiment similar to Example 1A was performed.
  • Comparative Example 1J Comparative Example 1J
  • the cellulose film 104 was not formed (that is, the cellulose film 104 had a thickness of 0 micrometer), and the diameter of the through-hole 172 was 8 micrometers
  • An experiment similar to Example 1A was performed.
  • a container having a bottom surface with a through-hole having a diameter of 8 micrometers was obtained from Millipore as trade name: PIEP 12R 48.
  • Reference Comparative Example 1M In Reference Comparative Example 1M, an experiment similar to Example 1A was performed, except that the diameter of the through hole 172 was 1 micrometer.
  • Reference Comparative Example 1N In Reference Comparative Example 1N, an experiment similar to Example 1A was performed, except that the diameter of the through hole 172 was 8 micrometers.
  • Comparative Example 1O In Comparative Example 1O, (i) the cellulose solution had a concentration of 3.0%, (ii) the cellulose film 104 had a thickness of 3.7 micrometers, (iii) penetration An experiment similar to Example 1A was performed, except that the diameter of the hole 172 was 1 micrometer.
  • Comparative Example 1P In Comparative Example 1P, (i) the cellulose solution had a concentration of 3.0%, (ii) the cellulose film 104 had a thickness of 3.7 micrometers, (iii) penetration An experiment similar to that of Example 1A was performed, except that the diameter of the hole 172 was 8 micrometers.
  • Comparative Example 1Q In Comparative Example 1Q, (i) the cellulose solution had a concentration of 4.0%, (ii) the cellulose film 104 had a thickness of 4.4 micrometers, (iii) penetration An experiment similar to Example 1A was performed, except that the diameter of the hole 172 was 1 micrometer.
  • Comparative Example 1R In Comparative Example 1R, an experiment similar to Example 1A was performed, except that the cellulose solution had a concentration of 4.0% and the cellulose film 104 had a thickness of 4.4 micrometers. It was conducted.
  • Comparative Example 1S In Comparative Example 1S, (i) the cellulose solution had a concentration of 4.0%, (ii) the cellulose film 104 had a thickness of 4.4 micrometers, (iii) penetration An experiment similar to that of Example 1A was performed, except that the diameter of the hole 172 was 5 micrometers.
  • Comparative Example 1T In Comparative Example 1T, (i) the cellulose solution had a concentration of 4.0%, (ii) the cellulose film 104 had a thickness of 4.4 micrometers, (iii) penetration An experiment similar to that of Example 1A was performed, except that the diameter of the hole 172 was 8 micrometers.
  • Example 2 In Experimental Example 2, a plant non-pathogenic fungal aqueous solution containing Saccharomyces cerevisiae spores was used in place of the phytopathogenic fungal aqueous solution containing Fusarium oxysporum spores. Unlike Fusarium oxysporum, Saccharomyces cerevisiae is a plant non-pathogenic fungus. A non-phytopathogenic fungal aqueous solution containing Saccharomyces cerevisiae spores was prepared in the same manner as a phytopathogenic fungal aqueous solution containing Fusarium oxysporum spores. Experimental Example 2 includes Comparative Examples 2A to 2T. Comparative Example 2A to Comparative Example 2L are the same as Example 1A to Comparative Example 1T, except that different fungi were used.
  • Example 3 In Experimental Example 3, a phytopathogenic aqueous solution containing Pyricularia grisea spores was used instead of the phytopathogenic fungal aqueous solution containing Fusarium oxysporum spores. Like Fusarium oxysporum, Pyricularia grisea is also a phytopathogenic fungus.
  • An aqueous solution of phytopathogenic fungi containing spores of Pyricularia grisea was prepared as follows.
  • Pyricularia grisea culture First, Pyricularia grisea, a kind of plant pathogen, was inoculated into oatmeal agar medium containing 2% sucrose. The medium was then allowed to stand for 1 week at a temperature of 25 degrees Celsius. Then, it was left still for 4 days under near ultraviolet rays.
  • the part including the tip of the mycelium was cut out together with the medium in a size of 1 cm ⁇ 1 cm.
  • the cut out part was immersed in pure water placed on a 12-well plate. The volume of each pure water was 1 milliliter.
  • Experimental Example 3 consists of Example 3A to Example 3D, Reference Example 3E to Reference Example 3F, and Comparative Example 3G to Comparative Example 3T.
  • Example 4 In Experimental Example 4, a phytopathogenic aqueous solution containing spores of Colletotrichum gloeosporioides was used in place of the phytopathogenic fungal aqueous solution containing Fusarium oxysporum spores. Like Fusarium oxysporum, Colletotrichum gloeosporioides is also a phytopathogenic fungus. An aqueous phytopathogenic fungus solution containing spores of Colletotrichum gloeosporioides was prepared in the same manner as an aqueous phytopathogenic fungus solution containing Fusarium oxysporum spores.
  • Experimental Example 4 includes Examples 4A to 4D, Reference Examples 4E to 4F, and Comparative Examples 4G to 4T.
  • Example 5 (Experimental example 5) In Experimental Example 5, a plant non-pathogenic fungal aqueous solution containing Penicillium chysogeum spores was used instead of the phytopathogenic fungal aqueous solution containing Fusarium oxysporum spores. Unlike Fusarium oxysporum, Penicillium chysogeum is a plant non-pathogenic fungus. A non-phytopathogenic fungal aqueous solution containing Penicillium chysogeum spores was prepared in the same manner as a phytopathogenic fungal aqueous solution containing Fusarium oxysporum spores. Experimental Example 5 is composed of Comparative Examples 5A to 5T. Comparative Example 5A to Comparative Example 5T are the same as Example 1A to Comparative Example 1T, except that different fungi were used.
  • Example 6 In Experimental Example 5, a plant non-pathogenic fungal aqueous solution containing Aspergillus oryzae spores was used instead of the phytopathogenic fungal aqueous solution containing Fusarium oxysporum spores. Unlike Fusarium oxysporum, Aspergillus oryzae is a kind of plant non-pathogenic fungus. A non-phytopathogenic fungal aqueous solution containing Aspergillus oryzae spores was prepared in the same manner as a phytopathogenic fungal aqueous solution containing Fusarium oxysporum spores. Experimental Example 6 includes Comparative Examples 6A to 6T. Comparative Example 6A to Comparative Example 6T are the same as Example 1A to Comparative Example 1T, except that different fungi were used.
  • Tables 1 to 6 below show the number of hyphae penetrating the cellulose film 104 in the above experimental example.
  • phytopathogenic fungi selectively appear on the back surface of the cellulose film 104 when both of the following conditions (I) and (II) are satisfied. In other words, the phytopathogenic fungus 202 selectively appears outside the container 100.
  • Condition (I) The cellulose film 104 has a thickness of 2 micrometers or more and 3.7 micrometers or less.
  • Condition (II) The diameter of the through-hole 172 is 3 micrometers or more and 5 micrometers or less.
  • the phytopathogenic fungal invasion score is at least 7.0.
  • plant non-pathogenic fungi hardly appear on the back surface 104b of the cellulose film 104.
  • the plant non-pathogenic fungus has an entry point of at most 2.7.
  • the present invention can be used to easily determine whether a test sample such as agricultural water, crushed plant material, or soil contains phytopathogenic fungi.
  • SYMBOLS 100 1st container 102 Flange 104 Cellulose film 104a Front side surface 104b Back side surface 170 Substrate 170a Front side surface 170b Back side surface 200 Test sample 202 Phytopathogenic fungus 202a Part of phytopathogenic fungus 300 Second container 302 Liquid medium 304 Solid medium 402 Fungal stain 500 Light source 600 Microscope

Abstract

試験試料が植物病原性真菌を含有するかどうかを判定する方法であって、(a)貫通孔を具備する基板の表側の面に、試験試料を配置する工程、ここで、基板はセルロースフィルムをその裏側の面に具備しており、セルロースフィルムは貫通孔を有しておらず、かつ2マイクロメートルを越えて3.7マイクロメートル以下の厚みを有しており、かつ基板の貫通孔は、7.065マイクロ平方メートル以上19.625マイクロ平方メートル以下の断面積を有しており、(b)試験試料を静置する工程、(c)セルロースフィルムの裏面を観察する工程、および(d)セルロースフィルムの裏面にセルロースフィルムを貫通した真菌が見いだされた場合には、試験試料は植物病原性真菌を含有すると判定する工程、を含む方法。

Description

試験試料が植物病原性真菌を含有するかどうかを判定する方法
 本発明は、試験試料が植物病原性真菌を含有するかどうかを判定する方法に関する。
 特許文献1は、糸状菌計量方法を開示している。図10は、特許文献1に開示された糸状菌計量方法のために用いられる微多孔膜支持体の断面図を示す。特許文献1に開示された糸状菌計量方法は、被験材料中の糸状菌数を計量するのに短時間の培養で糸状菌を計量し、また、正確な糸状菌を計量することができる糸状菌計量方法を提供することを目的としている。この糸状菌計量方法は、液体培養で培養した糸状菌13、または微多孔膜支持体4の微多孔膜1上で培養した糸状菌13の複数に伸びた菌糸を撮像した後、形状と面積および発光輝度を画像解析手段10で認識し解析させることにより、糸状菌13を短時間の培養で計量できるという作用を有する。微多孔膜1は、押さえリング2およびベース3の間に挟まれている。
 非特許文献1は、植物病原性卵菌の1種であるPhytophthora sojaeの偽菌糸が、3マイクロメートルの孔を有するPET膜を貫通することを開示している。
特開2005-287337号公報
 本発明の目的は、植物病原性真菌および植物非病原性真菌の2種類の真菌の中から、試験試料が植物病原性真菌を含有するかどうかを選択的に判定する方法を提供することである。
 試験試料が植物病原性真菌を含有するかどうかを判定する方法であって、以下の工程を具備する:
 (a) 貫通孔を具備する基板の表側の面に、前記試験試料を配置する工程、
 ここで、
 前記基板は、セルロースフィルムを、その裏側の面に具備しており、
 前記セルロースフィルムは貫通孔を有しておらず、
 前記セルロースフィルムは、2マイクロメートルを越えて、3.7マイクロメートル以下の厚みを有しており、かつ
 前記貫通孔は、7.065マイクロ平方メートル以上19.625マイクロ平方メートル以下の断面積を有しており、
 (b) 工程(a)の後、前記試験試料を静置する工程、
 (c) 工程(b)の後、前記セルロースフィルムの裏面を観察する工程、および
 (d) 工程(c)において、前記セルロースフィルムを貫通した真菌が前記フィルムの裏面に見いだされた場合には、前記試験試料は前記植物病原性真菌を含有すると判定する工程。
 本発明は、植物病原性真菌および植物非病原性真菌の2種類の真菌の中から、試験試料が植物病原性真菌を含有するかどうかを選択的に判定する方法を提供する。
図1は、第1容器100の断面図を示す。 図2は、セルロースフィルム104を裏面に具備する基板170の断面図を示す。 図3は、試験試料が供給された第1容器100の断面図を示す。 図4は、植物病原性真菌が表面に配置された基板170の断面図を示す。 図5は、植物病原性真菌が貫通孔172およびセルロースフィルム104を貫通した様子を示す断面図である。 図6は、真菌の培養を加速させる方法の一例の断面図を示す。 図7は、図6に続き、真菌の培養を加速させる方法の一例の断面図を示す。 図8は、セルロースフィルム104の裏面から真菌を観察する様子を示す断面図である。 図9は、セルロースフィルム104の裏面から真菌を観察する様子を示す断面図である。 図10は、特許文献1に開示された糸状菌計量方法のために用いられる微多孔膜支持体の断面図を示す。
 まず、真菌が説明される。真菌は、植物病原性真菌および植物非病原性真菌の2種類の真菌に大別される。植物病原性真菌は、例えば、Fusarium属、Pyricularia属、またはColletotrichum属に属する。植物病原性真菌の例は、Fusarium oxysporum、Pyricularia grisea、またはColletotrichum gloeosporioidesである。これらの植物病原性真菌は、根腐れ病(Root rot disease)、いもち病(blast)、炭疽病(Anthrax)、灰色かび病(Gray mold)などを引き起こす。これらの植物病原性真菌は、植物を枯らす。植物非病原性真菌の例は、Saccharomyces cerevisiae、Penicillium chysogeum、またはAspergillus oryzaeである。
 用語「植物病原性」とは、植物に対して病原性を有していることを意味する。用語「植物非病原性」とは、植物に対して病原性を有していないことを意味する。真菌が病原性を有しているとしても、植物に対して病原性を有していないのであれば、その真菌は「植物非病原性」である。言い換えれば、真菌が植物に対して悪影響を与えないのであれば、その真菌は「植物非病原性」である。用語「植物非病原性」に含まれる接頭語「非」は、「植物」を修飾しない。接頭語「非」は「病原性」を修飾する。
 以下、本発明の実施形態が図面を参照しながら詳細に説明される。
 (工程(a))
 工程(a)では、貫通孔172を具備する基板170の表側の面に試験試料が配置される。基板170の裏側の面170bには、セルロースフィルム104が貼付されている。言い換えれば、セルロースフィルム104の表側の面104aは、基板170の裏側の面170bに接している。
 具体的には、図1に示されるように、容器100が用意される。容器100は、上端にフランジ102を具備していることが望ましい。容器100の底面は、基板170から形成されている。
 図2に示されるように、基板170は、その裏側の面170bに、セルロースフィルム104を具備する。基板170は、その表側の面170aから裏側の面170bまで貫通する貫通孔172を具備している。貫通孔172は、3マイクロメートル以上5マイクロメートル以下の直径を有している。言い換えれば、貫通孔172は、7.065マイクロ平方メートル以上19.625マイクロ平方メートル以下の断面積を有している。なお、基板170とは異なり、セルロースフィルム104は貫通孔を有さないことに留意せよ。
 図3に示されるように、この容器100の内部に、試験試料200が供給される。このようにして、基板170の表側の面170a上に試験試料200が配置される。試験試料200が植物病原性真菌202を含有している場合、図4に示されるように、基板170の表側の面170a上に植物病原性真菌202が配置される。
 試験試料200は、固体、液体、または気体である。試験試料200は、固体または液体であることが望ましい。固体の試験試料200の例は、土壌または破砕された植物である。他の例は、バーミキュライト、ロックウール、またはウレタンのような農業資材である。液体の試験試料200の例は、農業用水、水耕栽培のために用いられた溶液、植物を洗浄するために使用した後の液体、植物から抽出された液体、農業資材を洗浄するために使用した後の液体、または作業者の衣類あるいは靴を洗浄するために使用した後の液体である。
 (工程(b))
 工程(b)では、工程(a)の後、試験試料200が所定の培養時間、静置される。望ましくは、試験試料200は、24時間静置される。このようにして、真菌は培養される。言い換えれば、培養時間はおおよそ24時間であることが望ましい。以下、セルロースフィルム104の厚みおよび貫通孔172の大きさの重要性が以下、説明される。
 工程(b)においては、試験試料200に含有される様々な真菌が成長する。後述される実験例においても実証されているように、以下の(I)および(II)の条件の両者が充足される場合、植物病原性真菌202は、図5に示されるように、貫通孔172およびセルロースフィルム104の両者を貫通するように成長する。その結果、セルロースフィルム104の裏面104bに植物病原性真菌202が現れる。
 条件(I) セルロースフィルム104が、2マイクロメートル以上、3.7マイクロメートル以下の厚みを有すること。
 条件(II) 貫通孔172が、7.065マイクロ平方メートル以上19.625マイクロ平方メートル以下の断面積を有していること。
 上記(I)および(II)の条件の両者が充足される場合、植物非病原性真菌は、セルロースフィルム104をほとんど貫通しない。比較例6Dにおいて実証されているように、侵入点数は、たかだか2.7である。そのため、植物非病原性真菌は、セルロースフィルム104の裏面104bにほとんど現れない。一方、植物病原性真菌202が選択的に裏面104bに現れる。実施例3Dにおいて実証されているように、侵入点数は、少なくとも7.0である。このように、植物病原性真菌202が選択的に容器100の外側に現れる。
 セルロースフィルム104が、4.4マイクロメートルを超える厚みを有する場合、植物非病原性真菌だけでなく植物病原性真菌も、セルロースフィルム104を貫通しない。従って、セルロースフィルム104が4.4マイクロメートルを超える厚みを有する場合、選択性が失われる。セルロースフィルム104が、0.5マイクロメートル未満の厚みを有する場合(セルロースフィルム104が設けられない場合を含む)、植物非病原性真菌だけでなく植物病原性真菌も、セルロースフィルム104を貫通する(または、基板170の裏側の面170bに見いだされる)。従って、セルロースフィルム104が0.5マイクロメートル未満の厚みを有する場合、選択性が失われる。
 貫通孔172が7.065マイクロ平方メートル未満の断面積(すなわち、3マイクロメートル未満の直径)を有する場合、植物非非病原性真菌だけでなく植物非病原性真菌もまた、セルロースフィルム104を貫通しない。一方、貫通孔172が19.625マイクロ平方メートルを超える断面積(すなわち、5マイクロメートルを超える直径)を有する場合、貫通孔172が19.625マイクロ平方メートルの断面積(すなわち、5マイクロメートルの直径)を有する場合と比較して、侵入点数が減少する傾向がある。
 セルロースフィルム104は、基板170の裏側の面170b上にピンと張られる。このように、基板170はセルロースフィルム104をサポートする。
 図2に示されるように、基板170は複数の貫通孔172を有することが望ましい。基板170の厚みは限定されないが、一例として1マイクロメートル以上500マイクロメートル以下である。セルロースフィルム104は非常に薄い。しかし、このような基板170上にセルロースフィルム104が配置されると、セルロースフィルム104の取り扱いが容易となる。
 真菌の培養を加速させるために、試験試料200に培地が供給され得る。具体的には、試験試料200を含有する容器100の内部に培地が供給され得る。培地は液体であることが望ましい。培地は、工程(b)において供給され得る。これに代えて、培地は工程(b)よりも前に供給され得る。言い換えれば、培地は工程(a)において供給され得る。培地は工程(a)の前に容器100の内部に供給されても良い。
 図6は、真菌の培養を加速させる他の方法を示す。図6に示されるように、セルロースフィルム104の裏面104bを液体の培地302に接触させることが望ましい。まず、液体の培地302を内部に有する第2容器300が用意される。以下、第2容器300から区別するため、容器100は「第1容器100」と呼ばれる。フランジ102の下面が第2容器300の上端に接触するように、第1容器100が第2容器300に重ね合わされる。言い換えれば、第1容器100が第2容器300の上端によって支持される。このようにして、液体の培地302がセルロースフィルム104の裏面104bおよび第2容器300の底面の間に挟まれる。
 あるいは、第1容器100が第2容器300に重ね合わされた後に、セルロースフィルム104の裏面104bおよび第2容器300の底面の間に液体の培地302が供給されても良い。
 液体の培地302に代えて、粘性を有する固体の培地も用いられ得る。図6に示されるように、固体の培地304および液体の培地302の両者が用いられ得る。この場合、液体の培地302が固体の培地304およびセルロースフィルム104の間に挟まれる。図5に示されるように、裏面104bに現れた植物病原性真菌の培養が、液体培地302および固体培地304の少なくとも一方により加速される。
 (工程(c))
 工程(c)では、工程(b)の後、セルロースフィルム104の裏面104bが観察される。光学顕微鏡を用いて裏面104bが観察されることが望ましい。
 工程(b)において説明されたように、植物病原性真菌202は、セルロースフィルム104の裏面104bに現れる。一方、植物非病原性真菌は、セルロースフィルム104の裏面104bに現れない。このように、本発明では、植物病原性真菌202は、セルロースフィルム104の裏面104bに選択的に現れる。
 言い換えれば、植物病原性真菌202は、セルロースフィルム104を貫通する。一方、植物非病原性真菌は、セルロースフィルム104を貫通しない。そのため、植物非病原性真菌は、セルロースフィルム104の裏面104bに現れない。このようにして、植物病原性真菌202が選択的に裏面104bに現れる。言い換えれば、植物病原性真菌202が選択的に第1容器100の外側に現れる。
 工程(c)では、セルロースフィルム104の裏面104bに植物病原性真菌202が現れているかどうかが観察される。
 具体的には、以下のようにして、セルロースフィルム104の裏面104bに植物病原性真菌202が現れているかどうかが観察される。
 図8に示されるように、基板170の表面170a上に配置された光源500からの光をセルロースフィルム104に照射しながら、セルロースフィルム104の裏面104bの下に配置された顕微鏡600を用いて、植物病原性真菌202が光学的に観察される。
 第2容器300から液体の培地302および固体の培地304が除去される。次いで、第2容器300の内部に、真菌蛍光液402が添加される。次いで、図7に示されるように、第1容器100は、真菌蛍光液402を内部に有する第2容器300に重ね合わされる。あるいは、第1容器100が第2容器300に重ね合わされた後に、セルロースフィルム104の裏面104bおよび第2容器300の底面の間に真菌蛍光液402が供給されても良い。
 セルロースフィルム104の裏面104bに現れた植物病原性真菌202の一部分は、真菌染色液402により染色され得る。第二容器300と第一容器100はセルロースフィルム104によって隔てられているので、真菌蛍光液402は第1容器100の内部には広がらない。従って、第1容器100に含有されている植物非病原性真菌は、真菌蛍光液402により染色されない。
 図9に示されるように、セルロースフィルム104の裏面104bの下に配置された落射蛍光顕微鏡600を用いて、真菌蛍光剤により染色されている植物病原性真菌202が観察される。言うまでもないが、植物病原性真菌202は真菌蛍光剤を用いずに観察され得る。
 (工程(d))
 工程(d)では、工程(c)においてセルロースフィルム104の裏面104bに真菌が見いだされた場合には、試験試料は植物病原性真菌を含有すると判定される。言うまでもないが、工程(c)においてセルロースフィルム104の裏面104bに真菌が見いだされなかった場合には、試験試料は植物病原性真菌を含有しないと判定される。
 (実施例)
 以下の実施例を参照しながら、本発明がさらにより詳細に説明される。
 (実験例1)
 (Fusarium oxysporumの培養)
 植物病原菌の一種であるFusarium oxysporumが、ポテトデキストロース寒天培地に接種された。次いで、培地は摂氏25度の温度下で1週間静置された。Fusarium oxysporumは岐阜大学応用生物科学部に所属する清水准教授より与えられた。
 次いで、菌糸の先端を含む部分が、培地と共に1センチメートル×1センチメートルの大きさで切り出された。切り出された部分は、12ウェルプレート上に配置された純水に浸された。各純水の容積は1ミリリットルであった。
 12ウェルプレート上に配置された水が光学顕微鏡で観察された。その結果、12ウェルプレート上に配置された水にFusarium oxysporumの胞子が放出されていることが確認された。このようにして、Fusarium oxysporumを含有する水溶液が得られた。以下、この水溶液は、「植物病原性真菌水溶液」と呼ばれる。
 (培地の用意)
 第2容器300に、650マイクロリットルのポテトデキストロース培地が液体の培地302として添加された。このようにして、液体の培地302を含む第2容器300が用意された。
 (実験例1)
 実験例1は、実施例1A~実施例1D、参考例1E~参考例1F、および比較例1G~比較例1Tからなる。
 (実施例1A)
 図1に示される第1容器100が以下のように用意された。
 まず、セルロース(SIGMA-ALDRICH社より入手、商品名:Avicel PH-101)がイオン液体に溶解され、2%の濃度を有するセルロース溶液が調製された。イオン液体は、1-Butyl-3-methyl imidazolium chloride(SIGMA-ALDRICH社より入手)であった。
 セルロース溶液は、摂氏60度に加温された。次に、セルロース溶液が、底面にポリエチレンテレフタラートフィルムを有する容器(ミリポア社より入手、商品名:Millicell PISP 12R 48)の裏面にスピンコート法により30秒間、2000rpmの回転速度で塗布された。ポリエチレンテレフタラートフィルムは、基板170として機能した。ポリエチレンテレフタラートフィルムは、3マイクロメートルの直径を有する複数の貫通孔172をランダムに有していた。このようにして、ポリエチレンテレフタラートフィルムの裏側の面に、2.0マイクロメートルの厚みを有するセルロースフィルム104が形成された。ミリポア社によると、貫通孔172の直径には、プラスマイナス10%程度の誤差の範囲があり得る。
 容器は、エタノール中で12時間、室温で静置された。このようにして、1-Butyl-3-methyl imidazolium chlorideは、エタノールに置換された。言い換えれば、1-Butyl-3-methyl imidazolium chlorideがセルロースフィルム104から除去された。
 最後に、容器は真空デシケーター内で乾燥された。このようにして、図1に示される第1容器100が得られた。図1においては、基板170として機能するポリエチレンテレフタラートフィルムが図示されていないことに留意せよ。
 次に、図6に示されるように、第1容器100が第2容器300に重ねられた。セルロースフィルム104の裏面104bは、液体の培地302に接していた。続いて、第1容器100の内部に、200マイクロリットルの体積を有する水が添加された。さらに、200個のFusarium oxysporumの胞子を含む植物病原菌水溶液が第1容器100の内部に添加された。
 第1容器100は、摂氏25度の温度で24時間静置された。言い換えれば、実施例1Aでは、培養時間は24時間であった。
 セルロースフィルム104の裏面104bに現れたFusarium oxysporumの菌糸の数が光学顕微鏡を介した目視により数えられた。実施例1Aは15回繰り返された。その結果、裏面104bに現れたFusarium oxysporumの菌糸の数の平均値は44.9個であった。
 (実施例1B)
 実施例1Bでは、貫通孔172の直径が5マイクロメートルであったこと以外は、実施例1Aと同様の実験が行われた。5マイクロメートルの直径を有する貫通孔を具備する底面を有する容器は、ミリポア社より商品名:PIMP 12R 48として入手した。
 (実施例1C)
 実施例1Cでは、セルロース溶液が3.0%の濃度を有していたこと、およびセルロースフィルム104が、3.7マイクロメートルの厚みを有していたこと以外は、実施例1Aと同様の実験が行われた。
 (実施例1D)
 実施例1Dでは、セルロース溶液が3.0%の濃度を有していたこと、セルロースフィルム104が、3.7マイクロメートルの厚みを有していたこと、および貫通孔172の直径が5マイクロメートルであったこと以外は、実施例1Aと同様の実験が行われた。
 (参考例1E)
 参考例1Eでは、セルロース溶液が1.0%の濃度を有していたこと、セルロースフィルム104が、0.5マイクロメートルの厚みを有していたこと以外は、実施例1Aと同様の実験が行われた。
 (参考例1F)
 参考例1Fでは、(i)セルロース溶液が1.0%の濃度を有していたこと、(ii)セルロースフィルム104が、0.5マイクロメートルの厚みを有していたこと、(iii)貫通孔172の直径が5マイクロメートルであったこと以外は、実施例1Aと同様の実験が行われた。S
 (比較例1G)
 比較例1Gでは、セルロースフィルム104が形成されなかった(すなわち、セルロースフィルム104は0マイクロメートルの厚みを有していた)こと、および貫通孔172の直径が1マイクロメートルであったこと以外は、実施例1Aと同様の実験が行われた。1マイクロメートルの直径を有する貫通孔を具備する底面を有する容器は、ミリポア社より商品名:PIRP 12R 48として入手した。
 (比較例1H)
 比較例1Hでは、セルロースフィルム104が形成されなかった(すなわち、セルロースフィルム104は0マイクロメートルの厚みを有していた)こと以外は、実施例1Aと同様の実験が行われた。
 (比較例1I)
 比較例1Iでは、セルロースフィルム104が形成されなかった(すなわち、セルロースフィルム104は0マイクロメートルの厚みを有していた)こと、および貫通孔172の直径が5マイクロメートルであったこと以外は、実施例1Aと同様の実験が行われた。
 (比較例1J)
 比較例1Jでは、セルロースフィルム104が形成されなかった(すなわち、セルロースフィルム104は0マイクロメートルの厚みを有していた)こと、および貫通孔172の直径が8マイクロメートルであったこと以外は、実施例1Aと同様の実験が行われた。8マイクロメートルの直径を有する貫通孔を具備する底面を有する容器は、ミリポア社より商品名:PIEP 12R 48として入手した。
 (参考比較例1K)
 参考比較例1Kでは、(i)セルロース溶液が1.0%の濃度を有していたこと、(ii)セルロースフィルム104が、0.5マイクロメートルの厚みを有していたこと、および(iii)貫通孔172の直径が1マイクロメートルであったこと以外は、実施例1Aと同様の実験が行われた。
 (参考比較例1L)
 参考比較例1Lでは、(i)セルロース溶液が1.0%の濃度を有していたこと、(ii)セルロースフィルム104が、0.5マイクロメートルの厚みを有していたこと、および(iii)貫通孔172の直径が8マイクロメートルであったこと以外は、実施例1Aと同様の実験が行われた。
 (参考比較例1M)
 参考比較例1Mでは、貫通孔172の直径が1マイクロメートルであったこと以外は、実施例1Aと同様の実験が行われた。
 (参考比較例1N)
 参考比較例1Nでは、貫通孔172の直径が8マイクロメートルであったこと以外は、実施例1Aと同様の実験が行われた。
 (比較例1O)
 比較例1Oでは、(i)セルロース溶液が3.0%の濃度を有していたこと、(ii)セルロースフィルム104が、3.7マイクロメートルの厚みを有していたこと、(iii)貫通孔172の直径が1マイクロメートルであったこと以外は、実施例1Aと同様の実験が行われた。
 (比較例1P)
 比較例1Pでは、(i)セルロース溶液が3.0%の濃度を有していたこと、(ii)セルロースフィルム104が、3.7マイクロメートルの厚みを有していたこと、(iii)貫通孔172の直径が8マイクロメートルであったこと以外は、実施例1Aと同様の実験が行われた。
 (比較例1Q)
 比較例1Qでは、(i)セルロース溶液が4.0%の濃度を有していたこと、(ii)セルロースフィルム104が、4.4マイクロメートルの厚みを有していたこと、(iii)貫通孔172の直径が1マイクロメートルであったこと以外は、実施例1Aと同様の実験が行われた。
 (比較例1R)
 比較例1Rでは、セルロース溶液が4.0%の濃度を有していたこと、およびセルロースフィルム104が4.4マイクロメートルの厚みを有していたこと以外は、実施例1Aと同様の実験が行われた。
 (比較例1S)
 比較例1Sでは、(i)セルロース溶液が4.0%の濃度を有していたこと、(ii)セルロースフィルム104が、4.4マイクロメートルの厚みを有していたこと、(iii)貫通孔172の直径が5マイクロメートルであったこと以外は、実施例1Aと同様の実験が行われた。
 (比較例1T)
 比較例1Tでは、(i)セルロース溶液が4.0%の濃度を有していたこと、(ii)セルロースフィルム104が、4.4マイクロメートルの厚みを有していたこと、(iii)貫通孔172の直径が8マイクロメートルであったこと以外は、実施例1Aと同様の実験が行われた。
 (実験例2)
 実験例2では、Fusarium oxysporumの胞子を含有する植物病原性真菌水溶液に代えて、Saccharomyces cerevisiaeの胞子を含有する植物非病原性真菌水溶液が用いられた。Fusarium oxysporumとは異なり、Saccharomyces cerevisiaeは、植物非病原真菌の1種である。Saccharomyces cerevisiaeの胞子を含有する植物非病原性真菌水溶液は、Fusarium oxysporumの胞子を含有する植物病原性真菌水溶液と同様に調製された。実験例2は、比較例2A~比較例2Tからなる。異なる真菌が用いられたこと以外は、比較例2A~比較例2Lは、実施例1A~比較例1Tと同様である。
 (実験例3)
 実験例3では、Fusarium oxysporumの胞子を含有する植物病原性真菌水溶液に代えて、Pyricularia griseaの胞子を含有する植物病原性水溶液が用いられた。Fusarium oxysporumと同様、Pyricularia griseaもまた、植物病原菌の1種である。Pyricularia griseaの胞子を含有する植物病原性真菌水溶液は、以下のように調製された。
(Pyricularia griseaの培養)
 まず、植物病原菌の一種であるPyricularia griseaが、ショ糖2%を含むオートミール寒天培地に接種された。次いで、培地は摂氏25度の温度下で1週間静置された。続いて、近紫外線下で4日間静置された。
 次いで、菌糸の先端を含む部分が、培地と共に1センチメートル×1センチメートルの大きさで切り出された。切り出された部分は、12ウェルプレート上に配置された純水に浸された。各純水の容積は1ミリリットルであった。
 12ウェルプレート上に配置された水が光学顕微鏡で観察された。その結果、12ウェルプレート上に配置された水にPyricularia griseaの胞子が放出されていることが確認された。このようにして、Pyricularia griseaを含有する水溶液が得られた。
 実験例3は、実施例3A~実施例3D、参考例3E~参考例3F、および比較例3G~比較例3Tからなる。異なる真菌が用いられたこと以外は、実施例3A~実施例3D、参考例3E~参考例3F、および比較例3G~比較例3Tは、それぞれ、実施例1A~実施例1D、参考例1E~参考例1F、および比較例1G~比較例1Tと同様である。
 (実験例4)
 実験例4では、Fusarium oxysporumの胞子を含有する植物病原性真菌水溶液に代えて、Colletotrichum gloeosporioidesの胞子を含有する植物病原性水溶液が用いられた。Fusarium oxysporumと同様、Colletotrichum gloeosporioidesもまた、植物病原菌の1種である。Colletotrichum gloeosporioidesの胞子を含有する植物病原性真菌水溶液は、Fusarium oxysporumの胞子を含有する植物病原性真菌水溶液と同様に調製された。実験例4は、実施例4A~実施例4D、参考例4E~参考例4F、および比較例4G~比較例4Tからなる。異なる真菌が用いられたこと以外は、実施例4A~実施例4D、参考例4E~参考例4F、および比較例4G~比較例4Tは、それぞれ、実施例1A~実施例1D、参考例1E~参考例1F、および比較例1G~比較例1Tと同様である。
 (実験例5)
 実験例5では、Fusarium oxysporumの胞子を含有する植物病原性真菌水溶液に代えて、Penicillium chysogeumの胞子を含有する植物非病原性真菌水溶液が用いられた。Fusarium oxysporumとは異なり、Penicillium chysogeumは、植物非病原真菌の1種である。Penicillium chysogeumの胞子を含有する植物非病原性真菌水溶液は、Fusarium oxysporumの胞子を含有する植物病原性真菌水溶液と同様に調製された。実験例5は、比較例5A~比較例5Tからなる。異なる真菌が用いられたこと以外は、比較例5A~比較例5Tは、実施例1A~比較例1Tと同様である。
 (実験例6)
 実験例5では、Fusarium oxysporumの胞子を含有する植物病原性真菌水溶液に代えて、Aspergillus oryzaeの胞子を含有する植物非病原性真菌水溶液が用いられた。Fusarium oxysporumとは異なり、Aspergillus oryzaeは、植物非病原真菌の1種である。Aspergillus oryzaeの胞子を含有する植物非病原性真菌水溶液は、Fusarium oxysporumの胞子を含有する植物病原性真菌水溶液と同様に調製された。実験例6は、比較例6A~比較例6Tからなる。異なる真菌が用いられたこと以外は、比較例6A~比較例6Tは、実施例1A~比較例1Tと同様である。
 以下の表1~表6は、上記の実験例において、セルロースフィルム104を貫通した菌糸の数を示す。
 
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表1~表6から明らかなように、以下の条件(I)および条件(II)の両者が充足される場合、セルロースフィルム104の裏面に植物病原性真菌が選択的に現れる。言い換えれば、植物病原性真菌202が選択的に容器100の外側に現れる。
 条件(I) セルロースフィルム104が2マイクロメートル以上、3.7マイクロメートル以下の厚みの厚みを有すること。
 条件(II) 貫通孔172の直径が3マイクロメートル以上5マイクロメートル以下であること。
 条件(I)および条件(II)が充足される実施例3Dにおいて実証されているように、植物病原性真菌の侵入点数は、少なくとも7.0である。一方、条件(I)および条件(II)が充足される限り、セルロースフィルム104の裏面104bに植物非病原性真菌はほとんど現れない。条件(I)および条件(II)が充足される比較例6Dにおいて実証されているように、植物非病原性真菌の侵入点数は、たかだか2.7である。
 本発明は、農業用水、植物体破砕物、または土壌のような試験試料が植物病原性真菌を含有するかどうかを簡単に判定するために用いられ得る。
 100 第1容器
  102 フランジ
  104 セルロースフィルム
   104a 表側の面
   104b 裏側の面
 170 基板
   170a 表側の面
   170b 裏側の面
 200 試験試料
 202 植物病原性真菌
 202a 植物病原性真菌の一部分
 300 第2容器
 302 液体の培地
 304 固体の培地
 402 真菌染色液
 500 光源
 600 顕微鏡
 

Claims (16)

  1.  試験試料が植物病原性真菌を含有するかどうかを判定する方法であって、以下の工程を具備する:
     (a) 貫通孔を具備する基板の表側の面に、前記試験試料を配置する工程、
     ここで、
     前記基板は、セルロースフィルムを、その裏側の面に具備しており、
     前記セルロースフィルムは貫通孔を有しておらず、
     前記セルロースフィルムは、2マイクロメートルを越えてかつ、3.7マイクロメートル以下の厚みを有しており、かつ
     前記貫通孔は、7.065マイクロ平方メートル以上19.625マイクロ平方メートル以下の断面積を有しており、
     (b) 工程(a)の後、前記試験試料を静置する工程、
     (c) 工程(b)の後、前記セルロースフィルムの裏面を観察する工程、および
     (d) 工程(c)において、前記セルロースフィルムの裏面に前記セルロースフィルムを貫通した真菌が見いだされた場合には、前記試験試料は前記植物病原性真菌を含有すると判定する工程。
  2.  請求項1に記載の方法であって、
     前記植物病原性真菌は、fusarium属、pyricularia属、およびcolletotrichum属からなる群から選択される少なくとも1つの属に属している。
  3.  請求項1に記載の方法であって、
     前記植物病原性真菌は、Fusarium oxysporum、Pyricularia grisea、およびColletotrichum gloeosporioidesからなる群から選択される少なくとも1つである。
  4.  請求項1に記載の方法であって、
     前記工程(b)および前記工程(c)の間に、前記セルロースフィルムの裏面を真菌染色液に接触させる工程をさらに具備する。
  5.  請求項1に記載の方法であって、
     前記工程(b)の前に、前記試験試料に培地を供給する工程をさらに具備する。
  6.  請求項5に記載の方法であって、
     前記培地が液体培地である。
  7.  請求項5に記載の方法であって、
     前記培地が固体培地である。
  8.  請求項1に記載の方法であって、
     前記工程(b)において、前記セルロースフィルムの裏面を培地に接触させながら、前記試験試料が静置される。
  9.  請求項8に記載の方法であって、
     前記培地が液体培地である。
  10.  請求項8に記載の方法であって、
     前記培地が固体培地である。
  11.  請求項1に記載の方法であって、
     前記試験試料が固体である。
  12.  請求項11に記載の方法であって、
     前記固体が、植物体の一部、土壌および破砕された植物からなる群から選択される少なくとも1つである。
  13.  請求項1に記載の方法であって、
     前記試験試料が液体である。
  14.  請求項13に記載の方法であって、
     前記液体が、農業用水、水耕栽培のために用いられた液体、植物を洗浄するために使用した後の液体、植物から抽出された液体、農業資材を洗浄するために使用した後の液体、および衣類または靴を洗浄するために使用した後の液体からなる群から選択される少なくとも1つである。
  15.  試験試料が植物病原性真菌を含有するかどうかを判定する方法であって、以下の工程を具備する: 
     (c) セルロースフィルムの裏面を観察する工程、
      ここで、セルロースフィルムは、基板の裏側の面に具備されており、
      前記基板は、貫通孔を具備しており、
      前記セルロースフィルムは貫通孔を具備しておらず、
      前記試験試料は、基板の表側の面に配置されており、
      セルロースフィルムは、2マイクロメートルを越えてかつ、3.7マイクロメートル以下の厚みを有しており、かつ
      前記貫通孔は、7.065マイクロ平方メートル以上19.625マイクロ平方メートル以下の断面積を有しており、
     (d) 工程(c)において、前記セルロースフィルムの裏面に前記セルロースフィルムを貫通した真菌が見いだされた場合には、前記試験試料は前記植物病原性真菌を含有すると判定する工程。
  16.  底面を有する容器であって、
     前記底面は基板から形成され、
     前記底面の外側の面にはセルロースフィルムが貼付されており、
     前記セルロースフィルムは、2マイクロメートルを超えて、かつ3.7マイクロメートル以下の厚みを有しており、
     前記基板は貫通孔を具備し、
     前記セルロースフィルムは貫通孔を具備しておらず、かつ
     前記貫通孔は、7.065マイクロ平方メートル以上19.625マイクロ平方メートル以下の断面積を有している、容器。
PCT/JP2017/008407 2017-01-25 2017-03-03 試験試料が植物病原性真菌を含有するかどうかを判定する方法 WO2018138935A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2017396004A AU2017396004A1 (en) 2017-01-25 2017-03-03 Method for determining whether or not test sample contains phytopathogenic fungus
JP2018564091A JP6887081B2 (ja) 2017-01-25 2017-03-03 試験試料が植物病原性真菌を含有するかどうかを判定する方法
EP17893638.1A EP3575405B1 (en) 2017-01-25 2017-03-03 Method for determining whether or not test sample contains phytopathogenic fungus
US16/410,362 US11168346B2 (en) 2017-01-25 2019-05-13 Method for determining whether or not test sample contains phytopathogenic fungus
US17/498,391 US11913057B2 (en) 2017-01-25 2021-10-11 Method for determining whether or not test sample contains phytopathogenic fungus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-010913 2017-01-25
JP2017010913 2017-01-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/410,362 Continuation US11168346B2 (en) 2017-01-25 2019-05-13 Method for determining whether or not test sample contains phytopathogenic fungus

Publications (1)

Publication Number Publication Date
WO2018138935A1 true WO2018138935A1 (ja) 2018-08-02

Family

ID=62979014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008407 WO2018138935A1 (ja) 2017-01-25 2017-03-03 試験試料が植物病原性真菌を含有するかどうかを判定する方法

Country Status (5)

Country Link
US (2) US11168346B2 (ja)
EP (1) EP3575405B1 (ja)
JP (1) JP6887081B2 (ja)
AU (1) AU2017396004A1 (ja)
WO (1) WO2018138935A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020049866A1 (ja) * 2018-09-05 2020-03-12 パナソニックIpマネジメント株式会社 トマト病原性真菌の検出装置およびそれを用いた検出方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198681A1 (ja) 2017-04-28 2018-11-01 パナソニックIpマネジメント株式会社 試験試料が植物病原性菌を含有するかどうかを判定する方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005287337A (ja) 2004-03-31 2005-10-20 Matsushita Electric Ind Co Ltd 糸状菌計量方法
JP2013517768A (ja) * 2010-01-22 2013-05-20 日立化成株式会社 急速な病原体検出技術および装置
JP2016220668A (ja) * 2015-06-02 2016-12-28 パナソニックIpマネジメント株式会社 試験試料が植物病原性卵菌を含有するかどうかを判定する方法
JP2016220667A (ja) * 2015-06-02 2016-12-28 パナソニックIpマネジメント株式会社 試験試料が植物病原性卵菌を含有するかどうかを判定する方法
JP2017012005A (ja) * 2015-06-26 2017-01-19 フタムラ化学株式会社 液体培地用足場部材
JP2017029132A (ja) * 2015-08-03 2017-02-09 パナソニックIpマネジメント株式会社 試験試料が植物病原性卵菌を含有するかどうかを判定する方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6698880B1 (en) * 2002-09-20 2004-03-02 Eastman Kodak Company Porous inkjet recording system comprising ink-pigment-trapping surface layer
US9410210B2 (en) * 2010-06-07 2016-08-09 Patrick A. Mach Filtration methods and devices
BR112018072475A2 (pt) * 2016-07-15 2019-02-19 Panasonic Intellectual Property Management Co., Ltd. método para determinar se ou não uma amostra de teste possui fungo fitopatogênico
WO2018029733A1 (ja) * 2016-08-09 2018-02-15 パナソニックIpマネジメント株式会社 試験試料に含有される全てのフハイカビが植物非病原性であるかどうかを判定する方法
JP7015991B2 (ja) * 2017-01-25 2022-02-04 パナソニックIpマネジメント株式会社 試験試料が植物病原性真菌を含有するかどうかを判定する方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005287337A (ja) 2004-03-31 2005-10-20 Matsushita Electric Ind Co Ltd 糸状菌計量方法
JP2013517768A (ja) * 2010-01-22 2013-05-20 日立化成株式会社 急速な病原体検出技術および装置
JP2016220668A (ja) * 2015-06-02 2016-12-28 パナソニックIpマネジメント株式会社 試験試料が植物病原性卵菌を含有するかどうかを判定する方法
JP2016220667A (ja) * 2015-06-02 2016-12-28 パナソニックIpマネジメント株式会社 試験試料が植物病原性卵菌を含有するかどうかを判定する方法
JP2017012005A (ja) * 2015-06-26 2017-01-19 フタムラ化学株式会社 液体培地用足場部材
JP2017029132A (ja) * 2015-08-03 2017-02-09 パナソニックIpマネジメント株式会社 試験試料が植物病原性卵菌を含有するかどうかを判定する方法
JP2017029131A (ja) * 2015-08-03 2017-02-09 パナソニックIpマネジメント株式会社 試験試料が植物病原性卵菌を含有するかどうかを判定する方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KADER D. A. A. ET AL.: "Determination of Cellulase Enzyme Activities of Pathogenic and Non-pathogenic Fungi", AGROKEMIA ES TALAJTAN (AGROCHEMISTRY AND SOIL SCIENCE), vol. 31, no. 3-4, 1982, pages 397 - 404, XP009515410 *
PAUL F. MORRIS: "Chemotropic and Contact Responses of Phytophthora sojae Hyphae to Soybean Isoflavonoids and Artificial Substrates", PLANT PHYSIOL., vol. 117, 1998, pages 1171 - 1178, XP055548061, DOI: 10.1104/pp.117.4.1171
See also references of EP3575405A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020049866A1 (ja) * 2018-09-05 2020-03-12 パナソニックIpマネジメント株式会社 トマト病原性真菌の検出装置およびそれを用いた検出方法
JPWO2020049866A1 (ja) * 2018-09-05 2021-08-12 パナソニックIpマネジメント株式会社 トマト病原性真菌の検出装置およびそれを用いた検出方法
EP3848448A4 (en) * 2018-09-05 2021-11-03 Panasonic Intellectual Property Management Co., Ltd. DEVICE FOR DETECTION OF PATHOGENIC FUNGI IN TOMATOES AND DETECTION METHOD THEREOF
JP7281695B2 (ja) 2018-09-05 2023-05-26 パナソニックIpマネジメント株式会社 トマト病原性真菌の検出装置およびそれを用いた検出方法

Also Published As

Publication number Publication date
JP6887081B2 (ja) 2021-06-16
US20220025427A1 (en) 2022-01-27
JPWO2018138935A1 (ja) 2020-01-16
US11168346B2 (en) 2021-11-09
EP3575405B1 (en) 2021-09-01
US11913057B2 (en) 2024-02-27
AU2017396004A1 (en) 2019-06-06
EP3575405A4 (en) 2020-03-11
US20190264250A1 (en) 2019-08-29
EP3575405A1 (en) 2019-12-04

Similar Documents

Publication Publication Date Title
JP6739005B2 (ja) 試験試料が植物病原性真菌を含有するかどうかを判定する方法
JP6167309B2 (ja) 試験試料が植物病原性卵菌を含有するかどうかを判定する方法
JP2016220667A (ja) 試験試料が植物病原性卵菌を含有するかどうかを判定する方法
US11913057B2 (en) Method for determining whether or not test sample contains phytopathogenic fungus
JP2016220668A (ja) 試験試料が植物病原性卵菌を含有するかどうかを判定する方法
US11713479B2 (en) Method for determining whether or not test sample contains phytopathogenic fungus
JP7015991B2 (ja) 試験試料が植物病原性真菌を含有するかどうかを判定する方法
JP7012200B2 (ja) 試験試料がExserohilum属の植物病原性真菌を含有するかどうかを判定する方法
JP6681556B2 (ja) 試験試料に含有される全てのフハイカビが植物非病原性であるかどうかを判定する方法
WO2020049866A1 (ja) トマト病原性真菌の検出装置およびそれを用いた検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893638

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564091

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017396004

Country of ref document: AU

Date of ref document: 20170303

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017893638

Country of ref document: EP

Effective date: 20190826