WO2018138907A1 - 駐車支援方法及び駐車支援装置 - Google Patents

駐車支援方法及び駐車支援装置 Download PDF

Info

Publication number
WO2018138907A1
WO2018138907A1 PCT/JP2017/003148 JP2017003148W WO2018138907A1 WO 2018138907 A1 WO2018138907 A1 WO 2018138907A1 JP 2017003148 W JP2017003148 W JP 2017003148W WO 2018138907 A1 WO2018138907 A1 WO 2018138907A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
voltage
coils
power supply
alignment
Prior art date
Application number
PCT/JP2017/003148
Other languages
English (en)
French (fr)
Inventor
幸紀 塚本
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to KR1020197021401A priority Critical patent/KR102122273B1/ko
Priority to EP17894544.0A priority patent/EP3575135B1/en
Priority to CA3051815A priority patent/CA3051815C/en
Priority to MX2019008719A priority patent/MX2019008719A/es
Priority to RU2019127042A priority patent/RU2719085C1/ru
Priority to JP2018564071A priority patent/JP6756381B2/ja
Priority to CN201780085139.2A priority patent/CN110234534B/zh
Priority to PCT/JP2017/003148 priority patent/WO2018138907A1/ja
Priority to US16/479,682 priority patent/US11173794B2/en
Publication of WO2018138907A1 publication Critical patent/WO2018138907A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/005Current collectors for power supply lines of electrically-propelled vehicles without mechanical contact between the collector and the power supply line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • B60L53/39Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer with position-responsive activation of primary coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a parking support method and a parking support apparatus that determine a coil position where power can be supplied in consideration of a change in gap between coils for non-contact power supply.
  • Patent Document 1 Conventionally, a parking support device in contactless power feeding has been proposed (see Patent Document 1).
  • patent document 1 when parking while reversing, the image of a rear camera is displayed and a vehicle is guided. After the ground side unit no longer appears in the image, the vehicle is guided by calculating and displaying the amount of positional deviation between the ground side unit and the vehicle side unit according to the voltage value measured by the vehicle side unit.
  • the positional deviation amount has a range (power supply allowable range) that is allowed for power supply.
  • the power supply allowable range largely depends on the vertical distance (gap) between the ground unit and the vehicle unit. Since the gap changes depending on the person getting on and off and loading / unloading the luggage, the gap may change from a state where power can be supplied to an impossible state. On the other hand, if the fluctuation range of the gap is excessively estimated, the power supply allowable range cannot be set wide, and parking convenience is low.
  • the present invention has been made in order to solve such a conventional problem, and an object of the present invention is to provide a parking support method and a parking method in which a power supply allowable range in non-contact power supply is widened and parking convenience is improved. It is to provide a support device.
  • a parking support method and a parking support device measure a first power reception voltage generated in a power reception coil, and determine whether power can be supplied based on a previously obtained potential difference and the first power reception voltage. By presenting the result to the vehicle occupant, alignment between the coils is supported. The potential difference obtained in advance is calculated based on the second receiving voltage of the receiving coil measured when the alignment between the coils is performed before assisting the alignment between the coils, and the receiving coil measured after the alignment and the feeding are completed. Is a potential difference from the third received voltage.
  • the allowable power supply range for non-contact power supply is widened, and the convenience of parking is improved.
  • FIG. 1 is a block diagram illustrating a configuration of a contactless power feeding system according to the embodiment.
  • FIG. 2 is a diagram illustrating the relationship between the position of the vehicle-side coil 11 and the power feed allowable range 21 when the gap between the coils is small and large.
  • FIG. 3 is a perspective view showing an example of the outer shape of the allowable power supply range 21 in consideration of the Z-axis direction.
  • FIG. 4 is a diagram illustrating the relationship between the change in the center position of the vehicle-side coil 11a and the power feed allowable range 21 when the gap varies from the minimum value (Gmin) to the maximum value (Gmax).
  • Gmin minimum value
  • Gmax maximum value
  • FIG. 5 is a diagram illustrating the relationship between the change in the center position of the vehicle-side coil 11a and the allowable power supply range 21 when the gap varies from the position t4 to the position t5.
  • FIG. 6A is a flowchart illustrating an operation before starting non-contact power feeding in the first embodiment.
  • FIG. 6B is a flowchart for explaining the operation from the start to the stop of non-contact power feeding in the first embodiment.
  • FIG. 6C is a flowchart for explaining the operation after the non-contact power feeding is stopped in the first embodiment.
  • FIG. 7A is a diagram illustrating an example of an image (position NG image) indicating that power feeding is not possible and is displayed on the display unit 5 in step S13 of FIG. 6A.
  • FIG. 7B is a diagram illustrating an example of an image (position NG image) indicating that power feeding is not possible and is displayed on the display unit 5 in step S13 of FIG. 6A.
  • FIG. 7C is a diagram showing an example (position OK image) of the image indicating that power feeding is possible, which is displayed on the display unit 5 in step S11 of FIG. 6A.
  • FIG. 8A is a diagram illustrating another example of an image (position NG image) indicating that power feeding is not possible, which is displayed on the display unit 5 in step S13 of FIG. 6A.
  • FIG. 8B is a diagram illustrating another example of an image (position NG image) indicating that power feeding is not possible, which is displayed on the display unit 5 in step S13 of FIG. 6A.
  • FIG. 8C is a diagram illustrating another example of an image (position OK image) indicating that power feeding is possible, which is displayed on the display unit 5 in step S11 of FIG. 6A.
  • FIG. 9 shows changes in the received voltage measured by the current / voltage sensor 8 (second received voltage Vt0, third received voltage Vt1, first received voltage NOW), passengers and luggage getting on and off, and battery connection state over time. It is a graph which shows.
  • FIG. 10 is a conceptual diagram showing the possibility of overlap between the period 43 for assisting alignment between coils and the period 41 for measuring the power reception voltage (Vt0: second power reception voltage) in advance for the next alignment assistance. It is.
  • FIG. 11A is a flowchart for explaining the operation before starting non-contact power feeding in the second embodiment.
  • FIG. 11A is a flowchart for explaining the operation before starting non-contact power feeding in the second embodiment.
  • FIG. 11B is a flowchart for explaining the operation from the start to the stop of non-contact power feeding in the second embodiment.
  • FIG. 11C is a flowchart for explaining the operation after the non-contact power feeding is stopped in the second embodiment.
  • FIG. 12A is a diagram illustrating an example of an image (position NG image) indicating that power feeding is not possible and is displayed on the display unit 5 in step S57 of FIG. 11A.
  • FIG. 12B is a diagram illustrating an example of an image (position OK image) indicating that power feeding is possible, which is displayed on the display unit 5 in step S59 of FIG. 11A.
  • FIG. 12C is a diagram showing an example (position OK image) of the image indicating that power can be supplied, which is displayed on the display unit 5 in step S61 of FIG.
  • FIG. 13A is a diagram illustrating another example of an image (position NG image) indicating that power feeding is not possible and is displayed on the display unit 5 in step S57 of FIG. 11A.
  • FIG. 13B is a diagram illustrating another example of an image (position NG image) indicating that power feeding is not possible and is displayed on the display unit 5 in step S59 of FIG. 11A.
  • FIG. 13C is a diagram illustrating another example (position OK image) of the image indicating that power feeding is possible, which is displayed on the display unit 5 in step S61 of FIG. 11A.
  • FIG. 1 is a schematic diagram showing an outline of a non-contact power supply system, in which an XY plane including an X axis and a Y axis is a horizontal plane, and a Z coordinate in a three-dimensional space is perpendicular to the horizontal plane. Define the system.
  • the non-contact power supply system is a system that supplies power in a non-contact manner between the ground side coil 12 and the vehicle side coil 11. Specifically, by using electromagnetic induction or resonance phenomenon, from a power transmission coil (ground side coil 12) buried under the road without contact to a power reception coil (vehicle side coil 11) mounted near the bottom of the vehicle 2 This is a system that can supply power when the vehicle is stopped. Since the supplied power is AC power, it is converted into DC power by the AC / DC converter 13 and smoothed by the smoothing unit 7, and then passed through the current / voltage sensor 8 (voltage sensor) and the relay switch 9. Power is transmitted to the battery 10 (including the secondary battery). The battery 10 is charged with the transmitted power. A thick arrow connecting the ground side coil 12 to the battery 10 in FIG.
  • a signal indicating the charging current value or charging voltage value measured by the current / voltage sensor 8 is transmitted from the current / voltage sensor 8 to the vehicle controller 4 as information indicating the power supply status.
  • a signal indicating the state of charge (SOC) or remaining capacity of the battery 10 is transmitted from the battery 10 to the vehicle controller 4.
  • the vehicle controller 4 controls connection and disconnection (on / off) of the relay switch 9 based on these transmitted signals, and transmits information to the ground side power supply box 3 via the wireless communication device 6. .
  • the non-contact power feeding system includes a ground side power supply box 3 and a ground side coil 12 as a ground side configuration.
  • the ground side power supply box 3 is a power unit that converts AC power supplied from the system power source into AC voltage, AC current, and AC cycle used for non-contact power feeding, and transmits the converted AC power to the ground side coil 12.
  • a ground controller that controls the operation of the power unit and a communication unit that performs wireless communication with the wireless communication device 6 mounted on the vehicle 2 are provided.
  • the ground side coil 12 supplies the AC power transmitted from the power unit to the vehicle side coil 11 in a non-contact manner using electromagnetic induction or a resonance phenomenon.
  • the non-contact power supply system can supply power in a non-contact manner between the ground side coil 12 and the vehicle side coil 11 and can charge the battery 10 mounted on the vehicle 2.
  • the parking assistance apparatus Assists the positioning between the coils when the vehicle 2 is parked in the parking space provided with.
  • the parking assistance device can be configured as a part of the vehicle controller 4.
  • the parking assist device measures the voltage (power reception voltage) generated in the vehicle side coil 11 when the ground side coil 12 is excited using the current / voltage sensor 8 of FIG.
  • the received voltage becomes higher as the distance between the ground side coil 12 and the vehicle side coil 11 in the three-dimensional space is shorter.
  • the parking assist device determines the possibility of power supply based on the value of the received voltage, and presents the determination result to the occupant of the vehicle 2 to assist the alignment between the coils. For example, an image indicating information on the coil position is displayed on a display (display unit 5) mounted on the dashboard of the vehicle 2.
  • the range of positional deviation between the coils (11, 12) allowed for power supply is set in advance based on a threshold value (V0: minimum allowable voltage) of the received voltage.
  • V0 minimum allowable voltage
  • the power supply allowable range greatly depends on the distance in the vertical direction (Z-axis direction) between the ground side coil 12 and the vehicle side coil 11.
  • a distance in the vertical direction (Z-axis direction) between the ground side coil 12 and the vehicle side coil 11 is referred to as a “gap”.
  • the lower left part of FIG. 2 is a diagram showing the ground side coil 12 and the vehicle side coil 11 when the ground is viewed from the vehicle 2 side along the Z axis
  • FIG. 3 is a cross-sectional view taken along the section AA in the lower left part of FIG. 2.
  • the coupling coefficient between the coils is increased and the power supply efficiency is increased, so that the power supply allowable range 21 in the XY plane is increased.
  • a large positional deviation between the coils in the X-axis direction or the Y-axis direction is allowed in supplying power.
  • the center 11cb of the vehicle-side coil 11b is located within the power supply allowable range 21, and therefore parking assistance
  • the apparatus determines that power supply can be started.
  • the “power supply allowable range 21” in the figure indicates a range that the center 11ca of the vehicle side coil 11a can take when using the center of the ground side coil 12 as a reference, using an orthogonal coordinate system.
  • the parking assistance device detects the same power reception voltage as the minimum allowable voltage (V0), and the inner side of the outer edge of the allowable power supply range 21.
  • the parking assistance device detects a received voltage that is greater than the minimum allowable voltage (V0).
  • FIG. 2 is a cross-sectional view taken along the line BB in the lower right part of FIG.
  • the center 11cb of the vehicle-side coil 11b in FIG. 2 is located outside the allowable power supply range 21, and therefore the parking assistance device determines that power supply cannot be started.
  • the size of the power feed allowable range 21 in the XY plane changes according to the distance (gap) between the coils in the Z-axis direction. As the gap is smaller, the coupling coefficient between the coils is increased and the power feeding efficiency is increased. Therefore, the power feeding allowable range 21 in the XY plane is increased.
  • the shape of the power feed allowable range 21 in the XY plane varies depending on the shape and number of the vehicle-side coil 11 and the ground-side coil 12 and the arrangement of magnetic and non-magnetic materials around the coil.
  • the shape of the power supply allowable range 21 is not only an accurate ellipse and a perfect circle, but also an ellipse and a perfect circle including some irregularities, and an angle having a predetermined curvature.
  • a square shape with a portion may be used.
  • the gap Since the height of the vehicle 2 changes depending on the person getting on or off the vehicle 2 or getting on and off the baggage, the gap also changes accordingly.
  • empty vehicle When no person gets on the vehicle 2 and no load is loaded on the vehicle 2 (this is referred to as “empty vehicle”), the gap is the largest value (Gmax).
  • full vehicle / full load When the maximum number of people are on the vehicle and the baggage with the maximum weight is loaded (this is called “full vehicle / full load”), the gap is the smallest value (Gmin).
  • the allowable power supply range 21 is also a finite range in the Z-axis direction. For this reason, the three-dimensional shape in the three-dimensional space shown in FIG.
  • the power feed allowable range 21 includes an upper surface 21a parallel to the XY plane having the maximum gap value (Gmax) as the Z-axis component, and a lower surface 21b parallel to the XY plane having the minimum gap value (Gmin) as the Z-axis component;
  • the side surface 21c which connects the periphery of the upper surface 21a and the periphery of the lower surface 21b is provided.
  • the upper surface 21a is narrower than the lower surface 21b, and the side surface 21c is inclined with respect to the Z axis.
  • the center of the ground side coil 12 is set as the origin of the orthogonal coordinate system.
  • the gap may vary between the maximum value (Gmax) and the minimum value (Gmin) depending on whether a person or a baggage gets on or off the vehicle 2. Further, when the center 11ca of the vehicle side coil 11 is located on the side surface 21c of the power supply allowable range 21, the current / voltage sensor 8 measures the same power reception voltage as the minimum allowable voltage (V0).
  • the gap between the coils before starting feeding (gap before starting feeding) is different from the gap when feeding (gap during feeding), feeding may not be performed correctly.
  • the person 2 gets on the vehicle 2 or loads a load, so the gap before the start of power supply is small.
  • the power supply gap is the gap before the power supply starts. Bigger than.
  • the gap at the time of feeding becomes larger than the gap before starting feeding, there is a case where feeding cannot be performed correctly.
  • the center 11ca of the vehicle-side coil 11a is within the allowable power supply range 21 when the coils are aligned, but the center 11ca of the vehicle-side coil 11a is out of the allowable power supply range 21 when power supply is started thereafter. There is.
  • FIG. 4 is a diagram showing the allowable power feeding range 21 in the first quadrant of the XZ plane of FIG. 4 includes a top surface 21a including the maximum gap value (Gmax), a bottom surface 21b including the minimum gap value (Gmin), and a side surface inclined in a direction in which the Z component decreases as the X component increases. 21c.
  • Each of a plurality of broken lines attached to the inside and outside of the power supply allowable range 21 indicates a surface (equipotential surface) connecting the positions of the centers 11ca of the vehicle side coil 11a that measures the same received voltage in the XZ plane.
  • the equipotential surfaces are parallel to each other, and the equipotential surfaces are also parallel to the side surface 21c.
  • the further away from the origin, the smaller the value of the received voltage, and the received voltage indicated by the side surface 21c is the minimum allowable voltage (V0) as described above. That is, the parking assist device can determine that the center 11ca of the vehicle side coil 11a is located within the power supply allowable range 21 if the power reception voltage is equal to or higher than the minimum allowable voltage (V0).
  • the XYZ coordinates of the center 11ca of the vehicle side coil 11a need not be detected or estimated. Since the power reception voltage is a scalar amount, it can be estimated on which equipotential surface the center 11ca of the vehicle side coil 11a is located from the power reception voltage. However, it is difficult to estimate where the center 11ca of the vehicle side coil 11a is located on the equipotential surface (vector amount).
  • the parking assist device determines that power can be supplied when aligning the coils.
  • the gap fluctuates during power supply, the coupling coefficient between the coils decreases and power supply efficiency decreases. The power cannot be supplied correctly.
  • the power supply allowable range 21 at the time of alignment between the coils is narrowed by the potential difference (V1 ⁇ V0) of the received voltage corresponding to the maximum fluctuation range (Qmax). Need arises. Specifically, it is necessary to align the center 11ca of the vehicle-side coil 11 to a range inside the dotted line H1 where the received voltage at the time of alignment between the coils is equal to or higher than the voltage (V1). As shown in FIG. 4, when the received voltage at the time of alignment between the coils is not less than the minimum allowable voltage V0 and not more than the voltage V1, power can be supplied if there is no gap variation, but the gap has a maximum variation width (Qmax). If it fluctuates, power supply is impossible.
  • the parking assist device includes the received voltage (second received voltage) of the vehicle-side coil 11 measured when the alignment between the coils is performed before assisting the alignment between the coils, and the coil-to-coil.
  • the potential difference from the received voltage (third received voltage) of the vehicle-side coil 11 measured after the positioning and power feeding of the vehicle is completed.
  • the amount of change in the gap can be estimated from the potential difference between the received voltages at the time of alignment between the coils before the start of power supply and after the end of power supply.
  • the past gap fluctuation amount it is not necessary to assume the maximum fluctuation width (Qmax) shown in FIG. Therefore, the possibility of overestimating the fluctuation range of the gap is reduced while suppressing misjudgment of power supply possibility, the power supply allowable range can be set wide, and the convenience of parking is improved.
  • the gap fluctuation amount (Qre) is estimated from the potential difference (V3-V0) between the received voltage (V3) at the time of alignment measured in the past and the received voltage (V0) after the end of power feeding. .
  • the received voltage (V3) becomes the threshold of the received voltage when assisting the alignment.
  • the center 11ca of the vehicle side coil 11 remains within the allowable power supply range 21 even if the same fluctuation as the past fluctuation amount (Qre) occurs. Judgment is possible.
  • the center 11ca of the vehicle-side coil 11 may be aligned to a range inside the dotted line H2 where the power reception voltage at the time of alignment between the coils is equal to or higher than the voltage (V3).
  • V3 the voltage
  • the receiving voltage at the time of alignment between the coils is between V3 and V1 (region 27)
  • power can be supplied even if the gap varies with the variation amount (Qre).
  • a threshold value (V3) smaller than the threshold value (V1) in FIG. 4 can be set, so that the power supply allowable range can be set wide.
  • FIG. 6A An example of a parking support method using the parking support device will be described with reference to FIGS. 6A to 6C.
  • FIG. 6A an operation before starting non-contact power feeding will be described.
  • the flowchart in FIG. 6A corresponds not only to the operation for assisting parking, but also to the operation for alignment between coils before assisting parking.
  • step S01 the vehicle controller 4 as a parking assistance device transmits a request for an alignment signal to the ground-side power supply box 3 using the wireless communication device 6.
  • the ground side power supply box 3 starts excitation (coil position detection excitation) for the purpose of positioning between the coils.
  • the “coil position detection excitation” is weaker than the main excitation. Since the coil position detection excitation is not intended to charge the battery 10, the vehicle controller 4 controls the relay switch 9 to be turned off to electrically disconnect the battery 10 and the vehicle side coil 11.
  • the vehicle controller 4 adds the potential difference (Vgap) of the received voltage calculated in advance to the smallest received voltage (threshold value V0) that can be determined that the power can be supplied if there is no gap variation, and the voltage threshold Vth ( First reference value) is calculated.
  • the potential difference (Vgap) is a potential difference between the received voltage measured when the alignment between the coils is performed before assisting the alignment between the coils and the received voltage measured after the alignment and feeding between the coils is completed. This corresponds to the potential difference (V3 ⁇ V0) in FIG.
  • the voltage threshold Vth corresponds to the voltage V3 in FIG.
  • step S05 the vehicle 2 approaches the parking space where the ground side coil 12 is installed. As the distance between the coils decreases, the received voltage increases.
  • step S07 the current / voltage sensor 8 is used to continuously measure the received voltage (NOW: first received voltage).
  • the received voltage measured in step S07 is stored in the vehicle controller 4 as the second received voltage (Vt0).
  • step S09 the vehicle controller 4 compares the received voltage (NOW) with the voltage threshold value Vth.
  • the received voltage (NOW) becomes equal to or higher than the voltage threshold Vth due to the approach of the vehicle 2 (YES in S09)
  • Vgap potential difference
  • the process proceeds to step S11, an image indicating that power can be supplied is displayed on the display unit 5, and the process proceeds to step S15.
  • step S13 when the received voltage (NOW) is less than the voltage threshold Vth (NO in S09), it can be determined that the coil alignment is insufficient. That is, when a gap fluctuation corresponding to the potential difference (Vgap) occurs, the center 11 ca of the vehicle side coil 11 may be out of the allowable power supply range 21. Therefore, the process proceeds to step S13, and an image indicating that power cannot be supplied is displayed on the display unit 5, and the process returns to step S05.
  • step S15 it is determined whether or not the ignition switch (IGN switch) of the vehicle 2 is turned off.
  • IGN switch ignition switch
  • the IGN switch is turned off (YES in S15)
  • the received voltage when the IGN switch is turned off is stored in the vehicle controller 4 as the second received voltage (Vt0).
  • step S ⁇ b> 21 the vehicle controller 4 uses the wireless communication device 6 to transmit a request for power supply power to the ground-side power supply box 3 and to turn on the relay switch 9 to electrically connect the battery 10 to the vehicle-side coil 11. Connect to.
  • the ground-side power supply box 3 that has received the request for the supplied power starts the main excitation for transmitting the supplied power.
  • step S23 the vehicle controller 4 uses the current / voltage sensor 8 to measure the received power (Pout).
  • step S29 It progresses to step S29 and it is judged whether electric power feeding efficiency Eta is more than threshold efficiency (Eta_0).
  • the power supply efficiency Eta is less than the threshold efficiency (Eta_0) (NO in S29)
  • the power supply efficiency Eta is reduced due to the movement of the vehicle 2 during power supply or the entry of foreign matter between the coils. It can be judged. Therefore, a power transmission stop request is transmitted to the ground side power supply box 3 in step S33.
  • the ground-side power supply box 3 that has received this stops power transmission, power feeding is stopped (S35).
  • step S31 it is determined whether there is a charge stop request from the user. If there is a charge stop request from the user (YES in S31), the process proceeds to step S33. If there is no charge stop request
  • step S41 the vehicle controller 4 controls the relay switch 9 to be turned off. Thereby, the battery 10 is electrically disconnected from the vehicle side coil 11 again.
  • step S43 the electric charge stored in the capacitor of the smoothing unit 7 is discharged.
  • step S ⁇ b> 45 the vehicle controller 4 transmits a request for an alignment signal to the ground-side power supply box 3 again using the wireless communication device 6. Receiving this, the ground side power supply box 3 starts excitation for coil position detection for the purpose of positioning between the coils.
  • the received voltage (Vt1: third received voltage) is measured using the current / voltage sensor 8.
  • the received voltage (Vt1) is compared with the received voltage (Vt0) measured before the start of feeding in FIG. 6A. If the power reception voltage (Vt1) is smaller than the power reception voltage (Vt0) (YES in S49), it can be determined that the gap has changed between before the start of power supply and after the end of power supply.
  • step S51 the potential difference (Vgap corresponding to the gap fluctuation) ) To zero.
  • the potential difference (Vgap) set in steps S51 and S53 in FIG. 6C is used as the potential difference (Vgap) in step S03 in FIG. 6A at the next parking assistance. That is, the potential difference (Vgap) between the power reception voltage (Vt0) measured in the previous step S07 in FIG. 6A and the power reception voltage (Vt1) measured in the step S47 in FIG. 6C is determined in step S03 in FIG. As a potential difference (Vgap).
  • “Parking assistance” refers to assisting alignment between coils before starting power feeding.
  • a period 41 shown in FIG. 10 is a period in which alignment between the coils is performed before power feeding is started in accordance with the flowchart of FIG. 6A.
  • the power reception voltage (Vt0: second power reception voltage) when the coil alignment is completed (YES in S15) is measured (S07).
  • power is supplied in the period 42 along the flowchart of FIG. 6B.
  • the period 42 is a period during which power is supplied along the flowchart of FIG. 6B.
  • the power reception voltage (Vt1: third power reception voltage) is measured according to the flowchart of FIG. 6C.
  • the potential difference (Vgap) can be set in advance before assisting the alignment between the coils.
  • the alignment between the coils before starting the feeding is supported according to the flowchart of FIG. 6A.
  • the power reception voltage (NOW: first power reception voltage) generated in the vehicle side coil 11 is measured (S07), the possibility of power reception is determined (S09), and the determination result is presented to the user (occupant) (S11, S13).
  • the period 43 during which parking assistance is performed may be the period 41 in which the power reception voltage (Vt0: second power reception voltage) is measured at the same time.
  • the received voltage (Vt0: second received voltage) may be measured in advance for the next parking assistance.
  • the received voltage (Vt0: second received voltage) used when assisting the next alignment between the coils may be measured. Thereby, it is possible to repeatedly execute coil alignment support in consideration of the gap fluctuation amount at the previous power feeding.
  • FIG. 7A to FIG. 7C show two regions (29, 30) divided in the vertical direction, a first arrow 31 and a second arrow moving in the vertical direction along the two regions (29, 30).
  • the two areas are composed of a non-power supply area 29 indicating that power cannot be supplied and a power supply possible area 30 indicating that power can be supplied.
  • the boundary between the two regions (29, 30) indicates a minimum received voltage (minimum allowable voltage V0) that can be determined that power can be supplied if there is no gap variation.
  • V0 minimum received voltage
  • the first arrow 31 indicates the power supply impossible region 29.
  • the first arrow 31 indicates the current power reception voltage (NOW: first power reception voltage). Since the power reception voltage (NOW: first power reception voltage) is smaller than the minimum allowable voltage V0, contactless power supply is not possible even when the power reception voltage currently measured is maintained, that is, when there is no gap variation. It is shown that. That is, FIG. 7A is an example of the position NG image in step S13 of FIG. 6A.
  • a second arrow 32 is displayed.
  • the second arrow 32 indicates a value (second reference value) obtained by subtracting the potential difference (Vgap) obtained during the previous power supply from the current power reception voltage (NOW: first power reception voltage). That is, the reference value of the received voltage in consideration of the gap fluctuation value (Qre) estimated from the previous power feeding operation.
  • the interval between the first arrow 31 and the second arrow 32 indicates the potential difference (Vgap) obtained during the previous power feeding.
  • the second arrow 32 has been moved from the first arrow 31 toward the non-power supply area 29 by the potential difference (Vgap).
  • FIG. 7B is an example of the position NG image in step S13 of FIG. 6A.
  • both the first arrow 31 and the second arrow 32 indicate the power supply possible region 30.
  • FIG. 7C is an example of the position OK image in step S11 of FIG. 6A. It is possible to present to the user that power supply is possible even in consideration of the gap fluctuation value estimated from the previous power supply operation.
  • the parking assist apparatus has the second reference value (second arrow) obtained by subtracting the potential difference (Vgap) obtained during the previous power supply from the current received voltage (NOW: first arrow 31). 32) and the result of comparing the minimum allowable voltage (V0: the boundary between the regions 29 and 30) with the occupant is presented to assist the alignment between the coils. Whether power can be supplied or not can be presented in an easy-to-understand manner.
  • FIGS. 8A to 8C move in the vertical direction along the four regions (29, 30a, 30b, 30c) divided in the vertical direction and the four regions (29, 30a, 30b, 30c).
  • 3 is an image example of a level gauge composed of a first arrow 31.
  • the four regions include a first power supply disabled region 29, a second power supply disabled region 30a, a first power supply enabled region 30b, and a second power supply enabled region 30c.
  • the first unpowerable region 29 indicates that power cannot be fed even when there is no gap variation with the currently measured received voltage (NOW).
  • the second power supply impossible region 30a indicates that power supply cannot be performed in consideration of the gap fluctuation value estimated from the previous power supply operation.
  • the first power supply possible region 30b indicates that power can be supplied in consideration of the gap fluctuation value estimated from the previous power supply operation.
  • the second power supply possible region 30c indicates that power can be supplied even in consideration of the maximum fluctuation range (Qmax) of the gap.
  • the first arrow 31 indicates the current power reception voltage (NOW: first power reception voltage).
  • FIG. 8A is an example of the position NG image in step S13 of FIG. 6A.
  • FIG. 8B is an example of the position NG image in step S13 of FIG. 6A.
  • the boundary between the first unpowerable region 29 and the second unpowerable region 30a indicates a minimum voltage (minimum allowable voltage V0) that can be determined that power can be fed if there is no gap variation.
  • the boundary between the second power supply impossible region 30a and the first power supply possible region 30b indicates a value (first reference value) obtained by adding the potential difference (Vgap) obtained during the previous power supply operation to the minimum allowable voltage V0. Therefore, the width of the second power supply impossible region 30a indicates the potential difference (Vgap) obtained during the previous power supply.
  • FIG. 8C is an example of the position OK image in step S11 of FIG. 6A.
  • the user can supply power even when the same gap fluctuation as the maximum fluctuation width (Qmax) of the gap occurs. Can be presented.
  • the parking assist device sets the current reception voltage (NOW: first arrow 31) and the minimum voltage (V0: boundary between the regions 29 and 30a) that can be determined that power can be supplied if there is no gap change. Positioning between the coils is supported by presenting to the occupant the result of comparison with the first reference value (the boundary between the regions 30a and 30b) obtained by adding the potential difference (Vgap) obtained during power feeding. Whether power can be supplied or not can be presented in an easy-to-understand manner.
  • the power receiving voltage (Vt1: third power receiving voltage) measured after power feeding will be described. Excitation for coil position detection is started from time T1 before the start of power supply, and the received voltage (NOW) also increases as the vehicle 2 approaches.
  • the vehicle controller 4 measures and stores the received voltage (Vt0) from time T2 when the vehicle 2 is stopped in the power supply allowable range to time T3 when the coil position detection excitation is stopped.
  • the relay switch 9 is controlled to be off and the vehicle side coil 11 is disconnected from the battery 10 at the time of alignment before power feeding.
  • the relay switch 9 since it is necessary to transmit power to the battery 10, the relay switch 9 is on-controlled and the vehicle side coil 11 is connected to the battery 10. Therefore, the circuit configuration for measuring the received voltage differs before and during power feeding.
  • the impedance of the battery 10 greatly affects the measurement of the received voltage, and the received voltage greatly depends on the voltage of the battery 10.
  • the excitation performed during power feeding is stronger than the coil position detection excitation performed before and after power feeding, the measured power receiving voltage is also increased. Therefore, it is difficult to measure the received voltage under the same conditions before feeding and during feeding.
  • the vehicle controller 4 starts the excitation for detecting the coil position again from time T4 when the power supply is completed and the battery 10 is electrically disconnected from the vehicle-side coil 11 and a while has passed.
  • the vehicle controller 4 measures the received voltage (Vt1) until time T5 when the coil position detection excitation is stopped. This is because it is assumed that the occupant and the baggage remain off the vehicle 2 for a while (T4 to T5) after supplying power for a sufficiently long time.
  • the relay switch is controlled to be off, the circuit configuration for measuring the received voltage can be made equal before and after feeding.
  • the amount of gap variation can be estimated from the potential difference (Vgap) between the received voltage at the time of coil alignment obtained before and after the end of power feeding. Therefore, by determining the possibility of power supply based on the potential difference (Vgap) and the received voltage (NOW), as shown in FIGS. 4 and 5, the power supply allowable ranges (H1, H2) that change according to the gap variation amount, as shown in FIGS. ) To accurately determine whether or not power supply is possible. In addition, by considering the past gap fluctuation amount, the possibility of overestimating the gap fluctuation range is reduced, the power supply allowable range can be set wide, and the convenience of parking is improved.
  • the parking assistance device preliminarily applies a pair of received voltages (second received voltage Vt0, third received voltage Vt1) before and after feeding a plurality of times. Measure and record.
  • the average value (Vgap_ave) of a plurality of pairs of potential differences or the maximum value (Vgap_max) of a plurality of pairs of potential differences may be used as the previously determined potential difference (Vgap). Good.
  • the average value (Vgap_ave) and the maximum value (Vgap_max) can be simultaneously used as the potential difference (Vgap) obtained in advance.
  • the parking assist apparatus provides the occupant with the power supply possibility determined by using the average value (Vgap_ave) and the maximum value (Vgap_max) of the potential difference at the same time. To help.
  • FIG. 11A to FIG. 11C an operation example of the parking support apparatus according to the second embodiment before feeding, during feeding, and after feeding will be described.
  • 11A to 11C the same steps as those in FIGS. 6A to 6C are denoted by the same reference numerals, and description thereof is omitted.
  • step S51 two voltage thresholds (Vth1 and Vth2) are calculated using the average value (Vgap_ave) and the maximum value (Vgap_max) of the potential difference.
  • the first voltage threshold value (Vth1) is calculated by adding the average value (Vgap_ave) of the potential difference to the threshold value (V0), and the second value by adding the maximum value (Vgap_max) of the potential difference to the threshold value (V0).
  • the voltage threshold value (Vth2) is calculated.
  • the average value (Vgap_ave) and the maximum value (Vgap_max) of the potential difference are the average value and the maximum value of the potential differences in a plurality of power feeding operations performed in the past.
  • step S53 the received voltage (NOW: first received voltage) is compared with the first voltage threshold (Vth1).
  • step S55 the received voltage (NOW) is compared with the second voltage threshold (Vth2).
  • the received voltage (NOW) is equal to or higher than the first voltage threshold (Vth1) and equal to or higher than the second voltage threshold (Vth2) (YES in S55)
  • a blue signal is lit on the display unit 5 (LED).
  • the received voltage (NOW) is equal to or higher than the first voltage threshold value (Vth1) and lower than the second voltage threshold value (Vth2) (NO in S55)
  • a yellow signal is lit on the display unit 5 (LED).
  • the display unit 5 is not a display that displays a level gauge, but at least an LED that emits red, an LED that emits yellow, and an LED that emits blue. Is provided. These LEDs are mounted on a position where the user (occupant) can visually recognize, for example, on the dashboard of the vehicle 2.
  • the red signal When the red signal is lit, it can be shown to the occupant that power cannot be supplied considering the average potential difference (Vgap_ave). That is, when a gap fluctuation that is greater than the average value of the past gap fluctuations occurs, it can be shown to the occupant that the center 11c of the vehicle-side coil 11 cannot be kept within the allowable power supply range 21.
  • Vgap_ave the average potential difference
  • the blue signal When the blue signal is lit, it can be shown to the occupant that the power can be supplied in consideration of the average value (Vgap_ave) and the maximum value (Vgap_max) of the potential differences in the plurality of power supply operations performed in the past. That is, even if the same gap fluctuation as the maximum value of the past gap fluctuation occurs, the center 11c of the vehicle-side coil 11 can be presented to the occupant.
  • the vehicle controller 4 determines whether or not the power feeding time is 30 minutes or longer in step S63. If the power feeding operation is performed for a short time of less than 30 minutes, the occupant does not get off and the power is fed with the luggage loaded, so there is a possibility that no gap fluctuation has occurred. Therefore, it is not necessary to measure the received voltage (Vt1) after feeding. Therefore, only when power is supplied over a sufficiently long time (YES in S65), the vehicle controller 4 uses the wireless communication device 6 to turn on a request for position confirmation after power supply.
  • the vehicle controller 4 measures the received voltage (Vt1) only when the request for confirming the position after power feeding is on in step S67 of FIG. 11C. Thereby, the power reception voltage (Vt1) at the time of the power feeding operation in which no gap variation occurs can be deleted from the calculation of the average value (Vgap_ave). Noise is removed and the calculation accuracy of the average value of potential differences (Vgap_ave) is improved.
  • the IGN switch determines whether or not the IGN switch remains off for a predetermined time (for example, 3 minutes) after the end of power feeding (S69 to S73).
  • a predetermined time for example, 3 minutes
  • the received voltage (Vt1) is measured only when the IGN switch remains off for a predetermined time (for example, 3 minutes) after the end of power feeding (YES in S73).
  • the power reception voltage (Vt1) at the time of the power feeding operation in which no gap variation occurs can be deleted from the calculation of the average value (Vgap_ave). Noise is removed and the calculation accuracy of the average value of potential differences (Vgap_ave) is improved.
  • step S79 the average value (Vgap_ave) is updated using the potential difference (Vgap).
  • the vehicle controller 4 measures and records a pair of received voltages (second received voltage Vt0, third received voltage Vt1) before and after feeding a plurality of times in advance before supporting alignment between the coils. Keep it.
  • the vehicle controller 4 assists the alignment between the coils, the average value (Vgap_ave) of the plurality of pairs of potential differences or the maximum value (Vgap_max) of the potential differences of the plurality of pairs is calculated in advance (Vgap).
  • Vgap the average value of the plurality of pairs of potential differences or the maximum value (Vgap_max) of the potential differences of the plurality of pairs.
  • a position NG image or a position OK image is displayed using a display mounted on the dashboard of the vehicle 2 instead of the display unit 5 (LED), as in the first embodiment.
  • An example of displaying is described.
  • FIG. 12A to FIG. 12C show two areas (29, 30) divided in the vertical direction, a first arrow 31 and a second arrow moving in the vertical direction along the two areas (29, 30).
  • the two areas are composed of a non-power supply area 29 indicating that power cannot be supplied and a power supply possible area 30 indicating that power can be supplied.
  • the boundary between the two regions (29, 30) indicates a minimum received voltage (minimum allowable voltage V0) that can be determined that power can be supplied if there is no gap variation.
  • the first arrow 31 indicates the current power reception voltage (NOW: first power reception voltage).
  • the second arrow 32 indicates a value (second reference value) obtained by subtracting the average value (Vgap_ave) of the potential difference from the current received voltage (NOW: first received voltage).
  • the third arrow 33 indicates a value (second reference value) obtained by subtracting the maximum potential difference (Vgap_max) from the current received voltage (NOW: first received voltage). That is, the second arrow 32 and the third arrow 33 indicate the power reception voltage in consideration of the average value and the maximum value of the gap fluctuation estimated from a plurality of past power feeding operations.
  • the interval between the first arrow 31 and the second arrow 32 indicates an average value of potential difference (Vgap_ave).
  • the interval between the first arrow 31 and the third arrow 33 represents the maximum potential difference (Vgap_max).
  • the first arrow 31 indicates the power supply possible region 30, and the second arrow 32 and the third arrow 33 indicate the power supply disabled region 29. Therefore, power supply is possible if there is no gap variation with the currently measured power receiving voltage (NOW), but the average value and maximum value of gap variation estimated from a plurality of past power supply operations are considered. If this is the case, it can be shown to the user that power cannot be supplied.
  • FIG. 12A corresponds to lighting of the red signal in step S57 of FIG. 11A.
  • both the first arrow 31 and the second arrow 32 indicate the power supply possible region 30, and the third arrow 33 indicates the power supply disabled region 29. Therefore, according to the display image of FIG. 12B, power can be supplied even if a gap fluctuation less than the average value of the gap fluctuation occurs, but when the gap fluctuation more than the average value of the gap fluctuation occurs, it is indicated to the user that power cannot be supplied. can do.
  • FIG. 12B corresponds to lighting of the yellow signal in step S59 of FIG. 11A.
  • FIG. 12C all of the first arrow 31, the second arrow 32, and the third arrow 33 indicate the power supplyable region 30. Therefore, according to the display image of FIG. 12C, it can be shown to the user that power can be supplied even if the same gap fluctuation as the maximum value of the gap fluctuation estimated from the plurality of power feeding operations is generated.
  • FIG. 12C corresponds to lighting of the green light in step S61 of FIG. 11A.
  • the parking assist device subtracts the average value (Vgap_ave) and the maximum value (Vgap_max) of the potential difference from the current received voltage (first arrow 31), respectively (second arrow 32 and By presenting the result of comparison between the third arrow 33) and the minimum received voltage (V0: boundary between regions 29 and 30) that can be determined that power can be supplied if there is no gap variation, Assists in alignment. Whether power can be supplied or not can be presented in an easy-to-understand manner.
  • FIGS. 13A to 13C move in the vertical direction along the four regions (29, 34, 35, 36) divided in the vertical direction and the four regions (29, 34, 35, 36).
  • 3 is an image example of a level gauge composed of a first arrow 31.
  • FIG. The four areas include a first power supply impossible area 29, a second power supply unavailable area 34, a first power supply available area 35, and a second power supply available area 36.
  • the first unpowerable region 29 indicates that power cannot be fed even when there is no gap variation with the currently measured received voltage (NOW).
  • the second unpowerable region 34 indicates that power cannot be fed in consideration of an average value of gap fluctuation estimated from a plurality of past power feeding operations.
  • the first power supply possible region 35 indicates that power can be supplied in consideration of an average value of gap fluctuation, but power supply cannot be performed in consideration of the maximum value of gap fluctuation in a plurality of past power supply operations.
  • the second power supply possible region 36 indicates that power can be supplied even in consideration of the maximum value of gap fluctuation.
  • the boundary between the first power supply disabled area 29 and the second power supply disabled area 34 indicates the minimum allowable voltage V0.
  • the boundary between the second power supply disabled area 34 and the first power supply enabled area 35 indicates a value (first reference value) obtained by adding the average value (Vgap_ave) of the potential difference to the minimum allowable voltage V0.
  • the boundary between the first power supplyable region 35 and the second power supplyable region 36 indicates a value (first reference value) obtained by adding the maximum value (Vgap_ave) of the potential difference to the minimum allowable voltage V0.
  • FIG. 13A the first arrow 31 indicates the second unpowerable region 34.
  • FIG. 13A shows that the power can be supplied if the currently measured power receiving voltage (NOW) remains unchanged, but if the gap fluctuation indicated by the average value of the potential difference (Vgap_ave) occurs, the power supply cannot be supplied to the user. Present.
  • FIG. 13A corresponds to lighting of the red signal in step S57 of FIG. 11A.
  • FIG. 13B the first arrow 31 indicates the first power supply possible region 35.
  • FIG. 13B shows that power can be supplied even when the gap fluctuation indicated by the average value of potential difference (Vgap_ave) occurs, but power supply is not possible when the gap fluctuation indicated by the maximum value of potential difference (Vgap_max) occurs. Present to the user.
  • FIG. 13B corresponds to the lighting of the yellow signal in step S59 of FIG. 11A.
  • FIG. 13C the first arrow 31 indicates the second power supply possible region 36.
  • FIG. 13C presents to the user that power can be supplied even if the gap fluctuation indicated by the maximum value of potential difference (Vgap_max) occurs.
  • FIG. 13C corresponds to lighting of the blue signal in step S61 of FIG. 11A.
  • the parking assist device has the current power reception voltage (NOW: first arrow 31) and the minimum power reception voltage (V0: boundary between regions 29 and 34) that can be determined that power can be supplied if there is no gap variation.
  • the result of comparison with the first reference value (boundary of the regions 34 and 35) obtained by adding the average value (Vgap_ave) of the potential difference is presented to the occupant, thereby assisting the alignment between the coils. Whether power can be supplied or not can be presented in an easy-to-understand manner.
  • the parking assist device has a maximum potential difference between the current power reception voltage (NOW: first arrow 31) and the minimum power reception voltage (V0: boundary between regions 29 and 34) that can be determined that power can be supplied if there is no gap variation.
  • the result of comparing the first reference value (boundary of the regions 35 and 36) added with (Vgap_max) is presented to the occupant, thereby assisting the alignment between the coils. Whether power can be supplied or not can be presented in an easy-to-understand manner.
  • the period 43 during which parking assistance is performed is the period 41 during which the power reception voltage (Vt0: second power reception voltage) is measured at the same time. It was.
  • the power reception voltages (second power reception voltage Vt0, third power reception voltage Vt1) may be measured only when selected by the user.
  • a mode changeover switch that switches on / off of the estimation mode for estimating the gap fluctuation value is provided on the dashboard. Only when the mode switch is operated by the user and the estimation mode is on, the received voltage (second received voltage Vt0, third received voltage Vt1) may be measured and stored.
  • the parking assistance device can be realized by using a microcomputer including a CPU (Central Processing Unit), a memory, and an input / output unit.
  • a computer program for causing the microcomputer to function as a parking assistance device is installed in the microcomputer and executed. Thereby, the microcomputer functions as a parking assistance device.
  • achieves a parking assistance apparatus by software is shown here, of course, it is also possible to prepare the hardware for exclusive use for performing each information processing shown below, and to comprise a parking assistance apparatus. is there. Moreover, you may comprise the some circuit contained in a parking assistance apparatus with separate hardware.
  • the parking assist device may also be used as an electronic control unit (ECU) used for other control related to the vehicle 2.
  • the vehicle controller 4 (control part) of FIG. 1 was illustrated as an electronic control unit (ECU) used for other control related to the vehicle 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

駐車支援方法は、受電コイル(11)に生じる第1の受電電圧(NOW)を測定し、予め求めた電位差(Vgap)及び第1の受電電圧に基づいて給電可能か否かを判断した結果を車両の乗員に対して提示することにより、コイル間の位置合わせを支援する。予め求めた電位差(Vgap)は、コイル間の位置合わせを支援する以前にコイル間の位置合わせを行った時に測定した受電コイルの第2の受電電圧(Vt0)と、位置合わせ及び給電が終了した後に測定した受電コイルの第3の受電電圧(Vt1)との電位差である。

Description

駐車支援方法及び駐車支援装置
 本発明は、非接触給電用コイル間のギャップの変動を考慮して給電可能なコイル位置を判定する駐車支援方法及び駐車支援装置に関する。
 従来から、非接触給電における駐車支援装置が提案されている(特許文献1参照)。特許文献1では、後退しながら駐車する際に後方カメラの画像を表示して車両を誘導する。地上側ユニットが画像に写らなくなった後、車両側ユニットで測定される電圧値に応じて地上側ユニットと車両側ユニットの位置ズレ量を算出及び表示して車両を誘導している。
特許第5377119号公報
 ところで、位置ズレ量には、給電を行う上で許容される範囲(給電許容範囲)がある。給電許容範囲は、地上側ユニットと車両側ユニットとの鉛直方向の距離(ギャップ)に大きく依存している。ギャップは、人の乗り降りや荷物の載せ下ろしによって変化するため、給電が可能な状態から不可能な状態に変化する場合がある。一方、ギャップの変動幅を過大に見積もると、給電許容範囲を広く設定することができず、駐車の利便性が低い。
 本発明は、このような従来の課題を解決するためになされたものであり、その目的とするところは、非接触給電における給電許容範囲が広がり、駐車の利便性が向上する駐車支援方法及び駐車支援装置を提供することにある。
 本発明の一態様に係わる駐車支援方法及び駐車支援装置は、受電コイルに生じる第1の受電電圧を測定し、予め求めた電位差及び第1の受電電圧に基づいて給電可能か否かを判断した結果を車両の乗員に対して提示することにより、コイル間の位置合わせを支援する。予め求めた電位差は、コイル間の位置合わせを支援する以前にコイル間の位置合わせを行った時に測定した受電コイルの第2の受電電圧と、前記位置合わせ及び給電が終了した後に測定した受電コイルの第3の受電電圧との電位差である。
 本発明の一形態によれば、非接触給電における給電許容範囲が広がり、駐車の利便性が向上する。
図1は、実施形態に係わる非接触給電システムの構成を示すブロック図である。 図2は、コイル間のギャップが小さい場合及び大きい場合の車両側コイル11の位置と給電許容範囲21との関係を示す図である。 図3は、Z軸方向を考慮した給電許容範囲21の外形の一例を示す斜視図である。 図4は、ギャップが最小値(Gmin)から最大値(Gmax)へ変動する場合の車両側コイル11aの中心位置の変化と給電許容範囲21との関係を示す図である。 図5は、ギャップが位置t4から位置t5へ変動する場合の車両側コイル11aの中心位置の変化と給電許容範囲21との関係を示す図である。 図6Aは、第1の実施形態における非接触給電を開始する前の動作を説明するフローチャートである。 図6Bは、第1の実施形態における非接触給電を開始してから停止するまでの動作を説明するフローチャートである。 図6Cは、第1の実施形態における非接触給電を停止した後の動作を説明するフローチャートである。 図7Aは、図6AのステップS13において表示部5に表示される給電不可能である旨の画像(位置NG画像)の一例を示す図である。 図7Bは、図6AのステップS13において表示部5に表示される給電不可能である旨の画像(位置NG画像)の一例を示す図である。 図7Cは、図6AのステップS11において表示部5に表示される給電可能である旨の画像の一例(位置OK画像)を示す図である。 図8Aは、図6AのステップS13において表示部5に表示される給電不可能である旨の画像(位置NG画像)の他の例を示す図である。 図8Bは、図6AのステップS13において表示部5に表示される給電不可能である旨の画像(位置NG画像)の他の例を示す図である。 図8Cは、図6AのステップS11において表示部5に表示される給電可能である旨の画像(位置OK画像)の他の例を示す図である。 図9は、電流/電圧センサ8で測定される受電電圧(第2の受電電圧Vt0、第3の受電電圧Vt1、第1の受電電圧NOW)、乗員及び荷物の乗降、電池接続状態の時間変化を示すグラフである。 図10は、コイル間の位置合わせを支援する期間43と、次回の位置合わせ支援のために予め受電電圧(Vt0:第2の受電電圧)を測定する期間41との重複可能性を示す概念図である。 図11Aは、第2の実施形態における非接触給電を開始する前の動作を説明するフローチャートである。 図11Bは、第2の実施形態における非接触給電を開始してから停止するまでの動作を説明するフローチャートである。 図11Cは、第2の実施形態における非接触給電を停止した後の動作を説明するフローチャートである。 図12Aは、図11AのステップS57において表示部5に表示される給電不可能である旨の画像(位置NG画像)の一例を示す図である。 図12Bは、図11AのステップS59において表示部5に表示される給電可能である旨の画像(位置OK画像)の一例を示す図である。 図12Cは、図11AのステップS61において表示部5に表示される給電可能である旨の画像の一例(位置OK画像)を示す図である。 図13Aは、図11AのステップS57において表示部5に表示される給電不可能である旨の画像(位置NG画像)の他の例を示す図である。 図13Bは、図11AのステップS59において表示部5に表示される給電不可能である旨の画像(位置NG画像)の他の例を示す図である。 図13Cは、図11AのステップS61において表示部5に表示される給電可能である旨の画像の他の例(位置OK画像)を示す図である。
 以下、実施形態を複数の図面を参照して説明する。ただし、以下では、駐車支援方法及び駐車支援装置の構成を模式的に説明するが、これらの模式図では理解を容易にするために、厚さと平面寸法との関係や平面内の縦と横の比率等は誇張して描いていることを断っておく。
 (第1実施形態)
 [非接触給電システム]
 先ず、図1を参照して、実施形態に係わる駐車支援方法及び駐車支援装置を適用する非接触給電システムについて説明する。なお、図1は、非接触給電システムの概略を示す模式図であり、X軸及びY軸を含むXY平面を水平面とし、Z軸方向を当該水平面に鉛直な方向とする3次元空間の直交座標系を規定する。
 非接触給電システムは、地上側コイル12と車両側コイル11との間で非接触にて給電するシステムである。詳細には、電磁誘導や共振現象を利用して、接触なしに道路下に埋設された送電コイル(地上側コイル12)から車両2の底面付近に搭載された受電コイル(車両側コイル11)へ、車両が停止している時に給電することができるシステムである。給電された電力は交流電力であるため、AC/DC変換器13により直流電力に変換され、平滑部7により平滑化された後、電流/電圧センサ8(電圧センサ)及びリレースイッチ9を介してバッテリ10(二次電池を含む)へ送電される。バッテリ10は、この送電された電力によって充電される。図1中の地上側コイル12からバッテリ10までを繋ぐ太い矢印は給電電力の流れを示す。
 給電状況を示す情報として、電流/電圧センサ8により測定された充電電流値或いは充電電圧値を示す信号が、電流/電圧センサ8から車両コントローラ4へ送信される。バッテリ10の充電状態(SOC)又は残容量の状況を示す信号が、バッテリ10から車両コントローラ4へ送信される。車両コントローラ4は、送信されたこれらの信号に基づいて、リレースイッチ9の接続及び切断(オン/オフ)を制御し、無線通信装置6を介して地上側電源ボックス3に対して情報を伝達する。
 一方、非接触給電システムは、地上側の構成として、地上側電源ボックス3及び地上側コイル12を備える。地上側電源ボックス3は、系統電源から供給される交流電力を、非接触給電に用いられる交流電圧、交流電流及び交流周期へ変換し、変換後の交流電力を地上側コイル12へ送電するパワーユニットと、パワーユニットの動作を制御する地上コントローラと、車両2に搭載された無線通信装置6との間で無線通信を行う通信部とを備える。地上側コイル12は、パワーユニットから送電された交流電力を、電磁誘導や共振現象を利用して、車両側コイル11へ非接触にて給電する。車両側の無線通信装置6から送信された、給電状況、バッテリ10の充電状態(SOC)、及び残容量の状況を示す信号は、通信部により受信される。受信された信号は地上コントローラに伝送され、地上コントローラは、この信号に基づいて、パワーユニットによる交流電力の変換及び地上側コイル12への送電を制御する。このようにして、非接触給電システムは、地上側コイル12と車両側コイル11との間で非接触にて給電し、車両2に搭載されたバッテリ10を充電することができる。
 [駐車支援装置]
 次に、非接触給電システムに適用する実施形態に係わる駐車支援装置について説明する。上記した非接触給電を行うためには、地上側コイル12に対する車両2の位置、詳細には、車両側コイル11の位置を予め合わせる必要がある。駐車支援装置は、駐車支援装置のユーザである車両2の乗員が行う、コイル間の位置あわせ操作、即ち駐車操作を支援する。換言すれば、実施形態に係わる駐車支援方法及び駐車支援装置は、車両2に搭載された受電コイル(車両側コイル11)に対して非接触で給電する前に、送電コイル(地上側コイル12)が設けられた駐車スペースに車両2を駐車する際のコイル間の位置合わせを支援する。
 具体的に、駐車支援装置は、車両コントローラ4の一部として構成することができる。駐車支援装置は、地上側コイル12を励磁した時に車両側コイル11に生じる電圧(受電電圧)を図1の電流/電圧センサ8を用いて測定する。受電電圧は、地上側コイル12と車両側コイル11との3次元空間における距離が短いほど高くなる。駐車支援装置は、受電電圧の値に基づいて給電可能性を判断し、その判断結果を車両2の乗員に対して提示することにより、コイル間の位置合わせを支援する。例えば、車両2のダッシュボードに搭載されたディスプレイ(表示部5)にコイル位置に関する情報を示す画像を表示する。なお、給電を行う上で許容されるコイル(11,12)間の位置ズレ量の範囲(給電許容範囲)は、受電電圧の閾値(V0:最小許容電圧)に基づいて予め設定されている。
 給電許容範囲は、地上側コイル12と車両側コイル11との鉛直方向(Z軸方向)の距離に大きく依存している。地上側コイル12と車両側コイル11との鉛直方向(Z軸方向)の距離を「ギャップ」と呼ぶ。例えば、図2の左下の分図は、Z軸に沿って車両2側から地上を見た時の地上側コイル12及び車両側コイル11を示す図であり、図2の左上の分図は、図2の左下の分図のA-A切断面に沿った断面図である。
 ギャップが小さい場合、コイル間の結合係数が増加して給電効率が高まるので、XY平面における給電許容範囲21は大きくなる。つまり、給電を行う上で大きなX軸方向或いはY軸方向のコイル間の位置ずれが許容される。例えば、図2の車両側コイル11bに示すように、X軸方向の位置ずれ(Xずれ)が発生しても、車両側コイル11bの中心11cbは給電許容範囲21内に位置するため、駐車支援装置は、給電を開始できると判断する。
 なお、図中の「給電許容範囲21」は、地上側コイル12の中心を基準とした時の、車両側コイル11aの中心11caが取り得る範囲を直交座標系を用いて示す。換言すれば、車両側コイル11aの中心11caが給電許容範囲21の外縁に位置する時、駐車支援装置は、最小許容電圧(V0)と同じ受電電圧を検出し、給電許容範囲21の外縁の内側において、駐車支援装置は、最小許容電圧(V0)よりも大きい受電電圧を検出する。
 一方、図2の右上及び右下の分図に示すように、ギャップが大きい場合、Y軸方向或いはX軸方向の位置ずれが同じであったとしても、コイル間の結合係数が減少して給電効率が低下する。よって、XY平面における給電許容範囲21は小さくなる。図2の右上の分図は、図2の右下の分図のB-B切断面に沿った断面図である。例えば、ギャップが大きい場合、図2の車両側コイル11bの中心11cbは給電許容範囲21外に位置するため、駐車支援装置は、給電を開始できないと判断する。
 図3に示すように、Z軸方向のコイル間の距離(ギャップ)に応じて、XY平面内における給電許容範囲21の大きさが変化する。ギャップが小さいほど、コイル間の結合係数が増加して給電効率が高まるので、XY平面における給電許容範囲21は大きくなる。XY平面における給電許容範囲21の形状は、車両側コイル11及び地上側コイル12の形状、数、コイル周辺の磁性体及び非磁性体の配置に応じて変化する。このため、図面では正確な楕円形で示したが、給電許容範囲21の形状は、正確な楕円及び真円のみならず、多少の凹凸を含む楕円及び真円の形状、所定の曲率を有する角部を備える方形状であってもよい。
 車両2への人又は荷物の乗降によって車両2の高さが変化するため、これに応じてギャップも変動する。車両2に人が乗車せず、車両2へ荷物を積載していない場合(これを「空車」と呼ぶ)、ギャップは最も大きな値(Gmax)となる。車両に最大人数の人が乗車し、最大重量の荷物を積載している場合(これを「満車/満積載」と呼ぶ)、ギャップは最も小さい値(Gmin)となる。
 なお、ギャップの取り得る範囲、つまりギャップの最大値(Gmax)及び最小値(Gmin)は、車両2のサスペンション構造、乗車定員の数及び最大積載量から予測できる。よって、給電許容範囲21は、Z軸方向にも有限な範囲であると言える。このため、給電許容範囲21として、図3に示す3次元空間における立体形状を規定することができる。給電許容範囲21は、ギャップの最大値(Gmax)をZ軸成分とするXY平面に平行な上面21aと、ギャップの最小値(Gmin)をZ軸成分とするXY平面に平行な下面21bと、上面21aの周縁と下面21bの周縁とを繋ぐ側面21cとを備える。上面21aは下面21bよりも狭く、側面21cはZ軸に対して傾斜している。地上側コイル12の中心を直交座標系の原点とする。このように、ギャップは、車両2への人又は荷物の乗降によって最大値(Gmax)と最小値(Gmin)との間で変動する可能性がある。また、車両側コイル11の中心11caが給電許容範囲21の側面21c上に位置する時、電流/電圧センサ8は、最小許容電圧(V0)と同じ受電電圧を計測することになる。
 給電を開始する前のコイル間の位置合わせを行っている時のギャップ(給電開始前ギャップ)と、給電を行っている時のギャップ(給電時ギャップ)とが異なる場合、正しく給電できない場合がある。例えば、給電を開始する前にコイル間の位置合わせを行っている時、車両2に人が乗車し又は荷物を積載しているため、給電開始前ギャップは小さい。しかし、コイル間の位置合わせが終了した後、給電を開始する時或いは開始してから間もないときに、人が降車し又は荷物を車両2から下ろした場合、給電時ギャップは給電開始前ギャップよりも大きくなる。このように、給電時ギャップが給電開始前ギャップよりも大きくなると、正しく給電できない場合がある。つまり、コイル間の位置合わせ時には車両側コイル11aの中心11caが給電許容範囲21に収まっていたが、その後、給電を開始する時に車両側コイル11aの中心11caが給電許容範囲21から外れてしまう場合がある。
 例えば、図4を参照して、ギャップが最小値(Gmin)から最大値(Gmax)へ最大変動幅(Qmax)だけ変動する場合を考える。図4は、図3のXZ平面の第1象限における給電許容範囲21を示す図である。図4の給電許容範囲21は、ギャップの最大値(Gmax)を含む上面21aと、ギャップの最小値(Gmin)を含む下面21bと、X成分の増加と共にZ成分が減少する方向に傾斜した側面21cとからなる。給電許容範囲21の内外に付された複数の破線の各々は、XZ平面において同じ受電電圧を測定する車両側コイル11aの中心11caの位置を繋いだ面(等電位面)を示す。等電位面は互いに平行であり、且つ等電位面は側面21cとも平行である。原点から離れるほど、受電電圧の値は小さくなり、側面21cが示す受電電圧は、前述したとおり、最小許容電圧(V0)となる。つまり、駐車支援装置は、受電電圧が最小許容電圧(V0)以上であれば、車両側コイル11aの中心11caは給電許容範囲21内に位置すると判断することができる。ただし、本実施形態では、車両側コイル11aの中心11caのXYZ座標を検出或いは推定しなくてもよい。受電電圧はスカラー量であるため、受電電圧から車両側コイル11aの中心11caがどの等電位面上に位置するかを推定することはできる。しかし、車両側コイル11aの中心11caが等電位面上のどこに位置するか(ベクトル量)を推定することは難しい。
 例えば、コイル間の位置合わせ時に車両側コイル11の中心11caが位置t0であった場合、非接触給電を行っている時には位置t1まで変動してしまう。位置t1は給電許容範囲21に含まれるため、正しく給電を行うことができる。これに対して、コイル間の位置合わせ時に車両側コイル11の中心11caが位置t0’であった場合、非接触給電を行っている時には位置t1’まで変動してしまう。位置t1’は給電許容範囲21外である。よって、駐車支援装置は、コイル間の位置合わせ時は給電可能であると判断するが、その後、給電時にはギャップが変動するため、コイル間の結合係数が低下して給電効率が低下してしまうため、正しく給電を行うことができない。
 通常、車両2への人の乗車状態や荷物の積載状態を正確に検出することは困難であるため、ギャップの値を正確に測定或いは推定することは難しい。また、コイル間の位置合わせ時は給電可能であると判断するが、その後、給電時にはギャップが変動して給電が不可能となることは抑制するべきである。このような給電可能性の誤判断を抑制するためには、最大変動幅(Qmax)でギャップが変動するであろうと仮定せざるを得なくなる。つまり、図4に示すように、満車/満積載の状態(Gmin)でコイル間の位置合わせを行い、その後、空車の状態(Gmax)で給電を行うことを想定せざるを得ない。
 このように、最大変動幅(Qmax)を想定する場合、最大変動幅(Qmax)に相当する受電電圧の電位差(V1-V0)の分だけ、コイル間の位置合わせ時の給電許容範囲21を狭める必要が生じる。具体的には、コイル間の位置合わせ時の受電電圧が電圧(V1)以上となる点線H1より内側の範囲まで、車両側コイル11の中心11caを位置合わせする必要がある。図4に示すように、コイル間の位置合わせ時の受電電圧が最小許容電圧V0以上且つ電圧V1以下である場合、ギャップの変動が無ければ給電は可能だが、最大変動幅(Qmax)でギャップが変動した場合、給電が不可能となる。
 実際には、空車の状態(Gmin)でコイル間の位置合わせを行うことも十分に想定される。この場合、電圧(V1)以上となる範囲は、図4の位置t3のみとなり、位置t3以外では給電できないと判断されてしまい、コイル間の位置合わせはほぼ不可能となってしまう。
 そこで、実施形態に係わる駐車支援装置は、コイル間の位置合わせを支援する以前にコイル間の位置合わせを行った時に測定した車両側コイル11の受電電圧(第2の受電電圧)と、コイル間の位置合わせ及び給電が終了した後に測定した車両側コイル11の受電電圧(第3の受電電圧)との電位差を予め求める。給電開始前のコイル間の位置合わせ時と給電終了後の各々の受電電圧の電位差から、ギャップの変動量を推定することができる。そして、駐車を支援する時に、過去のギャップの変動量(電位差)を考慮して、給電可能か否かを判断する。過去のギャップ変動量を考慮することによって、図4に示す最大変動幅(Qmax)を想定する必要が無くなる。よって、給電可能性の誤判断を抑制しつつ、ギャップの変動幅を過大に見積もる恐れが軽減され、給電許容範囲を広く設定することができ、駐車の利便性が向上する。
 例えば、図5に示すように、過去に測定した位置合わせ時の受電電圧(V3)と給電終了後の受電電圧(V0)の電位差(V3-V0)からギャップの変動量(Qre)を推定する。コイル間の位置合わせを支援する時に、ギャップの変動量(Qre)を想定することにより、受電電圧(V3)が、位置合わせ支援時の受電電圧の閾値となる。つまり、位置合わせ支援時に受電電圧が電圧(V3)以上であれば、過去の変動量(Qre)と同じ変動をしても車両側コイル11の中心11caは給電許容範囲21内に留まるため、給電可能と判断できる。
 具体的には、コイル間の位置合わせ時の受電電圧が電圧(V3)以上となる点線H2より内側の範囲まで、車両側コイル11の中心11caを位置合わせればよい。図5に示すように、コイル間の位置合わせ時の受電電圧がV3~V1の間である場合(領域27)、変動量(Qre)でギャップが変動しても給電は可能である。想定するギャップ変動幅を短くすることにより、図4の閾値(V1)に比べて小さな閾値(V3)を設定することが出来るので、給電許容範囲を広く設定できる。
 [駐車支援方法]
 図6A~図6Cを用いて、駐車支援装置を用いた駐車支援方法の一例を説明する。先ず、図6Aを参照して、非接触給電を開始する前の動作を説明する。図6Aのフローチャートは、駐車を支援する時の動作のみならず、駐車を支援する前のコイル間の位置合わせ時の動作にも対応している。
 ステップS01において、駐車支援装置としての車両コントローラ4は、無線通信装置6を用いて、位置合わせ信号の要求を地上側電源ボックス3に送信する。これを受信した地上側電源ボックス3は、コイル間の位置合わせを目的とする励磁(コイル位置検知用励磁)を開始する。「コイル位置検知用励磁」は、電力を伝送するための本励磁とは異なり、本励磁よりも弱い励磁である。なお、コイル位置検知用励磁はバッテリ10の充電を目的としていないため、車両コントローラ4は、リレースイッチ9をオフ制御してバッテリ10と車両側コイル11とを電気的に切り離す。
 ステップS03に進み、車両コントローラ4は、ギャップの変動が無ければ給電可能と判断できる最も小さな受電電圧(閾値V0)に、予め演算した受電電圧の電位差(Vgap)を加算して、電圧閾値Vth(第1の基準値)を演算する。電位差(Vgap)は、コイル間の位置合わせを支援する以前にコイル間の位置合わせを行った時に測定した受電電圧とコイル間の位置合わせ及び給電が終了した後に測定した受電電圧との電位差であって、図5の電位差(V3-V0)に相当する。電圧閾値Vthは図5の電圧V3に相当する。
 ステップS05に進み、地上側コイル12が設置された駐車スペースに車両2が接近する。コイル間の距離が縮まることにより、受電電圧が上昇する。ステップS07において、電流/電圧センサ8を用いて受電電圧(NOW:第1の受電電圧)を継続的に測定する。なお、IGNスイッチがオフされる時(S15でYES)に、ステップS07で測定される受電電圧は、第2の受電電圧(Vt0)として車両コントローラ4内に記憶される。
 ステップS09に進み、車両コントローラ4は、受電電圧(NOW)と電圧閾値Vthとを比較する。車両2の接近により受電電圧(NOW)が電圧閾値Vth以上になった場合(S09でYES)、電位差(Vgap)に相当するギャップ変動(図5の変動量Qreに相当)が生じても、車両側コイル11の中心11caは給電許容範囲21内に留まるため、給電可能であると判断できる。よって、ステップS11に進み、表示部5に、給電可能である旨の画像を表示し、ステップS15へ進む。一方、受電電圧(NOW)が電圧閾値Vth未満である場合(S09でNO)、コイル位置合わせが不十分であると判断できる。つまり、電位差(Vgap)に相当するギャップ変動が生じた場合、車両側コイル11の中心11caが給電許容範囲21から外れる恐れがある。そこで、ステップS13に進み、表示部5に、給電不可能である旨の画像を表示し、ステップS05へ戻る。
 ステップS15において、車両2のイグニションスイッチ(IGNスイッチ)がオフされたか否かを判断する。IGNスイッチがオフされた場合(S15でYES)、コイル間の位置合わせは終了したと判断して、ステップS17に進み、給電を開始する。IGNスイッチがオンであれば(S15でNO)、コイル間の位置合わせは終了していないと判断して、ステップS05に戻る。IGNスイッチがオフされる時の受電電圧を、第2の受電電圧(Vt0)として車両コントローラ4内に記憶される。
 次に、図6Bを参照して、非接触給電を開始してから停止するまでの動作を説明する。ステップS21において、車両コントローラ4は、無線通信装置6を用いて、給電電力の要求を地上側電源ボックス3に送信し、リレースイッチ9をオン制御することにより車両側コイル11にバッテリ10を電気的に接続する。給電電力の要求を受信した地上側電源ボックス3は、給電電力を伝送するための本励磁を開始する。
 ステップS23に進み、車両コントローラ4は、電流/電圧センサ8を用いて、受電電力(Pout)を測定する。ステップS25において、車両コントローラ4は、地上側電源ボックス3から送電電力の情報(Pin)を取得し、ステップS27において、給電効率(Eta=Pout/Pin)を演算する。
 ステップS29に進み、給電効率Etaがしきい効率(Eta_0)以上であるか否かを判断する。給電効率Etaがしきい効率(Eta_0)未満である場合(S29でNO)、給電中に車両2が移動する、或いは、コイル間に異物が侵入する、などの原因によって、給電効率Etaが低下したと判断できる。そこで、ステップS33において送電停止の要求を地上側電源ボックス3に送信する。これを受信した地上側電源ボックス3が送電を停止することにより、給電は停止される(S35)。
 一方、給電効率Etaがしきい効率(Eta_0)以上である場合(S29でYES)、送電を続行可能と判断し、ステップS31に進み、ユーザから充電停止要求があるか否かを判断する。ユーザから充電停止要求があれば(S31でYES)、ステップS33に進む。ユーザから充電停止要求が無ければ(S31でNO)、給電を続行するためにステップS21に戻る。
 図6Cを参照して、非接触給電を停止した後の動作を説明する。送電が停止されると、先ずステップS41において、車両コントローラ4は、リレースイッチ9をオフ制御する。これにより、再び車両側コイル11からバッテリ10が電気的に切り離される。ステップS43に進み、平滑部7が有するキャパシタに蓄えられている電荷を放電する。ステップS45に進み、車両コントローラ4は、無線通信装置6を用いて、再び位置合わせ信号の要求を地上側電源ボックス3に送信する。これを受信した地上側電源ボックス3は、コイル間の位置合わせを目的とするコイル位置検知用励磁を開始する。
 ステップS47に進み、電流/電圧センサ8を用いて受電電圧(Vt1:第3の受電電圧)を測定する。受電電圧(Vt1)と、図6Aにおいて給電開始前に測定した受電電圧(Vt0)とを比較する。受電電圧(Vt1)が受電電圧(Vt0)よりも小さくなっている場合(S49でYES)、給電開始前と給電終了後の間でギャップが変動したと判断できるので、ステップS51に進み、ギャップ変動に相当する電位差(Vgap)を、Vgap=Vt0-Vt1に設定する。一方、受電電圧(Vt1)が受電電圧(Vt0)よりも小さくなっていない場合(S49でNO)、ギャップが変動していないと判断できるので、ステップS51に進み、ギャップ変動に相当する電位差(Vgap)をゼロに設定する。
 このように、図6CのステップS51及びS53で設定された電位差(Vgap)は、次回の駐車支援時における図6AのステップS03の電位差(Vgap)として用いられる。すなわち、前回の図6AのステップS07で測定した受電電圧(Vt0)と図6CのステップS47で測定した受電電圧(Vt1)との電位差(Vgap)を、次回の駐車支援時における図6AのステップS03の電位差(Vgap)として用いる。「駐車支援」とは、給電を開始する前のコイル間の位置合わせを支援することである。
 図10に示す期間41は、図6Aのフローチャートに沿って、給電を開始する前にコイル間の位置合わせを行う期間である。期間41において、コイル位置合わせが完了した時(S15でYES)の受電電圧(Vt0:第2の受電電圧)を測定する(S07)。その後、期間42において図6Bのフローチャートに沿って給電を行う。期間42は、図6Bのフローチャートに沿って給電を行う期間である。期間42の後に、図6Cのフローチャートに沿って受電電圧(Vt1:第3の受電電圧)を測定する。これにより、コイル間の位置合わせを支援する前に予め電位差(Vgap)を設定することができる。
 その後、期間43において図6Aのフローチャートに沿って、給電を開始する前のコイル間の位置合わせを支援する。このとき、車両側コイル11に生じる受電電圧(NOW:第1の受電電圧)を測定し(S07)、受電可能性を判断し(S09)、判断結果をユーザ(乗員)に提示する(S11、S13)。
 図10に示すように、駐車支援を行う期間43は、同時に、受電電圧(Vt0:第2の受電電圧)を測定する期間41であってもよい。つまり、受電電圧(NOW:第1の受電電圧)を測定することで駐車支援を行いつつ、次回の駐車支援のために予め受電電圧(Vt0:第2の受電電圧)を測定しても構わない。換言すれば、コイル間の位置合わせを支援する際(期間43)に、次回のコイル間の位置合わせを支援する時に使用する受電電圧(Vt0:第2の受電電圧)を測定してもよい。これにより、前回の給電時におけるギャップ変動量を考慮したコイル位置合わせ支援を繰り返し実行することができる。
 図6AのステップS11及びステップS13において表示部5に表示される画像の例を説明する。先ず、図7A~図7Cは、縦方向に分割された2つの領域(29、30)と、2つの領域(29、30)に沿って縦方向に移動する第1の矢印31及び第2の矢印32とからなるレベルゲージの画像例である。2つの領域は、給電できないことを示す給電不可領域29と、給電できることを示す給電可能領域30とからなる。2つの領域(29、30)の境界は、ギャップの変動が無ければ給電可能と判断できる最小の受電電圧(最小許容電圧V0)を示す。図7Aでは、第1の矢印31が給電不可領域29を示している。第1の矢印31は、現在の受電電圧(NOW:第1の受電電圧)を示す。受電電圧(NOW:第1の受電電圧)が最小許容電圧V0よりも小さいため、現在測定している受電電圧のまま、つまりギャップの変動が無い場合であっても非接触給電はできない状態であることを示している。つまり、図7Aは、図6AのステップS13における位置NG画像の例である。
 図7Bは、第1の矢印31の他に、第2の矢印32が表示されている。第2の矢印32は、現在の受電電圧(NOW:第1の受電電圧)から前回の給電時に求めた電位差(Vgap)を減算した値(第2の基準値)を示す。つまり、前回の給電動作から推定されるギャップ変動値(Qre)を考慮した受電電圧の基準値を示す。第1の矢印31と第2の矢印32の間隔は、前回の給電時に求めた電位差(Vgap)を示す。第2の矢印32は、第1の矢印31から電位差(Vgap)の分だけ給電不可領域29側に移動されている。
 図7Bにおいて、第1の矢印31は給電可能領域30を示すが、第2の矢印32は給電不可領域29を示す。よって、現在測定している受電電圧(NOW)のまま、ギャップの変動が無ければ給電は可能だが、前回の給電動作から推定されるギャップ変動値を考慮すると給電は不可能であることをユーザに提示することができる。図7Bは、図6AのステップS13における位置NG画像の例である。
 図7Cは、第1の矢印31及び第2の矢印32が共に給電可能領域30を示している。図7Cは、図6AのステップS11における位置OK画像の例である。前回の給電動作から推定されるギャップ変動値を考慮しても給電は可能であることをユーザに提示することができる。
 このように、実施形態に係わる駐車支援装置は、現在の受電電圧(NOW:第1の矢印31)から前回の給電時に求めた電位差(Vgap)を減算した第2の基準値(第2の矢印32)と、最小許容電圧(V0:領域29、30の境界)とを比較した結果を乗員に対して提示することにより、コイル間の位置合わせを支援する。給電可能か否かを分かり易く提示することができる。
 次に、図8A~図8Cは、縦方向に分割された4つの領域(29、30a、30b、30c)と、4つの領域(29、30a、30b、30c)に沿って縦方向に移動する第1の矢印31とからなるレベルゲージの画像例である。4つの領域は、第1の給電不可領域29と、第2の給電不可領域30aと、第1の給電可能領域30bと、第2の給電可能領域30cと、からなる。第1の給電不可領域29は、現在測定している受電電圧(NOW)のまま、ギャップの変動が無い場合であっても給電できないことを示す。第2の給電不可領域30aは、前回の給電動作から推定されるギャップ変動値を考慮すれば給電はできないことを示す。第1の給電可能領域30bは、前回の給電動作から推定されるギャップ変動値を考慮すれば給電できることを示す。第2の給電可能領域30cは、ギャップの最大変動幅(Qmax)を考慮しても給電できることを示す。第1の矢印31は、現在の受電電圧(NOW:第1の受電電圧)を示す。
 図8Aは、第1の矢印31が第1の給電不可領域29を示している。よって、現在測定している受電電圧(NOW)のまま、つまりギャップの変動が無い場合であっても給電は不可能であることをユーザに提示する。つまり、図8Aは、図6AのステップS13における位置NG画像の例である。
 図8Bは、第1の矢印31が第2の給電不可領域30aを示している。よって、現在測定している受電電圧(NOW)のまま、つまりギャップの変動が無い場合であれば給電は可能だが、前回の給電動作から推定されるギャップ変動値を考慮すれば給電は不可能であることをユーザに提示する。つまり、図8Bは、図6AのステップS13における位置NG画像の例である。
 第1の給電不可領域29と第2の給電不可領域30aの境界は、ギャップの変動が無ければ給電可能と判断できる最小電圧(最小許容電圧V0)を示す。第2の給電不可領域30aと第1の給電可能領域30bの境界は、最小許容電圧V0に前回の給電動作時に求めた電位差(Vgap)を加算した値(第1の基準値)を示す。よって、第2の給電不可領域30aの幅は、前回の給電時に求めた電位差(Vgap)を示す。
 図8Cは、第1の矢印31が第1の給電可能領域30bを示している。よって、前回の給電動作から推定されるギャップ変動値を考慮すれば給電可能であることをユーザに提示する。つまり、図8Cは、図6AのステップS11における位置OK画像の例である。
 図示は省略するが、第1の矢印31が第2の給電可能領域30cを示している場合、ギャップの最大変動幅(Qmax)と同じギャップ変動が生じたとしても給電が可能であることをユーザに提示することができる。
 このように、駐車支援装置は、現在の受電電圧(NOW:第1の矢印31)と、ギャップの変動が無ければ給電可能と判断できる最小電圧(V0:領域29、30aの境界)に前回の給電時に求めた電位差(Vgap)を加算した第1の基準値(領域30a、30bの境界)とを比較した結果を乗員に対して提示することにより、コイル間の位置合わせを支援する。給電可能か否かを分かり易く提示することができる。
 図9を参照して、給電後に測定される受電電圧(Vt1:第3の受電電圧)について説明する。給電開始前の時刻T1からコイル位置検知用励磁が開始され、車両2の接近とともに受電電圧(NOW)も上昇する。車両コントローラ4は、給電許容範囲に車両2を停車させた時刻T2から、コイル位置検知用励磁を停止する時刻T3までの間に、受電電圧(Vt0)を測定して記憶する。
 乗員及び荷物は、給電開始時或いは給電開始してからしばらく時間が経過した後に、車両2から降りることが予想される。前述したように、給電を開始する前のコイル間の位置合わせを行っている時のギャップ(給電開始前ギャップ)と、給電を行っている時のギャップ(給電時ギャップ)とが異なる場合、正しく給電できない場合がある。よって、本来であれば、給電前に測定した受電電圧(Vt0)と、給電中に測定した受電電圧とから電位差を求めることが望ましい。
 しかし、図9に示すように、給電前の位置合わせ時にはリレースイッチ9はオフ制御されて車両側コイル11はバッテリ10から切断されている。一方、給電中は、バッテリ10へ電力を伝送する必要があるためリレースイッチ9はオン制御されて車両側コイル11はバッテリ10に接続されている。よって、給電前と給電中とで、受電電圧を測定するための回路構成が異なる。バッテリ10のインピーダンスが受電電圧の測定に大きく影響してしまい、受電電圧はバッテリ10の電圧に大きく依存してしまう。また、給電中に行う励磁は、給電前及び給電後に行うコイル位置検知用励磁よりも強いため、測定される受電電圧も大きくなる。よって、給電前と給電中とでは同じ条件で受電電圧を測定することは難しい。
 そこで、車両コントローラ4は、給電が終了して、バッテリ10が車両側コイル11から電気的に切り離されて、しばらく時間が経過した時刻T4から再度、コイル位置検知用励磁を開始する。車両コントローラ4は、コイル位置検知用励磁が停止される時刻T5までの間に受電電圧(Vt1)を測定する。なぜなら、十分に長い時間をかけて給電を行った後のしばらく間(T4~T5)であれば、乗員及び荷物は車両2から降りたままであることが想定されるからである。また、リレースイッチがオフ制御されているため、給電前と給電後とで、受電電圧を測定するための回路構成を等しくすることができる。
 以上説明したように、第1の実施形態によれば、以下の作用効果が得られる。以前に求めたコイル位置合わせ時と給電終了後の受電電圧の電位差(Vgap)からギャップの変動量を推定することができる。よって、電位差(Vgap)及び受電電圧(NOW)に基づいて給電可能性を判断することにより、図4及び図5に示すように、ギャップの変動量に応じて変化する給電許容範囲(H1、H2)に基づいて、給電可能か否かを正確に判定することができる。また、過去のギャップ変動量を考慮することによって、ギャップの変動幅を過大に見積もる恐れが軽減され、給電許容範囲を広く設定することができ、駐車の利便性が向上する。
 (第2の実施形態)
 第1の実施形態では、前回の給電時におけるギャップ変動を考慮して、次回の給電時のコイル位置合わせを支援する例を示した。つまり、参照するギャップ変動は前回の値1つだけであったが、過去に行った複数の給電動作を考慮してコイル位置合わせを支援しても構わない。
 具体的に、駐車支援装置は、コイル間の位置合わせを支援する以前に、予め、給電前及び給電後の受電電圧(第2の受電電圧Vt0、第3の受電電圧Vt1)の対を複数回測定して記録しておく。そして、コイル間の位置合わせを支援する時に、複数の対の電位差の平均値(Vgap_ave)、または複数の対の電位差の最大値(Vgap_max)を、予め求めた電位差(Vgap)として使用してもよい。更に、平均値(Vgap_ave)及び最大値(Vgap_max)を同時に、予め求めた電位差(Vgap)として使用することも可能である。
 第2の実施形態に係わる駐車支援装置は、電位差の平均値(Vgap_ave)及び最大値(Vgap_max)を同時に使用して判断した給電可能性を乗員に対して提示することにより、コイル間の位置合わせを支援する。
 先ず、図11A~図11Cを参照して、第2の実施形態に係わる駐車支援装置の給電前、給電中、及び給電後の動作例を説明する。図11A~図11Cのうち、図6A~図6Cと同じステップは同じ符号を付して説明を省略する。
 先ず、図11Aを参照して、給電前のコイル位置合わせ時の動作を説明する。ステップS51において、電位差の平均値(Vgap_ave)及び最大値(Vgap_max)を用いて2つの電圧閾値(Vth1及びVth2)を演算する。具体的に、閾値(V0)に電位差の平均値(Vgap_ave)を加算して第1の電圧閾値(Vth1)を演算し、閾値(V0)に電位差の最大値(Vgap_max)を加算して第2の電圧閾値(Vth2)を演算する。
 電位差の平均値(Vgap_ave)及び最大値(Vgap_max)は、過去に行った複数の給電動作における電位差の平均値及び最大値である。
 ステップS53では、受電電圧(NOW:第1の受電電圧)と第1の電圧閾値(Vth1)とを対比する。ステップS55では、受電電圧(NOW)と第2の電圧閾値(Vth2)とを対比する。受電電圧(NOW)が第1の電圧閾値(Vth1)以上であり、且つ第2の電圧閾値(Vth2)以上である場合(S55でYES)、表示部5(LED)に青色信号を点灯させる。受電電圧(NOW)が第1の電圧閾値(Vth1)以上であり、且つ第2の電圧閾値(Vth2)未満である場合(S55でNO)、表示部5(LED)に黄色信号を点灯させる。受電電圧(Vt0)が第1の電圧閾値(Vth1)未満である場合(S53でNO)、表示部5(LED)に赤色信号を点灯させる。なお、図示は省略するが、第2の実施形態における表示部5は、レベルゲージを表示するディスプレイではなく、少なくとも、赤色を発光するLEDと、黄色を発光するLEDと、青色を発光するLEDとを備える。これらのLEDは、ユーザ(乗員)が視認可能な位置、例えば、車両2のダッシュボード上に搭載されている。
 赤色信号が点灯した場合、電位差の平均値(Vgap_ave)を考慮すれば給電できないことを乗員に提示することができる。つまり、過去のギャップ変動の平均値以上のギャップ変動が生じた場合、車両側コイル11の中心11cを給電許容範囲21内に留めることができないことを乗員に提示できる。
 黄色信号が点灯した場合、電位差の平均値(Vgap_ave)を考慮すれば給電は可能だが、電位差の最大値(Vgap_max)を考慮すれば給電は不可能であることを乗員に提示することができる。つまり、過去のギャップ変動の平均値以下のギャップ変動が生じても、車両側コイル11の中心11cを給電許容範囲21内に留めることができることを乗員に提示できる。また、過去のギャップ変動の平均値以上であり、且つ過去のギャップ変動の最大値以下のギャップ変動が生じた場合、車両側コイル11の中心11cは給電許容範囲21の外に逸脱してしまうことを乗員に提示できる。
 青色信号が点灯した場合、過去に行った複数の給電動作における電位差の平均値(Vgap_ave)及び最大値(Vgap_max)を考慮すれば給電できることを乗員に提示することができる。つまり、過去のギャップ変動の最大値と同じギャップ変動が生じても、車両側コイル11の中心11cは給電許容範囲21内に留まれることを乗員に提示できる。
 図11B及び図11Cを参照して、給電中及び給電後の動作を説明する。車両コントローラ4は、ユーザから充電停止要求が無い場合(S31でNO)、ステップS63において給電時間が30分以上であるか否かを判断する。30分未満の短時間の給電動作であれば、乗員は降車せず、荷物は積載したままで給電を行っているためギャップ変動が生じていない可能性がある。よって、給電後に受電電圧(Vt1)を測定しなくてもよい。そこで、十分に長い時間をかけて給電を行っている場合に限り(S65でYES)、車両コントローラ4は、無線通信装置6を用いて、給電後位置確認の要求をオンする。
 そして、車両コントローラ4は、図11CのステップS67において給電後位置確認の要求がオンである場合に限り、受電電圧(Vt1)を測定する。これにより、ギャップ変動が生じていない給電動作時の受電電圧(Vt1)を平均値(Vgap_ave)の演算から削除することができる。ノイズが除去されて電位差の平均値(Vgap_ave)の演算精度が向上する。
 更に、給電が終了してから所定時間(例えば3分間)、IGNスイッチがオフのままであるか否かを判断する(S69~S73)。給電が終了してから所定時間の間にIGNスイッチがターンオンされた場合、給電終了時には、既に乗員が乗車し、荷物が積載されていることが推測される。そこで、給電が終了してから所定時間(例えば3分間)、IGNスイッチがオフのままである場合に限り(S73でYES)、受電電圧(Vt1)を測定する。これにより、ギャップ変動が生じていない給電動作時の受電電圧(Vt1)を平均値(Vgap_ave)の演算から削除することができる。ノイズが除去されて電位差の平均値(Vgap_ave)の演算精度が向上する。
 ステップS51で求めた電位差(Vgap)に基づいて、最大値(Vgap_max)の更新の有無を確認する(S75、S77)。そして、ステップS79において、電位差(Vgap)を用いて平均値(Vgap_ave)を更新する。
 以上説明したように、第2の実施形態によれば、以下の作用効果が得られる。車両コントローラ4は、コイル間の位置合わせを支援する以前に、予め、給電前及び給電後の受電電圧(第2の受電電圧Vt0、第3の受電電圧Vt1)の対を複数回測定して記録しておく。そして、車両コントローラ4は、コイル間の位置合わせを支援する時に、複数の対の電位差の平均値(Vgap_ave)、または複数の対の電位差の最大値(Vgap_max)を、予め求めた電位差(Vgap)として使用して、コイル間の位置合わせを支援する。これにより、コイル間の位置合わせを支援する時のギャップの変動量を精度良く予測することができる。
 (変形例)
 第2の実施形態の変形例では、表示部5(LED)の代わりに、第1の実施形態と同様に、車両2のダッシュボードに搭載されたディスプレイを用いて、位置NG画像或いは位置OK画像を表示する例を説明する。
 図11AのステップS57、S59、S61において表示部5に表示される画像の例を説明する。先ず、図12A~図12Cは、縦方向に分割された2つの領域(29、30)と、2つの領域(29、30)に沿って縦方向に移動する第1の矢印31、第2の矢印32及び第3の矢印33とからなるレベルゲージの画像例である。2つの領域は、給電できないことを示す給電不可領域29と、給電できることを示す給電可能領域30とからなる。2つの領域(29、30)の境界は、ギャップの変動が無ければ給電可能と判断できる最小の受電電圧(最小許容電圧V0)を示す。第1の矢印31は、現在の受電電圧(NOW:第1の受電電圧)を示す。第2の矢印32は、現在の受電電圧(NOW:第1の受電電圧)から電位差の平均値(Vgap_ave)を減算した値(第2の基準値)を示す。第3の矢印33は、現在の受電電圧(NOW:第1の受電電圧)から電位差の最大値(Vgap_max)を減算した値(第2の基準値)を示す。つまり、第2の矢印32及び第3の矢印33は、過去の複数の給電動作から推定されるギャップ変動の平均値及び最大値を考慮した受電電圧を示す。第1の矢印31と第2の矢印32の間隔は、電位差の平均値(Vgap_ave)を示す。第1の矢印31と第3の矢印33の間隔は、電位差の最大値(Vgap_max)を示す。
 図12Aでは、第1の矢印31が給電可能領域30を示し、第2の矢印32及び第3の矢印33が給電不可領域29を示している。よって、現在測定している受電電圧(NOW)のまま、ギャップの変動が無い場合であれば給電は可能だが、過去の複数の給電動作から推定されるギャップ変動の平均値及び最大値を考慮すれば給電はできないことをユーザに提示することができる。図12Aは、図11AのステップS57における赤色信号の点灯に相当する。
 図12Bは、第1の矢印31及び第2の矢印32が共に給電可能領域30を示し、第3の矢印33が給電不可領域29を示している。よって、図12Bの表示画像によれば、ギャップ変動の平均値以下のギャップ変動が生じても給電できるが、ギャップ変動の平均値以上のギャップ変動が生じた場合、給電できなくなることをユーザに提示することができる。図12Bは、図11AのステップS59における黄色信号の点灯に相当する。
 図12Cは、第1の矢印31、第2の矢印32及び第3の矢印33の全てが給電可能領域30を示している。よって、図12Cの表示画像によれば、去の複数の給電動作から推定されるギャップ変動の最大値と同じギャップ変動が生じたとしても給電可能であることをユーザに提示することができる。図12Cは、図11AのステップS61における青信号の点灯に相当する。
 このように、駐車支援装置は、現在の受電電圧(第1の矢印31)から電位差の平均値(Vgap_ave)及び最大値(Vgap_max)をそれぞれ減算した第2の基準値(第2の矢印32及び第3の矢印33)と、ギャップの変動が無ければ給電可能と判断できる最小の受電電圧(V0:領域29、30の境界)とを比較した結果を乗員に対して提示することにより、コイル間の位置合わせを支援する。給電可能か否かを分かり易く提示することができる。
 次に、図13A~図13Cは、縦方向に分割された4つの領域(29、34、35、36)と、4つの領域(29、34、35、36)に沿って縦方向に移動する第1の矢印31とからなるレベルゲージの画像例である。4つの領域は、第1の給電不可領域29と、第2の給電不可領域34と、第1の給電可能領域35と、第2の給電可能領域36とからなる。第1の給電不可領域29は、現在測定している受電電圧(NOW)のまま、ギャップの変動が無い場合であっても給電できないことを示す。第2の給電不可領域34は、過去の複数の給電動作から推定されるギャップ変動の平均値を考慮すれば給電できないことを示す。第1の給電可能領域35は、ギャップ変動の平均値を考慮すれば給電できるが、過去の複数の給電動作におけるギャップ変動の最大値を考慮すると給電できないことを示す。第2の給電可能領域36は、ギャップ変動の最大値を考慮しても給電できることを示す。
 第1の給電不可領域29と第2の給電不可領域34の境界は、最小許容電圧V0を示す。第2の給電不可領域34と第1の給電可能領域35の境界は、最小許容電圧V0に電位差の平均値(Vgap_ave)を加算した値(第1の基準値)を示す。第1の給電可能領域35と第2の給電可能領域36の境界は、最小許容電圧V0に電位差の最大値(Vgap_ave)を加算した値(第1の基準値)を示す。
 図13Aでは、第1の矢印31が第2の給電不可領域34を示している。図13Aは、現在測定している受電電圧(NOW)のままであれば給電は可能だが、電位差の平均値(Vgap_ave)が示すギャップ変動が生じた場合、給電は不可能であることをユーザに提示する。図13Aは、図11AのステップS57における赤色信号の点灯に相当する。
 図13Bでは、第1の矢印31が第1の給電可能領域35を示している。図13Bは、電位差の平均値(Vgap_ave)が示すギャップ変動が生じても給電は可能であるが、電位差の最大値(Vgap_max)が示すギャップ変動が生じた場合、給電は不可能であることをユーザに提示する。図13Bは、図11AのステップS59における黄色信号の点灯に相当する。
 図13Cでは、第1の矢印31が第2の給電可能領域36を示している。図13Cは、電位差の最大値(Vgap_max)が示すギャップ変動が生じても給電は可能であることをユーザに提示する。図13Cは、図11AのステップS61における青色信号の点灯に相当する。
 このように、駐車支援装置は、現在の受電電圧(NOW:第1の矢印31)と、ギャップの変動が無ければ給電可能と判断できる最小の受電電圧(V0:領域29、34の境界)に電位差の平均値(Vgap_ave)を加算した第1の基準値(領域34、35の境界)とを比較した結果を乗員に対して提示することにより、コイル間の位置合わせを支援する。給電可能か否かを分かり易く提示することができる。
 駐車支援装置は、現在の受電電圧(NOW:第1の矢印31)と、ギャップの変動が無ければ給電可能と判断できる最小の受電電圧(V0:領域29、34の境界)に電位差の最大値(Vgap_max)を加算した第1の基準値(領域35、36の境界)とを比較した結果を乗員に対して提示することにより、コイル間の位置合わせを支援する。給電可能か否かを分かり易く提示することができる。
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 図10に示したように、第1及び第2の実施形態では、初回を除き、駐車支援を行う期間43が、同時に、受電電圧(Vt0:第2の受電電圧)を測定する期間41であった。本発明はこれに限定されない。つまり、ユーザによって選択された時にだけ、受電電圧(第2の受電電圧Vt0、第3の受電電圧Vt1)を測定してもよい。例えば、ギャップ変動値を推定する推定モードのオン/オフを切り替えるモード切替スイッチを、ダッシュボード上に設ける。モード切替スイッチがユーザにより操作され、推定モードがオンとなっている時にだけ、受電電圧(第2の受電電圧Vt0、第3の受電電圧Vt1)を測定して保存すればよい。これにより、第1の実施形態では、推定モードがオン状態で検出された電位差(Vgap)のうち直近の電位差に基づいて、給電可能性が判断される。第2の実施形態では、推定モードがオン状態で検出された電位差(Vgap)の全てを用いて演算された平均値(Vgap_ave)及び最大値(Vgap_max)に基づいて、給電可能性が判断される。よって、車両2の利用状況に応じて、駐車支援時に用いるギャップ変動の推定値をユーザ自らが決めることができるので、ユーザ利便性が向上する。
 駐車支援装置(制御部)は、CPU(中央処理装置)、メモリ、及び入出力部を備えるマイクロコンピュータを用いて実現可能である。マイクロコンピュータを駐車支援装置として機能させるためのコンピュータプログラムを、マイクロコンピュータにインストールして実行する。これにより、マイクロコンピュータは、駐車支援装置として機能する。なお、ここでは、ソフトウェアによって駐車支援装置を実現する例を示すが、もちろん、以下に示す各情報処理を実行するための専用のハードウェアを用意して、駐車支援装置を構成することも可能である。また、駐車支援装置に含まれる複数の回路を個別のハードウェアにより構成してもよい。更に、駐車支援装置は、車両2にかかわる他の制御に用いる電子制御ユニット(ECU)と兼用してもよい。車両2にかかわる他の制御に用いる電子制御ユニット(ECU)として図1の車両コントローラ4(制御部)を例示した。
2 車両
4 車両コントローラ(制御部)
8 電流/電圧センサ(電圧センサ)
11 車両側コイル(受電コイル)
12 地上側コイル(送電コイル)
32 第2の矢印(第2の基準値)
33 第3の矢印(第2の基準値)
NOW 第1の受電電圧
Vgap 電位差
Vgap_ave 電位差の平均値
Vgap_max 電位差の最大値
Vt0 第2の受電電圧
Vt1 第3の受電電圧
V0 最小許容電圧

Claims (7)

  1.  車両に搭載された受電コイルに対して非接触で給電する送電コイルが設けられた駐車スペースに前記車両を駐車する際のコイル間の位置合わせを支援する駐車支援方法であって、
     前記受電コイルに生じる第1の受電電圧を測定し、
     予め求めた電位差及び前記第1の受電電圧に基づいて給電可能か否かを判断した結果を前記車両の乗員に対して提示することにより、前記コイル間の位置合わせを支援し、
     前記予め求めた電位差は、
     前記コイル間の位置合わせを支援する以前にコイル間の位置合わせを行った時に測定した前記受電コイルの第2の受電電圧と、前記位置合わせ及び給電が終了した後に測定した前記受電コイルの第3の受電電圧との電位差である
     ことを特徴とする駐車支援方法。
  2.  前記送電コイルがコイル位置を検知するために励磁されたときに前記受電コイルに生じる前記第1の受電電圧を測定し、
     前記第1の受電電圧と、前記受電コイルに生じる電圧であって前記受電コイルと前記送電コイルとの鉛直方向のギャップの変動が無ければ給電可能と判断できる最も小さな前記電圧に前記電位差を加算した第1の基準値とを比較した結果を乗員に対して提示することにより、前記コイル間の位置合わせを支援する
     ことを特徴とする請求項1に記載の駐車支援方法。
  3.  前記送電コイルがコイル位置を検知するために励磁されたときに前記受電コイルに生じる前記第1の受電電圧を測定し、
     前記第1の受電電圧から前記電位差を減算した第2の基準値と、前記受電コイルに生じる電圧であって前記受電コイルと前記送電コイルとの鉛直方向のギャップの変動が無ければ給電可能と判断できる最も小さな前記電圧とを比較した結果を乗員に対して提示することにより、前記コイル間の位置合わせを支援する
     ことを特徴とする請求項1に記載の駐車支援方法。
  4.  前記コイル間の位置合わせを支援する以前に、前記第2の受電電圧と前記第3の受電電圧との対を複数回測定し、
     前記予め求めた電位差は、測定された複数の前記対の電位差の平均値である
    ことを特徴とする請求項1~3のいずれか一項に記載の駐車支援方法。
  5.  前記コイル間の位置合わせを支援する以前に、前記第2の受電電圧と前記第3の受電電圧との対を複数回測定し、
     前記予め求めた電位差は、測定された複数の前記対の電位差の最大値である
    ことを特徴とする請求項1~3のいずれか一項に記載の駐車支援方法。
  6.  前記コイル間の位置合わせを支援する際に、次回の前記コイル間の位置合わせを支援する時に使用する前記第2の受電電圧を測定することを特徴とする請求項1~5のいずれか一項に記載の駐車支援方法。
  7.  車両に搭載された受電コイルに対して非接触で給電する送電コイルが設けられた駐車スペースに前記車両を駐車する際のコイル間の位置合わせを支援する駐車支援装置であって、
     前記受電コイルに生じる第1の受電電圧を測定する電圧センサと、
     予め求めた電位差及び前記第1の受電電圧に基づいて給電可能か否かを判断した結果を前記車両の乗員に対して提示することにより、前記コイル間の位置合わせを支援する制御部と、を備え、
     前記予め求めた電位差は、
     前記コイル間の位置合わせを支援する以前にコイル間の位置合わせを行った時に測定した前記受電コイルの第2の受電電圧と、前記位置合わせ及び給電が終了した後に測定した前記受電コイルの第3の受電電圧との電位差である
     ことを特徴とする駐車支援装置。
PCT/JP2017/003148 2017-01-30 2017-01-30 駐車支援方法及び駐車支援装置 WO2018138907A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020197021401A KR102122273B1 (ko) 2017-01-30 2017-01-30 주차 지원 방법 및 주차 지원 장치
EP17894544.0A EP3575135B1 (en) 2017-01-30 2017-01-30 Parking assistance method and parking assistance device
CA3051815A CA3051815C (en) 2017-01-30 2017-01-30 Parking assistance method and parking assistance device
MX2019008719A MX2019008719A (es) 2017-01-30 2017-01-30 Metodo de asistencia al estacionamiento y dispositivo de asistencia al estacionamiento.
RU2019127042A RU2719085C1 (ru) 2017-01-30 2017-01-30 Способ помощи при парковке и устройство помощи при парковке
JP2018564071A JP6756381B2 (ja) 2017-01-30 2017-01-30 駐車支援方法及び駐車支援装置
CN201780085139.2A CN110234534B (zh) 2017-01-30 2017-01-30 停车辅助方法以及停车辅助装置
PCT/JP2017/003148 WO2018138907A1 (ja) 2017-01-30 2017-01-30 駐車支援方法及び駐車支援装置
US16/479,682 US11173794B2 (en) 2017-01-30 2017-01-30 Parking assistance method and parking assistance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/003148 WO2018138907A1 (ja) 2017-01-30 2017-01-30 駐車支援方法及び駐車支援装置

Publications (1)

Publication Number Publication Date
WO2018138907A1 true WO2018138907A1 (ja) 2018-08-02

Family

ID=62978455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003148 WO2018138907A1 (ja) 2017-01-30 2017-01-30 駐車支援方法及び駐車支援装置

Country Status (9)

Country Link
US (1) US11173794B2 (ja)
EP (1) EP3575135B1 (ja)
JP (1) JP6756381B2 (ja)
KR (1) KR102122273B1 (ja)
CN (1) CN110234534B (ja)
CA (1) CA3051815C (ja)
MX (1) MX2019008719A (ja)
RU (1) RU2719085C1 (ja)
WO (1) WO2018138907A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020061902A (ja) * 2018-10-12 2020-04-16 トヨタ自動車株式会社 受電装置、電力伝送システム、および受電装置の制御方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11318844B2 (en) * 2017-11-26 2022-05-03 Delta Electronics, Inc. On-board charging device and operating method thereof
JP7183888B2 (ja) * 2019-03-19 2022-12-06 トヨタ自動車株式会社 車両下部構造
JP7408401B2 (ja) * 2020-01-09 2024-01-05 東芝テック株式会社 カート給電装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010183814A (ja) * 2009-02-09 2010-08-19 Toyota Industries Corp 非接触電力伝送装置
JP2011254633A (ja) * 2010-06-02 2011-12-15 Toyota Motor Corp 共鳴型非接触受電装置の位置決め支援装置および共鳴型非接触受電装置の位置決め方法
JP2013005539A (ja) * 2011-06-14 2013-01-07 Denso Corp 非接触給電システム
JP5377119B2 (ja) 2009-07-02 2013-12-25 トヨタ自動車株式会社 駐車支援システムおよび駐車支援システムの制御方法
US20160064988A1 (en) * 2014-08-27 2016-03-03 Hyundai Motor Company Wireless charging system and method for controlling the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105052003A (zh) * 2013-03-29 2015-11-11 日产自动车株式会社 供电装置、车辆及非接触式供电系统
WO2014157093A1 (ja) * 2013-03-29 2014-10-02 日産自動車株式会社 非接触給電システム
JP6125948B2 (ja) * 2013-08-12 2017-05-10 本田技研工業株式会社 非接触充電装置
JP5979125B2 (ja) * 2013-12-11 2016-08-24 トヨタ自動車株式会社 非接触送電装置
JP2015144529A (ja) * 2014-01-31 2015-08-06 トヨタ自動車株式会社 非接触電力伝送システム、および充電ステーション
JP6213353B2 (ja) * 2014-04-04 2017-10-18 トヨタ自動車株式会社 受電装置およびそれを備える車両
US9463705B2 (en) * 2014-06-10 2016-10-11 Qualcomm Incorporated System and method for adaptive charging compliance control
JP6405885B2 (ja) 2014-10-28 2018-10-17 株式会社Ihi 給電装置及び給電方法
CN107206910B (zh) 2015-01-29 2018-08-31 日产自动车株式会社 停车辅助系统以及停车辅助方法
JP6454943B2 (ja) 2015-03-24 2019-01-23 パナソニックIpマネジメント株式会社 非接触給電装置及びそれを用いた非接触給電システム
CN105539186B (zh) * 2016-01-20 2017-07-07 厦门新页科技有限公司 一种汽车无线充电对准匹配系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010183814A (ja) * 2009-02-09 2010-08-19 Toyota Industries Corp 非接触電力伝送装置
JP5377119B2 (ja) 2009-07-02 2013-12-25 トヨタ自動車株式会社 駐車支援システムおよび駐車支援システムの制御方法
JP2011254633A (ja) * 2010-06-02 2011-12-15 Toyota Motor Corp 共鳴型非接触受電装置の位置決め支援装置および共鳴型非接触受電装置の位置決め方法
JP2013005539A (ja) * 2011-06-14 2013-01-07 Denso Corp 非接触給電システム
US20160064988A1 (en) * 2014-08-27 2016-03-03 Hyundai Motor Company Wireless charging system and method for controlling the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020061902A (ja) * 2018-10-12 2020-04-16 トヨタ自動車株式会社 受電装置、電力伝送システム、および受電装置の制御方法
CN111038294A (zh) * 2018-10-12 2020-04-21 丰田自动车株式会社 电力接收装置、电力传输系统以及电力接收装置的控制方法
JP7059887B2 (ja) 2018-10-12 2022-04-26 トヨタ自動車株式会社 受電装置、電力伝送システム、および受電装置の制御方法
CN111038294B (zh) * 2018-10-12 2023-08-29 丰田自动车株式会社 电力接收装置、电力传输系统以及电力接收装置的控制方法

Also Published As

Publication number Publication date
CN110234534A (zh) 2019-09-13
JPWO2018138907A1 (ja) 2019-12-12
KR102122273B1 (ko) 2020-06-15
CA3051815A1 (en) 2018-08-02
JP6756381B2 (ja) 2020-09-16
EP3575135A4 (en) 2020-01-15
CN110234534B (zh) 2020-07-07
KR20190100284A (ko) 2019-08-28
US20200406774A1 (en) 2020-12-31
RU2719085C1 (ru) 2020-04-17
MX2019008719A (es) 2019-09-09
US11173794B2 (en) 2021-11-16
EP3575135B1 (en) 2022-06-15
CA3051815C (en) 2021-06-01
EP3575135A1 (en) 2019-12-04

Similar Documents

Publication Publication Date Title
WO2018138907A1 (ja) 駐車支援方法及び駐車支援装置
US9199547B2 (en) Non-contact charging device
KR101725703B1 (ko) 비접촉 급전 시스템
KR101735233B1 (ko) 비접촉 급전 시스템 및 급전 장치
KR101735986B1 (ko) 비접촉 급전 시스템
WO2011142419A1 (ja) 共鳴型非接触給電システム
JP6401672B2 (ja) 受電装置及び非接触送電方法
RU2652719C1 (ru) Система помощи при парковке и способ помощи при парковке
EP3467999B1 (en) Coil position detecting method for non-contact power supply system, and non-contact power supply system
JP6566129B2 (ja) 非接触給電システムのコイル位置検出方法及び受電装置
JP5987972B2 (ja) 電気自動車及び電気自動車の駐車支援システム
JP6252433B2 (ja) 非接触送受電システム
JP2020068620A (ja) 車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894544

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564071

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197021401

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3051815

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017894544

Country of ref document: EP

Effective date: 20190830