WO2018138894A1 - 無線通信装置、無線通信方法および無線通信プログラム - Google Patents

無線通信装置、無線通信方法および無線通信プログラム Download PDF

Info

Publication number
WO2018138894A1
WO2018138894A1 PCT/JP2017/003065 JP2017003065W WO2018138894A1 WO 2018138894 A1 WO2018138894 A1 WO 2018138894A1 JP 2017003065 W JP2017003065 W JP 2017003065W WO 2018138894 A1 WO2018138894 A1 WO 2018138894A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
communication
wireless
mvno
wireless lan
Prior art date
Application number
PCT/JP2017/003065
Other languages
English (en)
French (fr)
Inventor
飯盛 英二
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2017/003065 priority Critical patent/WO2018138894A1/ja
Priority to JP2018564059A priority patent/JP6790128B2/ja
Publication of WO2018138894A1 publication Critical patent/WO2018138894A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/08Interfaces between hierarchically different network devices between user and terminal device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • H04W36/144Reselecting a network or an air interface over a different radio air interface technology
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength

Definitions

  • the present invention relates to a wireless communication device, a wireless communication method, and a wireless communication program.
  • SIM-free terminals that can use a low-cost SIM (Subscriber Identity Module) with low communication volume.
  • SIM Subscriber Identity Module
  • MVNO Mobile Virtual Network Operator
  • MVNO Mobile Virtual Network Operator
  • dual SIM terminals that are equipped with two SIMs, a SIM for the MVNO network and a SIM for the carrier network, and manually switching the SIM used by the user are also widespread.
  • dual terminals having a simultaneous communication function in which two SIMs can communicate with each network independently are also known.
  • JP 2013-115599 A Japanese Patent Laying-Open No. 2015-0776818 Japanese Patent Laying-Open No. 2015-201769
  • the dual terminal when a wireless LAN (Local Area Network) such as Wi-Fi (Wireless-Fidelity, registered trademark) is detected, the dual terminal is preferentially connected to the wireless LAN.
  • the wireless LAN has a large variation in communication quality, and depending on the degree of congestion and the communication band of the access point backbone, a situation where only low-speed communication can be performed occurs. For this reason, when the line is automatically switched, the throughput may be lowered, and the automatic line switching in the dual SIM may lower the user's convenience.
  • An object of one aspect of the present invention is to provide a wireless communication device, a wireless communication method, and a wireless communication program that can control automatic line switching that improves user convenience.
  • the wireless communication apparatus has a first wireless communication system that uses a first cellular network and a wireless LAN that have a high communication charge and guarantees the quality, and a communication charge from the first cellular network.
  • a communication unit that performs wireless communication using either one of the second wireless communication method that uses the second cellular network and the wireless LAN that are inexpensive and of low quality at the same time.
  • the wireless communication device includes a measuring unit that measures a communication speed of the wireless communication executed by the communication unit, and if the communication speed is less than a threshold, the communication method used for the wireless communication is changed to the other communication method.
  • a switching unit for switching for switching.
  • FIG. 1 is a schematic diagram illustrating a wireless communication device according to a first embodiment.
  • FIG. 2 is a diagram illustrating a hardware configuration example of the wireless communication apparatus according to the first embodiment.
  • FIG. 3 is a functional block diagram of the functional configuration of the wireless communication apparatus according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of information stored in the threshold DB.
  • FIG. 5 is a diagram illustrating an example of information stored in the distribution ratio DB for MVNO.
  • FIG. 6 is a diagram illustrating an example of information stored in the carrier distribution ratio DB.
  • FIG. 7 is a diagram illustrating an example of link aggregation switching.
  • FIG. 8 is a diagram illustrating an example of transition level change.
  • FIG. 9 is a flowchart showing the flow of the link aggregation switching process.
  • FIG. 10 is a diagram for explaining comparison of selected lines.
  • FIG. 1 is a schematic diagram illustrating a wireless communication device according to a first embodiment.
  • a wireless communication device 10 illustrated in FIG. 1 is an example of various computer devices such as a mobile terminal such as a smartphone and a notebook computer.
  • the wireless communication device 10 includes a SIM card 1 that has a high communication fee but guarantees QoS (Quality of Service) (hereinafter, simply referred to as SIM1), and a SIM that does not guarantee QoS even though the communication fee is low.
  • SIM1 Quality of Service
  • SIM2 Quality of Service 2
  • SIM1 stores subscriber information for performing communication with a cellular network (carrier network) provided by the carrier, and SIM2 performs communication with an MVNO network that borrows a part of the cellular network provided by the carrier.
  • the subscriber information is stored, and both can execute high-speed communication such as LTE (Long Term Evolution).
  • SIM1 stores subscriber information in which a contract with an upper limit of monthly traffic of 1 GB and a monthly traffic of 1000 yen is made, and SIM2 has no upper limit of monthly traffic.
  • the subscriber information with which the monthly communication amount is 2000 yen is stored.
  • a user performs wireless communication using a high-quality and high-priced SIM such that the upper limit value of the monthly communication amount is 7 GB and the monthly communication amount is 6000 yen.
  • the use of two SIMs of the MVNO network and the carrier network is more advantageous in terms of cost than the use of one SIM, and the user wants to use the carrier network only when the communication quality of the MVNO network is poor There is a demand.
  • Wi-Fi wireless LAN
  • Wi-Fi wireless LAN
  • the degree of congestion and the communication bandwidth of the backbone of the access point a situation where only low-speed communication can be performed may occur. In such a case, there is a demand for using another communication network.
  • the wireless communication device 10 supports communication using a plurality of SIMs at the same time, and dynamically switches communication in consideration of the communication quality of SIM1, SIM2, and wireless LAN.
  • the wireless communication device 10 uses link aggregation (hereinafter sometimes referred to as LA) for simultaneous communication using the SIM 1 and the wireless LAN, and simultaneous communication using the SIM 2 and the wireless LAN.
  • LA link aggregation
  • the wireless communication device 10 provides a mechanism for efficiently performing three-dimensional wireless line control depending on the communication quality of the SIM1, SIM2, and wireless LAN using the dual SIM technology and the LA technology.
  • the wireless communication device 10 selects one of the first LA for simultaneous communication using the SIM1 and the wireless LAN and the second LA for simultaneous communication using the SIM2 and the wireless LAN. And execute. Then, the wireless communication device 10 measures the throughput of the currently selected LA, and switches to the other LA when the throughput becomes less than the threshold. For example, the wireless communication device 10 normally performs wireless communication in the second LA that simultaneously uses the SIM2 and the wireless LAN. When the throughput decreases, the SIM1 and the wireless LAN are simultaneously used until the throughput is recovered. Wireless communication is executed using the first LA.
  • FIG. 2 is a diagram of a hardware configuration example of the wireless communication device 10 according to the first embodiment.
  • the wireless communication device 10 includes a modem 11, an RF (Radio Frequency) circuit 12 a, an RF circuit 13 a, a wireless communication unit 14, an HDD (Hard Disk Drive) 15, a memory 16, and a processor 17.
  • RF Radio Frequency
  • HDD Hard Disk Drive
  • the modem 11 is a data transmission / reception device, and has a SIM1 slot 12 and a SIM2 slot 13.
  • the SIM1 slot 12 is a slot into which the SIM card 1 is inserted
  • the SIM2 slot 13 is a slot into which the SIM card 2 is inserted.
  • the RF circuit 12a is a wireless unit that performs wireless communication in accordance with subscriber information stored in the SIM 1, and transmits and receives wireless signals via the antenna 12b.
  • the RF circuit 13a is a wireless unit that performs wireless communication according to the subscriber information stored in the SIM 2, and transmits and receives wireless signals via the antenna 13b. That is, the wireless communication device 10 has a simultaneous communication function that allows each of the two SIMs to communicate independently with each network.
  • the wireless communication unit 14 is a wireless unit that performs wireless communication by connecting to a wireless LAN such as Wi-Fi, and transmits and receives wireless signals via the antenna 14b.
  • the HDD 15 is an example of a storage device that stores programs, data, and the like.
  • the HDD 15 stores a program that performs the same function as a processing unit described later.
  • Examples of the memory 16 include RAM (Random Access Memory) such as SDRAM (Synchronous Dynamic Random Access Memory), ROM (Read Only Memory), flash memory, and the like.
  • Examples of the processor 17 include a CPU (Central Processing Unit), a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), a PLD (Programmable Logic Device), and the like.
  • the processor 17 executes the wireless communication method by reading and executing the program from the HDD 15.
  • This program can be distributed via a network such as the Internet.
  • This program is recorded on a computer-readable recording medium such as a hard disk, flexible disk (FD), CD-ROM, MO (Magneto-Optical disk), DVD (Digital Versatile Disc), and the like. It can be executed by being read.
  • FIG. 3 is a functional block diagram of the functional configuration of the wireless communication apparatus 10 according to the first embodiment.
  • the wireless communication device 10 includes a threshold DB 20, an MVNO distribution ratio DB 21, a carrier distribution ratio DB 22, and a ratio status DB 23.
  • the wireless communication device 10 includes an MVNO transmission / reception unit 24, a wireless LAN transmission / reception unit 25, a carrier transmission / reception unit 26, an MVNO quality measurement unit 27, a wireless LAN quality measurement unit 28, a carrier quality measurement unit 29, a switching unit 30, and an MVNO control unit. 31 and a carrier control unit 32.
  • the threshold DB 20, the MVNO distribution ratio DB 21, the carrier distribution ratio DB 22, and the ratio status DB 23 are databases stored in the HDD 15.
  • Threshold DB 20 is a database that stores various threshold values used for LA switching.
  • FIG. 4 is a diagram illustrating an example of information stored in the threshold value DB 20. As shown in FIG. 4, the threshold DB 20 stores the minimum throughput (bps), the low quality duration (s), and the MVNO SIM quality check interval (s).
  • “Minimum throughput” is the lower limit value of the throughput for performing LA switching
  • “Th2” is set as the minimum throughput of the second LA using SIM2
  • “Th1” is set as the minimum throughput of the first LA using SIM1.
  • “Low quality duration” is the time during which the minimum throughput continues
  • “T2” is set for the second LA
  • “T1” is set for the first LA.
  • the “MVNO quality check interval” is the time for performing re-measurement of the throughput of the second LA after switching from the second LA to the first LA. Specifically, after switching from the second LA to the first LA, after the “T3 (s)” has elapsed, re-measurement of the throughput of the second LA is performed.
  • the MVNO distribution ratio DB 21 is a database that stores the socket distribution ratio between the MVNO (LTE) and the wireless LAN during wireless communication by the second LA using the SIM2.
  • FIG. 5 is a diagram illustrating an example of information stored in the distribution ratio DB 21 for MVNO. As shown in FIG. 5, the MVNO distribution ratio DB 21 stores the distribution ratio between the MVNO and the wireless LAN in association with each level from level 1 to level 10. Each level is a level determined by the throughput in the second LA.
  • wireless LAN: LTE 0: 100
  • wireless LAN: LTE 10: 90
  • wireless LAN: LTE 20:
  • wireless LAN: LTE 30: 70
  • wireless LAN: LTE 50: 50
  • wireless LAN: LTE 80: 20.
  • wireless LAN: LTE 90: 10 in the case of level 9
  • wireless LAN: LTE 95: 5
  • wireless LAN: LTE 100: 0.
  • the socket rate of the MVNO network is 90% and the socket of the wireless LAN is used. It shows that wireless communication is executed with a rate of 10%. That is, when the level value is 2, the number of sockets that pass through the wireless LAN among the 100 sockets used by the application is 10, and the number of sockets that passes through the MVNO network is 90.
  • the carrier distribution ratio DB 22 is a database that stores a socket distribution ratio between a carrier (LTE) and a wireless LAN during wireless communication by the first LA using the SIM1.
  • FIG. 6 is a diagram illustrating an example of information stored in the carrier distribution ratio DB 22. As illustrated in FIG. 6, the carrier distribution ratio DB 22 stores the distribution ratio between the carrier and the wireless LAN in association with each level from level 1 to level 10. Each level is a level determined by the throughput at the time of the first LA.
  • wireless LAN: LTE 0: 100
  • wireless LAN: LTE 10: 90
  • wireless LAN: LTE 20:
  • wireless LAN: LTE 20:
  • wireless LAN: LTE 30: 70
  • wireless LAN: LTE 40: 60
  • wireless LAN: LTE 60: 40
  • each distribution ratio DB can be arbitrarily changed.
  • the same distribution ratio can be set in the MVNO distribution ratio DB 21 and the carrier distribution ratio DB 22, and different distribution ratios can also be set.
  • the ratio status DB 23 is a database that stores the current ratio status. Specifically, the ratio status DB 23 stores, for the application being executed, information specifying whether the method used is the first LA or the second LA, and the ratio ratio between the wireless LAN socket and each LTE socket. To do. The information stored here is updated by the MVNO control unit 31 and the carrier control unit 32 described later.
  • the MVNO transmission / reception unit 24 is a processing unit that generates a socket used for the MVNO network in accordance with a distribution rate specified by the MVNO control unit 31 described later, and transmits / receives data using the MVNO network. Specifically, the MVNO transmission / reception unit 24 establishes a connection with the partner apparatus on the MVNO network, and transmits data to the partner apparatus using a socket.
  • the MVNO transmission / reception unit 24 uses the connection established with the counterpart device to write data to the socket, and the counterpart device side reads the data.
  • the counterpart device returns a request from the wireless communication device 10, and the wireless communication device 10 receives data using the socket.
  • the MVNO transmission / reception unit 24 closes the socket.
  • the MVNO transmission / reception unit 24 uses the connection established with the counterpart device to write data from the counterpart device side to the socket.
  • the counterpart device returns a request from the wireless communication device 10, and the wireless communication device 10 receives data using the socket.
  • the MVNO transmission / reception unit 24 reads data from the socket. In this manner, the MVNO transmission / reception unit 24 performs data transmission / reception by socket communication via the MVNO network.
  • the wireless LAN transmission / reception unit 25 is a processing unit that generates a socket used for the wireless LAN in accordance with an allocation rate specified by the MVNO control unit 31 or the carrier control unit 32 described later, and transmits / receives data using the wireless LAN. . Specifically, the wireless LAN transmission / reception unit 25 establishes a connection with the partner apparatus on the wireless LAN, and transmits data to the partner apparatus using a socket.
  • the wireless LAN transmission / reception unit 25 performs data writing to the socket using the connection established with the partner device, and the partner device side reads the data.
  • the counterpart device returns a request from the wireless communication device 10, and the wireless communication device 10 receives data using the socket.
  • the wireless LAN transceiver unit 25 closes the socket.
  • the wireless LAN transmitting / receiving unit 25 executes data writing from the counterpart device side to the socket using the connection established with the counterpart device.
  • the counterpart device returns a request from the wireless communication device 10, and the wireless communication device 10 receives data using the socket.
  • the wireless LAN transmission / reception unit 25 reads data from the socket. In this way, the wireless LAN transmission / reception unit 25 performs data transmission / reception by socket communication via the wireless LAN.
  • the carrier transmission / reception unit 26 is a processing unit that generates a socket to be used for the carrier network in accordance with a distribution rate specified by the carrier control unit 32 described later, and transmits / receives data using the carrier network. Specifically, the carrier transmission / reception unit 26 establishes a connection with the partner apparatus on the carrier network, and transmits data to the partner apparatus using a socket.
  • the carrier transmission / reception unit 26 executes data writing to the socket using the connection established with the partner device, and the partner device side reads the data.
  • the counterpart device returns a request from the wireless communication device 10, and the wireless communication device 10 receives data using the socket.
  • the carrier transmitting / receiving unit 26 closes the socket.
  • the carrier transmitting / receiving unit 26 uses the connection established with the partner device to write data from the partner device side to the socket.
  • the counterpart device returns a request from the wireless communication device 10, and the wireless communication device 10 receives data using the socket.
  • the carrier transmitting / receiving unit 26 reads data from the socket. In this way, the carrier transmission / reception unit 26 transmits / receives data by socket communication via the carrier network.
  • the MVNO quality measurement unit 27 is a processing unit that measures the wireless quality of the MVNO network. Specifically, the MVNO quality measuring unit 27 starts from the socket communication via the MVNO network, the throughput, the radio wave intensity (RSSI: Received Signal Strength Indication), the link speed that is the upper limit of the throughput, the amount of transmission / reception in socket units, and the usage Obtained SSID (Service Set Identifier) and the like are output to the switching unit 30 and the MVNO control unit 31.
  • RSSI Received Signal Strength Indication
  • the MVNO quality measurement unit 27 calculates a throughput (bps) as a communication amount per unit time from the data capacity and transmission time for each socket.
  • the MVNO quality measurement unit 27 measures the radio signal strength from the received signal.
  • the MVNO quality measurement unit 27 specifies the communication standard from the type of the communication line being used, and specifies whether the network type is LTE or 3G.
  • the MVNO quality measurement unit 27 calculates the total amount of data exchanged by an input / output function such as read () and write () for each socket used in the MVNO network as a transmission / reception amount in socket units.
  • the wireless LAN quality measuring unit 28 is a processing unit that measures the wireless LAN wireless quality. Specifically, the wireless LAN quality measurement unit 28 acquires the throughput, the radio wave intensity, the link speed that is the throughput upper limit value, the amount of transmission / reception in socket units, the SSID that is used, etc. from the socket communication using the wireless LAN. Then, the data is output to the switching unit 30 and the MVNO control unit 31.
  • the wireless LAN quality measurement unit 28 calculates a throughput (bps) as a communication amount per unit time from the data capacity and transmission time for each socket.
  • the wireless LAN quality measurement unit 28 measures the wireless signal strength from the received signal. There is a weak relationship between the strength of the signal level and the communication speed, and it can be expected that the higher the wireless signal strength, the faster the communication speed.
  • the wireless LAN quality measurement unit 28 specifies the link speed from the type of wireless LAN being used.
  • the link speed is a theoretical speed with the access point currently connected to the wireless LAN, and changes depending on the connection status. Throughput never exceeds the link speed.
  • the wireless LAN quality measuring unit 28 calculates the total amount of data exchanged by input / output functions such as read () and write () as socket transmission / reception amounts for each socket used in the wireless LAN. To do. Further, the wireless LAN quality measurement unit 28 extracts the SSID from the identifier included in the wireless LAN wireless communication.
  • the carrier quality measuring unit 28 is a processing unit that measures the wireless quality of the carrier network. Specifically, the carrier quality measurement unit 28 obtains the measured throughput, the radio wave intensity, the link speed that is the upper limit of the throughput, the transmission / reception amount in socket units, the SSID used, and the like from the socket communication via the carrier network. Then, the data is output to the switching unit 30 and the MVNO control unit 31. For example, the carrier quality measurement unit 28 uses the same method as the MVNO quality measurement unit 27 to measure the throughput and radio signal strength, specify the network type, and the like.
  • the switching unit 30 performs switching between the first LA and the second LA using the measurement result of each quality measuring unit. Specifically, the switching unit 30 performs wireless communication using the first LA when wireless communication using the second LA is being performed and a state in which the measured throughput of the second LA is less than the threshold continues for a predetermined time. Switch to communication. Thereafter, the switching unit 30 switches to wireless communication using the second LA and measures the actually measured throughput of the second LA when a certain time has elapsed since the wireless communication using the first LA has been performed. Here, the switching unit 30 maintains the first LA when the measured throughput of the second LA is less than the threshold, and switches to the second LA again when the measured throughput of the second LA is equal to or greater than the threshold.
  • the switching unit 30 determines that the total value of the throughput measured by the MVNO quality measurement unit 27 and the throughput measured by the wireless LAN quality measurement unit 28 is the minimum throughput “ It is determined whether it is less than “Th2”. When the total throughput value is less than “Th2”, the switching unit 30 switches to the first LA. At this time, the switching unit 30 instructs the MVNO control unit 31 to stop control, and instructs the carrier control unit 32 to start control. On the other hand, when the total value of the throughput is “Th2” or more, the switching unit 30 determines to maintain the second LA and instructs the MVNO control unit 31 to continue control.
  • the switching unit 30 determines that the total value of the throughput measured by the carrier quality measuring unit 27 and the throughput measured by the wireless LAN quality measuring unit 28 is the minimum throughput “ It is determined whether it is less than “Th1”. When the total throughput is less than “Th1”, the switching unit 30 switches to the second LA. At this time, the switching unit 30 instructs the MVNO control unit 31 to start control, and instructs the carrier control unit 32 to stop control. On the other hand, when the total value of the throughput is “Th1” or more, the switching unit 30 determines to maintain the first LA, and instructs the carrier control unit 32 to continue control.
  • FIG. 7 is a diagram for explaining an example of switching link aggregation.
  • the switching unit 30 when communication is started, the switching unit 30 performs wireless communication using the second LA via the MVNO network with a low charge. Thereafter, when the throughput of the second LA falls below the threshold (Th2), the switching unit 30 switches to the first LA using the carrier network. Then, when the throughput of the second LA becomes equal to or greater than the threshold (Th2), the switching unit 30 switches to the second LA again.
  • the switching unit 30 basically executes the second LA using the MVNO network in which the quality of goods is in an allowable range and the charge is low, and the quality of the second LA is lowered to an unacceptable level. , Switch to the first LA. However, the switching unit 30 switches to the second LA when the quality of the second LA returns to the allowable range.
  • the MVNO control unit 31 is a processing unit that executes the second LA using the MVNO network and the wireless LAN. That is, the MVNO control unit 31 is a processing unit that determines a ratio between the number of sockets used for the wireless LAN and the number of sockets used for the MVNO network based on the wireless quality of the wireless LAN or the wireless quality of the MVNO network. is there.
  • the MVNO control unit 31 After receiving the control start instruction from the switching unit 30, the MVNO control unit 31 is notified of the measurement result by the MVNO quality measurement unit 27 and the measurement result by the wireless LAN quality measurement unit 28, respectively.
  • the socket distribution ratio between the MVNO network and the wireless LAN is determined and stored in the ratio status DB 23. Then, the MVNO control unit 31 controls the socket assignment of the MVNO transmission / reception unit 24 and the wireless LAN transmission / reception unit 25 according to the distribution ratio of the sockets, and executes simultaneous communication.
  • the MVNO control unit 31 stops socket allocation to the MVNO transmission / reception unit 24 and the wireless LAN transmission / reception unit 25.
  • the MVNO control unit 31 compares the throughput measured by the MVNO quality measurement unit 27 with a threshold value to determine the level, and specifies the distribution rate corresponding to the determined level from the MVNO distribution rate DB 21. And the MVNO control part 31 can perform allocation of a socket according to the specified distribution rate.
  • the MVNO control unit 31 can also determine a level value indicating a rate according to which radio quality is improved. That is, the MVNO control unit 31 determines a distribution ratio for distributing data of one application to the wireless LAN or the MVNO network in units of sockets.
  • the MVNO control unit 31 first executes communication using only the MVNO network, and increases the wireless LAN socket rate as the wireless LAN wireless quality improves. Increase it.
  • the MVNO control unit 31 eliminates the MVNO network socket and transmits all data through the wireless LAN socket.
  • the MVNO control unit 31 has a high degree of expectation of stable communication when the radio wave intensity is kept high.
  • the transition level is shifted not by 1 but by a predetermined number of 2 or more.
  • the MVNO control unit 31 increases the transition time from the MVNO network to the wireless LAN because there is a high possibility that the communication becomes unstable when the radio field intensity is low or not constant. In order to do this, the transition level is shifted one by one.
  • FIG. 8 is a diagram illustrating an example of transition level change.
  • the MVNO control unit 31 starts from the transition level 0 and sets the socket ratio of the MVNO network to 100%. Subsequently, when the quality of the wireless LAN is improved at the next timing, the MVNO control unit 31 increases the transition level to 1 and changes the socket ratio of the wireless LAN to 10% and the socket ratio of the MVNO network to 90%. .
  • the MVNO control unit 31 In the state of transition level 1, if the wireless LAN quality further improves at the next timing, the MVNO control unit 31 increases the transition level to 2 to increase the socket ratio of the wireless LAN to 20% and the socket ratio of the MVNO network to 80. Change to%. On the other hand, when the quality of the wireless LAN deteriorates, the MVNO control unit 31 lowers the transition level to 0, and changes the socket ratio of the wireless LAN to 0% and the socket ratio of the MVNO to 100%.
  • the MVNO control unit 31 measures the quality of the wireless LAN at each transition level. If the quality of the wireless LAN is improved, the MVNO control unit 31 increases the transition level to increase the number of sockets of the wireless LAN. Reduce the number of net sockets. On the other hand, when the quality of the wireless LAN deteriorates, the MVNO control unit 31 lowers the transition level, reduces the number of sockets of the wireless LAN, and increases the number of sockets of the MVNO. Further, even in a state where the wireless quality of the wireless LAN is constant and the wireless quality of the MVNO network changes, it is possible to similarly change the socket level by changing the transition level.
  • the carrier control unit 32 is a processing unit that executes a first LA using a carrier network and a wireless LAN. That is, the carrier control unit 32 is a processing unit that determines a ratio between the number of sockets used for the wireless LAN and the number of sockets used for the carrier network based on the wireless quality of the wireless LAN or the wireless quality of the carrier network. is there. In addition, since the specific content of the distribution process which the carrier control part 32 performs is the same as that of the MVNO control part 31, detailed description is abbreviate
  • FIG. 9 is a flowchart showing the flow of the link aggregation switching process.
  • the switching unit 30 starts measuring the throughput of the second LA (S102). Subsequently, the switching unit 30 determines whether or not the throughput of the second LA is equal to or less than the threshold (Th2) (S103).
  • the switching unit 30 maintains the second LA and repeats S102.
  • the switching unit 30 determines whether the state where the throughput is equal to or less than the threshold (Th2) is equal to or longer than the low quality duration (T2). Is determined (S104).
  • the switching unit 30 maintains the second LA and repeats S102.
  • the switching unit 30 switches to the first LA (S105), The measured throughput of simultaneous data communication between the carrier network to be controlled and the wireless LAN is measured (S106).
  • the switching unit 30 determines whether or not the throughput of the first LA is equal to or less than the threshold (Th1) until the MVNO quality check time (T3) elapses after switching to the first LA (S107: No). (S108).
  • the switching unit 30 maintains the first LA and repeats S106.
  • the switching unit 30 determines whether the state where the throughput is equal to or lower than the threshold (Th1) is equal to or longer than the low quality duration (T1). Is determined (S109).
  • the switching unit 30 maintains the first LA and repeats S106.
  • the switching unit 30 switches to the second LA (S110), repeat.
  • the wireless communication device 10 has a two-dimensional LA function applied to each of the SIM1-wireless LAN and the SIM2-wireless LAN, and performs two-dimensional management in a situation where wireless LAN communication becomes impossible.
  • quality control is performed in a form that combines the SIM2 and the wireless LAN.
  • the wireless communication device 10 can be controlled so as not to fall into a state where the user cannot communicate.
  • the wireless communication device 10 introduces an evaluation function for switching the LA control to the first LA, and dynamically changes the two-dimensional management, thereby making a pseudo two-dimensional Perform switching.
  • the wireless communication device 10 can perform control to automatically switch the line by judging the deterioration of the communication quality.
  • the quality of the wireless communication apparatus 10 deteriorates due to the wireless LAN single communication under the wireless LAN communication environment. Communication can also prevent quality degradation. Therefore, the user can maintain communication with good communication quality while reducing communication cost.
  • FIG. 10 is a diagram for explaining comparison of selected lines.
  • Wi-Fi wireless LAN
  • Wi-Fi wireless LAN
  • the wireless quality of Wi-Fi is degraded at time T3 and time T4.
  • Wi-Fi is preferentially selected regardless of quality, so Wi-Fi is selected at all times.
  • the throughput decreases and the user's stress increases.
  • the wireless communication device 10 performs wireless communication in the second LA that uses the MVNO network and Wi-Fi at the same time from time T1 to time T3, and at time T3 when throughput decreases. Switch to the first LA using the carrier network and Wi-Fi. Therefore, since the MVNO network is used when the throughput is good and the carrier network is used when the throughput is lowered, the user can execute wireless communication without feeling stress.
  • the example in which the second LA is executed first and the throughput is switched to the first LA when the throughput decreases is not limited to this, but the first LA can be executed first.
  • the second LA when the second LA is first executed and a predetermined time has elapsed after switching to the first LA, it can be automatically returned to the second LA.
  • the wireless communication device 10 operates as an information processing device that executes a wireless communication method by reading and executing a program. That is, the wireless communication device 10 includes an MVNO transmission / reception unit 24, a wireless LAN transmission / reception unit 25, a carrier transmission / reception unit 26, an MVNO quality measurement unit 27, a wireless LAN quality measurement unit 28, a carrier quality measurement unit 29, a switching unit 30, and an MVNO control unit. 31, a program that executes the same function as the carrier control unit 32 is executed.
  • the wireless communication device 10 includes the MVNO transmission / reception unit 24, the wireless LAN transmission / reception unit 25, the carrier transmission / reception unit 26, the MVNO quality measurement unit 27, the wireless LAN quality measurement unit 28, the carrier quality measurement unit 29, the switching unit 30, and the MVNO control.
  • a process for executing the same function as the unit 31 and the carrier control unit 32 can be executed.
  • the program referred to in the other embodiments is not limited to being executed by the wireless communication device 10.
  • the present invention can be similarly applied to a case where another computer or server executes the program or a case where these programs cooperate to execute the program.
  • each component of each illustrated apparatus is functionally conceptual and does not necessarily need to be physically configured as illustrated. That is, the specific form of distribution / integration of each device is not limited to that shown in the figure. That is, all or a part of them can be configured to be functionally or physically distributed / integrated in arbitrary units according to various loads or usage conditions. Further, all or any part of each processing function performed in each device may be realized by a CPU and a program analyzed and executed by the CPU, or may be realized as hardware by wired logic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

無線通信装置は、通信料が高く品質が保証される第1のセルラー網と無線LANとを同時に用いる第1の無線通信方式と、第1のセルラー網より通信料が安く低品質である第2のセルラー網と無線LANとを同時に用いる第2の無線通信方式のいずれか一方を用いて無線通信を実行する。そして、無線通信装置は、実行される無線通信の通信速度を測定し、通信速度が閾値未満の場合、無線通信に用いられている通信方式を他方の通信方式に切り替える。

Description

無線通信装置、無線通信方法および無線通信プログラム
 本発明は、無線通信装置、無線通信方法および無線通信プログラムに関する。
 従来から、通信量等が安い格安SIM(Subscriber Identity Module)を用いることができるSIMフリー端末の需要が増加している。一方で、格安SIMは、キャリアのセルラー網の一部を借用した通信帯域であるMVNO(Mobile Virtual Network Operator)網を使用するので、多くのユーザが利用する駅などの環境等では、キャリアが提供するセルラー網に比べて輻輳が発生しやすい。
 このようなことから、MVNO網用のSIMとキャリア網用のSIMの2つのSIMを搭載し、ユーザが使用するSIMを手動で切り替えるデュアルSIM端末も普及している。近年では、2つのSIMそれぞれが独立で各網と通信できる同時通信機能を有するデュアル端末も知られている。
特開2013-115599号公報 特開2015-076818号公報 特開2015-201769号公報
 上記デュアル端末では、Wi-Fi(Wireless-Fidelity、登録商標)などの無線LAN(Local Area Network)が検出された場合は、無線LANに優先的に接続する。ところが、無線LANは、通信品質について変動が大きく、混雑度やアクセスポイントのバックボーンの通信帯域によっては、低速通信しか行えないような状況が発生する。このため、回線が自動的に切り替わることで、却ってスループットが低下することがあり、デュアルSIMにおける回線の自動切換えがユーザの利便性をかえって低下させることがある。
 一つの側面では、ユーザの利便性が向上する回線の自動切替を制御することができる無線通信装置、無線通信方法および無線通信プログラムを提供することを目的とする。
 第1の案では、無線通信装置は、通信料が高く品質が保証される第1のセルラー網と無線LANとを同時に用いる第1の無線通信方式と、前記第1のセルラー網より通信料が安く低品質である第2のセルラー網と前記無線LANとを同時に用いる第2の無線通信方式のいずれか一方を用いて無線通信を実行する通信部を有する。無線通信装置は、前記通信部によって実行される前記無線通信の通信速度を測定する測定部と、前記通信速度が閾値未満の場合、前記無線通信に用いられている通信方式を他方の通信方式に切り替える切替部とを有する。
 一つの側面では、ユーザの利便性が向上する回線の自動切替を制御することができる。
図1は、実施例1にかかる無線通信装置を説明する図である。 図2は、実施例1にかかる無線通信装置のハードウェア構成例を示す図である。 図3は、実施例1にかかる無線通信装置の機能構成を示す機能ブロック図である。 図4は、閾値DBに記憶される情報の例を示す図である。 図5は、MVNO用振分率DBに記憶される情報の例を示す図である。 図6は、キャリア用振分率DBに記憶される情報の例を示す図である。 図7は、リンクアグリケーションの切替例を説明する図である。 図8は、遷移レベルの変化例を説明する図である。 図9は、リンクアグリケーションの切替処理の流れを示すフローチャートである。 図10は、選択される回線の比較を説明する図である。
 以下に、本発明にかかる無線通信装置、無線通信方法および無線通信プログラムの実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
[無線通信装置の説明]
 図1は、実施例1にかかる無線通信装置を説明する図である。図1に示す無線通信装置10は、スマートフォンなどの移動体端末、ノートパソコンなどの各種コンピュータ装置の一例である。この無線通信装置10は、通信料が高いがQoS(Quality of Service)が保証されるSIMカード1(以降では、単にSIM1と記載する場合がある)と、通信料が安いがQoSが保証されないSIMカード2(以降では、単にSIM2と記載する場合がある)とを搭載するデュアルSIM端末である。
 SIM1は、キャリアが提供するセルラー網(キャリア網)と通信を実行するための加入者情報を記憶し、SIM2は、キャリアが提供するセルラー網の一部を借用したMVNO網と通信を実行するための加入者情報を記憶し、いずれもLTE(Long Term Evolution)などの高速通信を実行できる。例えば、SIM1は、1か月の通信量の上限が1GBで1か月の通信量が1000円の契約が結ばれた加入者情報を記憶し、SIM2は、1か月の通信量の上限なく1か月の通信量が2000円の契約が結ばれた加入者情報を記憶する。
 一般的に、ユーザは、例えば1か月の通信量の上限値が7GBで1か月の通信量が6000円などのように、高品質かつ高料金のSIMを用いた無線通信を実行する。しかし、MVNO網とキャリア網の2つのSIMを使った方が1枚のSIMを使うよりもコストに関してメリットがある場合があり、ユーザとしてはMVNO網の通信品質が悪いときだけキャリア網を使いたいという需要がある。
 さらに、ユーザは、高速であり通信料もかからないWi-Fiなどの無線LANを優先的に使用したい傾向がある。しかし、混雑度やアクセスポイントのバックボーンの通信帯域によっては、低速通信しか行えないような状況が発生することがあり、このような場合は、他の通信網を利用したいという需要もある。
 そこで、無線通信装置10は、複数SIMを用いた通信を同時にサポートし、SIM1、SIM2、無線LANの各通信品質を考慮して、通信を動的に切替える。具体的には、無線通信装置10は、SIM1と無線LANとを用いた同時通信に対するリンクアグリケーション(Link Aggregation、以下ではLAと記載する場合がある)と、SIM2と無線LANとを用いた同時通信に対するLAとを実行する。すなわち、無線通信装置10は、デュアルSIM技術とLA技術を用いて、SIM1、SIM2、無線LANの通信品質に依存した3次元の無線回線制御を効率的に行う仕組みを提供する。
 より詳細には、無線通信装置10は、SIM1と無線LANとを用いた同時通信に対する第1のLAと、SIM2と無線LANとを用いた同時通信に対する第2のLAとのいずれかを選択して実行する。そして、無線通信装置10は、選択中のLAのスループットを測定し、スループットが閾値未満となった場合に、他方のLAに切り替える。例を挙げると、無線通信装置10は、通常はSIM2と無線LANとを同時に用いる第2のLAで無線通信を行い、スループットが低下すると、スループットが回復するまで、SIM1と無線LANとを同時に用いる第1のLAを用いて無線通信を実行する。
[ハードウェア構成]
 図2は、実施例1にかかる無線通信装置10のハードウェア構成例を示す図である。図2に示すように、無線通信装置10は、モデム11、RF(Radio Frequency)回路12a、RF回路13a、無線通信部14、HDD(Hard Disk Drive)15、メモリ16、プロセッサ17を有する。
 モデム11は、データの送受信装置であり、SIM1用スロット12とSIM2用スロット13とを有する。SIM1用スロット12は、SIMカード1を挿入するスロットであり、SIM2用スロット13は、SIMカード2を挿入するスロットである。
 RF回路12aは、SIM1に記憶される加入者情報にしたがって無線通信を実行する無線部であり、アンテナ12bを介して無線信号を送受信する。RF回路13aは、SIM2に記憶される加入者情報にしたがって無線通信を実行する無線部であり、アンテナ13bを介して無線信号を送受信する。すなわち、無線通信装置10は、2つのSIMそれぞれが独立で各網と通信できる同時通信機能を有する。
 無線通信部14は、Wi-Fiなど無線LANに接続して無線通信を実行するする無線部であり、アンテナ14bを介して無線信号を送受信する。HDD15は、プログラムやデータなどを記憶する記憶装置の一例であり、例えば後述する処理部と同様の機能を実行するプログラムを記憶する。
 メモリ16は、SDRAM(Synchronous Dynamic Random Access Memory)等のRAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ等が挙げられる。プロセッサ17の一例としては、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、PLD(Programmable Logic Device)等が挙げられる。
 プロセッサ17は、HDD15からプログラムを読み出して実行することで無線通信方法を実行する。このプログラムは、インターネットなどのネットワークを介して配布することができる。また、このプログラムは、ハードディスク、フレキシブルディスク(FD)、CD-ROM、MO(Magneto-Optical disk)、DVD(Digital Versatile Disc)などのコンピュータで読み取り可能な記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行することができる。
[機能構成]
 図3は、実施例1にかかる無線通信装置10の機能構成を示す機能ブロック図である。図3に示すように、無線通信装置10は、閾値DB20、MVNO用振分率DB21、キャリア用振分率DB22、割合状況DB23を有する。また、無線通信装置10は、MVNO送受信部24、無線LAN送受信部25、キャリア送受信部26、MVNO品質測定部27、無線LAN品質測定部28、キャリア品質測定部29、切替部30、MVNO制御部31、キャリア制御部32を有する。
 なお、閾値DB20、MVNO用振分率DB21、キャリア用振分率DB22、割合状況DB23は、HDD15に記憶されるデータベースである。MVNO送受信部24、無線LAN送受信部25、キャリア送受信部26、MVNO品質測定部27、無線LAN品質測定部28、キャリア品質測定部29、切替部30、MVNO制御部31、キャリア制御部32は、プロセッサ17が有する電子回路の一例やプロセッサ17が実行するプロセスの一例である。
 閾値DB20は、LAの切替に用いる各種閾値を記憶するデータベースである。図4は、閾値DB20に記憶される情報の例を示す図である。図4に示すように、閾値DB20は、最低スループット(bps)、低品質継続時間(s)、MVNOのSIM品質チェック間隔(s)を記憶する。
 「最低スループット」は、LAの切替を実行するスループットの下限値であり、SIM2を用いた第2LAの最低スループットとして「Th2」が設定され、SIM1を用いた第1LAの最低スループットとして「Th1」が設定される。「低品質継続時間」は、最低スループットが継続する時間であり、第2LAに対して「T2」が設定され、第1LAに対して「T1」が設定される。「MVNO品質チェック間隔」は、第2LAから第1LAに切り替わった後、第2LAのスループットの再測定を実行する時間である。具体的には、第2LAから第1LAに切り替わった後、「T3(s)」経過後に、第2LAのスループットの再測定を実行することを示す。
 MVNO用振分率DB21は、SIM2を用いた第2LAによる無線通信時のMVNO(LTE)と無線LANとのソケット振分率を記憶するデータベースである。図5は、MVNO用振分率DB21に記憶される情報の例を示す図である。図5に示すように、MVNO用振分率DB21は、レベル1からレベル10の各レベルに対応付けてMVNOと無線LANとの振分率を記憶する。各レベルは、第2LA時のスループットによって決定されるレベルである。
 図5の例では、レベル1の場合、無線LAN:LTE=0:100であり、レベル2の場合、無線LAN:LTE=10:90であり、レベル3の場合、無線LAN:LTE=20:80であり、レベル4の場合、無線LAN:LTE=30:70である。また、レベル5の場合、無線LAN:LTE=50:50であり、レベル6の場合、無線LAN:LTE=70:30であり、レベル7の場合、無線LAN:LTE=80:20である。また、レベル8の場合、無線LAN:LTE=90:10であり、レベル9の場合、無線LAN:LTE=95:5であり、レベル10の場合、無線LAN:LTE=100:0である。
 図5の例では、レベル1と判定された場合、MVNO網のみを用いて無線通信を実行することを示し、レベル2と判定された場合、MVNO網のソケット率を90%かつ無線LANのソケット率を10%として無線通信を実行することを示す。つまり、レベル値が2の場合、アプリケーションが使用する100個のソケットのうち、無線LANを経由するソケット数が10個であり、MVNO網を経由するソケット数が90個となる。
 キャリア用振分率DB22は、SIM1を用いた第1LAによる無線通信時のキャリア(LTE)と無線LANとのソケット振分率を記憶するデータベースである。図6は、キャリア用振分率DB22に記憶される情報の例を示す図である。図6に示すように、キャリア用振分率DB22は、レベル1からレベル10の各レベルに対応付けてキャリアと無線LANとの振分率を記憶する。各レベルは、第1LA時のスループットによって決定されるレベルである。
 図6の例では、レベル1の場合、無線LAN:LTE=0:100であり、レベル2の場合、無線LAN:LTE=10:90であり、レベル3の場合、無線LAN:LTE=20:80であり、レベル4の場合、無線LAN:LTE=30:70である。また、レベル5の場合、無線LAN:LTE=40:60であり、レベル6の場合、無線LAN:LTE=60:40であり、レベル7の場合、無線LAN:LTE=70:30である。また、レベル8の場合、無線LAN:LTE=80:20であり、レベル9の場合、無線LAN:LTE=90:10であり、レベル10の場合、無線LAN:LTE=100:0である。
 図6の例では、レベル4と判定された場合、キャリアのソケット率を70%かつ無線LANのソケット率を30%として無線通信を実行することを示す。つまり、レベル値が2の場合、アプリケーションが使用する100個のソケットのうち、無線LANを経由するソケット数が10個であり、MVNO網を経由するソケット数が90個となる。
 なお、上記各振分率DBのレベル分けや比率は、任意に変更することができる。また、MVNO用振分率DB21とキャリア用振分率DB22で同じ振分率を設定することもでき、別々の振分率を設定することもできる。
 割合状況DB23は、現在の割合状況を記憶するデータベースである。具体的には、割合状況DB23は、実行中のアプリケーションについて、使用する方式が第1LAか第2LAかを特定する情報と、無線LAN用のソケットと各LTE用のソケットとの割合率とを記憶する。なお、ここで記憶される情報は、後述するMVNO制御部31やキャリア制御部32によって更新される。
 MVNO送受信部24は、後述するMVNO制御部31から指定された振分率にしたがって、MVNO網に用いるソケットを生成し、MVNO網を用いてデータを送受信する処理部である。具体的には、MVNO送受信部24は、MVNO網上で相手装置とコネクションを確立し、ソケットを使用してデータを相手装置に送信する。
 例えば、MVNO送受信部24は、相手装置との間で確立したコネクションを用いて、ソケットへのデータ書込みを実行し、相手装置側でデータがリードされる。相手装置は無線通信装置10からの要求を返信し、無線通信装置10は同ソケットを使用してデータを受信する。MVNO送受信部24は、通信が完了すると、ソケットをクローズする。また、MVNO送受信部24は、相手装置との間で確立したコネクションを用いて、相手装置側からソケットへのデータ書込みが実行される。相手装置は無線通信装置10からの要求を返信し、無線通信装置10は同ソケットを使用してデータを受信する。MVNO送受信部24は、通信が完了すると、当該ソケットからデータを読み込む。このようにして、MVNO送受信部24は、MVNO網を経由するソケット通信によって、データの送受信を実行する。
 無線LAN送受信部25は、後述するMVNO制御部31またはキャリア制御部32から指定された振分率にしたがって、無線LANに用いるソケットを生成し、無線LANを用いてデータを送受信する処理部である。具体的には、無線LAN送受信部25は、無線LAN上で相手装置とコネクションを確立して、ソケットを使用してデータを相手装置に送信する。
 例えば、無線LAN送受信部25は、相手装置との間で確立したコネクションを用いて、ソケットへのデータ書込みを実行し、相手装置側でデータがリードされる。相手装置は無線通信装置10からの要求を返信し、無線通信装置10は同ソケットを使用してデータを受信する。無線LAN送受信部25は、通信が完了すると、ソケットをクローズする。また、無線LAN送受信部25は、相手装置との間で確立したコネクションを用いて、相手装置側からソケットへのデータ書込みが実行される。相手装置は無線通信装置10からの要求を返信し、無線通信装置10は同ソケットを使用してデータを受信する。無線LAN送受信部25は、通信が完了すると、当該ソケットからデータを読み込む。このようにして、無線LAN送受信部25は、無線LANを経由するソケット通信によって、データの送受信を実行する。
 キャリア送受信部26は、後述するキャリア制御部32から指定された振分率にしたがって、キャリア網に用いるソケットを生成し、キャリア網を用いてデータを送受信する処理部である。具体的には、キャリア送受信部26は、キャリア網上で相手装置とコネクションを確立し、ソケットを使用してデータを相手装置に送信する。
 例えば、キャリア送受信部26は、相手装置との間で確立したコネクションを用いて、ソケットへのデータ書込みを実行し、相手装置側でデータがリードされる。相手装置は無線通信装置10からの要求を返信し、無線通信装置10は同ソケットを使用してデータを受信する。キャリア送受信部26は、通信が完了すると、ソケットをクローズする。また、キャリア送受信部26は、相手装置との間で確立したコネクションを用いて、相手装置側からソケットへのデータ書込みが実行される。相手装置は無線通信装置10からの要求を返信し、無線通信装置10は同ソケットを使用してデータを受信する。キャリア送受信部26は、通信が完了すると、当該ソケットからデータを読み込む。このようにして、キャリア送受信部26は、キャリア網を経由するソケット通信によって、データの送受信を実行する。
 MVNO品質測定部27は、MVNO網の無線品質を測定する処理部である。具体的には、MVNO品質測定部27は、MVNO網を介したソケット通信から、スループット、無線電波強度(RSSI:Received Signal Strength Indication)、スループット上限値であるリンクスピード、ソケット単位の送受信量、使用されているSSID(Service Set Identifier)などを取得して、切替部30やMVNO制御部31に出力する。
 例えば、MVNO品質測定部27は、ソケット毎のデータ容量と送信時間とから、単位時間当たりの通信量としてスループット(bps)を算出する。MVNO品質測定部27は、受信信号から無線信号強度を測定する。MVNO品質測定部27は、使用されている通信回線の種別から通信規格を特定し、ネットワーク種別がLTEか3Gかを特定する。MVNO品質測定部27は、MVNO網で使用されたソケット毎に、read()やwrite()などの入出力関数でやり取りを行ったデータ量の総計を、ソケット単位の送受信量として算出する。
 無線LAN品質測定部28は、無線LANの無線品質を測定する処理部である。具体的には、無線LAN品質測定部28は、無線LANを用いたソケット通信から、スループット、無線電波強度、スループット上限値であるリンクスピード、ソケット単位の送受信量、使用されているSSIDなどを取得して、切替部30やMVNO制御部31に出力する。
 例えば、無線LAN品質測定部28は、ソケット毎のデータ容量と送信時間とから、単位時間当たりの通信量としてスループット(bps)を算出する。無線LAN品質測定部28は、受信信号から無線信号強度を測定する。シグナルレベルの強弱と通信速度とは弱い関係があり、無線信号強度が強いほど通信速度が速くなることが期待できる。
 また、無線LAN品質測定部28は、使用されている無線LANの種別からリンクスピードを特定する。リンクスピードは、現在無線LAN接続しているアクセスポイントとの理論速度であり、接続状況によって変化する。スループットは、リンクスピードを超えることはない。また、無線LAN品質測定部28は、無線LANで使用されたソケット毎に、read()やwrite()などの入出力関数でやり取りを行ったデータ量の総計を、ソケット単位の送受信量として算出する。また、無線LAN品質測定部28は、無線LANの無線通信に含まれる識別子から、SSIDを抽出する。
 キャリア品質測定部28は、キャリア網の無線品質を測定する処理部である。具体的には、キャリア品質測定部28は、キャリア網を介したソケット通信から、実測スループット、無線電波強度、スループット上限値であるリンクスピード、ソケット単位の送受信量、使用されているSSIDなどを取得して、切替部30やMVNO制御部31に出力する。例えば、キャリア品質測定部28は、MVNO品質測定部27と同様の手法を用いて、スループットや無線信号強度の測定、ネットワーク種別の特定などを実行する。
 切替部30は、各品質測定部の測定結果を用いて、第1LAと第2LAとの切替を実行する。具体的には、切替部30は、第2LAを用いた無線通信を実行している状態で、第2LAの実測スループットが閾値未満である状態が所定時間継続した場合に、第1LAを用いた無線通信に切り替える。その後、切替部30は、第1LAを用いた無線通信を実行してから一定時間が経過すると、第2LAを用いた無線通信に切り替えて、第2LAの実測スループットを測定する。ここで、切替部30は、第2LAの実測スループットが閾値未満である場合には、第1のLAを維持し、第2LAの実測スループットが閾値以上である場合には、第2LAに再度切り替える。
 例えば、切替部30は、第2LAを用いる状態では、MVNO品質測定部27が測定したスループットと、無線LAN品質測定部28が測定したスループットとの合計値が、閾値DB20に記憶される最低スループット「Th2」未満か否かを判定する。切替部30は、スループットの合計値が「Th2」未満である場合には、第1LAに切り替える。このとき、切替部30は、MVNO制御部31に制御停止を指示し、キャリア制御部32に制御開始を指示する。一方で、切替部30は、スループットの合計値が「Th2」以上である場合には、第2LAを維持すると判定し、MVNO制御部31に制御継続を指示する。
 また、切替部30は、第1LAを用いる状態では、キャリア品質測定部27が測定したスループットと、無線LAN品質測定部28が測定したスループットとの合計値が、閾値DB20に記憶される最低スループット「Th1」未満か否かを判定する。切替部30は、スループットの合計値が「Th1」未満である場合には、第2LAに切り替える。このとき、切替部30は、MVNO制御部31に制御開始を指示し、キャリア制御部32に制御停止を指示する。一方で、切替部30は、スループットの合計値が「Th1」以上である場合には、第1LAを維持すると判定し、キャリア制御部32に制御継続を指示する。
 図7は、リンクアグリケーションの切替例を説明する図である。図7に示すように、切替部30は、通信が開始されると、料金が安いMVNO網を介する第2LAを用いて無線通信を実行する。その後、切替部30は、第2LAのスループットが閾値(Th2)を下回ると、キャリア網を用いる第1LAに切り替える。そして、切替部30は、第2LAのスループットが閾値(Th2)以上になると、再度第2LAに切り替える。
 このように、切替部30は、基本的には、通品品質が許容範囲であり、料金が安いMVNO網を用いた第2LAを実行し、第2LAの通品品質が許容できない程度まで下がると、第1LAに切り替える。しかし、切替部30は、第2LAの通品品質が許容範囲まで戻ると、第2LAに切り替える。
 MVNO制御部31は、MVNO網と無線LANとを用いた第2LAを実行する処理部である。すなわち、MVNO制御部31は、無線LANの無線品質またはMVNO網の無線品質に基づいて、無線LANに使用するソケットの数と、MVNO網に使用するソケットの数との割合を決定する処理部である。
 具体的には、MVNO制御部31は、切替部30から制御開始の指示を受信した後、MVNO品質測定部27による測定結果と無線LAN品質測定部28による測定結果とが通知されるたびに、MVNO網と無線LANとのソケット振分率を決定して割合状況DB23に格納する。そして、MVNO制御部31は、ソケットの振分率にしたがって、MVNO送受信部24と無線LAN送受信部25それぞれのソケット割当を制御して、同時通信を実行する。また、MVNO制御部31は、切替部30から制御停止の指示を受信すると、MVNO送受信部24と無線LAN送受信部25それぞれへのソケット割当を停止させる。
 例えば、MVNO制御部31は、MVNO品質測定部27が測定したスループットと閾値とを比較してレベルを判定して、判定したレベルに対応する振分率をMVNO用振分率DB21から特定する。そして、MVNO制御部31は、特定した振分率にしたがって、ソケットの割当てを実行することができる。
 別例としては、MVNO制御部31は、いずれの無線品質が向上しているかによって、割合率を示すレベル値を決定することもできる。すなわち、MVNO制御部31は、1つのアプリケーションのデータを、ソケット単位で無線LANまたはMVNO網に振分ける振分率を決定する。
 具体的には、MVNO制御部31は、アプリケーションの通信が発生した場合に、はじめはMVNO網のみを用いた通信を実行し、無線LANの無線品質が向上するにしたがって、無線LANのソケット率を増やしていく。そして、MVNO制御部31は、無線LANの無線品質が高品質で安定した場合に、MVNO網のソケットをなくして、すべてのデータを無線LANのソケットで送信する。
 一例を挙げると、MVNO制御部31は、無線電波強度が高い状態を保っている場合には、安定した通信が期待できる度合いが高いので、MVNO網から無線LANへの遷移時間を短くするために、遷移レベルを1ずつではなく2以上の所定数ずつ遷移させる。また、MVNO制御部31は、無線電波強度が低い状態を保っている場合や一定ではない場合には、通信が不安定になる可能性が高いので、MVNO網から無線LANへの遷移時間を長くするために、遷移レベルを1ずつ遷移させる。
 ここで、図8を用いて遷移レベルの変化とソケットの生成割合の変化との関係を説明する。図8は、遷移レベルの変化例を説明する図である。図8では、一例として、無線LANの無線品質が変化し、MVNO網の無線品質が一定である状態で、無線LANの無線品質に応じて遷移レベルが1つずつ変化する例で説明する。
 図8に示すように、MVNO制御部31は、アプリケーションが開始されると、遷移レベル0から開始し、MVNO網のソケット率を100%にする。続いて、MVNO制御部31は、次にタイミングで、無線LANの品質が向上した場合、遷移レベル1に上昇させ、無線LANのソケット率を10%、MVNO網のソケット率を90%に変化させる。
 遷移レベル1の状態で、MVNO制御部31は、次のタイミングにおいて無線LANの品質がさらに向上した場合、遷移レベル2に上昇させ、無線LANのソケット率を20%、MVNO網のソケット率を80%に変化させる。一方で、MVNO制御部31は、無線LANの品質が低下した場合、遷移レベル0に下降させ、無線LANのソケット率を0%、MVNOのソケット率を100%に変化させる。
 このように、MVNO制御部31は、各遷移レベルにおいて無線LANの品質を測定し、無線LANの品質が向上している場合には、遷移レベルを上げて、無線LANのソケット数を増やし、MVNO網のソケット数を減らす。一方、MVNO制御部31は、無線LANの品質が低下した場合には、遷移レベルを下げて、無線LANのソケット数を減らし、MVNOのソケット数を増やす。また、無線LANの無線品質が一定であり、MVNO網の無線品質が変化する状態でも、同様に遷移レベルを遷移させて、ソケット率を変化させることができる。
 キャリア制御部32は、キャリア網と無線LANとを用いた第1LAを実行する処理部である。すなわち、キャリア制御部32は、無線LANの無線品質またはキャリア網の無線品質に基づいて、無線LANに使用するソケットの数と、キャリア網に使用するソケットの数との割合を決定する処理部である。なお、キャリア制御部32が実行する振分処理の具体的な内容は、MVNO制御部31と同様なので、詳細な説明は省略する。
[LAの切替処理の流れ]
 図9は、リンクアグリケーションの切替処理の流れを示すフローチャートである。図9に示すように、切替部30は、第2LAで制御されるMVNO網と無線LANとのデータ同時通信が発生すると(S101)、第2LAのスループットの測定を開始する(S102)。続いて、切替部30は、第2LAのスループットが閾値(Th2)以下であるか否かを判定する(S103)。
 そして、切替部30は、第2のLAのスループットが閾値(Th2)を超える場合(S103:No)、第2LAを維持して、S102を繰り返す。一方、切替部30は、第2のLAのスループットが閾値(Th2)以下である場合(S103:Yes)、スループットが閾値(Th2)以下である状態が低品質継続時間(T2)以上か否かを判定する(S104)。
 ここで、切替部30は、第2LAのスループットが閾値(Th2)以下である状態が低品質継続時間(T2)未満である場合(S104:No)、第2LAを維持して、S102を繰り返す。
 一方、切替部30は、第2LAのスループットが閾値(Th2)以下である状態が低品質継続時間(T2)以上である場合(S104:Yes)、第1LAに切り替えて(S105)、第1LAで制御されるキャリア網と無線LANとのデータ同時通信の実測スループットを測定する(S106)。
 その後、切替部30は、第1LAに切り替えてから、MVNO品質チェック時間(T3)が経過するまでは(S107:No)、第1LAのスループットが閾値(Th1)以下であるか否かを判定する(S108)。
 ここで、切替部30は、第1LAのスループットが閾値(Th2)を超える場合(S108:No)、第1LAを維持して、S106を繰り返す。一方、切替部30は、第1のLAのスループットが閾値(Th1)以下である場合(S108:Yes)、スループットが閾値(Th1)以下である状態が低品質継続時間(T1)以上か否かを判定する(S109)。
 そして、切替部30は、第1LAのスループットが閾値(Th1)以下である状態が低品質継続時間(T1)未満である場合(S109:No)、第1LAを維持して、S106を繰り返す。
 一方、切替部30は、第1LAのスループットが閾値(Th1)以下である状態が低品質継続時間(T1)以上である場合(S109:Yes)、第2LAに切り替えて(S110)、S102以降を繰り返す。
[効果]
 上述したように、無線通信装置10は、SIM1-無線LANとSIM2-無線LANにそれぞれ適用して2次元のLA機能を有し、無線LAN通信が不能になる状況では、2次元の管理をすることによりSIM2と無線LANを併せた形で品質管理をする。この結果、無線通信装置10は、ユーザが通信できない状態に陥ることがない様に制御することができる。また、無線通信装置10は、第2LAの品質が低下した場合は、LA制御を第1LAに切換える評価関数を導入し、2次元管理を動的に切換えるようにすることにより擬似的に2次元の切り替えを実施する。
 これらの結果、無線通信装置10は、通信品質の劣化を判断して自動的に回線を切換える制御を実施する事が可能になる。また、従来は、無線LAN通信環境下においては無線LAN単独通信になってしまって品質が劣化してしまったような場合があったが、無線通信装置10は、2つのセルラー通信の良い方へ通信することで品質低下を防止することもできる。したがって、ユーザは通信コストを削減しながらも、通信品質がよい通信を維持する事ができる。
 図10は、選択される回線の比較を説明する図である。ここでは、時刻T1からT5まで、Wi-Fi(無線LAN)が接続可能な状態であるが、時刻T3と時刻T4とでは、Wi-Fiの無線品質が低下している。この場合、図10に示すように、従来では、品質に関係なく、Wi-Fiが優先的に選択されるので、すべての時間でWi-Fiが選択される。この結果、時刻T3とT4では、スループットが低下し、ユーザのストレスが増加する。
 一方で、実施例1にかかる無線通信装置10は、時刻T1から時刻T3までは、MVNO網とWi-Fiとを同時に用いる第2LAで無線通信を実行し、スループットが低下する時刻T3になると、キャリア網とWi-Fiを用いる第1LAに切り替える。したがって、スループットがよいときはMVNO網を使用し、スループットが低下するとキャリア網を使用するので、ユーザは、ストレスを感じることなく、無線通信を実行することができる。
 さて、これまで本発明の実施例について説明したが、本発明は上述した実施例以外にも、種々の異なる形態にて実施されてよいものである。そこで、以下に異なる実施例を説明する。
[切替]
 上記実施例では、最初に第2LAを実行し、スループットが低下すると、第1LAに切り替える例を説明したが、これに限定されるものではなく、最初に第1LAを実行することもできる。また、最初に第2LAを実行して、第1LAに切り替えた後に一定時間経過した場合は、自動的に第2LAに戻すこともできる。
[送信種別]
 上記実施例では、ソケットの送受信を例にして説明したが、これに限定されるものではなく、パケット通信など他のデータ送信も同様に適用することができる。
[閾値]
 上記実施例では、第1LA用の各閾値と第2LA用の各閾値とを別々に設定する例を説明したが、これに限定されるものではなく、同じ閾値を設定することもできる。
[プログラム]
 また、無線通信装置10は、プログラムを読み出して実行することで無線通信方法を実行する情報処理装置として動作する。つまり、無線通信装置10は、MVNO送受信部24、無線LAN送受信部25、キャリア送受信部26、MVNO品質測定部27、無線LAN品質測定部28、キャリア品質測定部29、切替部30、MVNO制御部31、キャリア制御部32と同様の機能を実行するプログラムを実行する。この結果、無線通信装置10は、MVNO送受信部24、無線LAN送受信部25、キャリア送受信部26、MVNO品質測定部27、無線LAN品質測定部28、キャリア品質測定部29、切替部30、MVNO制御部31、キャリア制御部32と同様の機能を実行するプロセスを実行することができる。なお、この他の実施例でいうプログラムは、無線通信装置10によって実行されることに限定されるものではない。例えば、他のコンピュータまたはサーバがプログラムを実行する場合や、これらが協働してプログラムを実行するような場合にも、本発明を同様に適用することができる。
[システム]
 また、本実施例において説明した各処理のうち、自動的におこなわれるものとして説明した処理の全部または一部を手動的におこなうこともできる。あるいは、手動的におこなわれるものとして説明した処理の全部または一部を公知の方法で自動的におこなうこともできる。この他、上記文書中や図面中で示した処理手順、制御手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。
 また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られない。つまり、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。さらに、各装置にて行なわれる各処理機能は、その全部または任意の一部が、CPUおよび当該CPUにて解析実行されるプログラムにて実現され、あるいは、ワイヤードロジックによるハードウェアとして実現され得る。
 10 無線通信装置
 20 閾値DB
 21 MVNO用振分率DB
 22 キャリア用振分率DB
 23 割合状況DB
 24 MVNO送受信部
 25 無線LAN送受信部
 26 キャリア送受信部
 27 MVNO品質測定部
 28 無線LAN品質測定部
 29 キャリア品質測定部
 30 切替部
 31 MVNO制御部
 32 キャリア制御部

Claims (6)

  1.  通信料が高く品質が保証される第1のセルラー網と無線LAN(Local Area Network)とを同時に用いる第1の無線通信方式と、前記第1のセルラー網より通信料が安く低品質である第2のセルラー網と前記無線LANとを同時に用いる第2の無線通信方式のいずれか一方を用いて無線通信を実行する通信部と、
     前記通信部によって実行される前記無線通信の通信速度を測定する測定部と、
     前記通信速度が閾値未満の場合、前記無線通信に用いられている通信方式を他方の通信方式に切り替える切替部と
     を有することを特徴とする無線通信装置。
  2.  前記通信部は、前記第2の無線通信方式を用いて前記無線通信を実行し、
     前記切替部は、前記第2の無線通信方式を用いた前記無線通信の通信速度が前記閾値未満である状態が一定時間以上継続した場合に、前記第1の無線通信方式に切り替えることを特徴とする請求項1に記載の無線通信装置。
  3.  前記通信部は、前記第1の無線通信方式に切り替えられた後、所定時間が経過した場合、前記第2の無線通信方式を用いた前記無線通信を実行し、
     前記測定部は、前記第2の無線通信方式を用いた前記無線通信の通信速度を測定し、
     前記切替部は、前記通信速度が閾値未満の場合、前記第1の無線通信方式を維持し、前記通信速度が閾値以上の場合、前記第2の無線通信方式に戻すことを特徴とする請求項2に記載の無線通信装置。
  4.  前記切替部は、前記第1の無線通信方式を維持した後、所定時間経過した場合、前記第1の無線通信方式から前記第2の無線通信方式に切り替えることを特徴とする請求項3に記載の無線通信装置。
  5.  コンピュータが、
     通信料が高く品質が保証される第1のセルラー網と無線LAN(Local Area Network)とを同時に用いる第1の無線通信方式と、前記第1のセルラー網より通信料が安く低品質である第2のセルラー網と前記無線LANとを同時に用いる第2の無線通信方式のいずれか一方を用いて無線通信を実行し、
     実行される前記無線通信の通信速度を測定し、
     前記通信速度が閾値未満の場合、前記無線通信に用いられている通信方式を他方の通信方式に切り替えると
     処理を実行することを特徴とする無線通信方法。
  6.  コンピュータに、
     通信料が高く品質が保証される第1のセルラー網と無線LAN(Local Area Network)とを同時に用いる第1の無線通信方式と、前記第1のセルラー網より通信料が安く低品質である第2のセルラー網と前記無線LANとを同時に用いる第2の無線通信方式のいずれか一方を用いて無線通信を実行し、
     実行される前記無線通信の通信速度を測定し、
     前記通信速度が閾値未満の場合、前記無線通信に用いられている通信方式を他方の通信方式に切り替えると
     処理を実行させることを特徴とする無線通信プログラム。
PCT/JP2017/003065 2017-01-27 2017-01-27 無線通信装置、無線通信方法および無線通信プログラム WO2018138894A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/003065 WO2018138894A1 (ja) 2017-01-27 2017-01-27 無線通信装置、無線通信方法および無線通信プログラム
JP2018564059A JP6790128B2 (ja) 2017-01-27 2017-01-27 無線通信装置、無線通信方法および無線通信プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/003065 WO2018138894A1 (ja) 2017-01-27 2017-01-27 無線通信装置、無線通信方法および無線通信プログラム

Publications (1)

Publication Number Publication Date
WO2018138894A1 true WO2018138894A1 (ja) 2018-08-02

Family

ID=62979580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003065 WO2018138894A1 (ja) 2017-01-27 2017-01-27 無線通信装置、無線通信方法および無線通信プログラム

Country Status (2)

Country Link
JP (1) JP6790128B2 (ja)
WO (1) WO2018138894A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020070A1 (ja) * 2019-07-31 2021-02-04 株式会社デンソー 通信装置および通信制御装置
JP2023505561A (ja) * 2019-12-11 2023-02-09 華為技術有限公司 ネットワークハンドオーバ方法及び電子装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060443A (ja) * 2010-09-09 2012-03-22 Nec Access Technica Ltd 情報処理装置および通信方法
JP2015076818A (ja) * 2013-10-10 2015-04-20 富士通株式会社 無線通信装置、無線通信方法および無線通信プログラム
JP2016116010A (ja) * 2014-12-12 2016-06-23 Necプラットフォームズ株式会社 通信機、通信方法、通信システムおよびプログラム
JP2016521523A (ja) * 2013-05-06 2016-07-21 クゥアルコム・インコーポレイテッドQualcomm Incorporated ハンドオーバ検出に基づくルーティング変更
JP2016521524A (ja) * 2013-05-06 2016-07-21 クゥアルコム・インコーポレイテッドQualcomm Incorporated 2次リンクがwlanリンクであるlteデュアル接続性の場合のハンドオーバの調整
JP2016208168A (ja) * 2015-04-20 2016-12-08 Necプラットフォームズ株式会社 自動sim切替端末および自動sim切替方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060443A (ja) * 2010-09-09 2012-03-22 Nec Access Technica Ltd 情報処理装置および通信方法
JP2016521523A (ja) * 2013-05-06 2016-07-21 クゥアルコム・インコーポレイテッドQualcomm Incorporated ハンドオーバ検出に基づくルーティング変更
JP2016521524A (ja) * 2013-05-06 2016-07-21 クゥアルコム・インコーポレイテッドQualcomm Incorporated 2次リンクがwlanリンクであるlteデュアル接続性の場合のハンドオーバの調整
JP2015076818A (ja) * 2013-10-10 2015-04-20 富士通株式会社 無線通信装置、無線通信方法および無線通信プログラム
JP2016116010A (ja) * 2014-12-12 2016-06-23 Necプラットフォームズ株式会社 通信機、通信方法、通信システムおよびプログラム
JP2016208168A (ja) * 2015-04-20 2016-12-08 Necプラットフォームズ株式会社 自動sim切替端末および自動sim切替方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020070A1 (ja) * 2019-07-31 2021-02-04 株式会社デンソー 通信装置および通信制御装置
JP2021027396A (ja) * 2019-07-31 2021-02-22 株式会社デンソー 通信装置および通信制御装置
JP7111077B2 (ja) 2019-07-31 2022-08-02 株式会社デンソー 通信装置および通信制御装置
JP2023505561A (ja) * 2019-12-11 2023-02-09 華為技術有限公司 ネットワークハンドオーバ方法及び電子装置

Also Published As

Publication number Publication date
JPWO2018138894A1 (ja) 2019-11-07
JP6790128B2 (ja) 2020-11-25

Similar Documents

Publication Publication Date Title
JP6603958B2 (ja) 滞留セルの選択方法及び装置
CN108605379B (zh) 数据传输的方法、基站及终端设备
US20200296785A1 (en) Electronic apparatus, a central node apparatus and a network side apparatus, a transmission method and a configuration method
US11777855B2 (en) Policy based dual connectivity traffic steering
CN112533227A (zh) 用于体验质量测量的方法和通信装置
US8265046B2 (en) System and method for generic access network registration by a mobile station during network congestion
US20160205693A1 (en) Service access method, user equipment, and radio controller
CN107409292A (zh) 边链路信息传输方法、装置以及通信系统
AU2016431367A1 (en) Measurement method, terminal device, and network device
KR102381362B1 (ko) 협대역 무선 네트워크에서의 이용가능한 채널로의 튜닝
US20170181021A1 (en) Method and apparatus for managing mobility between heterogeneous networks
JP6926165B2 (ja) 滞留セルの選択方法及び装置
US10320639B2 (en) Method of controlling user equipment communication with a network and corresponding apparatus and computer program product
US9019860B2 (en) Method, terminal and communication system for starting compressed mode
WO2018138894A1 (ja) 無線通信装置、無線通信方法および無線通信プログラム
WO2022002016A1 (zh) 一种邻区测量方法及其装置
JP6629428B2 (ja) ワイヤレスローカルエリアネットワークwlan測定および報告方法ならびに関連デバイス
CN112312499A (zh) 一种小区重选方法及其装置
US20170353961A1 (en) Managing Radio Utilization of an Access Point
WO2020043011A1 (zh) 一种ui显示方法、终端设备及装置
JP2018148478A (ja) 制御装置、移動通信システム、及び制御方法
CN113784403B (zh) 一种小区切换方法及装置
WO2018090495A1 (zh) 一种信道选择方法及终端
US20210289478A1 (en) Method for carrier selection in vehicle to everything system and terminal device
US9742677B2 (en) Methods and apparatus for managing communications network loading

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893687

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564059

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893687

Country of ref document: EP

Kind code of ref document: A1