WO2018137914A1 - Fördermodul für ein dosiersystem zum eindosieren eines reduktionsmittels in den abgasstrang eines kraftfahrzeugs sowie dosiersystem - Google Patents

Fördermodul für ein dosiersystem zum eindosieren eines reduktionsmittels in den abgasstrang eines kraftfahrzeugs sowie dosiersystem Download PDF

Info

Publication number
WO2018137914A1
WO2018137914A1 PCT/EP2018/050329 EP2018050329W WO2018137914A1 WO 2018137914 A1 WO2018137914 A1 WO 2018137914A1 EP 2018050329 W EP2018050329 W EP 2018050329W WO 2018137914 A1 WO2018137914 A1 WO 2018137914A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
module
storage tank
metering
filter
Prior art date
Application number
PCT/EP2018/050329
Other languages
English (en)
French (fr)
Inventor
Guenter Keusen
Volker Reusing
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN201880008441.2A priority Critical patent/CN110234851A/zh
Priority to US16/480,362 priority patent/US10914216B2/en
Priority to KR1020197024561A priority patent/KR102388109B1/ko
Publication of WO2018137914A1 publication Critical patent/WO2018137914A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/26Exhaust treating devices having provisions not otherwise provided for for preventing enter of dirt into the device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/08Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a pressure sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1426Filtration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1433Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1433Pumps
    • F01N2610/144Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1473Overflow or return means for the substances, e.g. conduits or valves for the return path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1493Purging the reducing agent out of the conduits or nozzle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a delivery module for a metering system for dosing a reducing agent, in particular an aqueous urea solution, in an exhaust system of a motor vehicle having the features of the preamble of claim 1. Furthermore, the invention relates to a metering system and with such a delivery module.
  • Reduction catalysts used by means of which the nitrogen oxide emissions ( ⁇ ) can be significantly lowered.
  • a reducing agent such as an aqueous urea solution
  • ammonia which in turn reacts with the nitrogen oxides in the downstream catalyst to harmless nitrogen and water.
  • the supply of the aqueous urea solution via metering systems, which regularly include a storage tank for storing the reducing agent, a metering module for metering the reducing agent and a delivery module for conveying the reducing agent from the storage tank to the metering module.
  • AI is an example of a conveyor for a liquid reducing agent of an internal combustion engine of a motor vehicle which comprises a storage tank for the liquid reducing agent and a delivery module connected by lines to the storage tank and a metering module.
  • the metering module is designed as a switchable metering valve, by means of which the reducing agent can be injected into the exhaust gas system of the motor vehicle.
  • the reducing agent is sucked by means of a feed pump of the delivery module via a suction line from the storage tank and fed via a feed line to the metering valve.
  • a first filter is arranged to prevent the entry of particles into the metering valve. To protect the feed pump from particles is at the beginning of the suction line within the
  • Storage tanks arranged a second filter.
  • a third filter is located in a branching from the feed line return line, which serves
  • Reducing agents in the form of an aqueous urea solution freeze at low outside temperatures, so that regularly carries the risk of damage
  • Ice pressure in the components and lines of a dosing system consists.
  • metering systems which can be operated not only in a metering mode but also in a suckback mode.
  • the reducing agent present in the components and lines is conveyed back into the storage tank.
  • Reverse suction mode can be realized either by reversing the conveying direction of the feed pump or by a valve arrangement.
  • the dosing system In the suck-back mode, the dosing system is in the reverse direction
  • valves which are assigned to the feed pump and / or the valve arrangement for realizing the flow reversal
  • the present invention is therefore based on the object to improve the protection of a metering system from harmful particles. In this way, a metering system is to be created, which has an increased reliability.
  • the proposed delivery module comprises a pump, which is connected on the suction side via a suction line with a reducing agent storage tank and the pressure side via a delivery line with a metering module or connectable, wherein the supply line branches off a leading back into the storage tank return line.
  • a filter is integrated into the delivery module on the suction side. This means that a filter is arranged on the suction side of the pump, which protects the pump and all subsequent components from particles.
  • the arrangement on the suction side of the pump also has the advantage that adhering to the filter particles that have been deposited in the metering mode, in a subsequent suck-back mode do not enter areas of the system in which functionally relevant components are arranged. Because the dirty side of the filter is facing away from the functionally relevant components.
  • the filter integrated into the delivery module on the suction side may be any filter integrated into the delivery module on the suction side.
  • the main filter which is usually arranged on the pressure side, is routed from the pressure side of the pump to the suction side.
  • the suction side arranged filter also keeps the pressure side of the pump free of particles.
  • a compensation volume is formed in the direction of gravity above the filter.
  • the above-arranged compensating volume serves to improve the filter venting, since air can ascend into the equalization volume.
  • it protects against Ice pressure damage, as freezing reductant an increased volume is available, in which the reducing agent can expand into.
  • the compensation volume is arranged in a common housing with the filter.
  • a bypass line leading back into the storage tank preferably branches off to bypass the filter and / or the compensation volume.
  • a bypass of the filter prevents the filter from flowing through in the reverse suction mode in the reverse direction. This ensures that no already separated particles are released from the filter.
  • the branch of the bypass line is for this purpose in the main flow direction after the filter
  • the branch in the main flow direction in front of the filter that is arranged on the dirty side of the filter.
  • the branching bypass line with respect to the compensating volume can also have a
  • a bypass of the compensation volume prevents it from being alternately aerated and vented.
  • a check valve is preferably arranged, which is closed in the metering mode and open in the suck-back mode. In this way, it is ensured that only via the suction line reducing agent is sucked in, the sucked reducing agent must pass through the filter and in dosing no gas from the return line or from the storage tank is sucked.
  • the opening pressure of the check valve is adjusted to the present static pressure conditions. Further preferably, the opening pressure of the check valve is below the pressure difference resulting from the height difference .DELTA. ⁇ between the minimum level in the
  • suction line is connected via an inlet to the delivery module and the inlet in
  • Gravity direction is located above the level in the storage tank. In this way, favorable static pressure conditions can be created, which counteract an unwanted opening of the check valve. Because in this case results in the relevant pressure difference from the height difference ⁇ between the level in the storage tank and the inlet.
  • a 4/2 way valve for switching from Dosiermodus in the gear mousse and vice versa integrated is integrated.
  • the switching does not require a reversal of the pump working direction in this case. This means that simple low-cost pumps can be used.
  • the pump is a diaphragm pump.
  • Diaphragm pumps are particularly robust and require only little space. Since they have only one working direction, the diaphragm pump is preferably proposed in conjunction with a 4/2 way valve.
  • the dosing system includes a metering system for metering in a reducing agent, in particular an aqueous urea solution, into an exhaust gas system of a motor vehicle.
  • the dosing system includes a
  • Reductant storage tank, a dosing and a conveyor module according to the invention Thanks to the delivery module according to the invention, the metering system is better against harmful particles and thus against wear
  • the reduced wear counteracts leaks, so that a sufficient pressure build-up and a sufficient flow rate is ensured over time. Furthermore, the ventilation of the system is improved.
  • FIG. 1 is a schematic representation of a metering system with a conveyor module according to the invention according to a first preferred
  • Fig. 2 is a schematic representation of a metering system with a delivery module according to the invention according to a second preferred
  • Fig. 3 is a schematic representation of a metering system with a conveyor module according to the invention according to a third preferred
  • Fig. 4 is a schematic representation of a metering system with a conveyor module according to the invention according to a fourth preferred
  • the metering system shown in FIG. 1 comprises a reducing agent storage tank 4, a metering module 6, by means of which the reducing agent as a spray in an exhaust line (not shown) of a motor vehicle can be metered, and a conveyor module 1, by means of which the reducing agent from the
  • Storage tank 4 is the metering module 6 can be fed.
  • the delivery module 1 comprises a pump 2, which is connected to the storage tank 4 and the metering module 6 via a plurality of lines.
  • a first line designed as a suction line 3 connects the pump 2 to the storage tank 4. Via a delivery line 5, a connection of the pump 2 to the metering module 6 is established. From the delivery line 5 branches one
  • the branch is arranged in the region of a compensation volume 16 to which a pressure sensor 17 is assigned.
  • throttle 15 prevents the pressure in the delivery line 5 falls below a predetermined limit.
  • the pump 2 is presently designed as a diaphragm pump having a motor 19 as a drive means. Since a reversal of the flow direction for emptying the system by means of a diaphragm pump is not feasible, a 4/2-way valve 14 is further provided, which is connected via two check valves 18 to the pump 2.
  • the check valves 18 define an inlet and a
  • the dosing system is in a dosing mode or in a back suction mode.
  • the delivery module 1 of the metering system of Fig. 1 further comprises a filter 8, which is arranged on the suction side, that is upstream in the main flow direction of the pump 2 and the 4/2 way valve 14. If the 4/2-way valve 14 switches from the metering mode to the suck-back mode, the flow direction in the suction line 3 reverses. In this case, opens a check valve 12 which is arranged in a bypass line 11 to bypass the filter 8, so that the filter 8 is not flowed through in the reverse direction. In this way it is prevented that already separated particles from the filter dissolve and get back into the storage tank 4. A pollution of the
  • FIG. 2 shows a further development of the metering system of FIG. 1.
  • a compensating volume 9 is additionally arranged, which serves to vent the filter 8. Furthermore, that can
  • Compensation volume 9 is arranged together with the filter 8 in a housing 10. A modification of the metering system of FIG. 2 is shown in FIG. The
  • Bypass line 11 branches above the filter 8 but below the
  • the backwashing of the filter 8 is used for cleaning purposes, taking into account is that get out of the filter 8 dissolved particles back into the storage tank 4.
  • FIG. 4 A further modification of the metering system of FIG. 2 is shown in FIG. 4. To accidentally open the in the bypass line 11th
  • an inlet 13 of the conveyor module 1 is brought into a position which is located in the direction of gravity above the storage tank 4.
  • the relevant for the static pressure conditions liquid column results in this case from the height difference ⁇ between the check valve 12 and the inlet 13.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Die Erfindung betrifft ein Fördermodul (1) für ein Dosiersystem zum Eindosieren eines Reduktionsmittels, insbesondere einer wässrigen Harnstofflösung, in einen Abgasstrangeines Kraftfahrzeugs, umfassend eine Pumpe (2), die saugseitig über eine Saugleitung (3) mit einem Reduktionsmittel-Vorratstank (4) und druckseitig über eine Förderleitung (5) mit einem Dosiermodul (6) verbunden oder verbindbar ist, wobei von der Förderleitung (5) eine zurück in den Vorratstank (4) führende Rücklaufleitung (7) abzweigt. Erfindungsgemäß ist saugseitig ein Filter (8) in das Fördermodul (1) integriert. Die Erfindung betrifft ferner ein Dosiersystem mit einem solchen Fördermodul (1).

Description

Beschreibung Titel:
Fördermodul für ein Dosiersystem zum Eindosieren eines Reduktionsmittels in den Abgasstrang eines Kraftfahrzeugs sowie Dosiersystem
Die Erfindung betrifft ein Fördermodul für ein Dosiersystem zum Eindosieren eines Reduktionsmittels, insbesondere einer wässrigen Harnstoff lösung, in einen Abgasstrang eines Kraftfahrzeugs mit den Merkmalen des Oberbegriffs des Anspruchs 1. Ferner betrifft die Erfindung ein Dosiersystem und mit einem solchen Fördermodul.
Stand der Technik
Aufgrund stetig steigender gesetzlicher Anforderungen an die Emissionswerte von Brennkraftmaschinen werden zur Einhaltung der vorgegebenen Grenzwerte die Abgase einer Nachbehandlung unterzogen. Zur Reduzierung des
Stickoxidausstoßes, insbesondere bei Dieselmotoren, werden
Reduktionskatalysatoren eingesetzt, mittels derer die Stickoxid-Emissionen (ΝΟχ) deutlich abgesenkt werden können. Bevor die Abgase in den Katalysator gelangen, wird ihnen ein Reduktionsmittel zugeführt, wie beispielsweise eine wässrige Harnstofflösung, welche die Bildung von Ammoniak bewirkt, das wiederum mit den Stickoxiden im nachgeschalteten Katalysator zu harmlosem Stickstoff und Wasser reagiert. Die Zufuhr der wässrigen Harnstoff lösung erfolgt über Dosiersysteme, die regelmäßig einen Vorratstank zur Bevorratung des Reduktionsmittels, ein Dosiermodul zum Eindosieren des Reduktionsmittels sowie ein Fördermodul zur Förderung des Reduktionsmittels vom Vorratstank zum Dosiermodul umfassen.
Aus der DE 10 2009 045 721 AI geht beispielhaft eine Fördereinrichtung für ein flüssiges Reduktionsmittel einer Brennkraftmaschine eines Kraftfahrzeugs hervor, welche einen Vorratstank für das flüssige Reduktionsmittel und ein durch Leitungen mit dem Vorratstank verbundenes Fördermodul sowie ein Dosiermodul umfasst. Das Dosiermodul ist als schaltbares Dosierventil ausgestaltet, mittels dessen das Reduktionsmittel in den Abgasstrang des Kraftfahrzeugs eindüsbar ist. Das Reduktionsmittel wird mittels einer Förderpumpe des Fördermoduls über eine Saugleitung aus dem Vorratstank angesaugt und über eine Förderleitung dem Dosierventil zugeführt. In der Förderleitung ist ein erster Filter angeordnet, um den Eintrag von Partikeln in das Dosierventil zu verhindern. Zum Schutz der Förderpumpe vor Partikeln ist am Anfang der Saugleitung innerhalb des
Vorratstanks ein zweiter Filter angeordnet. Ein dritter Filter befindet sich in einer von der Förderleitung abzweigenden Rücklaufleitung, die dazu dient,
überschüssiges Reduktionsmittel aus der Förderleitung zurück in den Vorratstank zu leiten.
Reduktionsmittel in Form einer wässrigen Harnstoff lösung gefrieren bei tiefen Außentemperaturen, so dass regelmäßig die Gefahr von Schäden durch
Eisdruck in den Komponenten und Leitungen eines Dosiersystems besteht. Um derartige Schäden zu verhindern, sind Dosiersysteme bekannt, die nicht nur in einem Dosiermodus, sondern ferner in einem Rücksaugmodus betrieben werden können. Im Rücksaugmodus wird das in den Komponenten und Leitungen vorhandene Reduktionsmittel zurück in den Vorratstank gefördert. Der
Rücksaugmodus kann wahlweise durch eine Umkehr der Förderrichtung der Förderpumpe oder durch eine Ventilanordnung realisiert werden.
Im Rücksaugmodus wird das Dosiersystem in umgekehrter Richtung
durchströmt. Dabei werden Schmutzpartikeln, die zuvor an einem Filter abgeschieden wurden, wieder gelöst. An Engstellen wesentlicher
Funktionskomponenten, insbesondere an Ventilen, die der Förderpumpe und/oder der Ventilanordnung zur Realisierung der Strömungsumkehr zugeordnet sind, kann es somit zu einem erhöhten Verschleiß und damit zu Leckagen kommen. Dies wiederum kann zur Folge haben, dass der Druckaufbau im System mangelhaft ist und die erforderliche Reduktionsmittel-Durchflussrate nicht erreicht wird. Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, den Schutz eines Dosiersystems vor schädlichen Partikeln zu verbessern. Auf diese Weise soll ein Dosiersystem geschaffen werden, das eine erhöhte Funktionssicherheit aufweist. Zur Lösung der Aufgabe werden ein Fördermodul für ein Dosiersystem mit den
Merkmalen des Anspruchs 1 sowie ein Dosiersystem mit den Merkmalen des Anspruchs 9 vorgeschlagen. Vorteilhafte Weiterbildungen der Erfindung sind den Unteransprüchen zu entnehmen. Offenbarung der Erfindung
Das vorgeschlagene Fördermodul umfasst eine Pumpe, die saugseitig über eine Saugleitung mit einem Reduktionsmittel-Vorratstank und druckseitig über eine Förderleitung mit einem Dosiermodul verbunden oder verbindbar ist, wobei von der Förderleitung eine zurück in den Vorratstank führende Rücklaufleitung abzweigt. Erfindungsgemäß ist saugseitig ein Filter in das Fördermodul integriert. Das heißt, dass auf der Saugseite der Pumpe ein Filter angeordnet ist, der die Pumpe sowie alle nachfolgenden Komponenten vor Partikeln schützt. Die Anordnung auf der Saugseite der Pumpe besitzt ferner den Vorteil, dass am Filter anhaftende Partikeln, die im Dosiermodus abgeschieden wurden, in einem nachfolgenden Rücksaugmodus nicht in Bereiche des Systems gelangen, in denen funktionsrelevante Komponenten angeordnet sind. Denn die Schmutzseite des Filters ist den funktionsrelevanten Komponenten abgewandt.
Bei dem saugseitig in das Fördermodul integrierten Filter kann es sich
insbesondere um den Hauptfilter handeln. Das heißt, dass der üblicherweise druckseitig angeordnete Hauptfilter von der Druckseite der Pumpe auf die Saugseite verlegt wird. Darüber hinaus kann auf die Anordnung weiterer Filter verzichtet werden, da der saugseitig angeordnete Filter auch die Druckseite der Pumpe frei von Partikeln hält.
In Weiterbildung der Erfindung wird vorgeschlagen, dass in Schwerkraftrichtung oberhalb des Filters ein Ausgleichsvolumen ausgebildet ist. Das oberhalb angeordnete Ausgleichsvolumen dient der Verbesserung der Filterentlüftung, da Luft in das Ausgleichsvolumen aufsteigen kann. Darüber hinaus schützt es vor Eisdruckschäden, da bei gefrierendem Reduktionsmittel ein vergrößertes Volumen zur Verfügung steht, in welches sich das Reduktionsmittel hinein ausdehnen kann. Um den Bauraumbedarf zu senken, wird vorgeschlagen, dass das Ausgleichsvolumen in einem gemeinsamen Gehäuse mit dem Filter angeordnet ist.
Bevorzugt zweigt von der Saugleitung eine zurück in den Vorratstank führende Bypass-Leitung zur Umgehung des Filters und/oder des Ausgleichsvolumens ab. Eine Umgehung des Filters verhindert, dass der Filter im Rücksaugmodus in umgekehrter Richtung durchströmt wird. Dadurch ist sichergestellt, dass keine bereits abgeschiedenen Partikeln vom Filter gelöst werden. Der Abzweig der Bypass-Leitung ist hierzu in Hauptströmungsrichtung nach dem Filter
angeordnet. Andererseits kann ein Rückspülen des Filters ausdrücklich erwünscht sein, um das Filtergewebe zu reinigen. In diesem Fall ist der Abzweig in Hauptströmungsrichtung vor dem Filter, das heißt auf der Schmutzseite des Filters angeordnet. In Abhängigkeit von der Anordnung der abzweigenden Bypass-Leitung in Bezug auf das Ausgleichsvolumen kann zugleich eine
Umgehung desselben erreicht werden, und zwar unabhängig davon, ob der Abzweig in Hauptströmungsrichtung nach oder vor dem Filter angeordnet ist. Eine Umgehung des Ausgleichsvolumens verhindert, dass dieses im Wechsel be- und entlüftet wird.
In der Bypass-Leitung ist vorzugsweise ein Rückschlagventil angeordnet, das im Dosiermodus geschlossen und im Rücksaugmodus geöffnet ist. Auf diese Weise ist sichergestellt, dass lediglich über die Saugleitung Reduktionsmittel angesaugt wird, das angesaugte Reduktionsmittels den Filter passieren muss und im Dosiermodus kein Gas aus der Rücklaufleitung bzw. aus dem Vorratstank angesaugt wird.
Um ein ungewolltes Öffnen des Rückschlagventils im Dosiermodus zu verhindern, ist vorzugsweise der Öffnungsdruck des Rückschlagventils auf die vorliegenden statischen Druckverhältnisse abgestimmt. Weiterhin vorzugsweise liegt der Öffnungsdruck des Rückschlagventils unterhalb der Druckdifferenz, die sich aus der Höhendifferenz ΔΗ zwischen dem minimalen Füllstand im
Vorratstank und der Position des Rückschlagventils ergibt. Auf diese Weise ist sichergestellt, dass im Rücksaugmodus nicht zuerst der Filter und/oder das Ausgleichsvolumen geleert bzw. entlüftet werden.
Als weiterbildende Maßnahme wird vorgeschlagen, dass die Saugleitung über einen Einlass an das Fördermodul angeschlossen ist und der Einlass in
Schwerkraftrichtung oberhalb des Füllstands im Vorratstank angeordnet ist. Auf diese Weise können günstige statische Druckverhältnisse geschaffen werden, die einem ungewollten Öffnen des Rückschlagventils entgegenwirken. Denn in diesem Fall ergibt sich die relevante Druckdifferenz aus der Höhendifferenz ΔΗ zwischen dem Füllstand im Vorratstank und dem Einlass.
Bevorzugt ist in das Fördermodul ein 4/2 -Wegeventil zum Umschalten vom Dosiermodus in den Rücksaugmodus und umgekehrt integriert. Das Umschalten erfordert in diesem Fall keine Umkehr der Pumpenarbeitsrichtung. Das heißt, dass auch einfache kostengünstige Pumpen zum Einsatz gelangen können.
Gemäß einer bevorzugten Ausführungsform der Erfindung ist die Pumpe eine Membranpumpe. Membranpumpen sind besonders robust und benötigen nur wenig Bauraum. Da sie nur eine Arbeitsrichtung aufweisen, wird bevorzugt die Membranpumpe in Verbindung mit einem 4/2 -Wegeventil vorgeschlagen.
Darüber hinaus wird ein Dosiersystem zum Eindosieren eines Reduktionsmittels, insbesondere einer wässrigen Harnstofflösung, in einen Abgasstrang eines Kraftfahrzeuges vorgeschlagen. Das Dosiersystem umfasst einen
Reduktionsmittel-Vorratstank, ein Dosiermodul sowie ein erfindungsgemäßes Fördermodul. Dank des erfindungsgemäßen Fördermoduls ist das Dosiersystem besser vor schädlichen Partikeln und damit vor Verschleiß an
funktionsrelevanten Komponenten geschützt. Der verringerte Verschleiß wirkt Leckagen entgegen, so dass ein ausreichender Druckaufbau und eine ausreichende Durchflussmenge auch über die Zeit sichergestellt ist. Ferner wird die Entlüftung des Systems verbessert.
Bevorzugte Ausführungsformen der Erfindung werden nachfolgend anhand der beigefügten Zeichnungen näher beschrieben. Diese zeigen: Fig. 1 eine schematische Darstellung eines Dosiersystems mit einem erfindungsgemäßen Fördermodul gemäß einer ersten bevorzugten
Ausführungsform der Erfindung,
Fig. 2 eine schematische Darstellung eines Dosiersystems mit einem erfindungsgemäßen Fördermodul gemäß einer zweiten bevorzugten
Ausführungsform der Erfindung,
Fig. 3 eine schematische Darstellung eines Dosiersystems mit einem erfindungsgemäßen Fördermodul gemäß einer dritten bevorzugten
Ausführungsform der Erfindung und
Fig. 4 eine schematische Darstellung eines Dosiersystems mit einem erfindungsgemäßen Fördermodul gemäß einer vierten bevorzugten
Ausführungsform der Erfindung.
Ausführliche Beschreibung der Zeichnungen
Das in der Fig. 1 dargestellte Dosiersystem umfasst einen Reduktionsmittel- Vorratstank 4, ein Dosiermodul 6, mittels dessen das Reduktionsmittel als Spray in einen Abgasstrang (nicht dargestellt) eines Kraftfahrzeugs eindosierbar ist, sowie ein Fördermodul 1, mittels dessen das Reduktionsmittel aus dem
Vorratstank 4 dem Dosiermodul 6 zuführbar ist. Das Fördermodul 1 umfasst hierzu eine Pumpe 2, die über mehrere Leitungen mit dem Vorratstank 4 und dem Dosiermodul 6 verbunden ist.
Eine erste als Saugleitung 3 ausgelegte Leitung verbindet die Pumpe 2 mit dem Vorratstank 4. Über eine Förderleitung 5 ist eine Verbindung der Pumpe 2 mit dem Dosiermodul 6 hergestellt. Von der Förderleitung 5 zweigt eine
Rücklaufleitung 7 ab, die überschüssiges Reduktionsmittel zurück in den Vorratstank 4 leitet. Der Abzweig ist im Bereich eines Ausgleichsvolumens 16 angeordnet, dem ein Drucksensor 17 zugeordnet ist. Eine in der
Rücklaufleitung 7 angeordnete Drossel 15 verhindert, dass der Druck in der Förderleitung 5 unter einen vorgegebenen Grenzwert fällt. Die Pumpe 2 ist vorliegend als Membranpumpe ausgeführt, die einen Motor 19 als Antriebsmittel besitzt. Da eine Umkehr der Strömungsrichtung zur Entleerung des Systems mittels einer Membranpumpe nicht realisierbar ist, ist ferner ein 4/2- Wegeventil 14 vorgesehen, das über zwei Rückschlagventile 18 mit der Pumpe 2 verbunden ist. Die Rückschlagventile 18 definieren einen Einlass und einen
Auslass der Pumpe 2. Je nach Schaltstellung des 4/2 -Wegeventils 14 befindet sich das Dosiersystem in einem Dosiermodus oder in einem Rücksaugmodus.
Das Fördermodul 1 des Dosiersystems der Fig. 1 umfasst ferner einen Filter 8, der saugseitig angeordnet ist, das heißt in Hauptströmungsrichtung der Pumpe 2 und dem 4/2 -Wegeventil 14 vorgeschaltet ist. Schaltet das 4/2 -Wegeventil 14 vom Dosiermodus in den Rücksaugmodus um, kehrt sich die Strömungsrichtung in der Saugleitung 3 um. Dabei öffnet ein Rückschlagventil 12, das in einer Bypass-Leitung 11 zur Umgehung des Filters 8 angeordnet ist, so dass der Filter 8 nicht in umgekehrter Richtung durchströmt wird. Auf diese Weise wird verhindert, dass sich bereits abgeschiedene Partikeln vom Filter lösen und wieder in den Vorratstank 4 gelangen. Eine Verschmutzung der
funktionsrelevanten Komponenten wie der Pumpe 2, insbesondere der
Rückschlagventile 18 der Pumpe 2, sowie des 4/2-Wegeventils 14 ist ebenfalls nicht zu befürchten, da die Schmutzseite auf der den Komponenten
abgewandten Seite des Filters 8 liegt.
In der Fig. 2 ist eine Weiterbildung des Dosiersystems der Fig. 1 dargestellt. In Schwerkraftrichtung oberhalb des Filters 8 ist zusätzlich ein Ausgleichsvolumen 9 angeordnet, das der Entlüftung des Filters 8 dient. Ferner vermag das
Ausgleichsvolumen 9 Schäden durch Eisdruck zu verhindern. Das
Ausgleichsvolumen 9 ist gemeinsam mit dem Filter 8 in einem Gehäuse 10 angeordnet. Eine Abwandlung des Dosiersystems der Fig. 2 ist in der Fig. 3 dargestellt. Die
Bypass-Leitung 11 zweigt oberhalb des Filters 8 jedoch unterhalb des
Ausgleichsvolumens 9 ab, so dass im Rücksaugmodus der Filter 8 rückgespült wird, das Ausgleichsvolumen 9 jedoch nicht geleert bzw. entlüftet wird. Das Rückspülen des Filters 8 dient Reinigungszwecken, wobei in Kauf genommen wird, dass aus dem Filter 8 gelöste Partikeln zurück in den Vorratstank 4 gelangen.
Eine weitere Abwandlung des Dosiersystems der Fig. 2 ist in der Fig. 4 dargestellt. Um ein ungewolltes Öffnen des in der Bypass-Leitung 11
angeordneten Rückschlagventils 12 zu verhindern, wird ein Einlass 13 des Fördermoduls 1 in eine Position gebracht, die sich in Schwerkraftrichtung oberhalb des Vorratstanks 4 befindet. Die für die statischen Druckverhältnisse relevante Flüssigkeitssäule ergibt sich in diesem Fall aus der Höhendifferenz ΔΗ zwischen dem Rückschlagventil 12 und dem Einlass 13. Bei dem
Ausführungsbeispiel der Fig. 2 ergibt sich die Flüssigkeitssäule aus der
Höhendifferenz ΔΗ zwischen dem Rückschlagventil 12 und dem Füllstand im Vorratstank 4 (siehe Fig. 2). In beiden Fällen sollte jedoch der Öffnungsdruck des Rückschlagventils 12 unterhalb des sich daraus ergebenden statischen Drucks liegen, um ein ungewolltes Öffnen und damit eine Entleerung des Filters 8 bzw. des Ausgleichsvolumens 9 zu vermeiden.

Claims

Ansprüche
1. Fördermodul (1) für ein Dosiersystem zum Eindosieren eines
Reduktionsmittels, insbesondere einer wässrigen Harnstofflösung, in einen Abgasstrang eines Kraftfahrzeugs, umfassend eine Pumpe (2), die saugseitig über eine Saugleitung (3) mit einem Reduktionsmittel-Vorratstank (4) und druckseitig über eine Förderleitung (5) mit einem Dosiermodul (6) verbunden oder verbindbar ist, wobei von der Förderleitung (5) eine zurück in den
Vorratstank (4) führende Rücklaufleitung (7) abzweigt,
dadurch gekennzeichnet, dass saugseitig ein Filter (8) in das Fördermodul (1) integriert ist.
2. Fördermodul (1) nach Anspruch 1,
dadurch gekennzeichnet, dass in Schwerkraftrichtung oberhalb des Filters (8) ein Ausgleichsvolumen (9) ausgebildet ist, das vorzugsweise in einem gemeinsamen Gehäuse (10) mit dem Filter (8) angeordnet ist.
3. Fördermodul (1) nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass von der Saugleitung (3) eine zurück in den Vorratstank (4) führende Bypass-Leitung (11) zur Umgehung des Filters (8) und/oder des Ausgleichsvolumens (9) abzweigt.
4. Fördermodul (1) nach Anspruch 3,
dadurch gekennzeichnet, dass in der Bypass-Leitung (11) ein
Rückschlagventil (12) angeordnet ist, das im Dosiermodus geschlossen und im Rücksaugmodus geöffnet ist.
5. Fördermodul (1) nach Anspruch 4,
dadurch gekennzeichnet, dass der Öffnungsdruck des Rückschlagventils (12) unterhalb der Druckdifferenz liegt, die sich aus der Höhendifferenz (ΔΗ) zwischen dem minimalen Füllstand im Vorratstank (4) und der Position des
Rückschlagventils (12) ergibt.
6. Fördermodul (1) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Saugleitung (3) über einen Einlass (13) an das Fördermodul (1) angeschlossen ist und der Einlass (13) in
Schwerkraftrichtung oberhalb des Füllstands im Vorratstank (4) angeordnet ist.
7. Fördermodul (1) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass in das Fördermodul (1) ein 4/2 -Wegeventil (14) zum Umschalten vom Dosiermodus in den Rücksaugmodus und umgekehrt integriert ist.
8. Fördermodul (1) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Pumpe (2) eine Membranpumpe ist.
9. Dosiersystem zum Eindosieren eines Reduktionsmittels, insbesondere einer wässrigen Harnstofflösung, in einen Abgasstrang eines Kraftfahrzeugs mit einem Reduktionsmittel-Vorratstank (4), einem Dosiermodul (6) und einem Fördermodul (1) nach einem der vorhergehenden Ansprüche.
PCT/EP2018/050329 2017-01-25 2018-01-08 Fördermodul für ein dosiersystem zum eindosieren eines reduktionsmittels in den abgasstrang eines kraftfahrzeugs sowie dosiersystem WO2018137914A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880008441.2A CN110234851A (zh) 2017-01-25 2018-01-08 用于将还原剂配量到机动车排气系中的配量系统的输送模块以及配量系统
US16/480,362 US10914216B2 (en) 2017-01-25 2018-01-08 Delivery module for a metering system for metering a reducing agent into the exhaust gas section of a motor vehicle, and metering system
KR1020197024561A KR102388109B1 (ko) 2017-01-25 2018-01-08 자동차의 배기가스 섹션 내로 환원제를 계량 주입하기 위한 계량공급 시스템용 이송 모듈 및 계량공급 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017201124.6A DE102017201124A1 (de) 2017-01-25 2017-01-25 Fördermodul für ein Dosiersystem zum Eindosieren eines Reduktionsmittels in den Abgasstrang eines Kraftfahrzeugs sowie Dosiersystem
DE102017201124.6 2017-01-25

Publications (1)

Publication Number Publication Date
WO2018137914A1 true WO2018137914A1 (de) 2018-08-02

Family

ID=60937775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/050329 WO2018137914A1 (de) 2017-01-25 2018-01-08 Fördermodul für ein dosiersystem zum eindosieren eines reduktionsmittels in den abgasstrang eines kraftfahrzeugs sowie dosiersystem

Country Status (5)

Country Link
US (1) US10914216B2 (de)
KR (1) KR102388109B1 (de)
CN (1) CN110234851A (de)
DE (1) DE102017201124A1 (de)
WO (1) WO2018137914A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019208164A1 (de) 2019-06-05 2020-12-10 Robert Bosch Gmbh Dosiersystem für einen Betriebs- und/oder Hilfsstoff
FR3108263B1 (fr) * 2020-03-18 2022-02-11 Vitesco Technologies Procédé d’entretien d’un dispositif de filtration d’un systeme d’extraction d’un liquide d’un reservoir d’un vehicule automobile
DE102021200702A1 (de) 2021-01-27 2022-07-28 Robert Bosch Gesellschaft mit beschränkter Haftung Filter-Baugruppe für ein Dosiersystem, Dosiersystem

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009045721A1 (de) 2009-10-15 2011-04-21 Robert Bosch Gmbh Tank für ein flüssiges Reduktionsmittel
KR20130013487A (ko) * 2011-07-28 2013-02-06 현대자동차주식회사 선택적 촉매 환원 시스템
DE102011088217A1 (de) * 2011-12-12 2013-06-13 Robert Bosch Gmbh Dosieranordnung für ein flüssiges Abgasnachbehandlungsmittel und Dosierverfahren
DE102011088221A1 (de) * 2011-12-12 2013-06-13 Robert Bosch Gmbh Dosieranordnung für ein flüssiges Abgasnachbehandlungsmittel und Dosierverfahren
WO2013141780A1 (en) * 2012-03-20 2013-09-26 Scania Cv Ab Method pertaining to an scr system and an scr system
DE102013201537A1 (de) * 2013-01-30 2014-07-31 Mtu Friedrichshafen Gmbh Zuführsystem für ein Medium

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7594393B2 (en) * 2004-09-07 2009-09-29 Robert Bosch Gmbh Apparatus for introducing a reducing agent into the exhaust of an internal combustion engine
DE102009041179A1 (de) * 2009-09-11 2011-03-24 Emitec Gesellschaft Für Emissionstechnologie Mbh Fördervorrichtung für ein Reduktionsmittel
US20130000760A1 (en) * 2011-06-29 2013-01-03 Ti Group Automotive Systems, L.L.C. Fluid distribution system and components thereof
US9458746B2 (en) * 2013-03-01 2016-10-04 Cummins Emission Solutions Inc. Systems and techniques for heating urea injection systems
CN103114896B (zh) * 2013-03-01 2015-04-22 江苏大学 一种尿素溶液计量喷射装置及其控制方法
US9089791B2 (en) * 2013-03-14 2015-07-28 Cummins Ip, Inc. Apparatus, method, and system for reductant filtration
US20150240683A1 (en) * 2014-02-26 2015-08-27 Caterpillar Inc. Reductant supply system
WO2017097810A1 (de) * 2015-12-10 2017-06-15 Continental Automotive Gmbh Tanksystem für ein reduktionsmittel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009045721A1 (de) 2009-10-15 2011-04-21 Robert Bosch Gmbh Tank für ein flüssiges Reduktionsmittel
KR20130013487A (ko) * 2011-07-28 2013-02-06 현대자동차주식회사 선택적 촉매 환원 시스템
DE102011088217A1 (de) * 2011-12-12 2013-06-13 Robert Bosch Gmbh Dosieranordnung für ein flüssiges Abgasnachbehandlungsmittel und Dosierverfahren
DE102011088221A1 (de) * 2011-12-12 2013-06-13 Robert Bosch Gmbh Dosieranordnung für ein flüssiges Abgasnachbehandlungsmittel und Dosierverfahren
WO2013141780A1 (en) * 2012-03-20 2013-09-26 Scania Cv Ab Method pertaining to an scr system and an scr system
DE102013201537A1 (de) * 2013-01-30 2014-07-31 Mtu Friedrichshafen Gmbh Zuführsystem für ein Medium

Also Published As

Publication number Publication date
KR20190104617A (ko) 2019-09-10
US20190383191A1 (en) 2019-12-19
KR102388109B1 (ko) 2022-04-19
US10914216B2 (en) 2021-02-09
CN110234851A (zh) 2019-09-13
DE102017201124A1 (de) 2018-07-26

Similar Documents

Publication Publication Date Title
DE102010051072B4 (de) Flüssigkeitsbehälter, insbesondere für eine wässrige Harnstofflösung
EP2791481B1 (de) Dosieranordnung für ein flüssiges abgasnachbehandlungsmittel und dosierverfahren
EP2206897A1 (de) Fördereinrichtung für ein SCR-System
WO2018137914A1 (de) Fördermodul für ein dosiersystem zum eindosieren eines reduktionsmittels in den abgasstrang eines kraftfahrzeugs sowie dosiersystem
EP2791480B1 (de) Dosieranordnung für ein flüssiges abgasnachbehandlungsmittel und dosierverfahren
AT510671B1 (de) Vorrichtung zur selektiven katalytischen reduktion von stickoxiden in einem abgastrakt eines kraftfahrzeuges
WO2009121644A1 (de) Vorrichtung zum dosieren eines flüssigen reduktionsmittels
DE102016218497A1 (de) Reduktionsmittelversorgungssystem zur Abgasnachbehandlung
EP2729674B1 (de) Dosiersystem sowie 3/2-wegeventil für ein dosiersystem
EP2669484B1 (de) Einspritzsystem, Abgasnachbehandlungseinrichtung
DE102009011018A1 (de) Vorrichtung zum Zuführen eines Hilfsmittels zu einer Abgasnachbehandlungseinrichtung eines Kraftfahrzeugs
WO2009010569A1 (de) Vorrichtung und verfahren zur dosierung eines reduktionsmittels in einen abgastrakt eines fahrzeugs
DE102011090070A1 (de) Abgasnachbehandlungsanordnung und Verfahren zur Abgasnachbehandlung
DE102009029534A1 (de) Fördermodul sowie Dosiersystem mit einem solchen Fördermodul
DE102017218418A1 (de) Tank, Anordnung zur Nachbehandlung des Abgases einer Brennkraftmaschine mit einem solchen Tank und Betriebsverfahren
DE102010061772A1 (de) Filteranordnung und Fördermodul mit einer solchen Filteranordnung
DE102017210231A1 (de) Filtereinrichtung und Fördermodul für ein Fluid sowie Betriebsverfahren hierzu
WO2019228934A1 (de) Wassereinspritzsystem für einen verbrennungsmotor sowie kraftfahrzeug mit einem solchen wassereinspritzsystem
WO2011147703A1 (de) Fluidspeichereinrichtung
DE102017207855A1 (de) Verfahren zum Betreiben eines Niederdruckkreislaufs in einem Kraftstoffeinspritzsystem sowie Niederdruckkreislauf
DE102017210229A1 (de) Reduktionsmitteltank
DE102019125242A1 (de) Verfahren zum Betreiben eines Dosiersystems zur Eindosierung eines Reduktionsmittels sowie Dosiersystem
DE102017220189A1 (de) Dosiersystem, Verfahren zum Betreiben eines Dosiersystems
DE102009046802A1 (de) Vorrichtung zum Einspritzen von Fluid in einen Abgasstrang
DE102017201140A1 (de) Filteranordnung für einen Reduktionsmittel-Vorratstank oder eine Funktionseinheit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18700109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197024561

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18700109

Country of ref document: EP

Kind code of ref document: A1