WO2018137565A1 - 一种信息的编码方法及设备 - Google Patents

一种信息的编码方法及设备 Download PDF

Info

Publication number
WO2018137565A1
WO2018137565A1 PCT/CN2018/073404 CN2018073404W WO2018137565A1 WO 2018137565 A1 WO2018137565 A1 WO 2018137565A1 CN 2018073404 W CN2018073404 W CN 2018073404W WO 2018137565 A1 WO2018137565 A1 WO 2018137565A1
Authority
WO
WIPO (PCT)
Prior art keywords
decoding
information
indication information
terminal device
network device
Prior art date
Application number
PCT/CN2018/073404
Other languages
English (en)
French (fr)
Inventor
黄凌晨
乔云飞
李榕
王桂杰
戴胜辰
沈祖康
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18744729.7A priority Critical patent/EP3550891B1/en
Publication of WO2018137565A1 publication Critical patent/WO2018137565A1/zh
Priority to US16/523,684 priority patent/US11523328B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0075Transmission of coding parameters to receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and device for encoding information.
  • the system message is the cell level control information, and the terminal (for example, the mobile phone and the computer) can successfully access the cell only after acquiring the system message, so that the terminal can work correctly.
  • the system message can include three types, namely, a master information block (English: master information block, MIB for short), a system information block 1 (English: system information block 1, abbreviated as: SIB1), and system information (English: system information, Abbreviation: SI).
  • the structure diagram of the existing system message can be as shown in FIG. 1.
  • the MIB includes a limited number of the most important and most commonly used transmission parameters for reading cell information.
  • the transmission parameters may include parameters such as system bandwidth, system frame number, and physical hybrid arq indicator channel (PHICH) configuration information.
  • 2 is a schematic diagram of a conventional channel map.
  • a network device such as a base station transmits a MIB to a broadcast channel (Broadcast Channel, BCH for short) through a broadcast control channel (Broadcast Control Channel, BCCH), and then transmits the MIB to the physics through the BCH.
  • the broadcast channel (English: physical broadcast channel, PBCH for short), and encodes the MIB in the PBCH.
  • the terminal device such as a mobile phone) decodes the MIB after receiving the MIB.
  • SIB1 carries scheduling information of all SIs and related information of cell access.
  • the SI includes SIBs other than SIB1.
  • the SI may include SIB2, SIB3, and SIB4.
  • the network device transmits SIB1 (or SI) to the downlink shared channel (English: downlink-shared channel, DL-SCH) through the BCCH, and then transmits SIB1 (or SI) to the physical downlink sharing through the DL-SCH.
  • Channel English: physical downlink shared channel, PDSCH for short
  • the terminal device decodes SIB1 (or SI) after receiving SIB1 (or SI).
  • the eMBB service mainly includes ultra high definition video, augmented reality AR, virtual reality VR, etc.
  • the main feature is that the transmission data volume is large and the transmission rate is high.
  • the URLLC service is mainly used for industrial control and unmanned driving in the Internet of Things.
  • the main features are ultra-high reliability, low latency, low transmission data and burstiness.
  • the mMTC service is mainly used for smart grids and smart cities in the Internet of Things.
  • the main features are the connection of mass devices, the small amount of data transmitted, and the delay of tolerating for a long time.
  • the embodiment of the present application provides a method and a device for encoding information, which are beneficial for the terminal device to flexibly decode the system message.
  • the embodiment of the present application provides a method for encoding information, where the method includes: the network device encodes a primary information block MIB, where the MIB includes indication information, and the indication information is used by the terminal device to determine to perform the first information.
  • the first information includes at least one of a system information block SIB1 and system information SI; and the network device sends the encoded MIB to the terminal device.
  • the network device can encode the MIB including the indication information (the decoding mode used by the terminal device to determine the first information to be decoded), and send the encoded MIB to the terminal. device. Therefore, before receiving the SIB and the SI, the terminal device can determine the correct decoding mode of the SIB and the SI according to the indication information, and then use the correct decoding mode to decode after the terminal device receives the SIB and the SI. It can be seen that by implementing the method described in the first aspect, it is advantageous for the terminal device to flexibly decode the SIB and the SI.
  • the indication information includes first indication information, where the first indication information is used to indicate an encoding manner adopted by the first information.
  • the terminal device can successfully determine the decoding mode for decoding the first information according to the first indication information.
  • the indication information includes second indication information, where the second indication information is used to indicate a decoding manner for decoding the first information.
  • the terminal device can successfully determine the decoding mode for decoding the first information according to the second indication information.
  • the indication information further includes third indication information, where the third indication information is used to indicate configuration information corresponding to the decoding mode.
  • the terminal device can improve the success rate of decoding the first information according to the third indication information.
  • the configuration information is a scaling value. Decoding the first information according to the scaling value can improve the success rate of the decoding.
  • the configuration information is an offset value. Decoding the first information according to the offset value can improve the success rate of the decoding.
  • the configuration information is a serial offset list width. Decoding the first information according to the width of the serial offset list can improve the success rate of decoding.
  • the configuration information is a serial offset list width. Decoding the first information according to the width of the serial offset list can improve the success rate of decoding.
  • the embodiment of the present application provides a method for decoding information, where the method includes: the terminal device receives the encoded MIB; and the terminal device decodes the encoded MIB to obtain the indication information in the MIB.
  • the terminal device determines a decoding manner of the first information according to the indication information.
  • the terminal device receives the encoded first information sent by the network device.
  • the terminal device decodes the first information according to the determined decoding manner.
  • the first information includes at least one of a system information block SIB1 and system information SI.
  • the terminal device can determine the correct decoding mode of the SIB and the SI according to the indication information before receiving the SIB and the SI, and then use the correct mode after the terminal device receives the SIB and the SI.
  • the decoding method is used for decoding. It can be seen that by implementing the method described in the second aspect, the terminal device can flexibly decode the SIB and the SI.
  • the embodiment of the present application provides a method for encoding information, where the method includes: the network device encodes downlink control information DCI, and the DCI includes indication information, where the indication information is used by the terminal device to determine to translate the first information.
  • the decoding mode of the code, the first information includes at least one of a system information block SIB1 and a system information SI; the network device sends the encoded DCI to the terminal device.
  • the network device may encode the DCI including the indication information (the decoding mode used by the terminal device to determine the first information to be decoded), and send the encoded DCI to the terminal device. . Therefore, before receiving the SIB and the SI, the terminal device can determine the correct decoding mode of the SIB and the SI according to the indication information, and then use the correct decoding mode to decode after the terminal device receives the SIB and the SI. It can be seen that by implementing the method described in the third aspect, it is advantageous for the terminal device to flexibly decode the SIB and the SI.
  • the indication information includes first indication information, where the first indication information is used to indicate an encoding manner adopted by the first information.
  • the terminal device can successfully determine the decoding mode for decoding the first information according to the first indication information.
  • the indication information includes second indication information, where the second indication information is used to indicate a decoding manner for decoding the first information.
  • the terminal device can successfully determine the decoding mode for decoding the first information according to the second indication information.
  • the indication information further includes third indication information, where the third indication information is used to indicate configuration information corresponding to the decoding mode.
  • the terminal device can improve the success rate of decoding the first information according to the third indication information.
  • the configuration information is a scaling value. Decoding the first information according to the scaling value can improve the success rate of the decoding.
  • the configuration information is an offset value. Decoding the first information according to the offset value can improve the success rate of the decoding.
  • the configuration information is a serial offset list width. Decoding the first information according to the width of the serial offset list can improve the success rate of decoding.
  • the configuration information is a serial offset list width. Decoding the first information according to the width of the serial offset list can improve the success rate of decoding.
  • the embodiment of the present application provides a method for decoding information, where the method includes: the terminal device receives the encoded DCI; and the terminal device decodes the encoded DCI to obtain the indication information in the DCI.
  • the terminal device determines a decoding manner of the first information according to the indication information.
  • the terminal device receives the encoded first information sent by the network device.
  • the terminal device decodes the first information according to the determined decoding manner.
  • the first information includes at least one of a system information block SIB1 and system information SI.
  • the terminal device can determine the correct decoding mode of the SIB and the SI according to the indication information before receiving the SIB and the SI, and then use the correct mode after the terminal device receives the SIB and the SI.
  • the decoding method is used for decoding. It can be seen that by implementing the method described in the fourth aspect, the terminal device can flexibly decode the SIB and the SI.
  • an embodiment of the present application provides a method for encoding information, where the method includes: the network device encodes a system information block SIB1, where the SIB1 includes indication information, where the indication information is used by the terminal device to determine to perform system information SI.
  • the decoding mode of the decoding the network device sends the encoded SIB1 to the terminal device.
  • the network device can encode the SIB1 including the indication information (the decoding mode for the terminal device to determine the decoding of the SI), and transmit the encoded SIB1 to the terminal device. Therefore, the terminal device can determine the correct decoding mode of the SI according to the indication information before receiving the SI, and then use the correct decoding mode to decode after the terminal device receives the SI. It can be seen that by implementing the method described in the fifth aspect, it is advantageous for the terminal device to flexibly decode the SI.
  • the indication information includes first indication information, where the first indication information is used to indicate an encoding manner adopted by the SI.
  • the terminal device can successfully determine the decoding mode for decoding the SI according to the first indication information.
  • the indication information includes second indication information, where the second indication information is used to indicate a decoding manner for decoding the SI.
  • the terminal device can successfully determine the decoding mode for decoding the SI according to the second indication information.
  • the indication information further includes third indication information, where the third indication information is used to indicate configuration information corresponding to the decoding mode.
  • the terminal device can improve the success rate of decoding the SI according to the third indication information.
  • the configuration information is a scaling value. Decoding the SI according to the scaling value can improve the success rate of decoding.
  • the configuration information is an offset value. Decoding the SI according to the offset value can improve the success rate of the decoding.
  • the configuration information is a serial offset list width. Decoding the SI according to the serial offset list width can improve the success rate of decoding.
  • the configuration information is a serial offset list width. Decoding the SI according to the serial offset list width can improve the success rate of decoding.
  • the embodiment of the present application provides a method for decoding information, where the method includes: the terminal device receives the encoded SIB1; and the terminal device decodes the encoded SIB1 to obtain the indication information in the SIB1.
  • the terminal device determines the decoding mode of the SI according to the indication information.
  • the terminal device receives the encoded SI sent by the network device.
  • the terminal device decodes the SI according to the determined decoding mode.
  • the terminal device can determine the correct decoding mode of the SI according to the indication information before receiving the SI, and then use the correct decoding mode after the terminal device receives the SI. code. It can be seen that by implementing the method described in the sixth aspect, the terminal device can flexibly decode the SI.
  • a network device which has the foregoing first aspect, a possible implementation manner of the first aspect, a third aspect, a possible implementation manner of the third aspect, a fifth aspect, and a fifth aspect.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the unit can be software and/or hardware. Based on the same inventive concept, the principle and the beneficial effects of the network device for solving the problem can be referred to the foregoing first aspect, the possible implementation manner of the first aspect, the third aspect, the possible implementation manner of the third aspect, the fifth aspect, and the fifth aspect. The beneficial effects brought about by the implementation of the method will not be repeated.
  • a terminal device having a function of implementing the behavior of the terminal device in the second aspect, the fourth aspect, and the sixth aspect.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the unit can be software and/or hardware. Based on the same inventive concept, the principle and the beneficial effects of the terminal device for solving the problem can be referred to the beneficial effects brought about by the second, fourth, and sixth aspects, and the repeated description is not repeated.
  • a network device comprising: a processor, a memory, a communication interface, and one or more programs; the processor, the communication interface, and the memory are connected; optionally, the network device further includes a bus system The processor, the communication interface, and the memory are coupled by a bus system; wherein one or more programs are stored in the memory, the processor invoking a program stored in the memory to implement the first aspect, the first aspect possible implementation
  • a method, a third aspect, a possible implementation manner of the third aspect, a solution of a possible implementation manner of the fifth aspect or the fifth aspect, and an implementation manner and a beneficial effect of the network device for solving the problem may be referred to the foregoing first aspect, where the first aspect may The implementation, the third aspect, the possible implementation of the third aspect, the possible implementation of the fifth aspect or the fifth aspect, and the beneficial effects are not repeated here.
  • a tenth aspect provides a terminal device, including: a processor, a memory, a communication interface, and one or more programs; the processor, the communication interface, and the memory are connected; optionally, the terminal device further includes a bus system The processor, the communication interface, and the memory are coupled by a bus system; wherein one or more programs are stored in the memory, the processor invoking a program stored in the memory to implement the second, fourth, and sixth aspects described above
  • the terminal device including: a processor, a memory, a communication interface, and one or more programs; the processor, the communication interface, and the memory are connected; optionally, the terminal device further includes a bus system The processor, the communication interface, and the memory are coupled by a bus system; wherein one or more programs are stored in the memory, the processor invoking a program stored in the memory to implement the second, fourth, and sixth aspects described above
  • a communication system comprising: the network device of the seventh aspect and the terminal device of the eighth aspect.
  • 1 is a schematic structural diagram of a conventional system message
  • FIG. 2 is a schematic diagram of a conventional channel mapping
  • FIG. 3 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method for encoding information according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart diagram of another method for encoding information according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart diagram of still another method for encoding information according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • the embodiment of the present application provides an information encoding method and device.
  • the embodiments of the present application can be applied to a wireless communication system, where a wireless communication system usually consists of a cell, each cell includes a base station (English: Base Station, BS for short), and the base station transmits to multiple mobile stations (English: Mobile Station, referred to as: MS) provides communication services in which the base station is connected to the core network device, as shown in FIG.
  • the network device in the embodiment of the present application may be the base station in FIG. 3 or a baseband processing unit (Broadband Unit, BBU for short).
  • BBU baseband Unit
  • the mobile device in the embodiment of the present application may be the mobile station in FIG.
  • the wireless communication system mentioned in the embodiments of the present application includes, but is not limited to, a narrowband Internet of Things system (English: Narrow Band-Internet of Things, referred to as NB-IoT), and a global mobile communication system (English: Global System) For Mobile Communications (GSM), Enhanced Data Rate for GSM Evolution (EDGE), Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (English: Code Division Multiple Access, CDMA2000 for short), Time Division-Synchronization Code Division Multiple Access (TD-SCDMA), Long Term Evolution ( English: Long Term Evolution (LTE) and the three major application scenarios of next-generation 5G mobile communication systems, eMBB, URLLC and eMTC.
  • GSM Global System
  • EDGE Enhanced Data Rate for GSM Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronization Code Division Multiple Access
  • LTE Long Term Evolution
  • eMBB next-generation 5
  • the base station is a device deployed in a radio access network to provide a wireless communication function for a mobile station.
  • the base station may include various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, access points, and the like.
  • the name of a device having a base station function may be different, for example, in an LTE system, an evolved Node B (evolved NodeB, eNB or eNodeB), in the third In the system (English: 3rd Generation, 3G for short), it is called Node B (English: Node B).
  • the foregoing apparatus for providing a wireless communication function to a mobile station is collectively referred to as a base station or a BS.
  • the mobile stations involved in the embodiments of the present application may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem.
  • the mobile station may also be referred to as a terminal (English: terminal), and may also include a subscriber unit (English: subscriber unit), a cellular phone (English: cellular phone), a smart phone (English: smart phone), a wireless data card, an individual.
  • Digital Assistant English: Personal Digital Assistant, PDA for short
  • computer tablet, wireless modem (English: modem), handheld device (English: handset), laptop (English: laptop computer), machine type communication (English: English: Machine Type Communication, referred to as: MTC) terminal.
  • a terminal device such as a mobile phone acquires specific downlink control information of a physical downlink control channel (PDCCH) according to the MIB (English: Downlink Control Information) (abbreviation: DCI); after the terminal device acquires the DCI information, the SIB1 is acquired in the PDSCH according to the scheduling information of the SIB1 in the DCI information. After acquiring the SIB1, the terminal acquires the SI in the PDSCH according to the scheduling information of the SI in the SIB1.
  • PDCH physical downlink control channel
  • DCI Downlink Control Information
  • FIG. 5 is a method for encoding information according to an embodiment of the present application. As shown in FIG. 5, the encoding method of the information includes the following sections 501 and 502:
  • the network device encodes the MIB.
  • the MIB includes indication information for the terminal device to determine a decoding mode for decoding the first information, the first information including at least one of SIB1 and SI.
  • the network device sends the encoded MIB to the terminal device.
  • the terminal device decodes the encoded MIB to obtain indication information in the MIB.
  • the terminal device may decode the MIB to obtain indication information in the MIB.
  • the terminal device determines, according to the indication information, a decoding manner of the first information.
  • the terminal device After the terminal device obtains the indication information after decoding the MIB, the decoding manner of the first information is determined according to the indication information.
  • the terminal device receives the encoded first information sent by the network device.
  • the terminal device After receiving the encoded MIB, the terminal device receives the encoded first information.
  • the terminal device decodes the first information according to the determined decoding manner.
  • the terminal device After receiving the encoded first information, the terminal device decodes the first information according to the determined decoding manner.
  • the polar code encoding includes a check auxiliary polar code (ie, PC-polar code) encoding and a cyclic redundancy check auxiliary polar code (ie, CA-polar code) encoding.
  • PC-polar code For PC-polar code encoding, use the parity-check serial cancellation list (PC-SCL) for decoding. If you use CA-polar code, you need to use cyclic redundancy.
  • PC-SCL parity-check serial cancellation list
  • CA-SCL auxiliary serial cancellation list
  • the terminal device may determine, according to the indication information, that the decoding mode for decoding the SIB1 and the SI is the PC-SCL decoding.
  • the network device encodes the SIB1 and the SI by using the CA-polar code, and the terminal device may determine, according to the indication information, that the decoding mode for decoding the SIB1 and the SI is CA-SCL decoding.
  • the network device encodes the SIB1 and the SI by using a low-density parity check (English: Low-density Parity-check, LDPC) code, and the terminal device can determine according to the indication information.
  • the decoding mode for decoding the SIB1 and the SI is the decoding mode corresponding to the LDPC code.
  • the decoding mode corresponding to the LDPC code may include a layered normalized min-sum (LNMS). Decoding and layered offset minimum sum (English: layered offset min-sum, referred to as: LOMS) decoding.
  • the network device can encode the MIB including the indication information (the decoding mode used by the terminal device to determine the first information to be decoded) and transmit the encoded MIB to the terminal device. Therefore, before receiving the SIB and the SI, the terminal device can determine the correct decoding mode of the SIB and the SI according to the indication information, and then use the correct decoding mode to decode after the terminal device receives the SIB and the SI. It can be seen that by implementing the method described in FIG. 5, it is advantageous for the terminal device to flexibly decode the SIB and the SI.
  • the indication information included in the MIB includes first indication information, where the first indication information is used to indicate an encoding manner adopted by the first information.
  • the coding mode may be a polar code coding mode or an LDPC code coding mode, etc., which is not limited in this embodiment.
  • the terminal device may pre-set a decoding manner corresponding to a coding mode corresponding to the polar code coding mode (for example, PC-SCL decoding) and an LDPC code coding mode (for example, LNMS decoding).
  • the first indication information may be a 1-bit binary.
  • a binary 0 may be used to indicate a polar code coding mode
  • a binary 1 may be an LDPC code coding mode.
  • the terminal device can successfully determine the decoding mode for decoding the first information according to the first indication information.
  • the indication information included in the MIB includes second indication information, where the second indication information is used to indicate a decoding manner for decoding the first information.
  • the network device encodes the first information by using a polar code encoding manner, and the terminal device needs to use the PC-SCL decoding mode to correctly decode, and the second indication information is used to indicate decoding of the first information.
  • the mode is PC-SCL decoding.
  • the second indication information can be expressed in binary. For example, binary 00 represents the PC-SCL decoding mode, binary 01 represents the CA-SCL decoding mode, binary 10 represents the LNMS decoding mode, and binary 11 represents the LOMS decoding mode.
  • the terminal device can successfully determine the decoding mode for decoding the first information according to the second indication information.
  • the indication information included in the MIB may also include the first indication information and the second indication information.
  • the first indication information is binary 0 indicating the polar code encoding mode
  • the first indication information is binary 1 indicating the LDPC code encoding mode.
  • the second indication information is binary 0, it indicates the PC-SCL decoding mode
  • the second indication information is binary 1, indicating the CA-SCL decoding mode
  • the first indication information is 1
  • the second indication information is binary 0, indicating the LNMS decoding mode
  • the second indication information is binary 1, indicating the LOMS decoding mode.
  • the terminal device can successfully determine the decoding mode for decoding the first information according to the first indication information and the second indication information.
  • the MIB may further include third indication information, where the third indication information is used to indicate configuration information corresponding to a coding manner of the first information.
  • the MIB may include only the first indication information and the third indication information, or the MIB may include only the second indication information and the third indication information, or the MIB may also include the first indication information, the second indication information, and the Three instructions.
  • the terminal device can improve the success rate of decoding the first information according to the third indication information.
  • the configuration information is a scaling value.
  • Decoding the first information according to the scaling value can improve the success rate of the decoding.
  • the configuration information is an offset value.
  • Decoding the first information according to the offset value can improve the success rate of the decoding.
  • the configuration information is a serial offset list width.
  • Decoding the first information according to the width of the serial offset list can improve the success rate of decoding.
  • the configuration information is a serial offset list width.
  • Decoding the first information according to the width of the serial offset list can improve the success rate of decoding.
  • FIG. 6 is another encoding method of information provided by an embodiment of the present application. As shown in FIG. 6, the encoding method of the information includes the following sections 601 and 602:
  • the network device encodes the DCI.
  • the DCI includes indication information for the terminal device to determine a decoding mode for decoding the first information, the first information including at least one of a system information block SIB1 and system information SI.
  • the network device sends the encoded DCI to the terminal device.
  • the terminal device decodes the encoded DCI to obtain indication information in the DCI.
  • the terminal device may decode the DCI to obtain indication information in the DCI.
  • the terminal device determines, according to the indication information, a decoding manner of the first information.
  • the terminal device After the terminal device obtains the indication information after decoding the DCI, the decoding manner of the first information is determined according to the indication information.
  • the terminal device receives the encoded first information sent by the network device.
  • the terminal device After receiving the encoded DCI, the terminal device receives the encoded first information.
  • the terminal device decodes the first information according to the determined decoding manner.
  • the terminal device After receiving the encoded first information, the terminal device decodes the first information according to the determined decoding manner.
  • the terminal device may determine, according to the indication information, that the decoding mode for decoding the SIB1 and the SI is the PC-SCL decoding.
  • the network device encodes the SIB1 and the SI by using the CA-polar code, and the terminal device may determine, according to the indication information, that the decoding mode for decoding the SIB1 and the SI is CA-SCL decoding.
  • the terminal device may determine, according to the indication information, that the decoding mode for decoding the SIB1 and the SI is the decoding corresponding to the LDPC code.
  • the decoding mode corresponding to the LDPC code may include LNMS decoding, LOMS decoding, and the like.
  • the network device may encode the DCI including the indication information (the decoding mode used by the terminal device to determine the first information to be decoded) and transmit the encoded DCI to the terminal device. Therefore, before receiving the SIB and the SI, the terminal device can determine the correct decoding mode of the SIB and the SI according to the indication information, and then use the correct decoding mode to decode after the terminal device receives the SIB and the SI. It can be seen that by implementing the method described in FIG. 6, it is advantageous for the terminal device to flexibly decode the SIB and the SI.
  • the indication information included in the DCI includes first indication information, where the first indication information is used to indicate an encoding manner adopted by the first information.
  • the coding mode may be a polar code coding mode or an LDPC code coding mode, etc., which is not limited in this embodiment.
  • the implementation principle of the embodiment is the same as the implementation principle of the MIB including the first indication information in the embodiment shown in FIG. 5 .
  • the MIB includes the first indication information.
  • the terminal device can successfully determine the decoding mode for decoding the first information according to the first indication information.
  • the indication information included in the DCI includes second indication information, where the second indication information is used to indicate a decoding manner for decoding the first information.
  • the network device encodes the first information by using a polar code encoding manner, and the terminal device needs to use the PC-SCL decoding mode to correctly decode, and the second indication information is used to indicate decoding of the first information.
  • the mode is PC-SCL decoding.
  • the second indication information can be expressed in binary. For example, binary 00 represents the PC-SCL decoding mode, binary 01 represents the CA-SCL decoding mode, binary 10 represents the LNMS decoding mode, and binary 11 represents the LOMS decoding mode.
  • the terminal device can successfully determine the decoding mode for decoding the first information according to the second indication information.
  • the indication information included in the DCI may also include the first indication information and the second indication information.
  • the implementation principle of the embodiment is the same as the implementation principle of the first indication information and the second indication information of the MIB in the embodiment shown in FIG. 5 .
  • the MIB includes the first indication information and the second indication information. description.
  • the terminal device can successfully determine the decoding manner for decoding the first information according to the first indication information and the second indication information.
  • the DCI may further include third indication information, where the third indication information is used to indicate configuration information corresponding to a decoding manner of the first information.
  • the DCI may include only the first indication information and the third indication information, or the DCI may include only the second indication information and the third indication information, or the DCI may also include the first indication information, the second indication information, and the Three instructions.
  • the terminal device can improve the success rate of decoding the first information according to the third indication information.
  • the configuration information is a scaling value.
  • Decoding the first information according to the scaling value can improve the success rate of the decoding.
  • the configuration information is an offset value.
  • Decoding the first information according to the offset value can improve the success rate of the decoding.
  • the configuration information is a serial offset list width.
  • Decoding the first information according to the width of the serial offset list can improve the success rate of decoding.
  • the configuration information is a serial offset list width.
  • Decoding the first information according to the width of the serial offset list can improve the success rate of decoding.
  • FIG. 7 is another encoding method of information provided by an embodiment of the present application. As shown in FIG. 7, the encoding method of the information includes the following sections 701 and 702:
  • the network device encodes the SIB1.
  • the SIB1 includes indication information for the terminal device to determine a decoding mode for decoding the SI.
  • the indication information is used by the terminal device to determine a unified decoding manner for decoding all the SIs.
  • the indication information includes indication information corresponding to each SI, and each indication information is used by the terminal device to determine a decoding manner for decoding the SI corresponding to the indication information.
  • the first SI and the second SI are encoded by using different coding modes, and the first SI corresponding indication information 1 and the second SI corresponding indication information 2 are included in the SIB1, and the indication information 1 is used by the terminal device to determine to perform the first SI.
  • Decoding mode the indication information 2 is used by the terminal device to determine a decoding mode for decoding the second SI.
  • the network device sends the encoded SIB1 to the terminal device.
  • the terminal device decodes the encoded SIB1 to obtain indication information in the SIB1.
  • the terminal device may decode the SIB1 to obtain the indication information in the SIB1.
  • the terminal device determines, according to the indication information, a decoding manner of the SI.
  • the decoding mode of the SI is determined according to the indication information.
  • the terminal device receives the coded SI sent by the network device.
  • the terminal device receives the encoded SI after receiving the encoded SIB1.
  • the terminal device decodes the SI according to the determined decoding manner.
  • the terminal device After receiving the encoded SI, the terminal device decodes the SI according to the determined decoding manner.
  • the terminal device may determine, according to the indication information, that the decoding mode for decoding the SI is PC-SCL decoding; and the network device encodes the SI by using the CA-polar code. Then, the terminal device can determine, according to the indication information, that the decoding mode for decoding the SI is CA-SCL decoding.
  • the terminal device may determine, according to the indication information, that the decoding mode for decoding the SI is a decoding mode corresponding to the LDPC code, for example, the decoding manner corresponding to the LDPC code may include LNMS decoding and LOMS decoding, etc.
  • the network device can encode the SIB1 including the indication information (the decoding mode for the terminal device to determine the decoding of the SI), and transmit the encoded SIB1 to the terminal device. Therefore, the terminal device can determine the correct decoding mode of the SI according to the indication information before receiving the SI, and then use the correct decoding mode to decode after the terminal device receives the SI. It can be seen that by implementing the method described in FIG. 7, it is advantageous for the terminal device to flexibly decode the SI.
  • the indication information included in the SIB1 includes first indication information, where the first indication information is used to indicate an encoding manner adopted by the SI.
  • the coding mode may be a polar code coding mode or an LDPC code coding mode, etc., which is not limited in this embodiment.
  • the implementation principle of the embodiment is the same as the implementation principle of the MIB including the first indication information in the embodiment shown in FIG. 5 .
  • the MIB includes the first indication information.
  • the terminal device can successfully determine the decoding mode for decoding the SI according to the first indication information.
  • the indication information included in the SIB1 includes second indication information, where the second indication information is used to indicate a decoding manner for decoding the SI.
  • the network device encodes the SI by using the polar code coding mode, and the terminal device needs to use the PC-SCL decoding mode to correctly decode the second indication information, and the second indication information is used to indicate that the decoding mode for decoding the SI is PC- SCL decoding mode.
  • the second indication information can be expressed in binary. For example, binary 00 represents the PC-SCL decoding mode, binary 01 represents the CA-SCL decoding mode, binary 10 represents the LNMS decoding mode, and binary 11 represents the LOMS decoding mode.
  • the terminal device can successfully determine the decoding mode for decoding the SI according to the second indication information.
  • the indication information included in the SIB1 may also include the first indication information and the second indication information.
  • the implementation principle of the embodiment is the same as the implementation principle of the first indication information and the second indication information of the MIB in the embodiment shown in FIG. 5 .
  • the MIB includes the first indication information and the second indication information. description.
  • the terminal device can successfully determine the decoding mode for decoding the SI according to the first indication information and the second indication information.
  • the SIB1 may further include third indication information, where the third indication information is used to indicate configuration information corresponding to the decoding mode of the SI.
  • the SIB1 may include only the first indication information and the third indication information, or the SIB1 may include only the second indication information and the third indication information, or the SIB1 may also include the first indication information, the second indication information, and the Three instructions.
  • the terminal device can improve the success rate of decoding the SI according to the third indication information.
  • the configuration information is a scaling value.
  • Decoding the SI according to the scaling value can improve the success rate of decoding.
  • the configuration information is an offset value.
  • Decoding the SI according to the offset value can improve the success rate of the decoding.
  • the configuration information is a serial offset list width.
  • Decoding the SI according to the serial offset list width can improve the success rate of decoding.
  • the configuration information is a serial offset list width.
  • Decoding the SI according to the serial offset list width can improve the success rate of decoding.
  • the embodiment of the present application provides a network device, which has the function of implementing the network device described in FIG. 5 in the foregoing method embodiment, the network device described in FIG. 6, or the network device described in FIG. 7.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the unit can be software and/or hardware. Based on the same inventive concept, the implementation of the network device in the foregoing method embodiment and the beneficial effects can be seen in the foregoing method embodiments. The method implementation of the network device is not repeated here.
  • the embodiment of the present application provides a terminal device, which has the function of implementing the terminal device described in FIG. 5 in the foregoing method embodiment, the terminal device described in FIG. 6, or the terminal device described in FIG.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the unit can be software and/or hardware. Based on the same inventive concept, the implementation of the terminal device in the foregoing method embodiment and the beneficial effects thereof can be seen in the foregoing method embodiments. The method implementation manner of the terminal device is not repeated here.
  • FIG. 8 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • the network device 800 includes a processor 801, a memory 802, and a communication interface 804.
  • the processor 801, the memory 802, and the communication interface 804 are connected.
  • the network device 800 further includes a bus system 803.
  • the processor 801, the memory 802, and the communication interface 804 are connected by a bus system 803.
  • the processor 801 can be a central processing unit (CPU), a general purpose processor, a coprocessor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC). , field programmable gate array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof.
  • the processor 801 can also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the bus system 803 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus system 803 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 8, but it does not mean that there is only one bus or one type of bus.
  • the communication interface 804 is configured to implement communication with other network elements (such as terminal devices, etc.).
  • the processor 801 calls the program code stored in the memory 802 to perform any one or more steps performed by the network device in FIG. 5, FIG. 6, or FIG. 7 in the foregoing method embodiment.
  • the principle of the network device in the embodiment of the present application is similar to the embodiment of the present application. Therefore, the implementation of the network device can refer to the implementation of the method, and is not described here.
  • FIG. 9 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • the terminal device 900 includes a processor 901, a memory 902, and a communication interface 904.
  • the processor 901, the memory 902 and the communication interface 904 are connected.
  • the terminal device 900 further includes a bus system 903.
  • the processor 901, the memory 902, and the communication interface 904 are connected by a bus system 903.
  • the processor 901 may be a central processing unit (CPU), a general-purpose processor, a coprocessor, a digital signal processor (DSP), or an application-specific integrated circuit (ASIC). , field programmable gate array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof.
  • the processor 901 can also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the bus system 903 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus system 903 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 9, but it does not mean that there is only one bus or one type of bus.
  • the communication interface 904 is configured to implement communication with other network elements (such as network devices, etc.).
  • the processor 901 calls the program code stored in the memory 902 to perform any one or more steps performed by the terminal device in FIG. 5, FIG. 6, or FIG. 7 in the foregoing method embodiment.
  • the principle of the terminal device to solve the problem in the embodiment of the present application is similar to the method embodiment of the present application. Therefore, the implementation of the terminal device can refer to the implementation of the method, and is not described here.
  • the embodiment of the present application further provides a communication system, where the system includes: a network network device and a terminal device, where: the network network device is configured to perform the network device executed in FIG. 5, FIG. 6, or FIG. 7 in the foregoing method embodiment.
  • the step of the terminal device is used to perform the steps performed by the terminal device in FIG. 5, FIG. 6, or FIG. 7 in the foregoing method embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

本申请实施例公开了一种信息的编码方法及设备,其中,该方法包括:网络设备对主信息块MIB进行编码,该MIB包括指示信息,该指示信息用于终端设备确定对第一信息进行译码的译码方式,该第一信息包括系统信息块SIB1和系统信息SI中的至少一种;网络设备发送编码后的MIB至终端设备。可见,通过实施本申请实施例,终端设备可在接收SIB和SI之前,就可根据指示信息确定SIB和SI正确的译码方式,进而在终端设备接收SIB和SI之后就可使用正确的译码方式进行译码。可见,通过实施本申请实施例,有利于终端设备灵活地对SIB和SI进行译码。

Description

一种信息的编码方法及设备 技术领域
本申请涉及通信技术领域,尤其涉及一种信息的编码方法及设备。
背景技术
系统消息是小区级别的控制信息,终端(例如,手机和电脑等)只有在获取系统消息之后,才能成功接入小区,得以正确的工作。系统消息可以包括三种类型,分别为主信息块(英文:master information block,简称:MIB)、系统信息块1(英文:system information block 1,简称:SIB1)和系统信息(英文:system information,简称:SI)。现有的系统消息的结构示意图可如图1所示。
如图1所示,MIB包括有限个用以读取小区信息的最重要、最常用的传输参数。例如,传输参数可包括系统带宽、系统帧号和物理混合自动重传指示信道(英文:physical hybrid arq indicator channel,简称:PHICH)配置信息等参数。图2是现有的信道映射的示意图。如图2所示,网络设备(如基站)通过广播控制信道(英文:broadcast control channel,简称:BCCH)传递MIB至广播信道(英文:broadcast channel,简称:BCH),再通过BCH传递MIB至物理广播信道(英文:physical broadcast channel,简称:PBCH),并在PBCH对MIB进行编码。相应地,终端设备(如手机)在接收MIB之后对MIB进行译码。
如图1所示,SIB1携带所有SI的调度信息以及小区接入的相关信息。SI中包括除SIB1之外的SIB,例如,SI中可包括SIB2、SIB3和SIB4等。如图2所示,网络设备通过BCCH传递SIB1(或SI)至下行共享信道(英文:downlink-shared channel,简称:DL-SCH),再通过DL-SCH传递SIB1(或SI)至物理下行共享信道(英文:physical downlink shared channel,简称:PDSCH),并在PDSCH对SIB1(或SI)进行编码。相应地,终端设备在接收SIB1(或SI)之后,对SIB1(或SI)进行译码。
在第五代(英文:5th Generation,简称:5G)通信系统以及后续更多可能的通信系统中定义了三大类场景,分别为增强移动宽带(英文:enhanced Mobile Broadband,简称:eMBB)、超可靠低延时通信(英文:Ultra Reliable Low Latency Communications,简称:URLLC)和大规模物联网通信(英文:massive Machine Type Communications,缩写:mMTC)。其中,eMBB业务主要包含超高清视频、增强现实AR、虚拟现实VR等等,主要特点是传输数据量大、传输速率很高。URLLC业务主要是用于物联网中的工业控制、无人驾驶等,主要特点是超高可靠性、低延时,传输数据量较少以及具有突发性。mMTC业务主要是用于物联网中的智能电网、智慧城市等,主要特点是海量设备连接、传输数据量小、容忍较长时间的延时。
不同的通信场景可能需要不同的编码译码方式。在灵活地选择一种编码方式对系统消息进行编码之后,如何灵活地对系统消息进行译码是目前亟待解决的问题。
发明内容
本申请实施例提供了一种信息的编码方法及设备,有利于终端设备灵活地对系统消息 进行译码。
第一方面,本申请实施例提供了一种信息的编码方法,该方法包括:网络设备对主信息块MIB进行编码,该MIB包括指示信息,该指示信息用于终端设备确定对第一信息进行译码的译码方式,该第一信息包括系统信息块SIB1和系统信息SI中的至少一种;网络设备发送编码后的MIB至终端设备。
可见,通过实施第一方面所描述的方法,网络设备可对包括指示信息(用于终端设备确定对第一信息进行译码的译码方式)的MIB进行编码,并发送编码后的MIB至终端设备。从而终端设备可在接收SIB和SI之前,就可根据指示信息确定SIB和SI正确的译码方式,进而在终端设备接收SIB和SI之后就可使用正确的译码方式进行译码。可见,通过实施第一方面所描述的方法,有利于终端设备灵活地对SIB和SI进行译码。
作为一种可选的实施方式,该指示信息包括第一指示信息,该第一指示信息用于指示第一信息采用的编码方式。
通过实施该实施方式,可使终端设备根据第一指示信息成功确定对第一信息进行译码的译码方式。
作为一种可选的实施方式,该指示信息包括第二指示信息,该第二指示信息用于指示对第一信息进行译码的译码方式。
通过实施该实施方式,可使终端设备根据第二指示信息成功确定对第一信息进行译码的译码方式。
作为一种可选的实施方式,该指示信息还包括第三指示信息,第三指示信息用于指示与译码方式对应的配置信息。
通过实施该实施方式,可使终端设备根据第三指示信息提高对第一信息进行译码的成功率。
作为一种可选的实施方式,若对第一信息进行译码的译码方式为分层归一化最小和LNMS译码,则配置信息为缩放值。根据缩放值对第一信息进行译码,可提高译码的成功率。
作为一种可选的实施方式,若对第一信息进行译码的译码方式为分层偏移最小和LOMS译码,则配置信息为偏移值。根据偏移值对第一信息进行译码,可提高译码的成功率。
作为一种可选的实施方式,若对第一信息进行译码的译码方式为校验辅助串行抵消列表PC-SCL译码,则配置信息为串行抵消列表宽度。根据串行抵消列表宽度对第一信息进行译码,可提高译码的成功率。
作为一种可选的实施方式,若对第一信息进行译码的译码方式为循环冗余校验辅助串行抵消列表CA-SCL译码,则配置信息为串行抵消列表宽度。根据串行抵消列表宽度对第一信息进行译码,可提高译码的成功率。
第二方面,本申请实施例提供了一种信息的译码方法,该方法包括:终端设备接收编码后的MIB;终端设备对编码后的MIB进行译码,得到MIB中的指示信息。终端设备根据该指示信息确定第一信息的译码方式。终端设备接收网络设备发送的编码后的第一信息。终端设备根据确定的译码方式对第一信息进行译码。其中,该第一信息包括系统信息块SIB1 和系统信息SI中的至少一种。
可见,通过实施第二方面所描述的方法,终端设备可在接收SIB和SI之前,就可根据指示信息确定SIB和SI正确的译码方式,进而在终端设备接收SIB和SI之后就可使用正确的译码方式进行译码。可见,通过实施第二方面所描述的方法,终端设备能够灵活地对SIB和SI进行译码。
第三方面,本申请实施例提供了一种信息的编码方法,该方法包括:网络设备对下行控制信息DCI进行编码,DCI包括指示信息,该指示信息用于终端设备确定对第一信息进行译码的译码方式,该第一信息包括系统信息块SIB1和系统信息SI中的至少一种;网络设备发送编码后的DCI至终端设备。
通过实施图第三方面所描述的方法,网络设备可对包括指示信息(用于终端设备确定对第一信息进行译码的译码方式)的DCI进行编码,并发送编码后的DCI至终端设备。从而终端设备可在接收SIB和SI之前,就可根据指示信息确定SIB和SI正确的译码方式,进而在终端设备接收SIB和SI之后就可使用正确的译码方式进行译码。可见,通过实施第三方面所描述的方法,有利于终端设备灵活地对SIB和SI进行译码。
作为一种可选的实施方式,指示信息包括第一指示信息,第一指示信息用于指示第一信息采用的编码方式。通过实施该实施方式,可使终端设备根据第一指示信息成功确定对第一信息进行译码的译码方式。
作为一种可选的实施方式,指示信息包括第二指示信息,第二指示信息用于指示对第一信息进行译码的译码方式。通过实施该实施方式,可使终端设备根据第二指示信息成功确定对第一信息进行译码的译码方式。
作为一种可选的实施方式,指示信息还包括第三指示信息,第三指示信息用于指示与译码方式对应的配置信息。通过实施该实施方式,可使终端设备根据第三指示信息提高对第一信息进行译码的成功率。
作为一种可选的实施方式,若对第一信息进行译码的译码方式为分层归一化最小和LNMS译码,则配置信息为缩放值。根据缩放值对第一信息进行译码,可提高译码的成功率。
作为一种可选的实施方式,若对第一信息进行译码的译码方式为分层偏移最小和LOMS译码,则配置信息为偏移值。根据偏移值对第一信息进行译码,可提高译码的成功率。
作为一种可选的实施方式,若对第一信息进行译码的译码方式为校验辅助串行抵消列表PC-SCL译码,则配置信息为串行抵消列表宽度。根据串行抵消列表宽度对第一信息进行译码,可提高译码的成功率。
作为一种可选的实施方式,若对第一信息进行译码的译码方式为循环冗余校验辅助串行抵消列表CA-SCL译码,则配置信息为串行抵消列表宽度。根据串行抵消列表宽度对第一信息进行译码,可提高译码的成功率。
第四方面,本申请实施例提供了一种信息的译码方法,该方法包括:终端设备接收编码后的DCI;终端设备对编码后的DCI进行译码,得到DCI中的指示信息。终端设备根据该指示信息确定第一信息的译码方式。终端设备接收网络设备发送的编码后的第一信息。 终端设备根据确定的译码方式对第一信息进行译码。其中,该第一信息包括系统信息块SIB1和系统信息SI中的至少一种。
可见,通过实施第四方面所描述的方法,终端设备可在接收SIB和SI之前,就可根据指示信息确定SIB和SI正确的译码方式,进而在终端设备接收SIB和SI之后就可使用正确的译码方式进行译码。可见,通过实施第四方面所描述的方法,终端设备能够灵活地对SIB和SI进行译码。
第五方面,本申请实施例提供了一种信息的编码方法,该方法包括:网络设备对系统信息块SIB1进行编码,该SIB1包括指示信息,该指示信息用于终端设备确定对系统信息SI进行译码的译码方式;网络设备发送编码后的SIB1至终端设备。
通过实施第五方面所描述的方法,网络设备可对包括指示信息(用于终端设备确定对SI进行译码的译码方式)的SIB1进行编码,并发送编码后的SIB1至终端设备。从而终端设备可在接收SI之前,就可根据指示信息确定SI正确的译码方式,进而在终端设备接收SI之后就可使用正确的译码方式进行译码。可见,通过实施第五方面所描述的方法,有利于终端设备灵活地对SI进行译码。
作为一种可选的实施方式,该指示信息包括第一指示信息,该第一指示信息用于指示SI采用的编码方式。
通过实施该实施方式,可使终端设备根据第一指示信息成功确定对SI进行译码的译码方式。
作为一种可选的实施方式,该指示信息包括第二指示信息,该第二指示信息用于指示对SI进行译码的译码方式。
通过实施该实施方式,可使终端设备根据第二指示信息成功确定对SI进行译码的译码方式。
作为一种可选的实施方式,该指示信息还包括第三指示信息,该第三指示信息用于指示与译码方式对应的配置信息。
通过实施该实施方式,可使终端设备根据第三指示信息提高对SI进行译码的成功率。
作为一种可选的实施方式,若对SI进行译码的译码方式为分层归一化最小和LNMS译码,则配置信息为缩放值。根据缩放值对SI进行译码,可提高译码的成功率。
作为一种可选的实施方式,若对SI进行译码的译码方式为分层偏移最小和LOMS译码,则配置信息为偏移值。根据偏移值对SI进行译码,可提高译码的成功率。
作为一种可选的实施方式,若对SI进行译码的译码方式为循环冗余校验辅助串行抵消列表CA-SCL译码,则配置信息为串行抵消列表宽度。根据串行抵消列表宽度对SI进行译码,可提高译码的成功率。
作为一种可选的实施方式,若对SI进行译码的译码方式为循环冗余校验辅助串行抵消列表CA-SCL译码,则配置信息为串行抵消列表宽度。根据串行抵消列表宽度对SI进行译码,可提高译码的成功率。
第六方面,本申请实施例提供了一种信息的译码方法,该方法包括:终端设备接收编码后的SIB1;终端设备对编码后的SIB1进行译码,得到SIB1中的指示信息。终端设备根据该指示信息确定SI的译码方式。终端设备接收网络设备发送的编码后的SI。终端设备根 据确定的译码方式对SI进行译码。
可见,通过实施第六方面所描述的方法,终端设备可在接收SI之前,就可根据指示信息确定SI正确的译码方式,进而在终端设备接收SI之后就可使用正确的译码方式进行译码。可见,通过实施第六方面所描述的方法,终端设备能够灵活地对SI进行译码。
第七方面,提供了一种网络设备,该网络设备具有实现上述第一方面、第一方面可能的实现方式、第三方面、第三方面可能的实现方式、第五方面、第五方面可能的实现方式中网络设备行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。该单元可以是软件和/或硬件。基于同一发明构思,该网络设备解决问题的原理以及有益效果可以参见上述第一方面、第一方面可能的实现方式、第三方面、第三方面可能的实现方式、第五方面、第五方面可能的实现方式所带来的有益效果,重复之处不再赘述。
第八方面,提供了一种终端设备,该终端设备具有实现上述第二方面、第四方面、第六方面中终端设备行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。该单元可以是软件和/或硬件。基于同一发明构思,该终端设备解决问题的原理以及有益效果可以参见上述第二方面、第四方面、第六方面所带来的有益效果,重复之处不再赘述。
第九方面,提供了一种网络设备,该网络设备包括:处理器、存储器、通信接口以及一个或多个程序;处理器、通信接口和存储器相连;可选的,该网络设备还包括总线系统,处理器、通信接口和存储器通过总线系统相连;其中,一个或多个程序被存储在存储器中,该处理器调用存储在该存储器中的程序以实现上述第一方面、第一方面可能的实现方式、第三方面、第三方面可能的实现方式、第五方面或第五方面可能的实现方式的方案,该网络设备解决问题的实施方式以及有益效果可以参见上述第一方面、第一方面可能的实现方式、第三方面、第三方面可能的实现方式、第五方面或第五方面可能的实现方式以及有益效果,重复之处不再赘述。
第十方面,提供了一种终端设备,该终端设备包括:处理器、存储器、通信接口以及一个或多个程序;处理器、通信接口和存储器相连;可选的,该终端设备还包括总线系统,处理器、通信接口和存储器通过总线系统相连;其中,一个或多个程序被存储在存储器中,该处理器调用存储在该存储器中的程序以实现上述第二方面、第四方面、第六方面的方案,该终端设备解决问题的实施方式以及有益效果可以参见上述第二方面、第四方面、第六方面以及有益效果,重复之处不再赘述。
第十一方面,提供了一种通信系统,该系统包括:第七方面的网络设备和第八方面的终端设备。
附图说明
图1是现有的一种系统消息的结构示意图;
图2是现有的一种信道映射的示意图;
图3是本申请实施例提供的一种通信系统的示意图;
图4是现有的系统消息的获取过程示意图;
图5是本申请实施例提供的一种信息的编码方法的流程示意图;
图6是本申请实施例提供的另一种信息的编码方法的流程示意图;
图7是本申请实施例提供的又一种信息的编码方法的流程示意图;
图8是本申请实施例提供的一种网络设备的结构示意图;
图9是本申请实施例提供的一种终端设备的结构示意图。
具体实施方式
下面结合附图对本申请具体实施例作进一步的详细描述。
在第五代(英文:5th Generation,简称:5G)通信系统以及后续更多可能的通信系统中具有多种通信场景,如eMBB、URLLC和mMTC。不同的通信场景可能需要不同的编码译码方式。然而在网络设备(如基站)根据不同的通信场景灵活地选择一种编码方式对系统消息进行编码之后,移动设备(如手机)并不知道需要采用哪一种译码方式进行译码。因此,在网络设备根据不同的通信场景灵活地选择一种编码方式对系统消息进行编码之后,移动设备并不能灵活地采用正确的译码方式进行译码。
为了使移动设备能够灵活地对系统消息进行译码,即为了使移动设备能够选择正确的译码方式进行译码,本申请实施例提供了一种信息的编码方法及设备。
本申请实施例可以应用于无线通信系统,无线通信系统通常由小区组成,每个小区包含一个基站(英文:Base Station,简称:BS),基站向多个移动台(英文:Mobile Station,简称:MS)提供通信服务,其中基站连接到核心网设备,如图3所示。本申请实施例所涉及的网络设备可以为图3中的基站,或者基带处理单元(英文:Baseband Unit,简称:BBU),本申请实施例所涉及的移动设备可以为图3中的移动台。
需要说明的是,本申请实施例提及的无线通信系统包括但不限于:窄带物联网系统(英文:Narrow Band-Internet of Things,简称:NB-IoT)、全球移动通信系统(英文:Global System for Mobile Communications,简称:GSM)、增强型数据速率GSM演进系统(英文:Enhanced Data rate for GSM Evolution,简称:EDGE)、宽带码分多址系统(英文:Wideband Code Division Multiple Access,简称:WCDMA)、码分多址2000系统(英文:Code Division Multiple Access,简称:CDMA2000)、时分同步码分多址系统(英文:Time Division-Synchronization Code Division Multiple Access,简称:TD-SCDMA),长期演进系统(英文:Long Term Evolution,简称:LTE)以及下一代5G移动通信系统的三大应用场景eMBB,URLLC和eMTC。
本申请实施例中,所述基站是一种部署在无线接入网中用以为移动台提供无线通信功能的装置。所述基站可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在LTE系统中,称为演进的节点B(evolved NodeB,eNB或者eNodeB),在第三代(英文:3rd Generation,简称:3G)系统中,称为节点B(英文:Node B)等。为方便描述,本申请所有实施例中,上述为移动台提供无线通信功能的装置统称为基站或BS。
本申请实施例中所涉及到的移动台可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。所述移动台也可 以称为终端(英文:terminal),还可以包括用户单元(英文:subscriber unit)、蜂窝电话(英文:cellular phone)、智能电话(英文:smart phone)、无线数据卡、个人数字助理(英文:Personal Digital Assistant,简称:PDA)电脑、平板型电脑、无线调制解调器(英文:modem)、手持设备(英文:handset)、膝上型电脑(英文:laptop computer)、机器类型通信(英文:Machine Type Communication,简称:MTC)终端等。
为便于对本申请实施例进行理解,下面对现有的系统消息的获取过程进行介绍。
图4为现有的系统消息的获取过程示意图,如图4所示,终端设备(如手机)接收MIB之后,根据MIB获取物理下行控制信道(PDCCH)的特定下行控制信息(英文:Downlink Control Information,缩写:DCI);终端设备获取DCI信息之后,根据DCI信息中SIB1的调度信息,在PDSCH中获取SIB1。终端获取SIB1之后,再根据SIB1中SI的调度信息,在PDSCH中获取SI。
下面进一步对本申请所提供的信息的编码方法和设备进行介绍。
请参见图5,图5是本申请实施例提供的一种信息的编码方法。如图5所示,该信息的编码方法包括如下501和502部分:
501、网络设备对MIB进行编码。
该MIB包括指示信息,该指示信息用于终端设备确定对第一信息进行译码的译码方式,该第一信息包括SIB1和SI中的至少一种。
502、网络设备发送编码后的MIB至终端设备。
503、终端设备对编码后的MIB进行译码,得到MIB中的指示信息。
终端设备接收MIB之后,可对MIB进行译码,得到MIB中的指示信息。
504、终端设备根据指示信息确定第一信息的译码方式。
终端设备对MIB译码后得到指示信息之后,根据指示信息确定第一信息的译码方式。
505、终端设备接收网络设备发送的编码后的第一信息。
终端设备在接收编码后的MIB之后,接收编码后的第一信息。
506、终端设备根据确定的译码方式对第一信息进行译码。
终端设备接收编码后的第一信息之后,根据确定的译码方式对第一信息进行译码。
例如,polar码编码包括校验辅助polar码(即PC-polar码)编码和循环冗余校验辅助polar码(即CA-polar码)编码。使用PC-polar码编码,则需使用校验辅助串行抵消列表(英文:parity-check successive cancellation list,简称:PC-SCL)译码;使用CA-polar码编码,则需使用循环冗余校验辅助串行抵消列表(英文:crc aided successive cancellation list,简称:CA-SCL)译码。因此,若第一信息为SIB1和SI,网络设备使用PC-polar码对SIB1和SI进行编码,则终端设备根据指示信息可确定对SIB1和SI进行译码的译码方式为PC-SCL译码;网络设备使用CA-polar码对SIB1和SI进行编码,则终端设备根据指示信息可确定对SIB1和SI进行译码的译码方式为CA-SCL译码。
再如,若第一信息为SIB1和SI,网络设备使用低密度奇偶校验(英文:Low-density Parity-check,简称:LDPC)码对SIB1和SI进行编码,则终端设备根据指示信息可确定对SIB1和SI进行译码的译码方式为LDPC码对应的译码方式,例如,LDPC码对应的译码方式可包括分层归一化最小和(英文:layered normalized min-sum,简称:LNMS)译码和分 层偏移最小和(英文:layered offset min-sum,简称:LOMS)译码等。
通过实施图5所描述的方法,网络设备可对包括指示信息(用于终端设备确定对第一信息进行译码的译码方式)的MIB进行编码,并发送编码后的MIB至终端设备。从而终端设备可在接收SIB和SI之前,就可根据指示信息确定SIB和SI正确的译码方式,进而在终端设备接收SIB和SI之后就可使用正确的译码方式进行译码。可见,通过实施图5所描述的方法,有利于终端设备灵活地对SIB和SI进行译码。
作为一种可选的实施方式,MIB包括的指示信息包括第一指示信息,该第一指示信息用于指示第一信息采用的编码方式。例如,该编码方式可以为polar码编码方式或LDPC码编码方式等,本申请实施例不做限定。
在该实施方式中,可选的,终端设备可预先设置polar码编码方式对应的一种译码方式(例如为PC-SCL译码)和LDPC码编码方式对应的一种译码方式(例如为LNMS译码)。可选的,第一指示信息可以为1比特的二进制,例如,可以使二进制0表示polar码编码方式,二进制1表示LDPC码编码方式。终端设备译码得到第一指示信息之后,若第一指示信息为0,则终端设备使用PC-SCL译码方式对第一信息进行译码;若第一指示信息为1,则终端设备使用LNMS译码方式对第一信息进行译码。
通过实施该实施方式,可使终端设备根据第一指示信息成功确定对第一信息进行译码的译码方式。
作为一种可选的实施方式,MIB包括的指示信息包括第二指示信息,该第二指示信息用于指示对第一信息进行译码的译码方式。例如,网络设备使用polar码编码方式对第一信息进行编码,终端设备需要使用PC-SCL译码方式才能正确地译码,则第二指示信息用于指示对第一信息进行译码的译码方式为PC-SCL译码方式。同理,第二指示信息可以用二进制表示,例如,二进制00表示PC-SCL译码方式,二进制01表示CA-SCL译码方式,二进制10表示LNMS译码方式,二进制11表示LOMS译码方式。
通过实施该实施方式,可使终端设备根据第二指示信息成功确定对第一信息进行译码的译码方式。
作为一种可选的实施方式,MIB包括的指示信息也可同时包括第一指示信息和第二指示信息。例如,如下表1所示,第一指示信息为二进制0表示polar码编码方式,第一指示信息为二进制1表示LDPC码编码方式。当第一指示信息为0,第二指示信息为二进制0,则表示PC-SCL译码方式,第二指示信息为二进制1,则表示CA-SCL译码方式;当第一指示信息为1,第二指示信息为二进制0,则表示LNMS译码方式,第二指示信息为二进制1,则表示LOMS译码方式。
表1
Figure PCTCN2018073404-appb-000001
通过实施该实施方式,可使终端设备根据第一指示信息和第二指示信息成功确定对第 一信息进行译码的译码方式。
作为一种可选的实施方式,MIB还可包括第三指示信息,该第三指示信息用于指示与第一信息的译码方式对应的配置信息。可选的,MIB可只包括第一指示信息和第三指示信息,或MIB可只包括第二指示信息和第三指示信息,或MIB也可同时包括第一指示信息、第二指示信息和第三指示信息。
通过实施该实施方式,可使终端设备根据第三指示信息提高对第一信息进行译码的成功率。
作为一种可选的实施方式,若对第一信息进行译码的译码方式为LNMS译码,则配置信息为缩放值。
根据缩放值对第一信息进行译码,可提高译码的成功率。
作为一种可选的实施方式,若对第一信息进行译码的译码方式为LOMS译码,则配置信息为偏移值。
根据偏移值对第一信息进行译码,可提高译码的成功率。
作为一种可选的实施方式,若对第一信息进行译码的译码方式为校验辅助串行抵消列表PC-SCL译码,则配置信息为串行抵消列表宽度。
根据串行抵消列表宽度对第一信息进行译码,可提高译码的成功率。
作为一种可选的实施方式,若对第一信息进行译码的译码方式为循环冗余校验辅助串行抵消列表CA-SCL译码,则配置信息为串行抵消列表宽度。
根据串行抵消列表宽度对第一信息进行译码,可提高译码的成功率。
请参见图6,图6是本申请实施例提供的另一种信息的编码方法。如图6所示,该信息的编码方法包括如下601和602部分:
601、网络设备对DCI进行编码。
该DCI包括指示信息,该指示信息用于终端设备确定对第一信息进行译码的译码方式,该第一信息包括系统信息块SIB1和系统信息SI中的至少一种。
602、网络设备发送编码后的DCI至终端设备。
603、终端设备对编码后的DCI进行译码,得到DCI中的指示信息。
终端设备接收DCI之后,可对DCI进行译码,得到DCI中的指示信息。
604、终端设备根据指示信息确定第一信息的译码方式。
终端设备对DCI译码后得到指示信息之后,根据指示信息确定第一信息的译码方式。
605、终端设备接收网络设备发送的编码后的第一信息。
终端设备在接收编码后的DCI之后,接收编码后的第一信息。
606、终端设备根据确定的译码方式对第一信息进行译码。
终端设备接收编码后的第一信息之后,根据确定的译码方式对第一信息进行译码。
例如,若第一信息为SIB1和SI,网络设备使用PC-polar码对SIB1和SI进行编码,则终端设备根据指示信息可确定对SIB1和SI进行译码的译码方式为PC-SCL译码;网络设备使用CA-polar码对SIB1和SI进行编码,则终端设备根据指示信息可确定对SIB1和SI进行译码的译码方式为CA-SCL译码。
再如,若第一信息为SIB1和SI,网络设备使用LDPC码对SIB1和SI进行编码,则终端设备根据指示信息可确定对SIB1和SI进行译码的译码方式为LDPC码对应的译码方式,例如,LDPC码对应的译码方式可包括LNMS译码和LOMS译码等。
通过实施图6所描述的方法,网络设备可对包括指示信息(用于终端设备确定对第一信息进行译码的译码方式)的DCI进行编码,并发送编码后的DCI至终端设备。从而终端设备可在接收SIB和SI之前,就可根据指示信息确定SIB和SI正确的译码方式,进而在终端设备接收SIB和SI之后就可使用正确的译码方式进行译码。可见,通过实施图6所描述的方法,有利于终端设备灵活地对SIB和SI进行译码。
作为一种可选的实施方式,DCI包括的指示信息包括第一指示信息,该第一指示信息用于指示第一信息采用的编码方式。例如,该编码方式可以为polar码编码方式或LDPC码编码方式等,本申请实施例不做限定。
该实施方式的实现原理与图5所示的实施例中MIB包括第一指示信息的实现原理相同,具体可参见MIB包括第一指示信息对应的描述。
通过实施该实施方式,可使终端设备根据第一指示信息成功确定对第一信息进行译码的译码方式。
作为一种可选的实施方式,DCI包括的指示信息包括第二指示信息,该第二指示信息用于指示对第一信息进行译码的译码方式。例如,网络设备使用polar码编码方式对第一信息进行编码,终端设备需要使用PC-SCL译码方式才能正确地译码,则第二指示信息用于指示对第一信息进行译码的译码方式为PC-SCL译码方式。同理,第二指示信息可以用二进制表示,例如,二进制00表示PC-SCL译码方式,二进制01表示CA-SCL译码方式,二进制10表示LNMS译码方式,二进制11表示LOMS译码方式。
通过实施该实施方式,可使终端设备根据第二指示信息成功确定对第一信息进行译码的译码方式。
作为一种可选的实施方式,DCI包括的指示信息也可同时包括第一指示信息和第二指示信息。
该实施方式的实现原理与图5所示的实施例中MIB同时包括第一指示信息和第二指示信息的实现原理相同,具体可参见MIB同时包括第一指示信息和第二指示信息所对应的描述。
通过实施该实施方式,可使终端设备根据第一指示信息和第二指示信息成功确定对第一信息进行译码的译码方式。
作为一种可选的实施方式,DCI还可包括第三指示信息,该第三指示信息用于指示与第一信息的译码方式对应的配置信息。可选的,DCI可只包括第一指示信息和第三指示信息,或DCI可只包括第二指示信息和第三指示信息,或DCI也可同时包括第一指示信息、第二指示信息和第三指示信息。
通过实施该实施方式,可使终端设备根据第三指示信息提高对第一信息进行译码的成功率。
作为一种可选的实施方式,若对第一信息进行译码的译码方式为LNMS译码,则配置信息为缩放值。
根据缩放值对第一信息进行译码,可提高译码的成功率。
作为一种可选的实施方式,若对第一信息进行译码的译码方式为LOMS译码,则配置信息为偏移值。
根据偏移值对第一信息进行译码,可提高译码的成功率。
作为一种可选的实施方式,若对第一信息进行译码的译码方式为校验辅助串行抵消列表PC-SCL译码,则配置信息为串行抵消列表宽度。
根据串行抵消列表宽度对第一信息进行译码,可提高译码的成功率。
作为一种可选的实施方式,若对第一信息进行译码的译码方式为循环冗余校验辅助串行抵消列表CA-SCL译码,则配置信息为串行抵消列表宽度。
根据串行抵消列表宽度对第一信息进行译码,可提高译码的成功率。
请参见图7,图7是本申请实施例提供的另一种信息的编码方法。如图7所示,该信息的编码方法包括如下701和702部分:
701、网络设备对SIB1进行编码。
该SIB1包括指示信息,该指示信息用于终端设备确定对SI进行译码的译码方式。可选的,若所有SI使用相同的编码方式进行编码,则该指示信息用于终端设备确定对所有SI进行译码的统一译码方式。可选的,若各SI使用不相同的编码方式进行编码,则该指示信息包括每个SI对应的指示信息,各指示信息用于终端设备确定对指示信息对应的SI进行译码的译码方式。例如,第一SI和第二SI采用不同的编码方式进行编码,则SIB1中包括第一SI对应指示信息1和第二SI对应指示信息2,指示信息1用于终端设备确定对第一SI进行译码的译码方式,指示信息2用于终端设备确定对第二SI进行译码的译码方式。
702、网络设备发送编码后的SIB1至终端设备。
703、终端设备对编码后的SIB1进行译码,得到SIB1中的指示信息。
终端设备接收SIB1之后,可对SIB1进行译码,得到SIB1中的指示信息。
704、终端设备根据指示信息确定SI的译码方式。
终端设备对SIB1译码后得到指示信息之后,根据指示信息确定SI的译码方式。
705、终端设备接收网络设备发送的编码后的SI。
终端设备在接收编码后的SIB1之后,接收编码后的SI。
706、终端设备根据确定的译码方式对SI进行译码。
终端设备接收编码后的SI之后,根据确定的译码方式对SI进行译码。
例如,若网络设备使用PC-polar码对SI进行编码,则终端设备根据指示信息可确定对SI进行译码的译码方式为PC-SCL译码;网络设备使用CA-polar码对SI进行编码,则终端设备根据指示信息可确定对SI进行译码的译码方式为CA-SCL译码。
再如,网络设备使用LDPC码对SI进行编码,则终端设备根据指示信息可确定对SI进行译码的译码方式为LDPC码对应的译码方式,例如,LDPC码对应的译码方式可包括LNMS译码和LOMS译码等。
通过实施图7所描述的方法,网络设备可对包括指示信息(用于终端设备确定对SI进行译码的译码方式)的SIB1进行编码,并发送编码后的SIB1至终端设备。从而终端设备 可在接收SI之前,就可根据指示信息确定SI正确的译码方式,进而在终端设备接收SI之后就可使用正确的译码方式进行译码。可见,通过实施图7所描述的方法,有利于终端设备灵活地对SI进行译码。
作为一种可选的实施方式,SIB1包括的指示信息包括第一指示信息,该第一指示信息用于指示SI采用的编码方式。例如,该编码方式可以为polar码编码方式或LDPC码编码方式等,本申请实施例不做限定。
该实施方式的实现原理与图5所示的实施例中MIB包括第一指示信息的实现原理相同,具体可参见MIB包括第一指示信息对应的描述。
通过实施该实施方式,可使终端设备根据第一指示信息成功确定对SI进行译码的译码方式。
作为一种可选的实施方式,SIB1包括的指示信息包括第二指示信息,该第二指示信息用于指示对SI进行译码的译码方式。例如,网络设备使用polar码编码方式对SI进行编码,终端设备需要使用PC-SCL译码方式才能正确地译码,则第二指示信息用于指示对SI进行译码的译码方式为PC-SCL译码方式。同理,第二指示信息可以用二进制表示,例如,二进制00表示PC-SCL译码方式,二进制01表示CA-SCL译码方式,二进制10表示LNMS译码方式,二进制11表示LOMS译码方式。
通过实施该实施方式,可使终端设备根据第二指示信息成功确定对SI进行译码的译码方式。
作为一种可选的实施方式,SIB1包括的指示信息也可同时包括第一指示信息和第二指示信息。
该实施方式的实现原理与图5所示的实施例中MIB同时包括第一指示信息和第二指示信息的实现原理相同,具体可参见MIB同时包括第一指示信息和第二指示信息所对应的描述。
通过实施该实施方式,可使终端设备根据第一指示信息和第二指示信息成功确定对SI进行译码的译码方式。
作为一种可选的实施方式,SIB1还可包括第三指示信息,该第三指示信息用于指示与SI的译码方式对应的配置信息。可选的,SIB1可只包括第一指示信息和第三指示信息,或SIB1可只包括第二指示信息和第三指示信息,或SIB1也可同时包括第一指示信息、第二指示信息和第三指示信息。
通过实施该实施方式,可使终端设备根据第三指示信息提高对SI进行译码的成功率。
作为一种可选的实施方式,若对SI进行译码的译码方式为LNMS译码,则配置信息为缩放值。
根据缩放值对SI进行译码,可提高译码的成功率。
作为一种可选的实施方式,若对SI进行译码的译码方式为LOMS译码,则配置信息为偏移值。
根据偏移值对SI进行译码,可提高译码的成功率。
作为一种可选的实施方式,若对SI进行译码的译码方式为校验辅助串行抵消列表PC-SCL译码,则配置信息为串行抵消列表宽度。
根据串行抵消列表宽度对SI进行译码,可提高译码的成功率。
作为一种可选的实施方式,若对SI进行译码的译码方式为循环冗余校验辅助串行抵消列表CA-SCL译码,则配置信息为串行抵消列表宽度。
根据串行抵消列表宽度对SI进行译码,可提高译码的成功率。
本申请实施例提供了一种网络设备,该网络设备具有实现上述方法实施例中图5所描述的网络设备、图6所描述的网络设备或图7所描述的网络设备行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。该单元可以是软件和/或硬件。基于同一发明构思,由于该网络设备解决问题的原理以及有益效果可以参见上述方法实施例中网络设备的方法实施方式以及所带来的有益效果,因此该网络设备的实施可以参见上述方法实施例中网络设备的方法实施方式,重复之处不再赘述。
本申请实施例提供了一种终端设备,该网络设备具有实现上述方法实施例中图5所描述的终端设备、图6所描述的终端设备或图7所描述的终端设备行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。该单元可以是软件和/或硬件。基于同一发明构思,由于该终端设备解决问题的原理以及有益效果可以参见上述方法实施例中终端设备的方法实施方式以及所带来的有益效果,因此该终端设备的实施可以参见上述方法实施例中终端设备的方法实施方式,重复之处不再赘述。
请参见图8,图8是本申请实施例公开的网络设备的一种可能的结构示意图。如图8所示,该网络设备800包括处理器801、存储器802和通信接口804。其中,处理器801、存储器802和通信接口804相连。可选的,该网络设备800还包括总线系统803。处理器801、存储器802和通信接口804通过总线系统803相连。
其中,处理器801可以是中央处理器(central processing unit,CPU),通用处理器,协处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。该处理器801也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
其中,总线系统803可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。总线系统803可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
其中,通信接口804用于实现与其他网元(如终端设备等)之间的通信。
其中,处理器801调用存储器802中存储的程序代码,可执行上述方法实施例中图5、图6或图7中网络设备所执行的任意一个或多个步骤。
基于同一发明构思,本申请实施例中提供的网络设备解决问题的原理与本申请方法实 施例相似,因此该网络设备的实施可以参见方法的实施,为简洁描述,在这里不再赘述。
请参见图9,图9是本申请实施例公开的终端设备的一种可能的结构示意图。如图9所示,该终端设备900包括处理器901、存储器902和通信接口904。其中,处理器901、存储器902和通信接口904相连。可选的,该终端设备900还包括总线系统903。处理器901、存储器902和通信接口904通过总线系统903相连。
其中,处理器901可以是中央处理器(central processing unit,CPU),通用处理器,协处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。该处理器901也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
其中,总线系统903可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。总线系统903可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
其中,通信接口904用于实现与其他网元(如网络设备等)之间的通信。
其中,处理器901调用存储器902中存储的程序代码,可执行上述方法实施例中图5、图6或图7中终端设备所执行的任意一个或多个步骤。
基于同一发明构思,本申请实施例中提供的终端设备解决问题的原理与本申请方法实施例相似,因此该终端设备的实施可以参见方法的实施,为简洁描述,在这里不再赘述。
本申请实施例还提供了一种通信系统,该系统包括:网络网设备和终端设备,其中:该网络网设备用于执行上述方法实施例中图5、图6或图7中网络设备所执行的步骤,该终端设备用于执行上述方法实施例中图5、图6或图7中终端设备所执行的步骤。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (17)

  1. 一种信息的编码方法,其特征在于,所述方法包括:
    网络设备对主信息块MIB进行编码,所述MIB包括指示信息,所述指示信息用于终端设备确定对第一信息进行译码的译码方式,所述第一信息包括系统信息块SIB1和系统信息SI中的至少一种;
    网络设备发送编码后的MIB至终端设备。
  2. 根据权利要求1所述的方法,其特征在于,所述指示信息包括第一指示信息,所述第一指示信息用于指示所述第一信息采用的编码方式。
  3. 根据权利要求1或2所述的方法,其特征在于,所述指示信息包括第二指示信息,所述第二指示信息用于指示对所述第一信息进行译码的译码方式。
  4. 根据权利要求2或3所述的方法,其特征在于,所述指示信息还包括第三指示信息,所述第三指示信息用于指示与所述译码方式对应的配置信息。
  5. 根据权利要求4所述的方法,其特征在于,若对所述第一信息进行译码的译码方式为分层归一化最小和LNMS译码,则所述配置信息为缩放值。
  6. 根据权利要求4或5所述的方法,其特征在于,若对所述第一信息进行译码的译码方式为分层偏移最小和LOMS译码,则所述配置信息为偏移值。
  7. 根据权利要求4~6任意一项所述的方法,其特征在于,若对所述第一信息进行译码的译码方式为校验辅助串行抵消列表PC-SCL译码,则所述配置信息为串行抵消列表宽度。
  8. 根据权利要求4~7任意一项所述的方法,其特征在于,若对所述第一信息进行译码的译码方式为循环冗余校验辅助串行抵消列表CA-SCL译码,则所述配置信息为串行抵消列表宽度。
  9. 一种网络设备,其特征在于,所述网络设备包括:
    处理模块,用于对主信息块MIB进行编码,所述MIB包括指示信息,所述指示信息用于终端设备确定对第一信息进行译码的译码方式,所述第一信息包括系统信息块SIB1和系统信息SI中的至少一种;
    通信模块,用于发送编码后的MIB至终端设备。
  10. 根据权利要求9所述的网络设备,其特征在于,所述指示信息包括第一指示信息,所述第一指示信息用于指示所述第一信息采用的编码方式。
  11. 根据权利要求9或10所述的网络设备,其特征在于,所述指示信息包括第二指示信息,所述第二指示信息用于指示对所述第一信息进行译码的译码方式。
  12. 根据权利要求10或11所述的网络设备,其特征在于,所述指示信息还包括第三指示信息,所述第三指示信息用于指示与所述译码方式对应的配置信息。
  13. 根据权利要求12所述的网络设备,其特征在于,若对所述第一信息进行译码的译码方式为分层归一化最小和LNMS译码,则所述配置信息为缩放值。
  14. 根据权利要求12或13所述的网络设备,其特征在于,若对所述第一信息进行译码的译码方式为分层偏移最小和LOMS译码,则所述配置信息为偏移值。
  15. 根据权利要求12~14任意一项所述的网络设备,其特征在于,若对所述第一信息进行译码的译码方式为校验辅助串行抵消列表PC-SCL译码,则所述配置信息为串行抵消列表宽度。
  16. 根据权利要求12~15任意一项所述的网络设备,其特征在于,若对所述第一信息进行译码的译码方式为循环冗余校验辅助串行抵消列表CA-SCL译码,则所述配置信息为串行抵消列表宽度。
  17. 一种网络设备,其特征在于,所述网络设备包括:处理器、存储器、通信接口以及一个或多个程序;处理器、通信接口和存储器相连;其中,一个或多个程序被存储在存储器中,该处理器调用存储在该存储器中的程序以实现权利要求1~8任意一项所述的方法。
PCT/CN2018/073404 2017-01-26 2018-01-19 一种信息的编码方法及设备 WO2018137565A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18744729.7A EP3550891B1 (en) 2017-01-26 2018-01-19 Information encoding method and device
US16/523,684 US11523328B2 (en) 2017-01-26 2019-07-26 Information encoding method and device for master information block encoding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710057559.1 2017-01-26
CN201710057559.1A CN108365911B (zh) 2017-01-26 2017-01-26 一种信息的编码方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/523,684 Continuation US11523328B2 (en) 2017-01-26 2019-07-26 Information encoding method and device for master information block encoding

Publications (1)

Publication Number Publication Date
WO2018137565A1 true WO2018137565A1 (zh) 2018-08-02

Family

ID=62978018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073404 WO2018137565A1 (zh) 2017-01-26 2018-01-19 一种信息的编码方法及设备

Country Status (4)

Country Link
US (1) US11523328B2 (zh)
EP (1) EP3550891B1 (zh)
CN (1) CN108365911B (zh)
WO (1) WO2018137565A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114598424A (zh) 2017-02-15 2022-06-07 中兴通讯股份有限公司 一种数据处理方法及装置
CN116193509A (zh) * 2021-11-25 2023-05-30 华为技术有限公司 通信方法及通信装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103546920A (zh) * 2012-07-13 2014-01-29 中兴通讯股份有限公司 一种系统信息的接收方法和装置
CN104106272A (zh) * 2013-02-06 2014-10-15 华为技术有限公司 系统信息调度方法及其装置
CN104380805A (zh) * 2012-05-11 2015-02-25 高通股份有限公司 用于管理机器类型通信的方法和装置
CN105594297A (zh) * 2013-10-04 2016-05-18 高通股份有限公司 增强型系统信息解码
WO2016121308A1 (en) * 2015-01-30 2016-08-04 Nec Corporation Communication system
WO2016163071A1 (en) * 2015-04-10 2016-10-13 Panasonic Intellectual Property Corporation Of America System information scheduling in machine type communication

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10193578B2 (en) * 2014-07-10 2019-01-29 The Royal Institution For The Advancement Of Learning / Mcgill University Flexible polar encoders and decoders
WO2016122279A1 (en) * 2015-01-30 2016-08-04 Samsung Electronics Co., Ltd. Method and device for managing system information block, physical broadcast channel in wireless communication network
US10461779B2 (en) * 2015-08-12 2019-10-29 Telefonaktiebolaget Lm Ericsson (Publ) Rate-compatible polar codes
CN107370490B (zh) * 2016-05-13 2023-07-14 中兴通讯股份有限公司 结构化ldpc的编码、译码方法及装置
CN107623937B (zh) * 2016-07-15 2021-04-16 夏普株式会社 发送和接收系统消息的方法、基站和用户设备
CN112436921B (zh) * 2016-11-23 2023-02-10 Oppo广东移动通信有限公司 数据处理方法、终端设备和网络设备
KR20190097063A (ko) * 2016-12-22 2019-08-20 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 시스템 정보를 전송하는 방법과 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104380805A (zh) * 2012-05-11 2015-02-25 高通股份有限公司 用于管理机器类型通信的方法和装置
CN103546920A (zh) * 2012-07-13 2014-01-29 中兴通讯股份有限公司 一种系统信息的接收方法和装置
CN104106272A (zh) * 2013-02-06 2014-10-15 华为技术有限公司 系统信息调度方法及其装置
CN105594297A (zh) * 2013-10-04 2016-05-18 高通股份有限公司 增强型系统信息解码
WO2016121308A1 (en) * 2015-01-30 2016-08-04 Nec Corporation Communication system
WO2016163071A1 (en) * 2015-04-10 2016-10-13 Panasonic Intellectual Property Corporation Of America System information scheduling in machine type communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3550891A4 *

Also Published As

Publication number Publication date
EP3550891A1 (en) 2019-10-09
CN108365911B (zh) 2021-07-20
US20190349839A1 (en) 2019-11-14
EP3550891A4 (en) 2020-01-08
CN108365911A (zh) 2018-08-03
EP3550891B1 (en) 2021-03-17
US11523328B2 (en) 2022-12-06

Similar Documents

Publication Publication Date Title
US10554344B2 (en) Feedback method for hybrid automatic repeat request and an apparatus thereof
US10887067B2 (en) Coding scheme determining method and apparatus
WO2018137567A1 (zh) 一种极性码的译码方法和装置
WO2018076944A1 (zh) 编码、译码方法及设备
CN108574558B (zh) 传输控制信息的方法和装置
US20200128518A1 (en) Information Acquiring Method, Terminal, Base Station, and System
CN111181707A (zh) 数据传输的方法和通信装置
US11523328B2 (en) Information encoding method and device for master information block encoding
WO2018161965A1 (zh) 无线通信方法和设备
US20220149987A1 (en) Method for sidelink rate matching and resource mapping, and device
KR102351876B1 (ko) 페이징을 위한 방법, 단말 장치와 네트워크 장치
CN108023669B (zh) 传输数据的方法和装置
US11076408B2 (en) Information transmission method, network device, and terminal device
US11886418B2 (en) Method and apparatus for improved belief propagation based decoding
WO2018171748A1 (zh) 一种资源映射方法及其装置
BR112020010432A2 (pt) aparelho de comunicação
TWI741089B (zh) 傳輸信息的方法、終端設備和網絡設備
CN115276886A (zh) 一种编码识别方法及装置
TW201906379A (zh) 一種通道編碼方法及設備
US20200212933A1 (en) Encoding method and apparatus
CN113726487B (zh) 一种冗余版本的确定方法和装置
WO2024027182A1 (zh) 系统消息传输方法、装置、通信节点及存储介质
WO2022171019A1 (zh) 一种编码和译码方法及相关装置
EP4366202A1 (en) Communication method and apparatus
US20230189070A1 (en) Data transmission method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744729

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018744729

Country of ref document: EP

Effective date: 20190704

NENP Non-entry into the national phase

Ref country code: DE