WO2024027182A1 - 系统消息传输方法、装置、通信节点及存储介质 - Google Patents

系统消息传输方法、装置、通信节点及存储介质 Download PDF

Info

Publication number
WO2024027182A1
WO2024027182A1 PCT/CN2023/085151 CN2023085151W WO2024027182A1 WO 2024027182 A1 WO2024027182 A1 WO 2024027182A1 CN 2023085151 W CN2023085151 W CN 2023085151W WO 2024027182 A1 WO2024027182 A1 WO 2024027182A1
Authority
WO
WIPO (PCT)
Prior art keywords
system message
information
transmission
transmission information
message
Prior art date
Application number
PCT/CN2023/085151
Other languages
English (en)
French (fr)
Inventor
胡有军
戴博
陈梦竹
边峦剑
刘锟
杨维维
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024027182A1 publication Critical patent/WO2024027182A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • the present application relates to the field of communication technology, and in particular, to a system message transmission method, device, communication node and storage medium.
  • system messages include Main Information Block (Main Information Block, MIB) and System Information Block (SIB).
  • SIB can include SIB1 and other system information (Other System Information, OSI).
  • Embodiments of the present application provide a system message transmission method, device, communication node and storage medium.
  • embodiments of the present application provide a system message transmission method, including:
  • the system message is transmitted according to the transmission information.
  • embodiments of the present application provide a system message transmission method, including:
  • the system message is received according to the transmission information.
  • embodiments of the present application provide a system message transmission device, including:
  • the determination module is configured to determine the transmission information of the system message
  • a transmission module configured to transmit the system message according to the transmission information.
  • embodiments of the present application provide a system message transmission device, including:
  • a receiving module configured to receive the system message according to the transmission information.
  • embodiments of the present application provide a communication node including a memory and a processor, wherein The memory stores a computer program, and when the processor executes the computer program, the steps of the method described in the first and second aspects of the embodiments of the present application are implemented.
  • embodiments of the present application provide a storage medium, the storage medium stores a computer program, and when the computer program is executed by a processor, the steps of the method described in the first and second aspects of the embodiments of the present application are implemented.
  • Figure 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic flow chart of monitoring system messages provided by an embodiment of the present application.
  • Figure 3 is a schematic flow chart of a system message transmission method provided by an embodiment of the present application.
  • Figure 4 is another schematic flowchart of a system message transmission method provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of a mapping method of system messages provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of another mapping method of system messages provided by the embodiment of the present application.
  • Figure 7 is a schematic diagram of another mapping method of system messages provided by the embodiment of the present application.
  • Figure 8 is a schematic diagram of another mapping method of system messages provided by the embodiment of the present application.
  • Figure 9 is a schematic diagram of another mapping method of system messages provided by the embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a system message transmission device provided by an embodiment of the present application.
  • Figure 11 is another structural schematic diagram of a system message transmission device provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a communication node provided by an embodiment of the present application.
  • the system message transmission method provided by the embodiment of the present application can be applied to various wireless communication systems, such as long term evolution (LTE) systems, fourth-generation mobile communication technology (4th-generation, 4G) systems, fifth-generation Mobile communication technology (5th-generation, 5G) system, LTE and 5G hybrid architecture system, 5G New Radio (NR) system, and new communication systems emerging in future communication development, such as the sixth-generation mobile communication technology ( 6th-generation, 6G) system, etc.
  • Figure 1 shows a schematic networking diagram of a wireless communication system provided by an embodiment. As shown in Figure 1, the wireless communication system includes a terminal device 110, an access network device 120 and a core network device 130.
  • the terminal device 110 can be a device with wireless transceiver function, and can be deployed on land (such as indoor or outdoor, handheld, wearable or vehicle-mounted, etc.); it can also be deployed on water (such as ships, etc.); it can also be deployed in the air. (such as aircraft, balloons and satellites, etc.).
  • land such as indoor or outdoor, handheld, wearable or vehicle-mounted, etc.
  • water such as ships, etc.
  • it can also be deployed in the air. (such as aircraft, balloons and satellites, etc.).
  • Examples of some terminal devices 110 are: user equipment (User Equipment, UE), mobile phones, mobile stations, tablets, laptops, ultra-mobile personal computers (Ultra-mobile Personal Computer, UMPC), handheld computers, netbooks, personal digital assistants (Personal Digital Assistant, PDA) and other user equipment that can be connected to the Internet, or virtual reality (VR) terminals, augmented reality (AR) terminals, wireless terminals in industrial control (industrial control), driverless ( Wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city Terminals, wireless terminals in smart homes, etc., or IoT nodes in the Internet of Things, or vehicle-mounted communication devices in the Internet of Vehicles, or entertainment and game equipment or systems, or global positioning system equipment, etc.
  • the embodiments of this application do not limit the specific form of the terminal device.
  • the access network device 120 is an access device through which the terminal device 110 wirelessly accesses the wireless communication system, and may be a base station or an evolved base station (Long Term Evolution advanced, LTEA). evolved NodeB, eNB or eNodeB), transmission reception point (TRP), base station in 5G mobile communication system or next generation base station (next generation NodeB, gNB), base station or wireless fidelity in future mobile communication system ( Access nodes in Wireless Fidelity (WiFi) systems, etc.
  • Base stations can include various macro base stations, micro base stations, home base stations, wireless remotes, routers, WIFI equipment, or various network-side equipment, location management functions, such as primary cells and secondary cells. , LMF) equipment.
  • the base station can also be a module or unit that completes some functions of the base station.
  • it can be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the access network equipment.
  • the access network equipment may be referred to as a cell.
  • the core network device 130 may include an access and mobility management network element and a session management network element.
  • the terminal device 110 can access the core network through the access network device 120 to implement data transmission.
  • the terminal device after the terminal device receives the MIB on the Broadcast Channel (BCH), it can receive the downlink control of scheduling SIB1 on the designated Physical Downlink Control Channel (PDCCH) based on the information in the MIB. information (Downlink Control Indicator, DCI), and then based on the content in the DCI, the physical downlink shared channel (Physical Downlink Receive SIB1 on Shared Channel, PDSCH). Then, the terminal device can receive the DCI for scheduling the OSI on the designated PDCCH according to the information in SIB1, and then receive the OSI on the PDSCH according to the content in the DCI.
  • DCI Downlink Control Indicator
  • PDSCH Physical Downlink shared channel
  • embodiments of the present application can repeatedly transmit system messages, limit the frequency domain resource indication of system messages, and redefine the DCI for scheduling system messages. And technical means such as using specific mapping methods to map system messages are used to improve the success rate of terminal devices in receiving system messages in this communication scenario.
  • Figure 3 is a schematic flowchart of a system message transmission method provided by an embodiment of the present application. As shown in Figure 3, the method provided in this embodiment is applicable to access network equipment.
  • the access network equipment may be a cell.
  • the method can include:
  • system messages may be repeatedly transmitted based on the transmission information.
  • the above-mentioned transmission information may include at least one of the following: repeated transmission period of system messages, number of repeated transmissions of system messages, time window for repeated transmission of system messages, location information of repeated transmission of system messages, physical downlink control Channel transmission time PDCCH occasion information, OSI message type information, system message index information, monitoring time period information within the system message window, monitoring location information within the system message window, and system message cycle pattern information.
  • the transmission information may include: terminal type information supported by the cell.
  • the frequency domain bandwidth of the system message transmission of the first type terminal can be limited, that is, the frequency domain bandwidth of the system message transmission does not exceed the maximum bandwidth of the first type terminal; the virtual RB of the system message The mapping mode to physical RBs is non-interleaved; the DCI of the PDSCH scheduled to carry system messages indicates that the mapping mode of virtual RBs to physical RBs is non-interleaved.
  • the indication manner of the transmission information includes at least one of the following: expected or assumed by the terminal, predefined, SIB1 indicated, MIB indicated and DCI indicated.
  • the MIB indication bits may include reserved bits in the MIB, bits of the MIB field (filed), and physical broadcast channel (Physical Broadcast). Channel, 2 bits in the PBCH) payload.
  • monitoring of system messages includes monitoring or detection.
  • the indication method of the transmission information includes a DCI indication
  • the DCI is represented by System Information-Radio Network Temporary Identifier, SI-RNTI) scrambling.
  • the bits indicated by the DCI include legacy bits, high-order bits or low-order bits in the frequency domain resource allocation (Frequency domain resource assignment, FDRA) domain.
  • the transmission information may use reserved fields and/or existing fields in DCI to indicate the transmission information of the system message.
  • the transmission information is set to indicate the transmission information of the system message received by the first type terminal; and/or the existing field is set to indicate the transmission information of the system message received by the second type terminal.
  • the first type of terminal can be understood as a narrowband terminal
  • the second type of terminal can be understood as other terminals except narrowband terminals. That is to say, the DCI may be used to simultaneously indicate the transmission information of the system messages of the first type terminal and the second type terminal.
  • the system message when the system message bandwidth exceeds the maximum bandwidth of the first type of terminal, the system message is mapped through a specific mapping method and then transmitted.
  • the specific mapping method may be: the first part of the resources of the transmission system message is mapped in the first symbol set and the first frequency domain resource set, where the first frequency domain resource set is the frequency domain resource determined by the FDRA domain in the DCI A subset of the set, the first symbol set is determined by the Time domain resource assignment (TDRA) field in DCI; the second part of the resource of the transmission system message is mapped in the second symbol set and the second frequency domain resource set, where , the symbols included in the second symbol set are after the first symbol set, and the second frequency domain resource set is a subset of the first frequency domain resource set.
  • TDRA Time domain resource assignment
  • Figure 4 is another schematic flowchart of a system message transmission method provided by an embodiment of the present application. As shown in Figure 4, the method provided in this embodiment is suitable for terminal equipment. The method can include:
  • system messages may be repeatedly transmitted based on the transmission information.
  • the above-mentioned transmission information may include at least one of the following: repeated transmission cycle of system messages, number of repeated transmissions of system messages, time window for repeated transmission of system messages, location information of repeated transmission of system messages, PDCCH occasion information , OSI message type information, system message index information, monitoring time period information within the system message window, monitoring location information within the system message window, and system message cycle pattern information.
  • the transmission information may include: terminal type information supported by the cell.
  • the frequency domain bandwidth of the system message transmission of the first type terminal can be limited, that is, the frequency domain bandwidth of the system message transmission does not exceed the maximum bandwidth of the first type terminal; the virtual RB of the system message
  • the mapping mode to the physical RB is non-interleaved; the DCI of the PDSCH that carries the system message is scheduled. Indicates that the mapping mode of virtual RBs to physical RBs is non-interleaved.
  • the indication manner of the transmission information includes at least one of the following: expected or assumed by the terminal, predefined, SIB1 indicated, MIB indicated and DCI indicated.
  • the MIB indication bits may include reserved bits in the MIB, bits in the MIB field (filed), and 2 bits in the PBCH payload. .
  • monitoring of system messages includes monitoring or detection.
  • the indication mode of the transmission information includes a DCI indication
  • the DCI is scrambled by the SI-RNTI.
  • the bits indicated by the DCI include legacy bits, high-order bits or low-order bits of the FDRA domain.
  • the transmission information may use reserved fields and/or existing fields in DCI to indicate the transmission information of the system message.
  • the transmission information is set to indicate the transmission information of the system message received by the first type terminal; and/or the existing field is set to indicate the transmission information of the system message received by the second type terminal.
  • the first type of terminal can be understood as a narrowband terminal, such as a redcap terminal
  • the second type of terminal can be understood as other types of terminals other than narrowband terminals, such as NR enhanced mobile broadband (eMBB) terminals. That is to say, the DCI may be used to simultaneously indicate the transmission information of the system messages of the first type terminal and the second type terminal.
  • eMBB enhanced mobile broadband
  • the system message when the system message bandwidth exceeds the maximum bandwidth of the first type of terminal, the system message is mapped through a specific mapping method and then transmitted.
  • the specific mapping method may be: the first part of the resources of the transmission system message is mapped in the first symbol set and the first frequency domain resource set, where the first frequency domain resource set is the frequency domain resource determined by the FDRA domain in the DCI A subset of the set, the first symbol set is determined by the TDRA field in DCI; the second part of the resource of the transmission system message is mapped in the second symbol set and the second frequency domain resource set, where the symbols included in the second symbol set are in the After one symbol set, the second frequency domain resource set is a subset of the first frequency domain resource set.
  • the network side device may repeatedly transmit the system message based on the transmission information, and the terminal device may repeatedly receive the system message based on the transmission information.
  • the transmission information includes at least one of the following: system message repeated transmission cycle, system message repeated transmission times, system message repeated transmission time window, system message repeated transmission location information, PDCCH occasion information, OSI message type information, System message index information, monitoring time period information within the system message window, Monitor location information and system message cycle pattern information in the system message window.
  • the system message repeated transmission cycle refers to the repeated transmission of system messages according to the repeated transmission cycle within the M unit time of the system message.
  • the value of the repeated transmission cycle E can be 5 or 10. , 15, 20, 40, 80 or 160, the unit of E is slots, ms, us, s or SFN, etc.
  • the corresponding repeated transmission cycle can also be indicated by 1 bit, 2 bits or 3 bits in SIB1, SIB, MIB or DCI.
  • the indicated value includes at least one of the following ⁇ 5,10,15,20,40, 80,160 ⁇ .
  • the DCI may be SI-RNTI scrambling.
  • M can be determined based on any one of 160ms, 80ms, SSB cycle, SSB update cycle, predefined value, time window, ms, us, s, slot.
  • the value of M can be at least one of the following ⁇ 5,10,15,20,40,80,160 ⁇ .
  • the repeated transmission period E takes a value of 20ms.
  • the system message is repeatedly transmitted in every 20ms period or period position.
  • the system message may be SIB1 or OSI.
  • the number of repeated transmissions of system messages refers to the repeated transmission of system messages multiple times within M unit time.
  • the SIB1 system message is repeatedly sent 4 or 8 times within a SIB1 update cycle.
  • the M unit time is consistent with the definition in the above embodiment.
  • the time window for repeated transmission of system messages refers to the repeated transmission of system messages within this time window.
  • the length of the time window may include at least one of the following: 5ms, 10ms, 20ms, 40ms, 60ms, and 160ms.
  • the time window for repeated transmission of the system message is determined based on at least one of the following methods: the time window of the system message, the transmission cycle of the system message, the system frame number (System Frame Number, SFN), the time slot number, the half frame number, cell ID, bandwidth part ID (Bandwidth Part, BWP) ID, or predefined X ms, Xus, X time slots, and X wireless frames, where X is greater than or equal to 0.
  • the starting position of the time window for repeated transmission of the system message can be the same as the starting position of the time window of the system message.
  • the time window length may be X/C, where C is a predefined or configured or indicated coefficient. At this time, the system message starts from the starting position and is transmitted repeatedly within the time window length X/C.
  • the end position of the time window for repeated transmission of the system message can be the same as the end position of the time window for the system message.
  • the length can be X/C, where C is a predefined or configured or indicated coefficient.
  • the system message is repeatedly transmitted within the time window length X/C based on the end position.
  • the system message is repeated
  • the starting position of the time window for multiple transmission may be different from the starting position of the time window of the system message.
  • the starting position is predefined or obtained through DCI, SIB or MIB indication.
  • the length of the time window for repeated transmission of the system message is a predefined value, or a predefined value based on the time window length of the system message, or Indicated by DCI, SIB or MIB.
  • the time window for repeated transmission of the system message can be determined based on the transmission cycle of the system message, and the starting position or duration of the time window including the repeated transmission of the system message can also be determined based on the transmission cycle of the system message.
  • the time window for repeated transmission of system messages is defined within an odd or even period, or within a predefined period, or within a period under a predefined rule, or within an indicated period.
  • the system frame number can be used to obtain the time window for repeated transmission, or the system frame number can be used to perform a modulo operation to obtain a time period between two wireless frames.
  • the time window length of the system message is Xms
  • the positions with even or odd slot numbers are PDCCHs that are repeatedly transmitted.
  • the time window for repeated transmission of system messages can be determined based on multiple methods.
  • the length of the time window for repeated transmission of system messages can be 10 slots.
  • the definition of the time window for repeated transmission of system messages is related to the cell ID.
  • the cell ID modulo equal to 1 corresponds to the first repeated transmission time window
  • the cell ID modulo equal to 0 corresponds to the second repeated time window
  • the location information of repeated transmission of system messages refers to the repeated transmission of system messages at certain specified locations.
  • the repeatedly transmitted position information is determined based on at least one of the following: predefined position, predefined coefficient, predefined value, SIB1 update period, 160ms, synchronization signal block (Synchronization Signal Block, SSB) update period, 80ms, and SSB cycle, the time window length of system messages, the transmission cycle of system messages, Y unit time, where Y is a positive integer, Y unit time includes ms, us, s, time slot, SSB cycle, SIB1 update cycle or 160ms, SSB update period or 80ms.
  • the repeatedly transmitted position information can be indicated through a bitmap. The size of the bitmap is consistent with the above period or Y single It is related to the bit time or the time window of the system message.
  • the predefined repeated transmission positions may be slot-based 1/2, 1/4, and 1/8 positions of the time window.
  • 1/2, 1/4 and 1/8 are predetermined coefficients or predefined values.
  • the predefined repeated transmission positions may be 1/2, 1/4, and 1/8 positions of the time window based on Y unit time.
  • Y takes 80ms or 160ms, where 1/2, 1/4 and 1/8 are predetermined coefficients or predefined values.
  • the time window length of the system message is 20 slots
  • the size of the bitmap can be 4 bits
  • each bit indicates 5 slots
  • the 5 slots are the PDCCH.
  • the occasion can be used to send the PDCCH that is scheduled to carry the PDSCH of the repeated system message.
  • the period of the system message is 32 radio frames
  • the size of the bitmap can be 2 bits, and each bit indicates whether the PDCCH occurrence in one periodic frame is used to send repeated PDCCH. That is, 2 bits indicate which of the 64 radio frames, or two period positions, the PDCCH occurrence in which period is used to send the PDCCH scheduled to carry the repeated system message PDSCH.
  • the PDCCH occasion information may include at least one of the number of PDCCH occasions, time slots, starting positions, symbols, and SFN. SIB1 solved in a certain number of PDCCH occasions can be merged.
  • the number of PDCCH occasions includes at least one of the following: 1, 2, 4, 6, 8, 10, 12, 16 and 32.
  • the time slot of the PDCCH occasion is used to determine on which PDCCH occasion the system message is repeatedly scheduled by the PDCCH.
  • the time slot of the above PDCCH occasion is based on the type0-PDCCH common search space (Common Search Space, CSS) and is associated with the synchronization signal block index SSB index
  • the above time slot indication can be a 2-bit pattern or a 1-bit indication, where the 1-bit indication is used to indicate that the time slot of the PDCCH occurrence is the first of the above two time slots or the second.
  • the PDCCH occasion information includes PDCCH occasion information within the time window of the system message, PDCCH occasion information within the system message period and PDCCH occasion information within a period of time.
  • the PDCCH occurrence information is used to determine the slot position and/or symbol position in which the PDCCH is transmitted.
  • the PDCCH occasion of slot n0 or slot n0+1 is used to transmit the PDCCH scheduling repeated system messages; 1 bit in SIB1, MIB, and DCI can be used to indicate whether it is slot n0 or slot n0+1.
  • the last two PDCCH occasions within the time window of the system message are used to transmit PDCCH scheduled to repeat the system message.
  • OSI message type information is used to indicate that system messages of the indicated type are allowed to be repeatedly transmitted.
  • the OSI message type information is indicated in at least one of the following ways: Zbit indicates one or more OSI Message type information; where Z is a positive integer; bitmap mode indication, where 1 bit corresponds to a system message type.
  • OSI message types include SIB2 to SIB14.
  • Zbit is used to indicate one or more OSI message type information, optionally, 4 ⁇ Y ⁇ 13
  • each status indicated by Zbit can correspond to a system message type, or Each status corresponds to an index value, which points to the corresponding system message type.
  • the bitmap method is used to indicate OSI message type information, the length of the bitmap can be 13 bits. If a certain bit in the bitmap is 0, it means that the system message scheduled by the PDCCH does not have the system message type corresponding to this bit, then the system message type corresponding to this bit System message types also do not need to be transmitted repeatedly. On the contrary, if a certain bit in the bitmap is 1, it means that the system message scheduled by the PDCCH has the system message type corresponding to the bit, and then the system message type corresponding to the bit needs to be repeatedly transmitted.
  • the system message index information refers to the repeated transmission of the system message corresponding to the index information.
  • the transmission information includes system message index information
  • the system messages corresponding to the same index or the PDSCH carrying the system messages are the same or repeated.
  • the index includes 0-11, corresponding to SIB2-SIB13 respectively.
  • the DCI indicates that the scheduled system message with index 0 is the same or repeated (for example, the SIB2 corresponding to index 0 is the same or repeated).
  • the index includes 0-11, which respectively correspond to SIB2-SIB13 in bitmap mode.
  • the bitmap indication in DCI is 110000000000, which means that the scheduled system messages SIB2 and SIB3 are the same or repeated.
  • the index includes 0-11, corresponding to SIB2-SIB13 respectively.
  • the PDSCH with index 0 that is indicated in the DCI to be scheduled is the same or repeated.
  • the PDSCH is the same or repeated. Multiple PDSCHs scheduled by multiple PDCCHs are repeated (in this case, one PDCCH schedules one PDSCH), or multiple PDSCHs scheduled by one PDCCH are repeated. The number of repetitions of the PDSCH needs to be indicated.
  • the monitoring time period information within the system message window refers to the repeated transmission of system messages of this type within a certain monitoring time period within the system message window.
  • the monitoring time period information within the system message window may include: starting location information and time length information.
  • the starting position information is one or more starting positions defined based on the system message type window length, and the time length information may include at least one of the following: Ams, A time slots, A wireless frames, Aus, and A equal to One or more of (s5, s10, s20, s40, s8, s10, s160, s320, s640, s1280).
  • the starting position defaults to the first slot or the last slot or the starting position is c0+c*5 slots, where c0 is equal to 1 or other values, and c is an integer greater than or equal to 0; or
  • the starting position is indicated by DCI, MIB or SIB.
  • the starting position and/or time length information can be obtained according to the window duration of the system message.
  • the window duration of the system message is 5
  • the starting position can be the second slot
  • the time length information can be 4 slots.
  • the window duration of the system message is H
  • the starting position can be the H-3 slot
  • the time length information can be 4 slots.
  • the window duration of the system message is H
  • the starting position can be the H-K+1th slot
  • the time length information can be K slots.
  • the time length information is 5 slots
  • the starting position is obtained according to the indication information
  • the number of indicated bits is obtained according to the window duration of the system message. For example, when the window duration of the system message is 5, the number of indicated bits is 1, when the window duration of the system message is 10, the number of indicated bits is 2, and so on.
  • Monitoring location information within the system message window refers to monitoring system messages at a designated location within the system message window.
  • the monitoring location information may include at least one of the following: the n-th time slot within the window, the n-th time slot within the window, the n+b-th time slot, the n+2b-th time slot, and up to the n-th time slot.
  • n+i*b time slots where n is greater than or equal to 0, i is greater than or equal to 0, and n+i*b is less than or equal to the window length.
  • the system message cycle pattern information is used to determine whether one or more cycles of the system message need to be monitored. That is, through the cycle pattern information, you can know which cycles need to monitor the system message and which cycles do not need to monitor the system. information.
  • some system messages may be monitored every G cycles, where G is a positive integer greater than or equal to 1.
  • the above-mentioned indication method of transmission information for repeated transmission of system messages may include at least one of the following:
  • the MIB indication may include a MIB reserved bit indication, a MIB existing field indication, or a PBCH payload indication.
  • the DCI is scrambled by SI-RNTI.
  • the network side device repeatedly transmits the system message through at least one of the above transmission information.
  • the terminal device After the terminal device obtains the corresponding transmission information, the terminal device can repeatedly receive the system message based on the corresponding transmission information, which can ensure that The terminal device correctly receives system messages and improves system communication performance.
  • the frequency domain bandwidth of system message transmission can be limited, so that the terminal device can receive the system message as completely as possible within its own maximum bandwidth range.
  • the above transmission information includes terminal type information supported by the cell.
  • the terminal type information may include a first type terminal and a second type terminal.
  • the first type terminal may be understood as a narrowband terminal
  • the second type terminal may be understood as other types of terminals except narrowband terminals.
  • transmitting the system message according to the transmission information includes at least one of the following:
  • the frequency domain bandwidth of the system message transmission does not exceed the maximum bandwidth of the terminal of the first type
  • mapping method of the virtual resource block (RB) of the system message to the physical RB is non-interleaved
  • the DCI of the PDSCH scheduled to carry system messages indicates that the mapping mode of virtual RBs to physical RBs is non-interleaved.
  • the frequency domain bandwidth for system message transmission can be limited, even if the frequency domain bandwidth for system message transmission does not exceed the maximum bandwidth of the first type terminal. Take the transmission of information through DCI instructions as an example.
  • the maximum bandwidth of the first type of terminal is 5M
  • the subcarrier spacing subCarrierSpacingCommon indication is scs15
  • the MIB received by the terminal device on the FR1 frequency band and the CORESET#0 of the configured
  • the number of RBs is 48 or 96
  • the number of frequency domain RBs indicated by the FDRA (frequency domain resource allocation) field in the DCI needs to be less than or equal to 25, or the frequency domain bandwidth indicated by the DCI needs to be less than or equal to 5M, so that The terminal device can receive system messages as completely as possible within its own maximum bandwidth range.
  • the RB resources in this frequency domain may be continuous or discontinuous.
  • the network side does not allow the first type of terminal to access. If SIB1 or MIB indicates that the first type of terminal can access the network, but the number of CORESET#0RBs indicated by DCI is greater than 25, then the first type of terminal Type 1 terminals need to have the ability to repeatedly receive system messages before they can access the network, or type 1 terminals have this ability by default.
  • the number of RBs configured in CORESET#0 is 24 or 48, at this time, the number of frequency domain RBs indicated by the FDRA domain in the DCI needs to be less than Equal to 11 or 12, or the frequency domain bandwidth indicated by DCI needs to be less than or equal to 5M, so that the terminal device can receive system messages as completely as possible within its own maximum bandwidth range.
  • the RB resources in this frequency domain may be continuous or discontinuous.
  • the network side does not allow the first type of terminal to access. If SIB1 or MIB indicates that the first type terminal can access the network, but the number of CORESET#ORBs indicated by DCI is greater than 11 or 12, then the first type terminal needs to have the ability to repeatedly receive system messages before it can access the network or the first type terminal This capability is available by default.
  • the frequency domain bandwidth of system message transmission is controlled not to exceed the maximum bandwidth of the first type terminal, so that the first type terminal can receive system messages as completely as possible within its maximum bandwidth range. , thereby improving the success rate of system message reception.
  • the system message when the system message exceeds the maximum bandwidth of the first type terminal, the system message can be mapped and transmitted through a specific mapping method.
  • the specific mapping method enables the first type terminal to try its best to Completely receive system messages within its own maximum bandwidth.
  • the specific mapping method includes: mapping the first part of the resources of the transmission system message in a first symbol set and a first frequency domain resource set, where the first frequency domain resource set is a frequency domain resource set determined by the FDRA domain in DCI A subset of After the symbol set, the second frequency domain resource set is a subset of the first frequency domain resource set.
  • the first case MIB is received in the FR1 frequency band, the subcarrier spacing is 15Khz, the number of RBs configured in CORESET#0 is 48, and the frequency domain resource set C determined by the FDRA domain in the DCI is greater than 25 and less than or equal to 48.
  • the mapping positions of D RBs among the C RBs remain unchanged and continue to be mapped to the first symbol set and the first frequency domain resource set, and the C RBs are Other RBs among the RBs except the D RBs are mapped to the second symbol set and the second frequency domain resource set.
  • D matches the maximum bandwidth of the first type of terminal, and the value of D is 24 or 25 in the first case.
  • mapping positions of C/2 RBs among the C RBs remain unchanged and continue to be mapped to the first symbol set and the first frequency domain resource set, and the remaining C/2 RBs are mapped to the first symbol set and the first frequency domain resource set.
  • Two symbol sets and a second frequency domain resource set are two symbol sets and a second frequency domain resource set.
  • the second case MIB is received in the FR1 frequency band, the subcarrier spacing is 15Khz, the number of RBs configured in CORESET#0 is 96, and the frequency domain resource set C determined by the FDRA domain in the DCI is greater than 25 and less than or equal to 96;
  • the mapping position of the RBs numbered 0 to D-1 among the C RBs remains unchanged, and continues to be mapped to the first symbol set and the first frequency domain resource set, and is numbered D to 2D-1.
  • RBs are mapped to the second symbol set and the second frequency domain resource set, and RBs numbered 2D to C-1 are mapped to the third symbol set and the third frequency domain resource set; or, C RBs numbered 0 to C
  • the mapping position of the RB of /3-1 remains unchanged and continues to be mapped to the first symbol set and the first frequency domain resource set.
  • RBs numbered from C/3 to 2*C/3-1 are mapped to the second symbol set.
  • D matches the maximum bandwidth of the first type of terminal, and the value of D is 24 or 25 in the second case.
  • the third case MIB is received in the FR1 frequency band, the subcarrier spacing is 30Khz, the number of RBs configured in CORESET#0 is 24, and the frequency domain resource set C determined by the FDRA domain in the DCI is less than or equal to 24.
  • mapping positions of the D RBs among the C RBs remain unchanged and continue to be mapped to the first symbol set and the first frequency domain resource set, and the C RBs except the D RBs are Other RBs are mapped to the second symbol set and the second frequency domain resource set; or, the mapping position of the RBs numbered P to P+D-1 among the C RBs remains unchanged and continues to be mapped to the first symbol set and the second frequency domain resource set.
  • D matches the maximum bandwidth of the first type of terminal.
  • the value of D is 11 or 12, and P is the starting RB number.
  • the mapping position of the RB numbered P to P+D-1 among the C RBs remains unchanged, and continues to be mapped to the first symbol set and the first frequency domain resource set, and the RB numbered P+ D to P+2*D-1 RBs are mapped to the second symbol set and the second frequency domain resource set, and the RBs numbered from P+2*D to P+3*D-1 are mapped to the third symbol set and the third frequency domain resource set.
  • the RBs numbered from P+3*D to P+4*D-1 are mapped to the fourth symbol set and the fourth frequency domain resource set, and the RBs numbered from P+4*D to C-1 are mapped to the fifth symbol set. and the fifth frequency domain resource set; where D matches the maximum bandwidth of the first type of terminal, in the fourth case the value of D is 11 or 12, and P is the starting RB number.
  • the above-mentioned second symbol set may be DCI-indicated, MIB-indicated, predefined, or determined according to the first symbol set.
  • the above third symbol set may be DCI indicated, MIB indicated, predefined, determined according to the first symbol set or determined according to the second symbol set.
  • the above-mentioned fourth symbol set may be DCI indicated, MIB indicated, predefined, determined according to the first symbol set, determined according to the second symbol set, or determined according to the third symbol set.
  • the above fifth symbol set may be DCI indicated, MIB indicated, predefined, determined according to the first symbol set, determined according to the second symbol set, determined according to the third symbol set or determined according to the fourth symbol set.
  • the system message bandwidth exceeds the maximum bandwidth of the first type terminal
  • the system message is mapped through a specific mapping method and then transmitted, so that the first type terminal can receive a system message as completely as possible within its maximum bandwidth range. This improves the success rate of system message reception.
  • the DCI for scheduling the system message may be redefined so that the DCI contains the transmission information of the system message of the first type terminal. Based on this, when the transmission information of the system message is indicated through DCI, the transmission information is used to indicate the transmission information of the system message received by the first type terminal.
  • reserved fields and/or existing fields in DCI can be used to indicate the transmission information of the system message.
  • DCI includes reserved fields and existing fields.
  • the reserved fields can be used to indicate the TDRA information, modulation and coding scheme (MCS) information and FDRA information of the first type of terminals, and the existing fields can be used to indicate the second type of terminals.
  • the first type terminal and the second type terminal share the VRB to PRB mapping method, system message indication information, redundancy version information, etc. in the DCI.
  • the FDRA information indicated by the reserved field does not exceed the maximum bandwidth of the first type of terminal.
  • the indication of FDRA information using the legacy field in DCI includes at least one of the following:
  • the starting position is the same as that in the FDRA information in the existing field, and the legacy bit indicates the number of RBs used.
  • the legacy bit indicates the starting RB, and the number of RBs defaults to the number of RBs corresponding to the maximum bandwidth of the first type of terminal.
  • the starting position is the same as that in the FDRA information in the existing field.
  • the number of RBs corresponding to the maximum bandwidth of the first type of terminal is used to determine the frequency domain bandwidth and position in a predefined manner.
  • 1 bit in the legacy field in the DCI can also be used to indicate whether there is transmission information of the system message of the first terminal type in the DCI.
  • the system message scheduling delay indicated by the TDRA information needs to be greater than a preset threshold, or the location indicated by the TDRA information is not in the same time slot as the PDCCH, where the preset threshold is the lowest value between the PDSCH and the PDCCH. Small delay.
  • the scheduling delay indicated by the TDRA information is less than or equal to the preset threshold, the system message is scheduled according to the delay of the preset threshold. If the scheduling delay indicated by the TDRA information is greater than the preset threshold, scheduling is performed according to the delay indicated by the TDRA information. That is to say, the scheduling delay indicated by the TDRA information needs to meet the minimum delay between PDSCH and PDCCH.
  • the first type terminal can receive the system message as completely as possible through the transmission information indicated by the DCI, thus improving the reception of the system message. Success rate.
  • Figure 10 is a schematic structural diagram of a system message transmission device provided by an embodiment of the present application. As shown in Figure 10, the device may include: a determination module 1001 and a transmission module 1002.
  • the determining module 1001 is configured to determine the transmission information of the system message
  • the transmission module 1002 is configured to transmit the system message according to the transmission information.
  • the system message transmission device provided by this embodiment implements the system message transmission method of the embodiment shown in Figure 3.
  • the implementation principles and technical effects of the system message transmission device provided by this embodiment are similar to those of the above embodiment, and will not be described again here.
  • the transmission module 1002 is configured to repeatedly transmit the system message according to the transmission information.
  • the transmission information includes at least one of the following: system message repeated transmission cycle; system message repeated transmission times; system message repeated transmission time window; system message repeated transmission location information; PDCCH occasion information; OSI message Type information; system message index information; monitoring time period information within the system message window; monitoring location information within the system message window; system message cycle pattern information.
  • the system messages carried on the PDSCH scheduled by the PDCCH sent according to the PDCCH occasion information are the same. Or repeated.
  • the time window for repeated transmission of system messages is determined based on at least one of the following:
  • the location information for repeated transmission is determined based on at least one of the following: predefined location; predefined coefficient; predefined value; SIB1 update period or 160ms; SSB update cycle or 80ms; SSB cycle; time window length of system message; transmission cycle of system message; Y unit time, where Y is a positive integer, unit time includes ms, us, s, time slot, SSB cycle, SIB1
  • the update period is 160ms
  • the SSB update period is 80ms.
  • the OSI message type information is indicated in at least one of the following ways: Z bit indicates one or more OSI message type information; where Z is a positive integer;
  • Bitmap mode indication where 1 bit corresponds to a system message type.
  • the transmission information includes system message index information
  • the system messages corresponding to the same index or the PDSCH carrying the system messages are the same or repeated.
  • the transmission information when the transmission information includes monitoring time period information within the system message window, the monitoring time period information within the system message window includes: starting position information and time length information.
  • the cycle pattern information is used to determine whether one or more cycles of the system message require monitoring of the system message.
  • the transmission information includes: terminal type information supported by the cell.
  • transmitting the system message according to the transmission information includes at least one of the following:
  • the frequency domain bandwidth of the system message transmission does not exceed the maximum bandwidth of the terminal of the first type
  • mapping method of the virtual RB to physical RB of the system message is non-interleaved
  • the DCI of the PDSCH scheduled to carry system messages indicates that the mapping mode of virtual RBs to physical RBs is non-interleaved.
  • the indication method of the transmission information includes at least one of the following:
  • the DCI is scrambled by SI-RNTI.
  • the transmission information is indicated through DCI, including:
  • the transmission information includes at least one of the following:
  • TDRA information TDRA information, MCS information and FDRA information.
  • the transmission information is set to transmission information indicating system messages received by the first type terminal;
  • an existing field is set to indicate the transmission information of the system message received by the second type terminal.
  • the system message when the bandwidth of the system message exceeds the maximum bandwidth of the first type terminal, the system message is mapped through a specific mapping method and then transmitted.
  • the specific mapping method includes:
  • the first part of the resources of the transmission system message is mapped to the first symbol set and the first frequency domain resource set, where the first frequency domain resource set is a subset of the frequency domain resource set determined by the FDRA domain in the DCI, and the first symbol set is determined by the DCI
  • the mid-time domain resource allocation is determined in the TDRA domain;
  • the second part of the resources of the transmission system message is mapped to the second symbol set and the second frequency domain resource set, wherein the symbols included in the second symbol set are after the first symbol set, and the second frequency domain resource set is the first frequency domain resource set.
  • Figure 11 is another schematic structural diagram of a system message transmission device provided by an embodiment of the present application. As shown in Figure 11, the device may include: an acquisition module 1101 and a receiving module 1102.
  • the acquisition module 1101 is configured to acquire transmission information of system messages
  • the receiving module 1102 is configured to receive the system message according to the transmission information.
  • the system message transmission device provided by this embodiment implements the system message transmission method of the embodiment shown in Figure 4.
  • the implementation principles and technical effects of the system message transmission device provided by this embodiment are similar to those of the above embodiment, and will not be described again here.
  • the receiving module 1102 is configured to repeatedly receive the system message according to the transmission information.
  • the transmission information includes at least one of the following: system message repeated transmission cycle; system message repeated transmission times; system message repeated transmission time window; system message repeated transmission location information; PDCCH occasion information; OSI message Type information; system message index information; monitoring time period information within the system message window; monitoring location information within the system message window; system message cycle pattern information.
  • the transmission information when the transmission information includes a time window for repeated transmission of system messages, the The time window for repeated transmission of system messages is determined based on at least one of the following:
  • the transmission information includes system message index information
  • the system messages corresponding to the same index or the PDSCH carrying the system messages are the same or repeated.
  • the indication manner of the transmission information includes at least one of the following: expected or assumed by the terminal, predefined, SIB1 indicated, MIB indicated and DCI indicated.
  • the location information for repeated transmission is determined based on at least one of the following: predefined location; predefined coefficient; predefined value; SIB1 update period or 160ms; SSB update cycle or 80ms; SSB cycle; time window length of system message; transmission cycle of system message; Y unit time, where Y is a positive integer, unit time includes ms, us, s, time slot, SSB cycle, SIB1
  • the update period is 160ms
  • the SSB update period is 80ms.
  • the OSI message type information is indicated in at least one of the following ways: Zbit indicates one or more OSI message type information; where Z is a positive integer;
  • Bitmap mode indication where 1 bit corresponds to a system message type.
  • the transmission information when the transmission information includes monitoring time period information within the system message window, the monitoring time period information within the system message window includes: starting position information and time length information.
  • the cycle pattern information is set to determine whether one or more cycles of the system message require monitoring of the system message.
  • the system messages carried on the physical downlink shared channel PDSCH scheduled by the PDCCH and sent according to the PDCCH occasion information are the same or repeated.
  • the transmission information indicated through DCI includes:
  • the transmission information includes at least one of the following:
  • TDRA information TDRA information, MCS information and FDRA information.
  • the transmission information is set to indicate the transmission information of the system message received by the first type terminal; and/or the existing field is set to indicate the transmission information of the system message received by the second type terminal.
  • the DCI is scrambled by SI-RNTI.
  • the transmission information includes: terminal type information supported by the cell.
  • receiving the system message according to the transmission information includes: when the cell allows access to the first type of terminal, according to the The maximum bandwidth of the first type terminal is used to receive the system message.
  • the system message when the system message bandwidth exceeds the maximum bandwidth of the first type terminal, the system message is mapped through a specific mapping method.
  • the specific mapping method includes:
  • the first part of the resources of the transmission system message is mapped to the first symbol set and the first frequency domain resource set, where the first frequency domain resource set is a subset of the frequency domain resource set determined by the FDRA domain in the DCI, and the first symbol set is determined by the DCI
  • the mid-time domain resource allocation is determined in the TDRA domain;
  • the second part of the resources of the transmission system message is mapped to the second symbol set and the second frequency domain resource set, wherein the symbols included in the second symbol set are after the first symbol set, and the second frequency domain resource set is the first frequency domain resource set.
  • a communication node is provided, and its internal structure diagram can be shown in Figure 12.
  • the communication node includes a processor, memory, network interface and database connected through a system bus.
  • the processor of the communication node is used to provide computing and control capabilities.
  • the memory of the communication node includes non-volatile storage media and internal memory.
  • the non-volatile storage medium stores operating systems, computer programs and databases. This internal memory provides an environment for the execution of operating systems and computer programs in non-volatile storage media.
  • the database of the communication node is used to store data generated during the transmission of system messages.
  • the network interface of the communication node is used to communicate with external terminals through a network connection.
  • the computer program implements a system message transmission method when executed by the processor.
  • FIG. 12 is only a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation on the communication nodes to which the solution of the present application is applied.
  • Specific communication nodes can May include more or fewer parts than shown, or combine certain parts, or have a different arrangement of parts.
  • a communication node is provided.
  • the communication node may be a network-side device.
  • the communication node includes a memory and a processor.
  • a computer program is stored in the memory. When the processor executes the computer program, it implements the following steps:
  • the system message is transmitted according to the transmission information.
  • a communication node is provided.
  • the communication node may be a terminal device.
  • the communication node includes a memory and a processor.
  • a computer program is stored in the memory.
  • the processor executes the calculation. Perform the following steps when using a computer program:
  • the system message is received according to the transmission information.
  • a storage medium stores a computer program, and when the computer program is executed by a processor, the following steps are implemented:
  • the system message is transmitted according to the transmission information.
  • a storage medium stores a computer program, and when the computer program is executed by a processor, the following steps are implemented:
  • the system message is received according to the transmission information.
  • the computer storage medium in the embodiment of the present application may be any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to: an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination thereof.
  • Computer-readable storage media include (non-exhaustive list): electrical connection with one or more wires, portable computer disk, hard drive, random access memory (RAM), read-only memory (Read-Only Memory) , ROM), electrically erasable programmable Read-Only Memory (EEPROM), flash memory, optical fiber, portable compact disk read-only memory (Compact Disc Read-Only Memory, CD-ROM), optical memory components, magnetic storage devices, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program for use by or in connection with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave, the data signal carrying computer-readable program code. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium that can send, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • any appropriate medium including but not limited to wireless, wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • Computer program code for performing operations of the present disclosure may be written in one or more programming languages, or a combination of programming languages, including object-oriented programming languages such as Java, Smalltalk, C++, Ruby, Go), and also includes conventional procedural programming languages (such as the "C" language or similar programming languages).
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network, including a Local Area Network (LAN) or a Wide Area Network (WAN), or it can be connected to an external computer (e.g. Use an Internet service provider to connect via the Internet).
  • LAN Local Area Network
  • WAN Wide Area Network
  • user terminal covers any suitable type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser or a vehicle-mounted mobile station.
  • the various embodiments of the present application may be implemented in hardware or special purpose circuitry, software, logic, or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the application is not limited thereto.
  • Embodiments of the present application may be implemented by a data processor of the mobile device executing computer program instructions, for example in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source code or object code.
  • ISA Instruction Set Architecture
  • Any block diagram of a logic flow in the figures of this application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as, but not limited to, read only memory (ROM), random access memory (RAM), optical storage devices and systems (digital versatile disc (Digital Versatile Disc, DVD) or CD disc), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC ), programmable logic devices (Field-Programmable Gate Array, FPGA) and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种系统消息传输方法、装置、通信节点及存储介质。该方法包括:确定系统消息的传输信息;根据所述传输信息对所述系统消息进行传输。

Description

系统消息传输方法、装置、通信节点及存储介质
本申请要求在2022年08月01日提交中国专利局、申请号为202210918311.0的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种系统消息传输方法、装置、通信节点及存储介质。
背景技术
终端设备驻留小区后,可以通过接收系统消息获知小区的工作情况。其中,系统消息包括主信息块(Main Information Block,MIB)和系统信息块(System Information Block,SIB),SIB可以包括SIB1和其它系统信息(Other System Information,OSI)。
在窄带通信场景下,终端设备正确接收系统消息的概率较低,因此,如何使窄带通信场景下的终端设备正确接收系统消息成为本领域技术人员亟待解决的问题。
发明内容
本申请实施例提供一种系统消息传输方法、装置、通信节点及存储介质。
第一方面,本申请实施例提供一种系统消息传输方法,包括:
确定系统消息的传输信息;
根据所述传输信息对所述系统消息进行传输。
第二方面,本申请实施例提供一种系统消息传输方法,包括:
获取系统消息的传输信息;
根据所述传输信息对所述系统消息进行接收。
第三方面,本申请实施例提供一种系统消息传输装置,包括:
确定模块,设置为确定系统消息的传输信息;
传输模块,设置为根据所述传输信息对所述系统消息进行传输。
第四方面,本申请实施例提供一种系统消息传输装置,包括:
获取模块,设置为获取系统消息的传输信息;
接收模块,设置为根据所述传输信息对所述系统消息进行接收。
第五方面,本申请实施例提供一种通信节点,包括存储器和处理器,所述 存储器存储有计算机程序,所述处理器执行所述计算机程序时实现本申请实施例第一方面和第二方面所述方法的步骤。
第六方面,本申请实施例提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例第一方面和第二方面所述方法的步骤。
关于本申请的以上实施例和其他方面以及其实现方式,在附图说明、具体实施方式和权利要求中提供更多说明。
附图说明
图1为本申请实施例提供的无线通信系统的一种结构示意图;
图2为本申请实施例提供的监听系统消息的一种流程示意图;
图3为本申请实施例提供的系统消息传输方法的一种流程示意图;
图4为本申请实施例提供的系统消息传输方法的另一种流程示意图;
图5为本申请实施例提供的系统消息的一种映射方式示意图;
图6为本申请实施例提供的系统消息的另一种映射方式示意图;
图7为本申请实施例提供的系统消息的又一种映射方式示意图;
图8为本申请实施例提供的系统消息的又一种映射方式示意图;
图9为本申请实施例提供的系统消息的又一种映射方式示意图;
图10为本申请实施例提供的系统消息传输装置的一种结构示意图;
图11为本申请实施例提供的系统消息传输装置的另一种结构示意图;
图12为本申请实施例提供的通信节点的一种结构示意图。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。下文中将结合附图对本申请的实施例进行详细说明。
本申请实施例提供的系统消息传输方法可以应用于各类无线通信系统中,例如长期演进(long term evolution,LTE)系统、第四代移动通信技术(4th-generation,4G)系统、第五代移动通信技术(5th-generation,5G)系统、LTE与5G混合架构系统、5G新无线电(New Radio,NR)系统、以及未来通信发展中出现的新的通信系统,如第六代移动通信技术(6th-generation,6G)系统等。图1示出了一实施例提供的一种无线通信系统的组网示意图。如图1所示,该无线通信系统包括终端设备110、接入网设备120和核心网设备130。
终端设备110可以是一种具有无线收发功能的设备,可以部署在陆地上(如室内或室外、手持、穿戴或车载等);也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星等)。一些终端设备110的举例为:用户设备(User Equipment,UE)、手机、移动台、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、手持计算机、上网本、个人数字助理(Personal Digital Assistant,PDA)等可以联网的用户设备,或虚拟现实(Virtual Reality,VR)终端、增强现实(Augmented Reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等,或物联网中的物联网节点,或车联网中的车载通信装置,或娱乐、游戏设备或系统,或全球定位系统设备等。本申请实施例对终端设备的具体形态不做限定。
接入网设备120是终端设备110通过无线方式接入到该无线通信系统中的接入设备,可以是基站(base station)、长期演进增强(Long Term Evolution advanced,LTEA)中的演进型基站(evolved NodeB,eNB或eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的基站或下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或无线保真(Wireless Fidelity,WiFi)系统中的接入节点等。基站可以包括各种宏基站、微基站、家庭基站、无线拉远、路由器、WIFI设备或者主小区(primary cell)和协作小区(secondary cell)等各种网络侧设备、定位管理功能(location management function,LMF)设备。也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。本申请的实施例对接入网设备所采用的具体技术和具体设备形态不做限定,另外,接入网设备可以简称小区。
核心网设备130可以包括接入与移动性管理网元和会话管理网元。示例性地,终端设备110可以通过接入网设备120接入核心网,从而实现数据传输。
下面对终端设备接收系统消息的过程进行说明:
如图2所示,终端设备在广播信道(Broadcast Channel,BCH)接收到MIB后,可以根据MIB中的信息在指定的物理下行控制信道(Physical Downlink Control Channel,PDCCH)上接收调度SIB1的下行控制信息(Downlink Control Indicator,DCI),然后根据DCI中的内容在物理下行共享信道(Physical Downlink  Shared Channel,PDSCH)上接收SIB1。接着,终端设备可以根据SIB1中的信息在指定PDCCH上接收调度OSI的DCI,然后根据DCI中的内容在PDSCH上接收OSI。
目前,在一些窄带通信场景下,终端设备接收系统消息的成功率较低,为此,本申请实施例可以通过重复传输系统消息、限制系统消息的频域资源指示、重新定义调度系统消息的DCI以及采用特定的映射方式映射系统消息等技术手段,来提高该通信场景下的终端设备接收系统消息的成功率。
接下来,具体介绍本申请实施例提供的技术方案:
图3为本申请实施例提供的系统消息传输方法的一种流程示意图。如图3所示,本实施例提供的方法适用于接入网设备,在本示例中,该接入网络设备可以是小区。该方法可以包括:
S301、确定系统消息的传输信息。
S302、根据所述传输信息对所述系统消息进行传输。
在一个实施例中,可以基于传输信息对系统消息进行重复传输。在重复传输系统消息的情况下,上述传输信息可以包括以下至少之一:系统消息重复传输周期、系统消息重复传输次数、系统消息重复传输的时间窗、系统消息重复传输的位置信息、物理下行控制信道发送时刻PDCCH occasion信息、OSI消息类型信息、系统消息索引信息、系统消息窗口内监测时间段信息、系统消息窗口内监测位置信息以及系统消息周期图样pattern信息。
在一个实施例中,传输信息可以包括:小区支持的终端类型信息。当该小区允许第一类型终端接入时,可以限制第一类型终端的系统消息传输的频域带宽,即系统消息传输的频域带宽不超过第一类型终端的最大带宽;系统消息的虚拟RB到物理RB的映射方式为非交织;调度承载系统消息的PDSCH的DCI指示虚拟RB到物理RB的映射方式为非交织。
在一个实施例中,所述传输信息的指示方式包括以下至少之一:终端期望的或假设的、预定义的、SIB1指示的、MIB指示的以及DCI指示的。
在一个实施例中,当传输信息的指示方式包括MIB指示时,MIB指示比特可以包括MIB中的预留比特(reserved bit),MIB已有字段(filed)的比特,以及物理广播信道(Physical Broadcast Channel,PBCH)payload中的2比特。
在一个实施例中,对系统消息的监测包括监测或检测。
在一个实施例中,当传输信息的指示方式包括DCI指示时,该DCI由系统消息-无线网络临时标识(System Information-Radio Network Temporary  Identifier,SI-RNTI)加扰。
在一个实施例中,当传输信息的指示方式包括DCI指示时,其DCI指示的比特包括遗留比特,频域资源分配(Frequency domain resource assignment,FDRA)域中的高位比特或低位比特。
在一个实施例中,传输信息可以使用DCI中预留字段和/或已有字段对系统消息的传输信息进行指示。所述传输信息设置为指示第一类型终端接收的系统消息的传输信息;和/或,已有字段设置为指示第二类型终端接收的系统消息的传输信息。其中,第一类型终端可以理解为窄带终端,第二类型终端可以理解为除窄带终端以外的其它终端。也就是说,可以使用DCI同时指示第一类型终端和第二类型终端的系统消息的传输信息。
在一个实施例中,在系统消息带宽超过第一类型终端的最大带宽的情况下,所述系统消息通过特定映射方式映射后进行传输。可选地,该特定映射方式可以为:传输系统消息的第一部分资源映射在第一符号集合和第一频域资源集合,其中,第一频域资源集合是DCI中FDRA域确定的频域资源集合的子集,第一符号集合由DCI中时域资源分配(Time domain resource assignment,TDRA)域确定;传输系统消息的第二部分资源映射在第二符号集合和第二频域资源集合,其中,第二符号集合所包含的符号在第一符号集合之后,第二频域资源集合是第一频域资源集合的子集。
图4为本申请实施例提供的系统消息传输方法的另一种流程示意图。如图4所示,本实施例提供的方法适用于终端设备。该方法可以包括:
S401、获取系统消息的传输信息。
S401、根据所述传输信息对所述系统消息进行接收。
在一个实施例中,可以基于传输信息对系统消息进行重复传输。在重复传输系统消息的情况下,上述传输信息可以包括以下至少之一:系统消息重复传输周期、系统消息重复传输次数、系统消息重复传输的时间窗、系统消息重复传输的位置信息、PDCCH occasion信息、OSI消息类型信息、系统消息索引信息、系统消息窗口内监测时间段信息、系统消息窗口内监测位置信息以及系统消息周期pattern信息。
在一个实施例中,传输信息可以包括:小区支持的终端类型信息。当该小区允许第一类型终端接入时,可以限制第一类型终端的系统消息传输的频域带宽,即系统消息传输的频域带宽不超过第一类型终端的最大带宽;系统消息的虚拟RB到物理RB的映射方式为非交织;调度承载系统消息的PDSCH的DCI 指示虚拟RB到物理RB的映射方式为非交织。
在一个实施例中,所述传输信息的指示方式包括以下至少之一:终端期望的或假设的、预定义的、SIB1指示的、MIB指示的以及DCI指示的。
在一个实施例中,当传输信息的指示方式包括MIB指示时,MIB指示比特可以包括MIB中的预留比特(reserved bit),MIB已有字段(filed)的比特,以及PBCH payload中的2比特。
在一个实施例中,对系统消息的监测包括监测或检测。
在一个实施例中,当传输信息的指示方式包括DCI指示时,该DCI由SI-RNTI加扰。
在一个实施例中,当传输信息的指示方式包括DCI指示时,其DCI指示的比特包括遗留比特,FDRA域的高位比特或低位比特。
在一个实施例中,传输信息可以使用DCI中预留字段和/或已有字段对系统消息的传输信息进行指示。所述传输信息设置为指示第一类型终端接收的系统消息的传输信息;和/或,已有字段设置为指示第二类型终端接收的系统消息的传输信息。其中,第一类型终端可以理解为窄带终端,如redcap终端,第二类型终端可以理解为除窄带终端以外的其它类型终端,如NR增强移动宽带(Enhanced Mobile Broadband,eMBB)终端。也就是说,可以使用DCI同时指示第一类型终端和第二类型终端的系统消息的传输信息。
在一个实施例中,在系统消息带宽超过第一类型终端的最大带宽的情况下,所述系统消息通过特定映射方式映射后进行传输。可选地,该特定映射方式可以为:传输系统消息的第一部分资源映射在第一符号集合和第一频域资源集合,其中,第一频域资源集合是DCI中FDRA域确定的频域资源集合的子集,第一符号集合由DCI中TDRA域确定;传输系统消息的第二部分资源映射在第二符号集合和第二频域资源集合,其中,第二符号集合所包含的符号在第一符号集合之后,第二频域资源集合是第一频域资源集合的子集。
下面,罗列一些示例性实施方式,用于解释说明本申请上述实施例公开的系统消息传输方法,下述示例性实施方式可以单一执行,也可以组合执行。
在第一个示例性实施方式中,网络侧设备可以根据传输信息对系统消息进行重复传输,终端设备基于传输信息对系统消息进行重复接收。在此情况下,传输信息包括以下至少之一:系统消息重复传输周期、系统消息重复传输次数、系统消息重复传输的时间窗、系统消息重复传输的位置信息、PDCCH occasion信息、OSI消息类型信息、系统消息索引信息、系统消息窗口内监测时间段信息、 系统消息窗口内监测位置信息以及系统消息周期pattern信息。
接下来,依次介绍用于系统消息重复传输的各传输信息:
系统消息重复传输周期是指在系统消息的M单位时间内按照重复传输周期重复传输系统消息,示例性的,在系统消息的一个M单位时间以内,重复传输周期E的取值可以为5、10、15、20、40、80或者160,E的单位是slots,ms,us,s或者SFN等。同时,还可以通过SIB1,SIB,MIB或DCI中的1比特或者2比特或者3比特来指示对应的重复传输周期,指示的取值包括以下至少之一{5,10,15,20,40,80,160}。其中所述DCI可以是SI-RNTI加扰。其中,M可以是基于160ms,80ms,SSB周期,SSB更新周期,预定义值,时间窗,ms,us,s,slot中的任意一种来确定。其中,M的取值可以为以下至少之一{5,10,15,20,40,80,160}。
示例性的,假设在系统消息160ms时间内,重复传输周期E取值为20ms。此时系统消息在每个20ms的周期内或者周期位置进行重复传输。其中,该系统消息可以是SIB1或者OSI。
系统消息重复传输次数是指在M单位时间内多次重复传输系统消息。示例性的,在一个SIB1更新周期内重复发送4次或8次SIB1系统消息。其中,M单位时间和上述实施例定义一致。
系统消息重复传输的时间窗是指系统消息在该时间窗内进行重复传输,例如,时间窗的长度可以包括以下至少之一:5ms、10ms、20ms、40ms、60ms和160ms。可选地,该系统消息重复传输的时间窗基于如下方式至少之一确定:该系统消息的时间窗,系统消息的传输周期、系统帧号(System Frame Number,SFN)、时隙号、半帧编号、小区标识cell ID、带宽部分标识(Bandwidth Part,BWP)ID,或者预先定义的X ms、Xus、X个时隙、X个无线帧,其中,X大于等于0。
示例性的,当该系统消息的时间窗长度为Xms(例如,20ms),系统消息重复传输的时间窗的起始位置可以和该系统消息的时间窗的起始位置相同,系统消息重复传输的时间窗长度可以为X/C,其中,C为预定义或配置或指示的系数。此时系统消息从起始位置开始,在时间窗长度X/C内重复传输。
示例性的,当该系统消息的时间窗长度为Xms(例如,20ms),系统消息重复传输的时间窗的结束位置可以和该系统消息的时间窗的结束位置相同,系统消息重复传输的时间窗长度可以为X/C,其中,C为预定义或配置或指示的系数。此时系统消息基于结束位置,在时间窗长度X/C内重复传输。
示例性的,当该系统消息的时间窗长度为Xms(例如,20ms),系统消息重 复传输的时间窗的起始位置可以和该系统消息的时间窗的起始位置不同,该起始位置为预定义得到,或通过DCI、SIB或者MIB指示得到。
示例性的,当该系统消息的时间窗长度为Xms(例如,20ms),系统消息重复传输的时间窗的长度为预定义值,或者为基于系统消息的时间窗长度得到的预定义值,或者为通过DCI、SIB或者MIB指示得到。
示例性的,系统消息重复传输的时间窗可以根据系统消息的传输周期确定,包括该系统消息重复传输的时间窗的起始位置或时长也可以根据系统消息的传输周期确定。例如,系统消息重复传输的时间窗定义在奇数或偶数的周期内,或预定义的周期内,或预定义规则下的周期内,或指示的周期内。
示例性的,可以利用系统帧号得到重复传输的时间窗,或者利用系统帧号进行取模操作得到两个无线帧之间的一个时间段,系统消息重复传输的时间窗基于该时间段得到或者等于该时间段。例如,SFN mod 20=0,则SFN=20和40所在的无线帧为该系统消息重复传输的时间窗。
示例性的,系统消息的时间窗长度为Xms,时隙号为偶数或者奇数的位置为重复传输的PDCCH。
示例性的,系统消息重复传输的时间窗定义在BWP ID=0的初始下行BWP,或者其他SIB或DCI或MIB指示的BWP。
示例性的,系统消息重复传输的时间窗可以基于多个方式确定。可选地,系统消息重复传输的时间窗在BWP ID=0的BWP上,且定义在该系统消息的时间窗内。可选地,系统消息重复传输的时间窗在BWP ID=0的BWP上,且定义在该系统消息的某个周期的时间窗内。可选地,系统消息重复传输的时间窗在BWP ID=0的BWP上,且定义在该系统消息的某个周期的时间窗内,其系统消息重复传输的时间窗长度可以为10个slots。
示例性的,系统消息重复传输的时间窗的定义与cell ID有关。例如,cell ID取模等于1的对应第一重复传输时间窗,cell ID取模等于0的对应第二重复时间窗等。系统消息重复传输的位置信息是指在某些指定位置重复传输系统消息。可选地,该重复传输的位置信息根据以下至少之一确定:预定义位置,预定义系数、预定义值、SIB1更新周期、160ms、同步信号块(Synchronization Signal Block,SSB)更新周期、80ms以及SSB周期,系统消息的时间窗长度,系统消息的传输周期,Y单位时间,其中Y为正整数,Y单位时间包括ms,us,s,时隙,SSB周期,SIB1更新周期或160ms,SSB更新周期或80ms。可选地,该重复传输的位置信息可以通过bitmap方式进行指示,该bitmap的大小与上述周期或者Y单 位时间或者系统消息的时间窗有关。
示例性的,在系统消息的时间窗内,预定义重复传输的位置可以为时间窗的基于slot的1/2,1/4,1/8位置。其中1/2、1/4以及1/8为预定系数或预定义值。
示例性的,在Y单位时间内,预定义重复传输的位置可以为时间窗的基于Y单位时间的1/2,1/4,1/8位置。例如,Y取80ms或160ms,其中1/2、1/4以及1/8为预定系数或预定义值。
示例性的,系统消息的时间窗长度为20slots,bitmap的size可以是4bit,每比特指示5slots,该5slots即为PDCCH occasion可以用于发送调度承载重复系统消息PDSCH的PDCCH。
示例性的,系统消息的周期为32无线帧,bitmap的size可以是2bit,每比特指示1个周期帧内的PDCCH occasion是否用于发送重复PDCCH。即2比特指示64个无线帧中,或者两个周期位置中,哪个周期内的PDCCH occasion用于发送调度承载重复系统消息PDSCH的PDCCH。
PDCCH occasion信息可以包括PDCCH occasion的数量、时隙、起始位置、符号以及SFN中的至少一种。在一定数量的PDCCH occasion中解得的SIB1都可以合并,PDCCH occasion的数量至少包括以下至少之一:1、2、4、6、8、10、12、16以及32。PDCCH occasion的时隙用于确定系统消息在哪个PDCCH occasion上被PDCCH重复调度,上述PDCCH occasion的时隙是基于type0-PDCCH公共搜索空间(Common Search Space,CSS)与同步信号块索引SSB index关联的确定的两个时隙,上述时隙指示可以为2比特的pattern或者1比特的指示,其中,该1比特的指示用于指示PDCCH occasion的时隙是上述两个时隙中的第一个或者第二个。
可选地,PDCCH occasion信息包括在系统消息的时间窗内的PDCCH occasion信息,在系统消息周期内的PDCCH occasion信息以及在一段时间内的PDCCH occasion信息。该PDCCH occasion信息用于确定PDCCH发送所在的时隙位置和/或符号位置。
示例性的,slot n0或slot n0+1的PDCCH occasion用于传输调度重复系统消息的PDCCH;可以使用SIB1、MIB、DCI中的1bit指示是slot n0还是slot n0+1。
示例性的,系统消息的时间窗内的后2个PDCCH occasion用于传输调度重复系统消息的PDCCH。
OSI消息类型信息用于表示所指示的类型的系统消息被允许重复传输。可选地,OSI消息类型信息通过以下至少之一方式指示:Zbit指示一个或多个OSI 消息类型信息;其中,Z为正整数;bitmap方式指示,其中,1个bit对应一种系统消息类型。
例如,OSI消息类型包括SIB2至SIB14.当采用Zbit指示一个或多个OSI消息类型信息时,可选地,4≤Y≤13,通过Zbit所指示的各状态可以对应一种系统消息类型,或者各状态对应一个索引值,该索引值指向对应的系统消息类型。当采用bitmap方式指示OSI消息类型信息时,该bitmap的长度可以为13bit,若bitmap中的某一bit为0,则表示PDCCH调度的系统消息没有该bit对应的系统消息类型,那么该bit对应的系统消息类型也无需重复传输。反之,若bitmap中的某一bit为1,则表示PDCCH调度的系统消息有该bit对应的系统消息类型,那么该bit对应的系统消息类型需要重复传输。
系统消息索引信息指的是该索引信息对应的系统消息进行重复传输。可选地,当传输信息包括系统消息索引信息时,相同索引对应的系统消息或承载系统消息的PDSCH是相同的或重复的。
示例性的,索引包括0-11,分别对应SIB2-SIB13。对于DCI中指示所调度的索引为0的系统消息是相同的或重复的(例如,索引0对应的SIB2是相同的或者重复的)。
示例性的,索引包括0-11,采用bitmap方式分别对应SIB2-SIB13。假设DCI中bitmap指示为110000000000,则表示所调度的系统消息SIB2和SIB3是相同的或重复的。
示例性的,索引包括0-11,分别对应SIB2-SIB13。对于DCI中指示所调度的索引为0的PDSCH是相同或重复的。PDSCH相同或重复包括多个PDCCH调度的多个PDSCH是重复的(该情况下,一个PDCCH调度一个PDSCH),或一个PDCCH调度的多个PDSCH是重复的,PDSCH的重复次数需要被指示。
系统消息窗口内监测时间段信息指的是系统消息窗口内的某一监测时间段内该类型的系统消息进行重复传输。可选地,系统消息窗口内监测时间段信息可以包括:起始位置信息和时间长度信息。其中,起始位置信息为基于该系统消息类型窗口长度定义的一个或多个起始位置,时间长度信息可以包括以下至少之一:Ams、A个时隙、A个无线帧、Aus以及A等于(s5,s10,s20,s40,s8,s10,s160,s320,s640,s1280)中的一个或多个。
示例性的,起始位置默认为第一个slot或最后一个slot或起始位置为c0+c*5个slot,其中,c0等于1或其它取值,c为大于或等于0的整数;或起始位置由DCI、MIB或者SIB指示得到,例如,指示的比特数量小于或等于 例如,假设A=5,则可以使用3比特指示哪个slot为起始位置。
示例性的,起始位置和/或时间长度信息可以根据系统消息的窗口时长得到。例如,当系统消息的窗口时长为5时,起始位置可以为第2个slot,时间长度信息可以为4个slot。当系统消息的窗口时长为H时,起始位置可以为第H-3个slot,时间长度信息可以为4个slot。当系统消息的窗口时长为H时,起始位置可以为第H-K+1个slot,时间长度信息可以为K个slot。
示例性的,时间长度信息为5个slots,起始位置根据指示信息得到,指示的比特数量根据系统消息的窗口时长得到。例如,当系统消息的窗口时长为5,指示的比特数量为1,当系统消息的窗口时长为10,指示的比特数量为2,以此类推。
系统消息窗口内监测位置信息是指系统消息窗口内的指定位置监测系统消息。可选地,该监测位置信息可以包括以下至少之一:窗口内的第n个时隙,窗口内的第n个时隙、第n+b个时隙、第n+2b个时隙直至第n+i*b个时隙,其中,n大于或等于0,i大于或等于0,n+i*b小于或等于窗口长度。
示例性的,当系统消息的窗口时长为5,n=1,b=2时,表示第1,3,5个时隙为指定的位置,用于发送调度重复系统消息的PDCCH。
示例性的,在任意一个窗口,n=5,b=5,表示在第5个时隙,10个时隙直至第5+5i个时隙为指定的位置,用于发送调度重复系统消息的PDCCH。其中,5+5i小于或等于系统消息的窗口时长。
系统消息周期pattern信息用于确定该系统消息的一个或多个周期是否需要进行该系统消息的监测,即通过该周期pattern信息便可以获知哪些周期需要监测该系统消息,哪些周期不需要监测该系统消息。可选地,部分系统消息可以每间隔G个周期进行该系统消息的监测,其中,G为大于或等于1的正整数。
示例性的,当G=3时,则表示第1,2,3个周期的系统消息不需要监测,第4个周期有系统消息需要监测和/或该周期上传输的系统消息为重复的。
示例性的,周期pattern使用Fbit进行指示,F也表示循环的周期。例如,当F=4时,表示每4个周期为一个循环,当该4bit指示为1001,表示第2个周期和第3个周期不需要监测,第1个周期和第4个周期有系统消息需要监测,和/或第1个周期和第4个周期上传输的系统消息是重复的,并以4个周期进行循环。
可选地,上述用于系统消息重复传输的传输信息的指示方式可以包括以下至少之一:
终端期望的或假设的、预定义的、SIB1指示的、MIB指示的以及DCI指示的。
其中,MIB指示可以包括MIB预留比特指示,MIB已有字段指示,或者PBCH payload指示。所述DCI由SI-RNTI加扰。
这样,网络侧设备通过上述传输信息中的至少一种对系统消息进行重复传输,在终端设备获取到相应的传输信息之后,终端设备可以基于相应的传输信息对系统消息进行重复接收,能够尽量保证终端设备正确接收系统消息,提高系统通信性能。
在第二个示例性实施方式中,可以限制系统消息传输的频域带宽,使得终端设备能够在自身最大带宽范围内尽量完整接收系统消息。可选地,上述传输信息包括小区支持的终端类型信息。其中,该终端类型信息可以包括第一类型终端和第二类型终端,第一类型终端可以理解为窄带终端,第二类型终端可以理解为除窄带终端之外的其它类型终端。
当传输信息包括小区支持的终端类型信息时,根据传输信息对所述系统消息进行传输包括以下至少之一:
当该小区允许第一类型终端接入时,所述系统消息传输的频域带宽不超过第一类型终端的最大带宽;
所述系统消息的虚拟资源块(Resource Block,RB)到物理RB的映射方式为非交织;
调度承载系统消息的PDSCH的DCI指示虚拟RB到物理RB的映射方式为非交织。
例如,在小区允许第一类型终端接入时,可以限制系统消息传输的频域带宽,即使系统消息传输的频域带宽不超过第一类型终端的最大带宽。以通过DCI指示传输信息为例,示例性的,假设第一类型终端的最大带宽为5M,若子载波间隔subCarrierSpacingCommon指示为scs15,且终端设备在FR1频段上接收的MIB,同时配置的CORESET#0的RB数量为48或96时,此时DCI中的FDRA(频域资源分配)域指示的频域RB数量需要小于或等于25,或者DCI所指示的频域带宽需要小于或等于5M,这样,使得终端设备在自身最大带宽范围内能够尽量完整接收系统消息。其中,该频域的RB资源可以连续,也可以不连续。
在该示例中,如果DCI所指示的RB数量大于25或者频域带宽大于5M,此时可以认为网络侧不允许第一类型终端接入。如果SIB1或者MIB指示第一类型终端可以接入网络,但DCI指示的CORESET#0RB数量大于25,此时第一类 型终端需要具有系统消息的重复接收能力才能接入网络或者第一类型终端默认具有该能力。
示例性的,若subCarrierSpacingCommon指示为scs30,且终端设备在FR1频段上接收的MIB,配置的CORESET#0的RB数量为24或48时,此时DCI中的FDRA域指示的频域RB数量需要小于等于11或12,或者DCI所指示的频域带宽需要小于或等于5M,使得使得终端设备在自身最大带宽范围内能够尽量完整接收系统消息。其中,该频域的RB资源可以连续,也可以不连续。
在该示例中,如果网络侧所指示的RB数量大于11或12,或者频域带宽大于5M,此时可以认为网络侧不允许第一类型终端接入。如果SIB1或者MIB指示第一类型终端可以接入网络,但DCI指示的CORESET#0RB数量大于11或12,此时第一类型终端需要具有系统消息的重复接收能力才能接入网络或者第一类型终端默认具有该能力。
在本实施例中,通过限制系统消息传输的频域带宽,控制系统消息传输的频域带宽不超过第一类型终端的最大带宽,使得第一类型终端在自身最大带宽范围内尽量完整接收系统消息,从而提高了系统消息接收成功率。
在第三个示例性实施方式中,在系统消息超过第一类型终端的最大带宽的情况下,可以通过特定映射方式对系统消息进行映射后传输,该特定映射方式使得第一类型终端能够尽量在自身最大带宽范围内完整接收系统消息。
可选地,该特定映射方式包括:传输系统消息的第一部分资源映射在第一符号集合和第一频域资源集合,其中,第一频域资源集合是DCI中FDRA域确定的频域资源集合的子集,第一符号集合由DCI中TDRA域确定;传输系统消息的第二部分资源映射在第二符号集合和第二频域资源集合,其中,第二符号集合所包含的符号在第一符号集合之后,第二频域资源集合是第一频域资源集合的子集。
以下可以分情况来说明上述特定映射方式:
第一种情况:MIB在FR1频段接收、子载波间隔为15Khz、所配置的CORESET#0的RB数量为48以及DCI中FDRA域确定的频域资源集合C大于25且小于或等于48。
在第一种情况下,如图5-图8所示,将C个RB中的D个RB的映射位置保持不变,继续映射在第一符号集合和第一频域资源集合,将C个RB中除所述D个RB之外的其它RB映射到第二符号集合和第二频域资源集合。其中,D与第一类型终端的最大带宽匹配,在第一情况下D的取值为24或25。
或者,如图9所示,C个RB中的C/2个RB的映射位置保持不变,继续映射在第一符号集合和第一频域资源集合,将其余C/2个RB映射到第二符号集合和第二频域资源集合。
第二种情况:MIB在FR1频段接收,子载波间隔为15Khz、所配置的CORESET#0的RB数量为96以及DCI中FDRA域确定的频域资源集合C大于25且小于或等于96;
在第二种情况下,C个RB中编号为0到D-1的RB的映射位置保持不变,继续映射在第一符号集合和第一频域资源集合,将编号为D到2D-1的RB映射到第二符号集合和第二频域资源集合,将编号2D到C-1的RB映射到第三符号集合和第三频域资源集合;或者,C个RB中编号为0到C/3-1的RB的映射位置保持不变,继续映射在第一符号集合和第一频域资源集合,将编号为C/3到2*C/3-1的RB映射到第二符号集合和第二频域资源集合,将编号为2*C/3到C-1的RB映射到第三符号集合和第三频域资源集合;其中,第二符号集合所包含的符号在第一符号集合之后,第三符号集合所包含的符号在第二符号集合之后,第二频域资源集合以及第三频域资源集合是第一频域资源集合的子集。其中,D与第一类型终端的最大带宽匹配,在第二情况下D的取值为24或25。
第三种情况:MIB在FR1频段接收,子载波间隔为30Khz、所配置的CORESET#0的RB数量为24以及DCI中FDRA域确定的频域资源集合C小于或等于24。
在第三种情况下,C个RB中的D个RB的映射位置保持不变,继续映射在第一符号集合和第一频域资源集合,将C个RB中除所述D个RB之外的其它RB映射到第二符号集合和第二频域资源集合;或者,C个RB中编号为P到P+D-1的RB的映射位置保持不变,继续映射在第一符号集合和第一频域资源集合,将编号为P+D到P+2*D-1的RB映射到第二符号集合和第二频域资源集合或者将编号为P+D到C-1的RB映射到第二符号集合和第二频域资源集合。其中,D与第一类型终端的最大带宽匹配,在第三情况下D的取值为11或12,P为起始RB编号。
第四种情况:MIB在FR1频段接收,子载波间隔为30Khz、所配置的CORESET#0的RB数量为48以及DCI中FDRA域确定的频域资源集合C小于或等于48。
在第四种情况下,C个RB中的编号为P到P+D-1的RB的映射位置保持不变,继续映射在第一符号集合和第一频域资源集合,将编号为P+D到P+2*D-1 的RB映射到第二符号集合和第二频域资源集合,将编号为P+2*D到P+3*D-1的RB映射到第三符号集合和第三频域资源集合,将编号为P+3*D到P+4*D-1的RB映射到第四符号集合和第四频域资源集合,将编号为P+4*D到C-1的RB映射到第五符号集合和第五频域资源集合;其中,D与第一类型终端的最大带宽匹配,在第四情况下D的取值为11或12,P为起始RB编号。
可选地,上述第二符号集合可以是DCI指示的、MIB指示的、预定义的或者根据第一符号集合确定。
上述第三符号集合可以是DCI指示的、MIB指示的、预定义的、根据第一符号集合确定或者根据第二符号集合确定。
上述第四符号集合可以是DCI指示的、MIB指示的、预定义的、根据第一符号集合确定、根据第二符号集合确定或者根据第三符号集合确定。
上述第五符号集合可以是DCI指示的、MIB指示的、预定义的、根据第一符号集合确定、根据第二符号集合确定、根据第三符号集合确定或者根据第四符号集合确定。
在本实施例中,在系统消息带宽超过第一类型终端的最大带宽时,系统消息通过特定映射方式映射后进行传输,使得第一类型终端能够在自身最大带宽范围内尽量完整接收一个系统消息,从而提高了系统消息接收成功率。
在第四个示例性实施方式中,可以重新定义调度系统消息的DCI,以使该DCI中包含第一类型终端的系统消息的传输信息。基于此,当系统消息的传输信息通过DCI进行指示时,该传输信息用于指示第一类型终端接收的系统消息的传输信息。
可选地,可以使用DCI中预留字段和/或已有字段对系统消息的传输信息进行指示。
其中,DCI包括预留字段和已有字段,可以通过预留字段指示第一类型终端的TDRA信息、调制编码(Modulation and Coding Scheme,MCS)信息以及FDRA信息,通过已有字段指示第二类型终端接收的系统消息的传输信息。第一类型终端和第二类型终端共用DCI中的VRB到PRB的映射方式、系统消息指示信息以及冗余版本信息等。可选地,预留字段所指示的FDRA信息不超过第一类型终端的最大带宽。
可选地,利用DCI中的遗留字段对于FDRA信息的指示包括以下至少之一:
1)起始位置与已有字段中FDRA信息中的相同,遗留比特指示使用的RB数量。
2)遗留比特指示起始RB,RB数量默认使用第一类型终端的最大带宽对应的RB数量。
3)起始位置与已有字段中FDRA信息中的相同,默认使用第一类型终端的最大带宽对应的RB数量,以预定义的方式确定频域带宽和位置。
在一个实施例中,还可以利用DCI中遗留字段中的1bit,来表示该DCI中是否存在第一终端类型的系统消息的传输信息。
在一个实施例中,TDRA信息指示的系统消息调度时延需要大于预设阈值,或者,TDRA信息指示的位置与PDCCH不在同一时隙,其中,所述预设阈值是PDSCH与PDCCH之间的最小时延。
例如,如果TDRA信息指示的调度延迟小于或等于预设阈值,则按照预设阈值的时延进行系统消息的调度。如果TDRA信息指示的调度延迟大于预设阈值,则按照TDRA信息指示的时延进行调度。也就是说,TDRA信息指示的调度时延需要满足PDSCH与PDCCH之间的最小时延。
在本实施例中,由于DCI中包含第一类型终端用于接收系统消息的传输信息,因此,第一类型终端通过DCI所指示的传输信息能够尽量完整接收系统消息,从而提高了系统消息的接收成功率。
图10为本申请实施例提供的系统消息传输装置的一种结构示意图。如图10所示,该装置可以包括:确定模块1001和传输模块1002。
例如,确定模块1001设置为确定系统消息的传输信息;
传输模块1002设置为根据所述传输信息对所述系统消息进行传输。
本实施例提供的系统消息传输装置为实现图3所示实施例的系统消息传输方法,本实施例提供的系统消息传输装置实现原理和技术效果与上述实施例类似,此处不再赘述。
在上述实施例的基础上,在一个实施例中,传输模块1002设置为根据所述传输信息对所述系统消息进行重复传输。
在一个实施例中,所述传输信息包括以下至少之一:系统消息重复传输周期;系统消息重复传输次数;系统消息重复传输的时间窗;系统消息重复传输的位置信息;PDCCH occasion信息;OSI消息类型信息;系统消息索引信息;系统消息窗口内监测时间段信息;系统消息窗口内监测位置信息;系统消息周期pattern信息。
在一个实施例中,所述传输信息包括PDCCH occasion信息时,根据所述PDCCH occasion信息发送的PDCCH所调度的PDSCH上承载的系统消息是相同 或者重复的。
在一个实施例中,所述传输信息包括系统消息重复传输的时间窗时,所述系统消息重复传输的时间窗基于如下至少之一确定:
该系统消息的时间窗、系统消息的传输周期、SFN、时隙号、半帧编号、cell ID,BWP ID,或X ms、Xus、X个slots、X个frames,其中,X大于等于0。
在一个实施例中,所述传输信息包括系统消息重复传输的位置信息时,所述重复传输的位置信息根据以下至少之一确定:预定义位置;预定义系数;预定义值;SIB1更新周期或160ms;SSB更新周期或80ms;SSB周期;系统消息的时间窗长度;系统消息的传输周期;Y单位时间,其中Y为正整数,单位时间包括ms,us,s,时隙,SSB周期,SIB1更新周期或160ms,SSB更新周期或80ms。
在一个实施例中,所述传输信息包括OSI消息类型信息时,OSI消息类型信息通过以下至少之一方式指示:Z bit指示一个或多个OSI消息类型信息;其中,Z为正整数;
bitmap方式指示,其中,1个bit对应一种系统消息类型。
在一个实施例中,所述传输信息包括系统消息索引信息时,相同索引对应的系统消息或承载系统消息的PDSCH是相同的或重复的。
在一个实施例中,所述传输信息包括系统消息窗口内监测时间段信息时,系统消息窗口内监测时间段信息包括:起始位置信息和时间长度信息。
在一个实施例中,所述传输信息包括系统消息周期pattern信息时,该周期pattern信息用于确定该系统消息的一个或多个周期是否需要进行该系统消息的监测。
在一个实施例中,所述传输信息包括:小区支持的终端类型信息。
在一个实施例中,当所述传输信息包括小区支持的终端类型信息时,根据所述传输信息对所述系统消息进行传输包括以下至少之一:
当该小区允许第一类型终端接入时,所述系统消息传输的频域带宽不超过第一类型终端的最大带宽;
所述系统消息的虚拟RB到物理RB的映射方式为非交织;
调度承载系统消息的PDSCH的DCI指示虚拟RB到物理RB的映射方式为非交织。
在一个实施例中,所述传输信息的指示方式包括以下至少之一:
终端期望的或假设的、预定义的、SIB1指示的、MIB指示的以及DCI指示的。
在一个实施例中,所述DCI由SI-RNTI加扰。
在一个实施例中,所述传输信息通过DCI进行指示,包括:
使用DCI中预留字段和/或已有字段对系统消息的传输信息进行指示。
在一个实施例中,所述传输信息包括以下至少之一:
TDRA信息、MCS信息以及FDRA信息。
在一个实施例中,所述传输信息设置为指示第一类型终端接收的系统消息的传输信息;
和/或,已有字段设置为指示第二类型终端接收的系统消息的传输信息。
在一个实施例中,在所述系统消息带宽超过第一类型终端的最大带宽的情况下,所述系统消息通过特定映射方式映射后进行传输。
在一个实施例中,所述特定映射方式包括:
传输系统消息的第一部分资源映射在第一符号集合和第一频域资源集合,其中,第一频域资源集合是DCI中FDRA域确定的频域资源集合的子集,第一符号集合由DCI中时域资源分配TDRA域确定;
传输系统消息的第二部分资源映射在第二符号集合和第二频域资源集合,其中,第二符号集合所包含的符号在第一符号集合之后,第二频域资源集合是第一频域资源集合的子集。
图11为本申请实施例提供的系统消息传输装置的另一种结构示意图。如图11所示,该装置可以包括:获取模块1101和接收模块1102。
例如,获取模块1101设置为获取系统消息的传输信息;
接收模块1102设置为根据所述传输信息对所述系统消息进行接收。
本实施例提供的系统消息传输装置为实现图4所示实施例的系统消息传输方法,本实施例提供的系统消息传输装置实现原理和技术效果与上述实施例类似,此处不再赘述。
在一个实施例中,接收模块1102设置为根据所述传输信息对所述系统消息进行重复接收。
在一个实施例中,所述传输信息包括以下至少之一:系统消息重复传输周期;系统消息重复传输次数;系统消息重复传输的时间窗;系统消息重复传输的位置信息;PDCCH occasion信息;OSI消息类型信息;系统消息索引信息;系统消息窗口内监测时间段信息;系统消息窗口内监测位置信息;系统消息周期pattern信息。
在一个实施例中,所述传输信息包括系统消息重复传输的时间窗时,所述 系统消息重复传输的时间窗基于如下至少之一确定:
该系统消息的时间窗、系统消息的传输周期、SFN、时隙号、半帧编号、cell ID,BWP ID,或X ms、Xus、X个slots、X个frames,其中X大于等于0。
在一个实施例中,所述传输信息包括系统消息索引信息时,相同索引对应的系统消息或承载系统消息的PDSCH是相同的或重复的。
在一个实施例中,所述传输信息的指示方式包括以下至少之一:终端期望的或假设的、预定义的、SIB1指示的、MIB指示的以及DCI指示的。
在一个实施例中,所述传输信息包括系统消息重复传输的位置信息时,所述重复传输的位置信息根据以下至少之一确定:预定义位置;预定义系数;预定义值;SIB1更新周期或160ms;SSB更新周期或80ms;SSB周期;系统消息的时间窗长度;系统消息的传输周期;Y单位时间,其中Y为正整数,单位时间包括ms,us,s,时隙,SSB周期,SIB1更新周期或160ms,SSB更新周期或80ms。
在一个实施例中,所述传输信息包括OSI消息类型信息时,OSI消息类型信息通过以下至少之一方式指示:Zbit指示一个或多个OSI消息类型信息;其中,Z为正整数;
bitmap方式指示,其中,1个bit对应一种系统消息类型。
在一个实施例中,所述传输信息包括系统消息窗口内监测时间段信息时,系统消息窗口内监测时间段信息包括:起始位置信息和时间长度信息。
在一个实施例中,所述传输信息包括系统消息周期pattern信息时,该周期pattern信息设置为确定该系统消息的一个或多个周期是否需要进行该系统消息的监测。
在一个实施例中,所述传输信息包括PDCCH occasion信息时,根据所述PDCCH occasion信息发送的PDCCH所调度的物理下行共享信道PDSCH上承载的系统消息是相同或者重复的。
在一个实施例中,所述传输信息通过DCI进行指示包括:
使用DCI中预留字段和/或已有字段对系统消息的传输信息进行指示。
在一个实施例中,所述传输信息包括以下至少之一:
TDRA信息、MCS信息以及FDRA信息。
在一个实施例中,所述传输信息设置为指示第一类型终端接收的系统消息的传输信息;和/或,已有字段设置为指示第二类型终端接收的系统消息的传输信息。
在一个实施例中,所述DCI由SI-RNTI加扰。
在一个实施例中,所述传输信息包括:小区支持的终端类型信息。
在一个实施例中,当所述传输信息包括小区支持的终端类型信息时,根据所述传输信息对所述系统消息进行接收,包括:当该小区允许第一类型终端接入时,根据所述第一类型终端的最大带宽对所述系统消息进行接收。
在一个实施例中,在所述系统消息带宽超过第一类型终端的最大带宽的情况下,所述系统消息通过特定映射方式进行映射的。
在一个实施例中,所述特定映射方式包括:
传输系统消息的第一部分资源映射在第一符号集合和第一频域资源集合,其中,第一频域资源集合是DCI中FDRA域确定的频域资源集合的子集,第一符号集合由DCI中时域资源分配TDRA域确定;
传输系统消息的第二部分资源映射在第二符号集合和第二频域资源集合,其中,第二符号集合所包含的符号在第一符号集合之后,第二频域资源集合是第一频域资源集合的子集。
在一个实施例中,提供了一种通信节点,其内部结构图可以如图12所示。该通信节点包括通过系统总线连接的处理器、存储器、网络接口和数据库。其中,该通信节点的处理器用于提供计算和控制能力。该通信节点的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该通信节点的数据库用于存储系统消息传输过程中产生的数据。该通信节点的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种系统消息传输方法。
本领域技术人员可以理解,图12中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的通信节点的限定,具体的通信节点可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种通信节点,该通信节点可以为网络侧设备,该通信节点包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
确定系统消息的传输信息;
根据所述传输信息对所述系统消息进行传输。
在一个实施例中,提供了一种通信节点,该通信节点可以为终端设备,该通信节点包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计 算机程序时实现以下步骤:
获取系统消息的传输信息;
根据所述传输信息对所述系统消息进行接收。
在一个实施例中,提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:
确定系统消息的传输信息;
根据所述传输信息对所述系统消息进行传输。
在一个实施例中,提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:
获取系统消息的传输信息;
根据所述传输信息对所述系统消息进行接收。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是但不限于:电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质包括(非穷举的列表):具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、带电可擦式可编程只读存储器(electrically erasable programmable Read-Only Memory,EEPROM)、闪存、光纤、便携式紧凑磁盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本申请中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,数据信号中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或多种程序设计语言组合来编写用于执行本公开操作的计算机程序代码,程序设计语言包括面向对象的程序设计语言(诸如Java、Smalltalk、C++、Ruby、Go),还包括常规的过程式程序设计语言(诸如“C”语言或类似的程序设计语言)。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络(包括网络(Local Area Network,LAN)或广域网(Wide Area Network,WAN))连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟(Digital Versatile Disc,DVD)或CD光盘)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (42)

  1. 一种系统消息传输方法,包括:
    确定系统消息的传输信息;
    根据所述传输信息对所述系统消息进行传输。
  2. 根据权利要求1所述的方法,其中,所述根据所述传输信息对所述系统消息进行传输,包括:
    根据所述传输信息对所述系统消息进行重复传输。
  3. 根据权利要求2所述的方法,其中,所述传输信息包括以下至少之一:
    系统消息重复传输周期;
    系统消息重复传输次数;
    系统消息重复传输的时间窗;
    系统消息重复传输的位置信息;
    物理下行控制信道发送时刻PDCCH occasion信息;
    系统消息OSI消息类型信息;
    系统消息索引信息;
    系统消息窗口内监测时间段信息;
    系统消息窗口内监测位置信息;
    系统消息周期图样pattern信息。
  4. 根据权利要求1或3所述的方法,其中,所述传输信息包括PDCCH occasion信息时,根据所述PDCCH occasion信息发送的PDCCH所调度的物理下行共享信道PDSCH上承载的系统消息是相同或者重复的。
  5. 根据权利要求1或3所述的方法,其中,所述传输信息包括系统消息重复传输的时间窗时,所述系统消息重复传输的时间窗基于如下至少之一确定:
    所述系统消息的时间窗、系统消息的传输周期、系统帧号SFN、时隙号、半帧编号、小区标识cell ID、带宽部分标识BWP ID,或X ms、Xus、X个slots、X个frames,其中,X大于或等于0。
  6. 根据权利要求1或3所述的方法,其中,所述传输信息包括系统消息重复传输的位置信息时,所述重复传输的位置信息根据以下至少之一确定:
    预定义位置;
    预定义系数;
    预定义值;
    SIB1更新周期或160ms;
    同步信号块SSB更新周期或80ms;
    SSB周期;
    系统消息的时间窗长度;
    系统消息的传输周期;
    Y单位时间,其中Y为正整数,单位时间包括ms,us,s,时隙,SSB周期,SIB1更新周期或160ms,SSB更新周期或80ms。
  7. 根据权利要求1或3所述的方法,其中,所述传输信息包括OSI消息类型信息时,OSI消息类型信息通过以下至少之一方式指示:
    Z bit指示一个或多个OSI消息类型信息;其中,Z为正整数;
    bitmap方式指示,其中,1个bit对应一种系统消息类型。
  8. 根据权利要求1或3所述的方法,其中,所述传输信息包括系统消息索引信息时,相同索引对应的系统消息或承载系统消息的PDSCH是相同的或重复的。
  9. 根据权利要求1或3所述的方法,其中,所述传输信息包括系统消息窗口内监测时间段信息时,系统消息窗口内监测时间段信息包括:起始位置信息和时间长度信息。
  10. 根据权利要求1或3所述方法,其中,所述传输信息包括系统消息周期pattern信息时,所述周期pattern信息设置为确定所述系统消息的一个或多个周期是否需要进行所述系统消息的监测。
  11. 根据权利要求1所述的方法,其中,所述传输信息包括:小区支持的终端类型信息。
  12. 根据权利要求11所述的方法,其中,当所述传输信息包括小区支持的终端类型信息时,根据所述传输信息对所述系统消息进行传输包括以下至少之一:
    当所述小区允许第一类型终端接入时,所述系统消息传输的频域带宽小于或等于第一类型终端的最大带宽;
    所述系统消息的虚拟资源块RB到物理RB的映射方式为非交织;
    调度承载系统消息的PDSCH的下行控制信息DCI指示虚拟RB到物理RB的映射方式为非交织。
  13. 根据权利要求1至12中任一项所述的方法,其中,所述传输信息的指示方式包括以下至少之一:
    终端期望的或假设的、预定义的、SIB1指示的、主信息块MIB指示的以及DCI指示的。
  14. 根据权利要求12或13所述的方法,其中,所述DCI由系统消息-无线网络临时标识SI-RNTI加扰。
  15. 根据权利要求13所述的方法,其中,所述传输信息通过DCI进行指示,包括:
    使用DCI中预留字段或已有字段中的至少一个对系统消息的传输信息进行指示。
  16. 根据权利要求15所述的方法,其中,所述传输信息包括以下至少之一:
    时域资源分配TDRA信息、调制编码MCS信息以及频域资源分配FDRA信息。
  17. 根据权利要求15所述的方法,其中,所述传输信息设置为指示第一类型终端接收的系统消息的传输信息;
    和/或,已有字段设置为指示第二类型终端接收的系统消息的传输信息。
  18. 根据权利要求12所述的方法,其中,在所述系统消息带宽大于第一类型终端的最大带宽的情况下,所述系统消息通过特定映射方式映射后进行传输。
  19. 根据权利要求18所述的方法,其中,所述特定映射方式包括:
    传输系统消息的第一部分资源映射在第一符号集合和第一频域资源集合,其中,第一频域资源集合是DCI中FDRA域确定的频域资源集合的子集,第一符号集合由DCI中时域资源分配TDRA域确定;
    传输系统消息的第二部分资源映射在第二符号集合和第二频域资源集合,其中,第二符号集合所包含的符号在第一符号集合之后,第二频域资源集合是第一频域资源集合的子集。
  20. 一种系统消息传输方法,包括:
    获取系统消息的传输信息;
    根据所述传输信息对所述系统消息进行接收。
  21. 根据权利要求20所述的方法,其中,所述根据所述传输信息对所述系统消息进行接收,包括:
    根据所述传输信息对所述系统消息进行重复接收。
  22. 根据权利要求21所述的方法,其中,所述传输信息包括以下至少之一:
    系统消息重复传输周期;
    系统消息重复传输次数;
    系统消息重复传输的时间窗;
    系统消息重复传输的位置信息;
    PDCCH occasion信息;
    OSI消息类型信息;
    系统消息索引信息;
    系统消息窗口内监测时间段信息;
    系统消息窗口内监测位置信息;
    系统消息周期图样pattern信息。
  23. 根据权利要求20或22所述的方法,其中,所述传输信息包括系统消息重复传输的时间窗时,所述系统消息重复传输的时间窗基于如下至少之一确定:
    所述系统消息的时间窗、系统消息的传输周期、SFN、时隙号、半帧编号、cell ID、BWP ID,或X ms、Xus、X个slots、X个frames,其中X大于或等于0。
  24. 根据权利要求20或22所述的方法,其中,所述传输信息包括系统消息索引信息时,相同索引对应的系统消息或承载系统消息的PDSCH是相同的或重复的。
  25. 根据权利要求20至24中任一项所述的方法,其中,所述传输信息的指示方式包括以下至少之一:
    终端期望的或假设的、预定义的、SIB1指示的、MIB指示的以及DCI指示的。
  26. 根据权利要求20或22所述的方法,其中,所述传输信息包括系统消息重复传输的位置信息时,所述重复传输的位置信息根据以下至少之一确定:
    预定义位置;
    预定义系数;
    预定义值;
    SIB1更新周期或160ms;
    SSB更新周期或80ms;
    SSB周期;
    系统消息的时间窗长度;
    系统消息的传输周期;
    Y单位时间,其中Y为正整数,单位时间包括ms,us,s,时隙,SSB周期,SIB1更新周期或160ms,SSB更新周期或80ms。
  27. 根据权利要求20或22所述的方法,其中,所述传输信息包括OSI消 息类型信息时,OSI消息类型信息通过以下至少之一方式指示:
    Z bit指示一个或多个OSI消息类型信息;其中,Z为正整数;
    bitmap方式指示,其中,1个bit对应一种系统消息类型。
  28. 根据权利要求20或22所述的方法,其中,所述传输信息包括系统消息窗口内监测时间段信息时,系统消息窗口内监测时间段信息包括:起始位置信息和时间长度信息。
  29. 根据权利要求20或22所述的方法,其中,所述传输信息包括系统消息周期pattern信息时,所述周期pattern信息设置为确定所述系统消息的一个或多个周期是否需要进行所述系统消息的监测。
  30. 根据权利要求20或22所述的方法,其中,所述传输信息包括PDCCH occasion信息时,根据所述PDCCH occasion信息发送的PDCCH所调度的物理下行共享信道PDSCH上承载的系统消息是相同或者重复的。
  31. 根据权利要求25所述的方法,其中,所述传输信息通过DCI进行指示包括:
    使用DCI中预留字段或已有字段中的至少一个对系统消息的传输信息进行指示。
  32. 根据权利要求31所述的方法,其中,所述传输信息包括以下至少之一:
    TDRA信息、MCS信息以及FDRA信息。
  33. 根据权利要求31所述的方法,其中,所述传输信息设置为指示第一类型终端接收的系统消息的传输信息;
    和/或,已有字段设置为指示第二类型终端接收的系统消息的传输信息。
  34. 根据权利要求31所述的方法,其中,所述DCI由SI-RNTI加扰。
  35. 根据权利要求20所述的方法,其中,所述传输信息包括:小区支持的终端类型信息。
  36. 根据权利要求35所述的方法,其中,当所述传输信息包括小区支持的终端类型信息时,根据所述传输信息对所述系统消息进行接收,包括:
    当所述小区允许第一类型终端接入时,根据所述第一类型终端的最大带宽对所述系统消息进行接收。
  37. 根据权利要求36所述的方法,其中,在所述系统消息带宽大于第一类型终端的最大带宽的情况下,所述系统消息通过特定映射方式进行映射的。
  38. 根据权利要求37所述的方法,其中,所述特定映射方式包括:
    传输系统消息的第一部分资源映射在第一符号集合和第一频域资源集合, 其中,第一频域资源集合是DCI中频域资源分配FDRA域确定的频域资源集合的子集,第一符号集合由DCI中时域资源分配TDRA域确定;
    传输系统消息的第二部分资源映射在第二符号集合和第二频域资源集合,其中,第二符号集合所包含的符号在第一符号集合之后,第二频域资源集合是第一频域资源集合的子集。
  39. 一种系统消息传输装置,包括:
    确定模块,设置为确定系统消息的传输信息;
    传输模块,设置为根据所述传输信息对所述系统消息进行传输。
  40. 一种系统消息传输装置,包括:
    获取模块,设置为获取系统消息的传输信息;
    接收模块,设置为根据所述传输信息对所述系统消息进行接收。
  41. 一种通信节点,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现权利要求1-38中任一项所述方法的步骤。
  42. 一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-38中任一项所述方法的步骤。
PCT/CN2023/085151 2022-08-01 2023-03-30 系统消息传输方法、装置、通信节点及存储介质 WO2024027182A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210918311.0 2022-08-01
CN202210918311.0A CN115915267A (zh) 2022-08-01 2022-08-01 一种系统消息传输方法、装置、通信节点及存储介质

Publications (1)

Publication Number Publication Date
WO2024027182A1 true WO2024027182A1 (zh) 2024-02-08

Family

ID=86483962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085151 WO2024027182A1 (zh) 2022-08-01 2023-03-30 系统消息传输方法、装置、通信节点及存储介质

Country Status (2)

Country Link
CN (1) CN115915267A (zh)
WO (1) WO2024027182A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160337106A1 (en) * 2014-01-16 2016-11-17 Zte Corporation Method and Apparatus for Transmitting and Receiving System Information
CN108811034A (zh) * 2017-05-05 2018-11-13 中兴通讯股份有限公司 消息传输方法及装置
CN109672630A (zh) * 2017-10-13 2019-04-23 维沃移动通信有限公司 一种系统信息消息传输方法、终端及网络设备
CN112449425A (zh) * 2019-08-31 2021-03-05 华为技术有限公司 一种通信方法和装置
CN113543317A (zh) * 2020-04-14 2021-10-22 华为技术有限公司 系统信息传输方法、设备及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160337106A1 (en) * 2014-01-16 2016-11-17 Zte Corporation Method and Apparatus for Transmitting and Receiving System Information
CN108811034A (zh) * 2017-05-05 2018-11-13 中兴通讯股份有限公司 消息传输方法及装置
CN109672630A (zh) * 2017-10-13 2019-04-23 维沃移动通信有限公司 一种系统信息消息传输方法、终端及网络设备
CN112449425A (zh) * 2019-08-31 2021-03-05 华为技术有限公司 一种通信方法和装置
CN113543317A (zh) * 2020-04-14 2021-10-22 华为技术有限公司 系统信息传输方法、设备及系统

Also Published As

Publication number Publication date
CN115915267A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
US9119197B2 (en) System and method for delay scheduling
US20210250159A1 (en) Resource configuration method and apparatus
US11147061B2 (en) Data receiving method, related device, and system
EP3545720B1 (en) Method and device for transmitting downlink control information
CN111865536B (zh) 搜索空间的监测、配置方法及装置
WO2013166960A1 (en) System and method for antenna port association
WO2021114060A1 (zh) 通信方法及相关装置、设备
WO2022027694A1 (zh) 一种资源信息指示方法及装置
EP3076730A1 (en) Information transmission method, user equipment and base station
WO2020125409A1 (zh) 一种时隙调度的方法、设备及介质
EP3843488A1 (en) Method for transmitting data, and method and device for sending control information
EP4394657A1 (en) Neural network generation method, indication information sending method, communication node, and medium
WO2024027182A1 (zh) 系统消息传输方法、装置、通信节点及存储介质
WO2020108043A1 (zh) 一种信息发送方法、接收方法及装置
WO2022027594A1 (zh) 一种通信方法及通信装置
CN109964525B (zh) 用于增强下行链路控制信道的方法和设备
WO2023134163A1 (zh) 一种信息接收、发送方法,通信节点及存储介质
WO2021142652A1 (zh) 上行数据传输的方法和装置
US20230084429A1 (en) PDSCH Transmission Method and Apparatus
CN114287114B (zh) 信号接收的方法及装置
US20240014968A1 (en) Data transmission method and apparatus
US20210410006A1 (en) Method for determining transport block size and communications apparatus
WO2023274211A1 (zh) 控制信息发送方法、控制信息接收方法以及通信装置
WO2022213821A1 (zh) 物理下行控制信道重复传输的方法及通信装置
EP4297444A1 (en) Method for determining sidelink drx configuration, and communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23848894

Country of ref document: EP

Kind code of ref document: A1