WO2018137518A1 - 数据的传输方法和装置 - Google Patents

数据的传输方法和装置 Download PDF

Info

Publication number
WO2018137518A1
WO2018137518A1 PCT/CN2018/072903 CN2018072903W WO2018137518A1 WO 2018137518 A1 WO2018137518 A1 WO 2018137518A1 CN 2018072903 W CN2018072903 W CN 2018072903W WO 2018137518 A1 WO2018137518 A1 WO 2018137518A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit position
bit
segment
sequence
freeze
Prior art date
Application number
PCT/CN2018/072903
Other languages
English (en)
French (fr)
Inventor
周悦
李榕
张公正
杜颖钢
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18745196.8A priority Critical patent/EP3567766B1/en
Publication of WO2018137518A1 publication Critical patent/WO2018137518A1/zh
Priority to US16/522,386 priority patent/US11050508B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • H04L1/0063Single parity check
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data

Definitions

  • the present application relates to communication technologies, and in particular, to a method and apparatus for encoding a Polar code.
  • the rapid evolution of wireless communication indicates that the future fifth generation (Fifth Generation, 5G) communication system will present some new features.
  • the most typical three communication scenarios include Enhanced Mobile Broadband (eMBB) and massive machine connection communication. (Massive Machine Type Communication, mMTC) and Ultra Reliable and Low Latency Communications (URLLC).
  • eMBB Enhanced Mobile Broadband
  • mMTC massive Machine Connection communication
  • URLLC Ultra Reliable and Low Latency Communications
  • LTE Long Term Evolution
  • Communication systems usually use channel coding to improve the reliability of data transmission and ensure the quality of communication.
  • channel coding is one of the important research objects to meet the needs of 5G communication.
  • Polar Codes an encoding method based on channel polarization, called Polar Codes.
  • the polarization code is the first and only known channel coding method that can be rigorously proven to "reach" the channel capacity.
  • the performance of Polar codes is much better than Turbo codes and LDPC codes.
  • Polar codes have lower computational complexity in terms of encoding and decoding.
  • the Polar code is an encoding method that can achieve Shannon capacity and has low coding and decoding complexity.
  • B N is an N ⁇ N transposed matrix, such as a bit reversal matrix. It should be noted that B N is not a mandatory operation (equivalent to B N is a unit matrix). Is the Kronecker power of F 2 , defined as
  • the Polar code is a channel dependent encoding, which performs Polar Codes code polarization processing on N identical channels W to obtain N polarized channels.
  • N polarized channels The Bhattacharyya parameter either tends to zero or tends to 1.
  • the set of position index numbers corresponding to the channel is called the information set.
  • the other part of the bit is set to a fixed value pre-agreed by the transceiver, which is called a frozen (English translation: frozen) bit. Complement Said.
  • the K information symbols are placed at the corresponding positions of the information set, and the remaining (NK) positions (called Frozen Sets) are placed to fix the known symbols.
  • the NK fixed fixed symbols can be taken.
  • the symbol is an all-zero symbol, where K ⁇ N.
  • the transceiver terminal needs to be pre-agreed, and the value of the freeze bit can be arbitrarily set. Since the polarized channel is in one-to-one correspondence with the bits, the polarized channel is also often explained by the bit position.
  • the application provides a method and an apparatus for encoding a Polar code.
  • the first aspect of the present application provides a method for encoding a Polar code, including:
  • the transmitting device performs a Polar encoding on the sequence to be encoded, where the length of the mother code of the Polar code is N, the sequence to be encoded includes a frozen bit, a check frozen bit and an information bit, and the sequence to be encoded includes a q segment.
  • the value of at least one of the check freeze bits is determined according to at least one of the freeze bit and the information bit; or at least one of the check freeze bits is a preset value;
  • the transmitting device transmits the encoded sequence.
  • the sending device segments the sequence to be encoded according to a preset rule, determines the number and location of the check frozen bits in each segment, the number and location of the information bits, the number and location of the frozen bit positions, and then the information bits and The frozen bit is placed in the corresponding position, and the value of the check frozen bit is determined, and then the coded sequence is subjected to Polar code encoding and transmitted.
  • the method simplifies the process of verifying the number and location of frozen bits, and effectively improves processing efficiency.
  • the check freeze bit position is decoupled from the reliability calculation method, which simplifies the verification of the frozen bit position and the value, which effectively improves the processing efficiency.
  • the sequence to be encoded includes a q segment, wherein a bit position of a t-th segment point is a Bt, and when the Bt is represented by an n-bit binary number, the n-bit binary number The tth bit is 0, and the remaining n-1 bits are all 1, where 0 ⁇ t ⁇ q.
  • the sequence number of the bit position to be encoded ranges from 0 to less than 0 and less than N:
  • the sequence number of the bit position corresponding to the segmentation point is [127 191 223 239 247 251]; or
  • the sequence number of the bit position corresponding to the segmentation point is [255 383 447 479 495 503 507]; or
  • the sequence number of the bit position corresponding to the segmentation point is [511 767 895 959 991 1007 1015 1019]; or
  • the sequence number of the bit position corresponding to the segmentation point is [1023 1535 1791 1919 1983 2015 2031 2039 2043]; or
  • the check freeze bit position in the g th segment is a P fg bit position in the g th segment except the freeze bit position, and the bit position sequence number is the smallest; or
  • the check freeze bit position in the g th segment is a P fg bit position in the g th segment except the freeze bit position, and the bit position number is the largest; or, in the g th segment
  • the check freeze bit position is a P fg bit position agreed with the receiving device in the g th segment except the frozen bit position.
  • the sequence to be encoded is [u 0 , u 1 , u 2 , . . . , u N-1 ], and at least one of the check freeze bits is based on the frozen bit. And determining at least one of the information bits; or at least one of the check freeze bits is a preset value; and the value of the check freeze bit is obtained by the following steps:
  • the transmitting device performs an operation on the elements in the encoded sequence [u 0 , u 1 , u 2 , . . . , u N-1 ] in sequence with the cyclic shift register, and after each operation, the cyclic shift
  • the register is rotated by one bit in a fixed direction, the cyclic shift register is of length p, and its initial state y[0], y[1], ..., y[p-1] is a known binary sequence of length p, p is a positive integer and is a prime number;
  • the order is from left to right or from right to left or the order in which any of the transmitting devices are unified with the receiving device.
  • the fixed direction is clockwise or counterclockwise.
  • the check freeze bit position is selected in the q segment by a bit position on each segment in descending order of the average reliability of each segment, wherein each segment is taken.
  • a second aspect of the present application provides a method for decoding a Polar code, including:
  • the receiving device performs a Polar decoding on the received sequence to be decoded to obtain a decoded sequence, wherein the length of the mother code of the Polar code is N, and the length of the sequence to be decoded is N, in the sequence to be decoded.
  • the sequence to be decoded includes a q segment, wherein a bit position of a t-th segment point is a Bt, and the Bt is represented by an n-bit binary number, the n-bit binary The t-th bit of the number is 0, and the remaining n-1 bits are all 1, where 0 ⁇ t ⁇ q.
  • the sequence number of the bit position to be decoded ranges from 0 to less than 0 and less than N;
  • the sequence number of the bit position corresponding to the segmentation point is [127 191 223 239 247 251]; or
  • the sequence number of the bit position corresponding to the segmentation point is [255 383 447 479 495 503 507]; or
  • the sequence number of the bit position corresponding to the segmentation point is [511 767 895 959 991 1007 1015 1019]; or
  • the sequence number of the bit position corresponding to the segmentation point is [1023 1535 1791 1919 1983 2015 2031 2039 2043]; or
  • the check freeze bit position in the g th segment is a P fg bit position in the g th segment except the freeze bit position, and the bit position sequence number is the smallest; or
  • the check freeze bit position in the g th segment is a P fg bit position in the g th segment except the freeze bit position, and the bit position number is the largest; or, in the g th segment
  • the check freeze bit position is a P fg bit position agreed with the receiving device in the g th segment except the frozen bit position.
  • the check freeze bit position is selected in the q segment by a bit position on each segment in descending order of the average reliability of each segment, wherein each segment is taken.
  • a third aspect of the present application provides a polarization Polar coding apparatus, including:
  • An encoding module configured to perform Polar encoding on a sequence to be encoded, wherein a length of the mother code of the Polar code is N, and the sequence to be encoded includes a frozen bit, a check frozen bit, and an information bit, where the code to be encoded
  • a processing module configured to determine a value of at least one of the check freeze bits according to at least one of the freeze bit and the information bit; or to determine that at least one of the check freeze bits is a preset value ;
  • a sending module for transmitting the encoded sequence.
  • the sequence to be encoded includes a q segment, wherein a bit position of a t-th segment point is a Bt, and when the Bt is represented by an n-bit binary number, the n-bit binary number The tth bit is 0, and the remaining n-1 bits are all 1, where 0 ⁇ t ⁇ q.
  • the sequence number of the bit position to be encoded ranges from 0 to less than 0 and less than N:
  • the sequence number of the bit position corresponding to the segmentation point is [127 191 223 239 247 251]; or
  • the sequence number of the bit position corresponding to the segmentation point is [255 383 447 479 495 503 507]; or
  • the sequence number of the bit position corresponding to the segmentation point is [511 767 895 959 991 1007 1015 1019]; or
  • the sequence number of the bit position corresponding to the segmentation point is [1023 1535 1791 1919 1983 2015 2031 2039 2043]; or
  • each of the q segment of the segment number of parity bits P fg frozen as P fg round (P f * G g / (K + P f)), wherein round is a rounding operation , P f is the number of parity bits frozen, Gg g for the first segment and the number of information bits and the number of parity bits freezing, K is the number of information bits, P f, g, K are positive integers, G g, P fg is a non-negative integer, 0 ⁇ g ⁇ q.
  • the check freeze bit position in the g th segment is a P fg bit position in the g th segment except the freeze bit position, and the bit position sequence number is the smallest; or
  • the check freeze bit position in the g th segment is a P fg bit position in the g th segment except the freeze bit position, and the bit position number is the largest; or, in the g th segment
  • the check freeze bit position is a P fg bit position agreed with the receiving device in the g th segment except the frozen bit position.
  • the sequence to be encoded is [u 0 , u 1 , u 2 , . . . , u N-1 ], and at least one of the check freeze bits is based on the frozen bit. And determining at least one of the information bits; or at least one of the check freeze bits is a preset value; and the value of the check freeze bit is obtained by the following steps:
  • the transmitting device performs an operation on the elements in the encoded sequence [u 0 , u 1 , u 2 , . . . , u N-1 ] in sequence with the cyclic shift register, and after each operation, the cyclic shift
  • the register is rotated by one bit in a fixed direction, the cyclic shift register is of length p, and its initial state y[0], y[1], ..., y[p-1] is a known binary sequence of length p, p is a positive integer and is a prime number;
  • the order is from left to right or from right to left or the order in which any of the transmitting devices are unified with the receiving device.
  • the fixed direction is clockwise or counterclockwise.
  • the check freeze bit position is selected in the q segment by a bit position on each segment in descending order of the average reliability of each segment, wherein each segment is taken.
  • a fourth aspect of the present application provides a polarization Polar decoding apparatus, including
  • An acquiring module configured to acquire a sequence to be decoded
  • a decoding module configured to perform a Polar decoding on the received sequence to be decoded, to obtain a decoded sequence, where a length of the mother code of the Polar code is N, and a length of the sequence to be decoded is N,
  • the decoding sequence includes a freeze bit, a check freeze bit, and an information bit
  • the device further includes:
  • a processing module configured to divide the sequence to be decoded into q segments, wherein a bit position of a t-th segment point is a Bt, and when the Bt is represented by an n-bit binary number, the n-bit binary number The tth bit is 0, and the remaining n-1 bits are all 1, where 0 ⁇ t ⁇ q.
  • the sequence number of the bit position to be decoded ranges from 0 to less than 0 and less than N;
  • the sequence number of the bit position corresponding to the segmentation point is [127 191 223 239 247 251]; or
  • the sequence number of the bit position corresponding to the segmentation point is [255 383 447 479 495 503 507]; or
  • the sequence number of the bit position corresponding to the segmentation point is [511 767 895 959 991 1007 1015 1019]; or
  • the sequence number of the bit position corresponding to the segmentation point is [1023 1535 1791 1919 1983 2015 2031 2039 2043]; or
  • the check freeze bit position in the g th segment is a P fg bit position in the g th segment except the freeze bit position, and the bit position sequence number is the smallest; or
  • the check freeze bit position in the g th segment is a P fg bit position in the g th segment except the freeze bit position, and the bit position number is the largest; or, in the g th segment
  • the check freeze bit position is a P fg bit position agreed with the receiving device in the g th segment except the frozen bit position.
  • the check freeze bit position is selected in the q segment by a bit position on each segment in descending order of the average reliability of each segment, wherein each segment is taken.
  • a fifth aspect of the present application provides a device for polarizing a Polar code encoding entity, including:
  • a memory for storing execution instructions
  • the processor is further configured to determine, according to at least one of the freeze bit and the information bit, a value of at least one of the check freeze bits; or to determine that at least one of the check freeze bits is a preset Value
  • the device further includes a transmitter for transmitting the encoded sequence.
  • the memory may be separate or integrated with the processor.
  • the device may further include:
  • the sequence to be encoded includes a q segment, wherein a bit position of a t-th segment point is a Bt, and when the Bt is represented by an n-bit binary number, the n-bit binary number The tth bit is 0, and the remaining n-1 bits are all 1, where 0 ⁇ t ⁇ q.
  • the sequence number of the bit position to be encoded ranges from 0 to less than 0 and less than N:
  • the sequence number of the bit position corresponding to the segmentation point is [127 191 223 239 247 251]; or
  • the sequence number of the bit position corresponding to the segmentation point is [255 383 447 479 495 503 507]; or
  • the sequence number of the bit position corresponding to the segmentation point is [511 767 895 959 991 1007 1015 1019]; or
  • the sequence number of the bit position corresponding to the segmentation point is [1023 1535 1791 1919 1983 2015 2031 2039 2043]; or
  • the check freeze bit position in the g th segment is a P fg bit position in the g th segment except the freeze bit position, and the bit position sequence number is the smallest; or the first bit position g frozen parity segment for the segment in addition to the g-th bit position is frozen, the maximum number of the bit position of bit positions P fg; or the first segment of g
  • the check freeze bit position is a P fg bit position agreed with the receiving device in the g th segment except the frozen bit position.
  • the sequence to be encoded is [u 0 , u 1 , u 2 , . . . , u N-1 ], and at least one of the check freeze bits is based on the frozen bit. And determining at least one of the information bits; or at least one of the check freeze bits is a preset value; and the value of the check freeze bit is obtained by the following steps:
  • the transmitting device performs an operation on the elements in the encoded sequence [u 0 , u 1 , u 2 , . . . , u N-1 ] in sequence with the cyclic shift register, and after each operation, the cyclic shift
  • the register is rotated by one bit in a fixed direction, the cyclic shift register is of length p, and its initial state y[0], y[1], ..., y[p-1] is a known binary sequence of length p, p is a positive integer and is a prime number;
  • the order is from left to right or from right to left or the order in which any of the transmitting devices are unified with the receiving device.
  • the fixed direction is clockwise or counterclockwise.
  • the check freeze bit position is selected in the q segment by a bit position on each segment in descending order of the average reliability of each segment, wherein each segment is taken.
  • a sixth aspect of the present application provides a polarization Polar code decoding apparatus, including
  • a memory for storing execution instructions
  • the device further includes:
  • a receiver configured to receive the signal to be decoded, and send the signal to be decoded to the processor.
  • the processor is configured to divide the to-be-decoded sequence into q segments, where a bit position of a t-th segment point is a Bt, and the Bt is represented by an n-bit binary number.
  • the t-th bit of the n-bit binary number is 0, and the remaining n-1 bits are all 1, where 0 ⁇ t ⁇ q.
  • the memory may be separate or integrated with the processor.
  • the device may further include:
  • the sequence number of the bit position to be decoded ranges from 0 to less than 0 and less than N;
  • the sequence number of the bit position corresponding to the segmentation point is [127 191 223 239 247 251]; or
  • the sequence number of the bit position corresponding to the segmentation point is [255 383 447 479 495 503 507]; or
  • the sequence number of the bit position corresponding to the segmentation point is [511 767 895 959 991 1007 1015 1019]; or
  • the sequence number of the bit position corresponding to the segmentation point is [1023 1535 1791 1919 1983 2015 2031 2039 2043]; or
  • the check freeze bit position in the g th segment is a P fg bit position in the g th segment except the freeze bit position, and the bit position sequence number is the smallest; or
  • the check freeze bit position in the g th segment is a P fg bit position in the g th segment except the freeze bit position, and the bit position number is the largest; or, in the g th segment
  • the check freeze bit position is a P fg bit position agreed with the receiving device in the g th segment except the frozen bit position.
  • the check freeze bit position is selected in the q segment by a bit position on each segment in descending order of the average reliability of each segment, wherein each segment is taken.
  • a seventh aspect of the present application provides a readable storage medium, where an execution instruction is stored, and when at least one processor of a transmitting device executes the execution instruction, the sending device performs the first aspect or the first aspect.
  • a method of transmitting data provided by an embodiment.
  • An eighth aspect of the present application provides a readable storage medium, where an execution instruction is stored, and when at least one processor of a receiving device executes the execution instruction, the receiving device performs the second aspect or the second aspect.
  • a method of receiving data provided by an embodiment.
  • a ninth aspect of the present application provides a program product, the program product comprising an execution instruction stored in a readable storage medium.
  • the at least one processor of the transmitting device can read the execution instruction from a readable storage medium, and the at least one processor executes the execution instruction such that the transmitting device implements the method of transmitting the data provided by the first aspect or the various embodiments of the first aspect.
  • a tenth aspect of the present application provides a program product, the program product comprising an execution instruction stored in a readable storage medium.
  • At least one processor of the receiving device may read the execution instruction from a readable storage medium, and the at least one processor executes the execution instruction such that the receiving device implements the data receiving method provided by the second aspect or the various embodiments of the second aspect .
  • the method for transmitting data divides the transport block to be transmitted into a plurality of coding blocks, and adds one bit of parity bits to at least one of the coding blocks, and encodes each bit
  • the block performs LDPC encoding to obtain a plurality of data bit sequences, and the transmitting device sends the data bit sequences to the receiving device, and the receiving device decodes the data bit sequences after receiving the coded blocks, and adds the parity blocks.
  • the parity bit is extracted, and the corresponding coded block is checked to determine whether retransmission is needed.
  • the scheme adds only one bit of parity bits in some coding blocks, thereby saving transmission resources and effectively reducing reception.
  • the decoding overhead of the device is used to generate a plurality of coding blocks.
  • FIG. 1 is a schematic diagram of a system architecture provided by the present application.
  • FIG. 2 is a schematic diagram of an embodiment of an equal length segment of a sequence to be encoded provided by the present application
  • FIG. 3 is a schematic flowchart of an embodiment of a Polar code encoding method provided by the present application.
  • FIG. 4 is a schematic diagram of ordering a set of freeze bits, check freeze bits, and information bits according to reliability according to the present application
  • FIG. 5 is a schematic diagram of an embodiment of a unequal length segment of a sequence to be encoded provided by the present application.
  • FIG. 6 is a schematic structural diagram of a shift register provided by the present application.
  • FIG. 7 is a schematic diagram showing an example of verifying a freeze bit value confirmation provided by the present application.
  • FIG. 8 is a schematic flowchart diagram of an embodiment of a method for decoding a Polar code provided by the present application.
  • FIG. 9 is a schematic structural diagram of an embodiment of a transmitting apparatus provided by the present application.
  • FIG. 10 is a schematic structural diagram of an embodiment of a receiving apparatus provided by the present application.
  • FIG. 11 is a schematic structural diagram of an embodiment of a coding entity apparatus provided by the present application.
  • FIG. 12 is a schematic structural diagram of an embodiment of a decoding entity device provided by the present application.
  • FIG. 1 is a schematic structural diagram of a system for transmitting or receiving data according to the present application.
  • the system architecture includes a network device (such as a base station) and a terminal, and may also be a Wifi access point. Wifi terminal, etc.
  • the number of network devices and terminals in this solution is not limited.
  • the network device transmits downlink data to the terminal and the terminal transmits uplink data to the base station. In the process of transmitting uplink data or downlink data, a subsequently provided method can be adopted.
  • the network device may be a base station or other device capable of providing functions similar to the base station, and provide communication services for the terminal device; the terminal may be: a mobile station (MS), a subscriber unit, and a cellular phone.
  • MS mobile station
  • subscriber unit a mobile phone.
  • smart phone wireless data card
  • PDA personal digital assistant
  • modem modem
  • handheld device handheld
  • laptop laptop
  • WLL wireless local loop
  • MTC machine type communication
  • the network device may also be a terminal that assumes the function of the base station.
  • the base station is also called a Radio Access Network (RAN) device, and is a device for accessing a terminal to a wireless network.
  • RAN Radio Access Network
  • the base station in the above architecture may also be a global mobile communication (Global System for Mobile communication, GSM) or Base Transceiver Station (BTS) in Code Division Multiple Access (CDMA), or base station in Wideband Code Division Multiple Access (WCDMA) ( NodeB, NB), may also be an Evolutionary Node B (eNB or eNodeB) in Long Term Evolution (LTE), or a relay station or an access point, or a 5G network, and a base station in a future communication network. It is not limited here.
  • GSM Global System for Mobile communication
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • NodeB, NB NodeB
  • eNB or eNodeB Evolutionary Node B
  • LTE Long Term Evolution
  • 5G network 5G network
  • Parity-Check-Polar is a modified Polar code that selects some channels in the frozen bits as PC channels.
  • PC-function Choinese translation: check function
  • all PC-function-related decoded bits are used to assist in the pruning of list (Chinese translation: list) decoding: only the path that satisfies PC-function or PC-frozen can survive. The remaining paths are removed as the decoding process progresses. This method effectively improves the decoding performance, but when the PC channel is confirmed, that is, when the check freeze bit position is determined in the sequence to be encoded, the search process is complicated, and the PC-Polar and the calculation reliability are calculated.
  • the method is closely related, and the reliability and the number of frozen bits can only be determined based on the parameters in the calculation method of the polarization weight, which causes the transmitting and receiving ends to obtain the check frozen bits each time through a complicated calculation process.
  • the number and position cause unnecessary delay, or you need to save a huge table to save the number and position of the check bits under various code rates of various code lengths, occupying more storage space.
  • This application uses this feature to make the check frozen bit position and reliable. Decoupling of the degree of calculation, simplifying the verification of the position and value of the frozen bit, effectively improving the processing efficiency.
  • the information bits in Table 1 may also include bits for padding, CRC (Cyclic redundancy check, Chinese full name: cyclic redundancy check), and other bits that must be path-extended at the decoding end.
  • CRC Cyclic redundancy check, Chinese full name: cyclic redundancy check
  • FIG. 3 is a schematic flowchart of the encoding method provided by the present application.
  • the network device or the terminal may serve as a sending device or a receiving device, and the method specifically includes the following. step:
  • the sending device acquires the length N for the sequence to be encoded, and the number of information bits K, the number of check frozen bits P f , the number and location of the frozen bits.
  • N can be determined by rounding the log 2 M.
  • the value of P f can be predetermined or determined according to a function associated with M, K, for example by Table 2, where the first column represents K, the first row represents the code rate R, and the values in the table represent typical P f value.
  • Table 2 is an example.
  • the specific value method also depends on the rate matching scheme or other possible specific implementations.
  • the optimal P f value in the actual system is within ⁇ 8 of the typical value in the table. Positive integer.
  • P f 8,16,18,20 equivalent.
  • the present application Since the method of the present application is independent of the specific puncturing mode, and the position of the punctured bits at the time of encoding is also placed with frozen bits, the present application uniformly categorizes the puncturing bit position into a frozen bit position, and specifically freezes The bit value and the puncturing mode need only be unified in the sending device and the receiving device, which is not limited in this application. Therefore, the number of frozen bits is NKP f , and the positions sorted by reliability in the sequence to be encoded are as shown in FIG. 4 , that is, the positions with the lowest reliability are taken, and the reliability calculation method only needs to send the device and receive. The device can be unified, and the same is not limited in this application.
  • S302 The sending device divides the sequence to be encoded into q segments according to a preset rule.
  • step S302 can be performed, and it is not necessary to execute the remaining operations in S301.
  • each segment point is the last one of each segment.
  • the sequence to be encoded includes a q segment, where the bit position of the t-th segment point is Bt, and the Bt is represented by an n-bit binary number, the t-th bit of the n-bit binary number is 0, and the remaining n -1 bits are all 1, where 0 ⁇ t ⁇ q.
  • the sequence number of the bit position corresponding to the segmentation point is [127 191 223 239 247 251]; or
  • the sequence number of the bit position corresponding to the segmentation point is [255 383 447 479 495 503 507]; or
  • the sequence number of the bit position corresponding to the segmentation point is [511 767 895 959 991 1007 1015 1019]; or
  • the sequence number of the bit position corresponding to the segmentation point is [1023 1535 1791 1919 1983 2015 2031 2039 2043]; or
  • sequence number of the bit position to be encoded is numbered from 1 to N, each element in the sequence number set of the bit positions corresponding to the above segment points needs to be incremented by one, and will not be described again.
  • the segmentation point can also be adopted by using the segment shift register. As shown in FIG. 6, the first bit is taken as 0, the remaining bits are taken as 1, and the values in the n registers are taken to obtain the first segment. Point, and then cyclically shift one bit to the right to get the next segmentation point until all segmentation points are obtained, which are divided into q segments.
  • the sending device confirms the number of check freeze bits and the number and location of the information bits in each segment:
  • check freeze bit position can be selected as follows:
  • Step PFA01 acquiring q, P f , N, a set of frozen bit positions
  • Step PPa02 If P f >q, perform PFa03; otherwise, perform PFa05;
  • Step PPa03 taking a bit position other than the frozen bit position in the q segment as the check frozen bit position, and taking the bit position with the lowest reliability except the frozen bit position in each segment, or taking each bit position a bit position with the highest reliability except the frozen bit position in the segment, or a bit position agreed by any transmitting device and the receiving device;
  • Step PFA05 taking the P f segments with the highest average reliability, and taking a bit position other than the frozen bit position in each segment of the P f segments as the check frozen bit position, which may be taken
  • the bit position with the lowest reliability except the frozen bit position and the taken check frozen bit position may also take the bit position with the highest reliability except the frozen bit position and the taken check frozen bit position in the segment. Or take a bit position that is agreed with the receiving device.
  • Step PFA06 The transmitting device confirms the remaining position as the position of the information bit according to the check frozen bit position and the frozen bit position.
  • the check freeze bit position may also be selected by using the following rules: each set (freeze bit set, check freeze bit set, information bit set) has the highest sequence number from the bit position sequence. It is noted that if both consecutive parity segments contain a set other than the frozen bits, then a fixed number of check freeze bit positions are selected from the odd segments of the two parity segments; if not all, Then jump to the next pair of parity segments; repeat the above operation until the set value of the check freeze bit is reached. This fixed amount can be set in advance. Of course, a fixed number of check freeze bits can also be selected from the even segments of the two parity segments.
  • the check freeze bit position may also be selected by using the following rules: when the check freeze bit position is selected according to the above method, only each selected segment in the first round is selected. 1 check the position of the frozen bit; in the second round, the length of each segment is expanded by 2 times, that is, the number of segments is halved, and the segment after halving is selected according to the method of the first round. Verify the frozen bit position, and so on, until all of the check freeze bit positions have been taken.
  • the check freeze bit position is selected according to the highest reliability or the lowest reliability in each selected segment, and only the transmitting device and the receiving device need to be unified.
  • the segmentation point is determined in the manner of the above-described cyclic shift register, after the segmentation point is confirmed, the calibration in each segment can be determined according to the following steps. Check the frozen bits:
  • Step PFb01 acquire q, P f , N, a set of frozen bit positions
  • Step PFb02 determining the number of positions G g in the g -th segment except the position of the frozen bit, G g is a non-negative integer, g is a positive integer, 0 ⁇ g ⁇ q, note that G g may be 0, including Information bit position and check freeze bit position;
  • Step PFb04 determining that the check freeze bit position in the g th segment is the P fg bit position in the g th segment except the freeze bit position, and the bit position number is the smallest; or
  • the check freeze bit position in the g-th segment is the P fg bit position in the g- th segment except the freeze bit position, and the bit position number is the largest;
  • the check freeze bit position in the g-th segment is the P fg bit position agreed with the receiving device in the g- th segment except the freeze bit position.
  • Step PFb05 The transmitting device confirms the remaining position as the position of the information bit according to the check freeze bit position and the freeze bit position.
  • P fg check freeze bits are the position of the above information bits and the leftmost P fg bits of each segment of the position set Q of the check frozen bits, so the set Q PF having the check frozen bit position is:
  • the set of locations in the set Q other than the location represented by the Q PF is the set of locations of the information bits.
  • S304 The sending device puts the freeze bit and the information bit into the sequence to be encoded according to the position determined in S303.
  • S305 The sending device determines a check freeze bit in the sequence to be encoded:
  • the value of the check freeze bit is obtained as follows:
  • the transmitting device treats the elements in the encoded sequence u in sequence with the cyclic shift register. After each operation, the cyclic shift register rotates one bit in a fixed direction (clockwise or counterclockwise), the cyclic shift register
  • the length is p, and its initial state y[0], y[1], ..., y[p-1] is a known binary sequence of length p, p is a positive integer and is a prime number, and the following operations are performed when interacting :
  • the fixed direction is clockwise or counterclockwise.
  • freeze bit is removed when the check freeze bit is used for Polar coding.
  • the freeze bit must be a zero limit.
  • S306 The transmitting device performs Polar coding on the coded sequence.
  • FIG. 8 is a schematic diagram of an embodiment of a receiving method provided by the present application.
  • the receiving device acquires the mother code length N of the Polar code used for decoding, and the number of information bits K, the number of check freeze bits P f , the number and location of the freeze bits.
  • N can be determined by rounding the log 2 M.
  • the value of P f can be given in advance or determined according to Tables 2 and N.
  • the actual transmission sequence length is M.
  • the unified freeze bits at both ends of the transmission and reception are also added to the received sequence according to the corresponding position when decoding, so that the length of the sequence to be decoded is restored to N.
  • the sequence of length N is described in the present application.
  • S802 The receiving device divides the sequence to be decoded into q segments according to a preset rule.
  • the preset rule here is similar to the sending device, and therefore is determined by referring to the manner in S302, and details are not described herein again.
  • S803 The receiving device confirms the number of check freeze bits and the position and number of information bits and positions in each segment.
  • the confirmation method here is similar to the sending device, so it can be determined by referring to the method in S303, and details are not described herein again.
  • S804 The receiving device performs a Polar decoding on the sequence to be decoded to obtain a decoded sequence.
  • the Polar decoding method here is similar to the existing PC-Polar decoding method, and the check freeze bit can assist the decoding, which will not be described here.
  • FIG. 9 is a schematic diagram of an apparatus for Polar code encoding provided by the present application.
  • the device 10 includes:
  • the processing module 12 is configured to determine, according to at least one of the frozen bit and the information bit, a value of at least one of the check freeze bits; or to determine that at least one of the check freeze bits is preset value;
  • the sending module 13 is configured to send the encoded sequence.
  • the processing module 12 is further configured to divide the sequence to be encoded into a q segment, and the segmentation method is consistent with S302 in the foregoing method embodiment, and details are not described herein.
  • the processing module 12 is further configured to determine the number and location of the check freeze bits of each of the q segments, and the determining method is consistent with S303 in the foregoing method embodiment, and is not described again.
  • the processing module 12 is further configured to determine a check freeze bit in the sequence to be encoded according to the method described in the method embodiments S304 and S305.
  • FIG. 10 is a schematic diagram of an apparatus for decoding a Polar code according to the present application.
  • the device 20 includes:
  • the obtaining module 21 is configured to acquire a sequence to be decoded.
  • a decoding module 23 configured to perform a Polar decoding on the received sequence to be decoded, to obtain a decoded sequence, where the length of the mother code of the Polar code is N, and the length of the sequence to be decoded is N,
  • the sequence to be decoded includes a freeze bit, a check freeze bit, and an information bit
  • the processing module 22 is configured to divide the sequence to be decoded into the q-segment according to a preset rule, and the segmentation method is consistent with the S802 in the foregoing method embodiment, and details are not described herein.
  • the processing module 22 is further configured to determine the number and location of the check freeze bits in each segment, and the number and location of the information bits.
  • the determining method is the same as the foregoing method embodiment S803, and details are not described herein.
  • FIG. 11 is a schematic diagram of a coding entity apparatus provided by the present application, where the apparatus 1100 includes:
  • the memory 1101 is configured to store execution instructions, and the memory may also be flash (flash memory).
  • the processor 1102 is configured to execute execution instructions of the memory storage to implement various steps in the encoding method shown in FIG. 3. For details, refer to the related description in the foregoing method embodiments.
  • the memory 1101 can be either independent or integrated with the processor 1102.
  • the device 1100 may further include:
  • a bus 1103 is provided for connecting the memory and the processor.
  • the encoding apparatus of FIG. 11 may further include a transmitter (not shown) for transmitting the encoded sequence of the processor 1102 for Polar encoding.
  • FIG. 12 is a schematic diagram of a decoding entity device provided by the present application.
  • the device 1200 includes:
  • the memory 1201 is configured to store execution instructions, and the memory may also be flash (flash memory).
  • the processor 1202 is configured to execute an execution instruction of the memory storage for implementing each step in the decoding method shown in FIG. 8. For details, refer to the related description in the foregoing method embodiments.
  • the memory 1201 may be separate or integrated with the processor 1202.
  • the device 1200 may further include:
  • a bus 1203 is connected to the memory and the processor.
  • the decoding apparatus of FIG. 12 may further include a receiver (not shown) for receiving the signal to be decoded and transmitting the signal to be decoded to the processor 1202.
  • the present application further provides a readable storage medium, where the readable storage medium stores execution instructions, and when the at least one processor of the transmitting device executes the execution instruction, the sending device executes the data sending method provided by the various embodiments described above. .
  • the present application further provides a readable storage medium, where the readable storage medium stores execution instructions, and when the at least one processor of the receiving device executes the execution instruction, the receiving device performs the data receiving method provided by the various embodiments described above. .
  • the application also provides a program product comprising an execution instruction stored in a readable storage medium.
  • At least one processor of the transmitting device can read the execution instructions from a readable storage medium, and the at least one processor executes the execution instructions such that the transmitting device implements the method of transmitting data provided by the various embodiments described above.
  • the application also provides a program product comprising an execution instruction stored in a readable storage medium.
  • At least one processor of the receiving device can read the execution instructions from a readable storage medium, and the at least one processor executes the execution instructions such that the receiving device implements the method of receiving data provided by the various embodiments described above.
  • the processor may be a central processing unit (English: Central Processing Unit, CPU for short), or may be other general-purpose processors, digital signal processors (English: Digital) Signal Processor (DSP), Application Specific Integrated Circuit (ASIC), etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like. The steps of the method disclosed in connection with the present application may be directly embodied by hardware processor execution or by a combination of hardware and software modules in a processor.
  • All or part of the steps of implementing the above method embodiments may be performed by hardware associated with the program instructions.
  • the aforementioned program can be stored in a readable memory.
  • the steps including the foregoing method embodiments are performed; and the foregoing memory (storage medium) includes: read-only memory (English: read-only memory, abbreviation: ROM), RAM, flash memory, hard disk, Solid state drive, magnetic tape (English: magnetic tape), floppy disk (English: floppy disk), optical disc (English: optical disc) and any combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)

Abstract

本申请提供一种Polar码的编码方法和装置,该方法包括:发送设备根据预设规则将待编码序列分段,确定每一分段中的校验冻结比特数目及位置、信息比特数目和位置、冻结比特位置数目和位置,随后将信息比特和冻结比特放入相应位置,并确定校验冻结比特的值,随后对待编码序列进行Polar码编码并发送。该方法简化了校验冻结比特数目与位置的确认过程,有效地提升了处理效率。

Description

数据的传输方法和装置 技术领域
本申请涉及通信技术,尤其涉及一种Polar(极化)码的编码方法和装置。
背景技术
无线通信的快速演进预示着未来第五代(Fifth Generation,5G)通信系统将呈现出一些新的特点,最典型的三个通信场景包括增强移动宽带(Enhance Mobile Broadband,eMBB)、海量机器连接通信(Massive Machine Type Communication,mMTC)和高可靠低延迟通信(Ultra Reliable and Low Latency Communications,URLLC)。这些通信场景的需求将对现有长期演进(Long Term Evolution,LTE)技术提出新的挑战。通信系统通常采用信道编码提高数据传输的可靠性,保证通信的质量。信道编码作为最基本的无线接入技术,是满足5G通信需求的重要研究对象之一。
最近,Arikan基于信道极化提出了一种编码方式,起名为极化码(Polar Codes)。极化码是第一种、也是已知的唯一一种能够被严格证明“达到”信道容量的信道编码方法。在不同码长下,尤其对于有限码,Polar码的性能远优于Turbo码和LDPC码。另外,Polar码在编译码方面具有较低的计算复杂度。这些优点让Polar码在5G中具有很大的发展和应用前景,并在3GPP(the 3 rd Generation Partner Project,第三代合作伙伴项目)RAN1(RAN的英文全称:Radio Access Network;RAN的中文全称:无线接入网络)87次会议上被接纳用于eMBB业务的控制信道编码。
极化(Polar)码是可以取得香农容量且具有低编译码复杂度的编码方式。Polar码是一种线性块码。其生成矩阵为G N.,其编码过程为
Figure PCTCN2018072903-appb-000001
其中,
Figure PCTCN2018072903-appb-000002
是一个二进制的行矢量,
Figure PCTCN2018072903-appb-000003
码长N=2 n,n为正整数。
Figure PCTCN2018072903-appb-000004
B N是一个N×N转置矩阵,例如比特反转(bit reversal)矩阵,需注意B N并非必选的操作(相当于B N为单位阵)。
Figure PCTCN2018072903-appb-000005
是F 2的克罗内克幂(Kronecker power),定义为
Figure PCTCN2018072903-appb-000006
具体而言,Polar码是一种依赖于信道(Channel dependent)的编码,它对N个相同的信道W进行Polar Codes码极化处理,得到N个极化信道,当然,这N个极化信道的巴氏参数(Bhattacharyya parameter)要么趋于0,要么趋于1。Polar Codes码在实际应用时,一个重要的工作是针对不同信道W,计算所有N=2 n个极化信道的可靠度,然后选取其中的K个可靠度较高的极化信道,把这些极化信道对应的位置索引号集合称为信息集合
Figure PCTCN2018072903-appb-000007
另外的一部分比特置为收发端预先约定的固定值,称之为冻结(英文翻译:frozen)比特,其序号的集合用
Figure PCTCN2018072903-appb-000008
的补集
Figure PCTCN2018072903-appb-000009
表示。Polar码编码时,把K个信息符号放置到信息集合对应的位置上,其余(N-K)个位置(称为冻结集合(Frozen Set))放置固定已知符号,一般可以取该N-K个固定已知符号为全0符号,其中,K≤N。实际上,只需要收发端预先约定,冻结比特的值可以被任意设置。由于极化信道与比特一一对应,所以极化信道也常常用比特位置来说明。
随着Polar码技术的发展,原有的编码方式需要改进,以适应各种场景。
发明内容
本申请提供一种Polar码的编码方法和装置。
本申请第一方面提供一种Polar码的编码方法,包括:
发送设备对所述待编码序列进行Polar编码,其中所述Polar码的母码长度为N,所述待编码序列中包括冻结比特、校验冻结比特和信息比特,所述待编码序列包括q段;所述N=2 n,n和q为正整数,所述q=n或q<n;
所述校验冻结比特中至少有一个的值是根据所述冻结比特和信息比特中的至少一个确定的;或者所述校验冻结比特中的至少一个为预设的值;
所述发送设备发送编码后的序列。
利用本方法,发送设备根据预设规则将待编码序列分段,确定每一分段中的校验冻结比特数目及位置、信息比特数目和位置、冻结比特位置数目和位置,随后将信息比特和冻结比特放入相应位置,并确定校验冻结比特的值,随后对待编码序列进行Polar码编码并发送。该方法简化了校验冻结比特数目与位置的确认过程,有效地提升了处理效率。使得校验冻结比特位置与可靠度计算方式解耦,简化校验冻结比特位置与取值的确认,有效地提升了处理效率。
在一种可能的实现中,所述待编码序列包括q段,其中第t个分段点所在的比特位置的序号为Bt,所述Bt用n位二进制数表示时,所述n位二进制数的第t位为0,其余n-1位均为1,其中0<t<q。
在一种可能的实现中,所述待编码的比特位置的序号的取值范围为大于等于0且小于N的任意整数:
当N=16,分段点对应的比特位置的序号集合为[7 11];或者
当N=32,分段点对应的比特位置的序号集合为[15 23 27];或者
当N=64,分段点对应的比特位置的序号集合为[31 47 55 59];或者
当N=128,分段点对应的比特位置的序号集合为[63 95 11 11 19 123];或者
当N=256,分段点对应的比特位置的序号集合为[127 191 223 239 247 251];或者
当N=512,分段点对应的比特位置的序号集合为[255 383 447 479 495 503 507];或者
当N=1024,分段点对应的比特位置的序号集合为[511 767 895 959 991 1007 1015 1019];或者
当N=2048,分段点对应的比特位置的序号集合为[1023 1535 1791 1919 1983 2015 2031 2039 2043];或者
当N=4096,分段点对应的比特位置的序号集合为[2047 3071 3583 3839 3967 4031 4065 4079 4087 4091]。
在一种可能的实现中,所述分段点通过n=log 2N位移位寄存器确定。
在一种可能的实现中,所述q段中每一分段校验冻结比特的数目P fg为P fg=round(P f*G g/(K+P f)),其中round为四舍五入操作,P f为校验冻结比特数目,Gg为第g分段中的信息比特数目和校验冻结比特数目之和,K为信息比特数目,P f、g、K均为正整数,G g、P fg为非负整数,0<g≤q。
在一种可能的实现中,在确定第g分段中的校验冻结比特数目时还可以利用其它的函数,例如取整的方式,例如与等长分段类似的尽量平均分配校验冻结比特数目的方式,或者任一发送设备与接收设备约定好的分配方式。
在一种可能的实现中,所述第g分段中的校验冻结比特位置为所述第g分段中除所 述冻结比特位置外,比特位置序号最小的P fg个比特位置;或者,所述第g分段中的校验冻结比特位置为所述第g分段中除所述冻结比特位置外,比特位置序号最大的P fg个比特位置;或者,所述第g分段中的校验冻结比特位置为所述第g分段中除所述冻结比特位置外,与接收设备约定的P fg个比特位置。
在一种可能的实现中,所述待编码序列为[u 0,u 1,u 2,…,u N-1],所述校验冻结比特中至少有一个的值是根据所述冻结比特和信息比特中的至少一个确定的;或者所述校验冻结比特中的至少一个为预设的值;所述校验冻结比特的值通过如下步骤获取:
所述发送设备对待编码序列[u 0,u 1,u 2,…,u N-1]中的元素,按顺序依次与循环移位寄存器进行交互操作,每一次操作后,所述循环移位寄存器按固定方向转动一位,所述循环移位寄存器长度为p,其初始状态y[0],y[1],…,y[p-1]为已知的长度为p的二进制序列,p为正整数且为质数;
若u i所在位置不是所述校验冻结比特位置,则所述寄存器的y[x]=(u i XOR y[x])
若u i所在位置是所述校验冻结比特位置,则所述校验冻结比特为u i=y[x]
其中i=0,1,…,N-1,y[x]为所述循环移位寄存器中第x个寄存器的状态,0≤x≤p-1,i、x为整数。
在一种可能的实现中,所述顺序为从左至右或者从右至左或者任一发送设备与接收设备统一的顺序。
在一种可能的实现中,固定方向为顺时针或者逆时针。
在一种可能的实现中,所述待编码序列包括q段,其中每一段中包括的比特位置的数目相同,q=2 v段,v是正整数,0<v<n。
在一种可能的实现中,校验冻结比特位置在q段中按每一分段的平均可靠度从高到低依次在每一分段上取一个比特位置选取,其中,取每一分段中除冻结比特位置外可靠度最低的比特位置,或者取每一分段中除冻结比特位置外可靠度最高的比特位置,或者是取任一发送设备与接收设备约定好的比特位置。
本申请的第二方面提供一种Polar码译码方法,包括:
接收设备对接收到的待译码序列进行Polar译码,得到已译码序列,其中所述Polar码的母码长度为N,所述待译码序列长度为N,所述待译码序列中包括冻结比特、校验冻结比特和信息比特,所述待译码序列包括q段;所述N=2 n,n和q为正整数,所述q=n或q<n。
在一种可能的实现中,所述待译码序列包括q段,其中第t个分段点所在的比特位置的序号为Bt,所述Bt用n位二进制数表示时,所述n位二进制数的第t位为0,其余n-1位均为1,其中0<t<q。
在一种可能的实现中,所述待译码的比特位置的序号的取值范围为大于等于0且小于N的任意整数;
当N=16,分段点对应的比特位置的序号集合为[7 11];或者
当N=32,分段点对应的比特位置的序号集合为[15 23 27];或者
当N=64,分段点对应的比特位置的序号集合为[31 47 55 59];或者
当N=128,分段点对应的比特位置的序号集合为[63 95 111 119 123];或者
当N=256,分段点对应的比特位置的序号集合为[127 191 223 239 247 251];或者
当N=512,分段点对应的比特位置的序号集合为[255 383 447 479 495 503 507];或者
当N=1024,分段点对应的比特位置的序号集合为[511 767 895 959 991 1007  1015 1019];或者
当N=2048,分段点对应的比特位置的序号集合为[1023 1535 1791 1919 1983 2015 2031 2039 2043];或者
当N=4096,分段点对应的比特位置的序号集合为[2047 3071 3583 3839 3967 4031 4065 4079 4087 4091]。
在一种可能的实现中,所述分段点通过n=log 2N位移位寄存器确定。
在一种可能的实现中,所述q段中每一分段校验冻结比特的数目P fg为P fg=round(P f*G g/(K+P f)),其中round为四舍五入操作,P f为校验冻结比特数目,Gg为第g分段中的信息比特数目和校验冻结比特数目之和,K为信息比特数目,P f、g、K均为正整数,G g、P fg为非负整数,0<g≤q。
在一种可能的实现中,在确定第g分段中的校验冻结比特数目时还可以利用其它的函数,例如取整的方式,例如与等长分段类似的尽量平均分配校验冻结比特数目的方式,或者任一发送设备与接收设备约定好的分配方式。
在一种可能的实现中,所述第g分段中的校验冻结比特位置为所述第g分段中除所述冻结比特位置外,比特位置序号最小的P fg个比特位置;或者,所述第g分段中的校验冻结比特位置为所述第g分段中除所述冻结比特位置外,比特位置序号最大的P fg个比特位置;或者,所述第g分段中的校验冻结比特位置为所述第g分段中除所述冻结比特位置外,与接收设备约定的P fg个比特位置。
在一种可能的实现中,所述待编码序列包括q段,其中每一段中包括的比特位置的数目相同,q=2 v段,v是正整数,0<v<n。
在一种可能的实现中,校验冻结比特位置在q段中按每一分段的平均可靠度从高到低依次在每一分段上取一个比特位置选取,其中,取每一分段中除冻结比特位置外可靠度最低的比特位置,或者取每一分段中除冻结比特位置外可靠度最高的比特位置,或者是取任一发送设备与接收设备约定好的比特位置。
本申请的第三方面提供一种极化Polar编码装置,包括:
编码模块,所述编码模块用于对待编码序列进行Polar编码,其中所述Polar码的母码长度为N,所述待编码序列中包括冻结比特、校验冻结比特和信息比特,所述待编码序列包括q段;所述N=2 n,n和q为正整数,所述q=n或q<n;
处理模块,用于根据所述冻结比特和信息比特中的至少一个确定所述校验冻结比特中至少有一个的值;或者用于确定所述校验冻结比特中的至少一个为预设的值;
发送模块,用于发送编码后的序列。
在一种可能的实现中,所述待编码序列包括q段,其中第t个分段点所在的比特位置的序号为Bt,所述Bt用n位二进制数表示时,所述n位二进制数的第t位为0,其余n-1位均为1,其中0<t<q。
在一种可能的实现中,所述待编码的比特位置的序号的取值范围为大于等于0且小于N的任意整数:
当N=16,分段点对应的比特位置的序号集合为[7 11];或者
当N=32,分段点对应的比特位置的序号集合为[15 23 27];或者
当N=64,分段点对应的比特位置的序号集合为[31 47 55 59];或者
当N=128,分段点对应的比特位置的序号集合为[63 95 111 119 123];或者
当N=256,分段点对应的比特位置的序号集合为[127 191 223 239 247 251];或者
当N=512,分段点对应的比特位置的序号集合为[255 383 447 479 495 503 507]; 或者
当N=1024,分段点对应的比特位置的序号集合为[511 767 895 959 991 1007 1015 1019];或者
当N=2048,分段点对应的比特位置的序号集合为[1023 1535 1791 1919 1983 2015 2031 2039 2043];或者
当N=4096,分段点对应的比特位置的序号集合为[2047 3071 3583 3839 3967 4031 4065 4079 4087 4091]。
在一种可能的实现中,所述分段点通过n=log 2N位移位寄存器确定。
在一种可能的实现中,所述q段中每一分段校验冻结比特的数目P fg为P fg=round(P f*G g/(K+P f)),其中round为四舍五入操作,P f为校验冻结比特数目,Gg为第g分段中的信息比特数目和校验冻结比特数目之和,K为信息比特数目,P f、g、K均为正整数,G g、P fg为非负整数,0<g≤q。
在一种可能的实现中,在确定第g分段中的校验冻结比特数目时还可以利用其它的函数,例如取整的方式,例如与等长分段类似的尽量平均分配校验冻结比特数目的方式,或者任一发送设备与接收设备约定好的分配方式。
在一种可能的实现中,所述第g分段中的校验冻结比特位置为所述第g分段中除所述冻结比特位置外,比特位置序号最小的P fg个比特位置;或者,所述第g分段中的校验冻结比特位置为所述第g分段中除所述冻结比特位置外,比特位置序号最大的P fg个比特位置;或者,所述第g分段中的校验冻结比特位置为所述第g分段中除所述冻结比特位置外,与接收设备约定的P fg个比特位置。
在一种可能的实现中,所述待编码序列为[u 0,u 1,u 2,…,u N-1],所述校验冻结比特中至少有一个的值是根据所述冻结比特和信息比特中的至少一个确定的;或者所述校验冻结比特中的至少一个为预设的值;所述校验冻结比特的值通过如下步骤获取:
所述发送设备对待编码序列[u 0,u 1,u 2,…,u N-1]中的元素,按顺序依次与循环移位寄存器进行交互操作,每一次操作后,所述循环移位寄存器按固定方向转动一位,所述循环移位寄存器长度为p,其初始状态y[0],y[1],…,y[p-1]为已知的长度为p的二进制序列,p为正整数且为质数;
若u i所在位置不是所述校验冻结比特位置,则所述寄存器的y[x]=(u i XOR y[x])
若u i所在位置是所述校验冻结比特位置,则所述校验冻结比特为u i=y[x]
其中i=0,1,…,N-1,y[x]为所述循环移位寄存器中第x个寄存器的状态,0≤x≤p-1,i、x为整数。
在一种可能的实现中,所述顺序为从左至右或者从右至左或者任一发送设备与接收设备统一的顺序。
在一种可能的实现中,固定方向为顺时针或者逆时针。
在一种可能的实现中,所述待编码序列包括q段,其中每一段中包括的比特位置的数目相同,q=2 v段,v是正整数,0<v<n。
在一种可能的实现中,校验冻结比特位置在q段中按每一分段的平均可靠度从高到低依次在每一分段上取一个比特位置选取,其中,取每一分段中除冻结比特位置外可靠度最低的比特位置,或者取每一分段中除冻结比特位置外可靠度最高的比特位置,或者是取任一发送设备与接收设备约定好的比特位置。
本申请的第四方面提供一种极化Polar译码装置,包括,
获取模块,用于获取待译码序列;
译码模块,用于对接收到的待译码序列进行Polar译码,得到已译码序列,其中所述 Polar码的母码长度为N,所述待译码序列长度为N,所述待译码序列中包括冻结比特、校验冻结比特和信息比特,所述待译码序列包括q段;所述N=2 n,n和q为正整数,所述q=n或q<n。
在一种可能的实现中,所述装置还包括:
处理模块,用于将所述待译码序列分为q段,其中第t个分段点所在的比特位置的序号为Bt,所述Bt用n位二进制数表示时,所述n位二进制数的第t位为0,其余n-1位均为1,其中0<t<q。
在一种可能的实现中,所述待译码的比特位置的序号的取值范围为大于等于0且小于N的任意整数;
当N=16,分段点对应的比特位置的序号集合为[7 11];或者
当N=32,分段点对应的比特位置的序号集合为[15 23 27];或者
当N=64,分段点对应的比特位置的序号集合为[31 47 55 59];或者
当N=128,分段点对应的比特位置的序号集合为[63 95 111 119 123];或者
当N=256,分段点对应的比特位置的序号集合为[127 191 223 239 247 251];或者
当N=512,分段点对应的比特位置的序号集合为[255 383 447 479 495 503 507];或者
当N=1024,分段点对应的比特位置的序号集合为[511 767 895 959 991 1007 1015 1019];或者
当N=2048,分段点对应的比特位置的序号集合为[1023 1535 1791 1919 1983 2015 2031 2039 2043];或者
当N=4096,分段点对应的比特位置的序号集合为[2047 3071 3583 3839 3967 4031 4065 4079 4087 4091]。
在一种可能的实现中,所述分段点通过n=log 2N位移位寄存器确定。
在一种可能的实现中,所述q段中每一分段校验冻结比特的数目P fg为P fg=round(P f*G g/(K+P f)),其中round为四舍五入操作,P f为校验冻结比特数目,Gg为第g分段中的信息比特数目和校验冻结比特数目之和,K为信息比特数目,P f、g、K均为正整数,G g、P fg为非负整数,0<g≤q。
在一种可能的实现中,在确定第g分段中的校验冻结比特数目时还可以利用其它的函数,例如取整的方式,例如与等长分段类似的尽量平均分配校验冻结比特数目的方式,或者任一发送设备与接收设备约定好的分配方式。
在一种可能的实现中,所述第g分段中的校验冻结比特位置为所述第g分段中除所述冻结比特位置外,比特位置序号最小的P fg个比特位置;或者,所述第g分段中的校验冻结比特位置为所述第g分段中除所述冻结比特位置外,比特位置序号最大的P fg个比特位置;或者,所述第g分段中的校验冻结比特位置为所述第g分段中除所述冻结比特位置外,与接收设备约定的P fg个比特位置。
在一种可能的实现中,所述待编码序列包括q段,其中每一段中包括的比特位置的数目相同,q=2 v段,v是正整数,0<v<n。
在一种可能的实现中,校验冻结比特位置在q段中按每一分段的平均可靠度从高到低依次在每一分段上取一个比特位置选取,其中,取每一分段中除冻结比特位置外可靠度最低的比特位置,或者取每一分段中除冻结比特位置外可靠度最高的比特位置,或者是取任一发送设备与接收设备约定好的比特位置。
本申请的第五方面提供一种极化Polar码编码实体装置,包括:
存储器,用于存储执行指令;
处理器,用于读取所述存储器存储的指令,所述处理器用于对待编码序列进行Polar编码,其中所述Polar码的母码长度为N,所述待编码序列中包括冻结比特、校验冻结比特和信息比特,所述待编码序列包括q段;所述N=2 n,n和q为正整数,所述q=n或q<n;
所述处理器还用于根据所述冻结比特和信息比特中的至少一个确定所述校验冻结比特中至少有一个的值;或者用于确定所述校验冻结比特中的至少一个为预设的值;
在一种可能的实现中,所述设备还包括发送器,用于发送编码后的序列。
在一种可能的实现中,所述存储器可以是独立的,也可以跟所述处理器集成在一起。
当所述存储器是独立于所述处理器之外的器件时,所述装置还可以包括:
总线,用于连接所述存储器和处理器。
在一种可能的实现中,所述待编码序列包括q段,其中第t个分段点所在的比特位置的序号为Bt,所述Bt用n位二进制数表示时,所述n位二进制数的第t位为0,其余n-1位均为1,其中0<t<q。
在一种可能的实现中,所述待编码的比特位置的序号的取值范围为大于等于0且小于N的任意整数:
当N=16,分段点对应的比特位置的序号集合为[7 11];或者
当N=32,分段点对应的比特位置的序号集合为[15 23 27];或者
当N=64,分段点对应的比特位置的序号集合为[31 47 55 59];或者
当N=128,分段点对应的比特位置的序号集合为[63 95 111 119 123];或者
当N=256,分段点对应的比特位置的序号集合为[127 191 223 239 247 251];或者
当N=512,分段点对应的比特位置的序号集合为[255 383 447 479 495 503 507];或者
当N=1024,分段点对应的比特位置的序号集合为[511 767 895 959 991 1007 1015 1019];或者
当N=2048,分段点对应的比特位置的序号集合为[1023 1535 1791 1919 1983 2015 2031 2039 2043];或者
当N=4096,分段点对应的比特位置的序号集合为[2047 3071 3583 3839 3967 4031 4065 4079 4087 4091]。
在一种可能的实现中,所述分段点通过n=log 2N位移位寄存器确定。
在一种可能的实现中,所述q段中每一分段校验冻结比特的数目P fg为P fg=round(P f*G g/(K+P f)),其中round为四舍五入操作,P f为校验冻结比特数目,Gg为第g分段中的信息比特数目和校验冻结比特数目之和,K为信息比特数目,P f、g、K均为正整数,G g、P fg为非负整数,0<g≤q。
在一种可能的实现中,在确定第g分段中的校验冻结比特数目时还可以利用其它的函数,例如取整的方式,例如与等长分段类似的尽量平均分配校验冻结比特数目的方式,或者任一发送设备与接收设备约定好的分配方式。
在一种可能的实现中,所述第g分段中的校验冻结比特位置为所述第g分段中除所述冻结比特位置外,比特位置序号最小的P fg个比特位置;或者,所述第g分段中的校验冻结比特位置为所述第g分段中除所述冻结比特位置外,比特位置序号最大的P fg个比特位置;或者,所述第g分段中的校验冻结比特位置为所述第g分段中除所述冻结比特位置外,与接收设备约定的P fg个比特位置。
在一种可能的实现中,所述待编码序列为[u 0,u 1,u 2,…,u N-1],所述校验冻结比特中至少有一个的值是根据所述冻结比特和信息比特中的至少一个确定的;或者所述校验冻结比特中的至少一个为预设的值;所述校验冻结比特的值通过如下步骤获取:
所述发送装置对待编码序列[u 0,u 1,u 2,…,u N-1]中的元素,按顺序依次与循环移位寄存器进行交互操作,每一次操作后,所述循环移位寄存器按固定方向转动一位,所述循环移位寄存器长度为p,其初始状态y[0],y[1],…,y[p-1]为已知的长度为p的二进制序列,p为正整数且为质数;
若u i所在位置不是所述校验冻结比特位置,则所述寄存器的y[x]=(u i XOR y[x])
若u i所在位置是所述校验冻结比特位置,则所述校验冻结比特为u i=y[x]
其中i=0,1,…,N-1,y[x]为所述循环移位寄存器中第x个寄存器的状态,0≤x≤p-1,i、x为整数。
在一种可能的实现中,所述顺序为从左至右或者从右至左或者任一发送设备与接收设备统一的顺序。
在一种可能的实现中,固定方向为顺时针或者逆时针。
在一种可能的实现中,所述待编码序列包括q段,其中每一段中包括的比特位置的数目相同,q=2 v段,v是正整数,0<v<n。
在一种可能的实现中,校验冻结比特位置在q段中按每一分段的平均可靠度从高到低依次在每一分段上取一个比特位置选取,其中,取每一分段中除冻结比特位置外可靠度最低的比特位置,或者取每一分段中除冻结比特位置外可靠度最高的比特位置,或者是取任一发送设备与接收设备约定好的比特位置。
本申请的第六方面提供一种极化Polar码译码装置,包括,
存储器,用于存储执行指令;
处理器,用于读取所述存储器存储的指令;所述处理器用于对接收到的待译码序列进行Polar译码,得到已译码序列,其中所述Polar码的母码长度为N,所述待译码序列长度为N,所述待译码序列中包括冻结比特、校验冻结比特和信息比特,所述待译码序列包括q段;所述N=2 n,n和q为正整数,所述q=n或q<n。
在一种可能的实现中,所述装置还包括:
接收器,用于接收待译码信号,并将待译码的信号发送给处理器。
在一种可能的实现中,所述处理器用于将所述待译码序列分为q段,其中第t个分段点所在的比特位置的序号为Bt,所述Bt用n位二进制数表示时,所述n位二进制数的第t位为0,其余n-1位均为1,其中0<t<q。
在一种可能的实现中,所述存储器可以是独立的,也可以跟所述处理器集成在一起。
当所述存储器是独立于所述处理器之外的器件时,所述装置还可以包括:
总线,用于连接所述存储器和处理器。
在一种可能的实现中,所述待译码的比特位置的序号的取值范围为大于等于0且小于N的任意整数;
当N=16,分段点对应的比特位置的序号集合为[7 11];或者
当N=32,分段点对应的比特位置的序号集合为[15 23 27];或者
当N=64,分段点对应的比特位置的序号集合为[31 47 55 59];或者
当N=128,分段点对应的比特位置的序号集合为[63 95 111 119 123];或者
当N=256,分段点对应的比特位置的序号集合为[127 191 223 239 247 251];或者
当N=512,分段点对应的比特位置的序号集合为[255 383 447 479 495 503 507]; 或者
当N=1024,分段点对应的比特位置的序号集合为[511 767 895 959 991 1007 1015 1019];或者
当N=2048,分段点对应的比特位置的序号集合为[1023 1535 1791 1919 1983 2015 2031 2039 2043];或者
当N=4096,分段点对应的比特位置的序号集合为[2047 3071 3583 3839 3967 4031 4065 4079 4087 4091]。
在一种可能的实现中,所述分段点通过n=log 2N位移位寄存器确定。
在一种可能的实现中,所述q段中每一分段校验冻结比特的数目P fg为P fg=round(P f*G g/(K+P f)),其中round为四舍五入操作,P f为校验冻结比特数目,Gg为第g分段中的信息比特数目和校验冻结比特数目之和,K为信息比特数目,P f、g、K均为正整数,G g、P fg为非负整数,0<g≤q。
在一种可能的实现中,在确定第g分段中的校验冻结比特数目时还可以利用其它的函数,例如取整的方式,例如与等长分段类似的尽量平均分配校验冻结比特数目的方式,或者任一发送设备与接收设备约定好的分配方式。
在一种可能的实现中,所述第g分段中的校验冻结比特位置为所述第g分段中除所述冻结比特位置外,比特位置序号最小的P fg个比特位置;或者,所述第g分段中的校验冻结比特位置为所述第g分段中除所述冻结比特位置外,比特位置序号最大的P fg个比特位置;或者,所述第g分段中的校验冻结比特位置为所述第g分段中除所述冻结比特位置外,与接收设备约定的P fg个比特位置。
在一种可能的实现中,所述待编码序列包括q段,其中每一段中包括的比特位置的数目相同,q=2 v段,v是正整数,0<v<n。
在一种可能的实现中,校验冻结比特位置在q段中按每一分段的平均可靠度从高到低依次在每一分段上取一个比特位置选取,其中,取每一分段中除冻结比特位置外可靠度最低的比特位置,或者取每一分段中除冻结比特位置外可靠度最高的比特位置,或者是取任一发送设备与接收设备约定好的比特位置。
本申请第七方面提供一种可读存储介质,可读存储介质中存储有执行指令,当发送设备的至少一个处理器执行该执行指令时,发送设备执行上述第一方面或者第一方面的各种实施方式提供的数据的发送方法。
本申请第八方面提供一种可读存储介质,可读存储介质中存储有执行指令,当接收设备的至少一个处理器执行该执行指令时,接收设备执行上述第二方面或者第二方面的各种实施方式提供的数据的接收方法。
本申请第九方面提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。发送设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得发送设备实施第一方面或者第一方面的各种实施方式提供的数据的发送方法。
本申请第十方面提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。接收设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得接收设备实施上述第二方面或者第二方面的各种实施方式提供的数据的接收方法。
本申请提供的数据的发送方法、接收方法和装置,发送设备将待发送的传输块分成多个编码块,并在其中至少一个编码块中增加一比特的奇偶校验比特,并将每个编码块进行LDPC编码得到多个数据比特序列,发送设备将该些数据比特序列发送给接收设备,接收 设备在接收到该些数据比特序列后进行译码,并从增加了奇偶校验比特的编码块中提取奇偶校验比特,对对应的编码块进行校验,确定是否需要重传,该方案在一些编码块中只增加一个比特的奇偶校验比特,即节约了传输资源,也有效降低了接收设备的译码开销。
附图说明
图1为本申请提供的一种系统架构示意图;
图2为本申请提供的待编码序列等长分段的实施例示意图;
图3为本申请提供的Polar码编码方法实施例的流程示意图;
图4为本申请提供的冻结比特、校验冻结比特和信息比特的位置集合按可靠度排序的示意图;
图5为本申请提供的待编码序列不等长分段的实施例示意图;
图6为本申请提供的移位寄存器结构示意图;
图7为本申请提供的校验冻结比特值确认的示例示意图;
图8为本申请提供的Polar码译码方法实施例的流程示意图;
图9为本申请提供的发送装置实施例的结构示意图;
图10为本申请提供的接收装置实施例的结构示意图;
图11为本申请提供的编码实体装置实施例的结构示意图;
图12为本申请提供的译码实体装置实施例的结构示意图。
具体实施方式
本申请的技术方案可应用于wifi、4G、5G以及未来的通信系统中。图1为本申请提供的数据的发送方法或接收方法的一种系统架构示意图,如图1所示,该系统架构中包括网络设备(例如基站)以及终端,也可以是Wifi的接入点,Wifi终端等。该方案中网络设备和终端的数量不做限制。网络设备向终端传输下行数据而终端向基站传输上行数据。在上行数据或者下行数据的传输过程中,均可采用后续提供的方法。
上述架构中,网络设备可以是基站或者能够提供与基站类似功能的其他设备,为终端设备提供通信服务;终端可以是:移动台(mobile station,简称MS),用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端等。为方便描述,本申请所有实施例中,上面提到的设备统称为终端。
在D2D(英文名称:Device-to-Device;中文名称:设备对设备)通信中,网络设备还可以是承担基站功能的终端。除此之外,基站又称为无线接入网(Radio Access Network,RAN)设备,是一种将终端接入到无线网络的设备,上述架构中的基站还可以是全球移动通讯(Global System for Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者5G网络以及未来通信网络中的基站等,在此并不限定。
Parity-Check-Polar(PC-Polar,奇偶校验Polar)是一种改进型Polar码,它在冻结比特中选取一些信道作为PC信道,在这些信道中,PC-function(中文翻译:校验函数)被用来进行纠错。在每一个PC信道位置,所有与PC-function相关的已译码比特会用来辅助进行list(中文翻译:列表)译码的剪枝:只有满足PC-function或PC-frozen的路径才能生存,其余路径随着译码进程被删除。这种方式有效地进一步提升了译码性能,但是确认PC信道的时候,也即在待编码的序列中确定校验冻结比特位置的时候,搜索过程较为复杂,这种PC-Polar与计算可靠度的方法密切相关,只能基于极化权重的计算方法中的参数来确定可靠度和校验冻结比特数目,这导致收发两端要么每次都要通过复杂的计算过程得到校验冻结比特的个数和位置,引起不必要的延迟,要么需要保存一个庞大的表格将各种码长各种码率下的校验比特个数和位置保存下来,占用较多的存储空间。
通过对极化信道的可靠度的分析,可以看到可靠度的分布具有一定的规律,具体表现在可以在整个序列中分成若干段,每一分段中可靠度的分布都具有相似性,比如图2中,取母码长度为N=256的Polar码,分为8段,每一分段中的变化趋势都是相似的,本申请即利用这种特性,使得校验冻结比特位置与可靠度计算方式解耦,简化校验冻结比特位置与取值的确认,有效地提升了处理效率。
为方便起见,首先给出本申请中可能用到的参数的定义,见表1:
表1
Figure PCTCN2018072903-appb-000010
可选的,表1中的信息比特中还可能包括填充比特、CRC(英文全称:Cyclic redundancy check;中文全称:循环冗余校验)校验比特等在译码端必须进行路径扩展的比特。
图3为本申请提供的编码方法的流程示意图,如图3所示,在图1所示的应用示意图的基础上,网络设备或者终端均可以作为发送设备或者接收设备,该方法的具体包括以下步骤:
S301:发送设备获取用于待编码序列的长度N,以及其中的信息比特数目K、校验冻结比特数目P f、冻结比特的数目及位置。
其中K的值根据码率R和编码后的序列长度M确定,K=M*R,待编码序列的长度(也即母码长度)
Figure PCTCN2018072903-appb-000011
这里的
Figure PCTCN2018072903-appb-000012
是上取整函数,可选的,也可以通过对log 2M下取整的方法来确定N。
P f的值可以预先给定,或者根据与M、K相关的函数来确定,例如通过表2来确定,其中第一列代表K,第一行代表码率R,表格中数值代表典型的P f值。
表2
  1/12 1/6 1/3 1/2
32 16 12 16 12
48 16 12 16 16
64 20 12 16 16
80 20 16 16 16
120 24 24 24 24
200 24 24 24 24
表2中所示的是个示例,具体的取值方法还取决于速率匹配方案或者其他可能的具体实现方式,一般地,实际系统中的最优P f值在表格中典型值的±8范围内的正整数。
不失一般性,本申请以预先给定P f值为例,例如P f=8,16,18,20等值。
由于本申请的方法与具体的打孔模式无关,而且在编码的时候打孔的比特的位置也都是放置冻结比特,因此本申请将打孔比特位置也统一归为冻结比特位置,具体的冻结比特取值和打孔模式只需要在发送设备和接收设备统一即可,本申请不做限定。因此,冻结比特的数目为N-K-P f,在待编码序列中按可靠度排序后的位置如图4所示,即都是取可靠度最低的位置,可靠度的计算方法也只需发送设备和接收设备统一即可,本申请中同样不作限定。
S302:发送设备根据预设规则将待编码序列分为q段。
需要说明的是,在N确定后,S302步骤即可执行,并不一定要在S301中其余操作完成后再执行。
可选的,预设规则可以是将待编码序列中的N个位置(也即N个极化信道)按序号等分为若干段,例如分为q=2 v段,v可以是小于n的任一正整数。例如,图2中N=256,n=8,而v=3。
可选的,预设规则可以是如图5所示的不等长分段,其中N=512,n=9,q=8,本例中,各个分段点是每个分段的最后一个点,该分段点所在的比特位置的序号为Bt,其中t=1,2,…,q-1,序号从0开始排列,Bt的取值为:
第一分段点B 1=(011111111) BIN=(255) DEC(即第一分段为第0个位置到第255个位置,因此第一分段有256个位置);第二分段点B 2=(101111111) BIN=(383) DEC;第三分段点B 3=(110111111) BIN=(447) DEC;第四分段点B 4=(111011111) BIN=(479) DEC;第五分段点B 5=(111101111) BIN=(495) DEC;第六分段点B 6=(111110111) BIN=(503)DEC;第七分段点B 7=(111111011) BIN=(507) DEC,其中BIN表示二进制,DEC表示十进制。之所以这里只分为q=n-1=8段而不是q=n=9段,是因为按这个规律,第8段只有4个点(508,509,510,511),再分的意义已经不大。当然,要按照n取值分为q=n=9段也可以,则B 8=(111111101) BIN=(509) DEC。按此规律,可以得到如下取分段点的一般方式:
若待编码序列包括q段,其中第t个分段点所在的比特位置的序号为Bt,所述Bt用n位二进制数表示时,所述n位二进制数的第t位为0,其余n-1位均为1,其中0<t<q。
可选的,可以用表格的形式将不同N对应的分段点预先保存下来。例如,若q=n-1,所述待编码的比特位置的序号的取值范围为大于等于0且小于N的任意整数,则:
当N=16,分段点对应的比特位置的序号集合为[7 11];或者
当N=32,分段点对应的比特位置的序号集合为[15 23 27];或者
当N=64,分段点对应的比特位置的序号集合为[31 47 55 59];或者
当N=128,分段点对应的比特位置的序号集合为[63 95 111 119 123];或者
当N=256,分段点对应的比特位置的序号集合为[127 191 223 239 247 251];或者
当N=512,分段点对应的比特位置的序号集合为[255 383 447 479 495 503 507];或者
当N=1024,分段点对应的比特位置的序号集合为[511 767 895 959 991 1007 1015 1019];或者
当N=2048,分段点对应的比特位置的序号集合为[1023 1535 1791 1919 1983 2015 2031 2039 2043];或者
当N=4096,分段点对应的比特位置的序号集合为[2047 3071 3583 3839 3967 4031 4065 4079 4087 4091]。
若待编码的比特位置的序号由1开始编号至N,则上述各分段点对应的比特位置的序号集合中的每一个元素均需加1,不再赘述。
具体实现中,还可以采用分段移位寄存器的方式取分段点,如图6所示,首先将首位取0,其余位取1,取出n个寄存器中的值即得到第一个分段点,然后依次向右循环移位一位,得到下一个分段点,直到得到所有分段点,分为q段。
S303:发送设备确认每一分段中的校验冻结比特数目及位置和信息比特数目及位置:
若S302中的分段是以等分的方式分段,则可以按如下步骤选取校验冻结比特位置:
步骤PFa01:获取q,P f,N,冻结比特位置集合;
步骤PFa02:若P f>q,执行PFa03;否则执行PFa05;
步骤PFa03:在q段中各取一个除冻结比特位置外的比特位置作为校验冻结比特位置,可以取每一分段中除冻结比特位置外可靠度最低的一个比特位置,也可以取每一分段中除冻结比特位置外可靠度最高的一个比特位置,或者是取任一发送设备与接收设备约定好的一个比特位置;
步骤PFa04:P f=P f-q;跳至步骤PFa02;
步骤PFa05:取平均可靠度最高的P f个分段,在该P f个分段的每一分段中各取一个除冻结比特位置外的比特位置作为校验冻结比特位置,可以取该段中除冻结比特位置和已取的校验冻结比特位置外可靠度最低的一个比特位置,也可以取该段中除冻结比特位置和已取的校验冻结比特位置外可靠度最高的一个比特位置,或者是取任一与接收设备约定好的一个比特位置。
步骤PFa06:发送设备根据校验冻结比特位置和冻结比特位置将剩下的位置确认为信息比特的位置。
可选的,在等分方式分段时,还可以采用如下的规则选取校验冻结比特位置:将各个集合(冻结比特集合,校验冻结比特集合,信息比特集合)从比特位置序列的序号最高处记起,如果连续的两个奇偶分段中都含有除冻结比特之外的集合,那么从这两个奇偶分段的奇数段中选取固定数量的校验冻结比特位置;如果不是都含有,则跳转到下一对奇偶分段中;反复上述操作,直到达到校验冻结比特的设定值。该固定数量可以预先设定。当然,也可以从这两个奇偶分段的偶数段中选取固定数量的校验冻结比特。
可选的,在等分方式分段时,还可以采用如下的规则选取校验冻结比特位置:在按照上述方法选取校验冻结比特位置时,第一轮每个选到的分段中只选取1个校验冻结比特的位置;在第二轮中,则将每一分段的长度扩为2倍,也即分段数减半,按减半后的分段依照第一轮的方法选取校验冻结比特位置,并依此类推,直到取完所有的校验冻结比特位置。
无论采用哪一种选取方式,在每一选取的分段中是按照可靠度最高还是可靠度最低选取校验冻结比特位置,只需要发送设备和接收设备统一即可。
若S302中的分段是以不等分的方式分段,例如以上述循环移位寄存器的方式确定分段点,那么在分段点确认后,可以根据如下步骤确定每一分段中的校验冻结比特:
步骤PFb01:获取q,P f,N,冻结比特位置集合;
步骤PFb02:确定第g分段中的除冻结比特位置之外的位置数目G g,G g为非负整数,g为正整数,0<g≤q,注意G g有可能为0,其中包括信息比特位置和校验冻结比特位置;
步骤PFb03:根据下述公式确定第g分段中的校验冻结比特数目:P fg=round(P f*G g/(K+P f)),其中round为四舍五入操作,因此P fg有可能为0;在确定第g分段中的校验冻结比特数目时还可以利用其它的函数,例如取整的方式,例如与等长分段类似的尽量平均分配校验冻结比特数目的方式,或者任一发送设备与接收设备约定好的分配方式。
步骤PFb04:确定在第g分段中的校验冻结比特位置为第g分段中除冻结比特位置外,比特位置序号最小的P fg个比特位置;或者
第g分段中的校验冻结比特位置为第g分段中除冻结比特位置外,比特位置序号最大的P fg个比特位置;或者
第g分段中的校验冻结比特位置为第g分段中除冻结比特位置外,与接收设备约定的P fg个比特位置。
步骤PFb05:发送设备根据校验冻结比特位置和冻结比特位置将剩下的位置确认为信息比特的位置。
例如,按照PFb01至PFb05的步骤,在N=512的序列中确认冻结比特位置、校验冻结比特位置、信息比特位置,假设K=40,P f定为16,位置序号由0开始到511,则G g=K+P f=56,n=9,q=n-1=8,根据Polar码的极化权重的可靠度计算方式确定512-56=456个冻结比特(包括打孔比特、截短比特等类型)位置后,信息比特的位置和校验冻结比特的位置集合Q为:Q=[252 253 254|366 373 374 377 378 380 381 382|414 429 430 437 438 441 442 444 445 446|461 462 468 469 470 472 473 474 476 477 478|481 482 483 484 485 486 488 489 490 492 493 494|496 497 498 500 501 502|504 505 506|508 509 510];
其中“|”为分段标记,则G 1=3;G 2=8;G 3=10;G 4=11;G 5=12;G 6=6;G 7=3;G 8=3;则可得到各个段中P fg的数量P fg=round(P f*G g/(K+P f)),g=1,2,3,4,5,6,7,或8为:
P f1=1;P f2=2;P f3=3;P f4=3;P f5=3;P f6=2;P f7=1;P f8=1;
假设P fg个校验冻结比特为上述信息比特的位置和校验冻结比特的位置集合Q的各个段中最靠左的P fg个比特,因此有校验冻结比特位置的集合Q PF为:
Q PF=[252 366 373 414 429 430 468 472 461 481 482 484 496 497 504 508];
相应地,集合Q中除Q PF表示的位置之外的位置集合即为信息比特的位置集合。
S304:发送设备将冻结比特和信息比特按S303中确定的位置放入待编码序列;
S305:发送设备确定待编码序列中的校验冻结比特:
令待编码序列为u=[u 0,u 1,u 2,…,u N-1],将冻结比特和信息比特按照前述步骤中的位置依次放入到待编码序列中,校验冻结比特中至少有一个的值是根据所述冻结比特和信息比特中的至少一个确定的;或者校验冻结比特中的至少一个为预设的值。
可选地,校验冻结比特的值通过如下方式获取:
发送设备对待编码序列u中的元素,按顺序依次与循环移位寄存器进行交互操作,每一次操作后,循环移位寄存器按固定方向(顺时针或逆时针)转动一位,该循环移位寄存器长度为p,其初始状态y[0],y[1],…,y[p-1]为已知的长度为p的二进制序列,p为正整数且为质数,则交互时进行如下操作:
若u i所在位置不是校验冻结比特(PF)位置
则所述寄存器的y[x]=(u i XOR y[x]);
若u i所在位置是校验冻结比特(PF)位置
则所述校验冻结比特为u i=y[x]。
其中i=0,1,…,N-1,y[x]为所述循环移位寄存器中第x个寄存器的状态,0≤x≤p-1,i、x为整数;其中,顺序为从左至右或者从右至左或者任一发送设备与接收设备统一的顺序。固定方向为顺时针或者逆时针。一个具体的例子可见于图7,其中x=0,顺序为从左至右,固定方向为顺时针。
注意这里只区分是否校验冻结比特,并不需要将冻结比特先行排除,因此一方面简化了判断操作,另一方面也无形中解除了在采用校验冻结比特进行Polar编码时先排除冻结比特时冻结比特必须为全零的限制。
S306:发送设备对待编码序列进行Polar编码。
图8为本申请提供的一种接收方法的实施例的示意图。
S801:接收设备获取用于译码的Polar码的母码长度N,以及其中的信息比特数目K、校验冻结比特数目P f、冻结比特的数目及位置。
其中K的值根据码率R和编码后的序列长度M确定,K=M*R,待译码序列的长度(也即母码长度)
Figure PCTCN2018072903-appb-000013
这里的
Figure PCTCN2018072903-appb-000014
是上取整函数,可选的,也可以通过对log 2M下取整的方法来确定N。
P f的值可以预先给定,或者根据表2和N确定。注意实际传输的序列长度为M,这里将收发两端统一的冻结比特在译码的时候也按照相应的位置补入接收到的序列,使得待译码序列的长度恢复为N,这种处理方式与直接处理长度为M的接收序列没有实质的不同,因此本申请中还是以长度为N的序列为对象进行叙述。
S802:接收设备根据预设规则将待译码序列分为q段。
这里的预设规则与发送设备类似,因此参照S302中的方式确定,此处不再赘述。
S803:接收设备确认每一分段中的校验冻结比特数目及位置和信息比特数目及位置。
这里的确认方法与发送设备类似,因此可以参照S303中的方法确定,此处不再赘述。
S804:接收设备对待译码序列进行Polar译码,得到已译码序列。
这里的Polar译码方法与现有的PC-Polar译码方式类似,校验冻结比特可以辅助译码,此处不再赘述。
图9为本申请提供的一种用于Polar码编码的装置示意图。该装置10包括:
编码模块11,用于对待编码序列进行Polar编码,其中所述Polar码的母码长度为N,所述待编码序列中包括冻结比特、校验冻结比特和信息比特,所述待编码序列包括q段;所述N=2 n,n和q为正整数,所述q=n或q<n
处理模块12,用于根据所述冻结比特和信息比特中的至少一个确定所述校验冻结比特中至少有一个的值;或者用于确定所述校验冻结比特中的至少一个为预设的值;
发送模块13,用于发送编码后的序列。
可选的,所述处理模块12还用于将所述待编码序列分为q段,分段方法与前述方法实施例中S302一致,不再赘述。
可选的,所述处理模块12还用于确定所述q段中每一段的校验冻结比特的数目和位置,确定方法与前述方法实施例中S303一致,不再赘述
可选的,所述处理模块12还用于根据方法实施例S304、S305所述的方法确定待编码序列中的校验冻结比特。
图10为本申请提供的一种用于Polar码译码的装置示意图。该装置20包括:
获取模块21,用于获取待译码序列。
译码模块23,用于对接收到的待译码序列进行Polar译码,得到已译码序列,其中所述Polar码的母码长度为N,所述待译码序列长度为N,所述待译码序列中包括冻结比特、校验冻结比特和信息比特,所述待译码序列包括q段;所述N=2 n,n和q为正整 数,所述q=n或q<n。
处理模块22,用于按预设规则将待译码序列分为q段,所述分段方法与前述方法实施例中S802一致,不再赘述。
可选的,处理模块22还用于确定每一分段中校验冻结比特的数目及位置和信息比特数目及位置,所述确定方法与前述方法实施例S803一致,不再赘述。
图11为本申请提供的一种编码实体装置示意图,该装置1100包括:
存储器1101,用于存储执行指令,该存储器还可以是flash(闪存)。
处理器1102,用于执行存储器存储的执行指令,以实现图3所示的编码方法中的各个步骤。具体可以参见前面方法实施例中的相关描述。
可选地,存储器1101既可以是独立的,也可以跟处理器1102集成在一起。
当所述存储器1101是独立于处理器1102之外的器件时,所述装置1100还可以包括:
总线1103,用于连接所述存储器和处理器。图11的编码装置还可以进一步包括发送器(图中未画出),用于发送处理器1102进行Polar编码后的编码序列。
图12为本申请提供的一种译码实体装置示意图,该装置1200包括:
存储器1201,用于存储执行指令,该存储器还可以是flash(闪存)。
处理器1202,用于执行存储器存储的执行指令,用于实现图8所示的译码方法中的各个步骤。具体可以参见前面方法实施例中的相关描述。
可选地,存储器1201可以是独立的,也可以跟处理器1202集成在一起。
当所述存储器1201是独立于处理器1202之外的器件时,所述装置1200还可以包括:
总线1203,用于连接所述存储器和处理器。
图12的译码装置还可以进一步包括接收器(图中未画出),用于接收待译码信号,并将待译码的信号发送给处理器1202。
本申请还提供一种可读存储介质,可读存储介质中存储有执行指令,当发送设备的至少一个处理器执行该执行指令时,发送设备执行上述的各种实施方式提供的数据的发送方法。
本申请还提供一种可读存储介质,可读存储介质中存储有执行指令,当接收设备的至少一个处理器执行该执行指令时,接收设备执行上述的各种实施方式提供的数据的接收方法。
本申请还提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。发送设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得发送设备实施上述的各种实施方式提供的数据的发送方法。
本申请还提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。接收设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得接收设备实施上述的各种实施方式提供的数据的接收方法。
在上述发送设备或者接收设备的实施例中,应理解,处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一可读取存储器中。该程序在执行时,执行包括上述各方法实施例的步 骤;而前述的存储器(存储介质)包括:只读存储器(英文:read-only memory,缩写:ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(英文:magnetic tape)、软盘(英文:floppy disk)、光盘(英文:optical disc)及其任意组合。
最后应说明的是:尽管参照前述各实施例对本方案进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不能使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (28)

  1. 一种极化Polar编码方法,其特征在于,
    发送设备对所述待编码序列进行Polar编码,其中所述Polar码的母码长度为N,所述待编码序列中包括冻结比特、校验冻结比特和信息比特,所述待编码序列包括q段;所述N=2 n,n和q为正整数,所述q=n或q<n;
    所述校验冻结比特中至少有一个的值是根据所述冻结比特和信息比特中的至少一个确定的;或者所述校验冻结比特中的至少一个为预设的值;
    所述发送设备发送编码后的序列。
  2. 根据权利要求1所述的方法,其特征在于,所述待编码序列包括q段,其中第t个分段点所在的比特位置的序号为Bt,所述Bt用n位二进制数表示时,所述n位二进制数的第t位为0,其余n-1位均为1,其中0<t<q。
  3. 根据权利要求1或2所述的方法,其特征在于,所述待编码的比特位置的序号的取值范围为大于等于0且小于N的任意整数;
    当N=16,分段点对应的比特位置的序号集合为[7 11];或者
    当N=32,分段点对应的比特位置的序号集合为[15 23 27];或者
    当N=64,分段点对应的比特位置的序号集合为[31 47 55 59];或者
    当N=128,分段点对应的比特位置的序号集合为[63 95 111 119 123];或者
    当N=256,分段点对应的比特位置的序号集合为[127 191 223 239 247 251];或者
    当N=512,分段点对应的比特位置的序号集合为[255 383 447 479 495 503 507];或者
    当N=1024,分段点对应的比特位置的序号集合为[511 767 895 959 991 1007 1015 1019];或者
    当N=2048,分段点对应的比特位置的序号集合为[1023 1535 1791 1919 1983 2015 2031 2039 2043];或者
    当N=4096,分段点对应的比特位置的序号集合为[2047 3071 3583 3839 3967 4031 4065 4079 4087 4091]。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述q段中每一分段校验冻结比特的数目P fg为P fg=round(P f*G g/(K+P f)),其中round为四舍五入操作,P f为校验冻结比特数目,Gg为第g分段中的信息比特数目和校验冻结比特数目之和,K为信息比特数目,P f、g、K均为正整数,G g、P fg为非负整数,0<g≤q。
  5. 根据权利要求4所述的方法,其特征在于:
    所述第g分段中的校验冻结比特位置为所述第g分段中除所述冻结比特位置外,比特位置序号最小的P fg个比特位置;或者
    所述第g分段中的校验冻结比特位置为所述第g分段中除所述冻结比特位置外,比特位置序号最大的P fg个比特位置;或者
    所述第g分段中的校验冻结比特位置为所述第g分段中除所述冻结比特位置外,与接收设备约定的P fg个比特位置。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,
    所述待编码序列为[u 0,u 1,u 2,…,u N-1],所述校验冻结比特中至少有一个的值是根据所述冻结比特和信息比特中的至少一个确定的;或者所述校验冻结比特中的至少一个为预设的值;所述校验冻结比特的值通过如下步骤获取:
    所述发送设备对待编码序列[u 0,u 1,u 2,…,u N-1]中的元素,按顺序依次与循环移位寄 存器进行交互操作,每一次操作后,所述循环移位寄存器按固定方向转动一位,所述循环移位寄存器长度为p,其初始状态y[0],y[1],…,y[p-1]为已知的长度为p的二进制序列,p为正整数且为质数;
    若u i所在位置不是所述校验冻结比特位置,则所述寄存器的y[x]=(u i XOR y[x])
    若u i所在位置是所述校验冻结比特位置,则所述校验冻结比特为u i=y[x]
    其中i=0,1,…,N-1,y[x]为所述循环移位寄存器中第x个寄存器的状态,0≤x≤p-1,i、x为整数。
  7. 一种极化Polar译码方法,其特征在于,
    接收设备对接收到的待译码序列进行Polar译码,得到已译码序列,其中所述Polar码的母码长度为N,所述待译码序列长度为N,所述待译码序列中包括冻结比特、校验冻结比特和信息比特,所述待译码序列包括q段;所述N=2 n,n和q为正整数,所述q=n或q<n。
  8. 根据权利要求7所述的方法,其特征在于,所述待译码序列包括q段,其中第t个分段点所在的比特位置的序号为Bt,所述Bt用n位二进制数表示时,所述n位二进制数的第t位为0,其余n-1位均为1,其中0<t<q。
  9. 根据权利要求7或8所述的方法,其特征在于,所述待译码的比特位置的序号的取值范围为大于等于0且小于N的任意整数;
    当N=16,分段点对应的比特位置的序号集合为[7 11];或者
    当N=32,分段点对应的比特位置的序号集合为[15 23 27];或者
    当N=64,分段点对应的比特位置的序号集合为[31 47 55 59];或者
    当N=128,分段点对应的比特位置的序号集合为[63 95 111 119 123];或者
    当N=256,分段点对应的比特位置的序号集合为[127 191 223 239 247 251];或者
    当N=512,分段点对应的比特位置的序号集合为[255 383 447 479 495 503 507];或者
    当N=1024,分段点对应的比特位置的序号集合为[511 767 895 959 991 1007 1015 1019];或者
    当N=2048,分段点对应的比特位置的序号集合为[1023 1535 1791 1919 1983 2015 2031 2039 2043];或者
    当N=4096,分段点对应的比特位置的序号集合为[2047 3071 3583 3839 3967 4031 4065 4079 4087 4091]。
  10. 根据权利要求7至9任一项所述的方法,其特征在于,所述q段中每一分段校验冻结比特的数目P fg为P fg=round(P f*G g/(K+P f)),其中round为四舍五入操作,P f为校验冻结比特数目,Gg为第g分段中的信息比特数目和校验冻结比特数目之和,K为信息比特数目,P f、g、K均为正整数,G g、P fg为非负整数,0<g≤q。
  11. 根据权利要求10所述的方法,其特征在于:
    所述第g分段中的校验冻结比特位置为所述第g分段中除所述冻结比特位置外,比特位置序号最小的P fg个比特位置;或者
    所述第g分段中的校验冻结比特位置为所述第g分段中除所述冻结比特位置外,比特位置序号最大的P fg个比特位置;或者
    所述第g分段中的校验冻结比特位置为所述第g分段中除所述冻结比特位置外,与发送设备约定的P fg个比特位置。
  12. 一种极化Polar编码装置,其特征在于,包括:
    编码模块,所述编码模块用于对待编码序列进行Polar编码,其中所述Polar码的母码长度为N,所述待编码序列中包括冻结比特、校验冻结比特和信息比特,所述待编码序列包括q段;所述N=2 n,n和q为正整数,所述q=n或q<n;
    处理模块,用于根据所述冻结比特和信息比特中的至少一个确定所述校验冻结比特中至少有一个的值;或者用于确定所述校验冻结比特中的至少一个为预设的值;
    发送模块,用于发送编码后的序列。
  13. 根据权利要求12所述的装置,其特征在于,所述待编码序列包括q段,其中第t个分段点所在的比特位置的序号为Bt,所述Bt用n位二进制数表示时,所述n位二进制数的第t位为0,其余n-1位均为1,其中0<t<q。
  14. 根据权利要求12或13所述的装置,其特征在于,所述待编码的比特位置的序号的取值范围为大于等于0且小于N的任意整数;
    当N=16,分段点对应的比特位置的序号集合为[7 11];或者
    当N=32,分段点对应的比特位置的序号集合为[15 23 27];或者
    当N=64,分段点对应的比特位置的序号集合为[31 47 55 59];或者
    当N=128,分段点对应的比特位置的序号集合为[63 95 111 119 123];或者
    当N=256,分段点对应的比特位置的序号集合为[127 191 223 239 247 251];或者
    当N=512,分段点对应的比特位置的序号集合为[255 383 447 479 495 503 507];或者
    当N=1024,分段点对应的比特位置的序号集合为[511 767 895 959 991 1007 1015 1019];或者
    当N=2048,分段点对应的比特位置的序号集合为[1023 1535 1791 1919 1983 2015 2031 2039 2043];或者
    当N=4096,分段点对应的比特位置的序号集合为[2047 3071 3583 3839 3967 4031 4065 4079 4087 4091]。
  15. 根据权利要求12至14任一项所述的装置,其特征在于,所述q段中每一分段校验冻结比特的数目P fg为P fg=round(P f*G g/(K+P f)),其中round为四舍五入操作,P f为校验冻结比特数目,Gg为第g分段中的信息比特数目和校验冻结比特数目之和,K为信息比特数目,P f、g、K均为正整数,G g、P fg为非负整数,0<g≤q。
  16. 根据权利要求15所述的装置,其特征在于:
    所述第g分段中的校验冻结比特位置为所述第g分段中除所述冻结比特位置外,比特位置序号最小的P fg个比特位置;或者
    所述第g分段中的校验冻结比特位置为所述第g分段中除所述冻结比特位置外,比特位置序号最大的P fg个比特位置;或者
    所述第g分段中的校验冻结比特位置为所述第g分段中除所述冻结比特位置外,与接收设备约定的P fg个比特位置。
  17. 根据权利要求12至16任一项所述的装置,其特征在于,
    所述待编码序列为[u 0,u 1,u 2,…,u N-1],所述校验冻结比特中至少有一个的值是所述处理模块根据所述冻结比特和信息比特中的至少一个确定的;或者所述校验冻结比特中的至少一个为预设的值;所述校验冻结比特的值由所述处理模块通过如下步骤获取:
    所述发送装置对待编码序列[u 0,u 1,u 2,…,u N-1]中的元素,按顺序依次与循环移位寄存器进行交互操作,每一次操作后,所述循环移位寄存器按固定方向转动一位,所述循环移位寄存器长度为p,其初始状态y[0],y[1],…,y[p-1]为已知的长度为p的二进制序列,p 为正整数且为质数;
    若u i所在位置不是所述校验冻结比特位置,则所述寄存器的y[x]=(u i XOR y[x])
    若u i所在位置是所述校验冻结比特位置,则所述校验冻结比特为u i=y[x]
    其中i=0,1,…,N-1,y[x]为所述循环移位寄存器中第x个寄存器的状态,0≤x≤p-1,i、x为整数。
  18. 一种极化Polar译码装置,其特征在于,包括,
    获取模块,用于获取待译码序列;
    译码模块,用于对接收到的待译码序列进行Polar译码,得到已译码序列,其中所述Polar码的母码长度为N,所述待译码序列长度为N,所述待译码序列中包括冻结比特、校验冻结比特和信息比特,所述待译码序列包括q段;所述N=2 n,n和q为正整数,所述q=n或q<n。
  19. 根据权利要求18所述的装置,其特征在于,所述装置还包括:
    处理模块,用于将所述待译码序列分为q段,其中第t个分段点所在的比特位置的序号为Bt,所述Bt用n位二进制数表示时,所述n位二进制数的第t位为0,其余n-1位均为1,其中0<t<q。
  20. 根据权利要求18或19所述的装置,其特征在于,所述待译码的比特位置的序号的取值范围为大于等于0且小于N的任意整数;
    当N=16,分段点对应的比特位置的序号集合为[7 11];或者
    当N=32,分段点对应的比特位置的序号集合为[15 23 27];或者
    当N=64,分段点对应的比特位置的序号集合为[31 47 55 59];或者
    当N=128,分段点对应的比特位置的序号集合为[63 95 111 119 123];或者
    当N=256,分段点对应的比特位置的序号集合为[127 191 223 239 247 251];或者
    当N=512,分段点对应的比特位置的序号集合为[255 383 447 479 495 503 507];或者
    当N=1024,分段点对应的比特位置的序号集合为[511 767 895 959 991 1007 1015 1019];或者
    当N=2048,分段点对应的比特位置的序号集合为[1023 1535 1791 1919 1983 2015 2031 2039 2043];或者
    当N=4096,分段点对应的比特位置的序号集合为[2047 3071 3583 3839 3967 4031 4065 4079 4087 4091]。
  21. 根据权利要求18至20任一项所述的装置,其特征在于,所述q段中每一分段校验冻结比特的数目P fg为P fg=round(P f*G g/(K+P f)),其中round为四舍五入操作,P f为校验冻结比特数目,Gg为第g分段中的信息比特数目和校验冻结比特数目之和,K为信息比特数目,P f、g、K均为正整数,G g、P fg为非负整数,0<g≤q。
  22. 根据权利要求21所述的装置,其特征在于:
    所述第g分段中的校验冻结比特位置为所述第g分段中除所述冻结比特位置外,比特位置序号最小的P fg个比特位置;或者
    所述第g分段中的校验冻结比特位置为所述第g分段中除所述冻结比特位置外,比特位置序号最大的P fg个比特位置;或者
    所述第g分段中的校验冻结比特位置为所述第g分段中除所述冻结比特位置外,与发送设备约定的P fg个比特位置。
  23. 一种极化Polar编码实体装置,其特征在于,包括:
    存储器,用于存储执行指令;
    处理器,用于读取所述存储器存储的指令,以执行权利要求1到6所述的方法。
  24. 一种极化Polar译码实体装置,其特征在于,包括:
    存储器,用于存储执行指令;
    处理器,用于读取所述存储器存储的指令,以执行权利要求7到11所述的方法。
  25. 一种可读存储介质,其特征在于,所述可读存储介质中存储有执行指令,所述执行指令用于发送设备执行权利要求1到6所述的方法。
  26. 一种可读存储介质,其特征在于,所述可读存储介质中存储有执行指令,所述执行指令用于接收设备执行权利要求7到11所述的方法。
  27. 一种程序产品,其特征在于,所述程序产品包括执行指令,所述执行指令用于发送设备执行权利要求1到6所述的方法。
  28. 一种程序产品,其特征在于,所述程序产品包括执行指令,所述执行指令用于接收设备执行权利要求7到11所述的方法。
PCT/CN2018/072903 2017-01-25 2018-01-16 数据的传输方法和装置 WO2018137518A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18745196.8A EP3567766B1 (en) 2017-01-25 2018-01-16 Data transmission method and apparatus
US16/522,386 US11050508B2 (en) 2017-01-25 2019-07-25 Data transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710061380.3A CN108347301B (zh) 2017-01-25 2017-01-25 数据的传输方法和装置
CN201710061380.3 2017-01-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/522,386 Continuation US11050508B2 (en) 2017-01-25 2019-07-25 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2018137518A1 true WO2018137518A1 (zh) 2018-08-02

Family

ID=62962499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072903 WO2018137518A1 (zh) 2017-01-25 2018-01-16 数据的传输方法和装置

Country Status (4)

Country Link
US (1) US11050508B2 (zh)
EP (1) EP3567766B1 (zh)
CN (1) CN108347301B (zh)
WO (1) WO2018137518A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110431749B (zh) 2017-03-23 2023-02-03 高通股份有限公司 针对极性编码的奇偶校验比特信道指派
CN111385059B (zh) * 2018-12-27 2021-08-31 华为技术有限公司 极化编码调制的方法和装置
CN111865487B (zh) * 2019-04-29 2022-07-29 华为技术有限公司 一种编码方法及通信设备
CN112583522B (zh) * 2019-09-27 2022-09-23 华为技术有限公司 一种极化码分段编码的方法及通信设备
US11152958B2 (en) * 2019-12-09 2021-10-19 Western Digital Technologies, Inc. Very low complexity SECDED codes
CN114124148B (zh) * 2021-11-26 2023-09-22 中国人民解放军国防科技大学 一种基于极化编码的低截获扩频通信方法、装置及介质
CN114285418A (zh) * 2021-12-14 2022-04-05 重庆邮电大学 一种改进的极化码epc-ms-scl译码方法
WO2024065118A1 (zh) * 2022-09-26 2024-04-04 华为技术有限公司 非有限域下的译码方法及通信装置
CN118157687A (zh) * 2022-12-06 2024-06-07 中兴通讯股份有限公司 数据处理方法、设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825669A (zh) * 2012-11-16 2014-05-28 华为技术有限公司 数据处理的方法和装置
US20140173376A1 (en) * 2012-12-14 2014-06-19 Sungkyunkwan University Research & Business Foundation Encoding method and apparatus using crc code and polar code
CN105337696A (zh) * 2015-10-08 2016-02-17 东南大学 基于分段crc校验的极化解码方法
CN106230555A (zh) * 2016-07-29 2016-12-14 西安电子科技大学 极化码的分段循环冗余校验方法
CN107124188A (zh) * 2016-02-24 2017-09-01 华为技术有限公司 极化码的编码方法、译码方法、编码设备和译码设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112016021434A2 (pt) * 2014-03-19 2017-08-15 Huawei Tech Co Ltd Método de equiparação de taxa de código polar e aparelho de equiparação de taxa
CA2972922C (en) * 2014-03-31 2019-11-05 Huawei Technologies Co., Ltd. Polar code hybrid automatic repeat request method and apparatus, and wireless communications apparatus
US9742440B2 (en) * 2015-03-25 2017-08-22 Samsung Electronics Co., Ltd HARQ rate-compatible polar codes for wireless channels
US10461779B2 (en) * 2015-08-12 2019-10-29 Telefonaktiebolaget Lm Ericsson (Publ) Rate-compatible polar codes
TWI629872B (zh) * 2016-02-03 2018-07-11 旺宏電子股份有限公司 調整延伸極化碼的碼長度之方法及裝置
US9941906B2 (en) * 2016-02-18 2018-04-10 Samsung Electronics Co., Ltd. Sliced polar codes
CN110249558B (zh) * 2016-12-13 2022-03-29 诺基亚技术有限公司 用于无线网络的下行链路控制信道的极化码

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825669A (zh) * 2012-11-16 2014-05-28 华为技术有限公司 数据处理的方法和装置
US20140173376A1 (en) * 2012-12-14 2014-06-19 Sungkyunkwan University Research & Business Foundation Encoding method and apparatus using crc code and polar code
CN105337696A (zh) * 2015-10-08 2016-02-17 东南大学 基于分段crc校验的极化解码方法
CN107124188A (zh) * 2016-02-24 2017-09-01 华为技术有限公司 极化码的编码方法、译码方法、编码设备和译码设备
CN106230555A (zh) * 2016-07-29 2016-12-14 西安电子科技大学 极化码的分段循环冗余校验方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Design aspects of Polar Code and LDPC for NR", 3GPP TSG RAN WG1 MEETING #86BIS R1-1608865, 14 October 2016 (2016-10-14), XP051148919 *
HUAWEI ET AL.: "Details of the Polar code design", 3GPP TSG RAN WG1 MEETING #87 R1-1611254, 14 November 2016 (2016-11-14), XP051175235 *
HUAWEI ET AL.: "Polar Code Construction for NR", 3GPP TSG RAN WG1 MEETING #86BIS R1-1608862, 14 October 2016 (2016-10-14), XP051159189 *

Also Published As

Publication number Publication date
CN108347301A (zh) 2018-07-31
EP3567766A4 (en) 2019-12-25
US20190349128A1 (en) 2019-11-14
CN108347301B (zh) 2020-06-02
EP3567766B1 (en) 2021-03-10
US11050508B2 (en) 2021-06-29
EP3567766A1 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
WO2018137518A1 (zh) 数据的传输方法和装置
CN108365848B (zh) 一种极性码的译码方法和装置
US11088709B2 (en) Polar code encoding method and apparatus
WO2018049951A1 (zh) 信息传输的方法、发送端设备和接收端设备
US20200059934A1 (en) Coding/decoding method, apparatus, and device
JP7471357B2 (ja) 符号化方法、復号方法、装置、および装置
WO2017143870A1 (zh) 极化码的编码方法、译码方法、编码设备和译码设备
CN106982172B (zh) 确定极化码传输块大小的方法和通信设备
CN108462554B (zh) 一种极性码的传输方法和装置
WO2019062145A1 (zh) Ploar编码方法和编码装置、译码方法和译码装置
JP7248762B2 (ja) データ処理方法およびデバイス
US10958374B2 (en) Polar code rate matching method and apparatus
WO2019047544A1 (zh) 编码方法及装置
WO2019024594A1 (zh) 极化码的编译码方法、装置及设备
WO2018166416A1 (zh) 传输控制信息的方法和装置
WO2016141544A1 (zh) 传输信息的方法和通信设备
US20230208554A1 (en) Encoding and Decoding Method and Apparatus
US11463108B2 (en) Information processing method and communications apparatus
WO2018127139A1 (zh) 一种控制信息的传输方法和装置
WO2018098691A1 (zh) 一种控制信道生成方法、控制信道检测方法及相关设备
WO2019206136A1 (zh) 极化码的速率匹配、解速率匹配方法及设备
WO2019037782A1 (zh) 极化码的译码方法和译码器
US20240007220A1 (en) Encoding and decoding method and apparatus
US20180212630A1 (en) Encoder device, decoder device, and methods thereof
EP3602797A1 (en) Puncturing of polar codes with complementary sequences

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18745196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018745196

Country of ref document: EP

Effective date: 20190805