WO2018137394A1 - 一种压气机气动稳定性诊断和控制的装置及方法 - Google Patents

一种压气机气动稳定性诊断和控制的装置及方法 Download PDF

Info

Publication number
WO2018137394A1
WO2018137394A1 PCT/CN2017/112331 CN2017112331W WO2018137394A1 WO 2018137394 A1 WO2018137394 A1 WO 2018137394A1 CN 2017112331 W CN2017112331 W CN 2017112331W WO 2018137394 A1 WO2018137394 A1 WO 2018137394A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
control
pressure
signal
real
Prior art date
Application number
PCT/CN2017/112331
Other languages
English (en)
French (fr)
Inventor
李继超
杜娟
聂超群
张宏武
Original Assignee
中国科学院工程热物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院工程热物理研究所 filed Critical 中国科学院工程热物理研究所
Priority to US16/480,673 priority Critical patent/US11536285B2/en
Publication of WO2018137394A1 publication Critical patent/WO2018137394A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/002Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying geometry within the pumps, e.g. by adjusting vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/0238Details or means for fluid reinjection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0246Surge control by varying geometry within the pumps, e.g. by adjusting vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0284Conjoint control of two or more different functions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/14Testing gas-turbine engines or jet-propulsion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/684Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps by fluid injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/83Testing, e.g. methods, components or tools therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/304Spool rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05D2270/804Optical devices

Definitions

  • the invention relates to the technical field of compressors, in particular to a pneumatic stability diagnosis and control device and method for a compressor.
  • the research on the precursor mechanism and control means of compressor instability is relatively isolated at present, and the method is relatively simple. There is no device and method that can simultaneously realize the analysis, real-time warning and online regulation of instability precursors.
  • the device and method for the diagnosis and control research function of the aerodynamic instability precursor can be used not only to clarify the scientific problems of complex instability precursors and instability mechanisms in the field of turbomachinery, but also to develop the stability control of aeroengines.
  • Technical support. Therefore, a device and method capable of distinguishing the precursor types of compressor instability, real-time capture, analysis and online control of the front stall precursor and the stall precursor can not only help to clarify the complex instability precursors and losses in the turbomachinery field.
  • Scientific issues such as stability mechanism can provide useful ideas for the stability control technology of aero-engines. Moreover, it will also accumulate rich experimental data for the actual engine to improve the stall margin, meet the urgent needs of the national economy and national defense construction, and have certain difficulties and challenges in science and technology.
  • the object of the present invention is to disclose a device and a method for the diagnosis and control of the aerodynamic stability of a compressor, so as to realize the identification of the precursor type of the compressor, the precursor of the stall and the precursor of the pre-stall, and the compression by the corresponding control mechanism. Real-time regulation of machine stability.
  • the invention provides a device for diagnosis and control of aerodynamic stability of a compressor, comprising a measuring device, a signal processing device and a control execution device.
  • the measuring device is configured to measure pressure or velocity pulsations of airflow at different positions inside the compressor in real time, and transmit real-time measurement signals obtained from different locations to the signal processing device, wherein the real-time measurement signals include airflows measured in real time Pressure or velocity pulsation signal.
  • the signal processing device is configured to determine a type of instability precursor and a spatial distribution of the compressor operation according to the real-time measurement signal, and output a corresponding control strategy signal to the control execution device.
  • the control execution device performs a corresponding control action according to the received control strategy signal to perform stability control on the compressor.
  • the pressure or velocity pulsation of the airflow at the different positions includes pressure or velocity pulsation of the compressor blade and the vane inlet and outlet passages, pressure pulsation between the blade tip and the casing wall surface, and stationary vane leaves.
  • the measuring device comprises a contact measuring device.
  • the contact measuring device includes a dynamic pressure sensor and a dynamic probe.
  • the dynamic pressure sensor is arranged on the wall surface of the compressed motor blade machine for real-time measurement of the compressed air motor leaf
  • the top air pressure is pulsating.
  • the dynamic probe is arranged inside the inlet and outlet passages to measure the airflow pressure or velocity pulsation of the inlet and outlet passages of the vane and the inlet and outlet passages of the vane in real time.
  • the measuring device also includes a non-contact measuring device.
  • the non-contact measuring device comprises an optical measuring instrument.
  • the casing is a transparent casing
  • the gas flow of the compressor is doped with reflective particles
  • the optical measuring instrument is disposed outside the casing for emitting laser light and receiving light reflected by the reflective particles in the gas flow of the compressor. Signal, real-time measurement of airflow pressure or velocity pulsations inside the bucket and vane channels.
  • the signal processing device comprises a central processing unit.
  • the central processor is configured to extract a characteristic parameter of pressure or velocity pulsation in the real-time measurement signal, and compare the characteristic parameter with a threshold value to determine an operating stable state of the compressor in real time.
  • the characteristic parameter comprises at least one of a spectral characteristic, a related characteristic or a propagation characteristic
  • the threshold is a threshold value for setting a flow pressure or a velocity pulsation from a stability to an instability in a compressor in advance.
  • control execution device comprises a driving module and an actuation module.
  • the driving module receives a control strategy signal transmitted by the signal processing device, and outputs a corresponding execution signal to the actuation module according to the control strategy signal.
  • the actuation module adjusts the stability of the compressor according to the execution signal.
  • the actuation module includes at least one of an inlet adjustable guide vane, a self-circulating suction-jet mechanism, a micro-jet mechanism, and a casing treatment.
  • the present invention also provides a method for performing compressor stability diagnosis and control using the above-described compressor pneumatic stability diagnosis and control apparatus, comprising the following steps:
  • the measuring device measures the airflow pressure or velocity pulsation at different positions inside the compressor in real time, and transmits real-time measurement signals obtained from different positions to the signal processing device;
  • the signal processing device determines, according to the real-time measurement signal, a type of instability precursor and a spatial distribution of the compressor operation, and outputs a control strategy signal to the control execution device;
  • the control execution device performs a corresponding control action according to the received control strategy signal, and performs stability control on the compressor.
  • step S2 includes:
  • the signal processing device extracts a characteristic parameter of a pressure or velocity pulsation of the airflow in the real-time measurement signal; the characteristic parameter includes at least one of a spectral characteristic, a related characteristic, or a propagation characteristic;
  • the signal processing device determines whether the characteristic parameter meets or exceeds a threshold; the threshold is a preset threshold value of the airflow pressure or velocity pulsation from stability to instability in the preset compressor;
  • the signal processing device When the characteristic parameter reaches or exceeds the threshold, the signal processing device outputs a control policy to the control execution device.
  • the device and method of the invention integrates a multi-channel data acquisition module, a dynamic signal data analysis module and a drive module, and can simultaneously perform pressure and velocity pulsation data acquisition, mass data storage, and rapid analysis of dynamic signals.
  • the device and method of the invention can monitor the dynamic pressure and velocity pulsation of the compressor in real time, and can quickly determine the pressure gas The path of instability.
  • the device and method of the invention can capture the stall precursor of the compressor and the precursor signal of the pre-stall in real time, and realize the stability monitoring of the compressor.
  • the apparatus and method of the present invention can achieve flexible control of compressor stability by making full use of the pre-compressed stall precursor signal and the tip jet, the self-circulating suction-jet and the adjustable vane control means.
  • FIG. 1 is a structural view of a pneumatic stability diagnostic control device for a compressor according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing the arrangement of a measuring device in a compressor according to an embodiment of the present invention
  • FIG. 3 is a schematic view showing the type of instability of a compressor according to an embodiment of the present invention.
  • FIG. 4 is a flow chart of a method for aerodynamic stability diagnostic control of a compressor according to an embodiment of the present invention.
  • the object of the present invention is to provide an apparatus and method for the aerodynamic stability diagnosis and control of a compressor, and at the same time realize the research and analysis of the precursor of the instability of the compressor, real-time warning and online regulation.
  • the compressor When the compressor is running stably, its average airflow pulsation, including the pressure and velocity pulsation of the airflow, is maintained within a certain range. Different from the average airflow pulsation, the airflow pressure or velocity pulsation that can affect the stable operation of the compressor is called disturbance. After the disturbance is generated, if it is not suppressed or eliminated, the continuous development will cause the compressor to be unstable.
  • Compressor instability refers to the process by which the compressor enters an unstable operating state.
  • the pressure or velocity pulsation of the compressor's airflow will exhibit certain aura characteristics from the generation of the disturbance to the eventual instability of the compressor.
  • This specification refers to such features as a precursor to instability. These signs of instability can be roughly distinguished by a precursor to a pre-stall and a precursor to a stall.
  • the aura of stall refers to the pressure or velocity pulsation characteristics before instability.
  • the pre-stall precursor is the smaller and more subtle disturbance component before the stall of the stall.
  • the process of the compressor entering the instability is from a stable working state, a pre-stun warning precursor, to a stall precursor development and finally into instability.
  • the apparatus and method of the present invention are applied to real-time diagnosis and control of aerodynamic stability of a compressor.
  • the invention can measure the pressure and/or velocity pulsation of the airflow at different positions in the compressor in real time, determine the operating state of the compressor in real time and perform on-line regulation.
  • the pressure and/or velocity pulsation of the airflow at different positions in the compressor herein mainly includes the pressure or velocity pulsation of the compressor blade and the vane inlet and outlet passages, and the pressure between the blade tip and the casing wall surface. Pulsating, static leaf surface pressure pulsation and internal pressure pulsation of the blade channel.
  • the present invention analyzes the real-time measurement signals such as the pressure and/or velocity pulsation of the airflow obtained at the different positions described above, and determines whether the characteristics of the pressure and/or velocity pulsation of the airflow in the real-time measurement signal are even Exceeding the pre-stabilization precursors, and/or the aura of stall, and other signs of instability, and in the initial period of the occurrence of the corresponding aura, according to the type and spatial distribution characteristics of the aura, the corresponding control measures are taken to eliminate the disturbance in time. Impact, inhibiting the further spread of the signs of instability.
  • the spatial position at which the disturbance occurs in the compressor generally includes the circumferential position of the passage, the radial position of the passage, and the axial position.
  • the circumferential position of the channel refers to the circumferential position between the blade tip of the various stages and the casing; the radial position of the channel refers to the radial position from the hub to the casing, mainly including the inlet and outlet passages of the bucket and/or the vane The radial position at which the exit channel is located.
  • the axial position refers to the inside of the passage of the buckets and vanes of each stage.
  • FIG. 1 is a block diagram showing the structure of an apparatus for aerodynamic stability diagnosis and control of a compressor according to an embodiment of the present invention.
  • the apparatus of an embodiment includes a measurement device 100, a signal processing device 200, a control execution device 300, and a host computer 400. among them:
  • the measuring device 100 is used for real-time measurement of the pressure or velocity pulsation of the airflow at different positions inside the compressor, so that the instability path of the compressor can be quickly identified during the instability process of the compressor, and then the obtained real-time measurement signal is transmitted to the signal processing device. 200.
  • the real-time measurement signal includes a pressure or velocity pulsation signal of the airflow measured in real time. If the instability start position, that is, the initial position at which the disturbance occurs, is not effectively recognized, it is difficult to apply a reliable control means to suppress the instability.
  • the spatiotemporal distribution of the disturbance is detected in real time, so as to achieve the purpose of quickly determining the instability path of the compressor.
  • the signal processing device 200 is configured to determine, according to the real-time measurement signal, a type of instability precursor of the compressor operation and a spatial distribution thereof, and output a control strategy signal to the control execution device 300; the signal processing device 200 selects an appropriate one according to the obtained instability path.
  • the stall aura and/or the previous stall precursor detection analysis method after analyzing, outputs a control strategy to the control execution device 300.
  • the control execution device 300 performs a corresponding control action according to the received control strategy signal to perform stability control on the compressor.
  • the host computer 400 pre-installs data monitoring software to display the signal acquisition process, control process and results.
  • the measurement device 100 in one embodiment includes both a contact measurement device and a non-contact measurement device, wherein the contact measurement device includes a dynamic pressure sensor 110 and a dynamic probe 120.
  • the non-contact measuring device includes an optical measuring instrument 130.
  • FIG. 1 The arrangement of the measuring device 100 at different locations in the compressor in one embodiment is illustrated in FIG.
  • a plurality of dynamic pressure sensors 110 are disposed inside the wall of the compressed motor blade to monitor the pressure pulsation of the compressed motor blade tip in real time.
  • a plurality of dynamic probes 120 are arranged inside the inlet and outlet passages for real-time detection of pressure fluctuations and statics of the inlet and outlet passages of the buckets Leaf inlet and outlet pressure pulsation
  • the optical measuring instrument 130 is disposed outside the compressor, and the pressure pulsation inside the vane and vane passages is measured by laser reflection.
  • the casing of an embodiment is required to be a transparent material to ensure that the laser can penetrate.
  • the reflective particles are continuously doped in the gas stream entering the compressor, so that the reflective particles flow with the gas flow inside the vane and vane channels.
  • the optical measuring instrument 130 is disposed outside the casing, and measures the reflected instability of the gas passage by measuring the reflected light of the reflective particles, and detects the internal flow of the moving vane and the vane passage in real time.
  • the signal processing device 200 includes a multi-channel acquisition module 210, an A/D conversion module 220, a central processing unit 230, a D/A conversion module 240, and a communication module 250.
  • the multi-channel acquisition module 210 is electrically connected to the measurement device 100, and receives the real-time measurement signals obtained by the measurement device 100 from different positions of the compressor, and transmits the signals to the A/D conversion module 220.
  • the A/D conversion module 220 performs A/D conversion, that is, analog signal/digital signal conversion, on the received real-time measurement signal, and then transmits it to the central processing unit 230.
  • the central processing unit 230 is configured to extract characteristic parameters of pressure or velocity pulsation in the real-time measurement signal, compare the characteristic parameter with a threshold value, and determine an operating stable state of the compressor in real time.
  • the characteristic parameter includes at least one of a spectral characteristic, a related characteristic, or a propagation characteristic.
  • the threshold is a threshold value for setting the pressure or velocity pulsation of the compressor from stability to instability in advance.
  • the central processor 230 includes a disturbance analysis algorithm sub-module and a comparison algorithm sub-module.
  • the disturbance analysis algorithm sub-module integrates spectrum analysis, time series analysis, wavelet analysis, correlation analysis and probability and statistical analysis algorithms, performs spectrum analysis, correlation analysis, and propagation characteristic analysis on the disturbance, and obtains the spectral characteristics, correlation characteristics and propagation of the disturbance. Characteristic parameters such as characteristics, and as a basis for stability control.
  • the perturbation analysis algorithm sub-module integrates a variety of analysis algorithms, which can make the detection and analysis of the disturbance more comprehensive, and can capture the occurrence of the disturbance in time, and leave enough time for controlling the response of the actuator.
  • the disturbances are mixed in the average flow pulsation of the compressor, for example, for small disturbances, it may be disturbed by the noise of the compressor itself.
  • spectrum analysis may be difficult to detect, and correlation analysis and wavelet analysis can determine the occurrence of such small disturbances in time.
  • spectral analysis can be easily and intuitively reflected.
  • the comparison algorithm sub-module presets a threshold value of the gas flow pressure or velocity pulsation from the stability to the instability in the compressor, wherein the threshold is pulsating according to the gas flow pressure or velocity exhibited by the compressor before the stall precursor or the stall precursor. Feature parameters, etc. are selected. Comparing the characteristic parameters extracted by the disturbance algorithm sub-module with the threshold value, determining the steady state of the compressor, and transmitting the effective signal of the data processing in the data analysis module to the driving module of the control actuator. The signal is then transmitted to the D/A conversion module 240.
  • the D/A conversion module 240 performs signal conversion/analog conversion processing on the received signal, and then transmits the control to the control Line device 300.
  • the communication module 250 performs bidirectional communication with the host computer 400, and also performs bidirectional communication with the central processing unit 230.
  • the control execution device 300 includes a drive module 310 and an actuation module 320.
  • the driving module 310 is connected to the actuating module of the control measure for receiving signals transmitted by the signal processing device, and outputs different execution signals to the actuating module 320 according to different ways of the compressor instability.
  • the actuation module 320 performs a corresponding regulation function according to the received execution signal, such as a stepping motor that operates the adjustable vane or a proportional solenoid valve of the tip jet, to achieve flexible online control of the stability of the compressor.
  • the actuation module 320 includes an inlet adjustable vane 321, a self-circulating suction-jet mechanism 322, a micro-jet mechanism 323, and a casing handling mechanism 324.
  • the adjustable vane mechanism 321 is capable of actuating the stepping motor of the adjustable vane for the stalling of the blade root or the angular separation of the corner guide, adjusting the pre-rotation angle of the vane, and adjusting the angle of attack of the inlet of the bucket to improve the flow effect;
  • the self-circulating suction-jet mechanism 322 and the micro-jet mechanism 323 can stall the tip of the blade, and can reduce the tip load or suppress the tip leakage by means of air jet, thereby achieving the purpose of widening the stable working range of the compressor;
  • the machine treatment mechanism 324 can adjust the size of the back cavity for the tip of the blade to suppress the growth of the disturbance, thereby achieving the purpose of widening the stable working range of the compressor;
  • the data monitoring software is pre-installed on the upper computer 400 to display the signal acquisition process, the control process and the result.
  • the upper computer 400 can also transmit data to the central processing unit 240 through the communication module 250 while performing data display.
  • FIG. 3 is a schematic view showing the type of instability of a compressor according to an embodiment of the present invention.
  • the occurrence of disturbance that is, the starting position and time of instability, will be different. It is also diversified inside the compressed motor blade and the stationary blade. If the instability starting position cannot be effectively identified, it is difficult to apply reliable control to suppress the stall. .
  • numerical calculations can simulate the starting position of the disturbance during the compressor stall, it is not possible to simulate conditions such as partial load operation and inlet distortion conditions when the compressor is operating under variable conditions and inlet boundary conditions are changed.
  • the compressor can have different ways of instability due to changes in blade loading and inlet boundary conditions, and measurements at different locations are required. Some compressors are circumferential long-distance disturbances.
  • the dynamic probe 120 placed on the inlet and outlet of the compressor can effectively measure the disturbance signal; some compressors are the tip of the blade tip stall.
  • the dynamic pressure sensor 110 disposed on the wall surface of the compressed motor blade can effectively measure the disturbance signal here; some compressors are stalled by the blade root root, and some compressors are stalled in the root zone of the stator blade.
  • This stall uses the optical measuring instrument 130 to determine the flow of the gas passage by measuring the reflected light of the reflective particles, and detects the internal flow of the moving vane and the vane passage in real time.
  • the type of instability refers to the way the compressor enters the unstable operation, mainly including system surge and local rotation stall.
  • the instability distribution refers to the spatial distribution of the precursor of the compressor instability.
  • System instability is generally developed by system disturbances or partial turbulence loss disturbances.
  • the system disturbance refers to the large-scale disturbance occurring in the circumferential direction of the whole blade blade;
  • the local turbulence loss disturbance refers to the disturbance occurring at a certain position of the moving blade or the stationary blade; the difference between the two is that the system disturbance is a large scale
  • Perturbation of circumferential propagation, local turbulence loss turbulence is the occurrence of a tip or leaf root, one or several channels inside the disturbance.
  • the development of local turbulence disturbances may also evolve into system disturbances.
  • System disturbances are generally caused by circumferential non-uniformities in the inlet and outlet channels.
  • the circumferential non-uniformity perturbation of the inlet and outlet passages refers to the flow circumferential non-uniformity occurring at the position of the inlet and outlet passages of the buckets and/or the vanes.
  • the dynamic probe 120 is disposed at each stage of the bucket and/or the vane inlet and outlet passages, and can measure the circumferential non-uniformity of the impellers and/or the vane inlet and outlet passages, including the radial direction from the hub to the inner wall of the casing. Disturbed. After arranging a plurality of dynamic probes symmetrically in the circumferential direction, the disturbance propagation characteristics of the entire circumference of the blade row can be captured.
  • the local turbulence loss turbulence is mainly distributed in the radial position and axial position of the channel, including blade tip disturbance and blade root disturbance.
  • the tip disturbance occurs in one or several channels of the tip of the moving blade, and the root root disturbance is the disturbance occurring in the root of the stationary and moving leaves.
  • the tip of the blade is mainly the tip of the tip of the moving blade, which is mainly the tip of the tip-type stall.
  • the dynamic pressure sensor 110 is disposed on the wall surface of the compressed motor blade, and can measure the stall tip of the bucket tip.
  • the stall tip of the moving blade tip can be expressed as a peak pulsation of the pressure on the wall of the casing, and the peak pulsation of the pressure can be captured by the dynamic pressure sensor 110 disposed inside the casing, thereby measuring the stall tip of the blade tip.
  • Leaf root disturbances include stalling of the roots of the moving leaves and stalling of the corners of the stationary leaves, mainly as the flow separation in the end zone. It is difficult for the contact-measured sensor to capture the pressure pulsation of the rotor and the root of the stator. At this time, the separation of the pressure pulse wave at the root is required by means of the optical measuring instrument 130.
  • the signal processing device 200 analyzes and judges, outputs a control strategy signal to the control execution device 300, and performs an operation action by the actuation module 320 of the control execution device 300 to the compressor. Perform stability control.
  • the inlet adjustable guide vane 321 of the actuation module 320 can actuate the stepper motor of the adjustable guide vane, and adjust the vane angle to change the bucket inlet.
  • the pre-rotation angle suppresses the circumferential development of the disturbance.
  • the self-circulating suction-jet mechanism 322 and the micro-jet mechanism 323 of the actuation module 320 can adjust the valve opening through the valve drive module to adjust the amount of the jet, and/or the casing treatment.
  • the mechanism 324 can rotate the motor by the motor drive module to change the size of the back cavity.
  • the inlet adjustable guide vane 321 of the actuation module 320 can drive the motor to rotate, adjust the vane angle to change the pre-rotation angle of the bucket inlet, and inhibit the development of the blade root stall.
  • the inlet adjustable guide vane 321 of the actuating module 320 can drive the rotating motor to rotate and adjust The vane angle changes the pre-rotation angle of the inlet of the moving blade, inhibiting the development of leaf root separation.
  • FIG. 4 is a flow chart of a method for aerodynamic stability diagnostic control of a compressor according to an embodiment of the present invention. Including steps:
  • the measuring device measures the airflow pressure and velocity pulsation at different positions inside the compressor in real time, and transmits real-time measurement signals obtained from different positions to the signal processing device.
  • the signal processing device determines the type of instability precursor and the spatial distribution of the compressor operation according to the real-time measurement signal, and outputs the control strategy signal to the control execution device.
  • S2 specifically includes:
  • the S21 signal processing device 200 analyzes the real-time measurement signal, that is, extracts the characteristic parameters of the pressure or velocity pulsation of the airflow in the real-time measurement signal through the disturbance analysis algorithm sub-module, including spectral characteristics, correlation characteristics or propagation characteristics.
  • the S22 signal processing device 200 diagnoses whether a pre-stall precursor or a stall precursor occurs, that is, through the comparison algorithm module, determines whether the extracted characteristic parameter analyzes whether the disturbance reaches or exceeds a threshold; if the threshold has not been reached, no signal is output; if the threshold is reached or exceeded , that indicates that a precursor to instability occurs, then enter S23;
  • the S23 signal processing device 200 confirms the precursor type and the instability path, and outputs a control strategy to the control execution device.
  • the control execution device performs a corresponding control action according to the received control strategy signal, and performs stability control on the compressor;
  • the adjustable guide vane mechanism 321 in the execution device controls the stepping motor of the adjustable guide vane, adjusts the pre-rotation angle of the guide vane, and adjusts the angle of attack of the inlet of the bucket.
  • the self-circulating suction-jet mechanism 322 and the micro-jet mechanism 323 in the control execution device can reduce the tip load or suppress the tip leakage by means of air jets, thereby widening the compressor
  • the purpose of stabilizing the working range; for the tip stalling, the casing processing mechanism 324 in the control executing device can adjust the size of the back cavity and suppress the growth of the disturbance, thereby achieving the purpose of widening the stable working range of the compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

一种用于压气机气动稳定性诊断和控制的装置和方法,能够同时实现压气机的失稳先兆研究分析、实时预警和在线调控。装置包括测量设备(100)、信号处理设备(200)和控制执行设备(300);测量设备(100)用于实时测量压气机内部不同位置的气流的压力或速度脉动,并将从不同位置获得的实时测量信号传输至信号处理设备(200)(S1);信号处理设备(200)用于根据实时测量信号,判断压气机运行的失稳先兆类型及空间分布,输出相应的控制策略信号给控制执行设备(300)(S2);控制执行设备(300)根据接收到的控制策略信号,执行相应的控制动作,对压气机进行稳定性调控(S3)。

Description

一种压气机气动稳定性诊断和控制的装置及方法 技术领域
本发明涉及压气机技术领域,尤其涉及压气机的气动稳定性诊断与控制装置及方法。
背景技术
目前国内外对压气机失稳先兆机理和调控手段的研究相对孤立,方法比较单一,尚没有一种能同时实现集失稳先兆研究分析、实时预警、在线调控于一体的装置及方法。针对集气动失稳先兆的诊断与控制研究功能为一体的装置及方法,不但能用于澄清叶轮机械领域复杂的失稳先兆、失稳机理等科学问题,更能为发展航空发动机的稳定性控制技术提供支持。因此,一种能够实现对压气机失稳先兆类型进行区分,对前失速先兆以及失速先兆进行实时捕捉、分析与在线控制的装置及方法,不仅能够帮助澄清叶轮机械领域复杂的失稳先兆、失稳机理等科学问题,更能为航空发动机的稳定性控制技术提供有益思路。而且,也将为实际发动机提高失速裕度积累丰富的实验数据,符合国民经济和国防建设迫切需求,并在科学和技术上具有一定难度和挑战性的工作。
发明内容
本发明的目的是公开一种压气机气动稳定性诊断与控制的装置及方法,以实现对压气机失稳先兆类别辨识,对失速先兆以及前失速先兆捕捉,并通过相应的控制机构实现对压气机稳定性的实时调控。
本发明提供了一种压气机气动稳定性诊断和控制的装置,包括测量设备、信号处理设备和控制执行设备。所述测量设备用于实时测量压气机内部不同位置的气流的压力或速度脉动,并将从不同位置获得的实时测量信号传输至信号处理设备,其中,所述实时测量信号包括实时测量的气流的压力或速度脉动信号。所述信号处理设备用于根据所述实时测量信号,判断压气机运行的失稳先兆类型及空间分布,输出相应的控制策略信号给控制执行设备。所述控制执行设备根据接收到控制策略信号,执行相应的控制动作,对压气机进行稳定性调控。
可选地,所述不同位置的气流的压力或速度脉动包括压气机各级动叶和静叶进出口通道压力或速度脉动、动叶叶顶与机匣壁面之间的压力脉动、静叶叶表压力脉动以及动叶通道内部压力脉动至少之一。
可选地,所述测量设备包括接触式测量设备。所述接触式测量设备包括动态压力传感器和动态探针。所述动态压力传感器布置在压气机动叶机匣壁面,用于实时测量压气机动叶叶 顶气流压力脉动。所述动态探针布置在进出口通道内部,实时测量动叶进出口通道和静叶进出口通道的气流压力或速度脉动。所述测量设备还包括非接触式测量设备。所述非接触式测量设备包括光学测量仪器。所述机匣为透明机匣,所述压气机的气流中掺杂有反光颗粒,以及所述光学测量仪器设置在机匣外部用于发射激光并接收压气机的气流中的反光颗粒反射的光信号,实时测量动叶和静叶通道内部的气流压力或速度脉动。
可选地,所述信号处理设备包括中央处理器。所述中央处理器用于提取所述实时测量信号中的压力或速度脉动的特性参数,并将所述特性参数与阈值进行比较,实时判断所述压气机的运行稳定状态。其中,所述特性参数包括频谱特性、相关特性或传播特性中的至少之一;所述阈值为预先设定压气机中气流压力或速度脉动从稳定性到非稳定性的临界值。
可选地,所述控制执行设备包括驱动模块和作动模块。所述驱动模块接收所述信号处理设备传输的控制策略信号,并根据所述控制策略信号输出相应的执行信号给作动模块。所述作动模块根据所述执行信号对压气机的进行稳定性调控。所述作动模块包括进口可调导叶、自循环抽吸-喷气机构、微喷气机构和机匣处理中的至少一个。
本发明还提供了一种使用上述压气机气动稳定性诊断和控制的装置进行压气机稳定性诊断和控制的方法,包括以下步骤:
S1、测量设备实时测量压气机内部不同位置的气流压力或速度脉动,并将从不同位置获得实时测量信号传输至信号处理设备;
S2、信号处理设备根据所述实时测量信号,判断压气机运行的失稳先兆类型及空间分布,输出控制策略信号给控制执行设备;
S3、控制执行设备根据接收到控制策略信号,执行相应的控制动作,对压气机进行稳定性调控。
可选地,步骤S2包括:
S21、信号处理设备提取所述实时测量信号中的气流的压力或速度脉动的特性参数;所述特性参数包括频谱特性、相关特性或传播特性中的至少之一;
S22、信号处理设备判断所述特性参数是否达到或超过阈值;所述阈值为预先设定的压气机中气流压力或速度脉动从稳定性到非稳定性的临界值;
S23、当所述特性参数达到或超过所述阈值,信号处理设备输出控制策略给控制执行设备。
本发明的压气机气动稳定性诊断与控制装置,优点在于:
1、本发明装置和方法集成了多通道数据采集模块、动态信号数据分析模块以及驱动模块,能够同时进行压力和速度脉动数据采集、海量数据存储以及动态信号的快速分析。
2、本发明装置和方法能够实时监测压气机内部动态压力和速度脉动,并能快速判断压气 机失稳途径。
3、本发明装置和方法能够对压气机的失速先兆和前失速先兆信号实时捕捉,实现对压气机稳定性监测。
4、本发明装置和方法能够通过充分利用实时捕捉的压气机前失速先兆信号和叶顶喷气、自循环抽吸-喷气以及可调导叶控制手段,实现对压气机稳定性的灵活调控。
附图说明
图1是本发明一实施例的压气机的气动稳定性诊断控制装置结构图;
图2是本发明一实施例的测量设备在压气机中的布置示意图;
图3是本发明一实施例的压气机失稳类型示意图;
图4为本发明利用一实施例的压气机气动稳定性诊断控制方法流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
本发明的目的是提供一种用于压气机气动稳定性诊断和控制的装置和方法,同时实现压气机的失稳先兆研究分析、实时预警和在线调控。当压气机稳定运行时,其平均气流脉动,包括气流的压力和速度脉动,维持在一定范围内。区别于平均气流脉动,能影响到压气机稳定运行的气流压力或速度脉动被称为扰动。扰动产生后,如不加抑制或消除,持续发展就会引起压气机失稳。压气机失稳是指压气机进入非稳定性工作状态的过程。从扰动的产生到最终导致压气机失稳之前,压气机的气流的压力或速度脉动会呈现出一定的先兆特征,本说明书将此类特征称为失稳先兆。这些失稳先兆大致可以区分为前失速先兆、失速先兆。其中,失速先兆是指失稳前的压力或速度脉动特征。前失速先兆是在失速先兆之前更小更细微的扰动分量。换言之,压气机进入失稳的过程是从稳定工作状态,经前失速先兆,到失速先兆发展最后进入失稳。
本发明的装置和方法应用于压气机气动稳定性实时诊断和控制。本发明能够实时测量压气机内不同位置的气流的压力和/或速度脉动,实时判断压气机的运行状态并进行在线调控。其中,此处的压气机内不同位置的气流的压力和/或速度脉动主要包括压气机各级动叶和静叶进出口通道压力或速度脉动、动叶叶顶与机匣壁面之间的压力脉动、静叶叶表压力脉动以及动叶通道内部压力脉动。本发明通过对上述不同位置获得的气流的压力和/或速度脉动等实时测量信号进行分析,判断该实时测量信号中的气流的压力和/或速度脉动的特征是否达到甚至 超过前失速先兆、和/或失速先兆等失稳先兆,并在相应失稳先兆出现最初时间段内,根据失稳先兆的类型和空间分布特性针对性的采取相应的调控措施,及时消除扰动的影响,抑制失稳先兆的进一步传播。压气机中扰动发生的空间位置大致包括通道圆周位置、通道径向位置和轴向位置。其中,通道圆周位置指各级动叶叶顶与机匣之间的圆周位置;通道径向位置指从轮毂到机匣之间径向位置,主要包括动叶进出口通道和/或静叶进出口通道所在的径向位置。轴向位置指的是各级动叶和静叶的通道内部。通过在这些位置上布置一定的测量设备,就能够对压气机中这些位置的气流脉动进行实时监测,可及时发现扰动的产生。当测量到压气机中发生扰动后,通过信号处理设备预判该扰动对压气机运行的影响,如果扰动的发展程度达到或者已经引发前失速先兆、或失速先兆,则需要对压气机采取必要的控制策略,进行针对性的调控。
图1是本发明一实施例的用于压气机气动稳定性诊断和控制的装置结构框图。如图1所示,一实施例的装置包括测量设备100、信号处理设备200、控制执行设备300和上位机400。其中:
测量设备100用于实时测量压气机内部不同位置的气流的压力或速度脉动,从而在压气机失稳过程中可快速辨识压气机的失稳途径,然后将获得的实时测量信号传输给信号处理设备200。该实时测量信号包括实时测量的气流的压力或速度脉动信号。如果不能有效辨识失稳起始位置,即扰动发生的初始位置,则很难施加可靠的控制手段抑制失稳。实时检测到扰动的时空分布,从而达到快速判断压气机失稳途径的目的。
信号处理设备200用于根据所述实时测量信号,判断压气机运行的失稳先兆类型及其空间分布,输出控制策略信号给控制执行设备300;信号处理设备200根据获取的失稳途径选取合适的失速先兆和/或前失速先兆检测分析方法,进行分析后,输出控制策略至控制执行设备300。
控制执行设备300根据接收到控制策略信号,执行相应的控制动作,对压气机进行稳定性调控。
上位机400预装数据监测软件,对信号采集过程、控制过程与结果进行显示。
一实施例中测量设备100包括接触式测量设备和非接触式测量设备两类,其中接触式测量设备包括动态压力传感器110和动态探针120。非接触式测量设备包括光学测量仪器130。
一实施例中测量设备100在压气机中不同位置的布置如图2所示。
多个动态压力传感器110布置在压气机动叶机匣壁内部,用于实时监测压气机动叶叶顶压力脉动。
多个动态探针120布置在进出口通道内部,用于实时检测动叶进出口通道压力脉动和静 叶进出口压力脉动
光学测量仪器130布置压气机外部,通过激光反射作用测量在静叶和动叶通道内部的压力脉动。使用光学测量仪器130时,要求一实施例的机匣为透明材质,保证激光能够穿透。并且,在进入压气机的气流中持续掺杂反光颗粒,使反光颗粒随气流在静叶和动叶通道内部流动。光学测量仪器130布置在机匣外部,通过测量反光颗粒的反射的光来判断气体通道的流动失稳先兆,实时检测动叶和静叶通道内部流动。
一实施例中,信号处理设备200包括多通道采集模块210、A/D转换模块220、中央处理器230、D/A转换模块240和通讯模块250。
多通道采集模块210与测量设备100电连接,接收测量设备100从压气机不同位置获得的实时测量信号,并传输给A/D转换模块220。
A/D转换模块220对接收的实时测量信号进行A/D转换,即模拟信号/数字信号转换,然后传输给中央处理器230。
中央处理器230用于提取所述实时测量信号中的压力或速度脉动的特性参数,并将所述特性参数与阈值进行比较,实时判断所述压气机的运行稳定状态。其中,所述特性参数包括频谱特性、相关特性或传播特性中的至少之一。所述阈值为预先设定压气机中气流压力或速度脉动从稳定性到非稳定性的临界值。
具体地,中央处理器230包括扰动分析算法子模块和比较算法子模块。其中,扰动分析算法子模块集成了频谱分析、时序分析、小波分析、相关分析以及概率统计分析算法,对扰动进行频谱分析、相关分析、及传播特性分析,获得扰动的频谱特性、相关特性以及传播特性等特征参数,并以此作为稳定性控制的依据。扰动分析算法子模块集成了多种分析算法,可以使扰动的检测分析更加全面,同时能够及时的捕捉到扰动的发生,为控制执行机构响应留有足够的时间。因为扰动都混杂于压气机平均流脉动中,例如,对于小扰动,可能被压气机本身的噪声干扰。这种情况下,频谱分析可能会难以觉察,而相关分析和小波分析就可以及时判断此类小扰动的产生。又例如,对于比较强的扰动,频谱分析就能够比较容易直观反映。
比较算法子模块中预先设定压气机中气流压力或速度脉动从稳定性到非稳定性的阈值,其中,阈值是根据压气机在前失速先兆、或失速前兆呈现出的气流压力或速度脉动的特征参数等进行选择。将扰动算法子模块提取的特性参数与阈值进行比较,判断压气机稳定状态,并将数据分析模块中数据处理的有效信号传输的控制执行机构的驱动模块中。然后传输信号至D/A转换模块240。
D/A转换模块240对接收的信号进行信号数据量/模拟量的转换处理,然后传输至控制执 行设备300。
通讯模块250与上位机400进行双向通讯,同时也与中央处理器230进行双向通讯。
一实施例中,控制执行设备300包括驱动模块310和作动模块320。其中驱动模块310与控制措施的作动模块连接,用于接收信号处理设备传输的信号,根据压气机失稳途径的不同,输出不同的执行信号至作动模块320。作动模块320根据接收到的执行信号,执行相应的调控功能,比如作动可调导叶的步进电机或叶尖喷气的比例电磁阀,实现对压气机稳定性的灵活在线调控。
作动模块320包括进口可调导叶321、自循环抽吸-喷气机构322、微喷气机构323、以及机匣处理机构324。
可调导叶机构321针对叶根失速或角区分离,可以作动可调导叶的步进电机,调整导叶的预旋角度,达到调整动叶进口攻角,改善流动的效果;
自循环抽吸-喷气机构322和微喷气机构323针对叶尖失速,可以以喷气的方式,减小叶尖负载或者抑制叶尖泄漏,从而达到拓宽压气机稳定工作范围的目的;
机匣处理机构324针对叶尖失速,可以调节背腔大小,抑制扰动的增长,从而达到拓宽压气机稳定工作范围的目的;
一实施例中上位机400上预装数据监测软件,对信号采集过程、控制过程与结果进行显示。上位机400在进行数据显示的同时,还可以通过通讯模块250向中央处理器240传输数据。
图3是本发明一实施例的压气机失稳类型示意图。扰动的发生,即失稳的起始位置和时间都会有所不同,在压气机动叶和静叶内部也比较多样化,如果不能有效辨识失稳起始位置,很难施加可靠的控制手段抑制失速。虽然数值计算可以模拟压气机失速过程中扰动产生的起始位置,但是无法模拟在压气机变工况运行以及进口边界条件变化时的状况,比如部分负荷运行和进口畸变条件。如图3所示,由于叶片负荷以及进口边界条件变化,压气机可以有不同的失稳途径,就需要在不同位置进行测量。有的压气机是周向长尺度扰动,此种情况下布置在压气机进出口通道上动态探针120就能够有效地测量到扰动信号;有的压气机是动叶叶尖突尖失速,此种情况下,布置在压气机动叶机匣壁面的动态压力传感器110就能够有效地测量到此处的扰动信号;有的压气机是动叶叶根失速,有的压气机是静叶叶根角区失速,这种失速使用光学测量仪器130,通过测量反光颗粒的反射的光来判断气体通道的流,实时检测动叶和静叶通道内部流动。
图3中,失稳类型是指压气机进入非稳定性工作的方式,主要包括系统喘振和局部旋转失速。失稳分布是指压气机失稳先兆产生的空间分布位置。
系统失稳一般由系统扰动或局部湍流失稳扰动不断发展而成。其中系统扰动是指发生在整个动叶叶片排周向大尺度扰动;局部湍流失稳扰动是指发生在动叶或者静叶某个局部位置的扰动;这两者的区别是系统扰动是大尺度周向传播的扰动,局部湍流失稳扰动是发生叶尖或者叶根,一个或者几个通道内部的扰动。同时,局部湍流扰动的发展也有可能演变为系统扰动。
系统扰动一般由进出口通道周向不均匀性引起。其中进出口通道周向不均匀性扰动是指发生在各级动叶和/或静叶进出口通道所在的位置处的流动周向不均匀性。动态探针120布置在各级动叶和/或静叶进出口通道处,可以测量各级动叶和/或静叶进出口通道周向不均匀性,包括从轮毂到机匣内壁的径向扰动。沿周向对称布置多个动态探针之后,可以捕捉叶片排全圆周的扰动传播特性。
局部湍流失稳扰动主要分布在通道径向位置和轴向位置,包括叶尖扰动和叶根扰动。其中叶尖扰动发生在动叶叶尖某个或某几个通道内,叶根扰动是发生在静叶和动叶叶根的扰动。
叶尖扰动主要是动叶叶尖尖峰失速,主要是突尖型失速先兆。动态压力传感器110布置在压气机动叶机匣壁面,可以测量动叶叶尖尖峰失速。动叶叶尖尖峰失速在机匣壁面可表现为压力的尖峰脉动,可通过在机匣内部布置的动态压力传感器110捕捉到压力的尖峰脉动,进而测量动叶叶尖尖峰失速。
叶根扰动包括动叶叶根失速和静叶角区失速,主要表现为端区的流动分离。接触式测量的传感器难以捕捉到转子和静子根部的压力脉动,此时需要借助光学测量仪器130实现对根部的分离压力脉动波的检测。
当测量设备100实时测量到扰动的发生和空间分布后,经信号处理设备200分析判断,输出控制策略信号给控制执行设备300,由控制执行设备300的作动模块320执行控制动作,对压气机进行稳定性调控。
例如,当测量到通道周向不均匀性扰动引发系统失稳先兆时,作动模块320的进口可调导叶321可以作动可调导叶的步进电机,调节导叶角度改变动叶进口预旋角,抑制扰动周向发展。
当测量到动叶叶尖尖峰失速时,作动模块320的自循环抽吸-喷气机构322和微喷气机构323可通过阀门驱动模块调节阀门开度进而调节喷气量大小、和/或机匣处理机构324可通过电机驱动模块作动电机旋转,改变背腔的大小。
当测量到叶根失速时,作动模块320的进口可调导叶321可以驱动电机旋转,调节导叶角度改变动叶进口预旋角,抑制叶根失速发展。
当测量到角区失速时,作动模块320的进口可调导叶321可以驱动作动电机旋转,调节 导叶角度改变动叶进口预旋角,抑制叶根分离的发展。
图4为本发明利用一实施例的压气机气动稳定性诊断控制方法流程图。包括步骤:
S1、测量设备实时测量压气机内部不同位置的气流压力和速度脉动,并将从不同位置获得实时测量信号传输至信号处理设备。
S2、信号处理设备根据实时测量信号,判断压气机运行的失稳先兆类型及空间分布,输出控制策略信号给控制执行设备。
其中,S2具体还包括:
S21信号处理设备200分析实时测量信号,即通过扰动分析算法子模块提取实时测量信号中的气流的压力或速度脉动的特性参数,包括频谱特性、相关特性或传播特性。
S22信号处理设备200诊断是否出现前失速先兆或失速先兆,即通过比较算法模块,判断提取的特性参数分析扰动是否达到或超过阈值;如果尚未达到阈值,则不输出任何信号;如果达到或超过阈值,即表明出现失稳先兆,则进入S23;
S23信号处理设备200确认先兆类型和失稳途径,输出控制策略给控制执行设备。
S3、控制执行设备根据接收到控制策略信号,执行相应的控制动作,对压气机进行稳定性调控;
具体地,针对叶根失速或角区分离,控制执行设备中的可调导叶机构321作动可调导叶的步进电机,调整导叶的预旋角度,达到调整动叶进口攻角,改善流动的效果;针对叶尖失速,控制执行设备中的自循环抽吸-喷气机构322和微喷气机构323可以以喷气的方式,减小叶尖负载或者抑制叶尖泄漏,从而达到拓宽压气机稳定工作范围的目的;针对叶尖失速,控制执行设备中的机匣处理机构324可以调节背腔大小,抑制扰动的增长,从而达到拓宽压气机稳定工作范围的目的。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种压气机气动稳定性诊断和控制的装置,其特征在于,包括测量设备、信号处理设备和控制执行设备;
    所述测量设备用于实时测量压气机内部不同位置的气流的压力或速度脉动,并将从不同位置获得实时测量信号传输至信号处理设备;其中,所述实时测量信号包括实时测量的气流的压力或速度脉动信号;
    所述信号处理设备用于根据所述实时测量信号,判断压气机运行的失稳先兆类型及空间分布,输出相应的控制策略信号给控制执行设备;
    所述控制执行设备根据接收到控制策略信号,执行相应的控制动作,对压气机进行稳定性调控。
  2. 根据权利要求1所述的压气机气动稳定性诊断和控制的装置,其特征在于,所述不同位置的气流的压力或速度脉动包括压气机各级动叶和静叶进出口通道压力或速度脉动、动叶叶顶与机匣壁面之间的压力脉动、静叶叶表压力脉动以及动叶通道内部压力脉动至少之一。
  3. 根据权利要求1所述的压气机气动稳定性诊断和控制的装置,其特征在于,所述测量设备包括接触式测量设备,所述接触式测量设备包括动态压力传感器和动态探针;
    所述动态压力传感器布置在压气机动叶叶顶的机匣壁内部,用于实时测量压气机动叶叶顶气流压力脉动;
    所述动态探针布置在进出口通道内部,实时测量动叶进出口通道和静叶进出口通道的气流压力或速度脉动。
  4. 根据权利要求3所述的压气机气动稳定性诊断和控制的装置,其特征在于,所述测量设备还包括非接触式测量设备;所述非接触式测量设备包括光学测量仪器;
    所述机匣为透明机匣;所述压气机的气流中掺杂有反光颗粒;
    所述光学测量仪器设置在机匣外部,用于发射激光并接收压气机的气流中的反光颗粒反射的光信号,实时测量动叶和静叶通道内部的气流压力或速度脉动。
  5. 根据权利要求1所述的压气机气动稳定性诊断和控制的装置,其特征在于,所述信号处理设备包括中央处理器;
    所述中央处理器用于提取所述实时测量信号中的压力或速度脉动的特性参数,并将所述特性参数与阈值进行比较,实时判断所述压气机的运行稳定状态;
    其中,所述特性参数包括频谱特性、相关特性或传播特性中的至少之一;
    所述阈值为预先设定压气机中气流压力或速度脉动从稳定性到非稳定性的临界值。
  6. 根据权利要求1所述的压气机气动稳定性诊断和控制的装置,其特征在于,所述控制执行设备包括驱动模块和作动模块;
    所述驱动模块接收所述信号处理设备传输的控制策略信号,并根据所述控制策略信号输出相应的执行信号给作动模块;
    所述作动模块根据所述执行信号对压气机的进行稳定性调控。
  7. 根据权利要求6所述的压气机气动稳定性诊断和控制的装置,其特征在于,所述作动模块包括进口可调导叶、自循环抽吸-喷气机构、微喷气机构和机匣处理中的至少一个。
  8. 一种使用权利要求1~7任意一项所述的装置进行压气机稳定性诊断和控制的方法,其特征在于,包括以下步骤:
    S1、测量设备实时测量压气机内部不同位置的气流压力或速度脉动,并将从不同位置获得实时测量信号传输至信号处理设备;
    S2、信号处理设备根据所述实时测量信号,判断压气机运行的失稳先兆类型及空间分布,输出控制策略信号给控制执行设备;
    S3、控制执行设备根据接收到控制策略信号,执行相应的控制动作,对压气机进行稳定性调控。
  9. 根据权利要求8所述的进行压气机稳定性诊断和控制的方法,其特征在于,步骤S2包括:
    S21、信号处理设备提取所述实时测量信号中的气流的压力或速度脉动的特性参数;所述特性参数包括频谱特性、相关特性或传播特性中的至少之一;
    S22、信号处理设备判断所述特性参数是否达到或超过阈值;所述阈值为预先设定的压气机中气流压力或速度脉动从稳定性到非稳定性的临界值;
    S23、当所述特性参数达到或超过所述阈值,信号处理设备输出控制策略给控制执行设备。
PCT/CN2017/112331 2017-01-24 2017-11-22 一种压气机气动稳定性诊断和控制的装置及方法 WO2018137394A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/480,673 US11536285B2 (en) 2017-01-24 2017-11-22 Apparatus and method for diagnosing and controlling aerodynamic stability of compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710062990.5A CN106640722B (zh) 2017-01-24 2017-01-24 一种压气机气动稳定性诊断和控制的装置及方法
CN201710062990.5 2017-01-24

Publications (1)

Publication Number Publication Date
WO2018137394A1 true WO2018137394A1 (zh) 2018-08-02

Family

ID=58841593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112331 WO2018137394A1 (zh) 2017-01-24 2017-11-22 一种压气机气动稳定性诊断和控制的装置及方法

Country Status (3)

Country Link
US (1) US11536285B2 (zh)
CN (1) CN106640722B (zh)
WO (1) WO2018137394A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106640722B (zh) * 2017-01-24 2019-03-01 中国科学院工程热物理研究所 一种压气机气动稳定性诊断和控制的装置及方法
CN107202029B (zh) * 2017-07-03 2018-08-28 南京航空航天大学 一种轴流压气机的自适应攻角方法
CN107545832B (zh) * 2017-10-20 2019-07-09 中国民航大学 一种无线控制离心压气机特性及气动失稳教学实验系统
CN109030849B (zh) * 2018-05-22 2021-06-11 大连透平机械技术发展有限公司 压缩机旋转失速的监测方法及装置
CN110162858A (zh) * 2019-05-14 2019-08-23 中国科学院工程热物理研究所 压气机稳定性预测方法
CN110411351A (zh) * 2019-07-16 2019-11-05 中国舰船研究设计中心 离心压缩机叶轮叶顶动态压力测量和锁相装置及其方法
CN111102215B (zh) * 2019-12-16 2021-01-29 北京航空航天大学 轴流压气机流线流动稳定性预测方法及装置
CN114962305B (zh) * 2021-02-25 2023-09-26 中国航发商用航空发动机有限责任公司 压气机失稳在线检测方法、装置、系统、设备及介质
CN113279997B (zh) * 2021-06-04 2022-04-12 大连理工大学 一种基于控制器模糊切换的航空发动机喘振主动控制系统
CN114624464B (zh) * 2022-03-23 2022-12-20 北京航空航天大学 非接触式热膜测试设备及压气机转子部件稳定性判别方法
CN114954963A (zh) * 2022-06-27 2022-08-30 厦门大学 一种高超声速航空发动机进气道气动失稳预警方法
CN117028300B (zh) * 2023-09-19 2024-05-14 中国科学院工程热物理研究所 基于时频信号分析的轴流压气机叶顶喷气防喘控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1464179A (zh) * 2002-06-13 2003-12-31 中国科学院工程热物理研究所 拓宽多级、轴流压气机稳定运行区域的方法及其装置
CN102900564A (zh) * 2011-07-25 2013-01-30 中国科学院工程热物理研究所 用于轴流压缩系统叶顶喷气稳定性控制的控制器
CN103471809A (zh) * 2013-09-12 2013-12-25 中国科学院工程热物理研究所 一种超高频响等离子体流动测量装置
CN103884467A (zh) * 2014-04-14 2014-06-25 中国科学院工程热物理研究所 等离子体压力探针及利用其测量压力的系统
US20160130974A1 (en) * 2014-11-06 2016-05-12 Rolls-Royce Plc Compressor monitoring method
CN106640722A (zh) * 2017-01-24 2017-05-10 中国科学院工程热物理研究所 一种压气机气动稳定性诊断和控制的装置及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4637293A (en) * 1992-08-10 1994-03-03 Dow Deutschland Inc. Process and device for monitoring and for controlling of a compressor
FR2804732B1 (fr) * 2000-02-03 2002-04-12 Snecma Procede de detection precoce des instabilites aerodynamiques dans un compresseur de turbomachine
US7762084B2 (en) * 2004-11-12 2010-07-27 Rolls-Royce Canada, Ltd. System and method for controlling the working line position in a gas turbine engine compressor
US20090169356A1 (en) * 2007-12-28 2009-07-02 Aspi Rustom Wadia Plasma Enhanced Compression System
US9671303B2 (en) * 2015-03-10 2017-06-06 Ford Global Technologies, Llc Method and system for laser pressure transducer
US10364698B2 (en) * 2016-06-10 2019-07-30 Rolls-Royce North American Technologies, Inc. System and method of non-intrusive thrust measurement
EP3290342A1 (en) * 2016-09-06 2018-03-07 Rolls-Royce North American Technologies, Inc. Methods of modifying turbine engine operating limits
US20190128718A1 (en) * 2017-10-27 2019-05-02 Siemens Energy, Inc. Increasing accuracy of particle image velocimetry via graphene or graphite flakes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1464179A (zh) * 2002-06-13 2003-12-31 中国科学院工程热物理研究所 拓宽多级、轴流压气机稳定运行区域的方法及其装置
CN102900564A (zh) * 2011-07-25 2013-01-30 中国科学院工程热物理研究所 用于轴流压缩系统叶顶喷气稳定性控制的控制器
CN103471809A (zh) * 2013-09-12 2013-12-25 中国科学院工程热物理研究所 一种超高频响等离子体流动测量装置
CN103884467A (zh) * 2014-04-14 2014-06-25 中国科学院工程热物理研究所 等离子体压力探针及利用其测量压力的系统
US20160130974A1 (en) * 2014-11-06 2016-05-12 Rolls-Royce Plc Compressor monitoring method
CN106640722A (zh) * 2017-01-24 2017-05-10 中国科学院工程热物理研究所 一种压气机气动稳定性诊断和控制的装置及方法

Also Published As

Publication number Publication date
US11536285B2 (en) 2022-12-27
CN106640722B (zh) 2019-03-01
US20210131441A1 (en) 2021-05-06
CN106640722A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2018137394A1 (zh) 一种压气机气动稳定性诊断和控制的装置及方法
US6532433B2 (en) Method and apparatus for continuous prediction, monitoring and control of compressor health via detection of precursors to rotating stall and surge
US6438484B1 (en) Method and apparatus for detecting and compensating for compressor surge in a gas turbine using remote monitoring and diagnostics
US6536284B2 (en) Method and apparatus for compressor control and operation via detection of stall precursors using frequency demodulation of acoustic signatures
US8396689B2 (en) Method for analysis of the operation of a gas turbine
CN110608187A (zh) 基于频率特征变化的轴流压气机失速喘振预测装置
KR100296671B1 (ko) 압축기의제어와모니터링을위한장치및공정
US7003426B2 (en) Method and system for detecting precursors to compressor stall and surge
JP7158875B2 (ja) 圧縮機の異常を予測するためのシステムおよび方法
JP2008544131A (ja) 外部のマイクロホンによるエンジン状態の検知
US6506010B1 (en) Method and apparatus for compressor control and operation in industrial gas turbines using stall precursors
JP2008082339A (ja) 空気力学的安定性管理システム及びそのコントローラ
CN101506528A (zh) 涡轮增压器系统和用于操作该涡轮增压器系统的方法
US9080575B2 (en) Method of detecting and controlling stall in an axial fan
US20160025596A1 (en) Method and systems for detection compressor surge
CN111140532B (zh) 一种畸变来流条件下航空压气机系统稳定性在线监测方法
RU2354851C1 (ru) Способ контроля режимов работы компрессора и устройство для его осуществления
JP2003314305A (ja) ガスタービン制御装置、ガスタービンシステム及びガスタービン制御方法
CN108760329B (zh) 一种低压涡轮噪声试验方法及其改进方法
CN211288186U (zh) 基于频率特征变化的轴流压气机失速喘振预测装置
CN110374754A (zh) 故障检测保护系统和车辆
JP2012117531A (ja) サージ前兆保護システムおよび方法
Hiller et al. High pressure compressor stabilization by controlled pulsed injection
RU2527850C1 (ru) Способ диагностики помпажа компрессора газотурбинного двигателя
EP2730907A2 (en) Systems and Methods for Holding Target Turbomachine Compressor Pressure Ratio Constant While Varying Shaft Speed

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894453

Country of ref document: EP

Kind code of ref document: A1