WO2018137367A1 - 一种配置资源指示方法及装置 - Google Patents

一种配置资源指示方法及装置 Download PDF

Info

Publication number
WO2018137367A1
WO2018137367A1 PCT/CN2017/107544 CN2017107544W WO2018137367A1 WO 2018137367 A1 WO2018137367 A1 WO 2018137367A1 CN 2017107544 W CN2017107544 W CN 2017107544W WO 2018137367 A1 WO2018137367 A1 WO 2018137367A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement resource
csi
time offset
srs
configuration
Prior art date
Application number
PCT/CN2017/107544
Other languages
English (en)
French (fr)
Inventor
唐小勇
周恩治
黄煌
刘亚林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17894208.2A priority Critical patent/EP3562236B1/en
Publication of WO2018137367A1 publication Critical patent/WO2018137367A1/zh
Priority to US16/523,396 priority patent/US10979170B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a configuration resource indication method and apparatus.
  • Beamforming is a signal preprocessing technique based on an antenna array. By adjusting the weighting coefficients of each array element in the antenna array to generate a beam with directivity, a significant array gain can be obtained.
  • a base station (BS) and a user equipment (UE) need to simultaneously use a set of appropriate beamforming weighting coefficients so that the received power is higher than a certain threshold. Beam alignment is achieved with the UE. However, due to the movement of the UE and the change of the environment, the optimal weighting coefficient for beam alignment is changed in real time. In order to maintain the communication link uninterrupted, beam alignment between the base station and the UE needs to be performed in real time, that is, weighting coefficient. Adjustment.
  • the specific process includes four phases: in a channel state information reference signal (CSI-RS) configuration phase, the base station allocates CSI-RS resources required by the subsequent stages to the UE by using signaling. And the beam scanning mode, and notifying the UE of the time-frequency resource location in the reporting phase.
  • CSI-RS channel state information reference signal
  • the base station transmits CSI-RSs on the CSI-RS resources using multiple narrow beams (ie, transmit beams) for transmit beam scanning.
  • the UE uses wide beams for reception and measures CSI-RS resources.
  • the signal strength of the upper transmit beam During the UE reporting phase, the UE selects the transmit beam with the highest signal strength (ie, the optimal transmit beam), and the index number of the beam and the corresponding reference signal receiving power (RSRP) pass the configured time-frequency resource of the reporting phase. Reported to the base station.
  • the base station uses the optimal transmit beam transmission on the CSI-RS resource.
  • the UE uses multiple narrow beams for reception, and measures the signal strength of each narrow beam on the CSI-RS resource, and according to the signal. The intensity selects the best receive beam, and the alignment process of the upstream beam ends.
  • the uplink beam and the downlink beam cannot be aligned at the same time, and corresponding time-frequency resources need to be allocated for the two beam scans in the process of one beam alignment, thereby implementing uplink beam alignment.
  • the downlink beam is aligned, four beam scans are required, and corresponding time-frequency resources are allocated for each scan, so the time-frequency resource has a large overhead.
  • the embodiment of the present invention provides a method and an apparatus for indicating resource allocation, which solves the problem that the uplink beam and the downlink beam cannot be aligned at the same time in the prior art, and the time-frequency resource overhead in the beam alignment process is large.
  • a first aspect provides a configuration resource indication method, where the method includes: the base station generates configuration information, where the configuration information includes information indicating a relationship between a channel state information reference signal CSI-RS measurement resource and a sounding reference signal SRS measurement resource; Send configuration information at configuration time.
  • the base station sends information about the relationship between the CSI-RS measurement resource and the SRS measurement resource to the user equipment by using the configuration information, so as to associate the CSI-RS for performing beam alignment with the SRS measurement resource.
  • the base station and the user equipment perform uplink beam alignment and downlink beam alignment through a beam alignment process, thereby saving time-frequency resource overhead and improving beam alignment efficiency.
  • the configuration information further includes: configuration information of one or more SRS measurement resources, and/or configuration information of one or more CSI-RS measurement resources.
  • the base station may configure one or more measurement resources for the SRS and/or the CSI-RS through the configuration information, thereby reducing the signaling overhead of the base station configuring the SRS and/or the CSI-RS.
  • the information for indicating a relationship between the channel state information reference signal CSI-RS measurement resource and the sounding reference signal SRS measurement resource includes at least one of the following information: CSI-RS Measuring a time offset or a time offset index of the resource relative to the configuration time, a time offset of the SRS measurement resource relative to the configuration time, or a time offset index; a time offset of the CSI-RS measurement resource relative to the configuration time or Time offset index, time offset of the SRS measurement resource relative to the CSI-RS measurement resource or time offset index; time offset or time offset index of the SRS measurement resource relative to the configuration time, and CSI-RS measurement resource relative to The time offset or time offset index of the resource is measured at the SRS.
  • multiple possible information for indicating a relationship between a CSI-RS measurement resource and an SRS measurement resource is provided, so that when SRS and/or CSI-RS configuration is performed based on the foregoing information, the reduction may be reduced.
  • the base station configures the signaling overhead of the SRS and/or CSI-RS.
  • the measurement resource of the reference signal is a periodic configuration or a semi-static configuration
  • the measurement resource of the reference signal is a CSI-RS measurement resource or the SRS measurement resource
  • the SRS has at least two measurement resources, and the measurement resources for the CSI-RS are at least two.
  • the time offset or time offset index of the CSI-RS measurement resource relative to the configuration time includes: a time offset or time offset index of the first CSI-RS measurement resource relative to the configuration time, and a resource index of the at least one CSI-RS measurement resource; correspondingly, the time offset of the SRS measurement resource relative to the configuration time Or the time offset index includes: a time offset or a time offset index of the first SRS measurement resource with respect to the configuration time, and a resource index of the at least one SRS measurement resource.
  • the base station may measure the resources for the periodic or semi-static configuration of the SRS and/or the CSI-RS by using different time offsets or time offset indexes and resource indexes of the measurement resources.
  • the configuration information further includes information used to indicate a relative location of the CSI-RS measurement resource and the SRS measurement resource.
  • the base station can measure the beam scanning mode by using the CSI-RS measurement resource and the SRS measurement resource relative position recessive, so that the signaling interaction between the base station and the user equipment can be saved.
  • the first beam set is a wave used by the base station to receive the SRS The bundle set
  • the second beam set is a beam set used by the base station to transmit the CSI-RS
  • the second beam set is a subset of the first beam set.
  • a second aspect provides a configuration resource indication method, the method comprising: receiving, by a user equipment, configuration information from a network device, where the configuration information includes a channel state information reference signal CSI-RS measurement resource and a sounding reference signal SRS measurement resource. Relationship information; determining CSI-RS measurement resources and SRS measurement resources according to configuration information.
  • the configuration information further includes: configuration information of one or more SRS measurement resources, and/or configuration information of one or more CSI-RS measurement resources.
  • the information used to indicate the relationship between the channel state information reference signal CSI-RS measurement resource and the sounding reference signal SRS measurement resource includes: the CSI-RS measurement resource relative to the configuration time The time offset or the time offset index, the time offset of the SRS measurement resource relative to the configuration time, or the time offset index, and determining the CSI-RS measurement resource and the SRS measurement resource according to the configuration information, including: according to the CSI-RS The CSI-RS measurement resource is determined by measuring a time offset or a time offset index of the resource with respect to the configuration time; determining the SRS measurement resource according to the time offset or time offset index of the SRS measurement resource with respect to the configuration time.
  • the information used to indicate the relationship between the channel state information reference signal CSI-RS measurement resource and the sounding reference signal SRS measurement resource includes: the CSI-RS measurement resource relative to the configuration time a time offset or a time offset index, a time offset of the SRS measurement resource relative to the CSI-RS measurement resource, or a time offset index, and determining, according to the configuration information, a CSI-RS measurement resource and an SRS measurement resource, including Determining a CSI-RS measurement resource according to a time offset or a time offset index of the CSI-RS measurement resource with respect to the configuration time; and measuring a time offset of the resource and the SRS measurement resource from the CSI-RS measurement resource according to the CSI-RS measurement resource A quantity or time offset index to determine the SRS measurement resource.
  • the information used to indicate the relationship between the channel state information reference signal CSI-RS measurement resource and the sounding reference signal SRS measurement resource includes: a time offset of the SRS measurement resource relative to the configuration time
  • the CSI-RS measurement resource and the SRS measurement resource are determined according to the configuration information, according to the configuration, the CSI-RS measurement resource, the time offset of the SSI measurement resource, or the time offset index, including: Determining the SRS measurement resource by the time offset or the time offset index of the SRS measurement resource with respect to the configuration time; determining the CSI according to the time offset or time offset index of the SRS measurement resource and the CSI-RS measurement resource relative to the SRS measurement resource -RS measurement resources.
  • the SRS is used for the SRS.
  • the method includes: a time offset or a time offset index of the first CSI-RS measurement resource with respect to the configuration time, and When the resource index of the at least one CSI-RS measurement resource is measured, the CSI-RS measurement resource is determined according to the time offset or the time offset index of the CSI-RS measurement resource with respect to the configuration time, including: according to the first CSI-RS measurement
  • the first CSI-RS measurement resource is determined by the time offset or time offset index of the resource relative to the configuration time; At least one CSI-RS measurement resource is determined according to a resource index of the first CSI-RS measurement resource and one CSI-RS measurement resource.
  • the method includes: a time offset or a time offset index of the first SRS measurement resource with respect to the configuration time, and at least one And determining, by the SRS measurement resource, the SRS measurement resource according to the time offset or the time offset index of the SRS measurement resource, including: calculating a time offset of the resource from the configuration time according to the first SRS
  • the first SRS measurement resource is determined by the quantity or time offset index; and the at least one SRS measurement resource is determined according to the resource index of the first SRS measurement resource and the less one SRS measurement resource.
  • the method further includes: measuring a relative position of the resource according to the CSI-RS measurement resource and the SRS, Determining a beam scanning mode of the user equipment; or, the configuration information further includes information for indicating a relative position of the CSI-RS measurement resource and the SRS measurement resource, the method further comprising: determining a beam scanning mode of the user equipment according to the configuration information.
  • the fourth beam is configured.
  • the collection is a subset of the third beam set.
  • a base station in a third aspect, includes: a generating unit, configured to generate configuration information, where the configuration information includes information indicating a relationship between a channel state information reference signal CSI-RS measurement resource and a sounding reference signal SRS measurement resource; A sending unit, configured to send configuration information at a configuration time.
  • the configuration information further includes: configuration information of one or more SRS measurement resources, and/or configuration information of one or more CSI-RS measurement resources.
  • the information for indicating a relationship between the channel state information reference signal CSI-RS measurement resource and the sounding reference signal SRS measurement resource includes at least one of the following information: CSI-RS Measuring a time offset or a time offset index of the resource relative to the configuration time, a time offset of the SRS measurement resource relative to the configuration time, or a time offset index; a time offset of the CSI-RS measurement resource relative to the configuration time or Time offset index, time offset of the SRS measurement resource relative to the CSI-RS measurement resource or time offset index; time offset or time offset index of the SRS measurement resource relative to the configuration time, and CSI-RS measurement resource relative to The time offset or time offset index of the resource is measured at the SRS.
  • the SRS is used for the SRS.
  • the measurement resource is at least two, and the measurement resources for the CSI-RS are at least two; the time offset or the time offset index of the CSI-RS measurement resource relative to the configuration time, specifically: the first CSI-RS measurement a time offset or time offset index of the resource relative to the configuration time, and a resource index of the at least one CSI-RS measurement resource; a time offset or a time offset index of the SRS measurement resource with respect to the configuration time, specifically: A time offset or time offset index of an SRS measurement resource relative to a configuration time, and a resource index of at least one SRS measurement resource.
  • the configuration information further includes information used to indicate a relative location of the CSI-RS measurement resource and the SRS measurement resource.
  • the first beam set is a wave used by the base station to receive the SRS
  • the bundle set the second beam set is a beam set used by the base station to transmit the CSI-RS
  • the second beam set is a subset of the first beam set.
  • a fourth aspect provides a user equipment, where the user equipment includes: a receiving unit, configured to receive configuration information from a network device, where the configuration information includes a channel state information reference signal CSI-RS measurement resource and a sounding reference signal SRS measurement resource. The information of the relationship; the determining unit is configured to determine the CSI-RS measurement resource and the SRS measurement resource according to the configuration information.
  • the configuration information further includes: configuration information of one or more SRS measurement resources, and/or configuration information of one or more CSI-RS measurement resources.
  • the information used to indicate the relationship between the channel state information reference signal CSI-RS measurement resource and the sounding reference signal SRS measurement resource includes: the CSI-RS measurement resource relative to the configuration time a time offset or a time offset index, a time offset of the SRS measurement resource with respect to the configuration time, or a time offset index, where the determining unit is configured to: measure a time offset of the resource from the configuration time according to the CSI-RS The quantity or time offset index determines a CSI-RS measurement resource; the SRS measurement resource is determined according to a time offset or a time offset index of the SRS measurement resource with respect to the configuration time.
  • the information used to indicate the relationship between the channel state information reference signal CSI-RS measurement resource and the sounding reference signal SRS measurement resource includes: the CSI-RS measurement resource relative to the configuration time a time offset or a time offset index, a time offset of the SRS measurement resource relative to the CSI-RS measurement resource, or a time offset index, where the determining unit is specifically configured to: measure the resource according to the CSI-RS with respect to the configured time The time offset or the time offset index determines the CSI-RS measurement resource; and determines the SRS measurement resource according to the CSI-RS measurement resource and the time offset or time offset index of the SRS measurement resource relative to the CSI-RS measurement resource.
  • the information used to indicate the relationship between the channel state information reference signal CSI-RS measurement resource and the sounding reference signal SRS measurement resource includes: a time offset of the SRS measurement resource relative to the configuration time a shifting amount t2 or a time offset index, a time offset t3 of the CSI-RS measurement resource relative to the SRS measurement resource, or a time offset index, where the determining unit is configured to: measure the time offset of the resource relative to the configured time according to the SRS The shift or time offset index determines an SRS measurement resource; the CSI-RS measurement resource is determined according to a time offset or a time offset index of the SRS measurement resource and the CSI-RS measurement resource relative to the SRS measurement resource.
  • the SRS is used for the SRS.
  • the method includes: a time offset or a time offset index of the first CSI-RS measurement resource with respect to the configuration time, and at least one When the CSI-RS measures the resource index of the resource, the determining unit is further configured to: determine the first CSI-RS measurement according to the time offset or the time offset index of the first CSI-RS measurement resource with respect to the configured time Resource; determining at least one CSI-RS measurement resource according to a resource index of the first CSI-RS measurement resource and one CSI-RS measurement resource;
  • the method includes: a time offset or a time offset index of the first SRS measurement resource with respect to the configuration time, and at least a resource index of the SRS measurement resource, where the determining unit is further configured to: determine the first SRS measurement resource according to the time offset or the time offset index of the first SRS measurement resource with respect to the configuration time; The first SRS measurement resource and the resource index of one less SRS measurement resource determine at least one SRS measurement resource.
  • the determining unit is further configured to determine a beam scanning mode of the user equipment according to the relative positions of the CSI-RS measurement resource and the SRS measurement resource; or, the configuration information further includes The information about the relative position of the CSI-RS measurement resource and the SRS measurement resource, and the determining unit is further configured to determine a beam scanning mode of the user equipment according to the configuration information.
  • the fourth beam is configured.
  • the collection is a subset of the third beam set.
  • a fifth aspect provides a base station, including a memory, a processor, a system bus, and a communication interface, wherein the memory stores code and data, the processor and the memory are connected by a system bus, and the processor runs the code in the memory, so that the base station performs
  • the configuration resource indication method provided by the foregoing first aspect or any possible implementation manner of the first aspect.
  • a sixth aspect provides a user equipment, including a memory, a processor, a system bus, and a communication interface, wherein the memory stores code and data, the processor and the memory are connected by a system bus, and the processor runs the code in the memory to enable the user
  • the device performs the configuration resource indication method provided by the foregoing second aspect or any possible implementation manner of the second aspect.
  • a communication system includes a base station and a user equipment, where the base station is the base station provided by the third aspect or the fifth aspect; and/or the user equipment is the fourth aspect or the sixth User equipment provided by the aspect.
  • Yet another aspect of the present application provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the methods described in the above aspects.
  • Yet another aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the various aspects above.
  • any of the devices, computer storage media or computer program products for configuring the resource indication method provided above are used to perform the corresponding methods provided above, and therefore, the beneficial effects that can be achieved can be referred to the above.
  • the beneficial effects in the corresponding methods provided are not described here.
  • FIG. 2 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a baseband subsystem according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • FIG. 6 is a flowchart of a method for configuring resource indication according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a relationship between a first CSI-RS measurement resource and an SRS measurement resource according to an embodiment of the present invention.
  • FIG. 8 is a relationship between a second CSI-RS measurement resource and an SRS measurement resource according to an embodiment of the present invention. schematic diagram;
  • FIG. 9 is a schematic diagram of a relationship between a third CSI-RS measurement resource and an SRS measurement resource according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a relationship between a fourth CSI-RS measurement resource and an SRS measurement resource according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a reference signal measurement resource according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a relationship between a fifth CSI-RS measurement resource and an SRS measurement resource according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a relationship between a sixth CSI-RS measurement resource and an SRS measurement resource according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a relationship between a seventh CSI-RS measurement resource and an SRS measurement resource according to an embodiment of the present invention.
  • FIG. 15 is a schematic diagram of a relationship between an eighth CSI-RS measurement resource and an SRS measurement resource according to an embodiment of the present invention.
  • FIG. 16 is a flowchart of another method for configuring resource indication according to an embodiment of the present invention.
  • FIG. 17 is a flowchart of still another method for configuring resource indication according to an embodiment of the present invention.
  • FIG. 18 is a schematic flowchart of beam alignment according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic flowchart of another beam alignment according to an embodiment of the present disclosure.
  • FIG. 20 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 21 is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 22 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • FIG. 23 is a schematic structural diagram of another user equipment according to an embodiment of the present invention.
  • the communication system includes a base station 101 and a user equipment 102.
  • the base station 101 has a scheduling function of a shared channel, and has a function of establishing a scheduling based on a history of packet data sent to the user equipment 102.
  • the scheduling is that when a plurality of user equipments 102 share transmission resources, a mechanism is needed to effectively allocate. Physical layer resources to obtain statistical multiplexing gain.
  • the user equipment 102 has a function of transmitting and receiving data through a communication channel established with the base station 101.
  • the user equipment 102 performs transmission or reception processing of the shared channel based on the information transmitted through the scheduling control channel.
  • user device 102 can be a mobile station, a cell phone, a computer, a portable terminal, and the like.
  • the base station 101 and the user equipment 102 perform data reception and transmission through a communication channel, which may be a wireless communication channel, and in the wireless communication channel, at least a shared channel and a scheduling control channel exist, and the shared channel is for transmitting and receiving.
  • the packet is shared among the plurality of user equipments 102, and the scheduling control channel is used to transmit the allocation of the shared channel, the corresponding scheduling result, and the like.
  • the base station includes a baseband subsystem, a medium-frequency subsystem, an antenna feeder subsystem, and some supporting structures (for example, a whole subsystem). ).
  • the baseband subsystem is used to implement operation and maintenance of the entire base station, implement signaling processing, radio resource principle, and transmission interface to the packet core network, and implement physical layer, medium access control layer, L3 signaling, and operation and maintenance main control functions.
  • Medium shot The frequency subsystem realizes conversion between the baseband signal, the intermediate frequency signal and the radio frequency signal, and realizes demodulation of the wireless receiving signal and modulation and power amplification of the transmitted signal.
  • the antenna feeder subsystem includes an antenna and a feeder connected to the base station radio frequency module and an antenna and a feeder of the GRS receiving card for receiving and transmitting the wireless air interface signal.
  • the whole subsystem is the supporting part of the baseband subsystem and the intermediate frequency subsystem, providing structure, power supply and environmental monitoring functions.
  • the baseband subsystem can be as shown in FIG. 4: for example, the mobile phone Internet access needs to access the core network through the base station, and accesses the Internet through the core network, wherein the data of the Internet is transmitted to the baseband part through the interface between the core network and the base station.
  • the baseband part performs PDCP, RLC, MAC layer, coding, and modulation processing, and delivers to the radio frequency part for transmission to the user equipment.
  • the baseband and the radio frequency can be connected through the CPRI interface; in addition, the radio frequency part can be pulled far by the optical fiber, for example, the remote RRU.
  • the baseband of each step of the data transmission method in the embodiment of the present invention is implemented by radio frequency, and the receiving and transmitting step is implemented by an antenna (for example, an air interface).
  • the interface between the user equipment and the base station involved in the implementation of the present invention may be understood as an air interface for communication between the user equipment and the base station, or may also be referred to as a Uu interface.
  • FIG. 5 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • the user equipment may be a mobile phone, a tablet computer, a notebook computer, a super mobile personal computer, a netbook, a personal digital assistant, etc. Give an example for explanation.
  • the mobile phone includes: a memory, a processor, a radio frequency (RF) circuit, and a power supply.
  • RF radio frequency
  • the memory can be used to store software programs and modules, and the processor executes various functional applications and data processing of the mobile phone by running software programs and modules stored in the memory.
  • the memory may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function, and the like; the storage data area may store data created according to usage of the mobile phone, and the like.
  • the memory may include a high speed random access memory, and may also include a nonvolatile memory or the like.
  • the processor is the control center of the mobile phone, and connects various parts of the entire mobile phone by using various interfaces and lines, and executes each mobile phone by running or executing software programs and/or modules stored in the memory, and calling data stored in the memory.
  • the processor may include one or more processing units; preferably, the processor may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, etc., and modulates
  • the demodulation processor primarily handles wireless communications.
  • the RF circuit can be used to send and receive information or receive and transmit signals during a call.
  • RF circuits include, but are not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the RF circuit can communicate with the network and other devices through wireless communication.
  • the wireless communication can use any communication standard or protocol, including but not limited to global mobile communication systems, general packet radio services, code division multiple access, wideband code division multiple access, long term evolution, email, short message service, and the like.
  • the handset also includes a power supply that supplies power to the various components.
  • the power supply can be connected to the processor logic through the power management system to manage charging, discharging, and power management functions through the power management system.
  • the mobile phone may further include an input unit, a display unit, a sensor module, an audio module, and WiFi. Modules, Bluetooth modules, etc., will not be described here.
  • the basic principle of the present invention is that the base station associates the channel state information reference signal measurement resource CSI-RS for performing beam alignment with a sounding reference signal (SRS) measurement resource by transmitting configuration information to the user equipment.
  • the base station and the user equipment determine the CSI-RS measurement resource and the SRS measurement resource according to the configuration information, so that in the beam alignment process, according to the uplink and downlink beams, the correlation is based on the measurement resources of the associated CSI-RS.
  • the SRS measurement resource completes the uplink beam alignment and the downlink beam alignment through a beam alignment process, thereby saving the overhead of time-frequency resources and improving the beam alignment efficiency of the upper beam and the downlink beam.
  • FIG. 6 is a flowchart of a method for indicating resource allocation according to an embodiment of the present invention. Referring to FIG. 6, the method includes the following steps.
  • Step 201 The base station generates configuration information.
  • the configuration information includes information indicating a relationship between the channel state information reference signal CSI-RS measurement resource and the sounding reference signal SRS measurement resource.
  • the CSI-RS refers to a channel state (for example, channel quality information (CQI)/precoding matrix indicator (PMI)/rank indicator (RI)) measurement or beam.
  • the downlink reference signal for management, the CSI-RS measurement resource refers to the time-frequency resource configured by the base station to the CSI-RS, and is used for beam alignment between the base station and the user equipment.
  • the base station may send the CSI-RS on the CSI-RS measurement resource
  • the user equipment may receive and measure the CSI-RS sent by the base station on the CSI-RS measurement resource.
  • the SRS refers to an uplink reference signal used for channel estimation or beam management
  • the SRS measurement resource refers to a time-frequency resource configured by the base station to the SRS, and is used for performing beam alignment between the base station and the user equipment.
  • the user equipment may send the SRS on the SRS measurement resource
  • the base station may receive and measure the SRS sent by the user equipment on the SRS measurement resource.
  • the relationship between the CSI-RS measurement resource and the SRS measurement resource refers to a time-frequency resource used by the base station to transmit the CSI-RS and a time-frequency resource used by the user equipment to send the SRS in a beam alignment process. Relationship between.
  • the information used to indicate the relationship between the CSI-RS measurement resource and the SRS measurement resource may include one of the following information: a time offset of the CSI-RS measurement resource relative to the configuration time Or a time offset index, a time offset of the SRS measurement resource relative to the configuration time, or a time offset index; or a time offset or time offset index of the CSI-RS measurement resource relative to the configuration time, and an SRS measurement resource relative to Time offset or time offset index of the CSI-RS measurement resource; or time offset or time offset index of the SRS measurement resource relative to the configuration time, time offset of the CSI-RS measurement resource relative to the SRS measurement resource Shift or time offset index.
  • the time offset index is used to identify the time offset, and the different time offset indexes may correspond to different time offsets, and the correspondence between the time offset index and the time offset may be preset.
  • the time offset index may be an index number corresponding to the time offset.
  • the time unit corresponding to the time offset may be a time slot, an OFDM symbol, or an absolute time, and the absolute time may be microseconds (us), milliseconds (ms), or seconds (s), etc., for example, T1 may be 2 ms. T2 can be 4ms, and different time offsets can correspond to different lengths of time.
  • Time offset index Time offset 1 T1 2 T2 3 T3 ?? ising N T N
  • the information used to indicate the relationship between the CSI-RS measurement resource and the SRS measurement resource may include only the information of the time offset, or may only include the information of the time offset index, or may include both the time offset and the time offset. Move indexed information.
  • the information indicating the relationship between the CSI-RS measurement resource and the SRS measurement resource includes the information of the time offset index
  • the corresponding time may be determined according to the correspondence between the preset time offset index and the time offset.
  • the offset is as follows. Taking the time offset as an example, the relationship between the CSI-RS measurement resource indicated by the configuration information and the SRS measurement resource is described in detail.
  • the information used to indicate the relationship between the CSI-RS measurement resource and the SRS measurement resource includes: a time offset of the CSI-RS measurement resource relative to the configuration time is T1, and a time offset of the SRS measurement resource relative to the configuration time
  • T1 if T1 is smaller than T2, the relationship between the CSI-RS measurement resource and the SRS measurement resource may be as shown in FIG. 7; if T1 is greater than T2, the relationship between the CSI-RS measurement resource and the SRS measurement resource Can be as shown in Figure 8.
  • the information used to indicate the relationship between the CSI-RS measurement resource and the SRS measurement resource includes: a time offset of the CSI-RS measurement resource relative to the configuration time is T1, and a time offset of the SRS measurement resource relative to the CSI-RS measurement resource
  • T1 a time offset of the CSI-RS measurement resource relative to the configuration time
  • T3 a time offset of the SRS measurement resource relative to the CSI-RS measurement resource
  • the information used to indicate the relationship between the CSI-RS measurement resource and the SRS measurement resource includes: a time offset of the SRS measurement resource relative to the configuration time is T2, and a time offset of the CSI-RS measurement resource relative to the SRS measurement resource is At T3, the relationship between the CSI-RS measurement resource and the SRS measurement resource can be as shown in FIG.
  • the configuration manner of the measurement resource of the reference signal may include a non-periodic configuration, a periodic configuration, and a semi-static configuration.
  • the periodic configuration means that the measurement resources of the reference signal configured by the base station occur periodically in time.
  • the semi-static configuration means that the measurement resources of the reference signal configured by the base station periodically appear within a specified length of time. The specified length of time may not be limited.
  • the aperiodic configuration refers to a measurement resource that the base station configures a temporary reference signal for the user equipment.
  • the measurement resource of the reference signal is a periodic configuration or a semi-static configuration
  • the measurement resource of the reference signal is a CSI-RS measurement resource or an SRS measurement resource
  • at least two measurement resources for the SRS are used for the CSI- RS has at least two measurement resources.
  • the relationship between the CSI-RS measurement resource indicated by the configuration information and the SRS measurement resource is as shown in FIG. 7 to FIG. 10 above, and is used to indicate the CSI-RS.
  • the information of the relationship between the measurement resource and the SRS measurement resource can be specifically referred to the above description.
  • the measurement resource of the reference signal is periodically configured or semi-statically configured, since the number of reference signal measurement resources is at least two, it is necessary to indicate the location of each measurement resource, and the bit indicating each measurement resource When set, the time offset or time offset index of the first measurement resource relative to the configuration time and the resource index of the at least one measurement resource may be indicated.
  • the at least one measurement resource refers to a measurement resource other than the first one of the at least two measurement resources, and each measurement resource may be identified by a resource index, and the corresponding measurement resource may be determined according to the resource index.
  • a time offset or a time offset index of the CSI-RS measurement resource relative to the configuration time includes: the first CSI-RS measurement resource is relatively A time offset or time offset index at the configuration time, and a resource index of the at least one CSI-RS measurement resource.
  • the time offset or the time offset index of the SRS measurement resource with respect to the configuration time includes: a time offset of the first SRS measurement resource relative to the configuration time or A time offset index, and a resource index of at least one SRS measurement resource.
  • the measurement resources of the reference signal after the periodic configuration or the semi-static configuration may be as shown in FIG. 11.
  • the time offset of the first measurement resource relative to the configuration time in FIG. 11 is T0, and the resource index is represented as #1, #2, ..., #n, so that the resource index of at least one measurement resource is #2, ..., #n
  • the resource index can also be expressed as other, for example, the i* period, i can refer to the ith measurement resource, and the period refers to the length of time during which the measurement resource periodically appears, which is not limited in this embodiment of the present invention.
  • the configuration manner of the measurement resources of the reference signal may include aperiodic configuration, periodic configuration, and semi-static configuration
  • the measurement resources of the reference signal may include CSI-RS measurement resources and SRS measurement resources, so CSI-RS measurement resources and SRS measurements
  • the configuration of resources can include nine configuration combinations, as shown in Table 2 below.
  • Combined ordinal SRS measurement resources CSI-RS measurement resources 1 Periodic configuration Periodic configuration 2 Periodic configuration Semi-static configuration 3 Periodic configuration Aperiodic configuration 4 Semi-static configuration Periodic configuration 5 Semi-static configuration Semi-static configuration 6 Semi-static configuration Aperiodic configuration 7 Aperiodic configuration Periodic configuration 8 Aperiodic configuration Semi-static configuration 9 Aperiodic configuration Aperiodic configuration
  • the configuration information further includes configuration information of one or more SRS measurement resources, and/or configuration information of one or more CSI-RS measurement resources. Specifically, if one or more CSI-RS measurement resources are configured in advance, the configuration information may further include configuration information of one or more SRS measurement resources. If one or more SRS measurement resources are configured in advance, the configuration information may further include configuration information of one or more CSI-RS measurement resources. If the CSI-RS measurement resource and the SRS measurement resource are not configured in advance, the configuration information may further include configuration information of one or more SRS measurement resources and configuration information of one or more CSI-RS measurement resources.
  • the base station can not only configure configuration information of one or more SRS measurement resources, and/or configuration information of one or more CSI-RS measurement resources to the user equipment through one configuration information, but also The configuration information of the one or more SRS measurement resources and the configuration information of the one or more CSI-RS measurement resources are respectively configured for the user equipment by using a plurality of different configuration information.
  • the base station configures configuration information of one or more SRS measurement resources for the user equipment by using the first configuration information
  • the base station configures configuration information of one or more CSI-RS measurement resources for the user equipment by using the second configuration information.
  • the configuration information of the one or more SRS measurement resources may specifically include at least one of the following information: a port number of the SRS measurement, time-frequency information, and an index for identifying the time-frequency information.
  • the configuration information of the one or more CSI-RS measurement resources may specifically include at least one of the following information: a port number of the CSI-RS measurement, time-frequency information, and an index for identifying the time-frequency information.
  • the time-frequency information may include time domain information and frequency domain information.
  • the time domain information refers to information of OFDM symbols corresponding to one or more SRS measurement resources in the time domain.
  • the time domain information may be a symbolic number of the OFDM symbol in a transmission time interval (TTI).
  • the frequency domain information refers to information of subcarriers corresponding to one or more SRS measurement resources in the frequency domain.
  • the frequency domain information may be information such as a subcarrier number, a subcarrier width, or a subcarrier spacing corresponding to a subcarrier in one or more resource blocks (RBs).
  • the configuration information may further include information for indicating a relative position of the CSI-RS measurement resource and the SRS measurement resource, that is, the base station according to the CSI-RS measurement resource and the SRS measurement resource relative position recessive indication in the beam alignment process base station and The sequence in which the user equipment performs beam scanning may also be referred to as determining the beam scanning mode in the beam alignment process.
  • the configuration information may further include information for indicating a beam scanning mode, that is, the base station may explicitly indicate a beam scanning manner in the beam alignment process by using the configuration information. The beam scanning mode in the beam alignment process is directly determined according to the information used to indicate the beam scanning mode.
  • the configuration information may not include information for indicating the relative position of the CSI-RS measurement resource and the SRS measurement resource, and the user equipment may determine the CSI-RS.
  • the beam scanning mode in the beam alignment process is directly determined according to the context of the CSI-RS measurement resource and the SRS measurement resource.
  • the base station may implicitly indicate the beam scanning mode in the beam alignment process by using the configuration information, that is, the configuration information further includes information for indicating the relative position of the CSI-RS measurement resource and the SRS measurement resource, and the user equipment may directly according to the configuration information.
  • the configuration information further includes information for indicating the relative position of the CSI-RS measurement resource and the SRS measurement resource
  • the user equipment may directly according to the configuration information.
  • a relative position of the CSI-RS measurement resource and the SRS measurement resource is determined, thereby determining a beam scanning manner in the beam alignment process according to the relative position.
  • the user equipment determines the beam scanning mode of the CSI-RS and the SRS according to the relative positions of the SRS measurement resource and the CSI-RS measurement resource, if the SRS measurement resource is located before the CSI-RS measurement resource, the user equipment may determine the beam alignment process.
  • the beam scanning mode is the first scanning mode. If the CSI-RS measurement resource is located before the SRS measurement resource, the user equipment can determine that the beam scanning mode in the beam alignment process is the second scanning mode.
  • the first scanning mode and the second scanning mode are as shown in Table 3 below.
  • the base station may configure the beam scanning mode in the beam alignment process for the user equipment by using the configuration information in the foregoing step 201, and may perform configuration by using other configuration information or higher layer signaling, etc., which is used by the embodiment of the present invention. Not limited.
  • Step 202 The base station sends configuration information to the user equipment at the configuration time.
  • the base station may send the configuration information to the user equipment at the configuration time to indicate that the user equipment determines the relationship between the CSI-RS measurement resource and the SRS measurement resource according to the configuration information, thereby measuring the resource and the SRS according to the CSI-RS.
  • the relationship between the measurement resources is measured, and the alignment of the uplink beam and the downlink beam is achieved through a beam alignment process.
  • Step 203 When the user equipment receives the configuration information sent by the base station, the user equipment determines the CSI-RS measurement resource and the SRS measurement resource according to the configuration information.
  • the information about the relationship between the CSI-RS measurement resource and the SRS measurement resource included in the configuration information may include a plurality of different information, so the process of determining the CSI-RS measurement resource and the SRS measurement resource by the user equipment may also include The information is different and is described separately below.
  • the first type of information used for the relationship between the CSI-RS measurement resource and the SRS measurement resource includes: a time offset of the CSI-RS measurement resource relative to the configuration time or a time offset index, and an SRS measurement resource relative to the configuration time
  • the time offset or the time offset index the step 203 is specifically: determining a CSI-RS measurement resource according to a time offset or a time offset index of the CSI-RS measurement resource with respect to the configuration time; and measuring the resource according to the SRS The time offset or time offset index of the configuration time determines the SRS measurement resource.
  • the time offset and the time offset index For the correspondence between the time offset and the time offset index, refer to the description in the foregoing step 201.
  • the user equipment may shift according to the time offset and the time offset.
  • the correspondence between the indices determines the corresponding time offset. Therefore, the following describes the process of determining the CSI-RS measurement resource and the SRS measurement resource for the user equipment by taking the time offset as an example.
  • the configuration time is t
  • the time offset of the CSI-RS measurement resource relative to the configuration time t is T1
  • the time offset of the SRS measurement resource relative to the configuration time t is T2
  • the configuration time t plus the time offset The quantity T1 can determine the CSI-RS measurement resource
  • the configuration time t plus the time offset T2 can determine the SRS measurement resource. If T1 is smaller than T2, the relationship between the CSI-RS measurement resource and the SRS measurement resource may be as shown in FIG. 7. If T1 is greater than T2, the relationship between the CSI-RS measurement resource and the SRS measurement resource may be as shown in FIG. 8. Show.
  • the second information if used to indicate the relationship between the CSI-RS measurement resource and the SRS measurement resource, includes: a time offset of the CSI-RS measurement resource relative to the configuration time, and a time of the SRS measurement resource relative to the CSI-RS measurement resource.
  • step 203 is specifically: determining a CSI-RS measurement resource according to a time offset or a time offset index of the CSI-RS measurement resource with respect to the configuration time; and measuring the resource according to the CSI-RS and the SRS measurement resource.
  • the SRS measurement resource is determined by measuring the time offset or time offset index of the resource by the CSI-RS.
  • the configuration time is t
  • the time offset of the CSI-RS measurement resource relative to the configuration time t is T1
  • the time offset of the SRS measurement resource relative to the CSI-RS measurement resource is T3
  • the configuration time t plus time Offset T1 can determine the CSI-RS measurement resource
  • the configuration time t plus the time offsets T1 and T3 can determine the SRS measurement resource
  • the relationship between the determined CSI-RS measurement resource and the SRS measurement resource can be as shown in FIG. Show.
  • the third type of information if used to indicate the relationship between the CSI-RS measurement resource and the SRS measurement resource, includes: a time offset of the SRS measurement resource relative to the configuration time, and a time offset of the CSI-RS measurement resource relative to the SRS measurement resource.
  • the step 203 is specifically: determining an SRS measurement resource according to a time offset or a time offset index of the SRS measurement resource with respect to the configuration time; and measuring a time offset of the resource and the CSI-RS measurement resource according to the SRS measurement resource according to the SRS measurement resource A quantity or time offset index to determine CSI-RS measurement resources.
  • the configuration time is t
  • the time offset of the SRS measurement resource relative to the configuration time t is T2
  • the time offset of the CSI-RS measurement resource relative to the SRS measurement resource is T3
  • the configuration time t plus the time offset The quantity T2 can determine the SRS measurement resource
  • the configuration time t plus the time offsets T2 and T3 can determine the CSI-RS measurement resource
  • the relationship between the determined CSI-RS measurement resource and the SRS measurement resource can be as shown in FIG. Shown.
  • the time offset corresponding to the time offset index is a finite value set in advance.
  • the base station configures a time offset index to the user equipment when the reference signal is configured, and the time offset corresponding to the time offset index is a discrete value, and the time calculated by the user equipment according to the time offset determined by the time offset index may be It is not the time position of the reference signal measurement resource. Therefore, when the information for indicating the relationship between the CSI-RS measurement resource and the SRS measurement resource includes a time offset index, and the corresponding calculated time is not the time position of the reference signal measurement resource, the user equipment may follow the time position and The closest reference signal resource is used as a reference signal measurement resource for beam alignment.
  • the configuration time t determined by the user equipment plus the time offset T1 is not the time position of the CSI-RS measurement resource
  • the configuration time t plus the time offset T2 is not the time of the SRS measurement resource.
  • Position when T1 is less than T2, the relationship between CSI-RS measurement resources and SRS measurement resources is as shown in FIG. 12.
  • T1 is greater than T2
  • the relationship between CSI-RS measurement resources and SRS measurement resources is as shown in FIG. Shown.
  • the configuration time t determined by the user equipment plus the time offset T1 is not the time position of the CSI-RS measurement resource
  • the configuration time t plus the time offset T1 and the time offset T3 are not SRS.
  • the relationship between the CSI-RS measurement resource and the SRS measurement resource is as shown in FIG.
  • the configuration time t determined by the user equipment plus the time offset T2 is not the time position of the SRS measurement resource, the configuration time t plus the time offset T2 and the time offset T3 are not CSI-RS.
  • the relationship between the CSI-RS measurement resource and the SRS measurement resource is as shown in FIG.
  • the base station sends information about the relationship between the CSI-RS measurement resource and the SRS measurement resource to the user equipment by using the configuration information, thereby associating the CSI-RS for performing beam alignment with the SRS measurement resource.
  • the base station and the user equipment complete the uplink beam alignment and the downlink beam alignment through a beam alignment process, thereby saving time-frequency resource overhead and improving beam alignment efficiency.
  • the measurement resource of the reference signal is a periodic configuration or a semi-static configuration
  • the measurement resource of the reference signal may be a CSI-RS measurement resource or an SRS measurement resource
  • at least two measurement resources for the SRS are used for the CSI.
  • the measurement resources of the RS are at least two, and the measurement resources of the reference signal in the above three cases are different from the specific information of the time offset of the configuration time or the time offset index, and the measurement of the reference signal is determined according to the information.
  • the process of resources is also different, as explained below.
  • the method specifically includes: The time offset of the first CSI-RS measurement resource relative to the configuration time or the time offset index, and the resource index of the at least one CSI-RS measurement resource, and the time offset of the resource relative to the configuration time according to the CSI-RS Determining the CSI-RS measurement resource by the quantity or the time offset index, including: determining, according to the time offset or the time offset index of the first CSI-RS measurement resource with respect to the configuration time, the first CSI-RS measurement resource; The first CSI-RS measurement resource and the resource index of the at least one CSI-RS measurement resource determine at least one CSI-RS measurement resource.
  • the method includes: a time offset or a time offset index of the first SRS measurement resource with respect to the configuration time, and at least one SRS measurement resource.
  • the resource index is used to determine the SRS measurement resource according to the time offset or the time offset index of the SRS measurement resource with respect to the configuration time, including: measuring the time offset or time offset index of the resource relative to the configuration time according to the first SRS. Determining a first SRS measurement resource; determining at least one SRS measurement resource according to a first SRS measurement resource and a resource index of one less SRS measurement resource.
  • the periodic or semi-static reference signal measurement resource determined by the user equipment according to the configuration information is as shown in FIG. 11 when the measurement resource of the reference signal is configured periodically or semi-statically.
  • the measurement resource of the reference signal in FIG. 11 may be a CSI-RS measurement resource or an SRS measurement resource.
  • Step 204a corresponds to the step of the base station implicitly indicating the beam scanning mode in the beam alignment process.
  • Step 204a The user equipment determines a beam scanning mode according to the relative positions of the CSI-RS measurement resource and the SRS measurement resource.
  • Step 204a is located after step 203, that is, after the user equipment determines the CSI-RS measurement resource and the SRS measurement resource according to the configuration information, if it is determined that the SRS measurement resource is located before the CSI-RS measurement resource, the user equipment may determine that the beam alignment is performed.
  • the beam scanning mode in the process is the first scanning mode. If it is determined that the CSI-RS measurement resource is located before the SRS measurement resource, the user equipment may determine that the beam scanning mode in the beam alignment process is the second scanning mode.
  • the method further includes: step 204b.
  • step 204b corresponds to the step of the base station implicitly indicating the beam scanning mode in the beam alignment process. If the configuration information further includes information for indicating the beam scanning mode, step 204b corresponds to the step of the base station explicitly indicating the beam scanning mode in the beam alignment process.
  • Step 204b The user equipment determines a beam scanning mode according to the configuration information.
  • the user equipment can directly determine the beam scanning mode of the user equipment according to step 204b.
  • the user equipment may determine that the beam scanning mode in the beam alignment process is the first scanning mode; when the configuration information indicates that the CSI-RS measurement resource is located Before the SRS measures the resource, the user equipment can determine that the beam scanning mode in the beam alignment process is the second scanning mode.
  • the user equipment can directly determine the beam scanning mode as the first scanning mode or the second scanning mode according to the information used to indicate the beam scanning mode.
  • the base station and the user equipment can perform beam alignment based on the CSI-RS measurement resource and the SRS measurement resource and the corresponding beam scanning mode, that is, the alignment of the uplink and downlink beams is implemented through a beam alignment process.
  • the process of beam alignment between the base station and the user equipment in the first scanning mode and the second scanning mode will be described in detail below.
  • the base station and the user equipment perform beam alignment in the first scanning mode, and the process of performing beam alignment may specifically include : Step a1 - Step a4.
  • Step a1 The user equipment sends the SRS using the first wide beam on the SRS measurement resource.
  • the first wide beam is a beam with a large transmission and reception angle obtained by performing coarse beam alignment between the base station and the user equipment, and the first wide beam is a beam on the user equipment side, and the base station side is obtained after performing coarse beam alignment.
  • a beam with a large transmission and reception angle may be referred to as a second beam, and the first wide beam and the second wide beam are a set of aligned wide beams.
  • Step a2 The base station receives and measures the reference signal receiving power (RSRP) of the SRS by using the first beam set on the SRS measurement resource, and determines the second beam set according to the RSRP corresponding to each beam in the first beam set. .
  • the second beam set is a subset of the first beam set. In FIG. 11, the second beam set includes one beam as an example for description.
  • the first beam set may include two or more narrow beams, and the transmit and receive angle of each narrow beam included in the first beam set is smaller than the transmit and receive angle of the second wide beam.
  • the transmission angle of the second wide beam is 20 to 40 degrees.
  • the transmission and reception angles of the four narrow beams may be 20 to 25 degrees, 25 to 30 degrees, and 30 to 30 degrees, respectively. 35 degrees and 35 to 40 degrees.
  • one SRS measurement resource may be divided into four parts, each part corresponding to one narrow beam in the first beam set.
  • the base station can use the corresponding relationship between the SRS measurement resource and the narrow beam included in the first beam set on the SRS measurement resource at the same time.
  • a set of beams receives the SRS, and measures the RSRP of the corresponding SRS on each narrow beam, and determines a second beam set from the first beam set according to an order of RSRP from large to small, the second beam set being the first beam set a subset of.
  • Step a3 The base station transmits the CSI-RS using each of the second beam sets on the CSI-RS measurement resources.
  • the base station may send the CSI-RS by using each of the second beam sets on the CSI-RS measurement resources according to the association relationship between the CSI-RS measurement resources and the SRS measurement resources.
  • the base station sends a CSI-RS in one of the second beam sets on the CSI-RS measurement resource, and the relationship between the CSI-RS measurement resource and the SRS measurement resource is: CSI.
  • the time interval between the RS measurement resource and the SRS measurement resource is T3, and the base station determines the second beam set and transmits the CSI on the CSI-RS measurement resource using one of the second beam sets after the T3 time. RS.
  • Step a4 The user equipment receives and measures the RSRP of the CSI-RS by using the third beam set on the CSI-RS measurement resource, and determines the fourth beam set according to the RSRP corresponding to each beam in the third beam set.
  • the third beam set may include two or more narrow beams, and the third beam set includes The transmission and reception angle of each narrow beam is smaller than the transmission angle of the first wide beam.
  • the transmission angle of the first wide beam is 35 to 55 degrees.
  • the transmission and reception angles of the four narrow beams may be 35 to 40 degrees, 40 to 45 degrees, and 45 to 45 degrees, respectively. 50 degrees and 50 to 55 degrees.
  • the correspondence may be configured by the base station to the user equipment.
  • the base station configures, by using the configuration information, the correspondence between the CSI-RS measurement resource and the narrow beam included in the third beam set to the user equipment.
  • the user equipment can receive the CSI-RS by using the third beam set on the CSI-RS measurement resource at the same time, and The RSRP of the corresponding CSI-RS on each narrow beam included in the third beam set is measured, and the beam corresponding to the largest RSRP is determined as one of the fourth beam sets.
  • the user equipment selects a beam corresponding to the largest RSRP from the third beam set by using the method described in the foregoing step a4, so that the base station uses the second beam set separately.
  • the user equipment can determine the fourth set of beams from the third set of beams.
  • the base station and the user equipment perform beam alignment in the second scanning mode, and the process of performing beam alignment may specifically include : Step b1 - Step b4.
  • Step b1 The CSI-RS is transmitted on the base station CSI-RS measurement resource by using the first wide beam.
  • Step b2 The user equipment receives and measures the RSRP of the CSI-RS by using the third beam set on the CSI-RS measurement resource, and determines the fourth beam set according to the RSRP corresponding to each beam in the third beam set.
  • the fourth beam set is a subset of the third beam set. In FIG. 19, one of the fourth beam sets is taken as an example for description.
  • Step b3 The user equipment sends the SRS on each of the fourth beam sets on the SRS measurement resources.
  • Step b4 The base station uses the first beam set to receive the SRS and the RSRP of the SRS on the SRS measurement resource, and determines the second beam set according to the RSRP corresponding to each beam in the first beam set.
  • the first scanning mode is that the user equipment performs beam scanning first, and the base station performs beam scanning.
  • the second scanning mode is that the base station performs beam scanning first, and the user equipment performs beam scanning, but the first scanning mode and the second scanning mode.
  • the scanning mode is similar, and the first wide beam, the first beam set, the second beam set, the third beam set, and the fourth beam set are the same as those in the first scanning mode. For details, see the above. The description in the first scanning mode is not repeated here.
  • the base station sends information about the relationship between the CSI-RS measurement resource and the SRS measurement resource to the user equipment by using the configuration information, thereby associating the CSI-RS for performing beam alignment with the SRS measurement resource.
  • the base station and the user equipment complete the uplink beam alignment and the downlink beam alignment through a beam alignment process, thereby saving time-frequency resource overhead, improving beam alignment efficiency, and reducing base station configuration SRS and / or CSI-RS signaling overhead.
  • each network element such as a base station and a user equipment, etc.
  • each network element includes hardware structures and/or software modules corresponding to each function.
  • this article is incorporated herein.
  • the network elements and algorithm steps of the various examples described in the embodiments disclosed herein can be implemented in hardware or a combination of hardware and computer software. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the embodiments of the present invention may divide the functional modules of the base station, the user equipment, and the like according to the foregoing method.
  • each functional module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 20 is a schematic diagram showing a possible structure of a base station involved in the foregoing embodiment.
  • the base station 300 includes a generating unit 301 and a sending unit 302.
  • the generating unit 301 is configured to perform step 201 in FIG. 6, FIG. 16, or FIG. 17;
  • the sending unit 302 is configured to perform step 202 in FIG. 6, FIG. 16, or FIG. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional description of the corresponding functional modules, and details are not described herein again.
  • the generating unit 301 may be a processor, and the sending unit 302 may be a transmitter, and the receiver may form a communication interface.
  • FIG. 21 is a schematic diagram showing a possible logical structure of a base station 310 involved in the foregoing embodiment according to an embodiment of the present invention.
  • the base station 310 includes a processor 312, a communication interface 313, a memory 311, and a bus 314.
  • the processor 312, the communication interface 313, and the memory 311 are connected to one another via a bus 314.
  • the processor 312 is configured to control the management of the actions of the base station 310, for example, the processor 312 is configured to perform step 201 of FIG. 6, FIG. 16, or FIG. 17, and/or for use in the description herein. Other processes of technology.
  • Communication interface 313 is used to support base station 310 for communication.
  • the memory 311 is configured to store program codes and data of the base station 310.
  • the processor 312 can be a central processing unit, a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, combinations of digital signal processors and microprocessors, and the like.
  • the bus 314 can be a peripheral component interconnect standard (English: peripheral component interconnect, PCI for short) or an extended industry standard architecture (English: extended industry standard architecture, EISA) bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 21, but it does not mean that there is only one bus or one type of bus.
  • FIG. 22 is a schematic diagram showing a possible structure of the user equipment involved in the foregoing embodiment.
  • the user equipment 400 includes a receiving unit 401 and a determining unit 402.
  • the receiving unit 401 is configured to perform the process of receiving configuration information in FIG. 6, FIG. 16, or FIG. 17;
  • the determining unit 402 is configured to perform step 203 in FIG. 6, FIG. 16, or FIG. 17, and step 204a in FIG. Or step 204b in Fig. 17. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional description of the corresponding functional modules, and details are not described herein again.
  • the determining unit 402 may be a processor, and the receiving unit 401 may be a receiver. It can form a communication interface with the transmitter.
  • FIG. 23 is a schematic diagram showing a possible logical structure of the user equipment 410 involved in the foregoing embodiment provided by the embodiment of the present invention.
  • User equipment 410 includes a processor 412, a communication interface 413, a memory 411, and a bus 414.
  • the processor 412, the communication interface 413, and the memory 411 are connected to one another via a bus 414.
  • the processor 412 is configured to control and manage the actions of the user equipment 410.
  • the processor 412 is configured to perform step 203 in FIG. 6, FIG. 16, or FIG. 17, step 204a in FIG. 16, and Step 204b in Figure 17, and/or other processes for the techniques described herein.
  • the communication interface 413 is for supporting the user equipment 410 to communicate.
  • the memory 311 is configured to store program codes and data of the user equipment 410.
  • the processor 412 can be a central processing unit, a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, combinations of digital signal processors and microprocessors, and the like.
  • the bus 414 may be a peripheral component interconnect standard (English: interconnected component: PCI) bus or an extended industry standard architecture (English: extended industry standard architecture, EISA) bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 23, but it does not mean that there is only one bus or one type of bus.
  • a computer readable storage medium stores computer executed instructions.
  • the device executes FIG. 6
  • FIG. 6 The steps of the base station in the configuration resource indication method shown in FIG. 16 or FIG. 17 or the steps of the user equipment in the configuration resource indication method shown in FIG. 6, FIG. 16, or FIG.
  • a computer program product comprising computer executable instructions stored in a computer readable storage medium; at least one processor of the device may be Reading the storage medium to read the computer to execute the instruction, the at least one processor executing the computer to execute the instruction, causing the device to implement the step of the base station in the configuration resource indication method shown in FIG. 6, FIG. 16, or FIG. 17, or performing FIG. 6, FIG. 16 or The step of configuring the resource indication method in the user equipment shown in FIG.
  • a communication system in another embodiment, is further provided, the communication system includes a base station and a user equipment; wherein the base station is the base station shown in FIG. 20 or FIG. 21, and is used to execute the foregoing FIG. 16 or the step of the base station in the configuration resource indication method shown in FIG. 17; and/or the user equipment is the step of the user equipment shown in FIG. 22 or FIG. 23 described above.
  • the base station sends information for referring to the relationship between the CSI-RS measurement resource and the SRS measurement resource to the user equipment by using the configuration information, so that the CSI-RS and the SRS measurement resource for performing beam alignment are used.
  • the base station and the user equipment complete the uplink beam alignment and the downlink beam alignment through a beam alignment process, thereby saving time-frequency resource overhead, improving beam alignment efficiency, and reducing base station configuration SRS. And/or signaling overhead of CSI-RS.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种配置资源指示方法及装置,涉及通信技术领域,解决了现有技术中无法同时对上行波束和下行波束进行对准,且在波束对准过程中时频资源开销大的问题。该方法包括:基站生成配置信息,所述配置信息包括用于指示信道状态信息参考信号CSI-RS测量资源以及探测参考信号SRS测量资源的关系的信息;所述基站在配置时刻发送所述配置信息;所述用户设备接收来自网络设备的配置信息,并根据所述配置信息确定CSI-RS测量资源和SRS测量资源,并进行相应的测量。

Description

一种配置资源指示方法及装置
本申请要求于2017年01月26日提交中国专利局、申请号为201710061663.8、申请名称为“一种配置资源指示方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种配置资源指示方法及装置。
背景技术
随着通信技术的快速发展,对于频率资源的需求越来越多,目前为了解决频率资源匮乏的问题,出现了越来越多使用高频频段的通信系统。由于高频频段中信号的路径损耗会大大增加,因此需要通过波束赋形技术来提高信号的接收功率。波束赋形是一种基于天线阵列的信号预处理技术,通过调整天线阵列中每个阵元的加权系数产生具有指向性的波束,从而能够获得明显的阵列增益。
在高频通信系统中,基站(base station,BS)和用户设备(user equipment,UE)需要同时使用一组合适的波束赋形的加权系数,使得接收功率高于一定门限,此时可以称基站和UE实现了波束对准。但是,由于UE的移动和环境的改变等,实现波束对准的最优加权系数在实时改变,为了维持通信链路不中断,需要实时地在基站和UE间进行波束对准,即加权系数的调整。
目前,上行波束对准和下行波束对准是通过两个独立的波束对准过程来实现的。其中,上行波束对准过程和下行波束对准过程是类似的,下面以下行窄波束对准为例对波束对准的过程介绍。如图1所示,其具体过程包括四个阶段:在信道状态信息参考信号(channel state information reference signal,CSI-RS)配置阶段,基站通过信令给UE分配后面各个阶段需要的CSI-RS资源和波束扫描方式,并通知UE上报阶段的时频资源位置。在基站扫描阶段,基站在CSI-RS资源上使用多个窄波束(即发射波束)发射CSI-RS以进行发射波束扫描,在此过程中,UE使用宽波束进行接收,并测量CSI-RS资源上发射波束的信号强度。UE上报阶段,UE选择信号强度最大的发射波束(即最优发射波束),将该波束的索引号以及对应的参考信号接收功率(reference signal receiving power,RSRP)通过配置的上报阶段的时频资源上报给基站。在UE扫描阶段,基站在CSI-RS资源上使用最优发射波束发射,在此过程中,UE使用多个窄波束进行接收,测量CSI-RS资源上每个窄波束的信号强度,并根据信号强度选择最佳的接收波束,至此上行波束的对准过程结束。
但是,上述波束对准的过程,无法同时对上行波束和下行波束进行对准,且在一次波束对准的过程中需要为两次波束扫描分配相应的时频资源,从而在实现上行波束对准和下行波束对准时共需要四次波束扫描,并为每次扫描分配相应的时频资源,因此时频资源的开销较大。
发明内容
本发明的实施例提供一种配置资源指示方法及装置,解决了现有技术中无法同时对上行波束和下行波束进行对准,且在波束对准过程时频资源开销大的问题。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,提供一种配置资源指示方法,该方法包括:基站生成配置信息,配置信息包括用于指示信道状态信息参考信号CSI-RS测量资源以及探测参考信号SRS测量资源的关系的信息;基站在配置时刻发送配置信息。上述技术方案中,基站通过配置信息将用于指CSI-RS测量资源以及SRS测量资源的关系的信息发送给用户设备,从而将用于进行波束对准的CSI-RS与SRS测量资源关联起来,使得基站与用户设备将上行波束对准和下行波束对准通过一个波束对准流程来完成,从而节省了时频资源的开销,提高波束对准的效率。
在第一方面的一种可能的实现方式中,配置信息还包括:一个或多个SRS测量资源的配置信息、和/或一个或多个CSI-RS测量资源的配置信息。上述可选的技术方案中,基站可以通过配置信息为SRS和/或CSI-RS配置一个或多个测量资源,从而减少了基站配置SRS和/或CSI-RS的信令开销。
在第一方面的一种可能的实现方式中,用于指示信道状态信息参考信号CSI-RS测量资源以及探测参考信号SRS测量资源的关系的信息,包括以下信息中的至少一种:CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引、SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引;CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引、SRS测量资源相对于CSI-RS测量资源的时间偏移量或者时间偏移索引;SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引、CSI-RS测量资源相对于SRS测量资源的时间偏移量或者时间偏移索引。上述可选的技术方案中,提供了多种可能的用于指示CSI-RS测量资源以及SRS测量资源的关系的信息,从而在基于上述信息进行SRS和/或CSI-RS配置时,可以减少了基站配置SRS和/或CSI-RS的信令开销。
在第一方面的一种可能的实现方式中,当参考信号的测量资源为周期性配置或者半静态配置,参考信号的测量资源为CSI-RS测量资源或者所述SRS测量资源时,则用于SRS的测量资源至少为两个,用于CSI-RS的测量资源至少为两个;相应的,CSI-RS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引,具体包括:第一个CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引、以及至少一个CSI-RS测量资源的资源索引;相应的,SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引,具体包括:第一个SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引、以及至少一个SRS测量资源的资源索引。上述可选的技术方案中,基站可以通过不同的时间偏移量或者时间偏移索引、以及测量资源的资源索引,为SRS和/或CSI-RS周期性或者半静态的配置测量资源。
在第一方面的一种可能的实现方式中,配置信息还包括用于指示CSI-RS测量资源与SRS测量资源相对位置的信息。上述可选的技术方案中,基站可以通过CSI-RS测量资源与SRS测量资源相对位置隐性的指示波束扫描方式,从而可以节省基站与用户设备之间的信令交互。
在第一方面的一种可能的实现方式中,若第一波束集合为基站用于接收SRS的波 束集合,第二波束集合为基站用于发送CSI-RS的波束集合,则第二波束集合为第一波束集合的子集。上述可选的技术方案中,基站与用户设备在CSI-RS测量资源与SRS测量资源进行波束对准时,可以通过一个波束对准流程,实现上行波束和下行波束的对准,从而在节省时频资源的同时,提高波束对准的效率。
第二方面,提供一种配置资源指示方法,该方法包括:用户设备接收来自网络设备的配置信息,配置信息包括用于指示信道状态信息参考信号CSI-RS测量资源以及探测参考信号SRS测量资源的关系的信息;根据配置信息,确定CSI-RS测量资源和SRS测量资源。
在第二方面的一种可能的实现方式中,配置信息还包括:一个或多个SRS测量资源的配置信息、和/或一个或多个CSI-RS测量资源的配置信息。
在第二方面的一种可能的实现方式中,用于指示信道状态信息参考信号CSI-RS测量资源以及探测参考信号SRS测量资源的关系的信息,包括:CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引、SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引,则根据配置信息,确定CSI-RS测量资源和SRS测量资源,包括:根据CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引确定CSI-RS测量资源;根据SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引确定SRS测量资源。
在第二方面的一种可能的实现方式中,用于指示信道状态信息参考信号CSI-RS测量资源以及探测参考信号SRS测量资源的关系的信息,包括:CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引、SRS测量资源相对于CSI-RS测量资源的时间偏移量或者时间偏移索引,则根据所述配置信息,确定CSI-RS测量资源和SRS测量资源,包括:根据CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引,确定CSI-RS测量资源;根据CSI-RS测量资源和SRS测量资源相对于CSI-RS测量资源的时间偏移量或者时间偏移索引,确定SRS测量资源。
在第二方面的一种可能的实现方式中,用于指示信道状态信息参考信号CSI-RS测量资源以及探测参考信号SRS测量资源的关系的信息,包括:SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引、CSI-RS测量资源相对于SRS测量资源的时间偏移量或者时间偏移索引,则根据所述配置信息,确定CSI-RS测量资源和SRS测量资源,包括:根据SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引确定SRS测量资源;根据SRS测量资源和CSI-RS测量资源相对于SRS测量资源的时间偏移量或者时间偏移索引,确定CSI-RS测量资源。
在第二方面的一种可能的实现方式中,当参考信号的测量资源为周期性配置或者半静态配置,参考信号的测量资源为CSI-RS测量资源或者SRS测量资源时,则用于SRS的测量资源至少为两个,用于CSI-RS的测量资源至少为两个;
若CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引,具体包括:第一个CSI-RS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引、以及至少一个CSI-RS测量资源的资源索引时,则根据CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引确定CSI-RS测量资源,包括:根据第一个CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引,确定第一个CSI-RS测量资源;根 据第一个CSI-RS测量资源和少一个CSI-RS测量资源的资源索引,确定至少一个CSI-RS测量资源。
或者,若SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引,具体包括:第一个SRS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引、以及至少一个SRS测量资源的资源索引,则根据SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引确定SRS测量资源,包括:根据所述第一个SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引,确定第一个SRS测量资源;根据第一个SRS测量资源和少一个SRS测量资源的资源索引,确定至少一个SRS测量资源。
在第二方面的一种可能的实现方式中,根据配置信息,确定CSI-RS测量资源和所述SRS测量资源之后,该方法还包括:根据CSI-RS测量资源和SRS测量资源的相对位置,确定用户设备的波束扫描方式;或者,配置信息还包括用于指示CSI-RS测量资源与SRS测量资源相对位置的信息,该方法还包括:根据配置信息,确定用户设备的波束扫描方式。
在第二方面的一种可能的实现方式中,若第三波束集合为用户设备用于接收CSI-RS的波束集合,第四波束集合为用户设备用于发送SRS的波束集合,则第四波束集合为第三波束集合的子集。
第三方面,提供一种基站,该基站包括:生成单元,用于生成配置信息,配置信息包括用于指示信道状态信息参考信号CSI-RS测量资源以及探测参考信号SRS测量资源的关系的信息;发送单元,用于在配置时刻发送配置信息。
在第三方面的一种可能的实现方式中,配置信息还包括:一个或多个SRS测量资源的配置信息、和/或一个或多个CSI-RS测量资源的配置信息。
在第三方面的一种可能的实现方式中,用于指示信道状态信息参考信号CSI-RS测量资源以及探测参考信号SRS测量资源的关系的信息,包括以下信息中的至少一种:CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引、SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引;CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引、SRS测量资源相对于CSI-RS测量资源的时间偏移量或者时间偏移索引;SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引、CSI-RS测量资源相对于SRS测量资源的时间偏移量或者时间偏移索引。
在第三方面的一种可能的实现方式中,当参考信号的测量资源为周期性配置或者半静态配置,参考信号的测量资源为CSI-RS测量资源或者SRS测量资源时,则用于SRS的测量资源至少为两个,用于CSI-RS的测量资源至少为两个;CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引,具体包括:第一个CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引、以及至少一个CSI-RS测量资源的资源索引;SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引,具体包括:第一个SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引、以及至少一个SRS测量资源的资源索引。
在第三方面的一种可能的实现方式中,配置信息还包括用于指示CSI-RS测量资源与SRS测量资源相对位置的信息。
在第三方面的一种可能的实现方式中,若第一波束集合为基站用于接收SRS的波 束集合,第二波束集合为基站用于发送CSI-RS的波束集合,则第二波束集合为第一波束集合的子集。
第四方面,提供一种用户设备,用户设备包括:接收单元,用于接收来自网络设备的配置信息,配置信息包括用于指示信道状态信息参考信号CSI-RS测量资源以及探测参考信号SRS测量资源的关系的信息;确定单元,用于根据配置信息,确定CSI-RS测量资源和SRS测量资源。
在第四方面的一种可能的实现方式中,配置信息还包括:一个或多个SRS测量资源的配置信息、和/或一个或多个CSI-RS测量资源的配置信息。
在第四方面的一种可能的实现方式中,用于指示信道状态信息参考信号CSI-RS测量资源以及探测参考信号SRS测量资源的关系的信息,包括:CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引、SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引,则确定单元,具体用于:根据CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引确定CSI-RS测量资源;根据SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引确定SRS测量资源。
在第四方面的一种可能的实现方式中,用于指示信道状态信息参考信号CSI-RS测量资源以及探测参考信号SRS测量资源的关系的信息,包括:CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引、SRS测量资源相对于CSI-RS测量资源的时间偏移量或者时间偏移索引,则确定单元,具体用于:根据CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引,确定CSI-RS测量资源;根据CSI-RS测量资源和SRS测量资源相对于CSI-RS测量资源的时间偏移量或者时间偏移索引,确定SRS测量资源。
在第四方面的一种可能的实现方式中,用于指示信道状态信息参考信号CSI-RS测量资源以及探测参考信号SRS测量资源的关系的信息,包括:SRS测量资源相对于配置时刻的时间偏移量t2或者时间偏移索引、CSI-RS测量资源相对于SRS测量资源的时间偏移量t3或者时间偏移索引,则确定单元,具体用于:根据SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引确定SRS测量资源;根据SRS测量资源和CSI-RS测量资源相对于SRS测量资源的时间偏移量或者时间偏移索引,确定CSI-RS测量资源。
在第四方面的一种可能的实现方式中,当参考信号的测量资源为周期性配置或者半静态配置,参考信号的测量资源为CSI-RS测量资源或者SRS测量资源时,则用于SRS的测量资源至少为两个,用于CSI-RS的测量资源至少为两个;
若CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引,具体包括:第一个CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引、以及至少一个CSI-RS测量资源的资源索引时,确定单元,还具体用于:根据第一个CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引,确定第一个CSI-RS测量资源;根据第一个CSI-RS测量资源和少一个CSI-RS测量资源的资源索引,确定至少一个CSI-RS测量资源;
或者,若SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引,具体包括:第一个SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引、以及至少 一个SRS测量资源的资源索引,则确定单元,还具体用于,包括:根据第一个SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引,确定第一个SRS测量资源;根据第一个SRS测量资源和少一个SRS测量资源的资源索引,确定至少一个SRS测量资源。
在第四方面的一种可能的实现方式中,确定单元,还用于根据CSI-RS测量资源和SRS测量资源的相对位置,确定用户设备的波束扫描方式;或者,配置信息还包括用于指示CSI-RS测量资源与SRS测量资源相对位置的信息,确定单元,还用于根据配置信息,确定用户设备的波束扫描方式。
在第四方面的一种可能的实现方式中,若第三波束集合为用户设备用于接收CSI-RS的波束集合,第四波束集合为用户设备用于发送SRS的波束集合,则第四波束集合为第三波束集合的子集。
第五方面,提供一种基站,包括存储器、处理器、系统总线和通信接口,存储器中存储代码和数据,处理器与存储器通过系统总线连接,处理器运行所述存储器中的代码,使得基站执行上述第一方面或者第一方面的任一种可能的实现方式所提供的配置资源指示方法。
第六方面,提供一种用户设备,包括存储器、处理器、系统总线和通信接口,存储器中存储代码和数据,处理器与存储器通过系统总线连接,处理器运行所述存储器中的代码,使得用户设备执行上述第二方面或者第二方面的任一种可能的实现方式所提供的配置资源指示方法。
第七方面,提供一种通信系统,该通信系统包括基站和用户设备;其中,基站为上述第三方面或者第五方面所提供的基站;和/或,用户设备为上述第四方面或者第六方面所提供的用户设备。
本申请的又一方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请的又一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
可以理解地,上述提供的任一种配置资源指示方法的装置、计算机存储介质或者计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为一种波束对准的流程示意图;
图2为本发明实施例提供的一种通信系统的结构示意图;
图3为本发明实施例提供的一种基站的结构示意图;
图4为本发明实施例提供的一种基带子系统的结构示意图;
图5为本发明实施例提供的一种用户设备的结构示意图;
图6为本发明实施例提供的一种配置资源指示方法的流程图;
图7为本发明实施例提供的第一种CSI-RS测量资源与SRS测量资源之间的关系示意图;
图8为本发明实施例提供的第二种CSI-RS测量资源与SRS测量资源之间的关系 示意图;
图9为本发明实施例提供的第三种CSI-RS测量资源与SRS测量资源之间的关系示意图;
图10为本发明实施例提供的第四种CSI-RS测量资源与SRS测量资源之间的关系示意图;
图11为本发明实施例提供的一种参考信号测量资源的示意图;
图12为本发明实施例提供的第五种CSI-RS测量资源与SRS测量资源之间的关系示意图;
图13为本发明实施例提供的第六种CSI-RS测量资源与SRS测量资源之间的关系示意图;
图14为本发明实施例提供的第七种CSI-RS测量资源与SRS测量资源之间的关系示意图;
图15为本发明实施例提供的第八种CSI-RS测量资源与SRS测量资源之间的关系示意图;
图16为本发明实施例提供的另一种配置资源指示方法的流程图;
图17为本发明实施例提供的又一种配置资源指示方法的流程图;
图18为本发明实施例提供的一种波束对准的流程示意图;
图19为本发明实施例提供的另一种波束对准的流程示意图;
图20为本发明实施例提供的一种基站的结构示意图;
图21为本发明实施例提供的另一种基站的结构示意图;
图22为本发明实施例提供的一种用户设备的结构示意图;
图23为本发明实施例提供的另一种用户设备的结构示意图。
具体实施方式
图2为本发明的实施例所应用的通信系统的结构示意图,参见图2,该通信系统包括基站101和用户设备102。
其中,基站101具有共享信道的调度功能,具有基于发送到用户设备102的分组数据的历史来建立调度的功能,调度就是在多个用户设备102共用传输资源时,需要有一种机制来有效地分配物理层资源,以获得统计复用增益。用户设备102具有通过与基站101之间建立的通信信道而发送和接收数据的功能。用户设备102根据通过调度控制信道发送的信息,进行共享信道的发送或接收处理。另外,用户设备102可以是移动台,手机、计算机以及便携终端等等。
基站101与用户设备102之间通过通信信道进行数据的接收和发送,该通信信道可以是无线通信信道,且在无线通信信道中,至少存在共享信道和调度控制信道,共享信道是为了发送和接收分组而在多个用户设备102之间公用,调度控制信道用于发送共享信道的分配、以及相应的调度结果等。
图3为本发明实施例提供的一种基站的硬件结构图,如图3所示,该基站包括基带子系统、中射频子系统、天馈子系统和一些支撑结构(例如,整机子系统)。其中,基带子系统用于实现整个基站的操作维护,实现信令处理、无线资源原理、到分组核心网的传输接口,实现物理层、介质访问控制层、L3信令、操作维护主控功能。中射 频子系统实现基带信号、中频信号和射频信号之间的转换,实现无线接收信号的解调和发送信号的调制和功率放大。天馈子系统包括连接到基站射频模块的天线和馈线以及GRS接收卡的天线和馈线,用于实现无线空口信号的接收和发送。整机子系统,是基带子系统和中频子系统的支撑部分,提供结构、供电和环境监控功能。
其中,基带子系统可以如图4所示:例如,手机上网需要通过基站接入核心网,在通过核心网接入因特网,其中因特网的数据通过核心网与基站之间的接口,传递到基带部分,基带部分进行PDCP,RLC,MAC层、编码和调制等处理,交给射频部分发射给用户设备。基带与射频之间可以通过CPRI接口连接;另外,射频部分目前可以通过光纤拉远,例如拉远的RRU。本发明实施例中的数据传输方法的各个步骤基带通过射频来实现,同时接收发送步骤是通过天线(例如,空中接口)来实现的。
本发明实施中涉及的用户设备与基站之间的接口可以理解为用户设备与基站之间进行通信的空中接口,或者也可以称为Uu接口。
图5为本发明实施例所应用的用户设备的结构示意图,该用户设备可以为手机、平板电脑、笔记本电脑、超级移动个人计算机、上网本、个人数字助理等,本发明实施例以用户设备为手机为例进行说明。
如图5所示,手机包括:存储器、处理器、射频(英文:radio frequency,简称:RF)电路、以及电源等部件。本领域技术人员可以理解,图5中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图5对手机的各个构成部件进行具体的介绍:
存储器可用于存储软件程序以及模块,处理器通过运行存储在存储器的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序等;存储数据区可存储根据手机的使用所创建的数据等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器等。
处理器是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器内的软件程序和/或模块,以及调用存储在存储器内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器可包括一个或多个处理单元;优选的,处理器可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。
RF电路可用于收发信息或通话过程中,信号的接收和发送。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,RF电路还可以通过无线通信与网络和其他设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统、通用分组无线服务、码分多址、宽带码分多址、长期演进、电子邮件、短消息服务等。
手机还包括给各个部件供电的电源,电源可以通过电源管理系统与处理器逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管未示出,手机还可以包括输入单元、显示单元、传感器模块、音频模块、WiFi 模块、蓝牙模块等,在此不再赘述。
本发明的基本原理在于,基站通过向用户设备发送配置信息,将用于进行波束对准的信道状态信息参考信号测量资源CSI-RS与探测参考信号(sounding reference signal,SRS)测量资源关联起来,以使基站和用户设备根据配置信息确定CSI-RS测量资源和SRS测量资源,从而在波束对准过程中,根据上下行波束具有一致性(correspondence),并基于关联的CSI-RS的测量资源和SRS的测量资源,将上行波束对准和下行波束对准通过一个波束对准流程来完成,从而节省了时频资源的开销,同时也提高了上波束和下行波束进行波束对准的效率。
图6为本发明实施例提供的一种配置资源指示方法的流程图,参见图6,该方法包括以下几个步骤。
步骤201:基站生成配置信息。其中,配置信息包括用于指示信道状态信息参考信号CSI-RS测量资源以及探测参考信号SRS测量资源的关系的信息。
其中,CSI-RS是指用于进行信道状态(比如,信道质量信息(channel quality information,CQI)/预编码矩阵指示(precoding matrix indicator,PMI)/秩指示(rank indicator,RI))测量或者波束管理时的下行参考信号,CSI-RS测量资源是指基站配置给CSI-RS的时频资源,用于基站与用户设备进行波束对准。在波束对准过程中,基站可以在CSI-RS测量资源上发送CSI-RS,同时用户设备可以在CSI-RS测量资源上接收并测量基站发送的CSI-RS。
SRS是指用于信道估计或者波束管理时的上行参考信号,SRS测量资源是指基站配置给SRS的时频资源,用于基站与用户设备进行波束对准。在波束对准过程中,用户设备可以在SRS测量资源上发送SRS,同时基站可以在SRS测量资源上接收并测量用户设备发送的SRS。
另外,CSI-RS测量资源以及SRS测量资源的关系是指基站与用户设备在一个波束对准流程中,基站用于发送CSI-RS的时频资源与用户设备用于发送SRS的时频资源之间的关系。
在本发明的一个示例性实施例中,用于指示CSI-RS测量资源以及SRS测量资源的关系的信息可以包括以下信息中的一种:CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引、SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引;或者,CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引、SRS测量资源相对于CSI-RS测量资源的时间偏移量或者时间偏移索引;或者,SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引、CSI-RS测量资源相对于SRS测量资源的时间偏移量或者时间偏移索引。
其中,时间偏移索引用于标识时间偏移量,不同的时间偏移索引可以对应不同的时间偏移量,且时间偏移索引和时间偏移量之间的对应关系可以是预设的。例如,如下表1所示的对应关系,时间偏移索引可以是时间偏移量对应的一个索引号。时间偏移量对应的时间单位可以是时隙、OFDM符号、或者绝对时间,该绝对时间可以是微秒(us)、毫秒(ms)、或者秒(s)等等,比如,T1可以是2ms、T2可以是4ms,不同的时间偏移量可以对应不同的时间长度。
表1
时间偏移索引 时间偏移量
1 T1
2 T2
3 T3
…… ……
N TN
需要说明的是,上述表1所示的时间偏移索引与时间偏移量之间的对应关系仅为示例性的,上述表1并不对本发明的实施例构成限定。
另外,用于指示CSI-RS测量资源以及SRS测量资源的关系的信息可以只包括时间偏移量的信息,也可以只包括时间偏移索引的信息,或者可以同时包括时间偏移量和时间偏移索引的信息。当用于指示CSI-RS测量资源以及SRS测量资源的关系的信息包括时间偏移索引的信息时,可以根据预设的时间偏移索引与时间偏移量之间的对应关系,确定对应的时间偏移量,下面以时间偏移量为例,对配置信息指示的CSI-RS测量资源与SRS测量资源之间的关系进行详细说明。
具体的,当用于指示CSI-RS测量资源以及SRS测量资源的关系的信息包括:CSI-RS测量资源相对于配置时刻的时间偏移量为T1、SRS测量资源相对于配置时刻的时间偏移量为T2时,若T1小于T2,则CSI-RS测量资源与SRS测量资源之间的关系可以如图7所示;若T1大于T2,则CSI-RS测量资源与SRS测量资源之间的关系可以如图8所示。
当用于指示CSI-RS测量资源以及SRS测量资源的关系的信息包括:CSI-RS测量资源相对于配置时刻的时间偏移量为T1、SRS测量资源相对于CSI-RS测量资源的时间偏移量为T3时,则CSI-RS测量资源与SRS测量资源之间的关系可以如图9所示。
当用于指示CSI-RS测量资源以及SRS测量资源的关系的信息包括:SRS测量资源相对于配置时刻的时间偏移量为T2、CSI-RS测量资源相对于SRS测量资源的时间偏移量为T3时,则CSI-RS测量资源与SRS测量资源之间的关系可以如图10所示。
进一步的,参考信号的测量资源的配置方式可以包括非周期性配置、周期性配置和半静态配置。周期性配置是指基站配置的参考信号的测量资源在时间上一直周期性出现。半静态配置是指基站配置的参考信号的测量资源在指定时间长度内周期性出现,指定时间长度之外可以不做限定。非周期配置是指基站为用户设备配置一个临时的参考信号的测量资源。
其中,当参考信号的测量资源为周期性配置或者半静态配置时,参考信号的测量资源为CSI-RS测量资源或者SRS测量资源,则用于SRS的测量资源至少为两个,用于CSI-RS的测量资源至少为两个。
当参考信号的测量资源的配置方式为非周期性配置时,配置信息指示的CSI-RS测量资源与SRS测量资源之间的关系如上述图7-图10所示,且用于指示CSI-RS测量资源以及SRS测量资源的关系的信息具体可以参见上述描述。
当参考信号的测量资源为周期性配置或者半静态配置时,由于参考信号测量资源的个数为至少两个,因此需要指示每个测量资源的位置,且在指示每个测量资源的位 置时,可以通过指示第一个测量资源相对于配置时刻的时间偏移量或时间偏移索引,以及至少一个测量资源的资源索引。其中,至少一个测量资源是指至少两个测量资源中除第一个以外其他测量资源,每个测量资源可以通过一个资源索引进行标识,根据资源索引可以确定对应的测量资源。
具体的,当CSI-RS测量资源的个数为至少两个时,CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引,具体包括:第一个CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引、以及至少一个CSI-RS测量资源的资源索引。当SRS测量资源的个数为至少两个时,SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引,具体包括:第一个SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引、以及至少一个SRS测量资源的资源索引。
比如,以参考信号为例,周期性配置或者半静态配置后的参考信号的测量资源可以如图11所示。图11中第一个测量资源相对配置时刻的时间偏移量为T0,资源索引表示为#1、#2、…、#n,从而至少一个测量资源的资源索引为#2、…、#n,当然也可以包括#1。其中,资源索引也可以表示为其他,比如i*周期,i可以是指第i个测量资源,周期是指测量资源周期性出现的时间长度,本发明实施例对此不做限定。
由于参考信号的测量资源的配置方式可以包括非周期性配置、周期性配置和半静态配置,参考信号的测量资源可以包括CSI-RS测量资源和SRS测量资源,所以CSI-RS测量资源和SRS测量资源的配置可以包括9种配置组合方式,具体如下表2所示。
表2
组合序数 SRS测量资源 CSI-RS测量资源
1 周期性配置 周期性配置
2 周期性配置 半静态配置
3 周期性配置 非周期配置
4 半静态配置 周期性配置
5 半静态配置 半静态配置
6 半静态配置 非周期配置
7 非周期配置 周期性配置
8 非周期配置 半静态配置
9 非周期配置 非周期配置
进一步的,配置信息还包括可以一个或者多个SRS测量资源的配置信息,和/或一个或多个CSI-RS测量资源的配置信息。具体的,若一个或者多个CSI-RS测量资源是事先配置的,则该配置信息还可以包括一个或多个SRS测量资源的配置信息。若一个或者多个SRS测量资源是事先配置的,则该配置信息还可以包括一个或多个CSI-RS测量资源的配置信息。若CSI-RS测量资源和SRS测量资源事先均未进行配置,则该配置信息还可以包括一个或多个SRS测量资源的配置信息、和一个或多个CSI-RS测量资源的配置信息。
在实际应用中,基站不仅可以通过一个配置信息将一个或多个SRS测量资源的配置信息、和/或一个或多个CSI-RS测量资源的配置信息配置给用户设备,也可以通过 多个不同的配置信息,分别为用户设备配置一个或多个SRS测量资源的配置信息、以及一个或多个CSI-RS测量资源的配置信息。比如,基站通过第一配置信息为用户设备配置一个或多个SRS测量资源的配置信息,基站通过第二配置信息为用户设备配置一个或多个CSI-RS测量资源的配置信息。
其中,一个或者多个SRS测量资源的配置信息具体可以包括以下信息中的至少一种:SRS测量的端口号、时频信息、用于标识时频信息的索引。一个或多个CSI-RS测量资源的配置信息具体也可以包括以下信息中的至少一种:CSI-RS测量的端口号、时频信息、用于标识时频信息的索引。
时频信息可以包括时域信息和频域信息。时域信息是指一个或者多个SRS测量资源在时域上所对应的OFDM符号的信息。比如,时域信息可以是OFDM符号在一个传输时间间隔(transmission time interval,TTI)中的符号序数。频域信息是指一个或者多个SRS测量资源在频域上所对应的子载波的信息。比如,频域信息可以是子载波在一个或者多个资源块(resource block,RB)中所对应的子载波序号、子载波宽度、或者子载波间隔等信息。
进一步的,配置信息还可以包括用于指示CSI-RS测量资源与SRS测量资源相对位置的信息,即基站根据CSI-RS测量资源与SRS测量资源相对位置隐性的指示在波束对准过程基站和用户设备进行波束扫描的先后顺序,也可以称为确定波束对准过程中的波束扫描方式。或者,配置信息还可以包括用于指示波束扫描方式的信息,即基站可以通过配置信息显性的指示波束对准过程中的波束扫描方式。直接根据用于指示波束扫描方式的信息确定波束对准过程中的波束扫描方式。
其中,当基站隐性的指示波束对准过程中的波束扫描方式时,配置信息中可以不包括用于指示CSI-RS测量资源与SRS测量资源相对位置的信息,用户设备可以在确定CSI-RS测量资源与SRS测量资源的位置后,直接根据CSI-RS测量资源与SRS测量资源的前后关系,确定波束对准过程中的波束扫描方式。
或者,基站可以通过配置信息隐性的指示波束对准过程中的波束扫描方式,即配置信息还包括用于指示CSI-RS测量资源与SRS测量资源相对位置的信息,用户设备可以直接根据配置信息确定CSI-RS测量资源与SRS测量资源相对位置,从而根据该相对位置确定波束对准过程中的波束扫描方式。
当用户设备根据SRS测量资源和CSI-RS测量资源的相对位置,确定CSI-RS和SRS的波束扫描方式时,若SRS测量资源位于CSI-RS测量资源之前,则用户设备可以确定波束对准过程中的波束扫描方式为第一种扫描方式;若CSI-RS测量资源位于SRS测量资源之前,则用户设备可以确定波束对准过程中的波束扫描方式为第二种扫描方式。其中,第一种扫描方式和第二种扫描方式,可以如下表3所示。
表3
Figure PCTCN2017107544-appb-000001
Figure PCTCN2017107544-appb-000002
在实际应用中,基站可以通过上述步骤201中的配置信息为用户设备配置波束对准过程中的波束扫描方式,可以通过其他的配置信息或者高层信令进行配置等,本发明的实施例对此不做限定。
步骤202:基站在配置时刻向用户设备发送配置信息。
当基站生成配置信息之后,基站可以在配置时刻向用户设备发送配置信息,以指示用户设备根据配置信息确定CSI-RS测量资源与SRS测量资源之间的关系,从而根据CSI-RS测量资源与SRS测量资源之间的关系,通过一个波束对准流程实现上行波束与下行波束的对准。
步骤203:当用户设备接收到基站发送的配置信息时,用户设备根据配置信息,确定CSI-RS测量资源和SRS测量资源。
其中,由于配置信息包括的用于指示CSI-RS测量资源以及SRS测量资源的关系的信息可以包括多种不同的信息,因此用户设备确定CSI-RS测量资源和SRS测量资源的过程也会因为包括的信息的不同而不同,下面分别进行阐述。
第一种、若用于CSI-RS测量资源以及SRS测量资源的关系的信息,包括:CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引、SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引,则步骤203具体为:根据CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引确定CSI-RS测量资源;根据SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引确定SRS测量资源。
其中,时间偏移量与时间偏移索引之间的对应关系可以参见上述步骤201中的阐述,在配置信息中包括时间偏移索引的信息时,用户设备可以根据时间偏移量与时间偏移索引之间的对应关系确定对应的时间偏移量。因此,下面以时间偏移量为例,对用户设备确定CSI-RS测量资源和SRS测量资源的过程说明。
比如,配置时刻为t,CSI-RS测量资源相对于配置时刻t的时间偏移量为T1,SRS测量资源相对于配置时刻t的时间偏移量为T2,则配置时刻t加上时间偏移量T1即可确定CSI-RS测量资源,配置时刻t加上时间偏移量T2即可确定SRS测量资源。若T1小于T2,则CSI-RS测量资源与SRS测量资源之间的关系可以如图7所示;若T1大于T2,则CSI-RS测量资源与SRS测量资源之间的关系可以如图8所示。
第二种、若用于指示CSI-RS测量资源以及SRS测量资源的关系的信息包括:CSI-RS测量资源相对于配置时刻的时间偏移量、SRS测量资源相对于CSI-RS测量资源的时间偏移量,则步骤203具体为:根据CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引,确定CSI-RS测量资源;根据CSI-RS测量资源、以及SRS测量资源相对于CSI-RS测量资源的时间偏移量或者时间偏移索引,确定SRS测量资源。
比如,配置时刻为t,CSI-RS测量资源相对于配置时刻t的时间偏移量为T1,SRS测量资源相对于CSI-RS测量资源的时间偏移量为T3,则配置时刻t加上时间偏移量 T1即可确定CSI-RS测量资源,配置时刻t加上时间偏移量T1和T3即可确定SRS测量资源,且确定的CSI-RS测量资源与SRS测量资源之间的关系可以如图9所示。
第三种、若用于指示CSI-RS测量资源以及SRS测量资源的关系的信息包括:SRS测量资源相对于配置时刻的时间偏移量、CSI-RS测量资源相对于SRS测量资源的时间偏移量,则步骤203具体为:根据SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引确定SRS测量资源;根据SRS测量资源和CSI-RS测量资源相对于SRS测量资源的时间偏移量或者时间偏移索引,确定CSI-RS测量资源。
比如,配置时刻为t,SRS测量资源相对于配置时刻t的时间偏移量为T2,CSI-RS测量资源相对于SRS测量资源的时间偏移量为T3,则配置时刻t加上时间偏移量T2即可确定SRS测量资源,配置时刻t加上时间偏移量T2和T3即可确定CSI-RS测量资源,且确定的CSI-RS测量资源与SRS测量资源之间的关系可以如图10所示。
进一步的,由于时间偏移索引对应的时间偏移量是事先设置好的有限的数值。基站在参考信号配置时向用户设备配置时间偏移索引,而时间偏移索引对应的时间偏移量是离散的值,用户设备根据时间偏移索引确定的时间偏移量计算出的时刻可能并不是参考信号测量资源的时间位置。因此,当用于指示CSI-RS测量资源以及SRS测量资源的关系的信息包括时间偏移索引,且对应计算出的时刻不是参考信号测量资源的时间位置时,用户设备可以将该时间位置之后且距离最近的参考信号资源作为波束对准使用的参考信号测量资源。
比如,对于上述第一种情况,若用户设备确定的配置时刻t加上时间偏移量T1不是CSI-RS测量资源的时间位置,配置时刻t加上时间偏移量T2不是SRS测量资源的时间位置,则在T1小于T2时,CSI-RS测量资源与SRS测量资源之间的关系如图12所示,在T1大于T2时,CSI-RS测量资源与SRS测量资源之间的关系如图13所示。
对于上述第二种情况,若用户设备确定的配置时刻t加上时间偏移量T1不是CSI-RS测量资源的时间位置,配置时刻t加上时间偏移量T1和时间偏移量T3不是SRS测量资源的时间位置,则CSI-RS测量资源与SRS测量资源之间的关系如图14所示。
对于上述第三种情况,若用户设备确定的配置时刻t加上时间偏移量T2不是SRS测量资源的时间位置,配置时刻t加上时间偏移量T2和时间偏移量T3不是CSI-RS测量资源的时间位置,则CSI-RS测量资源与SRS测量资源之间的关系如图15所示。
在本发明实施例中,基站通过配置信息将用于指CSI-RS测量资源以及SRS测量资源的关系的信息发送给用户设备,从而将用于进行波束对准的CSI-RS与SRS测量资源关联起来,使得基站与用户设备将上行波束对准和下行波束对准通过一个波束对准流程来完成,从而节省了时频资源的开销,提高波束对准的效率。
进一步的,当参考信号的测量资源为周期性配置或者半静态配置,参考信号的测量资源可以为CSI-RS测量资源或SRS测量资源时,用于SRS的测量资源至少为两个,用于CSI-RS的测量资源至少为两个,则上述三种情况中参考信号的测量资源相对于配置时刻的时间偏移量或者时间偏移索引的具体信息有所不同,根据该信息确定参考信号的测量资源的过程也有所不同,下面分别进行说明。
若CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引,具体包括: 第一个CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引、以及至少一个CSI-RS测量资源的资源索引,则根据CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引确定CSI-RS测量资源,包括:根据第一个CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引,确定第一个CSI-RS测量资源;根据第一个CSI-RS测量资源和至少一个CSI-RS测量资源的资源索引,确定至少一个CSI-RS测量资源。
若SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引,具体包括:第一个SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引、以及至少一个SRS测量资源的资源索引,则根据SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引确定SRS测量资源,包括:根据第一个SRS测量资源相对于配置时刻的时间偏移量或者时间偏移索引,确定第一个SRS测量资源;根据第一个SRS测量资源和少一个SRS测量资源的资源索引,确定至少一个SRS测量资源。
其中,当参考信号的测量资源为周期性配置或者半静态配置时,用户设备根据配置信息确定的周期性或者半静态的参考信号测量资源如图11所示。其中,图11中的参考信号的测量资源可以是CSI-RS测量资源,或者是SRS测量资源。
进一步的,参见图16,该方法还包括:步骤204a。其中,步骤204a对应于基站隐性的指示波束对准过程中的波束扫描方式的步骤。
步骤204a:用户设备根据CSI-RS测量资源和SRS测量资源的相对位置,确定波束扫描方式。
其中,步骤204a位于步骤203之后,即在用户设备根据配置信息确定CSI-RS测量资源和SRS测量资源之后,若确定SRS测量资源位于CSI-RS测量资源之前,则用户设备可以确定在波束对准过程中的波束扫描方式为第一种扫描方式;若确定CSI-RS测量资源位于SRS测量资源之前,则用户设备可以确定在波束对准过程中的波束扫描方式为第二种扫描方式。
进一步的,参见图17,该方法还包括:步骤204b。其中,若配置信息还包括用于指示CSI-RS测量资源与SRS测量资源相对位置的信息,步骤204b对应于基站隐性的指示波束对准过程中的波束扫描方式的步骤。若配置信息还包括用于指示波束扫描方式的信息,则步骤204b对应于基站显性的指示波束对准过程中的波束扫描方式的步骤。
步骤204b:用户设备根据配置信息,确定波束扫描方式。
其中,当用户接收到配置信息时,用户设备可以直接根据步骤204b确定用户设备的波束扫描方式。
具体的,当配置信息指示SRS测量资源位于CSI-RS测量资源之前,则用户设备可以确定在波束对准过程中的波束扫描方式为第一种扫描方式;当配置信息指示CSI-RS测量资源位于SRS测量资源之前,则用户设备可以确定在波束对准过程中的波束扫描方式为第二种扫描方式。
当配置信息中包括的用于指示波束扫描方式的信息,用户设备可以直接根据用于指示波束扫描方式的信息确定波束扫描方式为第一扫描方式或者第二扫描方式。
进一步的,在确定CSI-RS测量资源和SRS测量资源、以及波束对准过程中的波 束扫描方式时,基站与用户设备可以基于CSI-RS测量资源和SRS测量资源和对应的波束扫描方式进行波束对准,即通过一个波束对准流程实现上下行波束的对准。下面分别对基站和用户设备以第一种扫描方式和第二种扫描方式进行波束对准的过程进行详细说明。
第一种扫描方式、如图18所示,若SRS测量资源位于CSI-RS测量资源之前,则基站与用户设备以第一种扫描方式进行波束对准,且进行波束对准的过程具体可以包括:步骤a1-步骤a4。
步骤a1:用户设备在SRS测量资源上使用第一宽波束发送SRS。
其中,第一宽波束为基站与用户设备之间进行粗波束对准后得到的收发角度较大的波束,且第一宽波束为用户设备侧的波束,基站侧进行粗波束对准后得到的收发角度较大的波束可以称为第二波束,第一宽波束和第二宽波束为一组对准的宽波束。
步骤a2:基站在SRS测量资源上使用第一波束集合接收和测量SRS的参考信息接收功率(reference signal receiving power,RSRP),并根据第一波束集合中每个波束对应的RSRP确定第二波束集合。其中,第二波束集合为第一波束集合的子集。图11中以第二波束集合包括一个波束为例进行说明。
其中,第一波束集合可以包括两个或者两个以上的窄波束,且第一波束集合包括的每个窄波束的收发角度小于第二宽波束的收发角度。比如,第二宽波束的收发角度为20~40度,若第一波束集合包括四个窄波束,则四个窄波束对应的收发角度分别可以为20~25度、25~30度、30~35度和35~40度。
另外,SRS测量资源和第一波束集合包括的窄波束之间可以存在对应关系。比如,图11所示的SRS测量资源与第一波束集合包括的窄波束之间的对应关系中,一个SRS测量资源可以分为四部分,每部分对应第一波束集合中的一个窄波束。
当用户设备在SRS测量资源上使用第一宽波束发送SRS时,相应的,同一时刻基站可以在SRS测量资源上根据SRS测量资源与第一波束集合包括的窄波束之间的对应关系,使用第一波束集合接收SRS,并测量每个窄波束上对应的SRS的RSRP,并根据RSRP从大到小的顺序,从第一波束集合中确定第二波束集合,第二波束集合为第一波束集合的子集。
步骤a3:基站在CSI-RS测量资源上分别使用第二波束集合中的每个波束发送CSI-RS。
在基站确定第二波束集合后,基站可以根据CSI-RS测量资源与SRS测量资源之间的关联关系,在CSI-RS测量资源上分别使用第二波束集合中的每个波束发送CSI-RS。
比如,如图18所示,以基站在CSI-RS测量资源上使用第二波束集合中的一个波束发送CSI-RS为例,CSI-RS测量资源与SRS测量资源之间的关联关系为:CSI-RS测量资源与SRS测量资源之间的时间间隔为T3,则基站在确定第二波束集合,并经过T3时间后,在CSI-RS测量资源上使用第二波束集合中的一个波束发送CSI-RS。
步骤a4:用户设备在CSI-RS测量资源上使用第三波束集合接收和测量CSI-RS的RSRP,并根据第三波束集合中每个波束对应的RSRP确定第四波束集合。
其中,第三波束集合可以包括两个或者两个以上的窄波束,且第三波束集合包括 的每个窄波束的收发角度小于第一宽波束的收发角度。比如,第一宽波束的收发角度为35~55度,若第三波束集合包括四个窄波束,则四个窄波束对应的收发角度分别可以为35~40度、40~45度、45~50度和50~55度。
另外,CSI-RS测量资源和第三波束集合包括的窄波束之间可以存在对应关系,该对应关系可以由基站配置给用户设备。比如,基站通过配置信息将CSI-RS测量资源与第三波束集合包括的窄波束之间的对应关系配置给用户设备。
当基站在CSI-RS测量资源上使用第二波束集合中的一个波束发送CSI-RS时,相应的,同一时刻用户设备可以在CSI-RS测量资源上使用第三波束集合接收CSI-RS,并测量第三波束集合包括的每个窄波束上对应的CSI-RS的RSRP,并将最大的RSRP对应的波束确定为第四波束集合中的一个波束。
同理,对于第二波束集合中的每个波束,用户设备通过上述步骤a4所述的方法,从第三波束集合中选择一个最大的RSRP对应的波束,从而基站在分别使用第二波束集合中每个波束集合发送CSI-RS后,用户设备可以从第三波束集合中确定得到第四波束集合。
第二种扫描方式、如图19所示,若SRS测量资源位于CSI-RS测量资源之前,则基站与用户设备以第二种扫描方式进行波束对准,且进行波束对准的过程具体可以包括:步骤b1-步骤b4。
步骤b1:基站CSI-RS测量资源上使用第一宽波束发送CSI-RS。
步骤b2:用户设备在CSI-RS测量资源上使用第三波束集合接收和测量CSI-RS的RSRP,并根据第三波束集合中每个波束对应的RSRP确定第四波束集合。其中,第四波束集合为第三波束集合的子集。图19中以第四波束集合中的一个波束为例进行说明。
步骤b3:用户设备在SRS测量资源上分别使用第四波束集合中的每个波束发送SRS。
步骤b4:基站在SRS测量资源上分别使用第一波束集合接收SRS、以及测量SRS的RSRP,并根据第一波束集合中每个波束对应的RSRP确定第二波束集合。
需要说明的是,第一扫描方式是用户设备先进行波束扫描,基站后进行波束扫描,第二扫描方式是基站先进行波束扫描,用户设备后进行波束扫描,但是第一种扫描方式与第二种扫描方式的过程类似,且其中涉及的第一宽波束、第一波束集合、第二波束集合、第三波束集合和第四波束集合等与上述第一种扫描方式中的一致,具体参见上述第一种扫描方式中的阐述,本发明实施例在此不再赘述。
在本发明实施例中,基站通过配置信息将用于指CSI-RS测量资源以及SRS测量资源的关系的信息发送给用户设备,从而将用于进行波束对准的CSI-RS与SRS测量资源关联起来,使得基站与用户设备将上行波束对准和下行波束对准通过一个波束对准流程来完成,从而节省了时频资源的开销,提高波束对准的效率,同时也可以减少基站配置SRS和/或CSI-RS的信令开销。
上述主要从各个网元之间交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,各个网元,例如基站和用户设备等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文 中所公开的实施例描述的各示例的网元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例对基站和用户设备等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图20示出了上述实施例中所涉及的基站的一种可能的结构示意图,基站300包括:生成单元301和发送单元302。其中,生成单元301用于执行图6、图16或图17中的步骤201;发送单元302用于执行图6、图16或图17中的步骤202。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在硬件实现上,上述生成单元301可以为处理器,发送单元302可以为发送器,其与接收器可以构成通信接口。
图21所示,为本发明的实施例提供的上述实施例中所涉及的基站310的一种可能的逻辑结构示意图。基站310包括:处理器312、通信接口313、存储器311以及总线314。处理器312、通信接口313以及存储器311通过总线314相互连接。在发明的实施例中,处理器312用于对基站310的动作进行控制管理,例如,处理器312用于执行图6、图16或图17中的步骤201,和/或用于本文所描述的技术的其他过程。通信接口313用于支持基站310进行通信。存储器311,用于存储基站310的程序代码和数据。
其中,处理器312可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。总线314可以是外设部件互连标准(英文:peripheral component interconnect,简称:PCI)总线或扩展工业标准结构(英文:extended industry standard architecture,简称:EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图21中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在采用对应各个功能划分各个功能模块的情况下,图22示出了上述实施例中所涉及的用户设备的一种可能的结构示意图,用户设备400包括:接收单元401和确定单元402。其中,接收单元401用于执行图6、图16或图17中接收配置信息的过程;确定单元402用于执行图6、图16或图17中的步骤203,以及图16中的步骤204a、或者图17中的步骤204b。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在硬件实现上,上述确定单元402可以为处理器,接收单元401可以为接收器, 其与发送器可以构成通信接口。
图23所示,为本发明的实施例提供的上述实施例中所涉及的用户设备410的一种可能的逻辑结构示意图。用户设备410包括:处理器412、通信接口413、存储器411以及总线414。处理器412、通信接口413以及存储器411通过总线414相互连接。在发明的实施例中,处理器412用于对用户设备410的动作进行控制管理,例如,处理器412用于执行图6、图16或图17中的步骤203,图16中步骤204a,以及图17中的步骤204b,和/或用于本文所描述的技术的其他过程。通信接口413用于支持用户设备410进行通信。存储器311,用于存储用户设备410的程序代码和数据。
其中,处理器412可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。总线414可以是外设部件互连标准(英文:peripheral component interconnect,简称:PCI)总线或扩展工业标准结构(英文:extended industry standard architecture,简称:EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图23中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本发明的另一实施例中,还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当设备的至少一个处理器执行该计算机执行指令时,设备执行图6、图16或图17所示的配置资源指示方法中基站的步骤,或者执行图6、图16或图17所示的配置资源指示方法中用户设备的步骤。
在本发明的另一实施例中,还提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中;设备的至少一个处理器可以从计算机可读存储介质读取该计算机执行指令,至少一个处理器执行该计算机执行指令使得设备实施图6、图16或图17所示的配置资源指示方法中基站的步骤,或者执行图6、图16或图17所示的配置资源指示方法中用户设备的步骤。
在本发明的另一实施例中,还提供一种通信系统,该通信系统包括基站和用户设备;其中,基站为上述图20或者图21所示的基站,且用于执行上述图6、图16或者图17所示的配置资源指示方法中基站的步骤;和/或用户设备为上述图22或者图23所示的用户设备的步骤。
在本发明的实施例中,基站通过配置信息将用于指CSI-RS测量资源以及SRS测量资源的关系的信息发送给用户设备,从而将用于进行波束对准的CSI-RS与SRS测量资源关联起来,使得基站与用户设备将上行波束对准和下行波束对准通过一个波束对准流程来完成,从而节省了时频资源的开销,提高波束对准的效率,同时也可以减少基站配置SRS和/或CSI-RS的信令开销。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种配置资源指示方法,其特征在于,所述方法包括:
    基站生成配置信息,所述配置信息包括用于指示信道状态信息参考信号CSI-RS测量资源以及探测参考信号SRS测量资源的关系的信息;
    所述基站在配置时刻发送所述配置信息。
  2. 根据权利要求1所述的方法,其特征在于,所述配置信息还包括:
    一个或多个SRS测量资源的配置信息、和/或一个或多个CSI-RS测量资源的配置信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述用于指示信道状态信息参考信号CSI-RS测量资源以及探测参考信号SRS测量资源的关系的信息,包括以下信息中的至少一种:
    所述CSI-RS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引、所述SRS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引;
    所述CSI-RS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引、所述SRS测量资源相对于所述CSI-RS测量资源的时间偏移量或者时间偏移索引;
    所述SRS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引、所述CSI-RS测量资源相对于所述SRS测量资源的时间偏移量或者时间偏移索引。
  4. 根据权利要求3所述的方法,其特征在于,当参考信号的测量资源为周期性配置或者半静态配置,所述参考信号的测量资源为所述CSI-RS测量资源或者所述SRS测量资源时,则用于所述SRS的测量资源至少为两个,用于所述CSI-RS的测量资源至少为两个;
    所述CSI-RS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引,具体包括:第一个CSI-RS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引、以及至少一个CSI-RS测量资源的资源索引;
    所述SRS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引,具体包括:第一个SRS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引、以及至少一个SRS测量资源的资源索引。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述配置信息还包括用于指示所述CSI-RS测量资源与所述SRS测量资源相对位置的信息。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,若第一波束集合为所述基站用于接收所述SRS的波束集合,第二波束集合为所述基站用于发送所述CSI-RS的波束集合,则所述第二波束集合为所述第一波束集合的子集。
  7. 一种配置资源指示方法,其特征在于,所述方法包括:
    用户设备接收来自网络设备的配置信息,所述配置信息包括用于指示信道状态信息参考信号CSI-RS测量资源以及探测参考信号SRS测量资源的关系的信息;
    根据所述配置信息,确定所述CSI-RS测量资源和所述SRS测量资源。
  8. 根据权利要求7所述的方法,其特征在于,所述配置信息还包括:
    一个或多个SRS测量资源的配置信息、和/或一个或多个CSI-RS测量资源的配置 信息。
  9. 根据权利要求7或8所述的方法,其特征在于,
    所述用于指示信道状态信息参考信号CSI-RS测量资源以及探测参考信号SRS测量资源的关系的信息,包括:
    所述CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引、所述SRS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引,则所述根据所述配置信息,确定所述CSI-RS测量资源和所述SRS测量资源,包括:
    根据所述CSI-RS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引确定所述CSI-RS测量资源;
    根据所述SRS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引确定所述SRS测量资源。
  10. 根据权利要求7或8所述的方法,其特征在于,
    所述用于指示信道状态信息参考信号CSI-RS测量资源以及探测参考信号SRS测量资源的关系的信息,包括:
    所述CSI-RS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引、所述SRS测量资源相对于所述CSI-RS测量资源的时间偏移量或者时间偏移索引,则所述根据所述配置信息,确定所述CSI-RS测量资源和所述SRS测量资源,包括:
    根据所述CSI-RS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引,确定所述CSI-RS测量资源;
    根据所述CSI-RS测量资源和所述SRS测量资源相对于所述CSI-RS测量资源的时间偏移量或者时间偏移索引,确定所述SRS测量资源。
  11. 根据权利要求7或8所述的方法,其特征在于,
    所述用于指示信道状态信息参考信号CSI-RS测量资源以及探测参考信号SRS测量资源的关系的信息,包括:
    所述SRS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引、所述CSI-RS测量资源相对于所述SRS测量资源的时间偏移量或者时间偏移索引,则所述根据所述配置信息,确定所述CSI-RS测量资源和所述SRS测量资源,包括:
    根据所述SRS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引确定所述SRS测量资源;
    根据所述SRS测量资源和所述CSI-RS测量资源相对于所述SRS测量资源的时间偏移量或者时间偏移索引,确定所述CSI-RS测量资源。
  12. 根据权利要求9-11任一项所述的方法,其特征在于,当参考信号的测量资源为周期性配置或者半静态配置,所述参考信号的测量资源为CSI-RS测量资源或者所述SRS测量资源时,则用于所述SRS的测量资源至少为两个,用于所述CSI-RS的测量资源至少为两个;
    若所述CSI-RS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引,具体包括:第一个CSI-RS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引、以及至少一个CSI-RS测量资源的资源索引时,所述根据所述CSI-RS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引确定所述CSI-RS测量资源,包括:
    根据所述第一个CSI-RS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引,确定所述第一个CSI-RS测量资源;
    根据所述第一个CSI-RS测量资源和所述至少一个CSI-RS测量资源的资源索引,确定所述至少一个CSI-RS测量资源;
    或者,若所述SRS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引,具体包括:第一个SRS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引、以及至少一个SRS测量资源的资源索引,则根据所述SRS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引确定所述SRS测量资源,包括:
    根据所述第一个SRS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引,确定所述第一个SRS测量资源;
    根据所述第一个SRS测量资源和所述至少一个SRS测量资源的资源索引,确定所述至少一个SRS测量资源。
  13. 根据权利要求7-12任一项所述的方法,其特征在于,
    所述根据所述配置信息,确定所述CSI-RS测量资源和所述SRS测量资源之后,所述方法还包括:
    根据所述CSI-RS测量资源和所述SRS测量资源的相对位置,确定所述用户设备的波束扫描方式;
    或者,所述配置信息还包括用于指示所述CSI-RS测量资源与所述SRS测量资源相对位置的信息,所述方法还包括:
    根据所述配置信息,确定所述用户设备的波束扫描方式。
  14. 根据权利要求7-13任一项所述的方法,其特征在于,若第三波束集合为所述用户设备用于接收所述CSI-RS的波束集合,第四波束集合为所述用户设备用于发送所述SRS的波束集合,则所述第四波束集合为所述第三波束集合的子集。
  15. 一种基站,其特征在于,所述基站包括:
    生成单元,用于生成配置信息,所述配置信息包括用于指示信道状态信息参考信号CSI-RS测量资源以及探测参考信号SRS测量资源的关系的信息;
    发送单元,用于在配置时刻发送所述配置信息。
  16. 根据权利要求15所述的基站,其特征在于,所述配置信息还包括:
    一个或多个SRS测量资源的配置信息、和/或一个或多个CSI-RS测量资源的配置信息。
  17. 根据权利要求15或16所述的基站,其特征在于,所述用于指示信道状态信息参考信号CSI-RS测量资源以及探测参考信号SRS测量资源的关系的信息,包括以下信息中的至少一种:
    所述CSI-RS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引、所述SRS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引;
    所述CSI-RS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引、所述SRS测量资源相对于所述CSI-RS测量资源的时间偏移量或者时间偏移索引;
    所述SRS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引、所述CSI-RS测量资源相对于所述SRS测量资源的时间偏移量或者时间偏移索引。
  18. 根据权利要求17所述的基站,其特征在于,当参考信号的测量资源为周期性配置或者半静态配置,所述参考信号的测量资源为所述CSI-RS测量资源或者所述SRS测量资源时,则用于所述SRS的测量资源至少为两个,用于所述CSI-RS的测量资源至少为两个;
    所述CSI-RS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引,具体包括:第一个CSI-RS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引、以及至少一个CSI-RS测量资源的资源索引;
    所述SRS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引,具体包括:第一个SRS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引、以及至少一个SRS测量资源的资源索引。
  19. 根据权利要求15-18任一项所述的基站,其特征在于,所述配置信息还包括用于指示所述CSI-RS测量资源与所述SRS测量资源相对位置的信息。
  20. 根据权利要求15-19任一项所述的基站,其特征在于,若第一波束集合为所述基站用于接收所述SRS的波束集合,第二波束集合为所述基站用于发送所述CSI-RS的波束集合,则所述第二波束集合为所述第一波束集合的子集。
  21. 一种用户设备,其特征在于,所述用户设备包括:
    接收单元,用于接收来自网络设备的配置信息,所述配置信息包括用于指示信道状态信息参考信号CSI-RS测量资源以及探测参考信号SRS测量资源的关系的信息;
    确定单元,用于根据所述配置信息,确定所述CSI-RS测量资源和所述SRS测量资源。
  22. 根据权利要求21所述的用户设备,其特征在于,所述配置信息还包括:
    一个或多个SRS测量资源的配置信息、和/或一个或多个CSI-RS测量资源的配置信息。
  23. 根据权利要求21或22所述的用户设备,其特征在于,
    所述用于指示信道状态信息参考信号CSI-RS测量资源以及探测参考信号SRS测量资源的关系的信息,包括:所述CSI-RS测量资源相对于配置时刻的时间偏移量或者时间偏移索引、所述SRS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引,则所述确定单元,具体用于:
    根据所述CSI-RS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引确定所述CSI-RS测量资源;
    根据所述SRS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引确定所述SRS测量资源。
  24. 根据权利要求21或22所述的用户设备,其特征在于,
    所述用于指示信道状态信息参考信号CSI-RS测量资源以及探测参考信号SRS测量资源的关系的信息,包括:所述CSI-RS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引、所述SRS测量资源相对于所述CSI-RS测量资源的时间偏移量或者时间偏移索引,则所述确定单元,具体用于:
    根据所述CSI-RS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引,确定所述CSI-RS测量资源;
    根据所述CSI-RS测量资源和所述SRS测量资源相对于所述CSI-RS测量资源的时间偏移量或者时间偏移索引,确定所述SRS测量资源。
  25. 根据权利要求21或22所述的用户设备,其特征在于,
    所述用于指示信道状态信息参考信号CSI-RS测量资源以及探测参考信号SRS测量资源的关系的信息,包括:所述SRS测量资源相对于所述配置时刻的时间偏移量t2或者时间偏移索引、所述CSI-RS测量资源相对于所述SRS测量资源的时间偏移量t3或者时间偏移索引,则所述确定单元,具体用于:
    根据所述SRS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引确定所述SRS测量资源;
    根据所述SRS测量资源和所述CSI-RS测量资源相对于所述SRS测量资源的时间偏移量或者时间偏移索引,确定所述CSI-RS测量资源。
  26. 根据权利要求23-25任一项所述的用户设备,其特征在于,当参考信号的测量资源为周期性配置或者半静态配置,所述参考信号的测量资源为CSI-RS测量资源或者所述SRS测量资源时,则用于所述SRS的测量资源至少为两个,用于所述CSI-RS的测量资源至少为两个;
    若所述CSI-RS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引,具体包括:第一个CSI-RS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引、以及至少一个CSI-RS测量资源的资源索引时,所述确定单元,还具体用于:
    根据所述第一个CSI-RS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引,确定所述第一个CSI-RS测量资源;
    根据所述第一个CSI-RS测量资源和所述至少一个CSI-RS测量资源的资源索引,确定所述至少一个CSI-RS测量资源;
    或者,若所述SRS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引,具体包括:第一个SRS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引、以及至少一个SRS测量资源的资源索引,则所述确定单元,还具体用于,包括:
    根据所述第一个SRS测量资源相对于所述配置时刻的时间偏移量或者时间偏移索引,确定所述第一个SRS测量资源;
    根据所述第一个SRS测量资源和所述至少一个SRS测量资源的资源索引,确定所述至少一个SRS测量资源。
  27. 根据权利要求21-26任一项所述的用户设备,其特征在于,
    所述确定单元,还用于根据所述CSI-RS测量资源和所述SRS测量资源的相对位置,确定所述用户设备的波束扫描方式;
    或者,所述配置信息还包括用于指示所述CSI-RS测量资源与所述SRS测量资源相对位置的信息,所述确定单元,还用于:
    根据所述配置信息,确定所述用户设备的波束扫描方式。
  28. 根据权利要求21-27任一项所述的用户设备,其特征在于,若第三波束集合为所述用户设备用于接收所述CSI-RS的波束集合,第四波束集合为所述用户设备用于发送所述SRS的波束集合,则所述第四波束集合为所述第三波束集合的子集。
PCT/CN2017/107544 2017-01-26 2017-10-24 一种配置资源指示方法及装置 WO2018137367A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17894208.2A EP3562236B1 (en) 2017-01-26 2017-10-24 Method and device for indicating configuration resource
US16/523,396 US10979170B2 (en) 2017-01-26 2019-07-26 Configuration resource indication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710061663.8 2017-01-26
CN201710061663.8A CN108366423B (zh) 2017-01-26 2017-01-26 一种配置资源指示方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/523,396 Continuation US10979170B2 (en) 2017-01-26 2019-07-26 Configuration resource indication method and apparatus

Publications (1)

Publication Number Publication Date
WO2018137367A1 true WO2018137367A1 (zh) 2018-08-02

Family

ID=62978990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107544 WO2018137367A1 (zh) 2017-01-26 2017-10-24 一种配置资源指示方法及装置

Country Status (4)

Country Link
US (1) US10979170B2 (zh)
EP (1) EP3562236B1 (zh)
CN (1) CN108366423B (zh)
WO (1) WO2018137367A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021041119A1 (en) * 2019-08-23 2021-03-04 Qualcomm Incorporated Sounding reference signal and downlink reference signal association in a power saving mode

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159939A1 (ko) * 2017-03-01 2018-09-07 엘지전자 주식회사 무선통신 시스템에서 srs를 전송하는 방법 및 이를 위한 단말
CN116170045A (zh) * 2017-03-21 2023-05-26 三菱电机株式会社 通信系统
US11652586B2 (en) * 2017-04-27 2023-05-16 Nec Corporation Methods and apparatuses for reference signal transmission
US11050598B2 (en) * 2017-11-28 2021-06-29 Qualcomm Incorporated Carrier information signaling in a 5G network
US11271635B2 (en) * 2018-04-06 2022-03-08 Nokia Technologies Oy Beam indication for multi-panel UE
CN110875768B (zh) * 2018-08-30 2023-05-26 大唐移动通信设备有限公司 一种信道状态信息的反馈方法及装置、网络设备和终端
CN112385281A (zh) * 2018-08-30 2021-02-19 Oppo广东移动通信有限公司 发送上行信号的方法和设备
CN110971353B (zh) * 2018-09-28 2021-12-28 华为技术有限公司 通信方法及装置
CN111885683B (zh) * 2019-05-03 2024-04-26 华为技术有限公司 通信方法及装置
CN111954309A (zh) * 2019-05-17 2020-11-17 株式会社Ntt都科摩 终端和基站
US11206076B2 (en) * 2019-08-07 2021-12-21 Samsung Electronics Co., Ltd. Method and apparatus for low-latency beam selection
CN112543083B (zh) * 2019-09-20 2022-09-02 华为技术有限公司 一种上行数据传输方法及装置
CN112867049B (zh) * 2019-11-12 2023-06-09 维沃移动通信有限公司 一种测量配置方法、装置及系统
CN114245369B (zh) * 2020-09-09 2023-07-21 中国移动通信有限公司研究院 信道质量上报方法、波束恢复参考信号配置方法及装置
US20240031823A1 (en) * 2022-07-19 2024-01-25 Qualcomm Incorporated Beam adaptation for reconfigurable intelligent surface aided ue positioning

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103873124A (zh) * 2012-12-17 2014-06-18 北京三星通信技术研究有限公司 一种移动终端及其信道状态信息测量参考信号的测量方法
CN104081681A (zh) * 2012-01-27 2014-10-01 英特尔公司 上行协作多点
CN104105132A (zh) * 2013-04-03 2014-10-15 华为技术有限公司 一种控制参数的发送方法和装置
WO2015034311A1 (ko) * 2013-09-05 2015-03-12 엘지전자 주식회사 다중 안테나 지원 무선 통신 시스템에서 참조 신호를 전송하는 방법 및 장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101800221B1 (ko) * 2011-08-11 2017-11-22 삼성전자주식회사 무선통신 시스템에서 빔 추적 방법 및 장치
WO2013147475A1 (ko) * 2012-03-24 2013-10-03 엘지전자 주식회사 무선 통신 시스템에서 참조신호 송수신 방법 및 장치
US10771211B2 (en) * 2017-03-28 2020-09-08 Samsung Electronics Co., Ltd. Method and apparatus for channel state information (CSI) acquisition with DL and UL reference signals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104081681A (zh) * 2012-01-27 2014-10-01 英特尔公司 上行协作多点
CN103873124A (zh) * 2012-12-17 2014-06-18 北京三星通信技术研究有限公司 一种移动终端及其信道状态信息测量参考信号的测量方法
CN104105132A (zh) * 2013-04-03 2014-10-15 华为技术有限公司 一种控制参数的发送方法和装置
WO2015034311A1 (ko) * 2013-09-05 2015-03-12 엘지전자 주식회사 다중 안테나 지원 무선 통신 시스템에서 참조 신호를 전송하는 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3562236A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021041119A1 (en) * 2019-08-23 2021-03-04 Qualcomm Incorporated Sounding reference signal and downlink reference signal association in a power saving mode
CN114223142A (zh) * 2019-08-23 2022-03-22 高通股份有限公司 在省电模式中的探测参考信号和下行链路参考信号关联
US11588595B2 (en) 2019-08-23 2023-02-21 Qualcomm Incorporated Sounding reference signal and downlink reference signal association in a power saving mode
CN114223142B (zh) * 2019-08-23 2023-11-24 高通股份有限公司 在省电模式中的探测参考信号和下行链路参考信号关联

Also Published As

Publication number Publication date
CN108366423B (zh) 2021-01-05
EP3562236A4 (en) 2020-01-08
US10979170B2 (en) 2021-04-13
EP3562236B1 (en) 2021-10-06
US20190349124A1 (en) 2019-11-14
CN108366423A (zh) 2018-08-03
EP3562236A1 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
WO2018137367A1 (zh) 一种配置资源指示方法及装置
US10574304B2 (en) Method, system and apparatus of beam selection
CN112930700A (zh) 用于通过mimo操作来节省用户设备功率的方法和设备
WO2018082641A1 (zh) 传输信息的方法和设备
WO2018202154A1 (zh) 传输预编码矩阵的指示方法和设备
WO2018166345A1 (zh) 上行发送波束确定方法和装置
US11431453B2 (en) Reference signal transmission method, and apparatus
KR20120127644A (ko) 전력 배분을 구현하는 시스템 및 방법
CN110268773A (zh) 上行数据传输方法及相关设备
WO2018228228A9 (zh) 信息传输方法及装置
CN111866959B (zh) 波束失败上报的方法和装置
WO2018202137A1 (zh) 一种通信方法及装置
CN111769919A (zh) 探测参考信号srs的传输方法及通信装置
CN113938171B (zh) Csi反馈方法、装置、电子设备及存储介质
WO2018157318A1 (zh) 一种调度的方法、基站及终端
WO2021046798A1 (zh) Ue能力信息的传输方法、装置和存储介质
JP2019524032A (ja) 情報報告方法および装置
WO2022254086A1 (en) Apparatus for csi prediction control
CN107453855B (zh) 一种控制信道发送方法及装置
CN114585016A (zh) 信道状态信息报告的上报、配置方法及通信设备
WO2022206504A1 (zh) Csi反馈方法、相关设备及可读存储介质
WO2023066333A1 (zh) 信道状态信息csi测量方法、终端及网络侧设备
WO2024008273A1 (en) Calibration between access points in a distributed multiple-input multiple-output network operating in time-division duplexing mode
CN117674931A (zh) 用于接收和发送信息的方法和设备
CN117014112A (zh) 接收和发送信息的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017894208

Country of ref document: EP

Effective date: 20190722