WO2018166345A1 - 上行发送波束确定方法和装置 - Google Patents

上行发送波束确定方法和装置 Download PDF

Info

Publication number
WO2018166345A1
WO2018166345A1 PCT/CN2018/077259 CN2018077259W WO2018166345A1 WO 2018166345 A1 WO2018166345 A1 WO 2018166345A1 CN 2018077259 W CN2018077259 W CN 2018077259W WO 2018166345 A1 WO2018166345 A1 WO 2018166345A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
transmit beam
terminal
reference signal
indication information
Prior art date
Application number
PCT/CN2018/077259
Other languages
English (en)
French (fr)
Inventor
高秋彬
塔玛拉卡·拉盖施
苏昕
陈润华
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to JP2019551400A priority Critical patent/JP7273719B2/ja
Priority to KR1020197030654A priority patent/KR102329571B1/ko
Priority to US16/494,647 priority patent/US11510203B2/en
Priority to EP18768465.9A priority patent/EP3585116A4/en
Publication of WO2018166345A1 publication Critical patent/WO2018166345A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to an uplink transmit beam determining method and apparatus.
  • MIMO Multiple Input Multiple-Output
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • the radio access technology standards are all based on MIMO+OFDM (Orthogonal Frequency Division Multiplexing) technology.
  • the performance gain of MIMO technology comes from the spatial freedom that multi-antenna systems can obtain. Therefore, one of the most important evolution directions of MIMO technology in the development of standardization is the expansion of dimensions.
  • Rel-8 up to 4 layers of MIMO transmission can be supported.
  • Rel-9 focuses on MU-MIMO technology enhancement, and TM (Transmission Mode)-8
  • MU-MIMO Multi-User MIMO, multi-user multiple input multiple output
  • Rel-10 introduces support for 8 antenna ports to further improve the spatial resolution of channel state information, and further expands the transmission capability of SU-MIMO (Single-User MIMO, single-user multiple input multiple output) to a maximum of 8 data layers.
  • Rel-13 and Rel-14 introduce FD-MIMO full-dimension multiple-input multiple-output technology to support 32-port, full-dimensional and vertical beamforming.
  • large-scale antenna technology is introduced in mobile communication systems.
  • fully digital large-scale antennas can have up to 128/256/512 antenna elements, and up to 128/256/512 transceiver units, one for each antenna unit.
  • the terminal measures channel state information and feeds back by transmitting pilot signals up to 128/256/512 antenna ports.
  • an antenna array of up to 32/64 antenna elements can also be configured.
  • the all-digital antenna array each antenna unit has a separate transceiver unit, will greatly increase the size, cost and power consumption of the device.
  • ADC analog-to-digital converter
  • DAC digital-to-analog converter
  • the power consumption has only been reduced by about 1/10 in the past decade, and the performance improvement is limited.
  • a technical solution based on analog beamforming has been proposed.
  • the terminal may be obtained based on the uplink beam training process, or obtained based on the uplink and downlink wave speed reciprocity, but the terminal cannot determine the uplink transmit beam of the terminal according to the indication of the base station.
  • the embodiments of the present disclosure provide an uplink transmit beam determining method and apparatus, which can ensure that a base station selects an uplink transmit beam for a terminal.
  • an uplink transmit beam determining method including:
  • the base station sends uplink transmit beam indication information to the terminal;
  • the uplink transmit beam indication information includes beam type indication information, where the beam type indication information is used to indicate that an uplink transmit beam of the terminal is obtained based on an uplink reference signal, or the beam type indication information is used to indicate the terminal.
  • the uplink transmit beam is obtained based on the downlink reference signal.
  • the uplink transmit beam indication information includes a number of an uplink transmit beam, or an indication information of an uplink reference signal
  • the base station indicates that the uplink transmit beam of the terminal is obtained by using a downlink reference signal, where the uplink transmit beam indication information includes a downlink transmit beam number, or a downlink reference signal indication information, or a downlink receive beam indication information.
  • the method before the sending, by the base station, the uplink sending beam indication information to the terminal, the method further includes:
  • the base station determines an uplink transmit beam of the terminal based on the uplink reference signal, or the base station determines an uplink transmit beam of the terminal based on uplink and downlink beam reciprocity.
  • the determining, by the base station, the uplink transmit beam of the terminal, based on the uplink reference signal includes:
  • the base station determines an optimal uplink transmit beam by using the uplink reference signal.
  • the uplink reference signal of each candidate uplink transmit beam is sent after the beamforming weight corresponding to the candidate uplink transmit beam is shaped.
  • the uplink reference signal of the terminal is sent on a resource configured by the base station.
  • the method before the sending, by the base station, the uplink sending beam indication information to the terminal, the method further includes:
  • the base station determines the beam type indication information based on the measurement result of the network, or the base station determines the beam type indication information based on the measurement result of the self and the measurement result reported by the terminal.
  • the determining, by the base station, beam type indication information, based on the measurement result of the base station includes:
  • the base station measures an uplink reference signal sent by the terminal, to obtain a receiving quality of each uplink reference signal
  • the base station measures an uplink signal sent by the uplink transmission beam obtained by the terminal according to the downlink reference signal, to obtain a reception quality of the uplink signal;
  • the base station selects the terminal to obtain an uplink transmitting beam based on the uplink reference signal, otherwise, the base station selects, and the terminal obtains the uplink based on the downlink reference signal. Transmit beam.
  • the determining, by the base station, the beam type indication information, based on the measurement result of the terminal and the measurement result reported by the terminal including:
  • the base station measures an uplink reference signal sent by the terminal, to obtain a receiving quality of each uplink reference signal
  • the base station selects the terminal to obtain an uplink transmitting beam based on the uplink reference signal
  • the base station selects the terminal to obtain an uplink transmission beam based on the downlink reference signal.
  • the method further includes:
  • the base station receives an uplink signal sent by the terminal by using the determined uplink transmit beam.
  • the receiving, by the base station, the uplink signal sent by the terminal by using the determined uplink transmit beam including:
  • the base station If the base station indicates that the terminal obtains an uplink transmit beam based on an uplink reference signal, the base station receives an uplink signal of the terminal by using an uplink receive beam corresponding to the uplink transmit beam indicated by the base station; or
  • the base station If the base station indicates that the terminal obtains an uplink transmit beam based on the downlink reference signal, the base station receives an uplink signal of the uplink receive beam corresponding to the downlink transmit beam indicated by the base station.
  • an uplink transmit beam determining method including:
  • the terminal determines an uplink transmit beam according to the uplink transmit beam indication information
  • the uplink transmit beam indication information includes beam type indication information, where the beam type indication information is used to indicate that an uplink transmit beam of the terminal is obtained based on an uplink reference signal, or the beam type indication information is used to indicate the terminal.
  • the uplink transmit beam is obtained based on the downlink reference signal.
  • the uplink transmit beam indication information includes a number of an uplink transmit beam, or an indication information of an uplink reference signal
  • the uplink transmit beam indication information includes a downlink transmit beam number, or a downlink reference signal indication information, or a downlink receive beam indication information.
  • the terminal determines the weight of the uplink transmit beam according to the number of the uplink transmit beam or the indication information of the uplink reference signal.
  • the terminal determines a weight of the uplink transmit beam according to a mapping relationship between the number of the uplink transmit beam and the beamforming weight.
  • the terminal determines the weight of the uplink transmit beam according to the number of the downlink transmit beam or the indication information of the downlink reference signal.
  • the terminal determines, according to the number of the downlink transmit beam or the indication information of the downlink reference signal, the weight of the uplink transmit beam, including:
  • the weight of the uplink transmit beam is determined by the downlink receive beam based on channel reciprocity.
  • an uplink transmit beam determining apparatus including:
  • a sending module configured to send uplink transmit beam indication information to the terminal
  • the uplink transmit beam indication information includes beam type indication information, where the beam type indication information is used to indicate that an uplink transmit beam of the terminal is obtained based on an uplink reference signal, or the beam type indication information is used to indicate the terminal.
  • the uplink transmit beam is obtained based on the downlink reference signal.
  • the uplink transmit beam indication information includes a number of an uplink transmit beam, or an indication information of an uplink reference signal
  • the base station indicates that the uplink transmit beam of the terminal is obtained by using a downlink reference signal, where the uplink transmit beam indication information includes a downlink transmit beam number, or a downlink reference signal indication information, or a downlink receive beam indication information.
  • the device further includes:
  • the first determining module is configured to determine an uplink transmit beam of the terminal based on the uplink reference signal, or determine an uplink transmit beam of the terminal based on uplink and downlink beam reciprocity.
  • the determining module includes:
  • a receiving unit configured to receive an uplink reference signal sent by the terminal by using multiple candidate uplink transmit beams
  • a first determining unit configured to determine, by using the uplink reference signal, an optimal uplink transmit beam.
  • the reference signal of each candidate uplink transmit beam is sent after the beamforming weight corresponding to the beam is shaped.
  • the device further includes:
  • the second determining module is configured to determine the beam type indication information based on the measurement result of the self, or determine the beam type indication information based on the measurement result of the self and the measurement result reported by the terminal.
  • the second determining module includes:
  • a first measuring unit configured to measure an uplink reference signal sent by the terminal, to obtain a receiving quality of each uplink reference signal
  • a second measuring unit configured to measure an uplink signal sent by the terminal, to obtain a receiving quality of the uplink signal, where the uplink signal is sent by the terminal by using an uplink transmit beam obtained by using a downlink reference signal;
  • a first selecting unit configured to: if the receiving quality of the at least one uplink reference signal is higher than the receiving quality of the uplink signal, the terminal is configured to obtain an uplink sending beam based on the uplink reference signal, and otherwise, the terminal is configured to obtain an uplink sending based on the downlink reference signal. Beam.
  • the second determining module includes:
  • a third measuring unit configured to measure an uplink reference signal sent by the terminal, to obtain a receiving quality of each uplink reference signal
  • a first receiving unit configured to receive a receiving quality of the downlink reference signal reported by the terminal
  • a second selecting unit configured to: if the receiving quality of the at least one uplink beam reference signal is higher than the receiving quality of all the downlink reference signals reported by the terminal, the terminal is configured to obtain an uplink transmitting beam based on the uplink reference signal; if at least one terminal reports The receiving quality of the downlink reference signal is higher than the receiving quality of all uplink reference signals, and the terminal is selected to obtain an uplink transmitting beam based on the downlink reference signal.
  • the device further includes:
  • the first receiving module is configured to receive an uplink signal sent by the terminal by using the determined uplink transmit beam.
  • the first receiving module includes:
  • a second receiving unit configured to: if the terminal is instructed to obtain an uplink transmit beam based on the uplink reference signal, receive an uplink signal of the terminal by using an uplink receive beam corresponding to the indicated uplink transmit beam; or
  • the uplink receive beam corresponding to the indicated downlink transmit beam is used to receive the uplink signal of the terminal.
  • an uplink transmit beam determining apparatus including:
  • a second receiving module configured to receive uplink transmit beam indication information sent by the base station
  • a third determining module configured to determine an uplink transmit beam according to the uplink transmit beam indication information
  • the uplink transmit beam indication information includes beam type indication information, where the beam type indication information is used to indicate that an uplink transmit beam of the terminal is obtained based on an uplink reference signal, or the beam type indication information is used to indicate the terminal.
  • the uplink transmit beam is obtained based on the downlink reference signal.
  • the uplink transmit beam indication information includes a number of an uplink transmit beam, or an indication information of an uplink reference signal
  • the uplink transmit beam indication information includes a downlink transmit beam number, or a downlink reference signal indication information, or a downlink receive beam indication information.
  • the device further includes:
  • the fourth determining module is configured to: if the uplink transmit beam indication information indicates that the terminal obtains an uplink transmit beam based on the uplink reference signal, determine a weight of the uplink transmit beam according to the number of the uplink transmit beam or the indication information of the uplink reference signal.
  • the fourth determining module is further configured to determine a weight of the uplink transmit beam according to a mapping relationship between the number of the uplink transmit beam and the beamforming weight.
  • the device further includes:
  • a fifth determining module configured to determine, according to the downlink transmit beam, the uplink transmit beam, and determine the weight of the uplink transmit beam according to the downlink transmit beam number or the downlink reference signal indication information.
  • the fifth determining module includes:
  • a second determining unit configured to determine a corresponding downlink receiving beam according to the number of the downlink transmitting beam or the indication information of the downlink reference signal
  • a third determining unit configured to determine, by the downlink receiving beam, a weight of the uplink sending beam based on channel reciprocity.
  • a base station including a first memory, a first processor, and a computer program stored on the first memory and operable on the first processor, the The steps in the uplink transmit beam determining method as described in the first aspect are implemented when a processor executes the computer program.
  • a terminal including a second memory, a second processor, and a computer program stored on the second memory and operable on the second processor, the The second processor performs the steps in the uplink transmit beam determining method as described in the second aspect when the computer program is executed.
  • a computer readable storage medium having stored thereon a computer program, wherein the program is executed by a processor to implement an uplink transmit beam as described in the first aspect Determine the steps in the method.
  • a computer readable storage medium having stored thereon a computer program, wherein the program is executed by a processor to implement an uplink transmit beam as described in the second aspect Determine the steps in the method.
  • the beam type indication information indicates whether the uplink transmission beam of the terminal is obtained based on the uplink reference signal or based on the downlink reference signal, and can ensure that the base station selects an uplink transmission beam for the terminal.
  • 1 is a schematic diagram of analog beamforming (weighted shaping of an intermediate frequency signal);
  • FIG. 2 is a schematic diagram of analog beamforming (weighted shaping of a radio frequency signal);
  • 3 is a schematic diagram of digital-analog hybrid beamforming
  • FIG. 5 is a flowchart of an uplink transmit beam determining method according to still another embodiment of the present disclosure.
  • FIG. 6 is a flowchart of an uplink transmit beam determining method in other embodiments of the present disclosure.
  • FIG. 7 is a block diagram of an uplink transmit beam determining apparatus in some embodiments of the present disclosure.
  • FIG. 8 is a block diagram of an uplink transmit beam determining apparatus in still other embodiments of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a base station according to some embodiments of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a terminal in some embodiments of the present disclosure.
  • the main feature of analog beamforming is the weighted shaping of the intermediate frequency (Figure 1) or the RF signal ( Figure 2) by a phase shifter.
  • Figure 1 The advantage is that all transmit (receive) antennas have only one transceiver unit, which is simple to implement, reducing cost, size and power consumption.
  • the execution body of the method may be a base station, and the specific steps are as follows:
  • Step 401 The base station sends uplink transmit beam indication information to the terminal.
  • the uplink transmit beam indication information includes beam type indication information, where the beam type indication information is used to indicate that an uplink transmit beam of the terminal is obtained based on an uplink reference signal, or the beam type indication information is used to indicate the terminal.
  • the uplink transmit beam is obtained based on the downlink reference signal.
  • C-RS cell-specific reference signals
  • UE-RS user-specific reference signals
  • MBSFN multicast/multicast single-frequency networks
  • P-RS position reference signal
  • five reference signals are defined in the downlink, which are cell-specific reference signals (C-RS), user-specific reference signals (UE-RS, also known as DM-RS), MBSFN reference signals, and position reference signals (P- RS), and CSI reference signal (CSI-RS).
  • the uplink reference signal may include a DM-RS and an SRS (Channel Sounding Reference Signal).
  • the uplink transmit beam may be obtained based on an uplink beam training process.
  • the uplink transmit beam of the terminal may be obtained based on the reciprocity of the uplink and downlink channels.
  • the uplink and downlink channel characteristics in the same frequency band are basically the same in a certain coherence time, which is called channel reciprocity.
  • the uplink and downlink of the TD-LTE (Time Division Long Term Evolution) system are transmitted on different time slots of the same frequency resource, so within a relatively short time (coherence time of channel propagation) It can be considered that the channel fading experienced by the uplink and downlink transmission signals is the same, which is the channel reciprocity of TD-LTE.
  • the beam type indication information is used to indicate whether the uplink transmit beam of the terminal is obtained based on the uplink reference signal or based on the downlink reference signal.
  • the base station may indicate, by using the beam type indication information, that the terminal uses an uplink transmit beam that is obtained based on the uplink reference signal, or that the base station may use the beam type indication information to indicate that the terminal uses the uplink transmit beam that is obtained by using the uplink reference signal.
  • the method can ensure that the base station selects an uplink transmit beam for the terminal.
  • the uplink transmit beam indication information includes an identifier of an uplink transmit beam or an indication of an uplink reference signal
  • the uplink transmit beam indication information includes a downlink transmit beam number, or a downlink reference signal indication information, or a downlink receive beam indication information.
  • the base station may determine the uplink transmit beam of the terminal in the following two manners before the base station sends the uplink transmit beam indication information to the terminal:
  • Manner 1 The base station determines an uplink transmit beam of the terminal based on the uplink reference signal
  • Manner 2 The base station determines an uplink transmit beam of the terminal based on the reciprocity of the uplink and downlink channels.
  • the foregoing method specifically includes: receiving, by the base station, an uplink reference signal that is sent by the terminal by using multiple candidate uplink transmit beams; then, the base station determines an optimal uplink transmit beam by using an uplink reference signal, for example, the base station determines the most The uplink uplink transmit beam enables the base station to select a suitable uplink transmit beam for the terminal.
  • the reference signal of each candidate uplink transmit beam is sent after the beamforming weight corresponding to the beam is shaped.
  • the uplink reference signal of the terminal is sent on the resource configured by the base station.
  • the configured resources may be periodic resources, or non-periodic resources, or semi-persistent resources.
  • a digital analog hybrid beamforming transceiver architecture scheme is proposed, as shown in FIG.
  • the sender and the receiver respectively have with Transceiver unit, number of antenna units at the transmitting end Number of antenna units at the receiving end
  • the maximum number of parallel transport streams supported by beamforming is
  • the hybrid beamforming structure of Figure 3 balances the flexibility of digital beamforming and the low complexity of analog beamforming, with the ability to support multiple data streams and simultaneous shaping of multiple users, while also complexity. Control is within reasonable limits.
  • Both analog beamforming and digital-to-analog hybrid beamforming require adjustment of the analog beamforming weights at both ends of the transceiver so that the resulting beam can be aligned with the opposite end of the communication.
  • the beam shaping weights sent by the base station side and the beam shaping weights received by the terminal side need to be adjusted.
  • the beam shaping weights sent by the terminal side and received by the base station side need to be adjusted.
  • the weight of beamforming is usually obtained by sending a training signal.
  • the base station sends a downlink beam training signal, and the terminal measures the downlink beam training signal, selects the best base station transmit beam, and feeds the beam related information to the base station, and selects the corresponding optimal receive beam, and saves it locally.
  • the terminal sends an uplink beam training signal, and the base station measures the uplink beam training signal, selects the best terminal transmission beam, transmits the beam-related information to the terminal, and selects the corresponding optimal receiving beam, and saves it locally.
  • Data transmission can be performed after the uplink and downlink transmit and receive beams are trained.
  • uplink and downlink beam training will bring about an increase in system overhead.
  • uplink beam training requires each terminal to transmit an uplink beam training signal.
  • the terminal can determine the uplink transmit beam based on the downlink receive beam obtained by the downlink beam training process, thereby saving the overhead of the uplink beam training.
  • the uplink transmit beam obtained by the reciprocity of the uplink and downlink channels is not always the best beam. If the uplink transmit beam of the terminal is completely dependent on the beam reciprocity, the optimal performance of the system will not be achieved.
  • the base station may determine the beam type indication information in the following two manners before the base station sends the uplink transmission beam indication information to the terminal:
  • Manner 1 The base station determines beam type indication information based on its own measurement result
  • the base station measures the uplink reference signal sent by the terminal, and obtains the receiving quality of each uplink reference signal; the base station measures an uplink signal (for example, a reference signal) that is sent by the terminal by using the uplink transmit beam obtained by using the downlink reference signal.
  • the signal of the data channel, etc. obtains the reception quality of the uplink signal; if the reception quality of the at least one uplink reference signal is higher than the reception quality of the uplink signal transmitted by the channel reciprocity beam, the base station selects the terminal to adopt the uplink reference The signal obtains an uplink transmit beam. Otherwise, the base station selects the terminal to obtain an uplink transmit beam based on the downlink reference signal.
  • the uplink transmission beam obtained based on the downlink reference signal refers to selecting an uplink transmission beam corresponding to the downlink reference signal by using channel reciprocity.
  • Manner 2 The base station determines beam type indication information based on the measurement result of the terminal and the measurement result reported by the terminal.
  • the base station measures the uplink reference signal sent by the terminal, and obtains the received quality of each uplink reference signal, where the uplink reference signal is sent by the uplink transmit beam obtained by the terminal using the uplink beam training process; and the base station receives the terminal report.
  • the receiving quality of the downlink reference signal if the receiving quality of the at least one uplink reference signal is higher than the receiving quality of all the downlink reference signals reported by the terminal, the base station selects the terminal to obtain an uplink transmitting beam based on the uplink reference signal;
  • the receiving quality of the downlink reference signal reported by one terminal is higher than the receiving quality of all uplink reference signals, and the base station selects the terminal to obtain an uplink transmitting beam based on the downlink reference signal.
  • the base station can select a suitable uplink transmit beam for the terminal, and improve system performance under non-ideal conditions of channel reciprocity.
  • the method further includes: receiving, by the base station, an uplink signal sent by the terminal by using the determined uplink transmit beam.
  • the base station if the base station instructs the terminal to obtain an uplink transmit beam based on the uplink reference signal, the base station receives the uplink signal, the uplink transmit beam, and the receive beam of the terminal by using an uplink receive beam corresponding to the uplink transmit beam indicated by the base station. Correspondence can be determined during the uplink beam training; or
  • the base station uses an uplink signal of the uplink receive beam receiving terminal corresponding to the downlink transmit beam indicated by the base station, and corresponds to the uplink transmit beam and the uplink receive beam.
  • the relationship may be a correspondence based on channel reciprocity.
  • the beam type indication information is used to indicate whether the uplink transmission beam of the terminal is obtained based on the uplink reference signal, or is obtained based on the downlink reference signal, where the beam type indication information may be determined based on the measurement result of the base station itself, or may be determined by It is obtained by the base station based on its own measurement result and the measurement result reported by the terminal, thereby ensuring that the base station selects an appropriate uplink transmission beam for the terminal, and improves system performance under non-ideal conditions of channel reciprocity.
  • the execution body of the method may be a terminal.
  • the specific steps are as follows:
  • Step 501 The terminal receives uplink transmit beam indication information sent by the base station.
  • Step 502 The terminal determines an uplink transmit beam according to the uplink transmit beam indication information.
  • the uplink transmit beam indication information includes beam type indication information, where the beam type indication information is used to indicate that an uplink transmit beam of the terminal is obtained based on an uplink reference signal, or the beam type indication information is used to indicate the terminal.
  • the uplink transmit beam is obtained based on the downlink reference signal.
  • the uplink transmit beam indication information includes an identifier of an uplink transmit beam, or an indication of an uplink reference signal.
  • the uplink transmit beam indication information includes a downlink transmit beam number, or a downlink reference signal indication information, or a downlink receive beam indication information.
  • the terminal determines the weight of the uplink transmit beam according to the number of the uplink transmit beam or the indication information of the uplink reference signal. .
  • the terminal determines, according to a mapping relationship between the number of the uplink transmit beam and the beamforming weight, the weight of the uplink transmit beam; or
  • the terminal determines the weight of the uplink transmit beam according to the mapping relationship between the uplink transmit beam and the beamforming weight.
  • the terminal determines the right of the uplink transmit beam according to the number of the downlink transmit beam or the indication information of the downlink reference signal. value. For example, the terminal determines a corresponding downlink receiving beam according to the number of the downlink transmitting beam or the indication information of the downlink reference signal, and determines the weight of the uplink transmitting beam by the downlink receiving beam based on the channel reciprocity.
  • the beam type indication information is used to indicate whether the uplink transmission beam of the terminal is obtained based on the uplink reference signal, or is obtained based on the downlink reference signal, where the beam type indication information may be determined based on the measurement result of the base station itself, or may be determined by It is obtained by the base station based on its own measurement result and the measurement result reported by the terminal, thereby ensuring that the base station selects an appropriate uplink transmission beam for the terminal, and improves system performance under non-ideal conditions of channel reciprocity.
  • FIG. 6 a flow of a method for determining an uplink transmit beam is illustrated, including steps 601 through 604.
  • Step 601 The base station determines an uplink transmit beam of the terminal.
  • the base station can determine the uplink transmit beam of the terminal in the following two ways:
  • Method 1 an uplink transmit beam obtained based on reciprocity of uplink and downlink channels
  • Manner 2 Determine an uplink transmit beam based on the uplink reference signal.
  • the terminal transmits an uplink reference signal of multiple candidate uplink transmit beams.
  • the number of candidate uplink transmit beams of the terminal depends on the hardware capabilities of the terminal. Assume the terminal has a total Candidate uplink transmit beams, each uplink transmit beam corresponds to a set of beamforming weights, and the transmit beam shaping weight of the nth beam is Where L is the number of beam-shaped antenna elements, which may be smaller than the number of terminal antenna units.
  • the terminal may transmit an uplink reference signal for each candidate uplink transmit beam. For example Uplink transmit beam, the terminal can send Uplink reference signals. This The uplink reference signals may be combined by TDM (Time Division Multiplexing), FDM (Frequency Division Multiplexing), CDM (Code Division Multiplexing), or various multiplexing methods.
  • Uplink reference signals can be occupied OFDM symbols, each uplink reference signal occupies 1 OFDM symbol, and the uplink reference signals are TDM multiplexed. It is also possible to transmit uplink reference signals of multiple beams in one OFDM symbol, with FDM multiplexing or CDM multiplexing between them.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the beam training signal of each beam is formed by shaping a beam shaping weight corresponding to the beam.
  • the uplink transmit beam training signal of the terminal is sent on the resource configured by the base station.
  • the configured resources are periodic resources, or aperiodic resources, or semi-persistent resources.
  • the base station determines the best uplink transmit beam by receiving the uplink reference signal sent by the terminal.
  • the base station determines the best uplink transmit beam by measuring the uplink reference signal.
  • the terminal may select the beam with the strongest received power of the uplink reference signal as the best uplink transmit beam.
  • the best uplink transmit beam is a beam (this time refers to recommending 1 beam in one training process, multiple beam training processes can recommend multiple different beams), or multiple beams.
  • the base station determines the number of the best upstream transmit beam.
  • the number can be performed within the range of all candidate uplink transmit beams of the terminal, for example, The number of candidate uplink transmit beams is 0, 1, ...
  • the number can also be performed within the range of the uplink reference signal sent by the terminal, for example, the terminal sends One uplink reference signal, each beam training signal corresponds to one uplink transmit beam, and its number range is
  • One possible implementation manner is that the uplink beam training process is performed in a large period, and the uplink transmission beam is determined according to the channel reciprocity in the two beam training processes.
  • Step 602 The base station sends uplink transmit beam indication information to the terminal.
  • the uplink transmit beam indication information includes beam type indication information, which is used to indicate whether the uplink transmit beam of the terminal is determined based on the uplink reference signal or based on the downlink reference signal.
  • the uplink transmit beam indication information includes the number of the uplink transmit beam or the indication information of the uplink reference signal.
  • the uplink transmit beam indication information includes the downlink transmit beam number, or the indication information of the downlink beam training signal, or the downlink includes the downlink receive beam indication information.
  • the base station may determine the uplink transmit beam type of the terminal based on its own measurement result.
  • the base station measures the uplink reference signal (or the uplink beam training signal) sent by the terminal, and obtains the reception quality of each uplink reference signal, such as RSRP (Reference Signal Receiving Power).
  • the base station can measure the uplink signal sent by the terminal using the channel reciprocity beam, such as the reference signal, the signal of the data channel, etc., to obtain the RSRP value.
  • the base station compares the measured values obtained by the two, if the receiving quality of the at least one uplink reference signal is higher than the receiving quality of the uplink signal sent by the channel reciprocity, the base station may select to enable the terminal to determine the uplink transmitting beam based on the uplink reference signal. Otherwise, the base station may choose to cause the terminal to determine an uplink transmit beam based on the downlink reference signal.
  • the base station may determine the uplink transmit beam type of the terminal based on its own measurement and the measurement result reported by the terminal.
  • the base station measures the uplink reference signal sent by the terminal, and obtains the reception quality of each uplink reference signal, such as RSRP. At the same time, the base station receives the reception quality of the downlink reference signal reported by the terminal, such as the RSRP value.
  • the base station compares the two, if the receiving quality of the at least one uplink reference signal is higher than the receiving quality of all the downlink reference signals reported by the terminal, the base station may select to enable the terminal to determine the uplink transmitting beam based on the uplink reference signal, otherwise if there is at least one terminal
  • the received quality of the reported downlink reference signal is higher than the received quality determined by all uplink reference signals, and the base station may select to enable the terminal to determine the uplink transmit beam based on the downlink reference signal.
  • the base station Since the reception quality is affected by the transmission power, the base station needs to remove the influence of the transmission power when comparing, that is, the result of the base station measurement needs to subtract the transmission power of the terminal, and the measurement result reported by the terminal needs to subtract the transmission power of the base station.
  • Step 603 The terminal receives uplink transmit beam indication information sent by the base station.
  • the terminal determines the weight of the uplink transmission beam according to the number of the uplink transmission beam (or the indication information of the uplink reference signal).
  • the terminal may determine the weight of the uplink transmit beam according to the mapping relationship between the number and the beamforming weight, and the mapping relationship is saved in the terminal. For example, if the number of the uplink transmit beam is within the range of the uplink reference signal, the terminal may determine the weight of the uplink transmit beam according to the mapping between the number and the uplink reference signal and the beamforming weight, and the mapping relationship Save in the terminal.
  • the terminal determines the weight of the uplink transmission beam according to the number of the downlink transmission beam (or the indication information of the downlink reference signal, etc.).
  • the specific process is as follows: The terminal determines the corresponding downlink receiving beam according to the number of the downlink transmitting beam (or the indication information of the downlink reference signal, etc.), and determines the weight of the uplink transmitting beam by the downlink receiving beam based on the channel reciprocity.
  • the downlink and uplink transmissions herein may use the same set of beamforming weights to generate receive beams and transmit beams that point in the same direction (or similar directions).
  • the terminal downlink receiving beam and the uplink transmitting beam have a certain correspondence relationship, that is, after the downlink receiving beam of the receiving base station signal is given, an uplink transmitting beam can be determined by using the corresponding relationship, and the transmitting beam can be used for the terminal.
  • the uplink signal/channel/data is transmitted to the base station.
  • the downlink receive beam corresponding to the downlink transmit beam can be obtained during the downlink beam training process (this process does not have to be performed after the indication information is received, and can be completed before the indication information is received):
  • the base station transmits a downlink beam training signal.
  • Base station Candidate downlink transmit beams, each downlink beam corresponding to a set of beamforming weights, and the transmit beam shaping weight of the nth beam
  • K is the number of beam-formed antenna elements, which may be smaller than the number of antenna elements of the base station.
  • the base station can transmit one beam training signal for each candidate downlink transmit beam.
  • the base station can send Training signals.
  • the training signals can be multiplexed with TDM, FDM, CDM, or a combination of various multiplexing methods.
  • Training signals can be occupied OFDM symbols, each training signal occupies 1 OFDM symbol, and the training signals are TDM multiplexed. It is also possible to transmit training signals of multiple beams in one OFDM symbol, with FDM multiplexing or CDM multiplexing between them.
  • the beam training signal of each beam is formed by shaping a beam shaping weight corresponding to the beam.
  • the beam training signal is sent periodically, or sent non-periodically, or semi-persistently.
  • the terminal receives the downlink beam training signal sent by the base station, and selects the receiving beam corresponding to the downlink transmission beam by measuring the beam training signal.
  • the terminal determines the corresponding receive beam.
  • the receive beam of the terminal may be selected from candidate receive beams.
  • L is the number of beam-shaped antenna elements, which can be smaller than the number of antenna elements of the terminal.
  • the terminal may separately try to receive each of the received beams, and select the receiving beam with the strongest received signal power as the receiving beam of the downlink transmitting beam.
  • Step 604 The base station receives an uplink signal sent by the terminal by using the determined uplink transmit beam.
  • the base station uses the uplink receive beam corresponding to the uplink transmit beam indicated by the base station to receive the uplink signal of the terminal.
  • the correspondence can be determined during the uplink beam training process.
  • the base station uses the uplink receive beam corresponding to the downlink transmit beam indicated by the base station to receive the uplink signal of the terminal.
  • the correspondence here may be a correspondence based on channel reciprocity.
  • an uplink transmit beam determining apparatus is further provided in the embodiment of the present disclosure.
  • the principle of solving the problem is similar to the uplink transmit beam determining method in FIG. 4 and FIG. 6 of the embodiment of the present disclosure.
  • Implementation can refer to the implementation of the method, and the repetitions are not described.
  • the apparatus 700 includes:
  • the sending module 701 is configured to send uplink transmit beam indication information to the terminal.
  • the uplink transmit beam indication information includes beam type indication information, where the beam type indication information is used to indicate that an uplink transmit beam of the terminal is obtained based on an uplink reference signal, or the beam type indication information is used to indicate the terminal.
  • the uplink transmit beam is obtained based on the downlink reference signal.
  • the uplink transmit beam indication information includes an identifier of an uplink transmit beam, or an indication of an uplink reference signal.
  • the base station indicates that the uplink transmit beam of the terminal is obtained by using a downlink reference signal, where the uplink transmit beam indication information includes a downlink transmit beam number, or a downlink reference signal indication information, or a downlink receive beam indication information.
  • the device further includes:
  • the first determining module is configured to determine an uplink transmit beam of the terminal based on the uplink reference signal, or determine an uplink transmit beam of the terminal based on uplink and downlink beam reciprocity.
  • the determining module includes:
  • a receiving unit configured to receive an uplink reference signal sent by the terminal by using multiple candidate uplink transmit beams
  • a first determining unit configured to determine, by using the uplink reference signal, an optimal uplink transmit beam.
  • the reference signal of each candidate uplink transmit beam is sent after being shaped by the beamforming weight corresponding to the beam.
  • the device further includes:
  • the second determining module is configured to determine the beam type indication information based on the measurement result of the self, or determine the beam type indication information based on the measurement result of the self and the measurement result reported by the terminal.
  • the second determining module includes:
  • a first measuring unit configured to measure an uplink reference signal sent by the terminal, to obtain a receiving quality of each uplink reference signal
  • a second measuring unit configured to measure an uplink signal sent by the terminal, to obtain a receiving quality of the uplink signal, where the uplink signal is sent by the terminal by using an uplink transmit beam obtained by using a downlink reference signal;
  • a first selecting unit configured to: if the receiving quality of the at least one uplink reference signal is higher than the receiving quality of the uplink signal, the terminal is configured to obtain an uplink sending beam based on the uplink reference signal, and otherwise, the terminal is configured to obtain an uplink sending based on the downlink reference signal. Beam.
  • the second determining module includes:
  • a third measuring unit configured to measure an uplink reference signal sent by the terminal, to obtain a receiving quality of each uplink reference signal
  • a first receiving unit configured to receive a receiving quality of the downlink reference signal reported by the terminal
  • a second selecting unit configured to: if the receiving quality of the at least one uplink beam reference signal is higher than the receiving quality of all the downlink reference signals reported by the terminal, the terminal is configured to obtain an uplink transmitting beam based on the uplink reference signal; if at least one terminal reports The receiving quality of the downlink reference signal is higher than the receiving quality of all uplink reference signals, and the terminal is selected to obtain an uplink transmitting beam based on the downlink reference signal.
  • the device further includes:
  • the first receiving module is configured to receive an uplink signal sent by the terminal by using the determined uplink transmit beam.
  • the first receiving module includes:
  • a second receiving unit configured to: if the terminal is instructed to obtain an uplink transmit beam based on the uplink reference signal, receive an uplink signal of the terminal by using an uplink receive beam corresponding to the indicated uplink transmit beam; or if the terminal is indicated to be downlink based
  • the reference signal obtains an uplink transmit beam, and receives an uplink signal of the uplink receive beam corresponding to the indicated downlink transmit beam.
  • an uplink transmit beam determining apparatus is further provided in the embodiment of the present disclosure.
  • the principle of solving the problem is similar to the uplink transmit beam determining method in FIG. 5 and FIG. 6 of the embodiment of the present disclosure.
  • Implementation can refer to the implementation of the method, and the repetitions are not described.
  • an uplink transmit beam determining apparatus comprising:
  • the second receiving module 801 is configured to receive uplink transmit beam indication information sent by the base station;
  • the third determining module 802 is configured to determine an uplink transmit beam according to the uplink transmit beam indication information.
  • the uplink transmit beam indication information includes beam type indication information, where the beam type indication information is used to indicate that an uplink transmit beam of the terminal is obtained based on an uplink reference signal, or the beam type indication information is used to indicate the terminal.
  • the uplink transmit beam is obtained based on the downlink reference signal.
  • the uplink transmit beam indication information includes an identifier of an uplink transmit beam, or an indication of an uplink reference signal.
  • the uplink transmit beam indication information includes a downlink transmit beam number, or a downlink reference signal indication information, or a downlink receive beam indication information.
  • the device further includes:
  • the fourth determining module is configured to: if the uplink transmit beam indication information indicates that the terminal obtains an uplink transmit beam based on the uplink reference signal, determine a weight of the uplink transmit beam according to the number of the uplink transmit beam or the indication information of the uplink reference signal.
  • the fourth determining module is further configured to determine, according to a mapping relationship between the number of the uplink transmit beam and the beamforming weight, the weight of the uplink transmit beam; or
  • the weight of the uplink transmit beam is determined according to a mapping relationship between the uplink transmit beam and the beamforming weight.
  • the device further includes:
  • the fifth determining module is configured to determine, according to the downlink transmit beam, the uplink transmit beam, and determine the weight of the uplink transmit beam according to the downlink transmit beam number or the downlink reference signal indication information.
  • the fifth determining module includes:
  • a second determining unit configured to determine a corresponding downlink receiving beam according to the number of the downlink transmitting beam or the indication information of the downlink reference signal
  • a third determining unit configured to determine, by the downlink receiving beam, a weight of the uplink sending beam based on channel reciprocity.
  • An embodiment of the present disclosure further provides a base station including a first memory, a first processor, and a computer program stored on the first memory and operable on the first processor, the first processor executing the computer
  • the steps in the uplink transmit beam determining method as described above are implemented in the program.
  • a structure of a base station including a first memory, a first processor, and a computer program stored on the first memory and operable on the first processor, the first processor
  • the program When the program is executed, the following steps are implemented: sending uplink transmit beam indication information to the terminal; where the uplink transmit beam indication information includes beam type indication information, where the beam type indication information is used to indicate that the uplink transmit beam of the terminal is based on
  • the uplink reference signal obtained by the uplink reference signal is used to indicate that the uplink transmit beam of the terminal is obtained based on the downlink reference signal.
  • a bus architecture (represented by a first bus 900), the first bus 900 can include any number of interconnected buses and bridges, and the first bus 900 will include one or more of the ones represented by the first processor 904.
  • the processor and various circuits of the memory represented by the first memory 905 are linked together.
  • the first bus 900 can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art and, therefore, will not be further described herein.
  • the first bus interface 903 provides an interface between the first bus 900 and the first transceiver 901.
  • the first transceiver 901 can be an element or a plurality of elements, such as a plurality of receivers and transmitters, providing means for communicating with various other devices on a transmission medium.
  • Data processed by the first processor 904 is transmitted over the wireless medium by the first antenna 902. Further, the first antenna 902 also receives the data and transmits the data to the first processor 904.
  • the first processor 904 is responsible for managing the first bus 900 and the usual processing, and can also provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the first memory 905 can be used to store data used by the first processor 904 when performing operations.
  • the first processor 904 may be a CPU, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a CPLD (Complex Programmable Logic Device). Programmable logic device).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • the uplink transmit beam indication information includes a number of an uplink transmit beam, or an indication information of an uplink reference signal
  • the uplink transmit beam indication information includes a downlink transmit beam number, or a downlink reference signal indication information, or a downlink receive beam indication information.
  • the first processor is further configured to: determine an uplink transmit beam of the terminal based on the uplink reference signal, or determine an uplink transmit beam of the terminal.
  • the first processor is further configured to: receive an uplink reference signal that is sent by the terminal by using multiple candidate uplink transmit beams; and determine, by using the uplink reference signal, an optimal uplink transmit beam.
  • the reference signal of each candidate uplink transmit beam is sent after the beamforming weight corresponding to the beam is shaped.
  • the uplink reference signal of the terminal is sent on a resource configured by the base station.
  • the first processor is further configured to: determine the beam type indication information based on the measurement result of the self, or determine the beam type indication information based on the measurement result of the self and the measurement result reported by the terminal.
  • the first processor is further configured to: measure an uplink reference signal sent by the terminal, obtain a receiving quality of each uplink reference signal, and measure an uplink signal sent by the terminal by using a channel reciprocity beam to obtain a channel.
  • the receiving quality of the uplink reference signal sent by the reciprocity if the receiving quality of the at least one uplink reference signal is higher than the receiving quality of the uplink signal sent by the channel reciprocity, the terminal is selected to obtain the uplink transmitting beam based on the uplink reference signal, Otherwise, the terminal is selected to obtain an uplink transmit beam based on the downlink reference signal.
  • the first processor is further configured to: measure an uplink reference signal sent by the terminal, obtain a receiving quality of each uplink reference signal, and receive a receiving quality of the downlink reference signal reported by the terminal; if there is at least one uplink The receiving quality of the beam reference signal is higher than the receiving quality of all the downlink reference signals reported by the terminal, and the terminal is selected to obtain the uplink transmitting beam based on the uplink reference signal; if the receiving quality of the downlink reference signal reported by at least one terminal is higher than all uplink references The reception quality of the signal is selected such that the terminal obtains an uplink transmission beam based on the downlink reference signal.
  • the first processor is further configured to: receive an uplink signal sent by the terminal by using the determined uplink transmit beam.
  • the first processor is further configured to: if the terminal is instructed to obtain an uplink transmit beam based on the uplink reference signal, receive an uplink signal of the terminal by using an uplink receive beam corresponding to the uplink transmit beam indicated by the base station; or If the terminal is instructed to obtain an uplink transmit beam based on the downlink reference signal, the uplink receive beam corresponding to the indicated downlink transmit beam is used to receive the uplink signal of the terminal.
  • An embodiment of the present disclosure further provides a terminal, including a second memory, a second processor, and a computer program stored on the second memory and operable on the second processor, the second processor executing the computer
  • the steps in the uplink transmit beam determining method as described above are implemented in the program.
  • FIG. 10 there is shown a structure of a terminal including a second memory, a second processor, and a computer program stored on the second memory and operable on the second processor, the second processor
  • the program When the program is executed, the following steps are performed: receiving uplink transmit beam indication information sent by the base station; determining an uplink transmit beam according to the uplink transmit beam indication information; where the uplink transmit beam indication information includes beam type indication information, the beam type The indication information is used to indicate that the uplink transmit beam of the terminal is obtained based on the uplink reference signal, or the beam type indication information is used to indicate that the uplink transmit beam of the terminal is based on the downlink reference signal.
  • a bus architecture (represented by a second bus 1000), which may include any number of interconnected buses and bridges, the second bus 1000 will include one or more of the generic second processors 1001
  • the various circuits of the memory represented by the processor and the second memory 1004 are linked together.
  • the second bus 1000 can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art, and therefore, will not be further described herein.
  • the second bus interface 1003 provides an interface between the second bus 1000 and the second transceiver 1002.
  • the second transceiver 1002 can be an element or a plurality of elements, such as a plurality of receivers and transmitters, providing means for communicating with various other devices on a transmission medium.
  • the second transceiver 1002 receives external data from other devices.
  • the second transceiver 1002 is configured to send the data processed by the second processor 1001 to other devices.
  • a user interface 1005 such as a keypad, display, speaker, microphone, joystick, may also be provided.
  • the second processor 1001 is responsible for managing the second bus 1000 and the usual processing, running the general purpose operating system as described above.
  • the second memory 1004 can be used to store data used by the second processor 1001 when performing operations.
  • the second processor 1001 may be a CPU, an ASIC, an FPGA, or a CPLD.
  • the uplink transmit beam indication information includes an identifier of an uplink transmit beam, or indication information of an uplink reference signal; or The base station indicates that the uplink transmit beam of the terminal is obtained by using a downlink reference signal, and the uplink transmit beam indication information includes a downlink transmit beam number, or a downlink reference signal indication information, or a downlink receive beam indication information.
  • the second processor 1001 is further configured to: if the uplink transmit beam indication information indicates that the terminal obtains an uplink transmit beam based on the uplink reference signal, determine the right of the uplink transmit beam according to the number of the uplink transmit beam or the indication information of the uplink reference signal. value.
  • the second processor 1001 is further configured to: if the number of the uplink reference signal is performed in all candidate beam ranges, determine an uplink transmit beam according to a mapping relationship between the number of the uplink transmit beam and the beamforming weight If the number of the uplink reference signal is within the range of the uplink reference signal, the weight of the uplink transmit beam is determined according to the mapping relationship between the uplink transmit beam and the beamforming weight.
  • the second processor 1001 is further configured to: if the uplink transmit beam indication information indicates that the terminal determines the uplink transmit beam based on the downlink reference signal, determine the right of the uplink transmit beam according to the number of the downlink transmit beam or the indication information of the downlink reference signal. value.
  • the second processor 1001 is further configured to: determine a corresponding downlink receive beam according to the number of the downlink transmit beam or the indication information of the downlink reference signal; determine the uplink transmit beam by the downlink receive beam based on channel reciprocity Weight.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer program (instruction) is executed, and when the program (instruction) is executed by the processor, the following steps are performed: transmitting uplink transmit beam indication information to the terminal;
  • the uplink transmit beam indication information includes beam type indication information, where the beam type indication information is used to indicate that an uplink transmit beam of the terminal is obtained based on an uplink reference signal, or the beam type indication information is used to indicate uplink transmission of the terminal.
  • the beam is derived based on the downlink reference signal.
  • the program is executed by the processor to implement the following steps:
  • the program is executed by the processor to implement the following steps:
  • An optimal uplink transmit beam is determined by the uplink reference signal.
  • the program is executed by the processor to implement the following steps:
  • the beam type indication information is determined based on the measurement result of the self, or the base station determines the beam type indication information based on the measurement result of the self and the measurement result reported by the terminal.
  • the program is executed by the processor to implement the following steps:
  • the terminal is selected to obtain the uplink transmitting beam based on the uplink reference signal, otherwise, the terminal is selected to obtain the uplink sending based on the downlink reference signal. Beam.
  • the program is executed by the processor to implement the following steps:
  • the terminal is configured to obtain an uplink transmitting beam based on the uplink reference signal
  • the terminal is selected to obtain an uplink transmitting beam based on the downlink reference signal.
  • the program is executed by the processor to implement the following steps:
  • the uplink receive beam corresponding to the uplink transmit beam indicated by the base station is used to receive the uplink signal of the terminal;
  • the uplink receive beam corresponding to the downlink transmit beam indicated by the base station is used to receive the uplink signal of the terminal.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer program (instruction) is stored, and when the program (instruction) is executed by the processor, the following steps are performed: receiving uplink transmit beam indication information sent by the base station;
  • the uplink transmit beam indication information determines an uplink transmit beam, where the uplink transmit beam indication information includes beam type indication information, where the beam type indication information is used to indicate that the uplink transmit beam of the terminal is obtained based on an uplink reference signal, or The beam type indication information is used to indicate that the uplink transmit beam of the terminal is based on a downlink reference signal.
  • the program is executed by the processor to implement the following steps:
  • the weight of the uplink transmit beam is determined according to the number of the uplink transmit beam or the indication information of the uplink reference signal.
  • the program is executed by the processor to implement the following steps:
  • the weight of the uplink transmit beam is determined according to the mapping relationship between the uplink transmit beam and the beamforming weight.
  • the program is executed by the processor to implement the following steps:
  • the weight of the uplink transmit beam is determined according to the number of the downlink transmit beam or the indication information of the downlink reference signal.
  • the program is executed by the processor to implement the following steps:
  • system and “network” are used interchangeably herein.
  • B corresponding to A means that B is associated with A, and B can be determined from A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed method and apparatus may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network side device, etc.) to perform part of the steps of the transceiving method of the various embodiments of the present disclosure.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, and the program code can be stored. Medium.

Abstract

本公开实施例提供了一种上行发送波束确定方法和装置,该方法包括:基站向终端发送上行发送波束指示信息;其中,上行发送波束指示信息中包含波束类型指示信息,波束类型指示信息用于指示终端的上行发送波束是基于上行参考信号得到的,或者波束类型指示信息用于指示终端的上行发送波束是基于下行参考信号得到,确保基站能够为终端选择上行发送波束。

Description

上行发送波束确定方法和装置
相关申请的交叉引用
本申请主张在2017年3月17日在中国提交的中国专利申请号No.201710161447.0的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种上行发送波束确定方法和装置。
背景技术
鉴于MIMO(Multiple-Input Multiple-Out-put,多输入多输出)技术对于提高峰值速率与系统频谱利用率的重要作用,LTE(Long Term Evolution,长期演进)/LTE-A(LTE-Advanced)等无线接入技术标准都是以MIMO+OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)技术为基础构建起来的。MIMO技术的性能增益来自于多天线系统所能获得的空间自由度,因此MIMO技术在标准化发展过程中的一个最重要的演进方向便是维度的扩展。
在LTE Rel-8中,最多可以支持4层的MIMO传输。Rel-9重点对MU-MIMO技术进行了增强,TM(Transmission Mode,传输方式)-8的MU-MIMO(Multi-User MIMO,多用户多输入多输出)传输中最多可以支持4个下行数据层。Rel-10则引入支持8天线端口进一步提高了信道状态信息的空间分辨率,并进一步将SU-MIMO(Single-User MIMO,单用户多输入多输出)的传输能力扩展至最多8个数据层。Rel-13和Rel-14引入了FD-MIMO全维度多输入多输出技术支持到32端口,实现全维度以及垂直方向的波束赋形。
为了进一步提升MIMO技术,移动通信系统中引入大规模天线技术。对于基站,全数字化的大规模天线可以有高达128/256/512个天线单元,以及高达128/256/512个收发单元,每个天线单元连接一个收发单元。通过发送高达128/256/512个天线端口的导频信号,使得终端测量信道状态信息并反馈。对 于终端,也可以配置高达32/64个天线单元的天线阵列。通过基站和终端两侧的波束赋形,获得巨大的波束赋形增益,以弥补路径损耗带来的信号衰减。尤其是在高频段通信,例如30GHz频点上,路径损耗使得无线信号的覆盖范围极其有限。通过大规模天线技术,可以将无线信号的覆盖范围扩大到可以实用的范围内。
全数字天线阵列,每个天线单元都有独立的收发单元,将会使得设备的尺寸、成本和功耗大幅度上升。特别是对于收发单元的模数转换器(ADC)和数模转换器(DAC),近十年来,其功耗只降低了1/10左右,性能提升也比较有限。为了降低设备的尺寸、成本和功耗,基于模拟波束赋形的技术方案被提出。在相关技术中,终端可以基于上行波束训练过程得到,或者基于上下行波速互易性得到,但终端无法根据基站的指示确定终端的上行发送波束。
发明内容
鉴于上述技术问题,本公开实施例提供一种上行发送波束确定方法和装置,能够确保基站为终端选择上行发送波束。
依据本公开实施例的第一个方面,提供了一种上行发送波束确定方法,包括:
基站向终端发送上行发送波束指示信息;
其中,所述上行发送波束指示信息中包含波束类型指示信息,所述波束类型指示信息用于指示终端的上行发送波束是基于上行参考信号得到的,或者所述波束类型指示信息用于指示终端的上行发送波束是基于下行参考信号得到。
可选地,如果所述基站指示所述终端的上行发送波束是基于上行参考信号得到,所述上行发送波束指示信息中包括上行发送波束的编号,或者上行参考信号的指示信息;或者
如果所述基站指示所述终端的上行发送波束是基于下行参考信号得到,所述上行发送波束指示信息中包括下行发送波束的编号,或者下行参考信号的指示信息,或者下行接收波束的指示信息。
可选地,在基站向终端发送上行发送波束指示信息之前,所述方法还包括:
所述基站基于上行参考信号确定终端的上行发送波束,或所述基站基于上下行波束互易性确定终端的上行发送波束。
可选地,所述基站基于上行参考信号确定得到所述终端的上行发送波束,包括:
所述基站接收所述终端通过多个候选上行发送波束发送的上行参考信号;
所述基站通过所述上行参考信号,确定最佳上行发送波束。
可选地,每个候选上行发送波束的上行参考信号用该候选上行发送波束对应的波束赋形权值赋形之后发出。
可选地,所述终端的上行参考信号在所述基站配置的资源上发送。
可选地,在基站向终端发送上行发送波束指示信息之前,所述方法还包括:
所述基站基于自身的测量结果确定波束类型指示信息,或者,所述基站基于自身的测量结果和所述终端上报的测量结果,确定波束类型指示信息。
可选地,所述基站基于自身的测量结果确定波束类型指示信息,包括:
所述基站测量所述终端发送的上行参考信号,得到每个上行参考信号的接收质量;
所述基站测量所述终端采用基于下行参考信号得到的上行发送波束发送的上行信号,得到所述上行信号的接收质量;
如果有至少一个上行参考信号的接收质量高于所述上行信号的接收质量,所述基站选择令终端采用基于上行参考信号得到上行发送波束,否则,所述基站选择令终端基于下行参考信号得到上行发送波束。
可选地,所述基站基于自身的测量结果和所述终端上报的测量结果,确定波束类型指示信息,包括:
所述基站测量所述终端发送的上行参考信号,得到每个上行参考信号的接收质量;
所述基站接收所述终端上报的下行参考信号的接收质量;
如果有至少一个上行参考信号的接收质量高于终端上报的所有下行参考 信号的接收质量,所述基站选择令终端采用基于上行参考信号得到上行发送波束;
如果有至少一个终端上报的下行参考信号的接收质量高于所有上行参考信号的接收质量,所述基站选择令终端基于下行参考信号得到上行发送波束。
可选地,所述方法还包括:
所述基站接收所述终端用确定的上行发送波束发送的上行信号。
可选地,所述基站接收所述终端用确定的上行发送波束发送的上行信号,包括:
如果所述基站指示了所述终端基于上行参考信号得到上行发送波束,所述基站采用所述基站指示的上行发送波束对应的上行接收波束接收所述终端的上行信号;或者
如果所述基站指示了所述终端基于下行参考信号得到上行发送波束,所述基站采用所述基站指示的下行发送波束对应的上行接收波束接收终端的上行信号。
依据本公开实施例的第二个方面,还提供了一种上行发送波束确定方法,包括:
终端接收基站发送的上行发送波束指示信息;
所述终端根据上行发送波束指示信息确定上行发送波束;
其中,所述上行发送波束指示信息中包含波束类型指示信息,所述波束类型指示信息用于指示终端的上行发送波束是基于上行参考信号得到的,或者所述波束类型指示信息用于指示终端的上行发送波束是基于下行参考信号得到。
可选地,如果所述基站指示所述终端的上行发送波束是基于上行参考信号得到,所述上行发送波束指示信息中包括上行发送波束的编号,或者上行参考信号的指示信息;或者
如果所述基站指示所述终端的上行发送波束是基于下行参考信号得到,上行发送波束指示信息中包括下行发送波束的编号,或者下行参考信号的指示信息,或者下行接收波束的指示信息。
可选地,如果上行发送波束指示信息指示终端基于上行参考信号得到上 行发送波束,则终端根据上行发送波束的编号或者上行参考信号的指示信息,确定上行发送波束的权值。
可选地,所述终端根据上行发送波束的编号和波束赋形权值之间的映射关系,确定上行发送波束的权值。
可选地,如果上行发送波束指示信息指示终端基于下行参考信号确定上行发送波束,所述终端根据下行发送波束的编号或者下行参考信号的指示信息,确定上行发送波束的权值。
可选地,所述终端根据下行发送波束的编号或者下行参考信号的指示信息,确定上行发送波束的权值,包括:
所述终端根据下行发送波束的编号或者下行参考信号的指示信息,确定对应的下行接收波束;
基于信道互易性由所述下行接收波束确定上行发送波束的权值。
依据本公开实施例的第三个方面,还提供了一种上行发送波束确定装置,包括:
发送模块,用于向终端发送上行发送波束指示信息;
其中,所述上行发送波束指示信息中包含波束类型指示信息,所述波束类型指示信息用于指示终端的上行发送波束是基于上行参考信号得到的,或者所述波束类型指示信息用于指示终端的上行发送波束是基于下行参考信号得到。
可选地,如果所述基站指示所述终端的上行发送波束是基于上行参考信号得到,所述上行发送波束指示信息中包括上行发送波束的编号,或者上行参考信号的指示信息;或者
如果所述基站指示所述终端的上行发送波束是基于下行参考信号得到,所述上行发送波束指示信息中包括下行发送波束的编号,或者下行参考信号的指示信息,或者下行接收波束的指示信息。
可选地,所述装置还包括:
第一确定模块,用于基于上行参考信号确定终端的上行发送波束,或基于上下行波束互易性确定终端的上行发送波束。
可选地,所述确定模块包括:
接收单元,用于接收所述终端通过多个候选上行发送波束发送的上行参考信号;
第一确定单元,用于通过所述上行参考信号,确定最佳上行发送波束。
可选地,每个候选上行发送波束的参考信号用该波束对应的波束赋形权值赋形之后发出。
可选地,所述装置还包括:
第二确定模块,用于基于自身的测量结果确定波束类型指示信息,或者,基于自身的测量结果和所述终端上报的测量结果,确定波束类型指示信息。
可选地,所述第二确定模块包括:
第一测量单元,用于测量所述终端发送的上行参考信号,得到每个上行参考信号的接收质量;
第二测量单元,用于测量所述终端发送的上行信号,得到所述上行信号的接收质量,其中所述上行信号由终端采用基于下行参考信号得到的上行发送波束发送;
第一选择单元,用于如果有至少一个上行参考信号的接收质量高于上行信号的接收质量,选择令终端采用基于上行参考信号得到上行发送波束,否则,选择令终端基于下行参考信号得到上行发送波束。
可选地,所述第二确定模块包括:
第三测量单元,用于测量所述终端发送的上行参考信号,得到每个上行参考信号的接收质量;
第一接收单元,用于接收所述终端上报的下行参考信号的接收质量;
第二选择单元,用于如果有至少一个上行波束参考信号的接收质量高于终端上报的所有下行参考信号的接收质量,选择令终端采用基于上行参考信号得到上行发送波束;如果有至少一个终端上报的下行参考信号的接收质量高于所有上行参考信号的接收质量,选择令终端基于下行参考信号得到上行发送波束。
可选地,所述装置还包括:
第一接收模块,用于接收所述终端用确定的上行发送波束发送的上行信号。
可选地,所述第一接收模块包括:
第二接收单元,用于如果指示了所述终端基于上行参考信号得到上行发送波束,采用指示的上行发送波束对应的上行接收波束接收所述终端的上行信号;或者
如果指示了所述终端基于下行参考信号得到上行发送波束,采用指示的下行发送波束对应的上行接收波束接收终端的上行信号。
依据本公开实施例的第四个方面,还提供了一种上行发送波束确定装置,包括:
第二接收模块,用于接收基站发送的上行发送波束指示信息;
第三确定模块,用于根据上行发送波束指示信息确定上行发送波束;
其中,所述上行发送波束指示信息中包含波束类型指示信息,所述波束类型指示信息用于指示终端的上行发送波束是基于上行参考信号得到的,或者所述波束类型指示信息用于指示终端的上行发送波束是基于下行参考信号得到。
可选地,如果所述基站指示所述终端的上行发送波束是基于上行参考信号得到,所述上行发送波束指示信息中包括上行发送波束的编号,或者上行参考信号的指示信息;或者
如果所述基站指示所述终端的上行发送波束是基于下行参考信号得到,上行发送波束指示信息中包括下行发送波束的编号,或者下行参考信号的指示信息,或者下行接收波束的指示信息。
可选地,所述装置还包括:
第四确定模块,用于如果上行发送波束指示信息指示终端基于上行参考信号得到上行发送波束,根据上行发送波束的编号或者上行参考信号的指示信息,确定上行发送波束的权值。
可选地,第四确定模块进一步,用于根据上行发送波束的编号和波束赋形权值之间的映射关系,确定上行发送波束的权值。
可选地,所述装置还包括:
第五确定模块,用于如果上行发送波束指示信息指示终端基于下行参考信号确定上行发送波束,根据下行发送波束的编号或者下行参考信号的指示 信息,确定上行发送波束的权值。
可选地,所述第五确定模块包括:
第二确定单元,用于根据下行发送波束的编号或者下行参考信号的指示信息,确定对应的下行接收波束;
第三确定单元,用于基于信道互易性由所述下行接收波束确定上行发送波束的权值。
依据本公开实施例的第五个方面,还提供了一种基站,包括第一存储器、第一处理器及存储在第一存储器上并可在第一处理器上运行的计算机程序,所述第一处理器执行所述计算机程序时实现如第一方面所述的上行发送波束确定方法中的步骤。
依据本公开实施例的第六个方面,还提供了一种终端,包括第二存储器、第二处理器及存储在第二存储器上并可在第二处理器上运行的计算机程序,所述第二处理器执行所述计算机程序时实现如第二方面所述的上行发送波束确定方法中的步骤。
依据本公开实施例的第七个方面,还提供了一种计算机可读存储介质,其上存储有计算机程序,其中,所述程序被处理器执行时实现如第一方面所述的上行发送波束确定方法中的步骤。
依据本公开实施例的第八个方面,还提供了一种计算机可读存储介质,其上存储有计算机程序,其中,所述程序被处理器执行时实现如第二方面所述的上行发送波束确定方法中的步骤。
任何一个上述技术方案具有如下优点或有益效果:通过波束类型指示信息指示终端的上行发送波束是基于上行参考信号得到的,还是基于下行参考信号得到,能够确保基站为终端选择上行发送波束。
附图说明
图1为模拟波束赋形(对中频信号加权赋形)的示意图;
图2为模拟波束赋形(对射频信号加权赋形)的示意图;
图3为数模混合波束赋形的示意图;
图4为本公开的一些实施例中上行发送波束确定方法的流程图;
图5为本公开的另一些实施例中上行发送波束确定方法的流程图;
图6为本公开的另一些实施例中上行发送波束确定方法的流程图;
图7为本公开的一些实施例中上行发送波束确定装置的框图;
图8为本公开的另一些实施例中上行发送波束确定装置的框图;
图9为本公开的一些实施例中基站的结构示意图;
图10为本公开的一些实施例中终端的结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
如图1和图2所示。模拟波束赋形的主要特点是通过移相器对中频(图1)或射频信号(图2)进行加权赋形。优点在于所有发射(接收)天线只有一个收发单元,实现简单,降低了成本、尺寸和功耗。
参见图4,图中示出了上行发送波束确定方法的流程,该方法的执行主体可以是基站,具体步骤如下:
步骤401、基站向终端发送上行发送波束指示信息;
其中,所述上行发送波束指示信息中包含波束类型指示信息,所述波束类型指示信息用于指示终端的上行发送波束是基于上行参考信号得到的,或者所述波束类型指示信息用于指示终端的上行发送波束是基于下行参考信号得到。
在R9中,下行定义了四种参考信号,分别为小区专用参考信号(C-RS),用户专用参考信号(UE-RS,又称DM-RS),MBSFN(多播/组播单频网络)参考信号,位置参考信号(P-RS)。在R10中,下行定义了五种参考信号,分别为小区专用参考信号(C-RS),用户专用参考信号(UE-RS,又称DM-RS),MBSFN参考信号,位置参考信号(P-RS),以及CSI参考信号(CSI-RS)。上行参考信号可以包括DM-RS和SRS(信道探测参考信号)。
在本实施例中,上述上行发送波束可以是基于上行波束训练过程得到。
在本实施例中,终端的上行发送波束可以基于上下行信道互易性得到。对于采用时分双工的系统,在一定的相干时间内,同一个频带上的上行和下行信道特性基本一致,称作信道互易性。例如,TD—LTE(Time Division Long Term Evolution,分时长期演进)系统的上、下行链路在相同频率资源的不同时隙上传输,所以在相对较短的时间之内(信道传播的相干时间),可以认为上行链路和下行链路的传输信号所经历的信道衰落是相同的,这就是TD—LTE的信道互易性。
需要说明的是,在本实施例中,波束类型指示信息用于指示终端的上行发送波束是基于上行参考信号得到的,还是基于下行参考信号得到。
在本实施例中,基站可以通过波束类型指示信息指示终端采用基于上行参考信号得到的上行发送波束,或者基站可以通过波束类型指示信息指示终端采用基于上行参考信号得到的上行发送波束,通过这种方式能够确保基站为终端选择上行发送波束。
如果所述基站指示所述终端的上行发送波束是基于上行参考信号得到,所述上行发送波束指示信息中包括上行发送波束的编号,或者上行参考信号的指示信息;或者
如果所述基站指示所述终端的上行发送波束是基于下行参考信号得到,上行发送波束指示信息中包括下行发送波束的编号,或者下行参考信号的指示信息,或者下行接收波束的指示信息。
在本实施例中,可选地,在基站向终端发送上行发送波束指示信息之前,基站可以通过如下两种方式确定终端的上行发送波束:
方式一、基站基于上行参考信号确定终端的上行发送波束;
方式二、基站基于上下行信道互易性确定终端的上行发送波束。
上述方式一具体包括:基站接收终端通过多个候选上行发送波束发送的上行参考信号;然后,基站通过上行参考信号,确定最佳上行发送波束,例如,基站通过对上行参考信号的测量,确定最佳上行发送波束,使得基站能够为终端选择合适的上行发送波束。
其中,每个候选上行发送波束的参考信号用该波束对应的波束赋形权值赋形之后发出。
其中,终端的上行参考信号在所述基站配置的资源上发送。例如配置的资源可以是周期性资源,或者非周期性资源,或者半持续资源。
为了进一步提升模拟波束赋形性能,一种数字模拟混合波束赋形收发架构方案被提出,如图3所示。在图3中,发送端和接收端分别有
Figure PCTCN2018077259-appb-000001
Figure PCTCN2018077259-appb-000002
个收发单元,发送端天线单元数
Figure PCTCN2018077259-appb-000003
接收端天线单元数
Figure PCTCN2018077259-appb-000004
波束赋形支持的最大并行传输流数量为
Figure PCTCN2018077259-appb-000005
图3的混合波束赋形结构在数字波束赋形灵活性和模拟波束赋形的低复杂度间做了平衡,具有支撑多个数据流和多个用户同时赋形的能力,同时,复杂度也控制在合理范围内。
模拟波束赋形和数模混合波束赋形都需要调整收发两端的模拟波束赋形权值,以使得其所形成的波束能对准通信的对端。对于下行传输,需要调整基站侧发送的波束赋形权值和终端侧接收的波束赋形权值,而对于上行传输,需要调整终端侧发送的和基站侧接收的波束赋形权值。波束赋形的权值通常通过发送训练信号获得。下行方向,基站发送下行波束训练信号,终端测量下行波束训练信号,选择出最佳的基站发送波束,并将波束相关的信息反馈给基站,同时选择出对应的最佳接收波束,保存在本地。上行方向,终端发送上行波束训练信号,基站测量上行波束训练信号,选择出最佳的终端发送波束,将波束相关的信息传递给终端,同时选择出对应的最佳接收波束,保存在本地。上下行的收发波束训练好之后即可以进行数据传输。
上下行的波束训练将带来系统开销的增加,尤其是上行波束训练需要每个终端都发送上行波束训练信号。在波束互易性成立的情况下,终端可以基于下行波束训练过程得到的下行接收波束确定上行发送波束,节省上行波束训练的开销。
实际的设备由于器件的非理想特性,上下行干扰的非互易性等,由上下行信道互易性得到的上行发送波束并不总是最佳波束。如果完全依赖于波束互易性选择终端的上行发送波束将无法达到系统的最优性能。
在本实施例中,可选地,在基站向终端发送上行发送波束指示信息之前,基站可以通过如下两种方式确定波束类型指示信息:
方式一、基站基于自身的测量结果确定波束类型指示信息;
具体地:基站测量所述终端发送的上行参考信号,得到每个上行参考信 号的接收质量;所述基站测量所述终端采用基于下行参考信号得到的上行发送波束发送的上行信号(例如参考信号,数据信道的信号等),得到上行信号的接收质量;如果有至少一个上行参考信号的接收质量高于用信道互易性波束发送的上行信号的接收质量,所述基站选择令终端采用基于上行参考信号得到上行发送波束,否则,所述基站选择令终端基于下行参考信号得到上行发送波束。
上述基于下行参考信号得到的上行发送波束是指,利用信道互易性选择与下行参考信号对应的上行发送波束。
方式二、基站基于自身的测量结果和所述终端上报的测量结果,确定波束类型指示信息。
具体地:基站测量所述终端发送的上行参考信号,得到每个上行参考信号的接收质量,其中,该上行参考信号由终端采用上行波束训练过程得到的上行发送波束发送;基站接收所述终端上报的下行参考信号的接收质量;如果有至少一个上行参考信号的接收质量高于终端上报的所有下行参考信号的接收质量,所述基站选择令终端采用基于上行参考信号得到上行发送波束;如果有至少一个终端上报的下行参考信号的接收质量高于所有上行参考信号的接收质量,所述基站选择令终端基于下行参考信号得到上行发送波束。
通过上述两种方式,可使得基站能够为终端选择合适的上行发送波束,提升信道互易性非理想情况下的系统性能。
在本实施例中,可选地,所述方法还包括:基站接收所述终端用确定的上行发送波束发送的上行信号。
具体地:如果基站指示了所述终端基于上行参考信号得到上行发送波束,所述基站采用所述基站指示的上行发送波束对应的上行接收波束接收所述终端的上行信号,上行发送波束与接收波束的对应关系可以在上行波束训练过程中确定;或者
如果所述基站指示了所述终端基于下行参考信号得到上行发送波束,所述基站采用所述基站指示的下行发送波束对应的上行接收波束接收终端的上行信号,下行发送波束与上行接收波束的对应关系,可以是基于信道互易性的对应关系。
在本实施例中,通过波束类型指示信息指示终端的上行发送波束是基于上行参考信号得到的,还是基于下行参考信号得到,其中,波束类型指示信息可以基于基站自身的测量结果确定得到,也可以是基站基于自身的测量结果和终端上报的测量结果得到,进而能够确保基站为终端选择合适的上行发送波束,提升信道互易性非理想情况下的系统性能。
参见图5,图中示出了一种上行发送波束确定方法的流程,该方法的执行主体可以是终端,具体步骤如下:
步骤501、终端接收基站发送的上行发送波束指示信息;
步骤502、终端根据上行发送波束指示信息确定上行发送波束。
其中,所述上行发送波束指示信息中包含波束类型指示信息,所述波束类型指示信息用于指示终端的上行发送波束是基于上行参考信号得到的,或者所述波束类型指示信息用于指示终端的上行发送波束是基于下行参考信号得到。
在本实施例中,可选地,如果所述基站指示所述终端的上行发送波束是基于上行参考信号得到,所述上行发送波束指示信息中包括上行发送波束的编号,或者上行参考信号的指示信息;或者
如果所述基站指示所述终端的上行发送波束是基于下行参考信号得到,上行发送波束指示信息中包括下行发送波束的编号,或者下行参考信号的指示信息,或者下行接收波束的指示信息。
在本实施例中,可选地,如果上行发送波束指示信息指示终端基于上行参考信号得到上行发送波束,则终端根据上行发送波束的编号或者上行参考信号的指示信息,确定上行发送波束的权值。
在本实施例中,可选地,所述终端根据上行发送波束的编号和波束赋形权值之间的映射关系,确定上行发送波束的权值;或者
所述终端根据上行发送波束和波束赋形权值之间的映射关系,确定上行发送波束的权值。
在本实施例中,可选地,如果上行发送波束指示信息指示终端基于下行参考信号确定上行发送波束,所述终端根据下行发送波束的编号或者下行参考信号的指示信息,确定上行发送波束的权值。例如:所述终端根据下行发 送波束的编号或者下行参考信号的指示信息,确定对应的下行接收波束;再基于信道互易性由所述下行接收波束确定上行发送波束的权值。
在本实施例中,通过波束类型指示信息指示终端的上行发送波束是基于上行参考信号得到的,还是基于下行参考信号得到,其中,波束类型指示信息可以基于基站自身的测量结果确定得到,也可以是基站基于自身的测量结果和终端上报的测量结果得到,进而能够确保基站为终端选择合适的上行发送波束,提升信道互易性非理想情况下的系统性能。
参见图6,图中示出了一种确定上行发送波束的方法的流程,包括步骤601至604。
步骤601、基站确定终端的上行发送波束;
在本步骤中,基站可以通过以下两种方式确定终端的上行发送波束:
方式一、基于上下行信道互易性得到的上行发送波束;
方式二、基于上行参考信号确定上行发送波束。
基于上行参考信号确定上行发送波束的过程:
1)终端发送多个候选上行发送波束的上行参考信号。
终端的候选上行发送波束的数量取决于终端的硬件能力。假设终端共有
Figure PCTCN2018077259-appb-000006
个候选的上行发送波束,每个上行发送波束对应一组波束赋形权值,第n个波束的发送波束赋形权值为
Figure PCTCN2018077259-appb-000007
其中L是波束赋形的天线单元数,可以小于终端天线单元数。终端可以为每个候选的上行发送波束发射一个上行参考信号。例如对于
Figure PCTCN2018077259-appb-000008
个上行发送波束,终端可以发送
Figure PCTCN2018077259-appb-000009
个上行参考信号。这
Figure PCTCN2018077259-appb-000010
个上行参考信号之间可以TDM(时分复用)、FDM(Frequency Division Multiplexing,频分复用)、CDM(码分复用),或者各种复用方式的组合。例如,在以OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)为基础的系统中,
Figure PCTCN2018077259-appb-000011
个上行参考信号可以占用
Figure PCTCN2018077259-appb-000012
个OFDM符号,每个上行参考信号占用1个OFDM符号,上行参考信号之间为TDM复用。也可以在一个OFDM符号中发射多个波束的上行参考信号,他们之间是FDM复用,或者CDM复用。
其中,每个波束的波束训练信号用该波束对应的波束赋形权值赋形之后发出。
其中,终端的上行发送波束训练信号在基站配置的资源上发送。配置的资源是周期性资源,或者非周期性资源,或者半持续资源。
2)基站通过接收终端发送的上行参考信号,确定最佳上行发送波束。
具体地,基站通过对上行参考信号的测量,确定最佳上行发送波束。
例如,终端可以选择上行参考信号接收功率最强的波束为最佳上行发送波束。最佳上行发送波束是一个波束(这次指一次训练过程推荐1个波束,进行多个波束训练过程可以推荐多个不同的波束),也可以是多个波束。
基站确定最佳上行发送波束的编号。编号可以在终端的所有的候选上行发送波束范围内进行,例如,
Figure PCTCN2018077259-appb-000013
个候选上行发送波束的编号分别为0,1,…
Figure PCTCN2018077259-appb-000014
编号也可以终端发送的上行参考信号范围内进行,例如,终端发送了
Figure PCTCN2018077259-appb-000015
个上行参考信号,每个波束训练信号对应一个上行发送波束,其编号范围为
Figure PCTCN2018077259-appb-000016
一种可能的实施方式是上行波束训练过程以较大的周期进行,在两次波束训练过程中按照信道互易性的方式确定上行发送波束。
步骤602、基站向终端发送上行发送波束指示信息。上行发送波束指示信息中包含波束类型指示信息,用于指示终端的上行发送波束是基于上行参考信号确定,还是基于下行参考信号确定。
如果是基于上行参考信号确定,上行发送波束指示信息中包括上行发送波束的编号,或者是上行参考信号的指示信息。
如果是基于上下行信道互易性得到,上行发送波束指示信息中包括下行发送波束的编号,或者是下行波束训练信号的指示信息,或者下行包含下行接收波束的指示信息。
在本实施例中,基站可以基于自身的测量结果确定终端的上行发送波束类型。
例如,基站测量终端发送的上行参考信号(或者称为上行波束训练信号),得到每个上行参考信号的接收质量,如RSRP(Reference Signal Receiving Power,参考信号接收功率)。同时,基站可以测量终端采用信道互易性波束发送的上行信号,如参考信号,数据信道的信号等,得到RSRP值。基站比较两者得到的测量值,如果有至少一个上行参考信号的接收质量高于用信道 互易性发送的上行信号的接收质量,则基站可以选择令终端采用基于上行参考信号确定上行发送波束,否则基站可以选择令终端基于下行参考信号确定上行发送波束。
在本实施例中,基站可以基于自身的测量和终端上报的测量结果确定终端的上行发送波束类型。
例如,基站测量终端发送的上行参考信号,得到每个上行参考信号的接收质量,如RSRP。同时,基站接收终端上报的下行参考信号的接收质量,如RSRP值。基站比较两者,如果有至少一个上行参考信号的接收质量高于终端上报的所有下行参考信号的接收质量,则基站可以选择令终端采用基于上行参考信号确定上行发送波束,否则如果有至少一个终端上报的下行参考信号的接收质量高于所有上行参考信号确定的接收质量,基站可以选择令终端基于下行参考信号确定上行发送波束。
由于接收质量受发射功率的影响,基站在比较时需要去除发射功率的影响,即基站测量的结果需要减去终端的发射功率,终端上报的测量结果需要减去基站的发射功率。
步骤603、终端接收基站发送的上行发送波束指示信息。
1)如果指示信息指示终端基于上行参考信号确定的上行发送波束,则终端根据上行发送波束的编号(或者上行参考信号的指示信息)确定上行发送波束的权值。
例如,上行发送波束的编号是在所有候选波束范围内进行,则终端可以根据编号和波束赋形权值之间的映射关系,确定上行发送波束的权值,该映射关系保存在终端。再例如,上行发送波束的编号是在上行参考信号范围内进行,则终端可以根据编号和上行参考信号,以及波束赋形权值之间的映射关系,确定上行发送波束的权值,该映射关系保存在终端。
2)如果指示信息指示终端基于上下行信道互易性得到上行发送波束,则终端根据下行发送波束的编号(或者下行参考信号的指示信息等)确定上行发送波束的权值。
具体过程如下,终端根据下行发送波束的编号(或者下行参考信号的指示信息等)确定对应的下行接收波束,再基于信道互易性由下行接收波束确 定上行发送波束的权值。
需要说明的是,这里下行接收和上行发送可以用同一组波束赋形权值来生成指向同一方向(或者相近方向)的接收波束和发送波束。或者终端下行接收波束和上行发送波束有确定的对应关系,即给定了接收基站信号的下行接收波束之后,通过该对应关系就可以确定一个上行的发送波束,通过该发送波束可以将该终端的上行信号/信道/数据发送到基站。
与下行发送波束对应的下行接收波束可以在下行波束训练过程中得到(这个过程不一定要在收到指示信息之后才进行,可以在收到指示信息之前就已完成):
1)基站发送下行波束训练信号。基站共有 个候选的下行发送波束,每个下行波束对应一组波束赋形权值,第n个波束的发送波束赋形权值为
Figure PCTCN2018077259-appb-000018
其中K是波束赋形的天线单元数,可以小于基站的天线单元数。基站可以为每个候选的下行发送波束发射一个波束训练信号。例如对于
Figure PCTCN2018077259-appb-000019
个下行发送波束,基站可以发送
Figure PCTCN2018077259-appb-000020
个训练信号。这
Figure PCTCN2018077259-appb-000021
个训练信号之间可以TDM、FDM、CDM复用,或者各种复用方式的组合。例如,在以OFDM为基础的系统中,
Figure PCTCN2018077259-appb-000022
个训练信号可以占用
Figure PCTCN2018077259-appb-000023
个OFDM符号,每个训练信号占用1个OFDM符号,训练信号之间为TDM复用。也可以在一个OFDM符号中发射多个波束的训练信号,他们之间是FDM复用,或者CDM复用。
其中,每个波束的波束训练信号用该波束对应的波束赋形权值赋形之后发出。
其中,波束训练信号是周期性发送,或者非周期性发送,或者半持续性发送。
2)终端接收基站发送的下行波束训练信号,通过对波束训练信号的测量,选择下行发送波束对应的接收波束。
针对一个下行发送波束,终端确定对应的接收波束。终端的接收波束可以是从候选的接收波束中选择得到。终端共有
Figure PCTCN2018077259-appb-000024
个接收波束,每个接收波束对应一组波束赋形权值,第n个波束的接收波束赋形权值为
Figure PCTCN2018077259-appb-000025
Figure PCTCN2018077259-appb-000026
其中L是波束赋形的天线单元数,可以小于终端的天线单元 数。对于一个下行波束训练信号(或者其他的信号),终端可以分别尝试使用每个接收波束对其进行接收,选择接收信号功率最强的接收波束作为该下行发送波束的接收波束。
步骤604、基站接收终端用确定的上行发送波束发出的上行信号。
如果基站指示了终端基于上行参考信号确定上行发送波束,则基站采用基站指示的上行发送波束对应的上行接收波束接收终端的上行信号。这里的对应关系可以在上行波束训练过程中确定。
如果基站指示了终端基于信道互易性得到上行发送波束,则基站采用基站指示的下行发送波束对应的上行接收波束接收终端的上行信号。这里的对应关系可以是基于信道互易性的对应关系。
基于同一发明构思,本公开实施例中还提供了一种上行发送波束确定装置,由于该装置解决问题的原理与本公开实施例图4、图6中上行发送波束确定方法相似,因此该装置的实施可以参见方法的实施,重复之处不再敷述。
参见图7,图中示出了上行发送波束确定装置的结构,该装置700包括:
发送模块701,用于向终端发送上行发送波束指示信息;
其中,所述上行发送波束指示信息中包含波束类型指示信息,所述波束类型指示信息用于指示终端的上行发送波束是基于上行参考信号得到的,或者所述波束类型指示信息用于指示终端的上行发送波束是基于下行参考信号得到。
在本实施例中,可选地,如果所述基站指示所述终端的上行发送波束是基于上行参考信号得到,所述上行发送波束指示信息中包括上行发送波束的编号,或者上行参考信号的指示信息;或者
如果所述基站指示所述终端的上行发送波束是基于下行参考信号得到,所述上行发送波束指示信息中包括下行发送波束的编号,或者下行参考信号的指示信息,或者下行接收波束的指示信息。
在本实施例中,可选地,所述装置还包括:
第一确定模块,用于基于上行参考信号确定终端的上行发送波束,或基于上下行波束互易性确定终端的上行发送波束。
在本实施例中,可选地,所述确定模块包括:
接收单元,用于接收所述终端通过多个候选上行发送波束发送的上行参考信号;
第一确定单元,用于通过所述上行参考信号,确定最佳上行发送波束。
在本实施例中,可选地,每个候选上行发送波束的参考信号用该波束对应的波束赋形权值赋形之后发出。
在本实施例中,可选地,所述装置还包括:
第二确定模块,用于基于自身的测量结果确定波束类型指示信息,或者,基于自身的测量结果和所述终端上报的测量结果,确定波束类型指示信息。
在本实施例中,可选地,所述第二确定模块包括:
第一测量单元,用于测量所述终端发送的上行参考信号,得到每个上行参考信号的接收质量;
第二测量单元,用于测量所述终端发送的上行信号,得到所述上行信号的接收质量,其中所述上行信号由终端采用基于下行参考信号得到的上行发送波束发送;
第一选择单元,用于如果有至少一个上行参考信号的接收质量高于上行信号的接收质量,选择令终端采用基于上行参考信号得到上行发送波束,否则,选择令终端基于下行参考信号得到上行发送波束。
在本实施例中,可选地,所述第二确定模块包括:
第三测量单元,用于测量所述终端发送的上行参考信号,得到每个上行参考信号的接收质量;
第一接收单元,用于接收所述终端上报的下行参考信号的接收质量;
第二选择单元,用于如果有至少一个上行波束参考信号的接收质量高于终端上报的所有下行参考信号的接收质量,选择令终端采用基于上行参考信号得到上行发送波束;如果有至少一个终端上报的下行参考信号的接收质量高于所有上行参考信号的接收质量,选择令终端基于下行参考信号得到上行发送波束。
在本实施例中,可选地,所述装置还包括:
第一接收模块,用于接收所述终端用确定的上行发送波束发送的上行信号。
在本实施例中,可选地,所述第一接收模块包括:
第二接收单元,用于如果指示了所述终端基于上行参考信号得到上行发送波束,采用指示的上行发送波束对应的上行接收波束接收所述终端的上行信号;或者如果指示了所述终端基于下行参考信号得到上行发送波束,采用指示的下行发送波束对应的上行接收波束接收终端的上行信号。
基于同一发明构思,本公开实施例中还提供了一种上行发送波束确定装置,由于该装置解决问题的原理与本公开实施例图5、图6中上行发送波束确定方法相似,因此该装置的实施可以参见方法的实施,重复之处不再敷述。
参见图8,图中示出了一种上行发送波束确定装置的结构,该装置包括:
第二接收模块801,用于接收基站发送的上行发送波束指示信息;
第三确定模块802,用于根据上行发送波束指示信息确定上行发送波束;
其中,所述上行发送波束指示信息中包含波束类型指示信息,所述波束类型指示信息用于指示终端的上行发送波束是基于上行参考信号得到的,或者所述波束类型指示信息用于指示终端的上行发送波束是基于下行参考信号得到。
在本实施例中,可选地,如果所述基站指示所述终端的上行发送波束是基于上行参考信号得到,所述上行发送波束指示信息中包括上行发送波束的编号,或者上行参考信号的指示信息;或者
如果所述基站指示所述终端的上行发送波束是基于下行参考信号得到,上行发送波束指示信息中包括下行发送波束的编号,或者下行参考信号的指示信息,或者下行接收波束的指示信息。
在本实施例中,可选地,所述装置还包括:
第四确定模块,用于如果上行发送波束指示信息指示终端基于上行参考信号得到上行发送波束,根据上行发送波束的编号或者上行参考信号的指示信息,确定上行发送波束的权值。
在本实施例中,可选地,第四确定模块进一步,用于根据上行发送波束的编号和波束赋形权值之间的映射关系,确定上行发送波束的权值;或者
根据上行发送波束和波束赋形权值之间的映射关系,确定上行发送波束的权值。
在本实施例中,可选地,所述装置还包括:
第五确定模块,用于如果上行发送波束指示信息指示终端基于下行参考信号确定上行发送波束,根据下行发送波束的编号或者下行参考信号的指示信息,确定上行发送波束的权值。
在本实施例中,可选地,所述第五确定模块包括:
第二确定单元,用于根据下行发送波束的编号或者下行参考信号的指示信息,确定对应的下行接收波束;
第三确定单元,用于基于信道互易性由所述下行接收波束确定上行发送波束的权值。
本公开实施例还提供了一种基站,包括第一存储器、第一处理器及存储在第一存储器上并可在第一处理器上运行的计算机程序,所述第一处理器执行所述计算机程序时实现如上所述上行发送波束确定方法中的步骤。
参见图9,图中示出了基站的结构,该基站包括第一存储器、第一处理器及存储在第一存储器上并可在第一处理器上运行的计算机程序,所述第一处理器执行所述程序时实现以下步骤:向终端发送上行发送波束指示信息;其中,所述上行发送波束指示信息中包含波束类型指示信息,所述波束类型指示信息用于指示终端的上行发送波束是基于上行参考信号得到的,或者所述波束类型指示信息用于指示终端的上行发送波束是基于下行参考信号得到。
在图9中,总线架构(用第一总线900来代表),第一总线900可以包括任意数量的互联的总线和桥,第一总线900将包括由第一处理器904代表的一个或多个处理器和第一存储器905代表的存储器的各种电路链接在一起。第一总线900还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。第一总线接口903在第一总线900和第一收发机901之间提供接口。第一收发机901可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经第一处理器904处理的数据通过第一天线902在无线介质上进行传输,进一步,第一天线902还接收数据并将数据传送给第一处理器904。
第一处理器904负责管理第一总线900和通常的处理,还可以提供各种 功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而第一存储器905可以被用于存储第一处理器904在执行操作时所使用的数据。
可选地,第一处理器904可以是CPU、ASIC(Application Specific Integrated Circuit,特定用途集成电路)、FPGA(Field-Programmable Gate Array,现场可编程逻辑门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件)。
可选地,如果所述基站指示所述终端的上行发送波束是基于上行参考信号得到,所述上行发送波束指示信息中包括上行发送波束的编号,或者上行参考信号的指示信息;或者
如果所述基站指示所述终端的上行发送波束是基于下行参考信号得到,上行发送波束指示信息中包括下行发送波束的编号,或者下行参考信号的指示信息,或者下行接收波束的指示信息。
可选地,第一处理器还用于:基于上行参考信号确定终端的上行发送波束,或基于确定终端的上行发送波束。
可选地,第一处理器还用于:接收所述终端通过多个候选上行发送波束发送的上行参考信号;通过所述上行参考信号,确定最佳上行发送波束。
可选地,每个候选上行发送波束的参考信号用该波束对应的波束赋形权值赋形之后发出。
可选地,所述终端的上行参考信号在所述基站配置的资源上发送。
可选地,第一处理器还用于:基于自身的测量结果确定波束类型指示信息,或者,基于自身的测量结果和所述终端上报的测量结果,确定波束类型指示信息。
可选地,第一处理器还用于:测量所述终端发送的上行参考信号,得到每个上行参考信号的接收质量;测量所述终端采用信道互易性波束发送的上行信号,得到用信道互易性发送的上行参考信号的接收质量;如果有至少一个上行参考信号的接收质量高于用信道互易性发送的上行信号的接收质量,选择令终端采用基于上行参考信号得到上行发送波束,否则,选择令终端基于下行参考信号得到上行发送波束。
可选地,第一处理器还用于:测量所述终端发送的上行参考信号,得到 每个上行参考信号的接收质量;接收所述终端上报的下行参考信号的接收质量;如果有至少一个上行波束参考信号的接收质量高于终端上报的所有下行参考信号的接收质量,选择令终端采用基于上行参考信号得到上行发送波束;如果有至少一个终端上报的下行参考信号的接收质量高于所有上行参考信号的接收质量,选择令终端基于下行参考信号得到上行发送波束。
可选地,第一处理器还用于:接收所述终端用确定的上行发送波束发送的上行信号。
可选地,第一处理器还用于:如果指示了所述终端基于上行参考信号得到上行发送波束,采用所述基站指示的上行发送波束对应的上行接收波束接收所述终端的上行信号;或者如果指示了所述终端基于下行参考信号得到上行发送波束,采用指示的下行发送波束对应的上行接收波束接收终端的上行信号。
本公开实施例还提供了一种终端,包括第二存储器、第二处理器及存储在第二存储器上并可在第二处理器上运行的计算机程序,所述第二处理器执行所述计算机程序时实现如上所述上行发送波束确定方法中的步骤。
参见图10,示出了一种终端的结构,该终端包括第二存储器、第二处理器及存储在第二存储器上并可在第二处理器上运行的计算机程序,所述第二处理器执行所述程序时实现以下步骤:接收基站发送的上行发送波束指示信息;根据上行发送波束指示信息确定上行发送波束;其中,所述上行发送波束指示信息中包含波束类型指示信息,所述波束类型指示信息用于指示终端的上行发送波束是基于上行参考信号得到的,或者所述波束类型指示信息用于指示终端的上行发送波束是基于下行参考信号。
在图10中,总线架构(用第二总线1000来代表),第二总线1000可以包括任意数量的互联的总线和桥,第二总线1000将包括由通用第二处理器1001代表的一个或多个处理器和第二存储器1004代表的存储器的各种电路链接在一起。第二总线1000还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。第二总线接口1003在第二总线1000和第二收发机1002之间提供接口。第二收发机1002可以是一个元件,也可以是多个元件,比如多个 接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。例如:第二收发机1002从其他设备接收外部数据。第二收发机1002用于将第二处理器1001处理后的数据发送给其他设备。取决于计算系统的性质,还可以提供用户接口1005,例如小键盘、显示器、扬声器、麦克风、操纵杆。
第二处理器1001负责管理第二总线1000和通常的处理,如前述所述运行通用操作系统。而第二存储器1004可以被用于存储第二处理器1001在执行操作时所使用的数据。
可选地,第二处理器1001可以是CPU、ASIC、FPGA或CPLD。
可选地,如果所述基站指示所述终端的上行发送波束是基于上行参考信号得到,所述上行发送波束指示信息中包括上行发送波束的编号,或者上行参考信号的指示信息;或者如果所述基站指示所述终端的上行发送波束是基于下行参考信号得到,上行发送波束指示信息中包括下行发送波束的编号,或者下行参考信号的指示信息,或者下行接收波束的指示信息。
可选地,第二处理器1001还用于:如果上行发送波束指示信息指示终端基于上行参考信号得到上行发送波束,根据上行发送波束的编号或者上行参考信号的指示信息,确定上行发送波束的权值。
可选地,第二处理器1001还用于:如果上行参考信号的编号是在所有候选波束范围内进行,根据上行发送波束的编号和波束赋形权值之间的映射关系,确定上行发送波束的权值;或者如果上行参考信号的编号是在上行参考信号范围内进行,根据上行发送波束和波束赋形权值之间的映射关系,确定上行发送波束的权值。
可选地,第二处理器1001还用于:如果上行发送波束指示信息指示终端基于下行参考信号确定上行发送波束,根据下行发送波束的编号或者下行参考信号的指示信息,确定上行发送波束的权值。
可选地,第二处理器1001还用于:根据下行发送波束的编号或者下行参考信号的指示信息,确定对应的下行接收波束;基于信道互易性由所述下行接收波束确定上行发送波束的权值。
本公开实施例还提供了一种计算机可读存储介质,其上存储有计算机程序(指令),该程序(指令)被处理器执行时实现以下步骤:向终端发送上行 发送波束指示信息;其中,所述上行发送波束指示信息中包含波束类型指示信息,所述波束类型指示信息用于指示终端的上行发送波束是基于上行参考信号得到的,或者所述波束类型指示信息用于指示终端的上行发送波束是基于下行参考信号得到。
在本实施例中,可选地,该程序(指令)被处理器执行时实现以下步骤:
基于上行参考信号确定终端的上行发送波束,或基于确定终端的上行发送波束。
在本实施例中,可选地,该程序(指令)被处理器执行时实现以下步骤:
接收所述终端通过多个候选上行发送波束发送的上行参考信号;
通过所述上行参考信号,确定最佳上行发送波束。
在本实施例中,可选地,该程序(指令)被处理器执行时实现以下步骤:
基于自身的测量结果确定波束类型指示信息,或者,所述基站基于自身的测量结果和所述终端上报的测量结果,确定波束类型指示信息。
在本实施例中,可选地,该程序(指令)被处理器执行时实现以下步骤:
测量所述终端发送的上行参考信号,得到每个上行参考信号的接收质量;
测量所述终端采用信道互易性波束发送的上行信号,得到用信道互易性发送的上行参考信号的接收质量;
如果有至少一个上行参考信号的接收质量高于用信道互易性发送的上行信号的接收质量,选择令终端采用基于上行参考信号得到上行发送波束,否则,选择令终端基于下行参考信号得到上行发送波束。
在本实施例中,可选地,该程序(指令)被处理器执行时实现以下步骤:
测量所述终端发送的上行参考信号,得到每个上行参考信号的接收质量;
接收所述终端上报的下行参考信号的接收质量;
如果有至少一个上行波束参考信号的接收质量高于终端上报的所有下行参考信号的接收质量,选择令终端采用基于上行参考信号得到上行发送波束;
如果有至少一个终端上报的下行参考信号的接收质量高于所有上行参考信号的接收质量,选择令终端基于下行参考信号得到上行发送波束。
在本实施例中,可选地,该程序(指令)被处理器执行时实现以下步骤:
如果基站指示了所述终端基于上行参考信号得到上行发送波束,采用所 述基站指示的上行发送波束对应的上行接收波束接收所述终端的上行信号;或者
如果基站指示了所述终端基于下行参考信号得到上行发送波束,采用所述基站指示的下行发送波束对应的上行接收波束接收终端的上行信号。
本公开实施例还提供了一种计算机可读存储介质,其上存储有计算机程序(指令),该程序(指令)被处理器执行时实现以下步骤:接收基站发送的上行发送波束指示信息;根据上行发送波束指示信息确定上行发送波束;其中,所述上行发送波束指示信息中包含波束类型指示信息,所述波束类型指示信息用于指示终端的上行发送波束是基于上行参考信号得到的,或者所述波束类型指示信息用于指示终端的上行发送波束是基于下行参考信号。
在本实施例中,可选地,该程序(指令)被处理器执行时实现以下步骤:
如果上行发送波束指示信息指示终端基于上行参考信号得到上行发送波束,根据上行发送波束的编号或者上行参考信号的指示信息,确定上行发送波束的权值。
在本实施例中,可选地,该程序(指令)被处理器执行时实现以下步骤:
如果上行参考信号的编号是在所有候选波束范围内进行,根据上行发送波束的编号和波束赋形权值之间的映射关系,确定上行发送波束的权值;或者
如果上行参考信号的编号是在上行参考信号范围内进行,根据上行发送波束和波束赋形权值之间的映射关系,确定上行发送波束的权值。
在本实施例中,可选地,该程序(指令)被处理器执行时实现以下步骤:
如果上行发送波束指示信息指示终端基于下行参考信号确定上行发送波束,根据下行发送波束的编号或者下行参考信号的指示信息,确定上行发送波束的权值。
在本实施例中,可选地,该程序(指令)被处理器执行时实现以下步骤:
根据下行发送波束的编号或者下行参考信号的指示信息,确定对应的下行接收波束;基于信道互易性由所述下行接收波束确定上行发送波束的权值。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本公开的至少一个实施例中。因 此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
在本公开的各种实施例中,应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常可互换使用。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请所提供的实施例中,应理解,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
在本申请所提供的几个实施例中,应该理解到,所揭露方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络侧设备等)执行本公开各个实施例所述收发方法的部分步骤。而前述的存储介质包 括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以做出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (36)

  1. 一种上行发送波束确定方法,包括:
    基站向终端发送上行发送波束指示信息;
    其中,所述上行发送波束指示信息中包含波束类型指示信息,所述波束类型指示信息用于指示终端的上行发送波束是基于上行参考信号得到的,或者所述波束类型指示信息用于指示终端的上行发送波束是基于下行参考信号得到。
  2. 根据权利要求1所述的方法,其中,
    如果所述基站指示所述终端的上行发送波束是基于上行参考信号得到,所述上行发送波束指示信息中包括上行发送波束的编号,或者上行参考信号的指示信息;或者
    如果所述基站指示所述终端的上行发送波束是基于下行参考信号得到,所述上行发送波束指示信息中包括下行发送波束的编号,或者下行参考信号的指示信息,或者下行接收波束的指示信息。
  3. 根据权利要求1所述的方法,其中,在基站向终端发送上行发送波束指示信息之前,所述方法还包括:
    所述基站基于上行参考信号确定终端的上行发送波束,或所述基站基于上下行波束互易性确定终端的上行发送波束。
  4. 根据权利要求3所述的方法,其中,所述基站基于上行参考信号确定得到所述终端的上行发送波束,包括:
    所述基站接收所述终端通过多个候选上行发送波束发送的上行参考信号;
    所述基站通过所述上行参考信号,确定最佳上行发送波束。
  5. 根据权利要求4所述的方法,其中,每个候选上行发送波束的上行参考信号用该候选上行发送波束对应的波束赋形权值赋形之后发出。
  6. 根据权利要求1所述的方法,其中,在基站向终端发送上行发送波束指示信息之前,所述方法还包括:
    所述基站基于自身的测量结果确定波束类型指示信息,或者,所述基站基于自身的测量结果和所述终端上报的测量结果,确定波束类型指示信息。
  7. 根据权利要求6所述的方法,其中,所述基站基于自身的测量结果确定波束类型指示信息,包括:
    所述基站测量所述终端发送的上行参考信号,得到每个上行参考信号的接收质量;
    所述基站测量所述终端发送的上行信号,得到所述上行信号的接收质量,其中所述上行信号由终端采用基于下行参考信号得到的上行发送波束发送;
    如果有至少一个上行参考信号的接收质量高于所述上行信号的接收质量,所述基站选择令终端采用基于上行参考信号得到上行发送波束,否则,所述基站选择令终端基于下行参考信号得到上行发送波束。
  8. 根据权利要求6所述的方法,其中,所述基站基于自身的测量结果和所述终端上报的测量结果,确定波束类型指示信息,包括:
    所述基站测量所述终端发送的上行参考信号,得到每个上行参考信号的接收质量;
    所述基站接收所述终端上报的下行参考信号的接收质量;
    如果有至少一个上行参考信号的接收质量高于终端上报的所有下行参考信号的接收质量,所述基站选择令终端采用基于上行参考信号得到上行发送波束;
    如果有至少一个终端上报的下行参考信号的接收质量高于所有上行参考信号的接收质量,所述基站选择令终端基于下行参考信号得到上行发送波束。
  9. 根据权利要求2所述的方法,还包括:
    所述基站接收所述终端用确定的上行发送波束发送的上行信号。
  10. 根据权利要求9所述的方法,其中,所述基站接收所述终端用确定的上行发送波束发送的上行信号,包括:
    如果所述基站指示了所述终端基于上行参考信号得到上行发送波束,所述基站采用所述基站指示的上行发送波束对应的上行接收波束接收所述终端的上行信号;或者
    如果所述基站指示了所述终端基于下行参考信号得到上行发送波束,所述基站采用所述基站指示的下行发送波束对应的上行接收波束接收终端的上行信号。
  11. 一种上行发送波束确定方法,包括:
    终端接收基站发送的上行发送波束指示信息;
    所述终端根据上行发送波束指示信息确定上行发送波束;
    其中,所述上行发送波束指示信息中包含波束类型指示信息,所述波束类型指示信息用于指示终端的上行发送波束是基于上行参考信号得到的,或者所述波束类型指示信息用于指示终端的上行发送波束是基于下行参考信号得到。
  12. 根据权利要求11所述的方法,其中,
    如果所述基站指示所述终端的上行发送波束是基于上行参考信号得到,所述上行发送波束指示信息中包括上行发送波束的编号,或者上行参考信号的指示信息;或者
    如果所述基站指示所述终端的上行发送波束是基于下行参考信号得到,上行发送波束指示信息中包括下行发送波束的编号,或者下行参考信号的指示信息,或者下行接收波束的指示信息。
  13. 根据权利要求12所述的方法,还包括:
    如果上行发送波束指示信息指示终端基于上行参考信号得到上行发送波束,则终端根据上行发送波束的编号或者上行参考信号的指示信息,确定上行发送波束的权值。
  14. 根据权利要求13所述的方法,其中,所述终端根据上行发送波束的编号,确定上行发送波束的权值,包括:
    所述终端根据上行发送波束的编号和波束赋形权值之间的映射关系,确定上行发送波束的权值。
  15. 根据权利要求11所述的方法,还包括:
    如果上行发送波束指示信息指示终端基于下行参考信号确定上行发送波束,所述终端根据下行发送波束的编号或者下行参考信号的指示信息,确定上行发送波束的权值。
  16. 根据权利要求15所述的方法,其中,所述终端根据下行发送波束的编号或者下行参考信号的指示信息,确定上行发送波束的权值,包括:
    所述终端根据下行发送波束的编号或者下行参考信号的指示信息,确定 对应的下行接收波束;
    基于信道互易性由所述下行接收波束确定上行发送波束的权值。
  17. 一种上行发送波束确定装置,包括:
    发送模块,用于向终端发送上行发送波束指示信息;
    其中,所述上行发送波束指示信息中包含波束类型指示信息,所述波束类型指示信息用于指示终端的上行发送波束是基于上行参考信号得到的,或者所述波束类型指示信息用于指示终端的上行发送波束是基于下行参考信号得到。
  18. 根据权利要求17所述的装置,其中,
    如果基站指示所述终端的上行发送波束是基于上行参考信号得到,所述上行发送波束指示信息中包括上行发送波束的编号,或者上行参考信号的指示信息;或者
    如果基站指示所述终端的上行发送波束是基于下行参考信号得到,所述上行发送波束指示信息中包括下行发送波束的编号,或者下行参考信号的指示信息,或者下行接收波束的指示信息。
  19. 根据权利要求17所述的装置,还包括:
    第一确定模块,用于基于上行参考信号确定终端的上行发送波束,或基于上下行波束互易性确定终端的上行发送波束。
  20. 根据权利要求19所述的装置,其中,所述确定模块包括:
    接收单元,用于接收所述终端通过多个候选上行发送波束发送的上行参考信号;
    第一确定单元,用于通过所述上行参考信号,确定最佳上行发送波束。
  21. 根据权利要求20所述的装置,其中,每个候选上行发送波束的参考信号用该波束对应的波束赋形权值赋形之后发出。
  22. 根据权利要求17所述的装置,其中,所述装置还包括:
    第二确定模块,用于基于自身的测量结果确定波束类型指示信息,或者,基于自身的测量结果和所述终端上报的测量结果,确定波束类型指示信息。
  23. 根据权利要求22所述的装置,其中,所述第二确定模块包括:
    第一测量单元,用于测量所述终端发送的上行参考信号,得到每个上行 参考信号的接收质量;
    第二测量单元,用于测量所述终端发送的上行信号,得到所述上行信号的接收质量,其中所述上行信号由终端采用基于下行参考信号得到的上行发送波束发送;
    第一选择单元,用于如果有至少一个上行参考信号的接收质量高于上行信号的接收质量,选择令终端采用基于上行参考信号得到上行发送波束,否则,选择令终端基于下行参考信号得到上行发送波束。
  24. 根据权利要求22所述的装置,其中,所述第二确定模块包括:
    第三测量单元,用于测量所述终端发送的上行参考信号,得到每个上行参考信号的接收质量;
    第一接收单元,用于接收所述终端上报的下行参考信号的接收质量;
    第二选择单元,用于如果有至少一个上行波束参考信号的接收质量高于终端上报的所有下行参考信号的接收质量,选择令终端采用基于上行参考信号得到上行发送波束;如果有至少一个终端上报的下行参考信号的接收质量高于所有上行参考信号的接收质量,选择令终端基于下行参考信号得到上行发送波束。
  25. 根据权利要求18所述的装置,还包括:
    第一接收模块,用于接收所述终端用确定的上行发送波束发送的上行信号。
  26. 根据权利要求25所述的装置,其中,所述第一接收模块包括:
    第二接收单元,用于如果指示了所述终端基于上行参考信号得到上行发送波束,采用指示的上行发送波束对应的上行接收波束接收所述终端的上行信号;或者
    如果指示了所述终端基于下行参考信号得到上行发送波束,采用指示的下行发送波束对应的上行接收波束接收终端的上行信号。
  27. 一种上行发送波束确定装置,包括:
    第二接收模块,用于接收基站发送的上行发送波束指示信息;
    第三确定模块,用于根据上行发送波束指示信息确定上行发送波束;
    其中,所述上行发送波束指示信息中包含波束类型指示信息,所述波束 类型指示信息用于指示终端的上行发送波束是基于上行参考信号得到的,或者所述波束类型指示信息用于指示终端的上行发送波束是基于下行参考信号得到。
  28. 根据权利要求27所述的装置,其中,
    如果所述基站指示所述终端的上行发送波束是基于上行参考信号得到,所述上行发送波束指示信息中包括上行发送波束的编号,或者上行参考信号的指示信息;或者
    如果所述基站指示所述终端的上行发送波束是基于下行参考信号得到,上行发送波束指示信息中包括下行发送波束的编号,或者下行参考信号的指示信息,或者下行接收波束的指示信息。
  29. 根据权利要求27所述的装置,还包括:
    第四确定模块,用于如果上行发送波束指示信息指示终端基于上行参考信号得到上行发送波束,根据上行发送波束的编号或者上行参考信号的指示信息,确定上行发送波束的权值。
  30. 根据权利要求29所述的装置,其中,
    第四确定模块进一步,用于根据上行发送波束的编号和波束赋形权值之间的映射关系,确定上行发送波束的权值。
  31. 根据权利要求27所述的装置,还包括:
    第五确定模块,用于如果上行发送波束指示信息指示终端基于下行参考信号确定上行发送波束,根据下行发送波束的编号或者下行参考信号的指示信息,确定上行发送波束的权值。
  32. 根据权利要求31所述的装置,其中,所述第五确定模块包括:
    第二确定单元,用于根据下行发送波束的编号或者下行参考信号的指示信息,确定对应的下行接收波束;
    第三确定单元,用于基于信道互易性由所述下行接收波束确定上行发送波束的权值。
  33. 一种基站,包括第一存储器、第一处理器及存储在第一存储器上并可在第一处理器上运行的计算机程序,其特征在于,所述第一处理器执行所述计算机程序时实现如权利要求1~10中任一项所述上行发送波束确定方法中 的步骤。
  34. 一种终端,包括第二存储器、第二处理器及存储在第二存储器上并可在第二处理器上运行的计算机程序,其特征在于,所述第二处理器执行所述计算机程序时实现如权利要求11~16中任一项所述上行发送波束确定方法中的步骤。
  35. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述程序被处理器执行时实现如权利要求1~10中任一项所述上行发送波束确定方法中的步骤。
  36. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述程序被处理器执行时实现如权利要求11~16中任一项所述上行发送波束确定方法中的步骤。
PCT/CN2018/077259 2017-03-17 2018-02-26 上行发送波束确定方法和装置 WO2018166345A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019551400A JP7273719B2 (ja) 2017-03-17 2018-02-26 アップリンク送信ビーム特定方法および装置
KR1020197030654A KR102329571B1 (ko) 2017-03-17 2018-02-26 업링크 송신빔 확정 방법 및 장치
US16/494,647 US11510203B2 (en) 2017-03-17 2018-02-26 Method and apparatus for determining uplink transmission beam
EP18768465.9A EP3585116A4 (en) 2017-03-17 2018-02-26 UPLINK TRANSMISSION BEAM DETERMINATION METHOD AND DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710161447.0 2017-03-17
CN201710161447.0A CN108633006B (zh) 2017-03-17 2017-03-17 一种上行发送波束确定方法和装置

Publications (1)

Publication Number Publication Date
WO2018166345A1 true WO2018166345A1 (zh) 2018-09-20

Family

ID=63523387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077259 WO2018166345A1 (zh) 2017-03-17 2018-02-26 上行发送波束确定方法和装置

Country Status (6)

Country Link
US (1) US11510203B2 (zh)
EP (1) EP3585116A4 (zh)
JP (1) JP7273719B2 (zh)
KR (1) KR102329571B1 (zh)
CN (1) CN108633006B (zh)
WO (1) WO2018166345A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113412587A (zh) * 2019-02-14 2021-09-17 索尼集团公司 建立波束互易性的方法、相关无线装置以及相关网络节点
JP2022506127A (ja) * 2018-11-01 2022-01-17 ベイジン・ユニソック・コミュニケーションズ・テクノロジー・カンパニー・リミテッド アンテナパネル決定方法、ユーザ端末、およびコンピュータ可読記憶媒体

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102373474B1 (ko) * 2017-03-23 2022-03-11 삼성전자주식회사 무선 통신 시스템에서 데이터를 전송하기 위한 장치 및 방법
US11812449B2 (en) * 2018-08-10 2023-11-07 Qualcomm Incorporated Active beam management, configuration, and capability signaling
CN111586830B (zh) * 2019-02-15 2021-09-14 成都华为技术有限公司 一种定位方法和通信装置
CN111212478B (zh) * 2019-12-30 2022-12-20 达闼机器人股份有限公司 确定通信资源的方法、装置、存储介质及电子设备
CN113225815B (zh) * 2020-02-04 2023-04-07 维沃移动通信有限公司 一种确定波束信息的方法、终端及网络侧设备
CN115211175B (zh) * 2020-03-13 2023-10-20 华为技术有限公司 用于上行传输的方法和装置
CN113748617B (zh) * 2020-03-27 2024-01-30 北京小米移动软件有限公司 波束确定方法、装置和通信设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101686110A (zh) * 2008-09-26 2010-03-31 大唐移动通信设备有限公司 一种多输入多输出系统、及其数据传输的方法及装置
CN102754476A (zh) * 2010-04-06 2012-10-24 上海贝尔股份有限公司 Pusch的上行传输方法、和系统
CN103220024A (zh) * 2013-04-18 2013-07-24 电子科技大学 一种多用户配对虚拟mimo系统的波束赋形算法
CN105940699A (zh) * 2014-02-07 2016-09-14 株式会社Ntt都科摩 用户装置、基站以及通信方法
WO2017214969A1 (en) * 2016-06-17 2017-12-21 Nokia Technologies Oy Enhanced uplink beam selection for massive mimo system

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100046338A (ko) * 2008-10-27 2010-05-07 삼성전자주식회사 이동통신 시스템의 공조 빔 형성 장치 및 방법
KR101800221B1 (ko) 2011-08-11 2017-11-22 삼성전자주식회사 무선통신 시스템에서 빔 추적 방법 및 장치
WO2013058612A1 (en) * 2011-10-19 2013-04-25 Samsung Electronics Co., Ltd. Uplink control method and apparatus in wireless communication system
US9439174B2 (en) * 2012-03-27 2016-09-06 Samsung Electronics Co., Ltd. Method and apparatus for transmitting beam information in wireless communication system
US9225478B2 (en) 2012-07-02 2015-12-29 Intel Corporation Supporting measurments and feedback for 3D MIMO with data transmission optimization
KR101995266B1 (ko) * 2012-08-17 2019-07-02 삼성전자 주식회사 빔포밍을 이용한 시스템에서 시스템 액세스 방법 및 장치
CN104734759B (zh) 2013-12-20 2019-12-03 中兴通讯股份有限公司 Mimo波束赋形通信系统中波束识别方法、相关设备及系统
JP2015164281A (ja) 2014-01-31 2015-09-10 株式会社Nttドコモ ユーザ装置、基地局、及び通信方法
KR102309726B1 (ko) * 2014-07-10 2021-10-07 삼성전자 주식회사 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법 및 시스템
EP3445124A4 (en) * 2016-04-15 2019-11-06 Alcatel Lucent BASIC STATION PROCEDURE, USER DEVICE, BASIC STATION AND USER DEVICE METHOD
WO2018012887A1 (ko) * 2016-07-13 2018-01-18 엘지전자 주식회사 무선 통신 시스템에서 다중 빔을 이용한 신호 송신 방법 및 이를 위한 장치
CN106027181B (zh) * 2016-07-15 2019-09-13 北京邮电大学 一种基于认知无线电技术的信道测量和反馈方法
KR102616419B1 (ko) * 2016-10-12 2023-12-21 삼성전자주식회사 무선 통신 시스템에서 안테나 구성에 기반한 빔 탐색 장치 및 방법
CN108024365B (zh) * 2016-11-03 2024-03-15 华为技术有限公司 一种信息传输方法及设备
US10601621B2 (en) * 2017-01-06 2020-03-24 Sharp Kabushiki Kaisha User equipments, base stations and methods
US10433312B2 (en) * 2017-02-05 2019-10-01 Lg Electronics Inc. Method of performing uplink transmission in wireless communication system and apparatus therefor
CN111164906B (zh) * 2017-10-02 2022-10-18 联想(新加坡)私人有限公司 上行链路功率控制

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101686110A (zh) * 2008-09-26 2010-03-31 大唐移动通信设备有限公司 一种多输入多输出系统、及其数据传输的方法及装置
CN102754476A (zh) * 2010-04-06 2012-10-24 上海贝尔股份有限公司 Pusch的上行传输方法、和系统
CN103220024A (zh) * 2013-04-18 2013-07-24 电子科技大学 一种多用户配对虚拟mimo系统的波束赋形算法
CN105940699A (zh) * 2014-02-07 2016-09-14 株式会社Ntt都科摩 用户装置、基站以及通信方法
WO2017214969A1 (en) * 2016-06-17 2017-12-21 Nokia Technologies Oy Enhanced uplink beam selection for massive mimo system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3585116A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022506127A (ja) * 2018-11-01 2022-01-17 ベイジン・ユニソック・コミュニケーションズ・テクノロジー・カンパニー・リミテッド アンテナパネル決定方法、ユーザ端末、およびコンピュータ可読記憶媒体
JP7230193B2 (ja) 2018-11-01 2023-02-28 ベイジン・ユニソック・コミュニケーションズ・テクノロジー・カンパニー・リミテッド アンテナパネル決定方法、ユーザ端末、およびコンピュータ可読記憶媒体
CN113412587A (zh) * 2019-02-14 2021-09-17 索尼集团公司 建立波束互易性的方法、相关无线装置以及相关网络节点

Also Published As

Publication number Publication date
US20210120536A1 (en) 2021-04-22
EP3585116A1 (en) 2019-12-25
JP2020512748A (ja) 2020-04-23
CN108633006A (zh) 2018-10-09
US11510203B2 (en) 2022-11-22
KR102329571B1 (ko) 2021-11-22
CN108633006B (zh) 2021-03-19
EP3585116A4 (en) 2020-02-26
JP7273719B2 (ja) 2023-05-15
KR20190132427A (ko) 2019-11-27

Similar Documents

Publication Publication Date Title
WO2018166345A1 (zh) 上行发送波束确定方法和装置
CN108631831B (zh) 信息的传输方法和设备
JP7258123B2 (ja) データ伝送方法、端末及びネットワーク機器
WO2018059154A1 (zh) 一种波束处理方法、基站及移动终端
US11843554B2 (en) User equipment and transmission and reception point
TWI732261B (zh) 資料傳輸方法、終端及網路設備
WO2020034997A1 (zh) 信号传输方法、装置、终端及网络侧设备
JP6972162B2 (ja) 機器ビーム相反性特定方法、装置および電子機器
US11664876B2 (en) Method and device for training downlink beams
WO2018028291A1 (zh) 一种波束赋形训练方法、终端和基站
WO2018059003A1 (zh) 一种波束训练方法、终端及基站
US11044002B2 (en) Beam control method, base station and user equipment
US11985654B2 (en) Data transmission method, terminal, and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768465

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019551400

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018768465

Country of ref document: EP

Effective date: 20190920

ENP Entry into the national phase

Ref document number: 20197030654

Country of ref document: KR

Kind code of ref document: A