WO2018137321A1 - 一种用于计量二氧化碳流量的计量装置及计量方法 - Google Patents

一种用于计量二氧化碳流量的计量装置及计量方法 Download PDF

Info

Publication number
WO2018137321A1
WO2018137321A1 PCT/CN2017/094023 CN2017094023W WO2018137321A1 WO 2018137321 A1 WO2018137321 A1 WO 2018137321A1 CN 2017094023 W CN2017094023 W CN 2017094023W WO 2018137321 A1 WO2018137321 A1 WO 2018137321A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
piston rod
upper cover
built
check valve
Prior art date
Application number
PCT/CN2017/094023
Other languages
English (en)
French (fr)
Inventor
相明华
张军
张慧江
Original Assignee
绍兴市华创聚氨酯有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 绍兴市华创聚氨酯有限公司 filed Critical 绍兴市华创聚氨酯有限公司
Priority to US15/698,716 priority Critical patent/US10197426B2/en
Publication of WO2018137321A1 publication Critical patent/WO2018137321A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3442Mixing, kneading or conveying the foamable material
    • B29C44/3446Feeding the blowing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/60Measuring, controlling or regulating

Definitions

  • the invention belongs to the technical field of preparation of polyurethane foam materials, and in particular relates to a metering device and a measuring method for measuring carbon dioxide flow rate.
  • Polyurethane is a high molecular polymer produced by copolymerization of isocyanate and polyol.
  • a foaming machine also known as a foam generator, is a device that can make a certain concentration of chemical raw materials into a foam and condense into a solid.
  • the foaming machine is the core component of the polyurethane foam processing equipment.
  • the foaming machine uniformly mixes two different chemical raw materials (isocyanate and polyol) in their respective proportions, and ejects them at high pressure.
  • the mixed raw materials undergo intense chemistry after encountering air.
  • the reaction produces a large amount of foam so that its volume rapidly increases, and over time, the mixed raw material exposed to the air condenses into a solid (polyurethane foam) with a large amount of foam.
  • Polyurethane foam has high strength, good impact resistance and sound insulation. Polyurethane foam has been widely used in many fields, such as refrigerator freezer, furniture manufacturing, wall insulation and so on.
  • the existing polyurethane foaming agent adopts HCFC-141b, but the ODP (ozone depletion potential) of HCFC-141b is ⁇ 0, which is a transitional substitute product.
  • ODP ozone depletion potential
  • the comprehensive ban period of developed countries is 2020.
  • the final phase-out time for developing countries is 2040.
  • the call for accelerating the phase-out of HCFC-based substances is getting higher and higher, and the disabling time of HCFC-141b is greatly advanced. Therefore, it is necessary to find a green, environmentally friendly and economical foaming agent to replace HCFC-141b.
  • the present invention mainly solves the technical problems existing in the prior art described above, and provides a metering device and a measuring method for measuring carbon dioxide flow rate.
  • a metering device for measuring carbon dioxide flow comprising a horizontal plate, a metering pump and a mounting plate, the horizontal plate is provided with a scale,
  • the slide plate is provided with a slider, the slider is provided with a pointer, the mounting plate is provided with a plurality of bolt holes, the metering pump is connected to the mounting plate by bolts, and one end of the metering pump is connected with the slider
  • the metering pump comprises a cylinder block, an upper cover, a piston rod, a cylinder sleeve and a built-in check valve, wherein the cylinder body is provided with a receiving cavity, the cylinder sleeve is disposed in the receiving cavity, and the upper cover passes through the inner hexagon
  • the bolt is connected to the cylinder body, and the upper cover is connected with the upper cover interface, the upper cover interface is embedded in the cylinder body, and the bottom end of the upper cover interface is in contact with the top end of the cylinder cover
  • the carbon dioxide discharge hole is communicated with the No. 1 discharge pipe, and the bottom of the upper cover is provided with an annular groove, and the top of the upper cover
  • the upper threaded hole is provided with an upper threaded nut, the upper cover nut is provided with a hole, and the upper cover nut is connected with a nut interface, the nut interface
  • the outer wall of the outer cover is provided with an external thread, the inner threaded hole on the upper cover is matched with the nut interface, the nut interface is spirally inserted into the inner threaded hole, and the two ends of the piston rod are respectively provided with threads, and the piston rod Divided into the upper part of the piston rod and the lower part of the piston rod, the upper part of the piston rod and the lower part of the piston rod are all cylinders, and the upper part of the piston rod has a diameter slightly larger than the diameter of the lower part of the piston rod, and the piston rod is disposed in the cylinder sleeve, and the upper part of the piston rod is in turn Pass
  • the built-in check valve comprises a built-in one-way valve body, a valve core and a built-in one-way valve seat, wherein the built-in check valve seat is screwed together with the built-in one-way valve body, and the valve core is arranged inside In the one-way valve body, a check ball is disposed between the built-in check valve seat and the valve core, and a spring is disposed between the valve core and the built-in check valve body.
  • a second discharge pipe is connected between the two built-in check valves, and the second discharge pipe is connected to the lower pump cavity.
  • the outer wall of the cylinder body is provided with a waterway inlet and a waterway outlet, and the cylinder body is provided with three waterways, the waterway and the waterway are not connected to each other, and are in the annular groove at the bottom of the upper cover. Connected.
  • the outer wall of the cylinder body is further provided with a plurality of process holes, and the process holes are provided with a plug.
  • the method of measuring carbon dioxide flow is:
  • Step (1) pulling the piston rod to move the piston rod upward, forming a vacuum in the lower pump chamber, opening the built-in check valve at the carbon dioxide inlet, closing the built-in check valve at the carbon dioxide outlet, and discharging the liquid carbon dioxide through the second discharge
  • the tube flows into the lower pump chamber;
  • Step (2) pulling the piston rod to move the piston rod downward, the built-in check valve at the carbon dioxide inlet is closed, the built-in check valve at the carbon dioxide outlet is opened, and the liquid carbon dioxide in the lower pump chamber flows out from the carbon dioxide outlet due to
  • the carbon dioxide outlet is connected with the first discharge pipe, and the liquid carbon dioxide in the lower pump chamber passes through the first discharge pipe and the carbon dioxide discharge hole, and flows into the upper pump cavity;
  • Step (3) pulling the piston rod to move the piston rod upward, forming a vacuum in the lower pump chamber, opening the built-in check valve at the carbon dioxide inlet, closing the built-in check valve at the carbon dioxide outlet, and discharging the liquid carbon dioxide through the second discharge
  • the tube flows into the lower pump chamber, and at the same time, the liquid carbon dioxide in the upper pump chamber sequentially passes through the carbon dioxide discharge hole and the first discharge tube, and flows out from the carbon dioxide outlet;
  • Step (4) pulling the piston rod to move the piston rod downward, the built-in check valve at the carbon dioxide inlet is closed, the built-in check valve at the carbon dioxide outlet is opened, and the liquid carbon dioxide in the lower pump chamber flows out from the carbon dioxide outlet, part of The liquid carbon dioxide in the lower pumping chamber passes through the No. 1 discharge pipe and the carbon dioxide discharge hole, and flows into the upper pump chamber;
  • step (5) the piston rod is repeatedly pulled to repeatedly move the piston rod up and down to quantitatively transport liquid carbon dioxide.
  • the polyurethane foaming machine corresponding to the above metering device comprises an isocyanate branch, a combined polyether branch, a carbon dioxide branch and a premixed spray gun, the isocyanate branch is routed to an isocyanate storage tank, an isocyanate equipment tank, a feed primary pump, and a secondary pump and an isocyanate delivery tube, the combined polyether branching combined polyether storage tank, a combined polyether equipment tank, a feed primary pump, a feed secondary pump and a combined polyether delivery pipe,
  • the carbon dioxide branch is composed of a carbon dioxide storage tank, a carbon dioxide equipment tank, a booster pump, a metering device and a carbon dioxide conveying pipe.
  • the carbon dioxide conveying pipe is connected with the combined polyether conveying pipe to carbon dioxide Dissolved in a combined polyether to form a mixture, the isocyanate and mixture are combined in a premixed spray gun through a transfer tube, the feed secondary pump and metering device being controlled by the same drive.
  • the isocyanate equipment tank and the combined polyether equipment tank are respectively provided with heating means, and a pressure switch is respectively arranged at the inlet of the isocyanate equipment tank and the inlet of the combined polyether equipment tank.
  • the carbon dioxide branch further comprises a pressure reducing valve, a one-way valve and two solenoid valves, the pressure reducing valve and one of the solenoid valves being disposed in sequence between the carbon dioxide equipment tank and the booster pump, the other A solenoid valve is disposed between the metering device and the carbon dioxide equipment tank, the one-way valve being disposed at a rear end of the metering device.
  • the carbon dioxide equipment tank is provided with a compressor, a cooler and a throttle valve, respectively.
  • a pressure sensor is connected to the booster pump.
  • a pressure control valve and a pressure sensor are coupled between the combined polyether equipment tank and the premixed spray gun.
  • the method for producing a polyurethane foam using the above polyurethane foaming machine is:
  • Step (1) a large amount of liquid carbon dioxide and a small amount of gaseous carbon dioxide are stored in the carbon dioxide storage tank, and the carbon dioxide is decompressed through a pressure reducing valve to form carbon dioxide gas, and the carbon dioxide gas is sent to the carbon dioxide equipment tank through a booster pump;
  • step (2) the compressor and the cooler on the carbon dioxide equipment tank start to work, and the carbon dioxide gas is pressurized and cooled continuously to liquefy.
  • the pressure sensor controls the booster pump to stop working;
  • step (3) the liquid carbon dioxide in the carbon dioxide equipment tank is transported to the combined polyether transfer pipe by a metering pump at a fixed ratio, and the carbon dioxide is dissolved in the combined polyether to form a mixture, and the metering pump starts working while the feed secondary pump is also Starting work, the isocyanate in the isocyanate storage tank is sent to the isocyanate equipment tank through the feed primary pump and the feed secondary pump, and the combined polyether in the combined polyether storage tank is fed through the feed primary pump and the feed secondary pump Transfer to the combined polyether equipment tank, the metering pump and the feed secondary pump are controlled by the same drive, and the isocyanate, combined polyether and carbon dioxide are simultaneously delivered to the equipment tank;
  • step (4) the heating device on the isocyanate equipment tank and the combined polyether equipment tank is turned on, and the isocyanate and the combined polyether containing carbon dioxide are separately heated, and the isocyanate and the combined polyether containing carbon dioxide are respectively thinned to make isocyanate and The combined polyether containing carbon dioxide can be better mixed; in step (5), the isocyanate and the combined polyether containing carbon dioxide are respectively delivered to the premixed spray gun at a fixed ratio, and uniformly mixed and sprayed in a mist form, and after a period of time, the curing is completed. A polyurethane foam is formed.
  • the invention has the beneficial effects: 1.
  • the metering device of the invention has the advantages of simple structure, small volume and precise control of transportation
  • the amount of liquid carbon dioxide at the same time by connecting the slider at one end of the metering pump, the slider can be moved on the horizontal plate, thereby changing the stroke of the piston rod up and down, changing the flow rate of carbon dioxide; 2.
  • the cylinder body of the metering pump of the invention There is a water channel, which can pass the cold medium into the water channel to keep the temperature of the carbon dioxide constant; 3.
  • the invention uses the same driver to control the metering device and the feeding secondary pump to simultaneously output the isocyanate, the combined polyether and the liquid carbon dioxide to prevent The shortage of certain raw materials affects the quality of the polyurethane foam; 4.
  • the invention liquefies carbon dioxide by providing a carbon dioxide equipment tank, so that the carbon dioxide is always kept in a liquid state during the process of metering, conveying and mixing, and the liquid carbon dioxide is easily dissolved in the combined polyether.
  • the mixing ratio of liquid carbon dioxide and combined polyether is not affected by external environmental factors, preventing the external temperature from being too low or too high, affecting the quality of the polyurethane foam; 5. Since the isocyanate and the combined polyether are viscous liquids, by setting multiple Feed pump for more efficient delivery of isocyanates or combination polyethers; 6.
  • the invention can construct polyurethane foam on site or pre-form polyurethane foam, and the construction site is not limited; 7.
  • the invention adopts carbon dioxide instead of HCFC-141b, and the carbon dioxide is low in price, non-toxic and non-flammable, and reduces the production of polyurethane foam by enterprises. Production costs, while using carbon dioxide, are more environmentally friendly, have a wide range of sources, do not consume ozone, and improve the greenhouse effect.
  • Figure 1 is a schematic view showing the structure of a polyurethane foaming machine of the present invention
  • Figure 2 is a schematic structural view of the metering device of the present invention.
  • Figure 3 is a schematic structural view of the metering pump of the present invention.
  • Figure 4 is a cross-sectional view of the metering pump of the present invention.
  • Figure 5 is a bottom plan view of the upper cover of the present invention.
  • Figure 6 is a cross-sectional view of the bottom of the metering pump of the present invention.
  • Figure 7 is a cross-sectional view of the water channel of the present invention.
  • Figure 8 is another cross-sectional view of the water channel of the present invention.
  • Figure 9 is a schematic structural view of the built-in check valve of the present invention.
  • Figure 10 is a schematic view showing the assembly of the built-in check valve of the present invention.
  • Embodiment A metering device for measuring carbon dioxide flow rate, as shown in FIGS. 1-7, comprising a horizontal plate, a metering pump and a mounting plate, the horizontal plate is provided with a scale, and the horizontal plate is provided with a sliding a block, the slider is provided with a pointer, the mounting plate is provided with a plurality of bolt holes, the metering pump is connected to the mounting plate by bolts, and one end of the metering pump is connected with the slider, and the metering pump comprises a cylinder block, an upper cover, a piston rod, a cylinder sleeve and a built-in check valve, wherein the cylinder body is provided with a receiving cavity, the cylinder sleeve is disposed in the receiving cavity, and the upper cover is connected to the cylinder block by a hexagon socket bolt
  • the upper cover is connected with an upper cover interface, the upper cover interface is embedded in the cylinder block, and the bottom end of the upper cover interface is in contact with the top end of the cylinder
  • the inner threaded hole is provided with an upper cover nut, and the upper cover nut is provided with a hole, and the upper cover nut
  • An outer surface of the nut interface is provided with an external thread
  • the internal threaded hole on the upper cover is matched with the nut interface
  • the nut interface is spirally embedded in the internally threaded hole
  • the piston rod The two ends are respectively provided with threads.
  • the piston rod is divided into an upper part of the piston rod and a lower part of the piston rod.
  • the upper part of the piston rod and the lower part of the piston rod are all cylindrical bodies, and the upper diameter of the piston rod is slightly larger than the diameter of the lower part of the piston rod, and the piston rod is set.
  • the upper part of the piston rod sequentially passes through the upper cover interface, the upper cover, the nut interface and the upper cover nut, and the upper part of the upper part of the piston rod protrudes from the upper cover nut, and the upper part of the piston rod is set a flat pad and a spring, the flat pad and the spring are disposed in the upper cover interface, and the lower part of the piston rod is provided with a flat pad, a spring, a combination seal and an M5 nut from top to bottom, and the flat pad and the cylinder sleeve are formed
  • An upper pump chamber and a lower pump chamber wherein the upper pump chamber is in communication with a carbon dioxide discharge hole on the upper cover interface, a bottom of the cylinder body is provided with a carbon dioxide inlet and a carbon dioxide outlet, and the inner check valve is provided with a thread , built-in check valve spiral embedded in oxidation
  • the carbon inlet and outlet, the carbon dioxide outlet is also connected to the first discharge pipe.
  • the built-in check valve comprises a built-in one-way valve body, a valve core and a built-in one-way valve seat, wherein the built-in one-way valve seat is screwed together with the built-in one-way valve body, and the valve core is arranged in the inner check valve In the body, a check ball is disposed between the built-in check valve seat and the valve core, and a spring is disposed between the valve core and the built-in check valve body.
  • a second discharge pipe is connected between the two built-in check valves, and the second discharge pipe is connected to the lower pump cavity.
  • the outer wall of the cylinder body is provided with a waterway inlet and a waterway outlet.
  • the cylinder body is provided with three waterways, and the waterway and the waterway are not connected to each other, and communicate in the annular groove at the bottom of the upper cover.
  • the outer wall of the cylinder body is further provided with a plurality of process holes, and the process hole is provided with a plug.
  • the method for measuring the carbon dioxide flow rate is: step (1), pulling the piston rod to move the piston rod upward, forming a vacuum in the lower pump chamber, opening the built-in check valve at the carbon dioxide inlet, and closing the built-in check valve at the carbon dioxide outlet.
  • the liquid carbon dioxide flows into the lower pump chamber through the second discharge pipe; in step (2), the piston rod is pulled to move the piston rod downward, the built-in check valve at the carbon dioxide inlet is closed, and the built-in check valve at the carbon dioxide outlet is opened.
  • the liquid carbon dioxide in the lower pumping chamber flows out from the carbon dioxide outlet. Since the carbon dioxide outlet communicates with the first discharge pipe, the liquid carbon dioxide in the lower pumping chamber passes through the first discharge pipe and the carbon dioxide discharge hole, and flows into the upper pump chamber.
  • Step (4) pulling to the piston rod, move the piston rod upward, form a vacuum in the lower pump chamber, open the built-in check valve at the carbon dioxide inlet, and oxidize The built-in check valve at the carbon outlet is closed, and the liquid carbon dioxide flows into the lower pump chamber through the second discharge pipe, and the liquid carbon dioxide in the upper pump chamber sequentially passes through the carbon dioxide discharge hole and the first discharge pipe, and flows out from the carbon dioxide outlet;
  • Step (4) pulling the piston rod to move the piston rod downward, the built-in check valve at the carbon dioxide inlet is closed, the built-in check valve at the carbon dioxide outlet is opened, and the liquid carbon dioxide in the lower pump chamber flows out from the carbon dioxide outlet, part of The liquid carbon dioxide in the lower pumping chamber sequentially passes through the No. 1 discharge pipe and the carbon dioxide discharge hole, and flows into the upper pump chamber; in step (5), the piston rod is repeatedly pulled to repeatedly move the piston rod up and down to quantitatively transport liquid carbon dioxide.
  • the polyurethane foaming machine corresponding to the above metering device comprises an isocyanate branch, a combined polyether branch, a carbon dioxide branch and a premixed spray gun, the isocyanate branch is routed to an isocyanate storage tank, an isocyanate equipment tank, a feed primary pump, and a secondary pump and an isocyanate delivery tube, the combined polyether branching combined polyether storage tank, a combined polyether equipment tank, a feed primary pump, a feed secondary pump and a combined polyether delivery pipe,
  • the carbon dioxide branch is composed of a carbon dioxide storage tank, a carbon dioxide equipment tank, a booster pump, a metering device and a carbon dioxide conveying pipe.
  • the carbon dioxide conveying pipe is connected with the combined polyether conveying pipe to carbon dioxide Dissolved in a combined polyether to form a mixture, the isocyanate and mixture are combined in a premixed spray gun through a transfer tube, the feed secondary pump and metering device being controlled by the same drive, the isocyanate equipment tank and the combined polyether equipment tank Heating means are provided therein, the inlet of the isocyanate equipment tank and the inlet of the combined polyether equipment tank a pressure switch is provided, the carbon dioxide branch further comprising a pressure reducing valve, a one-way valve and two electromagnetic valves, wherein the pressure reducing valve and one of the electromagnetic valves are sequentially disposed between the carbon dioxide equipment tank and the boosting pump, Another solenoid valve is disposed between the metering pump mechanism and the carbon dioxide equipment tank, the one-way valve is disposed at a rear end of the metering device, and the carbon dioxide equipment tank is sequentially provided with a compressor, a cooler and
  • the method for producing a polyurethane foam using the above polyurethane foaming machine is: step (1), wherein a large amount of liquid carbon dioxide and a small amount of gaseous carbon dioxide are stored in the carbon dioxide storage tank, and carbon dioxide is decompressed through a pressure reducing valve to form carbon dioxide gas, and the carbon dioxide gas passes through The booster pump is sent to the carbon dioxide equipment tank; in step (2), the compressor and the cooler on the carbon dioxide equipment tank start to work, and the carbon dioxide gas is pressurized and cooled continuously, and the pressure sensor is controlled when the carbon dioxide equipment tank reaches a certain pressure.
  • the booster pump stops working; in step (3), the liquid carbon dioxide in the carbon dioxide equipment tank is transported to the combined polyether transport pipe by a metering pump at a fixed ratio, and the carbon dioxide is dissolved in the combined polyether to form a mixture, and the metering pump starts working.
  • the feed secondary pump also starts to work.
  • the isocyanate in the isocyanate storage tank is sent to the isocyanate equipment tank through the feed primary pump and the feed secondary pump, and the combined polyether in the combined polyether storage tank is fed through the feed primary pump.
  • the secondary pump is controlled by the same drive, and the isocyanate, combined polyether and carbon dioxide are simultaneously transported to the equipment tank; in step (4), the heating device on the isocyanate equipment tank and the combined polyether equipment tank is opened, the isocyanate and the carbon dioxide are contained.
  • the combined polyether is separately heated to dilute the isocyanate and the combined polyether containing carbon dioxide, so that the isocyanate and the combined polyether containing carbon dioxide can be better mixed; in step (5), the isocyanate and the combined polyether containing carbon dioxide They are respectively delivered to the premixed spray gun at a fixed ratio, and evenly mixed and sprayed in a mist. After a period of time, the curing is completed to form a polyurethane foam.

Landscapes

  • Polyurethanes Or Polyureas (AREA)

Abstract

一种用于计量二氧化碳流量的计量装置(12)及计量方法,属于聚氨酯泡沫材料制备技术领域。该计量装置(12)结构简单,体积小,可以精确控制输送液态二氧化碳量,同时通过在计量泵(25)的一端连接滑块(28),滑块(28)可在横板(24)上移动,从而改变活塞杆(33)上下移动的行程,改变二氧化碳的流量大小。同时该计量泵(25)的缸体(31)内设有水道(61),可将冷媒介质通入水道(61)中,使二氧化碳的温度保持恒定。

Description

一种用于计量二氧化碳流量的计量装置及计量方法 技术领域
本发明属于聚氨酯泡沫材料制备技术领域,具体是涉及一种用于计量二氧化碳流量的计量装置及计量方法。
背景技术
聚氨酯(英文简称PU)是一种由异氰酸酯和多元醇通过共聚反应生成的高分子聚合物。发泡机又名泡沫发生器,是能将一定浓度的化学原料制成泡沫并凝结成为固体的设备。发泡机是聚氨酯泡沫塑料加工设备的核心组件,发泡机将两种不同的化学原料(异氰酸酯和多元醇)按各自的比例均匀混合,高压喷出,混合原料遇到空气后发生剧烈的化学反应产生大量的泡沫,以至其体积迅速增大,经过一段时间,暴露在空气中的混合原料凝结成带有大量泡沫的固体(聚氨酯泡沫)。
聚氨酯泡沫具有很高的强度、良好的抗冲击及隔音隔热性能。聚氨酯泡沫在很多领域都有广泛的应用,如冰箱冰柜、家具制造、墙体隔热等。现有聚氨酯发泡剂采用HCFC-141b,但HCFC-141b的ODP(臭氧消耗潜值)≠0,属于过渡性的替代产品,按《蒙特利尔议定书》的规定,发达国家全面禁用时间为2020年,发展中国家的最终淘汰时间为2040年。但在近年来的国内臭氧层保护大会上,加速推动淘汰HCFC类物质的呼声越来越高,HCFC-141b的禁用时间则是被大大提前了。因此需要寻找一种绿色、环保、经济的发泡剂来替代HCFC-141b。
由于二氧化碳是一种“三原子”友善环境物质,价格低廉,来源广泛,它的ODP值为零,受到人们的重视。但在常温常压下,二氧化碳以气态方式存在,使得二氧化碳的使用成本和难度增加。因此,提供一种用二氧化碳替代HCFC-141b作为发泡剂,制备聚氨酯泡沫的技术是值得研究的。
发明内容
本发明主要是解决上述现有技术所存在的技术问题,提供一种用于计量二氧化碳流量的计量装置及计量方法。
本发明的上述技术问题主要是通过下述技术方案得以解决的:一种用于计量二氧化碳流量的计量装置,包括横板、计量泵和安装板,所述横板上设有刻度尺,所述横板上设有滑块,所述滑块上设有指针,所述安装板上设有若干螺栓孔,所述计量泵通过螺栓与安装板连接,且计量泵的一端与所述滑块连接,所述计量泵包括缸体、上盖、活塞杆、缸套和内装单向阀,所述缸体内设有容纳腔,所述缸套设置在容纳腔内,所述上盖通过内六角螺栓与缸体连接,所述上盖上连有上盖接口,所述上盖接口嵌入缸体,且上盖接口的底端与缸套的顶端接触,所述上盖接口上设有二氧化碳出料孔,所述缸体内设有一号出料管,所述二氧化碳出料孔与一号出料管相连通,所述上盖的底部设有环形凹槽,所述上盖的顶部 上还设有内螺纹孔,所述内螺纹孔上设有上盖螺帽,所述上盖螺帽上设有孔,所述上盖螺帽上连有螺帽接口,所述螺帽接口的外壁上设有外螺纹,所述上盖上的内螺纹孔和螺帽接口相匹配,螺帽接口螺旋嵌入内螺纹孔中,所述活塞杆的两端分别设有螺纹,所述活塞杆分为活塞杆上部和活塞杆下部,活塞杆上部和活塞杆下部均为圆柱体,且活塞杆上部直径略大于活塞杆下部直径,所述活塞杆设置在缸套内,所述活塞杆上部依次穿过上盖接口、上盖、螺帽接口和上盖螺帽,且活塞杆上部的端部伸出上盖螺帽,所述活塞杆上部套装有平垫和弹簧,所述平垫和弹簧设置在上盖接口内,所述活塞杆下部从上到下依次套装有平垫、弹簧、组合封和M5螺帽,所述平垫与缸套形成上泵腔和下泵腔,所述上泵腔与上盖接口上的二氧化碳出料孔相连通,所述缸体的底部设有二氧化碳进口和二氧化碳出口,所述内装单向阀上设有螺纹,内装单向阀螺旋嵌入二氧化碳进出口,所述二氧化碳出口还与一号出料管相连通。
作为优选,所述内装单向阀包括内装单向阀体、阀芯和内装单向阀座,所述内装单向阀座与内装单向阀体螺接在一起,所述阀芯设置在内装单向阀体内,所述内装单向阀座和阀芯之间设有止回球,所述阀芯和内装单向阀体之间设有弹簧。
作为优选,所述两个内装单向阀之间连有二号出料管,且二号出料管与下泵腔连通。
作为优选,所述缸体的外壁上设有水道进口和水道出口,所述缸体内设有三条水道,所述水道与水道之间互不相连,在所述上盖底部的环形凹槽内连通。
作为优选,所述缸体的外壁上还设有若干工艺孔,所述工艺孔上设有堵头。
计量二氧化碳流量的方法为:
步骤(1),拉到活塞杆,使活塞杆向上移动,下泵腔内形成真空,二氧化碳进口处的内装单向阀打开,二氧化碳出口处的内装单向阀关闭,液态二氧化碳通过二号出料管流入下泵腔中;
步骤(2),拉到活塞杆,使活塞杆向下移动,二氧化碳进口处的内装单向阀关闭,二氧化碳出口处的内装单向阀打开,下泵腔内的液态二氧化碳从二氧化碳出口流出,由于二氧化碳出口与一号出料管相连通,部分下泵腔内的液态二氧化碳依次通过一号出料管和二氧化碳出料孔,流入上泵腔中;
步骤(3),拉到活塞杆,使活塞杆向上移动,下泵腔内形成真空,二氧化碳进口处的内装单向阀打开,二氧化碳出口处的内装单向阀关闭,液态二氧化碳通过二号出料管流入下泵腔中,同时上泵腔内的液态二氧化碳依次通过二氧化碳出料孔和一号出料管,从二氧化碳出口流出;
步骤(4),拉到活塞杆,使活塞杆向下移动,二氧化碳进口处的内装单向阀关闭,二氧化碳出口处的内装单向阀打开,下泵腔内的液态二氧化碳从二氧化碳出口流出,部分下泵腔内的液态二氧化碳依次通过一号出料管和二氧化碳出料孔,流入上泵腔中;
步骤(5),反复拉动活塞杆,使活塞杆上下反复移动,定量输送液态二氧化碳。
与上述计量装置对应的聚氨酯发泡机,包括异氰酸酯支路、组合聚醚支路、二氧化碳支路和预混喷枪,所述异氰酸酯支路由异氰酸酯储罐、异氰酸酯设备罐、供料一级泵、供料二级泵和异氰酸酯输送管构成,所述组合聚醚支路由组合聚醚储罐、组合聚醚设备罐、供料一级泵、供料二级泵和组合聚醚输送管构成,所述二氧化碳支路由二氧化碳储罐、二氧化碳设备罐、增压泵、计量装置和二氧化碳输送管构成,在组合聚醚设备罐的入口处,所述二氧化碳输送管与所述组合聚醚输送管连通,将二氧化碳溶解于组合聚醚形成混合物,所述异氰酸酯和混合物通过输送管在预混喷枪中汇合,所述供料二级泵和计量装置采用同一个驱动器控制。
作为优选,所述异氰酸酯设备罐和组合聚醚设备罐内分别设有加热装置,所述异氰酸酯设备罐的入口处和组合聚醚设备罐的入口处分别设有压力开关。
作为优选,所述二氧化碳支路还包括减压阀、单向阀和两个电磁阀,所述减压阀和其中一个电磁阀依次设置在二氧化碳设备罐和增压泵之间,所述另一个电磁阀设置在计量装置和二氧化碳设备罐之间,所述单向阀设置在计量装置的后端。
作为优选,所述二氧化碳设备罐上分别依次设有压缩机、冷却器和节流阀。
作为优选,所述增压泵上连有压力传感器。
作为优选,所述组合聚醚设备罐与预混喷枪之间连有压力控制阀和压力传感器。
使用上述聚氨酯发泡机的制作聚氨酯泡沫的方法为:
步骤(1),二氧化碳储罐中存有大量的液态二氧化碳和少量的气态二氧化碳,将二氧化碳通过减压阀减压形成二氧化碳气体,二氧化碳气体通过增压泵输送至二氧化碳设备罐中;
步骤(2),二氧化碳设备罐上的压缩机和冷却器开始工作,将二氧化碳气体增压降温不断液化,当二氧化碳设备罐内达到一定压力时,压力传感器控制增压泵停止工作;
步骤(3),二氧化碳设备罐中的液态二氧化碳通过计量泵按固定比例输送至组合聚醚输送管中,将二氧化碳溶解于组合聚醚形成混合物,计量泵开始工作的同时,供料二级泵也开始工作,异氰酸酯储罐中的异氰酸酯通过供料一级泵和供料二级泵输送至异氰酸酯设备罐中,组合聚醚储罐中的组合聚醚通过供料一级泵和供料二级泵输送至组合聚醚设备罐中,计量泵和供料二级泵采用同一个驱动器控制,将异氰酸酯、组合聚醚和二氧化碳同时输送至设备罐中;
步骤(4),异氰酸酯设备罐和组合聚醚设备罐上的加热装置开启工作,对异氰酸酯和含有二氧化碳的组合聚醚分别进行加热,将异氰酸酯和含有二氧化碳的组合聚醚分别变稀,使异氰酸酯和含有二氧化碳的组合聚醚能更好的混合;步骤(5),将异氰酸酯和含有二氧化碳的组合聚醚按固定比例分别输送至预混喷枪,混合均匀后雾状喷出,经过一段时间,固化完成形成聚氨酯泡沫。
本发明具有的有益效果:1、本发明计量装置结构简单,体积小,可以精确控制输送 液态二氧化碳量,同时通过在计量泵的一端连接滑块,滑块可在横板上移动,从而改变活塞杆上下移动的行程,改变二氧化碳的流量大小;2、本发明计量泵的缸体内设有水道,可将冷媒介质通入水道中,使二氧化碳的温度保持恒定;3、本发明采用同一个驱动器控制计量装置和供料二级泵,使异氰酸酯、组合聚醚和液态二氧化碳同时输出,防止其中某种原料不足,影响聚氨酯泡沫质量;4、本发明通过设置二氧化碳设备罐将二氧化碳液化,使二氧化碳在计量、输送及混合的过程中始终都保持液态,液态二氧化碳易溶解于组合聚醚中,使液态二氧化碳与组合聚醚的混合比例不受外界环境因素的影响,防止外界温度过低或过高,影响聚氨酯泡沫质量;5、由于异氰酸酯和组合聚醚为粘稠状液体,通过设置多个供料泵,能更有效地输送异氰酸酯或组合聚醚;6、本发明可现场施工聚氨酯泡沫,也可预制聚氨酯泡沫,施工场所不受限制;7、本发明采用二氧化碳替代HCFC-141b,二氧化碳价格低廉、无毒、不可燃,降低了企业生产聚氨酯泡沫的生产成本,同时使用二氧化碳更加环保,来源广泛,不消耗臭氧,改善温室效应。
附图说明
图1是本发明聚氨酯发泡机的一种结构示意图;
图2是本发明计量装置的一种结构示意图;
图3是本发明计量泵的一种结构示意图;
图4是本发明计量泵的一种剖视图;
图5是本发明上盖的一种仰视图;
图6是本发明计量泵底部的一种剖视图;
图7是本发明水道的一种剖视图;
图8是本发明水道的另一种剖视图;
图9是本发明内装单向阀的一种结构示意图;
图10是本发明内装单向阀组装示意图。
图中:1、异氰酸酯储罐;2、组合聚醚储罐;3、二氧化碳储罐;4、异氰酸酯设备罐;5、组合聚醚设备罐;6、二氧化碳设备罐;7、供料一级泵;8、供料二级泵;9、异氰酸酯输送管;10、组合聚醚输送管;11、增压泵;12、计量装置;13、二氧化碳输送管;14、预混喷枪;15、加热装置;16、压力开关;17、减压阀;18、单向阀;19、电磁阀;20、压缩机;21、冷却器;22、节流阀;23、压力传感器;24、横板;25、计量泵;26、安装板;27、刻度尺;28、滑块;29、指针;30、螺栓孔;31、缸体;32、上盖;33、活塞杆;34、缸套;35、内装单向阀;36、内六角螺栓;37、上盖接口;38、二氧化碳出料孔;39、一号出料管;40、内螺纹孔;41、上盖螺帽;42、孔;43、螺帽接口;44、活塞杆上部;45、活塞杆下部;46、平垫;47、弹簧;48、组合封;49、M5螺帽;50、上泵腔;51、下泵腔;52、二氧化碳进口;53、二氧化碳出口;54、内装单向阀体;55、阀芯;56、内装单向阀座;57、止回球;58、二号出料管;59、水道进口;60、水道出口;61、水道;62、 工艺孔;63、堵头;64、压力控制阀;65、环形凹槽。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。
实施例:一种用于计量二氧化碳流量的计量装置,如图1-7所示,包括横板、计量泵和安装板,所述横板上设有刻度尺,所述横板上设有滑块,所述滑块上设有指针,所述安装板上设有若干螺栓孔,所述计量泵通过螺栓与安装板连接,且计量泵的一端与所述滑块连接,所述计量泵包括缸体、上盖、活塞杆、缸套和内装单向阀,所述缸体内设有容纳腔,所述缸套设置在容纳腔内,所述上盖通过内六角螺栓与缸体连接,所述上盖上连有上盖接口,所述上盖接口嵌入缸体,且上盖接口的底端与缸套的顶端接触,所述上盖接口上设有二氧化碳出料孔,所述缸体内设有一号出料管,所述二氧化碳出料孔与一号出料管相连通,所述上盖的底部设有环形凹槽,所述上盖的顶部上还设有内螺纹孔,所述内螺纹孔上设有上盖螺帽,所述上盖螺帽上设有孔,所述上盖螺帽上连有螺帽接口,所述螺帽接口的外壁上设有外螺纹,所述上盖上的内螺纹孔和螺帽接口相匹配,螺帽接口螺旋嵌入内螺纹孔中,所述活塞杆的两端分别设有螺纹,所述活塞杆分为活塞杆上部和活塞杆下部,活塞杆上部和活塞杆下部均为圆柱体,且活塞杆上部直径略大于活塞杆下部直径,所述活塞杆设置在缸套内,所述活塞杆上部依次穿过上盖接口、上盖、螺帽接口和上盖螺帽,且活塞杆上部的端部伸出上盖螺帽,所述活塞杆上部套装有平垫和弹簧,所述平垫和弹簧设置在上盖接口内,所述活塞杆下部从上到下依次套装有平垫、弹簧、组合封和M5螺帽,所述平垫与缸套形成上泵腔和下泵腔,所述上泵腔与上盖接口上的二氧化碳出料孔相连通,所述缸体的底部设有二氧化碳进口和二氧化碳出口,所述内装单向阀上设有螺纹,内装单向阀螺旋嵌入二氧化碳进出口,所述二氧化碳出口还与一号出料管相连通。
所述内装单向阀包括内装单向阀体、阀芯和内装单向阀座,所述内装单向阀座与内装单向阀体螺接在一起,所述阀芯设置在内装单向阀体内,所述内装单向阀座和阀芯之间设有止回球,所述阀芯和内装单向阀体之间设有弹簧。
所述两个内装单向阀之间连有二号出料管,且二号出料管与下泵腔连通。
所述缸体的外壁上设有水道进口和水道出口,所述缸体内设有三条水道,所述水道与水道之间互不相连,在所述上盖底部的环形凹槽内连通。
所述缸体的外壁上还设有若干工艺孔,所述工艺孔上设有堵头。
计量二氧化碳流量的方法为:步骤(1),拉到活塞杆,使活塞杆向上移动,下泵腔内形成真空,二氧化碳进口处的内装单向阀打开,二氧化碳出口处的内装单向阀关闭,液态二氧化碳通过二号出料管流入下泵腔中;步骤(2),拉到活塞杆,使活塞杆向下移动,二氧化碳进口处的内装单向阀关闭,二氧化碳出口处的内装单向阀打开,下泵腔内的液态二氧化碳从二氧化碳出口流出,由于二氧化碳出口与一号出料管相连通,部分下泵腔内的液态二氧化碳依次通过一号出料管和二氧化碳出料孔,流入上泵腔中;步骤(3),拉到活塞杆,使活塞杆向上移动,下泵腔内形成真空,二氧化碳进口处的内装单向阀打开,二氧化 碳出口处的内装单向阀关闭,液态二氧化碳通过二号出料管流入下泵腔中,同时上泵腔内的液态二氧化碳依次通过二氧化碳出料孔和一号出料管,从二氧化碳出口流出;步骤(4),拉到活塞杆,使活塞杆向下移动,二氧化碳进口处的内装单向阀关闭,二氧化碳出口处的内装单向阀打开,下泵腔内的液态二氧化碳从二氧化碳出口流出,部分下泵腔内的液态二氧化碳依次通过一号出料管和二氧化碳出料孔,流入上泵腔中;步骤(5),反复拉动活塞杆,使活塞杆上下反复移动,定量输送液态二氧化碳。
与上述计量装置对应的聚氨酯发泡机,包括异氰酸酯支路、组合聚醚支路、二氧化碳支路和预混喷枪,所述异氰酸酯支路由异氰酸酯储罐、异氰酸酯设备罐、供料一级泵、供料二级泵和异氰酸酯输送管构成,所述组合聚醚支路由组合聚醚储罐、组合聚醚设备罐、供料一级泵、供料二级泵和组合聚醚输送管构成,所述二氧化碳支路由二氧化碳储罐、二氧化碳设备罐、增压泵、计量装置和二氧化碳输送管构成,在组合聚醚设备罐的入口处,所述二氧化碳输送管与所述组合聚醚输送管连通,将二氧化碳溶解于组合聚醚形成混合物,所述异氰酸酯和混合物通过输送管在预混喷枪中汇合,所述供料二级泵和计量装置采用同一个驱动器控制,所述异氰酸酯设备罐和组合聚醚设备罐内分别设有加热装置,所述异氰酸酯设备罐的入口处和组合聚醚设备罐的入口处分别设有压力开关,所述二氧化碳支路还包括减压阀、单向阀和两个电磁阀,所述减压阀和其中一个电磁阀依次设置在二氧化碳设备罐和增压泵之间,所述另一个电磁阀设置在计量泵机构和二氧化碳设备罐之间,所述单向阀设置在计量装置的后端,所述二氧化碳设备罐上分别依次设有压缩机、冷却器和节流阀,所述增压泵上连有压力传感器,所述组合聚醚设备罐与预混喷枪之间连有压力控制阀和压力传感器。
使用上述聚氨酯发泡机的制作聚氨酯泡沫的方法为:步骤(1),二氧化碳储罐中存有大量的液态二氧化碳和少量的气态二氧化碳,将二氧化碳通过减压阀减压形成二氧化碳气体,二氧化碳气体通过增压泵输送至二氧化碳设备罐中;步骤(2),二氧化碳设备罐上的压缩机和冷却器开始工作,将二氧化碳气体增压降温不断液化,当二氧化碳设备罐内达到一定压力时,压力传感器控制增压泵停止工作;步骤(3),二氧化碳设备罐中的液态二氧化碳通过计量泵按固定比例输送至组合聚醚输送管中,将二氧化碳溶解于组合聚醚形成混合物,计量泵开始工作的同时,供料二级泵也开始工作,异氰酸酯储罐中的异氰酸酯通过供料一级泵和供料二级泵输送至异氰酸酯设备罐中,组合聚醚储罐中的组合聚醚通过供料一级泵和供料二级泵输送至组合聚醚设备罐中,计量泵和供料二级泵采用同一个驱动器控制,将异氰酸酯、组合聚醚和二氧化碳同时输送至设备罐中;步骤(4),异氰酸酯设备罐和组合聚醚设备罐上的加热装置开启工作,对异氰酸酯和含有二氧化碳的组合聚醚分别进行加热,将异氰酸酯和含有二氧化碳的组合聚醚分别变稀,使异氰酸酯和含有二氧化碳的组合聚醚能更好的混合;步骤(5),将异氰酸酯和含有二氧化碳的组合聚醚按固定比例分别输送至预混喷枪,混合均匀后雾状喷出,经过一段时间,固化完成形成聚氨酯泡沫。
最后,应当指出,以上实施例仅是本发明较有代表性的例子。显然,本发明不限于上 述实施例,还可以有许多变形。凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均应认为属于本发明的保护范围。

Claims (6)

  1. 一种用于计量二氧化碳流量的计量装置,包括横板、计量泵和安装板,其特征在于所述横板上设有刻度尺,所述横板上设有滑块,所述滑块上设有指针,所述安装板上设有若干螺栓孔,所述计量泵通过螺栓与安装板连接,且计量泵的一端与所述滑块连接,所述计量泵包括缸体、上盖、活塞杆、缸套和内装单向阀,所述缸体内设有容纳腔,所述缸套设置在容纳腔内,所述上盖通过内六角螺栓与缸体连接,所述上盖上连有上盖接口,所述上盖接口嵌入缸体,且上盖接口的底端与缸套的顶端接触,所述上盖接口上设有二氧化碳出料孔,所述缸体内设有一号出料管,所述二氧化碳出料孔与一号出料管相连通,所述上盖的底部设有环形凹槽,所述上盖的顶部上还设有内螺纹孔,所述内螺纹孔上设有上盖螺帽,所述上盖螺帽上设有孔,所述上盖螺帽上连有螺帽接口,所述螺帽接口的外壁上设有外螺纹,所述上盖上的内螺纹孔和螺帽接口相匹配,螺帽接口螺旋嵌入内螺纹孔中,所述活塞杆的两端分别设有螺纹,所述活塞杆分为活塞杆上部和活塞杆下部,活塞杆上部和活塞杆下部均为圆柱体,且活塞杆上部直径略大于活塞杆下部直径,所述活塞杆设置在缸套内,所述活塞杆上部依次穿过上盖接口、上盖、螺帽接口和上盖螺帽,且活塞杆上部的端部伸出上盖螺帽,所述活塞杆上部套装有平垫和弹簧,所述平垫和弹簧设置在上盖接口内,所述活塞杆下部从上到下依次套装有平垫、弹簧、组合封和M5螺帽,所述平垫与缸套形成上泵腔和下泵腔,所述上泵腔与上盖接口上的二氧化碳出料孔相连通,所述缸体的底部设有二氧化碳进口和二氧化碳出口,所述内装单向阀上设有螺纹,内装单向阀螺旋嵌入二氧化碳进出口,所述二氧化碳出口还与一号出料管相连通。
  2. 根据权利要求1所述的一种用于计量二氧化碳流量的计量装置,其特征在于所述内装单向阀包括内装单向阀体、阀芯和内装单向阀座,所述内装单向阀座与内装单向阀体螺接在一起,所述阀芯设置在内装单向阀体内,所述内装单向阀座和阀芯之间设有止回球,所述阀芯和内装单向阀体之间设有弹簧。
  3. 根据权利要求1所述的一种用于计量二氧化碳流量的计量装置,其特征在于所述两个内装单向阀之间连有二号出料管,且二号出料管与下泵腔连通。
  4. 根据权利要求1所述的一种用于计量二氧化碳流量的计量装置,其特征在于所述缸体的外壁上设有水道进口和水道出口,所述缸体内设有三条水道,所述水道与水道之间互不相连,在所述上盖底部的环形凹槽内连通。
  5. 根据权利要求1所述的一种用于计量二氧化碳流量的计量装置,其特征在于所述缸体的外壁上还设有若干工艺孔,所述工艺孔上设有堵头。
  6. 根据权利要求1所述的一种用于计量二氧化碳流量的计量装置,其特征在于所述计量二氧化碳流量的方法为:
    步骤(1),拉到活塞杆,使活塞杆向上移动,下泵腔内形成真空,二氧化碳进口处的内装单向阀打开,二氧化碳出口处的内装单向阀关闭,液态二氧化碳通过二号出料管流入 下泵腔中;
    步骤(2),拉到活塞杆,使活塞杆向下移动,二氧化碳进口处的内装单向阀关闭,二氧化碳出口处的内装单向阀打开,下泵腔内的液态二氧化碳从二氧化碳出口流出,由于二氧化碳出口与一号出料管相连通,部分下泵腔内的液态二氧化碳依次通过一号出料管和二氧化碳出料孔,流入上泵腔中;
    步骤(3),拉到活塞杆,使活塞杆向上移动,下泵腔内形成真空,二氧化碳进口处的内装单向阀打开,二氧化碳出口处的内装单向阀关闭,液态二氧化碳通过二号出料管流入下泵腔中,同时上泵腔内的液态二氧化碳依次通过二氧化碳出料孔和一号出料管,从二氧化碳出口流出;
    步骤(4),拉到活塞杆,使活塞杆向下移动,二氧化碳进口处的内装单向阀关闭,二氧化碳出口处的内装单向阀打开,下泵腔内的液态二氧化碳从二氧化碳出口流出,部分下泵腔内的液态二氧化碳依次通过一号出料管和二氧化碳出料孔,流入上泵腔中;
    步骤(5),反复拉动活塞杆,使活塞杆上下反复移动,定量输送液态二氧化碳。
PCT/CN2017/094023 2017-01-25 2017-07-24 一种用于计量二氧化碳流量的计量装置及计量方法 WO2018137321A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/698,716 US10197426B2 (en) 2017-01-25 2017-09-08 Metering device and metering method for metering carbon dioxide flow

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710062607.6 2017-01-25
CN201710062607.6A CN106626213B (zh) 2017-01-25 2017-01-25 一种用于计量二氧化碳流量的计量装置及计量方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/698,716 Continuation US10197426B2 (en) 2017-01-25 2017-09-08 Metering device and metering method for metering carbon dioxide flow

Publications (1)

Publication Number Publication Date
WO2018137321A1 true WO2018137321A1 (zh) 2018-08-02

Family

ID=58842395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094023 WO2018137321A1 (zh) 2017-01-25 2017-07-24 一种用于计量二氧化碳流量的计量装置及计量方法

Country Status (2)

Country Link
CN (1) CN106626213B (zh)
WO (1) WO2018137321A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106626213B (zh) * 2017-01-25 2017-10-27 绍兴市华创聚氨酯有限公司 一种用于计量二氧化碳流量的计量装置及计量方法
CN107457956B (zh) * 2017-09-14 2018-07-27 绍兴市华创聚氨酯有限公司 一种用于二氧化碳聚氨酯发泡机的输送机构
CN115364757B (zh) * 2022-08-31 2024-03-12 郑州沃华机械有限公司 一种基于动态混合器的pbat生产用在线增粘系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4169695A (en) * 1976-08-20 1979-10-02 Jidosha Kiki Co., Ltd. Electromagnetic pump with pressure-regulating mechanism
CN202556658U (zh) * 2012-03-29 2012-11-28 浙江领新聚氨酯有限公司 聚氨酯发泡成型机三组份活塞式混合头机构
DE102014001126A1 (de) * 2014-01-28 2015-07-30 Thomas Magnete Gmbh Dosierpumpe und Verfahren zum Betrieb einer Dosierpumpe mit einem verschieblichen Auslassventil
CN205260243U (zh) * 2015-12-28 2016-05-25 中国科学院苏州生物医学工程技术研究所 一种计量泵
CN106626213A (zh) * 2017-01-25 2017-05-10 绍兴市华创聚氨酯有限公司 一种用于计量二氧化碳流量的计量装置及计量方法
CN106827363A (zh) * 2017-01-25 2017-06-13 绍兴市华创聚氨酯有限公司 一种用于聚氨酯发泡的二氧化碳液化机构及使用方法
CN106938516A (zh) * 2017-01-25 2017-07-11 绍兴市华创聚氨酯有限公司 一种用二氧化碳替代氟利昂的聚氨酯发泡机及使用方法
CN206465351U (zh) * 2017-01-25 2017-09-05 绍兴市华创聚氨酯有限公司 一种用二氧化碳替代氟利昂的聚氨酯发泡机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203925909U (zh) * 2014-01-24 2014-11-05 佛山市优霸机械设备有限公司 一种气动柱塞计量泵
CN104329315B (zh) * 2014-10-23 2017-04-12 徐州徐工施维英机械有限公司 输送设备、输送设备计量装置和方法
CA2984175A1 (en) * 2015-05-01 2016-11-10 Graco Minnesota Inc. Pneumatic timing valve
CN205034373U (zh) * 2015-09-21 2016-02-17 温州来福机械制造有限公司 一种液体包装机计量机构
CN105840446B (zh) * 2016-05-18 2018-06-01 四川理工学院 一种高精度计量泵

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4169695A (en) * 1976-08-20 1979-10-02 Jidosha Kiki Co., Ltd. Electromagnetic pump with pressure-regulating mechanism
CN202556658U (zh) * 2012-03-29 2012-11-28 浙江领新聚氨酯有限公司 聚氨酯发泡成型机三组份活塞式混合头机构
DE102014001126A1 (de) * 2014-01-28 2015-07-30 Thomas Magnete Gmbh Dosierpumpe und Verfahren zum Betrieb einer Dosierpumpe mit einem verschieblichen Auslassventil
CN205260243U (zh) * 2015-12-28 2016-05-25 中国科学院苏州生物医学工程技术研究所 一种计量泵
CN106626213A (zh) * 2017-01-25 2017-05-10 绍兴市华创聚氨酯有限公司 一种用于计量二氧化碳流量的计量装置及计量方法
CN106827363A (zh) * 2017-01-25 2017-06-13 绍兴市华创聚氨酯有限公司 一种用于聚氨酯发泡的二氧化碳液化机构及使用方法
CN106938516A (zh) * 2017-01-25 2017-07-11 绍兴市华创聚氨酯有限公司 一种用二氧化碳替代氟利昂的聚氨酯发泡机及使用方法
CN206465351U (zh) * 2017-01-25 2017-09-05 绍兴市华创聚氨酯有限公司 一种用二氧化碳替代氟利昂的聚氨酯发泡机

Also Published As

Publication number Publication date
CN106626213B (zh) 2017-10-27
CN106626213A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2018137321A1 (zh) 一种用于计量二氧化碳流量的计量装置及计量方法
CN101878064B (zh) 间歇地用气体使饮用水碳酸化并输出该饮用水的装置和方法
DE102008012486B4 (de) Imprägnierverfahren und Schankanlage mit Imprägniervorrichtung
CN210520788U (zh) 气泡水制备装置及饮水机
CN106287202B (zh) 一种储罐回收bog无排放lng加气装置及方法
CN112237375A (zh) 气泡水制备装置及其控制方法和装置、饮水机和存储介质
CN204095041U (zh) 发泡或预发泡桶体组件
CN111688098A (zh) 超大灌注量高压发泡机组
CN102267165B (zh) 一种高效泡沫混凝土发泡剂发泡机
US10197426B2 (en) Metering device and metering method for metering carbon dioxide flow
CN106827363B (zh) 一种用于聚氨酯发泡的二氧化碳液化机构及使用方法
CN203853199U (zh) 用于涂装设备的气固混合器
CN107965665B (zh) 一种利用压力驱动的液化天然气气化加热系统
CN206131510U (zh) 用于常温天然气引射液化天然气低温蒸发气的引射器
CN201676801U (zh) 高均匀度油脂喷涂装置
CN206465351U (zh) 一种用二氧化碳替代氟利昂的聚氨酯发泡机
CN103950429A (zh) 一种新型节能环保的洗车泡沫机
CN204502912U (zh) 防冻酒精定比例雾化自动添加装置
US9011129B2 (en) Liquid resin molding apparatus
CN106938516B (zh) 一种用二氧化碳替代氟利昂的聚氨酯发泡机及使用方法
CN106247160B (zh) 一种带有高压加气罐的无排放lng加气装置及方法
CN209646767U (zh) 一种聚氨酯高压喷涂设备
CN206046315U (zh) 一种能够调节涂料喷出幅度的新型喷枪
CN206703395U (zh) 一种用于聚氨酯发泡的二氧化碳液化机构
CN116984156B (zh) 一种双组分无溶剂涂料涂膜喷涂设备及其喷涂方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893913

Country of ref document: EP

Kind code of ref document: A1