WO2018137265A1 - 液体直接接触式冷却器 - Google Patents

液体直接接触式冷却器 Download PDF

Info

Publication number
WO2018137265A1
WO2018137265A1 PCT/CN2017/074714 CN2017074714W WO2018137265A1 WO 2018137265 A1 WO2018137265 A1 WO 2018137265A1 CN 2017074714 W CN2017074714 W CN 2017074714W WO 2018137265 A1 WO2018137265 A1 WO 2018137265A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
heat dissipation
heat
direct contact
cooler
Prior art date
Application number
PCT/CN2017/074714
Other languages
English (en)
French (fr)
Inventor
王伟
吕松浩
李雪
徐凌燕
Original Assignee
广东合一新材料研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东合一新材料研究院有限公司 filed Critical 广东合一新材料研究院有限公司
Publication of WO2018137265A1 publication Critical patent/WO2018137265A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • H01L23/4735Jet impingement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids

Definitions

  • the present invention relates to the field of cooling technology for power devices, and more particularly to a liquid direct contact cooler.
  • the heat generated by the highly integrated high-power device will increase the temperature of the chip. If the heat dissipation is slow, it is possible to raise the temperature of the chip beyond the maximum allowable junction temperature, and the performance of the device will be significantly reduced. Can not work stably, and may even burn directly. Therefore, controlling the heating rate of the high-power device, the internal temperature of the chip is always maintained within the allowable junction temperature, ensuring stable operation of the machine, and becoming the focus and problem of research in the field of high-power devices.
  • the heat dissipation of the power device is mostly in the air-cooled heat dissipation mode and the water-cooled plate heat sink.
  • the air-cooled heat-dissipation mode is adopted, the specific heat capacity of the air is small, and the heat taken away by the air is relatively small.
  • the air-cooling heat dissipation mode cannot meet the heat dissipation requirement.
  • the high-power device is directly attached to the surface of the water-cooled plate radiator, and the heat is radiated through the circulating flow of the cooling water.
  • leakage may cause liquid leakage
  • the water-cooled substrate The scale formed by the long-term use of the radiator will greatly reduce the thermal conductivity, and the contact thermal resistance is large, so that the high-power device cannot meet the heat dissipation requirement.
  • a liquid direct contact cooler for dissipating heat of a power device including a cooler body, a first heat exchange structure, and a circulation pump;
  • the cooler body has a cooling cavity and a heat dissipation port communicating with the cooling cavity; the cooling cavity is for filling a cooling medium, and is configured to enable the cooling medium to directly contact the cooling medium through the heat dissipation port a heat dissipation surface of the power device; the cooler body at least surrounding a peripheral portion of the heat dissipation port for sealingly mating with the heat dissipation wall;
  • the cooling passage of the first heat exchange structure is in communication with the cooling cavity through a return conduit;
  • the circulation pump is disposed on the return conduit for circulating the cooling medium flowing out of the cooling chamber through the first heat exchange structure and returning to the cooling chamber.
  • the heat dissipation opening is provided in a middle portion of a side wall of the cooler body.
  • the circulating liquid outlet of the cooler body is located at the bottom of the cooling chamber, and the circulating liquid outlet is in communication with the return conduit.
  • the circulating inlet of the cooler body is located at the top of the cooling chamber, the circulating inlet is in communication with the return conduit; when the cooler body is in the power When the device is sealingly engaged, the filling amount of the cooling medium can at least flood the heat dissipation port in the cooling cavity.
  • the liquid direct contact cooler further includes an injection structure located in the cooling cavity and disposed toward the heat dissipation port, the liquid storage cavity of the injection structure and the first The cooling passage of a heat exchange structure is in communication; the cooling chamber is located below the heat dissipation opening as a liquid accumulation portion for filling the cooling medium.
  • the spray structure includes a spray plate that is covered with a spray hole for spraying the cooling medium that is cooled and returned from the cooling passage toward the heat dissipation port.
  • the spray structure includes a nozzle disposed toward the heat dissipation port to spray the cooling medium cooled from the cooling passage to the heat dissipation port in an atomized manner.
  • nozzles there are a plurality of nozzles, and a plurality of the nozzles are arranged in an array.
  • the liquid direct contact cooler further includes a second heat exchange structure having a condensation passage, the condensation passage being in communication with the cooling chamber for The cooling medium after the evaporation of the effusion portion is condensed and returned to the cooling chamber.
  • the second heat exchange structure is disposed on the cooler body and located at a top end of the cooling cavity.
  • the direct contact cooler includes a cooler body, a heat exchange structure, and a circulation pump for filling a cooling medium, at least around a peripheral portion of the heat dissipation opening for sealingly engaging the heat dissipation wall, A circulation pump is disposed between the cooler body and the heat exchange structure to form a circulation loop.
  • the cooling medium in the direct contact cooler can directly contact the heat dissipating surface of the power device to remove heat, and on the other hand, the heat dissipation surface of the conventional power device and the heat dissipation of the cooler are eliminated relative to the heat dissipation mode in which the specific heat capacity of the air is smaller.
  • the contact thermal resistance of the board can significantly improve the heat transfer performance; on the other hand, through the circulating flow of the cooling medium, the heat exchange structure continuously removes heat, and the heat dissipation efficiency of the power device is greatly improved as a whole. At the same time, when the liquid direct contact cooler is operated, the temperature of the heat dissipation surface of the power device can be made uniform, and the service life of the power device can be improved.
  • phase change endotherm of atomization can further improve the heat dissipation efficiency of the power device.
  • FIG. 1 is a schematic structural view of a liquid direct contact cooler of Embodiment 1;
  • Embodiment 2 is a schematic structural view of a liquid direct contact cooler of Embodiment 2;
  • Embodiment 3 is a schematic structural view of a liquid direct contact cooler of Embodiment 3.
  • a liquid direct contact cooler of an embodiment for dissipating heat from a power device including a cooler body, a first heat exchange structure, and a circulation pump.
  • power devices are often used to refer to devices with relatively large power, including power semiconductor devices such as IGBTs, IGCTs, thyristors, rectifier bridges or relays.
  • the timely cooling of power devices during operation is the key to maintaining their long-term normal operation.
  • the cooler body has a cooling cavity and a heat dissipation port that communicates with the cooling cavity.
  • the cooling cavity is used to fill the cooling medium and is used to enable the cooling medium to directly contact the heat dissipating surface of the power device through the vent.
  • the cooler body surrounds at least a peripheral portion of the vent for sealingly mating with the heat sink wall.
  • the peripheral portion of the cooler body surrounding the heat dissipation port and the heat dissipation surface of the power device may be sealed and connected by an insulating sealant layer, so that the cooling medium directly contacts the heat dissipation surface of the power device for heat transfer, thereby improving heat transfer efficiency.
  • the cooling medium requires insulation and heat conduction, and commonly used silicone oil, mineral oil or vegetable oil can be used.
  • the heat dissipation opening is provided in a middle portion of a side wall of the cooler body.
  • the cooling passage of the first heat exchange structure is in communication with the cooling chamber through the return conduit.
  • the circulation pump is disposed on the return pipe for cooling the cooling medium flowing out of the cooling cavity through the first heat exchange structure and returning to the cooling cavity.
  • the conduits in which the first heat exchange structure and the cooler body are in communication may be connected by rigid conduits or flexible conduits.
  • the rigid pipe can be a pipe with a relatively high hardness such as a metal pipe
  • the flexible connecting pipe can be a plastic pipe or the like, and has a simple structure and is easy to install.
  • the first heat exchange structure in the embodiment is externally connected to the cooler body, and the conventional forced air cooling mode and the water cooling heat exchange mode can be used to cool and then recirculate the hot fluid flowing out of the cooling cavity. ,Improve efficiency.
  • the circulating liquid outlet of the cooler body is located at the bottom of the cooling chamber, and the circulating liquid outlet is in communication with the return conduit.
  • the circulating liquid inlet of the cooler body is located at the top of the cooling cavity, and the circulating liquid inlet is in communication with the return pipe.
  • the filling amount of the cooling medium in the cooling chamber can at least drown the heat dissipation port.
  • the liquid direct contact cooler may further include an injection structure disposed in the cooling cavity and disposed toward the heat dissipation opening, and the liquid storage cavity of the injection structure is in communication with the cooling passage of the first heat exchange structure. Below the vent located in the cooling chamber is a effluent portion for filling the cooling medium.
  • the injection structure includes a spray plate, and the spray plate is covered with a spray hole for spraying the cooling medium cooled from the cooling passage to the heat dissipation port through the liquid storage chamber to prevent the temperature from being higher at the bottom of the cooling chamber.
  • the mixing of the cooling medium can greatly improve the heat dissipation efficiency of the power device.
  • the spray plate can be further replaced with a nozzle.
  • the nozzle is disposed toward the heat dissipation port for discharging the cooling medium cooled from the cooling passage to the heat dissipation port by atomization through the liquid storage chamber.
  • the liquid direct contact cooler further includes a second heat exchange structure
  • the second heat exchange structure has a condensation passage
  • the condensation passage is in communication with the cooling chamber, and is used for condensing and refluxing the cooling medium evaporated from the liquid accumulation portion to the cooling Inside the cavity.
  • the second heat exchange structure is disposed on the cooler body and located at the top end of the cooling cavity.
  • the phase change of the cooling medium volatilized from the cooling chamber can further remove heat and improve heat dissipation efficiency.
  • the second heat exchange structure in the embodiment is externally connected to the cooler body or integrally formed with the cooler body, and the conventional forced air cooling mode and the water cooling heat exchange mode can be used to improve the efficiency.
  • liquid direct contact cooler of the present invention will be further described below in conjunction with specific embodiments.
  • the present embodiment provides a liquid immersion cooler 10 for heat dissipation of the power device 1 , including a cooler body 100 , a heat exchange structure 110 , and a circulation pump 120 .
  • the cooler body 100 has a cooling cavity 101 and a heat dissipation port that communicates with the cooling cavity 101.
  • the heat dissipation port is disposed at a middle portion of a side wall of the cooler body 100.
  • the cooling cavity 101 is used to fill the insulating and thermally conductive liquid, and is used to enable the insulating and thermally conductive liquid to directly contact the heat dissipating surface of the power device through the heat dissipation port.
  • the cooler body 100 is sealingly fitted to the heat dissipation wall through at least a peripheral portion of the heat dissipation port through an insulating sealant layer.
  • the liquid inlet of the heat exchange structure 110 is in communication with the liquid outlet of the cooler body 100, the liquid outlet of the heat exchange structure 110 is in communication with the liquid inlet of the cooler body 100, and the heat exchange structure 110 is used for cooling the cooling chamber.
  • the heat exchange structure 110 is heat exchanged by air cooling.
  • the circulation pump 120 is disposed on the pipe between the liquid storage port of the cooler body 100 and the liquid inlet of the heat exchange structure 110 to form a circulation loop between the cooler body 100 and the heat exchange structure 110.
  • the pre-filled insulating and heat-conducting liquid When the power device 1 is in operation, the pre-filled insulating and heat-conducting liquid directly contacts the heat-dissipating surface through the heat-dissipating port, absorbs heat, and then enters the heat-exchange channel of the heat-exchange structure 110 under the extraction power of the circulation pump 120 to cool, and the recirculation flow after cooling. Returning to the cooling chamber 101, the cycle continues and the heat generated by the power device 1 is taken away.
  • the present embodiment provides a liquid shower cooler 20 for heat dissipation of the power device 1, including a cooler body 200, a heat exchange structure 210, a circulation pump 220, and a spray structure 230.
  • the cooler body 200 has a cooling cavity 201 and a heat dissipation port that communicates with the cooling cavity 201.
  • the heat dissipation opening is disposed in a middle portion of a side wall of the cooler body 200.
  • the cooler body 200 surrounds at least a peripheral portion of the heat dissipation opening for sealingly engaging the heat dissipation wall through the insulating sealant layer.
  • the cooling passage of the heat exchange structure 210 is in communication with the cooling chamber 201 through a return conduit.
  • the heat exchange structure 210 is heat exchanged by water cooling.
  • the circulation pump 220 is disposed on the return conduit for cooling the cooling medium 2 flowing out of the cooling chamber 201 through the first heat exchange structure and then flowing back into the cooling chamber 201.
  • the circulating liquid outlet of the cooler body 200 is located at the bottom of the cooling chamber 201, and the circulating liquid outlet is in communication with the return conduit.
  • the injection structure 230 is located in the cooling cavity 201 and disposed toward the heat dissipation opening, and the liquid storage cavity of the injection structure 230 is in communication with the cooling passage of the heat exchange structure 210.
  • the cooling chamber 201 is located below the vent opening and is a effluent portion for filling the cooling medium 2.
  • the spray plate is covered with a spray hole for spraying the cooling medium 2 cooled and returned from the cooling passage to the heat dissipation port to prevent mixing with a higher temperature cooling medium located at the bottom of the cooling cavity 201, and the heat dissipation of the power device 1 can be greatly improved. effectiveness.
  • the cooling medium 2 pre-filled in the effusion portion enters the cooling passage of the heat exchange structure 210 to be cooled, and then recirculated back to the cooling chamber 201 after cooling, and continues to circulate and carry.
  • Power converter The heat of the piece 1.
  • the embodiment provides a liquid shower cooler 30 for heat dissipation of the power device 1, including a cooler body 300, a first heat exchange structure 310, a circulation pump 320, a spray structure 330, and a second Heat exchange structure 340.
  • the cooler body 300 has a cooling cavity 301 and a heat dissipation port that communicates with the cooling cavity 301.
  • the heat dissipation opening is disposed in a middle portion of a side wall of the cooler body 300.
  • the cooler body 300 surrounds at least a peripheral portion of the heat dissipation opening for sealingly engaging the heat dissipation wall through the insulating sealant layer.
  • the cooling passage of the first heat exchange structure 310 is in communication with the cooling chamber 301 through a return conduit.
  • the heat exchange structure 310 is heat exchanged by water cooling.
  • the circulation pump 320 is disposed on the return conduit for cooling the cooling medium 2 flowing out of the cooling chamber 301 through the first heat exchange structure 310 and then flowing back into the cooling chamber 301.
  • the circulating liquid outlet of the cooler body 300 is located at the bottom of the cooling chamber 301, and the circulating liquid outlet is in communication with the return conduit.
  • the injection structure 330 is located in the cooling cavity 301 and disposed toward the heat dissipation opening, and the liquid storage cavity of the injection structure 330 is in communication with the cooling passage of the first heat exchange structure 310.
  • the cooling chamber 301 is located below the vent opening and is a effluent portion for filling the cooling medium.
  • the spray structure 330 includes a plurality of nozzles, and the plurality of nozzles are arranged in an array, and the plurality of nozzles are disposed toward the heat dissipation opening for discharging the cooling medium 2 cooled from the cooling passage to the heat dissipation port through the liquid storage chamber, which can be further improved. heat radiation.
  • the second heat exchange structure 340 has a condensation passage that communicates with the cooling chamber 301 for condensing and returning the cooling medium 2 evaporated from the liquid accumulation portion into the cooling chamber 301.
  • the second heat exchange structure 340 is disposed on the cooler body 300 and is located at the top end of the cooling cavity 301.
  • the cooling medium 2 volatilized from the cooling chamber 301 undergoes a phase change, which can further remove heat and improve heat dissipation efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种直接接触式冷却器,包括冷却器本体(100)、换热结构(110)和循环泵(120),冷却器本体(100)的连接口的周缘用于与功率器件(1)配合密封冷却腔体(101),所述冷却器本体(100)的冷却腔体(101)和换热结构(110)可以通过循环泵(120)使冷却介质形成循环回路。工作时,直接接触式冷却器中的冷却介质可以直接与功率器件的散热表面相接触进而带走热量,一方面相对于空气比热容较小的散热方式,消除了传统功率器件的散热表面与冷却器的散热板的接触热阻,可显著提高传热性能,另一方面通过冷却介质的循环流动,换热结构不断带走热量,整体上大大提高了功率器件的散热效率。同时,液体直接接触式冷却器可以使功率器件的散热表面的温度均匀,提高功率器件的使用寿命。

Description

液体直接接触式冷却器 技术领域
本发明涉及功率器件的冷却技术领域,特别是涉及一种液体直接接触式冷却器。
背景技术
在实际工作中,高度集成的大功率器件产生的热量会使芯片温度升高,如果散热缓慢,就有可能使芯片温度升高到超过所允许的最高结温,器件的性能将显著下降,并且不能稳定工作,甚至可能会直接烧坏。因此控制大功率器件的升温速度,使芯片内部温度始终维持在允许的结温之内,保证机器稳定运行,成为大功率器件技术领域研究的重点和难题。
由于功率器件需要绝缘保护,功率器件的散热多采用风冷散热模式和水冷板散热器。当采用风冷散热模式时,空气的比热容较小,通过空气带走的热量相对较小,面对结构日益紧凑而功率日益增大的功率器件,风冷散热模式无法满足散热需求。当采用水冷板散热器时,将大功率器件直接贴附在水冷板散热器的表面,通过冷却水的循环流动来散热,这种散热方式一方面可能出现漏液导致停机,另一方面水冷基板散热器长期使用形成的水垢会大幅降低导热系数,并且接触热阻大,无法大功率器件的满足散热需求。
发明内容
基于此,有必要提供一种提高冷却效果的液体直接接触式冷却器。
一种液体直接接触式冷却器,用于功率器件的散热,包括冷却器本体、第一换热结构和循环泵;
所述冷却器本体具有冷却腔体和与所述冷却腔体相连通的散热口;所述冷却腔体用于填充冷却介质,并用于通过所述散热口使所述冷却介质能够直接接触所述功率器件的散热表面;所述冷却器本体至少围绕所述散热口的周边部分用于与所述散热壁密封配合;
所述第一换热结构的冷却通道与所述冷却腔体通过回流管道相连通;
所述循环泵设于所述回流管道上,用于使从所述冷却腔体内流出的所述冷却介质经所述第一换热结构冷却后回流至所述冷却腔体内。
在其中一个实施例中,所述散热口设于所述冷却器本体的一侧壁的中部。
在其中一个实施例中,所述冷却器本体的循环出液口位于所述冷却腔体的底部,所述循环出液口与所述回流管道相连通。
在其中一个实施例中,所述冷却器本体的循环进液口位于所述冷却腔体的顶部,所述循环进液口与所述回流管道相连通;当所述冷却器本体与所述功率器件密封配合时,在所述冷却腔体内,所述冷却介质的填充量至少能够淹没所述散热口。
在其中一个实施例中,所述液体直接接触式冷却器还包括喷射结构,所述喷射结构位于所述冷却腔体内且朝向所述散热口设置,所述喷射结构的储液腔与所述第一换热结构的所述冷却通道相连通;所述冷却腔体内位于所述散热口的下方为用于填充所述冷却介质的积液部。
在其中一个实施例中,所述喷射结构包括喷射板,所述喷射板上布满喷孔以用于使从所述冷却通道冷却回流的所述冷却介质喷向所述散热口。
在其中一个实施例中,所述喷射结构包括喷嘴,所述喷嘴朝向所述散热口设置以使从所述冷却通道冷却的所述冷却介质以雾化状喷向所述散热口。
在其中一个实施例中,所述喷嘴有多个,多个所述喷嘴呈阵列设置。
在其中一个实施例中,所述液体直接接触式冷却器还包括第二换热结构,所述第二换热结构具有冷凝通道,所述冷凝通道与所述冷却腔体相连通,用于从积液部挥发后的冷却介质冷凝回流至所述冷却腔体内。
在其中一个实施例中,所述第二换热结构设于所述冷却器本体上,且位于所述冷却腔体的顶端。
上述直接接触式冷却器包括冷却器本体、换热结构和循环泵,所述冷却腔体用于填充冷却介质,至少围绕所述散热口的周边部分用于与所述散热壁密封配合,所述循环泵设于冷却器本体和换热结构之间以形成循环回路。上述直接接触式冷却器中的冷却介质可以直接与功率器件的散热表面相接触进而带走热量,一方面相对于空气比热容较小的散热方式,消除了传统功率器件的散热表面与冷却器的散热板的接触热阻,可显著提高传热性能;另一方面通过冷却介质的循环流动,换热结构不断带走热量,整体上大大提高了功率器件的散热效率。同时,上述液体直接接触式冷却器工作时,可以使功率器件的散热表面的温度均匀,提高功率器件的使用寿命。
进一步地,通过设置喷射结构直接喷射冷却介质到功率器件的散热表面或使冷却介质 雾化发生相变吸热,可以进一步提高功率器件的散热效率。
附图说明
图1为实施例1的液体直接接触式冷却器的结构示意图;
图2为实施例2的液体直接接触式冷却器的结构示意图;
图3为实施例3的液体直接接触式冷却器的结构示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
一实施方式的液体直接接触式冷却器,用于功率器件的散热,包括冷却器本体、第一换热结构和循环泵。其中,功率器件常用于指功率比较大的器件,包括功率半导体器件,例如IGBT,IGCT、可控硅、整流桥或继电器等。功率器件在工作时的及时散热是维持其长期正常运行的关键。
在本实施方式中,冷却器本体具有冷却腔体和与冷却腔体相连通的散热口。冷却腔体用于填充冷却介质,并用于通过散热口使冷却介质能够直接接触功率器件的散热表面。冷却器本体至少围绕散热口的周边部分用于与散热壁密封配合。
具体地,冷却器本体上至少围绕散热口的周边部分和功率器件的散热表面之间可以通过绝缘密封胶层密封连接,使冷却介质直接与功率器件的散热表面相接触传热,提高传热效率。可以理解,冷却介质要求绝缘和导热,常用的硅油、矿物油或植物油均可以采用。优选地,散热口设于冷却器本体的一侧壁的中部。
第一换热结构的冷却通道与冷却腔体通过回流管道相连通。循环泵设于回流管道上,用于使从冷却腔体内流出的冷却介质经第一换热结构冷却后回流至冷却腔体内。
优选地,第一换热结构和冷却器本体相连通的管道可以采用刚性管道连接或柔性管道连接。刚性管道可以为金属管等硬度较大的管道,柔性连接管道可以为塑料管等,结构简单,易于安装。可以理解,本实施例方式中的第一换热结构外接于冷却器本体,其可以采用常规的强制空气冷却方式、水冷换热方式,使从冷却腔体中流出的热流体冷却后循环再用,提高效率。
在本实施方式中,优选地,冷却器本体的循环出液口位于冷却腔体的底部,循环出液口与回流管道相连通。
具体地,冷却器本体的循环进液口位于冷却腔体的顶部,循环进液口与回流管道相连通。当冷却器本体与功率器件密封配合时,在冷却腔体内,冷却介质的填充量至少能够淹没散热口。
进一步地,液体直接接触式冷却器还可以包括喷射结构,喷射结构位于冷却腔体内且朝向散热口设置,喷射结构的储液腔与第一换热结构的冷却通道相连通。冷却腔体内位于的散热口的下方为用于填充冷却介质的积液部。
具体地,喷射结构包括喷射板,喷射板上布满喷孔以用于通过储液腔使从冷却通道冷却回流的冷却介质喷向散热口,以防止与位于冷却腔体底部的温度较高的冷却介质混合,能够大大提高功率器件的散热效率。在其他实施方式中,喷射板可以进一步用喷嘴替代。喷嘴朝向散热口设置以用于通过储液腔使从冷却通道冷却的冷却介质以雾化状喷向散热口。为了进一步提高散热效果,喷嘴有可以多个,多个喷嘴呈阵列设置。
进一步地,液体直接接触式冷却器还包括第二换热结构,第二换热结构具有冷凝通道,冷凝通道与冷却腔体相连通,用于从积液部挥发后的冷却介质冷凝回流至冷却腔体内。优选地,第二换热结构设于冷却器本体上,且位于冷却腔体的顶端。从冷却腔体中挥发的冷却介质发生相变,可以进一步带走热量,提高散热效率。可以理解,本实施例方式中的第二换热结构外接于冷却器本体或者与冷却器本体一体化成型,其可以采用常规的强制空气冷却方式、水冷换热方式,提高效率。
下面结合具体实施例,进一步对本发明的液体直接接触式冷却器做出说明。
实施例1
请参考图1,本实施例提供一种液体浸泡式冷却器10,用于功率器件1的散热,包括冷却器本体100、换热结构110和循环泵120。
冷却器本体100具有冷却腔体101和与冷却腔体101相连通的散热口。散热口设于冷却器本体100的一侧壁的中部。冷却腔体101用于充满绝缘导热液体,并用于通过散热口使绝缘导热液体能够直接接触功率器件的散热表面。冷却器本体100至少围绕散热口的周边部分通过绝缘密封胶层与散热壁密封配合。
换热结构110的进液口与冷却器本体100的出液口相连通,换热结构110的出液口与冷却器本体100的进液口相连通,换热结构110用于冷却从冷却腔体101中流出的绝缘导热液体。换热结构110通过风冷换热。
循环泵120设于冷却器本体100的储液口和换热结构110的进液口之间的管道上使绝缘导热液体在冷却器本体100和换热结构110之间形成循环回路。
当功率器件1工作时,预先充满的绝缘导热液体直接通过散热口接触散热表面,吸收热量,再在循环泵120的抽取动力下进入换热结构110的换热通道内冷却,冷却后再循环流回冷却腔体101,持续循环并带走功率器件1的产生的热量。
实施例2
请参考图2,本实施例提供一种液体喷淋式冷却器20,用于功率器件1的散热,包括冷却器本体200、换热结构210、循环泵220和喷射结构230。
冷却器本体200具有冷却腔体201和于冷却腔体201相连通的散热口。散热口设于冷却器本体200的一侧壁的中部,冷却器本体200至少围绕散热口的周边部分用于与散热壁通过绝缘密封胶层密封配合。换热结构210的冷却通道与冷却腔体201通过回流管道相连通。换热结构210通过水冷换热。循环泵220设于回流管道上,用于使从冷却腔体201内流出的冷却介质2经所述第一换热结构冷却后回流至冷却腔体201内。冷却器本体200的循环出液口位于冷却腔体201的底部,循环出液口与回流管道相连通。
喷射结构230位于冷却腔体201内且朝向散热口设置,喷射结构230的储液腔与换热结构210的冷却通道相连通。冷却腔体201位于散热口的下方为用于填充冷却介质2的积液部。喷射板上布满喷孔以用于使从冷却通道冷却回流的冷却介质2喷向散热口,防止与位于冷却腔体201底部的温度较高的冷却介质混合,能够大大提高功率器件1的散热效率。
当功率器件1工作时,循环泵220的抽取下,预先填充在积液部的冷却介质2进入换热结构210的冷却通道内冷却,冷却后再循环流回冷却腔体201,持续循环并带走功率器 件1的发热量。
实施例3
请参考图3,本实施例提供一种液体喷淋式冷却器30,用于功率器件1的散热,包括冷却器本体300、第一换热结构310、循环泵320、喷射结构330和第二换热结构340。
冷却器本体300具有冷却腔体301和于冷却腔体301相连通的散热口。散热口设于冷却器本体300的一侧壁的中部,冷却器本体300至少围绕散热口的周边部分用于与散热壁通过绝缘密封胶层密封配合。第一换热结构310的冷却通道与冷却腔体301通过回流管道相连通。换热结构310通过水冷换热。循环泵320设于回流管道上,用于使从冷却腔体301内流出的冷却介质2经所述第一换热结构310冷却后回流至冷却腔体301内。冷却器本体300的循环出液口位于冷却腔体301的底部,循环出液口与回流管道相连通。
喷射结构330位于冷却腔体301内且朝向散热口设置,喷射结构330的储液腔与第一换热结构310的冷却通道相连通。冷却腔体301位于散热口的下方为用于填充冷却介质的积液部。喷射结构330包括多个喷嘴,多个喷嘴呈阵列设置,多个喷嘴朝向散热口设置以用于通过储液腔使从冷却通道冷却的冷却介质2以雾化状喷向散热口,可以进一步提高散热效果。
第二换热结构340具有冷凝通道,冷凝通道与冷却腔体301相连通,用于从积液部挥发后的冷却介质2冷凝回流至冷却腔体301内。第二换热结构340设于冷却器本体300上,且位于冷却腔体301的顶端。从冷却腔体301中挥发的冷却介质2发生相变,可以进一步带走热量,提高散热效率。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种液体直接接触式冷却器,用于功率器件的散热,其特征在于,包括冷却器本体、第一换热结构和循环泵;
    所述冷却器本体具有冷却腔体和与所述冷却腔体相连通的散热口;所述冷却腔体用于填充冷却介质,并用于通过所述散热口使所述冷却介质能够直接接触所述功率器件的散热表面;所述冷却器本体至少围绕所述散热口的周边部分用于与所述散热壁密封配合;
    所述第一换热结构的冷却通道与所述冷却腔体通过回流管道相连通;
    所述循环泵设于所述回流管道上,用于使从所述冷却腔体内流出的所述冷却介质经所述第一换热结构冷却后回流至所述冷却腔体内。
  2. 根据权利要求1所述的液体直接接触式冷却器,其特征在于,所述散热口设于所述冷却器本体的一侧壁的中部。
  3. 根据权利要求2所述的液体直接接触式冷却器,其特征在于,所述冷却器本体的循环出液口位于所述冷却腔体的底部,所述循环出液口与所述回流管道相连通。
  4. 根据权利要求3所述的液体直接接触式冷却器,其特征在于,所述冷却器本体的循环进液口位于所述冷却腔体的顶部,所述循环进液口与所述回流管道相连通;当所述冷却器本体与所述功率器件密封配合时,在所述冷却腔体内,所述冷却介质的填充量至少能够淹没所述散热口。
  5. 根据权利要求3所述的液体直接接触式冷却器,其特征在于,还包括喷射结构,所述喷射结构位于所述冷却腔体内且朝向所述散热口设置,所述喷射结构的储液腔与所述第一换热结构的所述冷却通道相连通;所述冷却腔体位于所述散热口的下方为用于填充所述冷却介质的积液部。
  6. 根据权利要求5所述的液体直接接触式冷却器,其特征在于,所述喷射结构包括喷射板,所述喷射板上布满喷孔以用于使从所述冷却通道冷却回流的所述冷却介质喷向所述散热口。
  7. 根据权利要求5所述的液体直接接触式冷却器,其特征在于,所述喷射结构包括喷嘴,所述喷嘴朝向所述散热口设置以使从所述冷却通道冷却的所述冷却介质以雾化状喷向所述散热口。
  8. 根据权利要求7所述的液体直接接触式冷却器,其特征在于,所述喷嘴有多个, 多个所述喷嘴呈阵列设置。
  9. 根据权利要求5至8中任一项所述的液体直接接触式冷却器,其特征在于,还包括第二换热结构,所述第二换热结构具有冷凝通道,所述冷凝通道与所述冷却腔体相连通,用于从积液部挥发后的冷却介质冷凝回流至所述冷却腔体内。
  10. 根据权利要求9所述的液体直接接触式冷却器,其特征在于,所述第二换热结构设于所述冷却器本体上,且位于所述冷却腔体的顶端。
PCT/CN2017/074714 2017-01-24 2017-02-24 液体直接接触式冷却器 WO2018137265A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710054242.2A CN106783770B (zh) 2017-01-24 2017-01-24 液体直接接触式冷却器
CN201710054242.2 2017-01-24

Publications (1)

Publication Number Publication Date
WO2018137265A1 true WO2018137265A1 (zh) 2018-08-02

Family

ID=58942616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074714 WO2018137265A1 (zh) 2017-01-24 2017-02-24 液体直接接触式冷却器

Country Status (2)

Country Link
CN (1) CN106783770B (zh)
WO (1) WO2018137265A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107660104B (zh) * 2017-09-30 2023-10-31 广东西江数据科技有限公司 一种液冷均液器及使用该液冷均液器的液冷散热器
CN111947262A (zh) * 2020-08-31 2020-11-17 西安工程大学 基于液冷与蒸发冷却技术相结合的数据中心用空调系统
CN114286604B (zh) * 2021-12-30 2023-03-31 兰洋(宁波)科技有限公司 一种新型液冷散热系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205397A (ja) * 1989-02-04 1990-08-15 Fanuc Ltd ヒートパイプユニットを備えた電子機器筐体
CN2864986Y (zh) * 2005-12-19 2007-01-31 元山科技工业股份有限公司 用于电子元件的散热装置
CN1993030A (zh) * 2005-12-30 2007-07-04 财团法人工业技术研究院 紧凑型喷雾冷却散热装置
US20070183125A1 (en) * 2006-02-06 2007-08-09 Isothermal Systems Research, Inc. Narrow gap spray cooling in a globally cooled enclosure
CN101534627A (zh) * 2009-04-23 2009-09-16 中国科学技术大学 高效整体式喷雾冷却系统
CN101826578A (zh) * 2009-03-03 2010-09-08 赵继永 大功率led相变冷却装置
CN205566950U (zh) * 2016-03-18 2016-09-07 苏州大景能源科技有限公司 一种整体式液冷散热机箱
CN206412347U (zh) * 2017-01-24 2017-08-15 广东合一新材料研究院有限公司 液体直接接触式冷却器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315489A (ja) * 1992-05-08 1993-11-26 Fuji Electric Co Ltd 電子機器の液冷式冷却装置
US6550263B2 (en) * 2001-02-22 2003-04-22 Hp Development Company L.L.P. Spray cooling system for a device
JP4520487B2 (ja) * 2007-06-15 2010-08-04 株式会社日立製作所 電子機器用冷却装置
JP2011210776A (ja) * 2010-03-29 2011-10-20 Sunarrow Ltd 液冷式冷却装置
CN203279429U (zh) * 2013-01-09 2013-11-06 中国科学院电工研究所 用于发热装置的喷淋式蒸发冷却循环系统
CN103928414B (zh) * 2014-04-15 2017-02-15 合肥工业大学 一种电子元器件液冷散热系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205397A (ja) * 1989-02-04 1990-08-15 Fanuc Ltd ヒートパイプユニットを備えた電子機器筐体
CN2864986Y (zh) * 2005-12-19 2007-01-31 元山科技工业股份有限公司 用于电子元件的散热装置
CN1993030A (zh) * 2005-12-30 2007-07-04 财团法人工业技术研究院 紧凑型喷雾冷却散热装置
US20070183125A1 (en) * 2006-02-06 2007-08-09 Isothermal Systems Research, Inc. Narrow gap spray cooling in a globally cooled enclosure
CN101826578A (zh) * 2009-03-03 2010-09-08 赵继永 大功率led相变冷却装置
CN101534627A (zh) * 2009-04-23 2009-09-16 中国科学技术大学 高效整体式喷雾冷却系统
CN205566950U (zh) * 2016-03-18 2016-09-07 苏州大景能源科技有限公司 一种整体式液冷散热机箱
CN206412347U (zh) * 2017-01-24 2017-08-15 广东合一新材料研究院有限公司 液体直接接触式冷却器

Also Published As

Publication number Publication date
CN106783770B (zh) 2024-04-02
CN106783770A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
EP3474647B1 (en) Cooling system of working medium contact type for high-power device, and working method thereof
WO2019144740A1 (zh) 一种喷淋式液冷服务器
CN105682434A (zh) 一种结合热电制冷和微通道液冷的复合散热装置
CN105960148B (zh) 一种可间断式工质接触式冷却系统
WO2018137265A1 (zh) 液体直接接触式冷却器
KR101914927B1 (ko) 전력용 반도체의 냉각 모듈
CN100461995C (zh) 阵列射流式微型换热器
US7584622B2 (en) Localized refrigerator apparatus for a thermal management device
JP5786132B2 (ja) 電気自動車
CN115551302A (zh) 散热系统及电子设备
TW201348665A (zh) 飲水機及其所使用之熱電熱泵裝置
CN106793712B (zh) 毛细相变冷却器及其安装方法
CN105934140B (zh) 一种大功率电力器件的工质接触式冷却系统
US20100089555A1 (en) Liquid-cooling type thermal module
CN201994284U (zh) 一种散热装置及功率模块
CN111106081A (zh) 一种基于薄液膜蒸发的近结冷却装置
WO2017215160A1 (zh) 一种可间断式工质接触式冷却系统
CN205542899U (zh) 半导体制冷组件
CN206412347U (zh) 液体直接接触式冷却器
CN110944488B (zh) 散热装置及电子设备
KR20080046517A (ko) 공기조화기의 실외기 및 이를 구비한 공기조화기
KR101524939B1 (ko) 발열체 냉각을 위한 수냉식 워터재킷 및 이를 포함하는 냉각탱크
KR101565559B1 (ko) 배수부를 구비하여 냉각효율이 향상된 열전모듈을 이용한 냉각장치
CN217037765U (zh) 一种水道结构
CN219832643U (zh) 一种半导体制冷芯片的液冷系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894646

Country of ref document: EP

Kind code of ref document: A1