WO2018135763A1 - 전극단자 접속 플레이트를 포함하고 있는 전지팩 - Google Patents

전극단자 접속 플레이트를 포함하고 있는 전지팩 Download PDF

Info

Publication number
WO2018135763A1
WO2018135763A1 PCT/KR2017/015067 KR2017015067W WO2018135763A1 WO 2018135763 A1 WO2018135763 A1 WO 2018135763A1 KR 2017015067 W KR2017015067 W KR 2017015067W WO 2018135763 A1 WO2018135763 A1 WO 2018135763A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode terminal
plate
battery pack
welding
cap assembly
Prior art date
Application number
PCT/KR2017/015067
Other languages
English (en)
French (fr)
Inventor
양근주
조용준
윤석진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP17892888.3A priority Critical patent/EP3432384B1/en
Priority to US16/340,004 priority patent/US11139517B2/en
Priority to JP2018553394A priority patent/JP6698869B2/ja
Priority to CN201780024465.2A priority patent/CN109075281B/zh
Publication of WO2018135763A1 publication Critical patent/WO2018135763A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/206Laser sealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/152Lids or covers characterised by their shape for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/505Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/526Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack including an electrode terminal connecting plate.
  • lithium secondary batteries such as lithium ion batteries and lithium ion polymer batteries is high.
  • secondary batteries are classified according to the structure of an electrode assembly having a structure in which a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode are formed.
  • Jelly-roll type electrode assembly having a structure wound in a state where a separator is interposed, a stack type electrode assembly in which a plurality of anodes and cathodes cut in units of a predetermined size are sequentially stacked with a separator therebetween Etc. can be mentioned.
  • a stack / folding electrode assembly having a structure in which unit cells stacked in an interposed state are sequentially stacked in a state of being placed on a separation film has been developed.
  • the secondary battery is a cylindrical battery and a rectangular battery in which the electrode assembly is embedded in a cylindrical or rectangular metal can according to the shape of the battery case, and a pouch type battery in which the electrode assembly is embedded in a pouch type case of an aluminum laminate sheet. Are classified.
  • the secondary battery may be used in the form of a single battery, or in the form of a battery pack in which a plurality of unit cells are electrically connected, depending on the type of external device in which the secondary battery is used.
  • a small device such as a mobile phone can operate for a predetermined period of time with one battery output and capacity, while in a notebook computer, a small PC, etc., a plurality of cylindrical batteries can be paralleled and serialized due to power and capacity issues.
  • a battery pack connected in a manner is required.
  • cylindrical cells are preferred over square or polymer cells in terms of capacity and output.
  • FIG. 1 is a vertical cross-sectional view schematically showing the structure of a conventional cylindrical battery cell.
  • the cylindrical battery cell 100 receives the electrode assembly 120 having a wound structure into a cylindrical cell case 130, injects an electrolyte solution into the cell case 130, and then the cell case 130. By manufacturing by clamping the cap assembly 140 to the open top of the).
  • the cap assembly 140 has a positive terminal formed at the upper center portion 141, and the remaining portions of the cylindrical battery cell 100 except for the upper central portion 141 of the cap assembly 140 form the negative terminal.
  • the electrode assembly 120 is manufactured by sequentially stacking the positive electrode 121, the negative electrode 122, and the separator 123 and winding them in a round shape.
  • a cylindrical center pin 160 is inserted into the through-shaped core 150 formed at the center of the electrode assembly 120.
  • the center pin 160 is generally made of a metal material to impart a predetermined strength, and has a hollow cylindrical structure in which a plate is rounded.
  • the center pin 160 acts as a passage for fixing and supporting the electrode assembly 120 and for releasing gas generated by internal reaction during charging and discharging and during operation.
  • a battery pack used in a notebook computer, a small PC, etc. is connected to a protection circuit module (PCM) in a battery cell array consisting of a parallel or series connection of a plurality of cylindrical batteries in a pack case or case member It consists of a structure mounted inside.
  • PCM protection circuit module
  • the battery cell arrangements are electrically connected to each other by connecting the connection members made of metal plates to the electrode terminals of the respective battery cells by welding.
  • the connecting members are welded to the upper and lower ends of the cylindrical battery cells facing each other according to their polarity so as to minimize interference between each other and prevent problems of internal short circuits.
  • connection members are located at both the upper and lower sides of the cylindrical battery cells facing each other, in the process of assembling and arranging some components of the battery pack, the components are located at the upper or lower portions of the cylindrical battery cells. Structural restrictions such as failing to install will result.
  • the welding process for connecting the cylindrical battery cells in this structure first, the welding of the connection member to one of the top or bottom of the cap assembly of the battery cells is located.
  • connection members are coupled to the positive electrode terminal and the negative electrode terminal at the same portion, such as the upper portion where the cap assemblies of the cylindrical battery cells are located, may be considered.
  • the positive electrode terminal is formed on the upper center portion of the cap assembly having a relatively large area, while the negative electrode terminal is formed on the upper surface of the clamping portion having a relatively narrow area, except for the upper center portion of the cap assembly. do.
  • the connecting member is relatively cumbersome, and when the connecting member is configured to have a thin thickness to improve such weldability, the negative electrode of the cylindrical battery cells increases as the resistance of the connecting member increases. Heat may be generated in the process of passing current between the terminals, which may act as a factor of degrading the safety of the battery pack.
  • the connecting member coupled to the upper end surface of the clamping part of the cylindrical battery cell should be formed in a structure that facilitates welding to the upper end surface of the clamping part and smoothly conducts electricity between negative electrode terminals.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • the inventors of the present application configure the first electrode terminal connecting plate coupled to the upper surfaces of the clamping parts of the battery cells, as described later. do.
  • the other configuration to configure the battery pack in the lower portion of the cylindrical battery cells opposite the upper end of the cap assembly Since the elements can be positioned, the structure of the battery pack can be configured more flexibly.
  • the cap assembly is coupled to the open one surface of the cylindrical can to form a clamping portion, the first electrode terminal on the upper surface of the upper surface of the clamping portion and the cap assembly, respectively. And a plurality of cylindrical battery cells forming a second electrode terminal. And a first electrode terminal connecting plate coupled to the upper ends of the clamping parts of the battery cells in a state in which the cylindrical battery cells are arranged side by side so that the cap assemblies of the cylindrical battery cells face the same direction.
  • the first electrode terminal connecting plate includes: a welding plate having a relatively thin thickness to be welded to the upper surface of the clamping portion of the cap assembly; And a conductive plate coupled to an upper surface of the welding plate opposite to the cap assembly, the conductive plate having a relatively thicker thickness than the welding plate for smooth energization between the first electrode terminals of the upper surface of the clamping part. It may be a structure including a.
  • the welding plate can more easily perform welding of the first electrode terminal connecting plate to the upper surfaces of the clamping portion, and at the same time, smooth energization between the first electrode terminals through the conductive plate is possible, resulting in safety.
  • the first electrode terminal connecting plate and the second electrode terminal connecting plate are configured to be coupled to each other with respect to the upper end of the cap assembly. Since the other components constituting the pack can be located, the structure of the battery pack can be configured more flexibly, and accordingly, restrictions on various shapes of the device mounting part can be easily removed.
  • the first electrode terminal connecting plate is formed in a plate-like structure, so as to be coupled to the upper surface of the clamping portion except for the second electrode terminal of the cylindrical battery cell, the portion corresponding to the second electrode terminal
  • the through hole may be perforated.
  • the first electrode terminal connecting plate does not contact or interfere with each other through the second electrode terminal of the cylindrical battery cell or the second electrode terminal connecting plate connected to and coupled to the second electrode terminal through the through hole. Therefore, problems such as internal short circuits that may occur due to the contact or interference can be prevented.
  • the through-holes are each drilled to communicate with each other in the corresponding portions of the welding plate and the conductive plate;
  • the through hole drilled in the welding plate may have a structure having a relatively smaller inner diameter than the through hole drilled in the conductive plate.
  • the inner periphery of the through hole of the welding plate may be formed to be exposed from the top through the through hole of the conductive plate, and thus, through the through hole, the through hole of the welding plate with respect to the upper end surface of the clamping part. Welding of the inner peripheral portion can be performed more easily.
  • the through hole of the welding plate is positioned relatively adjacent to the upper inner circumference of the clamping portion, between the upper inner circumference and the upper outer circumference of the clamping portion, such that its inner periphery is in contact with the upper surface of the clamping portion of the cap assembly. Consisting of a size;
  • the through hole of the conductive plate has an upper end of the clamping part between an inner circumference of the through hole of the welding plate and an upper outer circumference of the clamping part such that an inner periphery of the through hole of the welding plate in contact with the upper end face of the clamping part of the cap assembly is exposed from the upper part. It may have a structure having a size located adjacent to the outer periphery.
  • the area of the inner periphery of the through hole of the welding plate in contact with the upper end surface of the clamping part and the area of the inner periphery of the through hole of the welding plate exposed from the upper part through the through hole of the conductive plate can be maximized. Since welding of the inner periphery of the through-hole of the welding plate to the upper end of the clamping part can be performed more easily, and the welding area increases, the welding strength of the first electrode terminal connecting plate to the upper end of the clamping part is increased. Increasingly, structural stability can be further improved.
  • the size of the inner circumference of the through hole of the welding plate exposed through the through hole of the conductive plate may be 10% to 90% of the size of the upper surface of the clamping part of the cap assembly.
  • the welding plate may have a thickness of 0.1 mm to 0.5 mm.
  • the thickness of the welding plate is less than 0.1 millimeter, the thickness of the welding plate is too thin, and the welding plate may be damaged during welding to the upper end surface of the clamping part of the cap assembly, thereby causing a welding defect.
  • the thickness of the welding plate exceeds 0.5 millimeters, the thickness of the welding plate may be too thick, so that welding to the upper surface of the clamping portion of the cap assembly may not be easy, and sufficient welding may not be performed. As a result, there is a problem that the welding strength can be reduced.
  • the thickness of the conductive plate may be 1 millimeter to 10 millimeters.
  • the thickness of the conductive plate is less than 1 millimeter, as the thickness of the conductive plate becomes too thin, resistance may increase, and thus, smooth conduction between the first electrode terminals through the conductive plate may occur. This can be difficult.
  • the thickness of the conductive plate exceeds 10 millimeters, the thickness of the conductive plate is unnecessarily thick, so as to increase the size of the battery pack or to apply it to a limited mounting space of the device. There is a problem that can lower the capacity.
  • the welding plate and the conductive plate may be made of one or more different metals selected from the group consisting of copper, aluminum, nickel, copper alloys, aluminum alloys, and nickel alloys, respectively.
  • the welding plate improves weldability to the upper surface of the clamping portion of the cap assembly, while the conductive plate plays a role of smooth conduction between the first electrode terminals.
  • the welding plate and the conductive plate are different in their respective functions, and thus may be made of different metals so as to better perform the respective functions.
  • the welding plate may be made of nickel or nickel alloy with relatively good weldability
  • the conductive plate is copper, aluminum, copper alloy
  • it may be made of one or more metals selected from the group consisting of aluminum alloys.
  • the welding plate and the conductive plate may be a structure that is coupled to each other by laser welding.
  • laser welding is a welding using a high energy laser beam, and fine welding is possible.
  • the battery pack is located on the upper surface of the first electrode terminal connecting plate facing the cap assembly of the cylindrical battery cell, the upper end of the cap assembly to connect the second electrode terminals formed in the upper center portion of the cap assembly A second electrode terminal connecting plate coupled to the central portion at the same time; And an insulating member interposed between the first electrode terminal connection plate and the second electrode terminal connection plate to insulate the first electrode terminal connection plate and the second electrode terminal connection plate. It may be a structure comprising more.
  • the battery pack includes a second electrode terminal connecting plate connected at the upper end of the same cap assembly as the first electrode terminal connecting plate, and thus, at the lower portion of the cylindrical battery cells facing the upper end of the cap assembly, It is possible to position other components constituting the, and thus, the structure of the battery pack can be configured more flexibly, it is possible to easily remove the restrictions on the various shapes of the device mounting portion.
  • the second electrode terminal connecting plate may have a structure in which the connecting portion corresponding to the second electrode terminal formed at the upper center portion of the cap assembly is projected downward so as to face the second electrode terminal.
  • the connecting portion of the second electrode terminal connecting plate corresponding to the second electrode terminal formed on the upper center portion of the cap assembly protrudes downward through the through hole drilled in the first electrode terminal connecting plate, thereby forming the top center of the cap assembly.
  • the second electrode terminal formed at the site may be coupled to face more easily.
  • the second electrode terminal connecting plate has a horizontal cross section, the size of the connecting portion corresponding to the second electrode terminal formed at the center of the upper end of the cap assembly, the inner periphery of the through-hole perforated in the welding plate of the first electrode terminal connecting plate
  • the size of the site it can be from 50% to 90%.
  • the size of the connecting portion of the second electrode terminal connecting plate corresponding to the second electrode terminal formed at the upper center portion of the cap assembly is out of the range and is too small, the stable welding strength to the second electrode terminal It may not be able to exert, and thus the structural stability of the battery pack may be lowered.
  • connection portion of the second electrode terminal connection plate corresponding to the second electrode terminal formed at the upper center portion of the cap assembly is out of the range and is too large, the downwardly protruding second electrode terminal connection
  • the connection part of the plate is in direct contact with the inner peripheral part of the through hole of the first electrode terminal connection plate, there is a problem that an internal short circuit may occur.
  • the insulating member may be an insulating sheet having a flat structure having the same structure as that of the first electrode terminal connecting plate.
  • the insulating member is an insulating sheet, the planar structure of the same structure as the first electrode terminal connecting plate, more specifically, the through-hole communicating with the through hole of the first electrode terminal connecting plate is perforated. It may be a structure.
  • the through hole drilled in the insulating member may prevent direct contact between the first electrode terminal connecting plate and the second electrode terminal connecting plate through the through hole and an internal short circuit caused by the first electrode terminal.
  • the through-hole of the connection plate in particular, it may be made smaller than the through-hole of the conductive plate, more specifically, the size of the through-hole perforated in the insulating member, the second electrode formed in the upper center portion of the cap assembly In the range of not interfering with the connecting portion of the second electrode terminal connecting plate protruding downward to connect with the terminal, it may be 90 to 99% of the size of the through hole of the conductive plate.
  • the insulating sheet may have a structure in which an adhesive material is added to at least one surface of both surfaces facing the first electrode terminal connecting plate and the second electrode terminal connecting plate, respectively.
  • the insulating sheet can suppress the flow between the first electrode terminal connecting plate and the second electrode terminal connecting plate, and the direct contact between the electrode terminal connecting plates due to the flow of the insulating sheet and the corresponding internal short circuit can be observed. It can be effectively prevented.
  • the cylindrical battery pack according to the present invention comprises a first electrode terminal connecting plate coupled to the upper surfaces of the clamping parts of the battery cells, the welding plate and the conductive plate having different thicknesses.
  • the upper end of the cap assembly is configured to couple both the first electrode terminal connecting plate and the second electrode terminal connecting plate.
  • Such a structure can place other components constituting the battery pack on the lower portions of the cylindrical battery cells opposite to the top of the cap assembly, so that the structure of the battery pack can be configured more flexibly, and thus, the device There is an effect that can be easily removed constraints on various shapes of the mounting portion.
  • FIG. 1 is a vertical cross-sectional view schematically showing the structure of a conventional cylindrical battery cell
  • FIG. 2 is a schematic diagram schematically showing the structure of a battery pack according to an embodiment of the present invention
  • FIG. 3 is a plan view schematically illustrating a structure in which the first electrode terminal connecting plate of FIG. 2 is coupled to cap assemblies of cylindrical battery cells;
  • FIG. 4 is a vertical cross-sectional view schematically showing the structure of the battery pack of FIG.
  • FIG. 2 is a schematic diagram schematically showing the structure of a battery pack according to an embodiment of the present invention.
  • the battery pack 200 includes a first electrode terminal connecting plate 210, a second electrode terminal connecting plate 240, and an insulation on the top of the cap assembly 202 of the cylindrical battery cell 201.
  • the member 250 is formed by joining.
  • the first electrode terminal connecting plate 210 includes a welding plate 220 coupled to the top of the cap assembly 202 of the cylindrical battery cell 201 and a conductive plate 230 coupled to the upper surface of the welding plate 220. have.
  • Through-holes are respectively formed in the portions corresponding to the second electrode terminals formed in the upper center portion of the cap assembly 202 of the cylindrical battery cell 201 in the portions corresponding to each other of the welding plate 220 and the conductive plate 230. 221 and 231 are perforated.
  • the insulating member 250 has a sheet shape in which a through hole 251 having the same shape is drilled in a portion corresponding to the through holes 221 and 231 of the first electrode terminal connecting plate 210.
  • the second electrode terminal connecting plate 240 is coupled to an upper surface of the first electrode terminal connecting plate 210 with the insulating member 250 interposed therebetween.
  • FIG. 3 is a plan view schematically illustrating a structure in which the first electrode terminal connecting plate of FIG. 2 is coupled to cap assemblies of cylindrical battery cells.
  • the second electrode terminal 213 is formed at the center of the upper end of the cap assembly 202 of the cylindrical battery cell 201, and the upper part of the clamping part is excluded from the other parts except the second electrode terminal 213.
  • the first electrode terminal is formed on the surface 212.
  • the welding plate 220 and the conductive plate 230 of the first electrode terminal connection plate 210 have circular through holes 221 and 231 communicating with each other at a portion corresponding to the second electrode terminal 213. Perforated
  • the diameter D1 of the inner circumferential portion of the through hole 221 drilled into the welding plate 220 is relatively smaller than the diameter D2 of the inner circumferential portion of the through hole 231 drilled into the conductive plate 230. consist of.
  • the inner periphery of the through hole 221 drilled in the welding plate 220 is in contact with the upper end surface 212 of the clamping portion, and is exposed from the top through the through hole 231 of the conductive plate 230, Accordingly, welding of the welding plate 220 to the clamping top surface 212 may be more easily performed.
  • the welding of the welding plate 220 and the clamping portion top surface 212 is performed at three locations 261, 262, 263 spaced apart from each other.
  • FIG. 4 is a vertical cross-sectional view schematically showing the structure of the battery pack of FIG.
  • the welding plate 220 of the first electrode terminal connecting plate 210 is in contact with the upper end surface 212 of the clamping part forming the first electrode terminal of the cylindrical battery cell 201, and the through hole ( 221 is formed to a size where the inner peripheral portion is located adjacent to the inner circumference of the upper end surface 212 of the clamping portion.
  • the conductive plate 230 of the first electrode terminal connection plate 210 is coupled to the upper surface of the welding plate 220, the through-hole 231 has an inner peripheral portion adjacent to the outer circumference of the upper surface 212 of the clamping portion It consists of a size that is located.
  • the inner peripheral portion of the through hole 221 of the welding plate 220 is exposed from the upper portion through the through hole 231 of the conductive plate 230, so that the clamping portion upper surface 212 is more easily provided. Welding can be performed.
  • the conductive plate 230 has a relatively thick structure compared to the welding plate 220.
  • the insulating member 250 is interposed between the second electrode terminal connecting plate 240 on the top surface of the conductive plate 230 and has a size relatively smaller than that of the through hole 231 of the conductive plate 230.
  • the through hole 251 is included.
  • a connection portion 241 coupled to the second electrode terminal 213 of the cylindrical battery cell 201 connects the through hole 251 and the first electrode terminal of the insulating member 250. It protrudes downward through the through holes 221 and 231 of the plate 210, and has a structure connected to the second electrode terminal 213 of the cylindrical battery cell 201.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

본 발명은, 원통형 캔의 개방된 일면에 캡 어셈블리가 결합되어 클램핑부를 형성하고, 상기 클램핑부의 상단면 및 캡 어셈블리의 상단 중앙부위에 각각 제 1 전극단자 및 제 2 전극단자를 형성하는 복수의 원통형 전지셀들; 및 상기 원통형 전지셀들의 캡 어셈블리들이 동일한 방향을 향하도록 원통형 전지셀들이 측면 배열된 상태에서, 상기 전지셀들의 클램핑부 상단면들에 동시에 결합되는 제 1 전극단자 접속 플레이트;를 포함하고 있고, 상기 제 1 전극단자 접속 플레이트는, 캡 어셈블리의 클램핑부 상단면에 용접되도록, 상대적으로 얇은 두께로 이루어진 용접 플레이트; 및 상기 캡 어셈블리에 대향하는 용접 플레이트의 상면에 결합되어 있고, 상기 클램핑부 상단면의 제 1 전극단자들 사이의 원활한 통전을 위해 상기 용접 플레이트에 비해 상대적으로 두꺼운 두께로 이루어진 도전성 플레이트;를 포함하는 것을 특징으로 하는 전지팩을 제공한다.

Description

전극단자 접속 플레이트를 포함하고 있는 전지팩
본 발명은 전극단자 접속 플레이트를 포함하고 있는 전지팩에 관한 것이다.
최근, 화석연료의 고갈에 의한 에너지원의 가격 상승, 환경 오염의 관심이 증폭되며, 친환경 대체 에너지원에 대한 요구가 미래생활을 위한 필수 불가결한 요인이 되고 있다.
이에 원자력, 태양광, 풍력, 조력 등 다양한 전력 생산기술들에 대한 연구가 지속되고 있으며, 이렇게 생산된 에너지를 더욱 효율적으로 사용하기 위한 전력저장장치 또한 지대한 관심이 이어지고 있다.
특히, 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 전지의 수요가 급격히 증가하고 있고, 그에 따라 다양한 요구에 부응할 수 있는 전지에 대한 많은 연구가 행해지고 있다.
대표적으로 전지의 형상 면에서는 얇은 두께로 휴대폰 등과 같은 제품들에 적용될 수 있는 각형 이차전지와 파우치형 이차전지에 대한 수요가 높고, 재료 면에서는 높은 에너지 밀도, 방전 전압, 출력 안정성 등의 장점을 가진 리튬이온 전지, 리튬이온 폴리머 전지 등과 같은 리튬 이차전지에 대한 수요가 높다.
또한, 이차전지는 양극, 음극, 및 양극과 음극 사이에 개재되는 분리막이 적층된 구조의 전극조립체가 어떠한 구조로 이루어져 있는지에 따라 분류되기도 하는 바, 대표적으로는, 긴 시트형의 양극들과 음극들을 분리막이 개재된 상태에서 권취한 구조의 젤리-롤형(권취형) 전극조립체, 소정 크기의 단위로 절취한 다수의 양극과 음극들을 분리막을 개재한 상태로 순차적으로 적층한 스택형(적층형) 전극조립체 등을 들 수 있다.
최근에는, 상기 젤리-롤형 전극조립체 및 스택형 전극조립체가 갖는 문제점을 해결하기 위해, 상기 젤리-롤형과 스택형의 혼합 형태인 진일보한 구조의 전극조립체로서, 소정 단위의 양극과 음극들을 분리막을 개재한 상태로 적층한 단위셀들을 분리필름 상에 위치시킨 상태에서 순차적으로 권취한 구조의 스택/폴딩형 전극조립체가 개발되었다.
또한, 이차전지는 전지케이스의 형상에 따라, 전극조립체가 원통형 또는 각형의 금속 캔에 내장되어 있는 원통형 전지 및 각형 전지와, 전극조립체가 알루미늄 라미네이트 시트의 파우치형 케이스에 내장되어 있는 파우치형 전지로 분류된다.
이러한 이차전지는 그것이 사용되는 외부기기의 종류에 따라, 단일전지의 형태로 사용되기도 하고, 또는 다수의 단위전지들을 전기적으로 연결한 전지팩의 형태로 사용되기도 한다.
예를 들어, 휴대폰과 같은 소형 디바이스는 전지1 개의 출력과 용량으로 소정의 시간 동안 작동이 가능한 반면에, 노트북 컴퓨터, 소형 PC 등의 경우에는 출력 및 용량의 문제로 다수의 원통형 전지들을 병렬 및 직렬방식으로 연결한 전지팩의 사용이 요구된다.
일반적으로, 상기 원통형 전지는 용량 및 출력 측면에서 각형이나 폴리머 전지보다 바람직하다.
도 1에는 종래의 원통형 전지셀의 구조를 개략적으로 나타낸 수직 단면도가 도시되어 있다.
도 1을 참조하면, 원통형 전지셀(100)은 권취형 구조의 전극조립체(120)를 원통형의 셀 케이스(130)에 수납하고, 셀 케이스(130) 내에 전해액을 주입한 후에, 셀 케이스(130)의 개방 상단에 캡 어셈블리(140)를 클램핑하여 결합함으로써, 제작한다.
캡 어셈블리(140)는 상단 중앙부위(141)에 양극단자가 형성되어 있으며, 캡 어셈블리(140)의 상단 중앙부위(141)를 제외한 원통형 전지셀(100)의 나머지 부위는 음극단자를 형성한다.
전극조립체(120)는 양극(121)과 음극(122), 및 분리막(123)을 차례로 적층하고 둥근 형태로 권취하여 제조된다.
전극조립체(120)의 중앙 부위에 형성된 관통형의 권심부(150)에는 원통형의 센터 핀(160)이 삽입되어 있다.
센터 핀(160)은 일반적으로 소정의 강도를 부여하기 위해 금속 소재로 이루어져 있으며, 판재를 둥글게 절곡한 중공형의 원통형 구조로 이루어져 있다.
이러한 센터 핀(160)은 전극조립체(120)를 고정 및 지지하는 작용과 충방전 및 작동시 내부 반응에 의해 발생되는 가스를 방출하는 통로로서 작용한다.
일반적으로, 노트북 컴퓨터, 소형 PC 등에 사용되는 전지팩은 다수의 원통형 전지들을 병렬 또는 직렬방식의 연결로 이루어진 전지셀 배열체에 보호회로 모듈(Protection Circuit Module: PCM)을 연결하여 팩 케이스 내지 케이스 부재의 내부에 탑재한 구조로 이루어져 있다.
이때, 상기 전지셀 배열체들은 금속 플레이트로 구성된 접속부재들이 각각의 전지셀들의 전극단자들에 용접에 의해 결합됨으로써, 상호간에 전기적으로 연결된다.
여기서, 상기 접속부재들은 상호 간의 간섭을 최소화하고, 이로 인한 내부 단락의 문제점을 예방할 수 있도록, 극성에 따라 각각 원통형 전지셀의 서로 대향하는 상단 및 하단에 용접되어 결합된다.
그러나, 이러한 구조는 원통형 전지셀들의 서로 대향하는 상단과 하단에 모두 접속부재들이 위치함에 따라, 전지팩의 일부 구성 요소의 결합 및 배치과정에서, 상기 구성 요소들이 원통형 전지셀들의 상단 내지 하단 부위에 설치되지 못하는 것과 같은 구조적 제한이 발생하게 된다.
또한, 이러한 구조로 원통형 전지셀들을 연결하는 용접 과정은 우선, 상기 전지셀들의 캡 어셈블리가 위치하는 상단 또는 하단 중에서 하나의 부위에 대한 접속부재의 용접을 수행한다.
상기 하나의 부위에 대한 용접이 완료된 이후에, 상기 전지셀들을 뒤집어서, 나머지 부위에 대한 접속부재의 용접이 수행되어야 하므로, 이러한 용접 과정은 상당히 번거롭고 소요되는 시간 및 비용도 증가하는 문제점이 있다.
이에 대해, 원통형 전지셀들의 캡 어셈블리들이 위치하는 상단 부위와 같이, 동일한 부위에서, 양극단자 및 음극단자에 접속부재들이 결합되는 구조를 고려할 수 있다.
그러나 상기 양극단자는 상대적으로 넓은 면적을 갖는 캡 어셈블리의 상단 중앙부위에 형성되는 반면에, 음극단자는 상기 캡 어셈블리의 상단 중앙부위를 제외한 나머지 부위 중에서, 상대적으로 좁은 면적을 갖는 클램핑부 상단면에 형성된다.
이에 따라, 상기 클램핑부 상단면에 대한 접속부재의 용접은 상대적으로 번거롭고, 이러한 용접성을 개선하기 위하여 상기 접속부재를 얇은 두께로 구성할 경우, 접속부재의 저항이 증가함에 따라 상기 원통형 전지셀들의 음극단자들 사이에 전류가 통전하는 과정에서 열이 발생할 수 있으며, 이는 전지팩의 안전성을 저하시키는 요인으로 작용할 수 있다.
즉, 상기 원통형 전지셀의 클램핑부 상단면에 결합되는 접속부재는 상기 클램핑부 상단면에 대한 용접이 용이한 동시에, 음극단자들 사이의 통전이 원활히 이루어지는 구조로 형성되어야 한다.
따라서, 이러한 문제점을 근본적으로 해결할 수 있는 기술에 대한 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이, 전지셀들의 클램핑부 상단면들에 결합되는 제 1 전극단자 접속 플레이트를 두께가 상이한 용접 플레이트 및 도전성 플레이트로 구성한다.
이에 따라 상기 용접 플레이트를 통해, 클램핑부 상단면들에 대한 제 1 전극단자 접속 플레이트의 용접을 보다 용이하게 수행할 수 있는 동시에, 도전성 플레이트를 통한 제 1 전극단자들 사이의 원활한 통전이 가능해, 안전성을 향상시킬 수 있다.
또한, 캡 어셈블리의 상단에 대해 제 1 전극단자 접속 플레이트와 제 2 전극단자 접속 플레이트를 모두 결합하도록 구성함으로써, 상기 캡 어셈블리의 상단에 대향하는 원통형 전지셀들의 하단 부위에 전지팩을 구성하는 기타 구성 요소들을 위치시킬 수 있으므로 전지팩의 구조를 보다 유연하게 구성할 수 있다.
따라서 상기의 전지팩 구조로 인하여 디바이스 탑재부의 다양한 형상에 대한 제약을 용이하게 해소할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
이러한 목적을 달성하기 위한 본 발명에 따른 원통형 전지팩은, 원통형 캔의 개방된 일면에 캡 어셈블리가 결합되어 클램핑부를 형성하고, 상기 클램핑부의 상단면 및 캡 어셈블리의 상단 중앙부위에 각각 제 1 전극단자 및 제 2 전극단자를 형성하는 복수의 원통형 전지셀들; 및 상기 원통형 전지셀들의 캡 어셈블리들이 동일한 방향을 향하도록 원통형 전지셀들이 측면 배열된 상태에서, 상기 전지셀들의 클램핑부 상단면들에 동시에 결합되는 제 1 전극단자 접속 플레이트; 를 포함하고 있고, 상기 제 1 전극단자 접속 플레이트는, 캡 어셈블리의 클램핑부 상단면에 용접되도록, 상대적으로 얇은 두께로 이루어진 용접 플레이트; 및 상기 캡 어셈블리에 대향하는 용접 플레이트의 상면에 결합되어 있고, 상기 클램핑부 상단면의 제 1 전극단자들 사이의 원활한 통전을 위해 상기 용접 플레이트에 비해 상대적으로 두꺼운 두께로 이루어진 도전성 플레이트; 를 포함하는 구조일 수 있다.
따라서, 상기 용접 플레이트를 통해, 클램핑부 상단면들에 대한 제1 전극단자 접속 플레이트의 용접을 보다 용이하게 수행할 수 있는 동시에, 도전성 플레이트를 통한 제 1 전극단자들 사이의 원활한 통전이 가능해, 안전성을 향상시킬 수 있고, 캡 어셈블리의 상단에 대해, 제 1 전극단자 접속 플레이트와 제 2 전극단자 접속 플레이트를 모두 결합하도록 구성함으로써, 상기 캡 어셈블리의 상단에 대향하는 원통형 전지셀들의 하단 부위에, 전지팩을 구성하는 기타 구성 요소들을 위치시킬 수 있으므로, 전지팩의 구조를 보다 유연하게 구성할 수 있으며, 이에따라, 디바이스 탑재부의 다양한 형상에 대한 제약을 용이하게 해소할 수 있다.
하나의 구체적인 예에서, 상기 제 1 전극단자 접속 플레이트는, 판상형 구조로 이루어져 있고, 상기 원통형 전지셀의 제 2 전극단자를 제외한 클램핑부 상단면에 결합되도록, 상기 제 2 전극단자에 대응되는 부위에 관통홀이 천공되어 있는 구조일 수 있다.
따라서, 상기 제 1 전극단자 접속 플레이트는 상기 원통형 전지셀의 제 2 전극단자 또는, 상기 관통홀을 통과해, 제 2 전극단자에 접속 및 결합되는 제2 전극단자 접속 플레이트와 서로 접촉 내지 간섭하지 않으며, 이에 따라, 상기 접촉 내지 간섭으로 인해 발생할 수 있는 내부 단락과 같은 문제점을 예방할 수 있다.
이때, 상기 관통홀은 용접 플레이트와 도전성 플레이트의 서로 대응되는 부위에 상호 연통되도록 각각 천공되어 있으며;
상기 용접 플레이트에 천공된 관통홀은 도전성 플레이트에 천공된 관통홀에 비해 상대적으로 작은 내경을 가진 구조일 수 있다.
따라서, 상기 용접 플레이트의 관통홀의 내주변 부위는 도전성 플레이트의 관통홀을 통해 상부로부터 노출되는 구조로 형성될 수 있으며, 이에 따라, 상기 관통홀을 통해, 클램핑부 상단면에 대한 용접 플레이트의 관통홀의 내주변 부위의 용접을 보다 용이하게 수행할 수 있다.
더욱 구체적으로, 상기 용접 플레이트의 관통홀은, 그것의 내주변 부위가 캡 어셈블리의 클램핑부 상단면에 접하도록, 상기 클램핑부의 상단 내주와 상단 외주 사이에서, 클램핑부 상단 내주에 상대적으로 인접하여 위치하는 크기로 이루어져 있고;
상기 도전성 플레이트의 관통홀은, 캡 어셈블리의 클램핑부 상단면에 접하는 용접 플레이트의 관통홀의 내주변 부위가 상부로부터 노출되도록, 상기 용접 플레이트의 관통홀 내주와 클램핑부의 상단 외주 사이에서, 상기 클램핑부의 상단 외주에 상대적으로 인접하여 위치하는 크기로 이루어진 구조일 수 있다.
따라서, 상기 클램핑부 상단면에 접하는 용접 플레이트의 관통홀의 내주변 부위의 면적과 상기 도전성 플레이트의 관통홀을 통해 상부로부터 노출되는 용접 플레이트의 관통홀의 내주변 부위의 면적을 최대화할 수 있으며, 이에 따라 상기 클램핑부 상단면에 대한 용접 플레이트의 관통홀의 내주변 부위의 용접을 보다 용이하게 수행할 수 있는 동시에, 용접 면적이 증가하므로, 상기 클램핑부 상단 면에 대한 제 1 전극단자 접속 플레이트의 용접 강도를 증가시켜, 구조적 안정성을 보다 향상시킬 수 있다.
여기서, 상기 도전성 플레이트의 관통홀을 통해 상부로 노출되는 용접 플레이트의 관통홀 내주 부위의 크기는 캡 어셈블리의 클램핑부 상단면의 크기에 대해 10% 내지 90%일 수 있다.
만일, 상기 도전성 플레이트의 관통홀을 통해 상부로 노출되는 용접 플레이트의 관통홀 내주 부위의 크기가 상기 범위를 벗어나 지나치게 작을 경우에는, 캡 어셈블리의 클램핑부 상단면에 대해, 용접 플레이트의 관통홀 내주 부위를 용접하기가 용이하지 않다.
이와 반대로, 상기 도전성 플레이트의 관통홀을 통해 상부로 노출되는 용접 플레이트의 관통홀 내주 부위의 크기가 상기 범위를 벗어나 지나치게 클 경우에는, 상기 용접 플레이트의 관통홀 내주 부위와 접하는 클램핑부 상단면의 면적이 지나치게 좁아, 상기 캡 어셈블리의 클램핑부 상단면에 대해, 용접 플레이트의 관통홀 내주 부위를 용접하기가 용이하지 않으며, 상기 용접 플레이트의 관통홀 내주 부위가 캡 어셈블리의 상단 중앙부위에 형성된 제 2 전극단자에 접촉함으로써, 내부 단락이 발생할 수 있는 문제점이 있다.
한편, 상기 용접 플레이트의 두께는 0.1 밀리미터 내지 0.5 밀리미터일 수 있다.
만일, 상기 용접 플레이트의 두께가 0.1 밀리미터 미만일 경우에는, 상기 용접 플레이트의 두께가 지나치게 얇아져, 캡 어셈블리의 클램핑부 상단면에 대한 용접 과정에서, 상기 용접 플레이트가 손상됨으로써, 용접 불량이 발생할 수 있다.
이와 반대로, 상기 용접 플레이트의 두께가 0.5 밀리미터를 초과할 경우에는, 상기 용접 플레이트의 두께가 지나치게 두꺼워져, 캡 어셈블리의 클램핑부 상단면에 대한 용접이 용이하지 않을 수 있으며, 충분한 용접이 이루어지지 않음에 따라, 용접 강도가 저하될 수 있는 문제점이 있다.
또한, 상기 도전성 플레이트의 두께는 1 밀리미터 내지 10 밀리미터일 수 있다.
만일, 상기 도전성 플레이트의 두께가 1 밀리미터 미만일 경우에는, 상기 도전성 플레이트의 두께가 지나치게 얇아짐에 따라, 저항이 증가할 수 있으며, 이에 따라, 상기 도전성 플레이트를 통해 제 1 전극단자들 사이의 원활한 통전이 어려울 수 있다.
이와 반대로, 상기 도전성 플레이트의 두께가 10 밀리미터를 초과할 경우에는, 상기 도전성 플레이트의 두께가 불필요하게 두꺼워져, 전지팩의 크기를 증가시키거나, 디바이스의 한정된 탑재 공간에 적용하기 위해, 전지팩의 용량을 저하시킬 수 있는 문제점이 있다.
하나의 구체적인 예에서, 상기 용접 플레이트와 도전성 플레이트는 각각 구리, 알루미늄, 니켈, 구리 합금, 알루미늄 합금, 및 니켈 합금으로 이루어진 군에서 선택되는 서로 다른 하나 이상의 금속으로 이루어질 수 있다.
더욱 구체적으로, 상기 용접 플레이트는 캡 어셈블리의 클램핑부 상단면에 대한 용접성을 향상시키는 반면에, 상기 도전성 플레이트는 제 1 전극단자들 사이의 원활한 통전을 이루는 역할을 수행한다.
다시 말해, 상기 용접 플레이트와 도전성 플레이트는 각각의 기능이 상이하며, 이에 따라 상기 각각의 기능을 보다 우수하게 수행할 수 있도록, 서로 다른 금속으로 이루어질 수 있다.
특히, 상기 용접 플레이트와 도전성 플레이트의 각 기능을 고려하였을 때, 상기 용접 플레이트는 용접성이 상대적으로 우수한 니켈 또는 니켈 합금으로 이루어질 수 있고, 상기 도전성 플레이트는 도전성이 상대적으로 우수한 구리, 알루미늄, 구리 합금, 및 알루미늄 합금으로 이루어진 군에서 선택되는 하나 이상의 금속으로 이루어질 수 있다.
또한, 상기 용접 플레이트와 도전성 플레이트는 레이저 용접에 의해 서로 결합되어 있는 구조일 수 있다.
일반적으로, 레이저 용접은 고에너지 레이저 광선을 이용하는 용접으로서, 미세한 용접이 가능하다.
따라서, 상기 용접 플레이트와 도전성 플레이트에 천공되어 있는 관통홀을 제외한 나머지 좁은 부위에 대해, 미세한 용접을 통해 우수한 용접 품질을 제공할 수 있으며, 상기 용접 플레이트와 도전성 플레이트의 용접 과정에서 발생할 수 있는 불량률을 없애거나, 저하시킬 수 있다.
한편, 상기 전지팩은, 상기 원통형 전지셀의 캡 어셈블리에 대향하는 제 1 전극단자 접속 플레이트의 상면에 위치하며, 상기 캡 어셈블리의 상단 중앙부위에 형성된 제 2 전극단자들을 접속하도록, 캡 어셈블리의 상단 중앙부위에 동시에 결합되는 제 2 전극단자 접속 플레이트; 및 상기 제 1 전극단자 접속 플레이트와 제 2 전극단자 접속 플레이트를 절연시키도록, 상기 제 1 전극단자 접속 플레이트와 제 2 전극단자 접속 플레이트 사이에 개재되는 절연 부재; 를 더 포함하는 구조일 수 있다.
다시 말해, 상기 전지팩은 제 1 전극단자 접속 플레이트와 동일한 캡 어셈블리의 상단에서 접속되는 제 2 전극단자 접속 플레이트를 포함함으로써, 상기 캡 어셈블리의 상단에 대향하는 원통형 전지셀들의 하단 부위에, 전지팩을 구성하는 기타 구성 요소들을 위치시킬 수 있으며, 이에 따라, 상기 전지팩의 구조를 보다 유연하게 구성할 수 있으므로, 디바이스 탑재부의 다양한 형상에 대한 제약을 용이하게 해소할 수 있다.
이러한 경우에, 상기 제 2 전극단자 접속 플레이트는 캡 어셈블리의 상단 중앙부위에 형성된 제 2 전극단자에 대응되는 접속 부위가, 상기 제 2 전극단자에 대면하여 결합되도록, 하향 돌출되어 있는 구조일 수 있다.
따라서, 상기 캡 어셈블리의 상단 중앙부위에 형성된 제 2 전극단자에 대응되는 제 2 전극단자 접속 플레이트의 접속 부위는 제 1 전극단자 접속 플레이트에 천공된 관통홀을 통해 하향 돌출되어, 캡 어셈블리의 상단 중앙부위에 형성된 제 2 전극단자에 보다 용이하게 대면하여 결합될 수 있다.
이때, 상기 제 2 전극단자 접속 플레이트는, 수평 단면상으로 캡 어셈블리의 상단 중앙부위에 형성된 제 2 전극단자에 대응되는 접속 부위의 크기가, 제 1 전극단자 접속플레이트의 용접 플레이트에 천공된 관통홀의 내주 부위의 크기에 대해, 50% 내지 90%일 수 있다.
만일, 상기 캡 어셈블리의 상단 중앙부위에 형성된 제 2 전극단자에 대응되는 제 2 전극단자 접속 플레이트의 접속 부위의 크기가 상기 범위를 벗어나, 지나치게 작을 경우에는, 상기 제 2 전극단자에 대한 안정적인 용접 강도를 발휘하지 못할 수 있으며, 이에 따라 전지팩의 구조적 안정성이 저하될 수 있다.
이와 반대로, 상기 캡 어셈블리의 상단 중앙부위에 형성된 제 2 전극단자에 대응되는 제 2 전극단자 접속 플레이트의 접속 부위의 크기가 상기 범위를 벗어나, 지나치게 클 경우에는, 상기 하향 돌출된 제 2 전극단자 접속 플레이트의 접속 부위가 제 1 전극단자 접속 플레이트의 관통홀의 내주변 부위와 직접 접촉함으로써, 내부 단락이 발생할 수 있는 문제점이 있다.
하나의 구체적인 예에서, 상기 절연 부재는 평면 구조가 제 1 전극단자 접속 플레이트와 동일한 구조로 이루어진 절연성 시트일 수 있다.
즉, 상기 절연 부재는 절연성 시트로서, 평면 구조가 제 1 전극단자 접속 플레이트와 동일한 구조로 이루어져 있으며, 보다 상세하게는, 상기 제 1 전극단자 접속 플레이트의 관통홀에 연통되는 관통홀이 천공되어 있는 구조일 수 있다.
이때, 상기 절연 부재에 천공되어 있는 관통홀은, 상기 관통홀을 통한 제 1 전극단자 접속 플레이트와 제 2 전극단자 접속 플레이트의 직접적인 접촉 및 이로 인한 내부 단락을 방지할 수 있도록, 상기 제 1 전극단자 접속 플레이트의 관통홀, 특히, 도전성 플레이트의 관통홀에 비해 작은 크기로 이루어질 수 있으며, 보다 상세하게는, 상기 절연 부재에 천공되어 있는 관통홀의 크기는, 캡 어셈블리의 상단 중앙부위에 형성된 제 2 전극단자와 접속하도록 하향 돌출된 제 2 전극단자 접속 플레이트의 접속 부위를 간섭하지 않는 범위에서, 상기 도전성 플레이트의 관통홀의 크기에 대해 90 내지 99%의 크기일 수 있다.
또한, 상기 절연성 시트는, 제 1 전극단자 접속 플레이트 및 제 2 전극단자 접속 플레이트에 각각 대면하는 양면 중에서, 적어도 일면에 접착성 물질이 부가되어 있는 구조일 수 있다.
따라서, 상기 절연성 시트는 제 1 전극단자 접속 플레이트와 제 2 전극단자 접속 플레이트 사이에서의 유동을 억제할 수 있으며, 상기 절연성 시트의 유동으로 인한 전극단자 접속 플레이트들의 직접적인 접촉 및 이에 따른 내부 단락을 보다 효과적으로 예방할 수 있다.
상기 구성 내지 구조를 제외한 전지팩의 나머지 구성 내지 구조는 당업계에 공지되어 있으므로, 본 명세서에서는 이에 대한 자세한 설명은 생략한다.
이상에서 설명한 바와 같이, 본 발명에 따른 원통형 전지팩은, 전지 셀들의 클램핑부 상단면들에 결합되는 제 1 전극단자 접속 플레이트를 두께가 상이한 용접 플레이트 및 도전성 플레이트로 구성한다.
이에 따라 상기 용접 플레이트를 통하여 클램핑부 상단면들에 대한 제 1 전극단자 접속 플레이트의 용접을 보다 용이하게 수행할 수 있는 동시에, 도전성 플레이트를 통한 제 1 전극단자들 사이의 원활한 통전이 가능해, 안전성을 향상시킬 수 있다.
또한, 캡 어셈블리의 상단은 제1 전극단자 접속 플레이트와 제 2 전극단자 접속 플레이트를 모두 결합하도록 구성한다.
이와 같은 구조는 상기 캡 어셈블리의 상단에 대향하는 원통형 전지셀들의 하단 부위에 전지팩을 구성하는 기타 구성 요소들을 위치시킬 수 있으므로, 전지팩의 구조를 보다 유연하게 구성할 수 있으며, 이에 따라, 디바이스 탑재부의 다양한 형상에 대한 제약을 용이하게 해소할 수 있는 효과가 있다.
도 1은 종래의 원통형 전지셀의 구조를 개략적으로 나타낸 수직 단면도이다;
도 2는 본 발명의 하나의 실시예에 따른 전지팩의 구조를 개략적으로나타낸 모식도이다;
도 3은 도 2의 제 1 전극단자 접속 플레이트가 원통형 전지셀들의 캡어셈블리들에 결합된 구조를 개략적으로 나타낸 평면도이다;
도 4는 도 2의 전지팩의 구조를 개략적으로 나타낸 수직 단면도이다.
이하, 본 발명의 실시예에 따른 도면들을 참조하여 본 발명을 더욱 상술하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
도 2에는 본 발명의 하나의 실시예에 따른 전지팩의 구조를 개략적으로 나타낸 모식도가 도시되어 있다.
도 2를 참조하면, 전지팩(200)은 원통형 전지셀(201)의 캡 어셈블리(202)가 위치하는 상단에 제 1 전극단자 접속 플레이트(210), 제 2 전극단자 접속 플레이트(240) 및 절연 부재(250)가 결합됨으로써 형성된다.
제 1 전극단자 접속 플레이트(210)는 원통형 전지셀(201)의 캡 어셈블리(202) 상단에 결합되는 용접 플레이트(220) 및 용접 플레이트(220)의 상면에 결합되는 도전성 플레이트(230)를 포함하고 있다.
용접 플레이트(220)와 도전성 플레이트(230)의 서로 대응되는 부위에는, 원통형 전지셀(201)의 캡 어셈블리(202)의 상단 중앙부위에 형성되는 제 2 전극단자에 대응되는 부위에 각각 관통홀들(221, 231)이 천공되어 있다.
절연 부재(250)는 제 1 전극단자 접속 플레이트(210)의 관통홀들(221, 231)에 대응되는 부위에 동일한 형상의 관통홀(251)이 천공되어 있는 시트 형상으로 이루어져 있다.
제 2 전극단자 접속 플레이트(240)는 절연 부재(250)를 사이에 두고 제 1 전극단자 접속 플레이트(210)의 상면에 결합된다.
도 3에는 도 2의 제 1 전극단자 접속 플레이트가 원통형 전지셀들의 캡 어셈블리들에 결합된 구조를 개략적으로 나타낸 평면도가 도시되어 있다.
도 3을 참조하면, 원통형 전지셀(201)의 캡 어셈블리(202)의 상단중앙부위에는 제 2 전극단자(213)가 형성되어 있으며, 제 2 전극단자(213)를 제외한 나머지 부위 중에서, 클램핑부의 상단면(212)에는 제 1 전극단자가 형성되어 있다.
제 1 전극단자 접속 플레이트(210)의 용접 플레이트(220) 및 도전성 플레이트(230)는 제 2 전극단자(213)에 대응되는 부위에 서로 연통되는 구조의 원형의 관통홀들(221, 231)이 천공되어 있다.
용접 플레이트(220)에 천공된 관통홀(221)의 내주 부위의 직경(D1)은 도전성 플레이트(230)에 천공된 관통홀(231)의 내주 부위의 직경(D2)에 비해 상대적으로 작은 구조로 이루어져 있다.
따라서, 용접 플레이트(220)에 천공된 관통홀(221)의 내주변 부위는 클램핑부 상단면(212)에 접하는 동시에, 도전성 플레이트(230)의 관통홀(231)을 통해 상부로부터 노출되어 있으며, 이에 따라, 클램핑부 상단면(212)에 대한 용접 플레이트(220)의 용접이 보다 용이하게 이루어질 수 있다.
하나의 원통형 전지셀(201)에 대해, 용접 플레이트(220)와 클램핑부 상단면(212)의 용접은 상호 이격된 3군데 부위(261, 262, 263)에서 이루어진다.
도 4에는 도 2의 전지팩의 구조를 개략적으로 나타낸 수직 단면도가 도시되어 있다.
도 4를 참조하면, 제 1 전극단자 접속 플레이트(210)의 용접 플레이트(220)는 원통형 전지셀(201)의 제 1 전극단자를 형성하는 클램핑부 상단면(212)에 접해 있으며, 관통홀(221)은 내주변 부위가 클램핑부 상단면(212)의 내주에 인접하여 위치하는 크기로 형성되어 있다.
제 1 전극단자 접속 플레이트(210)의 도전성 플레이트(230)는 용접플레이트(220)의 상면에 결합되어 있으며, 관통홀(231)은 내주변 부위가 클램핑부의 상단면(212)의 외주에 인접하여 위치하는 크기로 이루어져 있다.
따라서, 용접 플레이트(220)의 관통홀(221)의 내주변 부위는 도전성 플레이트(230)의 관통홀(231)을 통해, 상부로부터 노출됨으로써, 클램핑부 상단면(212)에 대해, 보다 용이하게 용접을 수행할 수 있다.
도전성 플레이트(230)는 용접 플레이트(220)에 비해 상대적으로 두꺼운 구조로 이루어져 있다.
절연 부재(250)는 도전성 플레이트(230)의 상면에서, 제 2 전극단자 접속 플레이트(240)와의 사이에 개재되어 있으며, 도전성 플레이트(230)의 관통홀(231)에 비해 상대적으로 작은 크기로 이루어진 관통홀(251)을 포함하고 있다.
따라서, 제 2 전극단자 접속 플레이트(240)와 제 1 전극단자 접속 플레이트(210)의 도전성 플레이트(230) 사이를 안정적으로 절연시킬 수 있다.
제 2 전극단자 접속 플레이트(240)는 원통형 전지셀(201)의 제 2 전극단자(213)에 결합되는 접속 부위(241)가 절연 부재(250)의 관통홀(251) 및 제 1 전극단자 접속 플레이트(210)의 관통홀들(221, 231)을 통해 하향 돌출되어, 원통형 전지셀(201)의 제 2 전극단자(213)에 접속된 구조로 이루어져 있다.
이상 본 발명의 실시예 및 실시예에 따른 도면을 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕을 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.

Claims (14)

  1. 원통형 캔의 개방된 일면에 캡 어셈블리가 결합되어 클램핑부를 형성하고,
    상기 클램핑부의 상단면 및 캡 어셈블리의 상단 중앙부위에 각각 제 1 전극단자 및 제 2 전극단자를 형성하는 복수의 원통형 전지셀들; 및
    상기 원통형 전지셀들의 캡 어셈블리들이 동일한 방향을 향하도록 원통형 전지셀들이 측면 배열된 상태에서, 상기 전지셀들의 클램핑부 상단면들에 동시에 결합되는 제 1 전극단자 접속 플레이트; 를 포함하고 있고,
    상기 제 1 전극단자 접속 플레이트는,
    캡 어셈블리의 클램핑부 상단면에 용접되도록, 상대적으로 얇은 두께로 이루어진 용접 플레이트; 및
    상기 캡 어셈블리에 대향하는 용접 플레이트의 상면에 결합되어 있고, 상기 클램핑부 상단면의 제 1 전극단자들 사이의 원활한 통전을 위해 상기 용접 플레이트에 비해 상대적으로 두꺼운 두께로 이루어진 도전성 플레이트;
    를 포함하는 것을 특징으로 하는 전지팩.
  2. 제 1 항에 있어서, 상기 제 1 전극단자 접속 플레이트는, 판상형 구조로 이루어져 있고, 상기 원통형 전지셀의 제 2 전극단자를 제외한 클램핑부 상단면에 결합되도록, 상기 제 2 전극단자에 대응되는 부위에 관통홀이 천공되어 있는 것을 특징으로 하는 전지팩.
  3. 제 2 항에 있어서,
    상기 관통홀은 용접 플레이트와 도전성 플레이트의 서로 대응되는 부위에 상호 연통되도록 각각 천공되어 있으며;
    상기 용접 플레이트에 천공된 관통홀은 도전성 플레이트에 천공된 관통홀에 비해 상대적으로 작은 내경을 가진 것을 특징으로 하는 전지팩.
  4. 제 3 항에 있어서,
    상기 용접 플레이트의 관통홀은, 그것의 내주변 부위가 캡 어셈블리의 클램핑부 상단면에 접하도록, 상기 클램핑부의 상단 내주와 상단 외주 사이에서, 클램핑부 상단 내주에 상대적으로 인접하여 위치하는 크기로 이루어져 있고;
    상기 도전성 플레이트의 관통홀은, 캡 어셈블리의 클램핑부 상단면에 접하는 용접 플레이트의 관통홀의 내주변 부위가 상부로부터 노출되도록, 상기 용접 플레이트의 관통홀 내주와 클램핑부의 상단 외주 사이에서, 상기 클램핑부의 상단 외주에 상대적으로 인접하여 위치하는 크기로 이루어진 것을 특징으로 하는 전지팩.
  5. 제 4 항에 있어서, 상기 도전성 플레이트의 관통홀을 통해 상부로 노출되는 용접 플레이트의 관통홀 내주 부위의 크기는 캡 어셈블리의 클램핑부 상단면의 크기에 대해 10% 내지 90%인 것을 특징으로 하는 전지팩.
  6. 제 1 항에 있어서, 상기 용접 플레이트의 두께는 0.1 밀리미터 내지 0.5 밀리미터인 것을 특징으로 하는 전지팩.
  7. 제 1 항에 있어서, 상기 도전성 플레이트의 두께는 1 밀리미터 내지 10 밀리미터인 것을 특징으로 하는 전지팩.
  8. 제 1 항에 있어서, 상기 용접 플레이트와 도전성 플레이트는 각각 구리, 알루미늄, 니켈, 구리 합금, 알루미늄 합금, 및 니켈 합금으로 이루어진 군에서 선택되는 서로 다른 하나 이상의 금속으로 이루어진 것을 특징으로 하는 전지팩.
  9. 제 1 항에 있어서, 상기 용접 플레이트와 도전성 플레이트는 레이저 용접에 의해 서로 결합되어 있는 것을 특징으로 하는 전지팩.
  10. 제 1 항에 있어서, 상기 전지팩은,
    상기 원통형 전지셀의 캡 어셈블리에 대향하는 제 1 전극단자 접속 플레이트의 상면에 위치하며, 상기 캡 어셈블리의 상단 중앙부위에 형성된 제 2 전극단자들을 접속하도록, 캡 어셈블리의 상단 중앙부위에 동시에 결합되는 제 2 전극단자 접속 플레이트; 및
    상기 제 1 전극단자 접속 플레이트와 제 2 전극단자 접속 플레이트를 절연시키도록, 상기 제 1 전극단자 접속 플레이트와 제 2 전극단자 접속 플레이트 사이에 개재되는 절연 부재; 를 더 포함하는 것을 특징으로 하는 전지팩.
  11. 제 10 항에 있어서, 상기 제 2 전극단자 접속 플레이트는 캡 어셈블리의 상단 중앙부위에 형성된 제 2 전극단자에 대응되는 접속 부위가, 상기 제 2 전극단자에 대면하여 결합되도록, 하향 돌출되어 있는 것을 특징으로 하는 전지팩.
  12. 제 11 항에 있어서, 상기 제 2 전극단자 접속 플레이트는, 수평 단면상으로 캡 어셈블리의 상단 중앙부위에 형성된 제 2 전극단자에 대응되는 접속 부위의 크기가, 제 1 전극단자 접속플레이트의 용접 플레이트에 천공된 관통홀의 내주 부위의 크기에 대해, 50% 내지 90%인 것을 특징으로 하는 전지팩.
  13. 제 10 항에 있어서, 상기 절연 부재는 평면 구조가 제 1 전극단자 접속 플레이트와 동일한 구조로 이루어진 절연성 시트인 것을 특징으로 하는 전지팩.
  14. 제 13 항에 있어서, 상기 절연성 시트는, 제 1 전극단자 접속 플레이트 및 제 2 전극단자 접속 플레이트에 각각 대면하는 양면 중에서, 적어도 일면에 접착성 물질이 부가되어 있는 것을 특징으로 하는 전지팩.
PCT/KR2017/015067 2017-01-19 2017-12-20 전극단자 접속 플레이트를 포함하고 있는 전지팩 WO2018135763A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17892888.3A EP3432384B1 (en) 2017-01-19 2017-12-20 Battery pack comprising electrode terminal connection plate
US16/340,004 US11139517B2 (en) 2017-01-19 2017-12-20 Battery pack comprising electrode terminal connection plate
JP2018553394A JP6698869B2 (ja) 2017-01-19 2017-12-20 電極端子接続プレートを備えている電池パック
CN201780024465.2A CN109075281B (zh) 2017-01-19 2017-12-20 包括电极端子连接板的电池组

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0008969 2017-01-19
KR1020170008969A KR102123674B1 (ko) 2017-01-19 2017-01-19 전극단자 접속 플레이트를 포함하고 있는 전지팩

Publications (1)

Publication Number Publication Date
WO2018135763A1 true WO2018135763A1 (ko) 2018-07-26

Family

ID=62909301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015067 WO2018135763A1 (ko) 2017-01-19 2017-12-20 전극단자 접속 플레이트를 포함하고 있는 전지팩

Country Status (6)

Country Link
US (1) US11139517B2 (ko)
EP (1) EP3432384B1 (ko)
JP (1) JP6698869B2 (ko)
KR (1) KR102123674B1 (ko)
CN (1) CN109075281B (ko)
WO (1) WO2018135763A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110176570A (zh) * 2019-05-20 2019-08-27 苏州安靠电源有限公司 一种用于电池模组的复合汇流片
CN110299249A (zh) * 2019-06-11 2019-10-01 成都凹克新能源科技有限公司 一种电化学储能器件
WO2021039550A1 (ja) * 2019-08-30 2021-03-04 パナソニックIpマネジメント株式会社 蓄電モジュール
DE102020114648A1 (de) * 2020-06-02 2021-12-02 Rwe Generation Se Oberschalenfreies Batteriezellenmodul
KR20220155017A (ko) * 2021-05-14 2022-11-22 삼성에스디아이 주식회사 이차 전지
CN117791003A (zh) * 2021-08-23 2024-03-29 宁德时代新能源科技股份有限公司 电池单体及其制造方法和制造系统、电池以及用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001043839A (ja) * 1999-07-15 2001-02-16 Black & Decker Inc 電池パック、電池パック製造方法
US20050079408A1 (en) * 2001-11-27 2005-04-14 Fujio Hirano Battery connection structure, battery module, and battery pack
JP2010282811A (ja) * 2009-06-04 2010-12-16 Sanyo Electric Co Ltd パック電池
WO2015105335A1 (ko) * 2014-01-13 2015-07-16 주식회사 엘지화학 단위모듈들을 포함하는 전지모듈 어셈블리
KR20160149285A (ko) * 2014-05-08 2016-12-27 에이치테크 아게 배터리 팩과 배터리 팩을 조립하는 방법

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021860U (ko) * 1988-06-15 1990-01-09
US6034331A (en) * 1996-07-23 2000-03-07 Hitachi Chemical Company, Ltd. Connection sheet and electrode connection structure for electrically interconnecting electrodes facing each other, and method using the connection sheet
JP3777748B2 (ja) 1997-09-30 2006-05-24 株式会社ジーエス・ユアサコーポレーション 組電池
US6932651B2 (en) * 2003-09-16 2005-08-23 Honda Motor Co., Ltd. Connecting structure for electric cells
JP4665405B2 (ja) 2004-02-20 2011-04-06 日立電線株式会社 電池パック
JP2006019093A (ja) * 2004-06-30 2006-01-19 Matsushita Electric Ind Co Ltd 集合電池
KR100599803B1 (ko) 2004-09-24 2006-07-12 삼성에스디아이 주식회사 이차 전지와 이에 사용되는 전극 조립체 및 집전판
KR100886571B1 (ko) 2006-08-07 2009-03-05 주식회사 엘지화학 전지팩 케이스
KR101168880B1 (ko) 2007-11-29 2012-07-26 주식회사 엘지화학 전지셀용 도전성 접속부재
JP5016566B2 (ja) 2008-07-04 2012-09-05 本田技研工業株式会社 組電池装置
KR101023922B1 (ko) 2008-10-14 2011-03-22 주식회사 엘지화학 원통형 이차전지 팩
KR20100067464A (ko) * 2008-12-11 2010-06-21 삼성에스디아이 주식회사 전지 모듈
CN102272979A (zh) * 2009-07-17 2011-12-07 松下电器产业株式会社 电池以及电池单元
KR20110042376A (ko) 2009-07-17 2011-04-26 파나소닉 주식회사 조전지 및 전지 모듈
KR101283347B1 (ko) * 2010-09-07 2013-07-10 주식회사 엘지화학 고출력 대용량의 전지팩
WO2012053610A1 (ja) * 2010-10-21 2012-04-26 株式会社キャプテックス 電池接続具、組電池モジュール、組電池モジュールの製造方法および電池接続具の製造方法
JP5528571B2 (ja) * 2010-11-08 2014-06-25 パナソニック株式会社 電池モジュールと電池モジュール溶接方法
KR101299139B1 (ko) 2011-03-21 2013-08-21 주식회사 엘지화학 연결 신뢰성이 향상된 전지셀 홀더 및 이를 포함하는 전지모듈
EP2704230B1 (en) 2011-04-28 2017-12-06 Toyota Jidosha Kabushiki Kaisha Battery assembly, and vehicle
JP2014157770A (ja) * 2013-02-18 2014-08-28 Toyota Industries Corp 蓄電装置
US9966584B2 (en) * 2013-03-11 2018-05-08 Atieva, Inc. Bus bar for battery packs
KR101797693B1 (ko) 2014-12-26 2017-11-15 주식회사 엘지화학 밀착 절곡부가 형성되어 있는 전지셀 접속부재를 사용하여 제조되는 전지팩
US9774024B2 (en) * 2015-04-21 2017-09-26 Atieva, Inc. Preconditioned bus bar interconnect system
CN105514338A (zh) 2016-01-29 2016-04-20 江苏海四达电源股份有限公司 一种圆柱形电池的组合连接装置
CN205645972U (zh) 2016-05-26 2016-10-12 安徽江淮汽车股份有限公司 柱形电池单体连接结构
US10547042B2 (en) * 2016-10-14 2020-01-28 Tiveni Mergeco, Inc. Hybrid contact plate arrangement configured to establish electrical bonds to battery cells in a battery module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001043839A (ja) * 1999-07-15 2001-02-16 Black & Decker Inc 電池パック、電池パック製造方法
US20050079408A1 (en) * 2001-11-27 2005-04-14 Fujio Hirano Battery connection structure, battery module, and battery pack
JP2010282811A (ja) * 2009-06-04 2010-12-16 Sanyo Electric Co Ltd パック電池
WO2015105335A1 (ko) * 2014-01-13 2015-07-16 주식회사 엘지화학 단위모듈들을 포함하는 전지모듈 어셈블리
KR20160149285A (ko) * 2014-05-08 2016-12-27 에이치테크 아게 배터리 팩과 배터리 팩을 조립하는 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3432384A4 *

Also Published As

Publication number Publication date
JP6698869B2 (ja) 2020-05-27
US11139517B2 (en) 2021-10-05
KR20180085446A (ko) 2018-07-27
KR102123674B1 (ko) 2020-06-16
EP3432384B1 (en) 2022-02-16
JP2019511824A (ja) 2019-04-25
EP3432384A1 (en) 2019-01-23
EP3432384A4 (en) 2019-06-05
CN109075281B (zh) 2021-07-09
CN109075281A (zh) 2018-12-21
US20200035959A1 (en) 2020-01-30

Similar Documents

Publication Publication Date Title
WO2018135763A1 (ko) 전극단자 접속 플레이트를 포함하고 있는 전지팩
WO2018174451A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2015080466A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2018117457A1 (ko) 2차 크림핑 금형을 포함하는 원통형 전지셀 제조장치
WO2010044588A2 (ko) 코어 팩 제조용 전극단자 접속부재
WO2018147603A1 (ko) 이차 전지
WO2019074198A1 (ko) 이차 전지
WO2020171426A1 (ko) 배터리 셀 연결용 버스 바, 배터리 팩 및 이의 제조 방법
WO2021033943A1 (ko) 이차 전지
WO2016064099A1 (ko) 파우치형 이차 전지 및 이의 제조방법
WO2015005652A1 (ko) 전극 조립체, 이를 포함하는 전지 및 디바이스
WO2021033940A1 (ko) 이차 전지
WO2017188533A1 (ko) 멤브레인을 갖는 이차 전지
WO2018155853A2 (ko) 대칭형 멀티탭을 갖는 이차 전지
WO2018221828A1 (ko) 배터리 팩
WO2013065962A1 (en) Battery cell, manufacturing method thereof, and battery module including the same
WO2022071759A1 (ko) 이차전지 및 이를 포함하는 디바이스
WO2018131822A1 (ko) 단락 방지 부재를 포함하고 있는 3전극 시스템용 전극전위 측정 장치
WO2015190848A1 (ko) 전기화학 소자 및 이의 제조방법
KR102265846B1 (ko) 전극단자 접속 플레이트를 포함하고 있는 전지팩
WO2018030835A1 (ko) 이차 전지
WO2018056557A1 (ko) 이차 전지, 전극 조립체 및 전극 조립체 제조 방법
WO2018074846A1 (ko) 이차 전지
WO2021153922A1 (ko) 이차전지 및 이차전지의 제조 방법
WO2021162238A1 (ko) 레일형 소켓이 구비된 전지 모듈 및 이를 포함하는 전지 팩

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018553394

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017892888

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017892888

Country of ref document: EP

Effective date: 20181018

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE