WO2018135207A1 - Nitride semiconductor laser element and method for manufacturing same - Google Patents

Nitride semiconductor laser element and method for manufacturing same Download PDF

Info

Publication number
WO2018135207A1
WO2018135207A1 PCT/JP2017/045314 JP2017045314W WO2018135207A1 WO 2018135207 A1 WO2018135207 A1 WO 2018135207A1 JP 2017045314 W JP2017045314 W JP 2017045314W WO 2018135207 A1 WO2018135207 A1 WO 2018135207A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
point
end side
guide groove
semiconductor laser
Prior art date
Application number
PCT/JP2017/045314
Other languages
French (fr)
Japanese (ja)
Inventor
剛 小倉
Original Assignee
ウシオオプトセミコンダクター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオオプトセミコンダクター株式会社 filed Critical ウシオオプトセミコンダクター株式会社
Publication of WO2018135207A1 publication Critical patent/WO2018135207A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser

Definitions

  • the present invention relates to a nitride semiconductor laser device and a method for manufacturing the same.
  • a blue nitride semiconductor laser element having a structure in which a group III nitride semiconductor layer is grown on a GaN substrate.
  • the nitride semiconductor laser element includes an n-type cladding layer (lower cladding layer), an n-type guide layer (lower guide layer), an active layer having a multiple quantum well structure, and a p-type guide layer (upper guide layer) from the GaN substrate side. ) And a p-type cladding layer (upper cladding layer).
  • the emission wavelength is adjusted by the composition of the quantum well layer.
  • a substrate made of a group III nitride semiconductor, such as a GaN substrate, is less cleaved than a GaAs substrate or the like conventionally applied to a light emitting diode or a laser diode. For this reason, in the step of dividing the wafer into individual chips, the dividing position is shifted from the line to be divided, and the chip shape is not stable.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2009-814208 discloses a method of dividing a wafer according to the following procedure to obtain individual laser elements. That is, in the method described in Patent Document 1 (Japanese Patent Laid-Open No. 2009-81428), an n-type semiconductor layer including an AlGaN layer, a light-emitting layer including In, and a p-type semiconductor layer are sequentially stacked on a group III nitride semiconductor substrate. By etching the formed wafer selectively from the p-type semiconductor layer side along the planned division line, an etching groove that exposes the AlGaN layer along the planned division line is formed. Further, a division guide groove is formed along the planned division line in the exposed AlGaN layer. Then, the individual elements are obtained by dividing the wafer along the divided guide grooves.
  • an object of the present invention is to provide a method of manufacturing a nitride semiconductor laser device that can stabilize the chip shape and improve the yield.
  • an embodiment of a method of manufacturing a nitride semiconductor laser device includes a nitride semiconductor substrate including a nitride semiconductor layer including a light emitting layer having a resonator end face.
  • a method of manufacturing a nitride semiconductor laser device comprising: preparing a wafer substrate in which the nitride semiconductor layer is laminated on the nitride semiconductor substrate; and cleaving the nitride semiconductor layer on the wafer substrate.
  • a first divided guide groove including a plurality of point-like portions discretely arranged along a first direction in which a surface serving as the resonator end surface extends, and the plurality of points
  • Each of the other portions has a shape in which the front end side is narrower than the rear end side with respect to the width in the second direction orthogonal to the first direction, and the front end side of the point-like portion is adjacent to the point-like portion. Arranged opposite to the rear end side of the dotted portion That.
  • a plurality of dot-like portions having a shape whose front end side is narrower than the rear end side are formed on the nitride semiconductor layer of the wafer substrate along the first direction which is the cleavage direction.
  • the first divided guide grooves arranged discretely are formed.
  • the plurality of dot-like portions constituting the first divided guide groove are the other dot-like portions in which the end portion (tip portion) having the narrower width of the dot-like portion is adjacent to the dot-like portion in the first direction. Is formed so as to face the wider end (rear end).
  • the cleaving proceeds regularly starting from the end of the narrower dot-like width. Even if the cleavage progress line is bent, as a result of the trajectory correction of the cleavage progress line at the wide end of the other punctiform part facing the cleavage direction, the cleavage trajectory as a whole is relatively It will be straight. Therefore, the chip shape when the wafer substrate is separated can be stabilized.
  • the method may further include a step of cleaving the wafer substrate to form a surface to be the resonator end surface. As described above, by dividing the wafer substrate by cleaving according to the first division guide groove, it is possible to form a flat resonator end face with high reflectivity.
  • the point-like portion has a shape that gradually becomes narrower from the rear end side toward the front end side with respect to the width in the second direction. Also good.
  • the most distal portion of the dotted portion can be reliably set as the starting point of cleavage. Since it is possible to prevent the cleavage progress line from being bent from the middle of the dotted portion, division along the planned cleavage line becomes possible.
  • the point-like portion may have a sharp shape on the tip side.
  • one point of the tip part of the point-like part can be used as the starting point of cleavage. Therefore, if the tip position of the dotted portion is arranged on the planned cleavage line, the wafer substrate can be divided straight according to the planned cleavage line.
  • the point-like portion gradually increases from the rear end side toward the front end side with respect to the depth in the direction orthogonal to the first direction and the second direction. You may have the shape which becomes shallow at least in part. In this case, the forefront part of the point-like part can be set as the starting point of cleavage more reliably.
  • the first divided guide groove in the step of forming the first divided guide groove, may be formed by laser processing.
  • the first divided guide groove may be formed by dry etching in the step of forming the first divided guide groove. In either case, the first divided guide groove can be formed easily and appropriately.
  • the first divided guide groove is formed by laser processing, the depth of the dotted portion can be gradually decreased from the rear end side toward the front end side. In this case, the forefront part of the point-like part can be set as the starting point of cleavage more reliably.
  • the first divided guide groove when the first divided guide groove is formed by dry etching, it is easy to make the point-like portion an arbitrary shape, and the degree of freedom of the shape of the point-like portion is high.
  • the first divided guide groove is formed at a location excluding the upper side of the optical waveguide constituting the resonator.
  • a point-like portion may be formed.
  • the dot-like portion can be formed at a position that does not affect the emission of the laser light.
  • the first division may include a step of forming a plurality of optical waveguides arranged adjacent to each other in the first direction with respect to the nitride semiconductor layer.
  • the first divided guide is set such that a separation distance between the dotted portions adjacent to each other in the first direction is equal to or less than a separation distance between the optical waveguides adjacent to each other in the first direction.
  • a step of forming a second divided guide groove along the second direction on the nitride semiconductor layer, and the wafer substrate according to the second divided guide groove And a step of dividing.
  • a nitride semiconductor layer including a light emitting layer having a cavity end face extending in a first direction formed by cleavage is formed on a nitride semiconductor substrate.
  • Different recesses are formed on one end side and the other end side. The side extending in the first direction of the nitride semiconductor layer corresponds to the upper side of the resonator end face.
  • the nitride semiconductor laser element in which the concave portion having the above shape is formed on the side is a nitride semiconductor laser element having a resonator end face cleaved from the concave portion, and has a stable chip shape.
  • one aspect of the wafer substrate according to the present invention is a wafer substrate in which a nitride semiconductor layer including a light emitting layer is laminated on a nitride semiconductor substrate, and the nitride substrate is formed on the nitride semiconductor layer of the wafer substrate.
  • the first divided guide grooves including a plurality of point-like portions discretely arranged along a first direction in which a surface to be a resonator end surface extends after cleavage is formed, and the plurality of point-like portions are respectively Regarding the width in the second direction orthogonal to the first direction, the tip side has a shape narrower than the rear end side, and the tip side of the point-like portion is adjacent to the point-like portion. Is arranged to face the rear end side.
  • Such a wafer substrate has a relatively straight cleaved orbit when cleaved. That is, the chip shape when the wafer substrate is separated can be stabilized.
  • the present invention it is possible to divide a wafer by cleaving with high accuracy according to a cleaving line. Therefore, the chip shape can be stabilized and the yield can be improved.
  • FIG. 1 is a perspective view showing a configuration example of a nitride semiconductor laser device according to this embodiment.
  • FIG. 2 is a diagram for explaining a manufacturing process of the nitride semiconductor laser device.
  • FIG. 3 is a diagram illustrating a manufacturing process of the nitride semiconductor laser device.
  • FIG. 4 is a diagram for explaining a manufacturing process of the nitride semiconductor laser device.
  • FIG. 5 is a diagram for explaining a manufacturing process of the nitride semiconductor laser device.
  • FIG. 6 is an example of the division guide groove.
  • FIG. 7A is a diagram illustrating the shape of the division guide groove.
  • FIG. 7B is a diagram illustrating the shape of the division guide groove.
  • FIG. 8A is a comparative example of divided guide grooves.
  • FIG. 8B is a comparative example of the division guide groove.
  • FIG. 9 is a diagram showing the formation positions of the division guide grooves on the wafer substrate.
  • FIG. 10 is
  • FIG. 1 is a diagram showing a configuration example of a nitride semiconductor laser element 10 in the present embodiment.
  • a nitride semiconductor laser element (hereinafter referred to as “chip”) 10 emits laser light in the direction of an arrow in the drawing when assembled in a semiconductor laser device and supplied with a predetermined injection current.
  • the chip 10 includes a substrate 11 having a chip width W.
  • the substrate 11 is a nitride semiconductor substrate made of a nitride semiconductor such as gallium nitride (GaN), aluminum nitride (AlN), or aluminum gallium nitride (AlGaN).
  • a semiconductor layer (semiconductor laminated structure) 12 is formed on the substrate 11.
  • the semiconductor layer 12 is a nitride semiconductor layer formed by crystal growth on the main surface with the c-plane of the substrate 11 as the main surface.
  • the semiconductor layer 12 includes at least an active layer having a cavity length L to be a light emitting layer, an n-type semiconductor layer, and a p-type semiconductor layer.
  • the n-type semiconductor layer is disposed on the substrate 11 side with respect to the active layer
  • the p-type semiconductor layer is disposed on the side opposite to the substrate 11 with respect to the active layer. Note that the positional relationship between the n-type semiconductor layer and the p-type semiconductor layer may be reversed.
  • electrons are injected from the n-type semiconductor layer and holes are injected from the p-type semiconductor layer, and these are recombined in the active layer, whereby light is generated from the active layer.
  • a stripe-shaped ridge portion 13 is formed in a layer located on the side farther from the substrate 11 than the active layer.
  • the ridge portion 13 is a current confinement portion for confining current, and is located above the optical waveguide formed in the active layer and extending along the m-axis direction.
  • a pair of resonator end faces facing each other are formed at both ends in the extending direction of the ridge portion 13.
  • the resonator end faces are surfaces in which a reflection film is formed on the surface formed by cleavage, and the laser can be emitted by reflecting light by these resonator end faces.
  • the resonator end surface is formed along the m-plane.
  • the resonator end face is preferably a cleavage plane. The reason is that the surface formed by cleaving is less rough than the surface formed by means other than cleaving, such as a laser cut surface, and the high reflectivity necessary for the resonator end face can be secured. It is.
  • the case where the c-plane of the substrate 11 is the main surface and the m-plane is the resonator end surface is described.
  • the m-plane may be the main surface and the c-plane may be the resonator end surface.
  • a wafer substrate (hereinafter simply referred to as “wafer”) 20 in which a large number of ridge portions 13 to be optical waveguides are arranged in parallel is prepared, and the wafer 20 is divided into sizes that can be cleaved as shown in FIG. Thus, a divided wafer (divided substrate) 21 is formed.
  • a plurality of ridge portions 13 extend in the m-axis direction on the wafer 20, and the plurality of ridge portions 13 are arranged in parallel at a predetermined interval in the a-axis direction. .
  • a split guide groove (first split guide groove) 22 for cleavage is formed on the surface of the split wafer 21 by, for example, laser processing. Further, a cleaving flaw may be formed on the a-axis direction end of the divided wafer 21 with, for example, a diamond cutter.
  • the division guide groove 22 may be formed by dry etching.
  • a plurality of the division guide grooves 22 extend in the a-axis direction, which is the cleavage direction, and the plurality of division guide grooves 22 are arranged parallel to each other at a predetermined interval in the m-axis direction.
  • Each division guide groove 22 is configured by a plurality of dot-like portions that are discretely arranged along the cleavage direction. The shape of the dotted portion of the division guide groove 22 will be described in detail later.
  • the blade is pushed up in accordance with the divided guide groove 22, and the divided wafer 21 is cleaved along the divided guide groove 22.
  • the cleavage proceeds along the m-plane, and a bar-shaped chip 23 as shown in FIG. 4 is formed.
  • a reflection film is formed on each of both end faces in the m-axis direction which are cleavage planes.
  • a resonator end face is formed.
  • a divided guide groove (second divided guide groove) 24 is formed on the bar-shaped chip 23 in the direction perpendicular to the first direction and along the m-axis direction in which the optical waveguide extends.
  • tip 23 is divided
  • tip 10 which has a light emission part separately is formed.
  • the cleavage direction (a-axis direction) corresponds to the first direction
  • the direction in which the divided guide groove 24 extends (m-axis direction) corresponds to the second direction.
  • the dotted portions are arranged in a line on the planned cleavage line 31 set along the cleavage direction, and the width in the direction orthogonal to the planned cleavage line 31 is in the direction of cleavage progress.
  • the front end side has a narrower shape than the rear end side. More specifically, the point-like portion has a shape that gradually becomes narrower in the cleaving direction in plan view.
  • punctate part has the shape where the front end side of the advancing direction of cleavage is sharp.
  • each point-like portion can be a scissors shape (tears) having a round shape on the rear end side in the cleaving direction in a plan view and a sharp shape on the front side in the cleaving direction.
  • the sharp tip of each point-like part can be arranged on the planned cleavage line 31.
  • the angle of the tip of the point-like part may be an arbitrary angle.
  • the split guide groove 22 composed of a plurality of point-like portions having the above-mentioned shape is arranged on the planned cleavage line 31 and the cleavage progress line 32 is compared along the planned cleavage line 31 by performing cleavage according to the planned cleavage line 31.
  • the GaN substrate used for the substrate 11 of the chip 10 in the present embodiment is poor in cleavage as compared with other diode growth substrates such as gallium arsenide (GaAs).
  • GaAs gallium arsenide
  • the wafer cannot be cut straight during cleavage due to the defects.
  • the dividing line is bent at a position where a defect exists, and the wafer may be broken stepwise or obliquely.
  • the split guide groove 22 for cleavage is a pattern in which a plurality of dotted portions are discretely arranged along the cleavage direction, and the shape of the dotted portions is sharp. It was made into the shape provided with the location and the location which is not so. And each point-like part arrange
  • the pointed portion has a sharp one end opposed to the other end formed wider than the other pointed portion adjacent to the pointed portion. Therefore, even if the cleaving progress line is bent due to a defect contained in the GaN substrate, the cleaved trajectory bent from the sharp one end is at the wide end of the other adjacent point-like part. The trajectory is corrected.
  • the cleavage path as a whole becomes relatively straight. That is, the cleavage progress line 32 can be substantially linear along the planned cleavage line 31.
  • FIG. 8A and FIG. 8B are comparative examples of divided guide grooves having point-like portions different in shape from the divided guide grooves 22 in the present embodiment.
  • the divided guide grooves 122 shown in FIG. 8A are examples in which elliptical dotted portions are arranged in a line with the major axis direction aligned with the cleavage direction in plan view.
  • Divided guide grooves 222 shown in FIG. 8B are examples in which rectangular point-like portions in a plan view are arranged in a line with the long side direction aligned with the cleavage direction.
  • the starting point of cleavage is random, and regular cleavage is not performed. That is, as shown by the dotted line 132 in FIG. 8A and the dotted line 232 in FIG. Further, in the worst case, the trajectory correction at the adjacent point-like portions cannot be performed, and the cleavage progress line may deviate greatly from the planned cleavage line. For this reason, when the divided guide groove including the point-like portions having the shapes as shown in FIGS. 8A and 8B is used, the chip shape is not stable and the yield is lowered.
  • FIG. 9 is a diagram showing a positional relationship between the dotted portions of the divided guide grooves 22 and the ridge portions 13 corresponding to the optical waveguides.
  • the plurality of point-like portions of the divided guide groove 22 are formed on the surface of the divided wafer 21 (on the semiconductor layer 12) in the extending direction (a-axis direction) of the m-plane serving as the resonator end face. It is formed discretely along.
  • each point-like portion of the divided guide groove 22 is formed at a place other than the upper part of the optical waveguide constituting the resonator, that is, a place where the ridge portion 13 is not formed.
  • the separation distance between adjacent point-like portions is set to be equal to or less than the separation distance between adjacent optical waveguides (ridge portions 13). Further, in the extending direction (m-axis direction) of the optical waveguide (ridge portion 13), the distance between adjacent point-like portions (center-to-center distance) is set equal to the cavity length L of the chip 10. For example, as shown in FIG. 9, each point-like portion can be formed at the apex position of the chip 10 in plan view.
  • the divided wafer 21 is divided by cleaving according to the divided guide groove 22 to form the bar-shaped chip 23.
  • the bar-shaped chip 23 is divided in a direction orthogonal to the cleavage direction by laser dicing or the like to form the chip 10.
  • the bar-shaped chip 23 is divided at the center position of the dotted portion of the divided guide groove 22 to form the chip 10.
  • a scribe mark 22 a that is a part of a dotted portion remains at the apex portion of the semiconductor layer 12.
  • the scribe mark 22a is a recess having a width in the m-axis direction (second direction) orthogonal to the a-axis direction (first direction) that is the cleavage direction, on one end side and the other end side in the cleavage direction. Note that, depending on the formation position and the separation distance of the dotted portions of the divided guide grooves 22 in the cleavage direction, the chip 10 that has been singulated is not the apex portion of the semiconductor layer 12 but the side that extends in the cleavage direction (resonance).
  • the scribe mark 22a may remain in a part of the upper side of the vessel end face.
  • the wafer substrate can be divided with high accuracy according to the planned cleavage line. Therefore, the chip shape can be stabilized and the yield can be improved.
  • the chip 10 includes the current confinement portion having the ridge structure.
  • the chip 10 may include a current confinement portion having a non-ridge structure (buried structure).
  • the buried structure is a structure in which an outside of a region serving as a current path of an injection current is cut out by etching, and another semiconductor layer is stacked as a buried layer on both sides of the region. Also in this case, the same effect as the above-described embodiment can be obtained.
  • the shape of the dotted portion of the divided guide groove 22 is a saddle shape (tears shape)
  • the shape of the dotted portion is the tip in the cleaving direction in plan view.
  • the side may be narrower than the rear end side, and may be, for example, a triangle or a sector.
  • the shape of the point-like portion is not limited to a shape that gradually becomes narrower in the cleaving direction in plan view, and may have, for example, a step shape.
  • the shape of the point-like portion is not limited to a shape having a sharp tip in the cleaving direction in plan view, and may be, for example, a trapezoid.
  • SYMBOLS 10 Nitride semiconductor laser element (chip), 11 ... Nitride semiconductor substrate, 12 ... Semiconductor layer, 13 ... Ridge part, 20 ... Wafer substrate, 21 ... Divided wafer, 22 ... Divided guide groove, 23 ... Bar-shaped chip

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Semiconductor Lasers (AREA)
  • Laser Beam Processing (AREA)
  • Dicing (AREA)

Abstract

Disclosed is a method for manufacturing a nitride semiconductor laser element, the method enabling stabilization of chip shape, thereby achieving an increase in yield. The method for manufacturing a nitride semiconductor laser element (10) in which nitride semiconductor layers (12) including a light emitting layer having a resonator end face are stacked on a nitride semiconductor substrate (11) comprises: a step for preparing a wafer (20) in which the nitride semiconductor layers (12) are stacked on the nitride semiconductor substrate (11); and a step for forming, on the nitride semiconductor layer (12), a first divided guide groove (22) including a plurality of point-like portions discretely arranged along a first direction in which a face that is to become a resonator end face by cleavage extends. Each of the plurality of point-like portions has a shape which, with respect to the width in a second direction orthogonal to the first direction, is narrower on the front end side than on the rear end side, wherein the front end side of one point-like portion is positioned opposite the rear end side of another point-like portion adjacent to the one point-like portion.

Description

窒化物半導体レーザ素子およびその製造方法Nitride semiconductor laser device and manufacturing method thereof
 本発明は、窒化物半導体レーザ素子およびその製造方法に関する。 The present invention relates to a nitride semiconductor laser device and a method for manufacturing the same.
 従来、GaN基板上にIII族窒化物半導体層を成長させた構成の青色系の窒化物半導体レーザ素子が知られている。窒化物半導体レーザ素子は、GaN基板側から、n型クラッド層(下側クラッド層)、n型ガイド層(下側ガイド層)、多重量子井戸構造の活性層、p型ガイド層(上側ガイド層)、p型クラッド層(上側クラッド層)を含んで構成されている。発光波長は量子井戸層の組成によって調整される。
 GaN基板等のIII族窒化物半導体からなる基板は、発光ダイオードやレーザダイオードに従来から適用されてきたGaAs基板等と比較して、劈開性に乏しい。そのため、ウェハを個別のチップに分割する工程において、分割位置が分割予定ラインからずれてしまい、チップ形状が安定しなかった。
Conventionally, a blue nitride semiconductor laser element having a structure in which a group III nitride semiconductor layer is grown on a GaN substrate is known. The nitride semiconductor laser element includes an n-type cladding layer (lower cladding layer), an n-type guide layer (lower guide layer), an active layer having a multiple quantum well structure, and a p-type guide layer (upper guide layer) from the GaN substrate side. ) And a p-type cladding layer (upper cladding layer). The emission wavelength is adjusted by the composition of the quantum well layer.
A substrate made of a group III nitride semiconductor, such as a GaN substrate, is less cleaved than a GaAs substrate or the like conventionally applied to a light emitting diode or a laser diode. For this reason, in the step of dividing the wafer into individual chips, the dividing position is shifted from the line to be divided, and the chip shape is not stable.
 そこで、特許文献1(特開2009-81428号公報)には、以下の手順に従ってウェハを分割して個別のレーザ素子を得る方法が開示されている。すなわち、特許文献1(特開2009-81428号公報)に記載の方法では、III族窒化物半導体基板上にAlGaN層を含むn型半導体層、Inを含む発光層およびp型半導体層が順に積層形成されたウェハに対して、分割予定ラインに沿ってp型半導体層側から選択的にエッチングを施すことにより、AlGaN層を分割予定ラインに沿って露出させるエッチング溝を形成する。また、この露出したAlGaN層に、分割予定ラインに沿う分割ガイド溝を形成する。そして、この分割ガイド溝に沿ってウェハを分割することにより、個別素子を得る。 Therefore, Patent Document 1 (Japanese Unexamined Patent Application Publication No. 2009-81428) discloses a method of dividing a wafer according to the following procedure to obtain individual laser elements. That is, in the method described in Patent Document 1 (Japanese Patent Laid-Open No. 2009-81428), an n-type semiconductor layer including an AlGaN layer, a light-emitting layer including In, and a p-type semiconductor layer are sequentially stacked on a group III nitride semiconductor substrate. By etching the formed wafer selectively from the p-type semiconductor layer side along the planned division line, an etching groove that exposes the AlGaN layer along the planned division line is formed. Further, a division guide groove is formed along the planned division line in the exposed AlGaN layer. Then, the individual elements are obtained by dividing the wafer along the divided guide grooves.
特開2009-81428号公報JP 2009-81428 A
 しかしながら、上記特許文献1(特開2009-81428号公報)に記載の方法によっても、個別素子を分割する際に分割予定ラインに従って正確に分割することは困難であり、分割位置が分割予定ラインからずれるなどしてチップ形状が安定せず、歩留まりの低下を生じていた。
 そこで、本発明は、チップ形状を安定化して歩留まりを向上させることができる窒化物半導体レーザ素子の製造方法を提供することを課題としている。
However, even with the method described in Patent Document 1 (Japanese Patent Laid-Open No. 2009-81428), it is difficult to accurately divide individual elements according to the planned division line, and the division position is determined from the planned division line. The chip shape is not stable due to deviation or the like, resulting in a decrease in yield.
Accordingly, an object of the present invention is to provide a method of manufacturing a nitride semiconductor laser device that can stabilize the chip shape and improve the yield.
 上記課題を解決するために、本発明に係る窒化物半導体レーザ素子の製造方法の一態様は、窒化物半導体基板上に、共振器端面を備えた発光層を含む窒化物半導体層が積層されてなる窒化物半導体レーザ素子の製造方法であって、前記窒化物半導体基板上に前記窒化物半導体層が積層されたウェハ基板を準備する工程と、前記ウェハ基板の前記窒化物半導体層上に、劈開されて前記共振器端面となる面が延在する第1方向に沿って離散的に配置された複数の点状部を含む第1分割ガイド溝を形成する工程と、を含み、前記複数の点状部は、それぞれ前記第1方向に直交する第2方向の幅に関して、先端側が後端側よりも狭い形状を有し、且つ、前記点状部の前記先端側が当該点状部に隣接する他の前記点状部の前記後端側に対向して配置される。 In order to solve the above-described problem, an embodiment of a method of manufacturing a nitride semiconductor laser device according to the present invention includes a nitride semiconductor substrate including a nitride semiconductor layer including a light emitting layer having a resonator end face. A method of manufacturing a nitride semiconductor laser device comprising: preparing a wafer substrate in which the nitride semiconductor layer is laminated on the nitride semiconductor substrate; and cleaving the nitride semiconductor layer on the wafer substrate. Forming a first divided guide groove including a plurality of point-like portions discretely arranged along a first direction in which a surface serving as the resonator end surface extends, and the plurality of points Each of the other portions has a shape in which the front end side is narrower than the rear end side with respect to the width in the second direction orthogonal to the first direction, and the front end side of the point-like portion is adjacent to the point-like portion. Arranged opposite to the rear end side of the dotted portion That.
 このように、窒化物半導体レーザ素子の製造に際し、ウェハ基板の窒化物半導体層上に、先端側が後端側よりも狭い形状を有する複数の点状部が劈開方向である第1方向に沿って離散的に配置された第1分割ガイド溝を形成する。そして、第1分割ガイド溝を構成する複数の点状部を、点状部の幅が狭い方の端部(先端部)が、当該点状部に第1方向において隣接する他の点状部の幅が広い方の端部(後端部)に対向するように形成する。これにより、ウェハ基板を劈開した場合、点状部の幅が狭い方の端部を起点として、規則的に劈開が進むことになる。仮に劈開の進行ラインが曲がったとしても、劈開方向に対向する他の点状部の幅広に形成された端部において劈開の進行ラインが軌道修正される結果、全体としては劈開の軌道が比較的まっすぐなものとなる。したがって、ウェハ基板を個片化した際のチップ形状を安定化することができる。 As described above, when the nitride semiconductor laser device is manufactured, a plurality of dot-like portions having a shape whose front end side is narrower than the rear end side are formed on the nitride semiconductor layer of the wafer substrate along the first direction which is the cleavage direction. The first divided guide grooves arranged discretely are formed. Then, the plurality of dot-like portions constituting the first divided guide groove are the other dot-like portions in which the end portion (tip portion) having the narrower width of the dot-like portion is adjacent to the dot-like portion in the first direction. Is formed so as to face the wider end (rear end). As a result, when the wafer substrate is cleaved, the cleaving proceeds regularly starting from the end of the narrower dot-like width. Even if the cleavage progress line is bent, as a result of the trajectory correction of the cleavage progress line at the wide end of the other punctiform part facing the cleavage direction, the cleavage trajectory as a whole is relatively It will be straight. Therefore, the chip shape when the wafer substrate is separated can be stabilized.
 また、上記の窒化物半導体レーザ素子の製造方法は、前記第1分割ガイド溝に従って、前記点状部の前記先端側から当該点状部に隣接する他の前記点状部の前記後端側に向けて前記ウェハ基板を劈開し、前記共振器端面となる面を形成する工程をさらに含んでもよい。このように、第1分割ガイド溝に従ってウェハ基板を劈開により分割することで、高い反射率が確保された平らな共振器端面を形成することができる。 Further, in the above method for manufacturing a nitride semiconductor laser device, according to the first divided guide groove, from the tip side of the point-like part to the rear end side of the other point-like part adjacent to the point-like part. The method may further include a step of cleaving the wafer substrate to form a surface to be the resonator end surface. As described above, by dividing the wafer substrate by cleaving according to the first division guide groove, it is possible to form a flat resonator end face with high reflectivity.
 さらに、上記の窒化物半導体レーザ素子の製造方法において、前記点状部は、前記第2方向の幅に関して、前記後端側から前記先端側に向かって漸次幅狭となる形状を有していてもよい。この場合、確実に点状部の最先端部を劈開の起点とすることができる。点状部の途中から劈開進行ラインが曲がってしまうことを防止することができるので、劈開予定ラインに沿った分割が可能となる。 Furthermore, in the above method for manufacturing a nitride semiconductor laser device, the point-like portion has a shape that gradually becomes narrower from the rear end side toward the front end side with respect to the width in the second direction. Also good. In this case, the most distal portion of the dotted portion can be reliably set as the starting point of cleavage. Since it is possible to prevent the cleavage progress line from being bent from the middle of the dotted portion, division along the planned cleavage line becomes possible.
 また、上記の窒化物半導体レーザ素子の製造方法において、前記点状部は、前記先端側が鋭利な形状を有していてもよい。この場合、点状部の先端部の一点を劈開の起点とすることができる。したがって、点状部の先端位置を劈開予定ライン上に配置すれば、ウェハ基板を劈開予定ラインに従ってまっすぐに分割することができる。
 さらに、上記の窒化物半導体レーザ素子の製造方法において、前記点状部は、前記第1方向および前記第2方向に直交する方向の深さに関して、前記後端側から前記先端側に向かって漸次浅くなる形状を少なくとも一部に有していてもよい。この場合、より確実に点状部の最先端部を劈開の起点とすることができる。
In the method for manufacturing a nitride semiconductor laser element, the point-like portion may have a sharp shape on the tip side. In this case, one point of the tip part of the point-like part can be used as the starting point of cleavage. Therefore, if the tip position of the dotted portion is arranged on the planned cleavage line, the wafer substrate can be divided straight according to the planned cleavage line.
Furthermore, in the above method for manufacturing a nitride semiconductor laser device, the point-like portion gradually increases from the rear end side toward the front end side with respect to the depth in the direction orthogonal to the first direction and the second direction. You may have the shape which becomes shallow at least in part. In this case, the forefront part of the point-like part can be set as the starting point of cleavage more reliably.
 さらに、上記の窒化物半導体レーザ素子の製造方法において、前記第1分割ガイド溝を形成する工程では、レーザ加工により前記第1分割ガイド溝を形成してもよい。また、上記の窒化物半導体レーザ素子の製造方法において、前記第1分割ガイド溝を形成する工程では、ドライエッチングにより前記第1分割ガイド溝を形成してもよい。いずれの場合にも、容易かつ適切に第1分割ガイド溝を形成することができる。レーザ加工により第1分割ガイド溝を形成した場合、点状部の深さを後端側から先端側に向かって漸次浅くすることもできる。この場合、より確実に点状部の最先端部を劈開の起点とすることができる。一方、ドライエッチングにより第1分割ガイド溝を形成する場合、点状部を任意の形状とすることが容易であり、点状部の形状の自由度が高い。 Further, in the method for manufacturing a nitride semiconductor laser device, in the step of forming the first divided guide groove, the first divided guide groove may be formed by laser processing. In the method for manufacturing the nitride semiconductor laser element, the first divided guide groove may be formed by dry etching in the step of forming the first divided guide groove. In either case, the first divided guide groove can be formed easily and appropriately. When the first divided guide groove is formed by laser processing, the depth of the dotted portion can be gradually decreased from the rear end side toward the front end side. In this case, the forefront part of the point-like part can be set as the starting point of cleavage more reliably. On the other hand, when the first divided guide groove is formed by dry etching, it is easy to make the point-like portion an arbitrary shape, and the degree of freedom of the shape of the point-like portion is high.
 さらにまた、上記の窒化物半導体レーザ素子の製造方法において、前記第1分割ガイド溝を形成する工程では、前記共振器を構成する光導波路の上方を除いた箇所に前記第1分割ガイド溝の前記点状部を形成してもよい。この場合、レーザ光の発光に影響のない位置に点状部を形成することができる。
 また、上記の窒化物半導体レーザ素子の製造方法において、前記窒化物半導体層に対し、前記第1方向に互いに隣接して配置される複数の光導波路を形成する工程を有し、前記第1分割ガイド溝を形成する工程では、前記第1方向に互いに隣接する前記点状部の離間距離が、前記第1方向に互いに隣接する前記光導波路の離間距離以下となるように、前記第1分割ガイド溝の前記点状部を形成してもよい。つまり、個片化されたチップ幅よりも狭い間隔で複数の点状部を形成してもよい。この場合、個片化された全ての素子において、チップ形状を安定化させることができ、歩留まりを向上させることができる。
Furthermore, in the method of manufacturing the nitride semiconductor laser element, in the step of forming the first divided guide groove, the first divided guide groove is formed at a location excluding the upper side of the optical waveguide constituting the resonator. A point-like portion may be formed. In this case, the dot-like portion can be formed at a position that does not affect the emission of the laser light.
In the method for manufacturing a nitride semiconductor laser device, the first division may include a step of forming a plurality of optical waveguides arranged adjacent to each other in the first direction with respect to the nitride semiconductor layer. In the step of forming the guide groove, the first divided guide is set such that a separation distance between the dotted portions adjacent to each other in the first direction is equal to or less than a separation distance between the optical waveguides adjacent to each other in the first direction. You may form the said dotted | punctate part of a groove | channel. That is, a plurality of dot-like portions may be formed at an interval narrower than the chip width that is singulated. In this case, the chip shape can be stabilized in all the separated elements, and the yield can be improved.
 さらに、上記の窒化物半導体レーザ素子の製造方法は、前記窒化物半導体層上に、前記第2方向に沿って第2分割ガイド溝を形成する工程と、前記第2分割ガイド溝に従って前記ウェハ基板を分割する工程と、をさらに含んでもよい。第2分割ガイド溝に従ってウェハ基板を分割することで、第2分割ガイド溝の第1方向における離間距離に等しいチップ幅を有する窒化物半導体レーザ素子を製造することができる。 Further, in the above method for manufacturing a nitride semiconductor laser device, a step of forming a second divided guide groove along the second direction on the nitride semiconductor layer, and the wafer substrate according to the second divided guide groove And a step of dividing. By dividing the wafer substrate according to the second divided guide groove, a nitride semiconductor laser device having a chip width equal to the separation distance in the first direction of the second divided guide groove can be manufactured.
 また、本発明に係る窒化物半導体レーザ素子の一態様は、窒化物半導体基板上に、劈開により形成された第1方向に延在する共振器端面を備えた発光層を含む窒化物半導体層が積層されてなる窒化物半導体レーザ素子であって、前記窒化物半導体層の前記第1方向に延在する辺の一部に、前記第1方向に直交する第2方向の幅が前記第1方向の一端側と他端側とで異なる凹部が形成されている。
 窒化物半導体層の第1方向に延在する辺は、共振器端面の上辺に対応する。当該辺に上記の形状を有する凹部が形成されている窒化物半導体レーザ素子は、当該凹部を起点として劈開された共振器端面を有する窒化物半導体レーザ素子であり、安定したチップ形状を有する。
According to another aspect of the nitride semiconductor laser device of the present invention, a nitride semiconductor layer including a light emitting layer having a cavity end face extending in a first direction formed by cleavage is formed on a nitride semiconductor substrate. A nitride semiconductor laser element formed by stacking, wherein a width of a second direction orthogonal to the first direction is a part of a side of the nitride semiconductor layer extending in the first direction. Different recesses are formed on one end side and the other end side.
The side extending in the first direction of the nitride semiconductor layer corresponds to the upper side of the resonator end face. The nitride semiconductor laser element in which the concave portion having the above shape is formed on the side is a nitride semiconductor laser element having a resonator end face cleaved from the concave portion, and has a stable chip shape.
 さらに、本発明に係るウェハ基板の一態様は、窒化物半導体基板上に、発光層を含む窒化物半導体層が積層されてなるウェハ基板であって、前記ウェハ基板の前記窒化物半導体層上に、劈開後に共振器端面となる面が延在する第1方向に沿って離散的に配置された複数の点状部を含む第1分割ガイド溝が形成され、前記複数の点状部は、それぞれ前記第1方向に直交する第2方向の幅に関して、先端側が後端側よりも狭い形状を有し、且つ、前記点状部の前記先端側が当該点状部に隣接する他の前記点状部の前記後端側に対向して配置されている。
 このようなウェハ基板は、劈開した際の劈開の軌道が比較的まっすぐなものとなる。つまり、ウェハ基板を個片化した際のチップ形状を安定化することができる。
Furthermore, one aspect of the wafer substrate according to the present invention is a wafer substrate in which a nitride semiconductor layer including a light emitting layer is laminated on a nitride semiconductor substrate, and the nitride substrate is formed on the nitride semiconductor layer of the wafer substrate. The first divided guide grooves including a plurality of point-like portions discretely arranged along a first direction in which a surface to be a resonator end surface extends after cleavage is formed, and the plurality of point-like portions are respectively Regarding the width in the second direction orthogonal to the first direction, the tip side has a shape narrower than the rear end side, and the tip side of the point-like portion is adjacent to the point-like portion. Is arranged to face the rear end side.
Such a wafer substrate has a relatively straight cleaved orbit when cleaved. That is, the chip shape when the wafer substrate is separated can be stabilized.
 本発明によれば、ウェハを劈開予定ラインに従って精度良く劈開により分割することができる。したがって、チップ形状を安定化して歩留まりを向上させることができる。
 上記した本発明の目的、態様及び効果並びに上記されなかった本発明の目的、態様及び効果は、当業者であれば添付図面及び請求の範囲の記載を参照することにより下記の発明を実施するための形態(発明の詳細な説明)から理解できるであろう。
According to the present invention, it is possible to divide a wafer by cleaving with high accuracy according to a cleaving line. Therefore, the chip shape can be stabilized and the yield can be improved.
The above-described objects, aspects, and advantages of the present invention, and objects, aspects, and effects of the present invention that have not been described above will be understood by those skilled in the art to implement the following invention by referring to the attached drawings and the claims. This will be understood from the following description (detailed description of the invention).
図1は、本実施形態における窒化物半導体レーザ素子の構成例を示す斜視図である。FIG. 1 is a perspective view showing a configuration example of a nitride semiconductor laser device according to this embodiment. 図2は、窒化物半導体レーザ素子の製造工程を説明する図である。FIG. 2 is a diagram for explaining a manufacturing process of the nitride semiconductor laser device. 図3は、窒化物半導体レーザ素子の製造工程を説明する図である。FIG. 3 is a diagram illustrating a manufacturing process of the nitride semiconductor laser device. 図4は、窒化物半導体レーザ素子の製造工程を説明する図である。FIG. 4 is a diagram for explaining a manufacturing process of the nitride semiconductor laser device. 図5は、窒化物半導体レーザ素子の製造工程を説明する図である。FIG. 5 is a diagram for explaining a manufacturing process of the nitride semiconductor laser device. 図6は、分割ガイド溝の一例である。FIG. 6 is an example of the division guide groove. 図7Aは、分割ガイド溝の形状を示す図である。FIG. 7A is a diagram illustrating the shape of the division guide groove. 図7Bは、分割ガイド溝の形状を示す図である。FIG. 7B is a diagram illustrating the shape of the division guide groove. 図8Aは、分割ガイド溝の比較例である。FIG. 8A is a comparative example of divided guide grooves. 図8Bは、分割ガイド溝の比較例である。FIG. 8B is a comparative example of the division guide groove. 図9は、ウェハ基板上における分割ガイド溝の形成位置を示す図である。FIG. 9 is a diagram showing the formation positions of the division guide grooves on the wafer substrate. 図10は、窒化物半導体レーザ素子が有するスクライブ痕を示す図である。FIG. 10 is a diagram showing scribe marks of the nitride semiconductor laser element.
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1は、本実施形態における窒化物半導体レーザ素子10の構成例を示す図である。
 窒化物半導体レーザ素子(以下、「チップ」という。)10は、半導体レーザ装置に組み付けられて所定の注入電流が供給された場合に、図中矢印の方向にレーザ光を出射する。
 チップ10は、チップ幅Wの基板11を備える。例えば、基板11は、窒化ガリウム(GaN)、窒化アルミニウム(AlN)、窒化アルミニウムガリウム(AlGaN)等の窒化物半導体からなる窒化物半導体基板である。基板11上には半導体層(半導体積層構造)12が形成されている。半導体層12は、基板11のc面を主面として、その主面上における結晶成長によって形成された窒化物半導体層である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a configuration example of a nitride semiconductor laser element 10 in the present embodiment.
A nitride semiconductor laser element (hereinafter referred to as “chip”) 10 emits laser light in the direction of an arrow in the drawing when assembled in a semiconductor laser device and supplied with a predetermined injection current.
The chip 10 includes a substrate 11 having a chip width W. For example, the substrate 11 is a nitride semiconductor substrate made of a nitride semiconductor such as gallium nitride (GaN), aluminum nitride (AlN), or aluminum gallium nitride (AlGaN). A semiconductor layer (semiconductor laminated structure) 12 is formed on the substrate 11. The semiconductor layer 12 is a nitride semiconductor layer formed by crystal growth on the main surface with the c-plane of the substrate 11 as the main surface.
 半導体層12は、発光層となるキャビティ長Lの活性層と、n型半導体層と、p型半導体層とを少なくとも含んで構成されている。例えばn型半導体層は、活性層に対して基板11側に配置されており、p型半導体層は、活性層に対して基板11とは反対側に配置されている。なお、n型半導体層とp型半導体層との位置関係は逆であってもよい。活性層には、n型半導体層から電子、p型半導体層から正孔が注入され、これらが活性層において再結合することにより、活性層から光が発生するようになっている。
 n型半導体層およびp型半導体層のうち、活性層よりも基板11から離れた側に位置する層には、ストライプ状のリッジ部13が形成されている。このリッジ部13は、電流を狭窄するための電流狭窄部であり、活性層に形成されるm軸方向に沿って延びる光導波路の上方に位置する。
The semiconductor layer 12 includes at least an active layer having a cavity length L to be a light emitting layer, an n-type semiconductor layer, and a p-type semiconductor layer. For example, the n-type semiconductor layer is disposed on the substrate 11 side with respect to the active layer, and the p-type semiconductor layer is disposed on the side opposite to the substrate 11 with respect to the active layer. Note that the positional relationship between the n-type semiconductor layer and the p-type semiconductor layer may be reversed. In the active layer, electrons are injected from the n-type semiconductor layer and holes are injected from the p-type semiconductor layer, and these are recombined in the active layer, whereby light is generated from the active layer.
Of the n-type semiconductor layer and the p-type semiconductor layer, a stripe-shaped ridge portion 13 is formed in a layer located on the side farther from the substrate 11 than the active layer. The ridge portion 13 is a current confinement portion for confining current, and is located above the optical waveguide formed in the active layer and extending along the m-axis direction.
 また、リッジ部13の延在方向における両端部には、互いに対向する一対の共振器端面が形成されている。共振器端面は、それぞれ劈開により形成された表面に反射膜を形成した面であり、これら共振器端面によって光を反射させることでレーザを発光させることができる。共振器端面は、m面に沿って形成されている。本実施形態のように、共振器端面は劈開面であることが好ましい。その理由は、劈開により形成された表面は、例えばレーザ切断面のような劈開以外の手段で形成された面に比べて表面荒れ等が少なく、共振器端面に必要な高い反射率を確保できるためである。
 なお、本実施形態では、基板11のc面を主面とし、m面を共振器端面とする場合について説明するが、m面を主面とし、c面を共振器端面としてもよい。
A pair of resonator end faces facing each other are formed at both ends in the extending direction of the ridge portion 13. The resonator end faces are surfaces in which a reflection film is formed on the surface formed by cleavage, and the laser can be emitted by reflecting light by these resonator end faces. The resonator end surface is formed along the m-plane. As in this embodiment, the resonator end face is preferably a cleavage plane. The reason is that the surface formed by cleaving is less rough than the surface formed by means other than cleaving, such as a laser cut surface, and the high reflectivity necessary for the resonator end face can be secured. It is.
In the present embodiment, the case where the c-plane of the substrate 11 is the main surface and the m-plane is the resonator end surface is described. However, the m-plane may be the main surface and the c-plane may be the resonator end surface.
 次に、図1に示すチップ10の製造プロセスについて、図2~図5を参照しながら説明する。
 まず、光導波路となるリッジ部13が平行に多数配列されたウェハ基板(以下、単に「ウェハ」という。)20を準備し、図2に示すように、ウェハ20を劈開可能なサイズに分割して分割ウェハ(分割基板)21を形成する。ここで、特に図示しないが、リッジ部13はウェハ20上のm軸方向に複数延在し、これら複数のリッジ部13は、互いにa軸方向に所定間隔で離間して平行に配置されている。
Next, a manufacturing process of the chip 10 shown in FIG. 1 will be described with reference to FIGS.
First, a wafer substrate (hereinafter simply referred to as “wafer”) 20 in which a large number of ridge portions 13 to be optical waveguides are arranged in parallel is prepared, and the wafer 20 is divided into sizes that can be cleaved as shown in FIG. Thus, a divided wafer (divided substrate) 21 is formed. Here, although not particularly illustrated, a plurality of ridge portions 13 extend in the m-axis direction on the wafer 20, and the plurality of ridge portions 13 are arranged in parallel at a predetermined interval in the a-axis direction. .
 次に、図3に示すように、分割ウェハ21の表面に、例えばレーザ加工により劈開用の分割ガイド溝(第1分割ガイド溝)22を形成する。さらに、分割ウェハ21のa軸方向端部に、例えばダイヤモンドカッター等により劈開用の傷を形成してもよい。なお、本実施形態では、レーザ加工により分割ガイド溝22を形成する場合について説明するが、ドライエッチングにより分割ガイド溝22を形成してもよい。
 分割ガイド溝22は、劈開方向であるa軸方向に複数延在し、これら複数の分割ガイド溝22は、互いにm軸方向に所定間隔で離間して平行に配置されている。各分割ガイド溝22は、それぞれ劈開方向に沿って離散的に配列された複数の点状部により構成されている。分割ガイド溝22の点状部の形状については後で詳述する。
Next, as shown in FIG. 3, a split guide groove (first split guide groove) 22 for cleavage is formed on the surface of the split wafer 21 by, for example, laser processing. Further, a cleaving flaw may be formed on the a-axis direction end of the divided wafer 21 with, for example, a diamond cutter. In the present embodiment, the case where the division guide groove 22 is formed by laser processing will be described. However, the division guide groove 22 may be formed by dry etching.
A plurality of the division guide grooves 22 extend in the a-axis direction, which is the cleavage direction, and the plurality of division guide grooves 22 are arranged parallel to each other at a predetermined interval in the m-axis direction. Each division guide groove 22 is configured by a plurality of dot-like portions that are discretely arranged along the cleavage direction. The shape of the dotted portion of the division guide groove 22 will be described in detail later.
 次に、例えば分割ガイド溝22に合わせてブレードを突き上げ、分割ウェハ21を分割ガイド溝22に沿って劈開する。劈開は、m面に沿って進行し、図4に示すようなバー状チップ23が形成される。このとき、劈開面となるm軸方向両端面に、それぞれ反射膜を形成する。これにより、共振器端面が形成される。
 次に、バー状チップ23上に、第1方向に直交する方向であり、光導波路の延在するm軸方向に沿って分割ガイド溝(第2分割ガイド溝)24を形成する。そして、その分割ガイド溝24に従って、例えばレーザダイシングによりバー状チップ23を分割する。これにより、図5に示すように、個々に発光部を有するチップ10が形成される。
 なお、劈開方向(a軸方向)が第1方向に相当し、分割ガイド溝24が延在する方向(m軸方向)が第2方向に相当する。
Next, for example, the blade is pushed up in accordance with the divided guide groove 22, and the divided wafer 21 is cleaved along the divided guide groove 22. The cleavage proceeds along the m-plane, and a bar-shaped chip 23 as shown in FIG. 4 is formed. At this time, a reflection film is formed on each of both end faces in the m-axis direction which are cleavage planes. Thereby, a resonator end face is formed.
Next, a divided guide groove (second divided guide groove) 24 is formed on the bar-shaped chip 23 in the direction perpendicular to the first direction and along the m-axis direction in which the optical waveguide extends. And according to the division | segmentation guide groove 24, the bar-shaped chip | tip 23 is divided | segmented by laser dicing, for example. Thereby, as shown in FIG. 5, the chip | tip 10 which has a light emission part separately is formed.
The cleavage direction (a-axis direction) corresponds to the first direction, and the direction in which the divided guide groove 24 extends (m-axis direction) corresponds to the second direction.
 以下、分割ガイド溝22の点状部の形状について、詳細に説明する。
 図6に示すように、点状部は、劈開方向に沿って設定された劈開予定ライン31上に一列に配置されており、劈開予定ライン31に直交する方向の幅に関して、劈開の進行方向の先端側が後端側よりも狭い形状を有する。より具体的には、点状部は、平面視において、劈開の進行方向に向かって漸次幅狭となる形状を有する。また、点状部は、劈開の進行方向の先端側が鋭利な形状を有する。例えば、各点状部は、平面視において、劈開の進行方向後端側に丸みを有し、劈開の進行方向先端側が鋭利な形状を有する雫型(涙型)とすることができる。また、この場合、各点状部の鋭利な先端部は、劈開予定ライン31上に配置することができる。なお、点状部の先端の角度は、任意の角度であってよい。
Hereinafter, the shape of the dotted portion of the division guide groove 22 will be described in detail.
As shown in FIG. 6, the dotted portions are arranged in a line on the planned cleavage line 31 set along the cleavage direction, and the width in the direction orthogonal to the planned cleavage line 31 is in the direction of cleavage progress. The front end side has a narrower shape than the rear end side. More specifically, the point-like portion has a shape that gradually becomes narrower in the cleaving direction in plan view. Moreover, a dotted | punctate part has the shape where the front end side of the advancing direction of cleavage is sharp. For example, each point-like portion can be a scissors shape (tears) having a round shape on the rear end side in the cleaving direction in a plan view and a sharp shape on the front side in the cleaving direction. In this case, the sharp tip of each point-like part can be arranged on the planned cleavage line 31. Note that the angle of the tip of the point-like part may be an arbitrary angle.
 上記の形状の複数の点状部からなる分割ガイド溝22を劈開予定ライン31上に配置し、当該劈開予定ライン31に従って劈開を行うことで、劈開進行ライン32を劈開予定ライン31に沿って比較的まっすぐなものとすることができる。
 本実施形態におけるチップ10の基板11に用いられるGaN基板は、ガリウム砒素(GaAs)等の他のダイオードの成長基板に比べて劈開性に乏しい。その理由の一つは、GaN基板中に不純物起因の欠陥が存在することである。GaN基板を用いた場合、ウェハをc面またはm面等の任意の結晶面方向に劈開してウェハバーを形成しようとしても、上記欠陥に起因して劈開時にウェハをまっすぐに分断することができない。即ち、欠陥の存在する箇所で分割ラインが曲げられ、ウェハがステップ状に割れたり、斜めに割れたりする場合がある。
The split guide groove 22 composed of a plurality of point-like portions having the above-mentioned shape is arranged on the planned cleavage line 31 and the cleavage progress line 32 is compared along the planned cleavage line 31 by performing cleavage according to the planned cleavage line 31. Can be straight.
The GaN substrate used for the substrate 11 of the chip 10 in the present embodiment is poor in cleavage as compared with other diode growth substrates such as gallium arsenide (GaAs). One of the reasons is that defects due to impurities exist in the GaN substrate. When a GaN substrate is used, even if an attempt is made to cleave the wafer in an arbitrary crystal plane direction such as the c-plane or the m-plane to form a wafer bar, the wafer cannot be cut straight during cleavage due to the defects. In other words, the dividing line is bent at a position where a defect exists, and the wafer may be broken stepwise or obliquely.
 そこで、本実施形態では、上述したように、劈開用の分割ガイド溝22を、複数の点状部が劈開方向に沿って離散的に配置されたパターンとし、点状部の形状を、鋭利な箇所とそうでない箇所とを備える形状とした。そして、各点状部は、劈開の進行方向の先端側に鋭利な箇所、後端側にそうでない箇所を配置するようにした。この場合、図7Aに示すように、常に点状部の鋭利な箇所を起点として劈開が進むことになる。 Therefore, in the present embodiment, as described above, the split guide groove 22 for cleavage is a pattern in which a plurality of dotted portions are discretely arranged along the cleavage direction, and the shape of the dotted portions is sharp. It was made into the shape provided with the location and the location which is not so. And each point-like part arrange | positions the sharp location in the front end side of the advancing direction of cleavage, and the location which is not so in the rear end side. In this case, as shown in FIG. 7A, cleavage always proceeds with a sharp point of the point-like portion as a starting point.
 点状部は、その鋭利な一端部が、当該点状部に隣接する他の点状部の幅広に形成された他端部と対向する。そのため、仮にGaN基板に含まれる欠陥に起因して劈開の進行ラインが曲がったとしても、鋭利な一端を起点として曲がった劈開の軌道は、隣接する他の点状部における幅広の他端部において軌道修正される。
 このように、規則的な劈開が行われることにより、全体としては劈開の軌道が比較的まっすぐなものとなる。つまり、劈開進行ライン32を、劈開予定ライン31に沿った略直線状とすることができる。ここで、隣接する点状部間のピッチは、劈開ラインの曲がりを許容可能な範囲に設定することが好ましい。これにより、ウェハを劈開予定ライン31から大きく逸脱させることなく許容範囲内でまっすぐに分割することができる。
The pointed portion has a sharp one end opposed to the other end formed wider than the other pointed portion adjacent to the pointed portion. Therefore, even if the cleaving progress line is bent due to a defect contained in the GaN substrate, the cleaved trajectory bent from the sharp one end is at the wide end of the other adjacent point-like part. The trajectory is corrected.
As described above, by performing regular cleavage, the cleavage path as a whole becomes relatively straight. That is, the cleavage progress line 32 can be substantially linear along the planned cleavage line 31. Here, it is preferable to set the pitch between adjacent point-like portions within a range where the bending of the cleavage line can be allowed. Thereby, it is possible to divide the wafer straight within an allowable range without greatly deviating from the planned cleavage line 31.
 また、図7Bに示すように、点状部は、少なくとも一部において溝深さが劈開の進行方向に向かって漸次浅くなるように形成されていることが好ましい。この場合、劈開の起点が点状部の鋭利な一端部の一点となるため、より適切に劈開の軌道をまっすぐなものとすることができる。
 図8Aおよび図8Bは、本実施形態における分割ガイド溝22とは異なる形状の点状部を有する分割ガイド溝の比較例である。図8Aに示す分割ガイド溝122は、平面視において楕円形状の点状部を、長軸方向を劈開方向に一致させて一列に配置した例である。図8Bに示す分割ガイド溝222は、平面視において長方形の点状部を、長辺方向を劈開方向に一致させて一列に配置した例である。
Moreover, as shown to FIG. 7B, it is preferable that the dotted | punctate part is formed so that a groove depth may become shallow gradually toward the advancing direction of cleaving in at least one part. In this case, since the starting point of cleavage becomes one point of the sharp one end of the point-like part, the cleavage path can be more straightened more appropriately.
FIG. 8A and FIG. 8B are comparative examples of divided guide grooves having point-like portions different in shape from the divided guide grooves 22 in the present embodiment. The divided guide grooves 122 shown in FIG. 8A are examples in which elliptical dotted portions are arranged in a line with the major axis direction aligned with the cleavage direction in plan view. Divided guide grooves 222 shown in FIG. 8B are examples in which rectangular point-like portions in a plan view are arranged in a line with the long side direction aligned with the cleavage direction.
 いずれの場合も、本実施形態の点状部のように鋭利な部分およびそれに続く幅広部が無いため、劈開の起点がランダムとなり、規則的な劈開は行われない。つまり、劈開進行ラインは、図8Aの点線132や図8Bの点線232で示すように、劈開予定ラインに従った分割が困難となる。また、最悪の場合、隣接する点状部における軌道修正が行えず、劈開進行ラインが劈開予定ラインから大きく外れる場合もある。そのため、図8Aや図8Bに示すような形状の点状部からなる分割ガイド溝を用いた場合、チップ形状が安定せず、歩留まりが低下してしまう。 In any case, since there is no sharp part and the following wide part like the dotted part of the present embodiment, the starting point of cleavage is random, and regular cleavage is not performed. That is, as shown by the dotted line 132 in FIG. 8A and the dotted line 232 in FIG. Further, in the worst case, the trajectory correction at the adjacent point-like portions cannot be performed, and the cleavage progress line may deviate greatly from the planned cleavage line. For this reason, when the divided guide groove including the point-like portions having the shapes as shown in FIGS. 8A and 8B is used, the chip shape is not stable and the yield is lowered.
 これに対して、本実施形態では、GaN基板が欠陥を含むものであっても、上述したように、ウェハを劈開予定ラインに従ってまっすぐに分割することができる。したがって、チップ形状を安定化し、歩留まりの低下を適切に防止することができる。
 図9は、分割ガイド溝22の点状部と光導波路に対応するリッジ部13との位置関係を示す図である。この図9に示すように、分割ガイド溝22の複数の点状部は、分割ウェハ21の表面(半導体層12上)に、共振器端面となるm面の延在方向(a軸方向)に沿って離散的に形成されている。また、分割ガイド溝22の各点状部は、共振器を構成する光導波路の上方を除いた箇所、すなわちリッジ部13が形成されていない箇所にそれぞれ形成されている。
On the other hand, in this embodiment, even if the GaN substrate includes a defect, as described above, the wafer can be divided straight according to the planned cleavage line. Therefore, it is possible to stabilize the chip shape and appropriately prevent a decrease in yield.
FIG. 9 is a diagram showing a positional relationship between the dotted portions of the divided guide grooves 22 and the ridge portions 13 corresponding to the optical waveguides. As shown in FIG. 9, the plurality of point-like portions of the divided guide groove 22 are formed on the surface of the divided wafer 21 (on the semiconductor layer 12) in the extending direction (a-axis direction) of the m-plane serving as the resonator end face. It is formed discretely along. In addition, each point-like portion of the divided guide groove 22 is formed at a place other than the upper part of the optical waveguide constituting the resonator, that is, a place where the ridge portion 13 is not formed.
 共振器端面となるm面の延在方向(a軸方向)において、隣接する点状部の離間距離は、隣接する光導波路(リッジ部13)の離間距離以下とする。また、光導波路(リッジ部13)の延在方向(m軸方向)において、隣接する点状部間の距離(中心間距離)は、チップ10のキャビティ長Lと等しく設定するものとする。例えば、図9に示すように、各点状部は、平面視におけるチップ10の頂点位置にそれぞれ形成することができる。 In the extending direction (a-axis direction) of the m-plane serving as the resonator end face, the separation distance between adjacent point-like portions is set to be equal to or less than the separation distance between adjacent optical waveguides (ridge portions 13). Further, in the extending direction (m-axis direction) of the optical waveguide (ridge portion 13), the distance between adjacent point-like portions (center-to-center distance) is set equal to the cavity length L of the chip 10. For example, as shown in FIG. 9, each point-like portion can be formed at the apex position of the chip 10 in plan view.
 分割ウェハ21からチップ10を形成する際には、まず、分割ウェハ21を分割ガイド溝22に従って劈開により分割し、バー状チップ23を形成する。次に、バー状チップ23を、レーザダイシング等により上記の劈開方向に直交する方向に分割し、チップ10を形成する。このとき、バー状チップ23を、分割ガイド溝22の点状部の中心位置で分割し、チップ10を形成する。 When the chip 10 is formed from the divided wafer 21, first, the divided wafer 21 is divided by cleaving according to the divided guide groove 22 to form the bar-shaped chip 23. Next, the bar-shaped chip 23 is divided in a direction orthogonal to the cleavage direction by laser dicing or the like to form the chip 10. At this time, the bar-shaped chip 23 is divided at the center position of the dotted portion of the divided guide groove 22 to form the chip 10.
 このようにして形成されたチップ10には、図10に示すように、半導体層12の頂点部に点状部の一部であるスクライブ痕22aが残ることになる。スクライブ痕22aは、劈開方向であるa軸方向(第1方向)に直交するm軸方向(第2方向)の幅が、劈開方向の一端側と他端側とで異なる凹部である。なお、劈開方向における分割ガイド溝22の点状部の形成位置や離間距離によっては、個片化されたチップ10には、半導体層12の頂点部ではなく、劈開方向に延在する辺(共振器端面の上辺)の一部にスクライブ痕22aが残る場合がある。
 以上のように、本実施形態における窒化物半導体レーザ素子の製造方法では、ウェハ基板を劈開予定ラインに従って精度良く分割することができる。したがって、チップ形状を安定化して歩留まりを向上させることができる。
In the chip 10 formed in this way, as shown in FIG. 10, a scribe mark 22 a that is a part of a dotted portion remains at the apex portion of the semiconductor layer 12. The scribe mark 22a is a recess having a width in the m-axis direction (second direction) orthogonal to the a-axis direction (first direction) that is the cleavage direction, on one end side and the other end side in the cleavage direction. Note that, depending on the formation position and the separation distance of the dotted portions of the divided guide grooves 22 in the cleavage direction, the chip 10 that has been singulated is not the apex portion of the semiconductor layer 12 but the side that extends in the cleavage direction (resonance). The scribe mark 22a may remain in a part of the upper side of the vessel end face.
As described above, in the method for manufacturing a nitride semiconductor laser device according to the present embodiment, the wafer substrate can be divided with high accuracy according to the planned cleavage line. Therefore, the chip shape can be stabilized and the yield can be improved.
(変形例)
 上記実施形態においては、チップ10がリッジ構造を有する電流狭窄部を備える場合について説明したが、非リッジ構造(埋込型構造)の電流狭窄部を備えていてもよい。埋込型構造とは、注入電流の電流経路となる領域の外側をエッチングにより切り出し、当該領域の両側に埋め込み層として別の半導体層を積層する構造である。この場合にも、上述した実施形態と同様の効果が得られる。
(Modification)
In the above embodiment, the case where the chip 10 includes the current confinement portion having the ridge structure has been described. However, the chip 10 may include a current confinement portion having a non-ridge structure (buried structure). The buried structure is a structure in which an outside of a region serving as a current path of an injection current is cut out by etching, and another semiconductor layer is stacked as a buried layer on both sides of the region. Also in this case, the same effect as the above-described embodiment can be obtained.
 さらに、上記実施形態においては、分割ガイド溝22の点状部の形状が雫型(涙型)である場合について説明したが、点状部の形状は、平面視において、劈開の進行方向の先端側が後端側よりも狭い形状であればよく、例えば三角形や扇形などであってもよい。また、点状部の形状は、平面視において、劈開の進行方向に向かって漸次幅狭となる形状に限定されるものではなく、例えばステップ状の形状を有していてもよい。また、点状部の形状は、平面視において、劈開の進行方向の先端側が鋭利な形状に限定されるものではなく、例えば台形などであってもよい。 Furthermore, in the above-described embodiment, the case where the shape of the dotted portion of the divided guide groove 22 is a saddle shape (tears shape) has been described. However, the shape of the dotted portion is the tip in the cleaving direction in plan view. The side may be narrower than the rear end side, and may be, for example, a triangle or a sector. In addition, the shape of the point-like portion is not limited to a shape that gradually becomes narrower in the cleaving direction in plan view, and may have, for example, a step shape. Further, the shape of the point-like portion is not limited to a shape having a sharp tip in the cleaving direction in plan view, and may be, for example, a trapezoid.
 なお、上記において特定の実施形態が説明されているが、当該実施形態は単なる例示であり、本発明の範囲を限定する意図はない。本明細書に記載された装置及び方法は上記した以外の形態において具現化することができる。また、本発明の範囲から離れることなく、上記した実施形態に対して適宜、省略、置換及び変更をなすこともできる。かかる省略、置換及び変更をなした形態は、請求の範囲に記載されたもの及びこれらの均等物の範疇に含まれ、本発明の技術的範囲に属する。 Although specific embodiments have been described above, the embodiments are merely examples and are not intended to limit the scope of the present invention. The devices and methods described herein can be embodied in forms other than those described above. In addition, omissions, substitutions, and changes can be made as appropriate to the above-described embodiments without departing from the scope of the present invention. Such omissions, substitutions, and modifications are included in the scope of the claims and their equivalents, and belong to the technical scope of the present invention.
 10…窒化物半導体レーザ素子(チップ)、11…窒化物半導体基板、12…半導体層、13…リッジ部、20…ウェハ基板、21…分割ウェハ、22…分割ガイド溝、23…バー状チップ DESCRIPTION OF SYMBOLS 10 ... Nitride semiconductor laser element (chip), 11 ... Nitride semiconductor substrate, 12 ... Semiconductor layer, 13 ... Ridge part, 20 ... Wafer substrate, 21 ... Divided wafer, 22 ... Divided guide groove, 23 ... Bar-shaped chip

Claims (12)

  1.  窒化物半導体基板上に、共振器端面を備えた発光層を含む窒化物半導体層が積層されてなる窒化物半導体レーザ素子の製造方法であって、
     前記窒化物半導体基板上に前記窒化物半導体層が積層されたウェハ基板を準備する工程と、
     前記ウェハ基板の前記窒化物半導体層上に、劈開されて前記共振器端面となる面が延在する第1方向に沿って離散的に配置された複数の点状部を含む第1分割ガイド溝を形成する工程と、を含み、
     前記複数の点状部は、それぞれ前記第1方向に直交する第2方向の幅に関して、先端側が後端側よりも狭い形状を有し、且つ、前記点状部の前記先端側が当該点状部に隣接する他の前記点状部の前記後端側に対向して配置されることを特徴とする窒化物半導体レーザ素子の製造方法。
    A method of manufacturing a nitride semiconductor laser device, wherein a nitride semiconductor layer including a light emitting layer having a resonator end face is laminated on a nitride semiconductor substrate,
    Preparing a wafer substrate in which the nitride semiconductor layer is laminated on the nitride semiconductor substrate;
    A first divided guide groove including a plurality of point-like portions discretely arranged along a first direction that is cleaved and extends on the nitride semiconductor layer of the wafer substrate to serve as the resonator end face Forming a step, and
    The plurality of point-like portions each have a shape in which the front end side is narrower than the rear end side with respect to the width in the second direction orthogonal to the first direction, and the tip side of the point-like portion is the point-like portion. A method of manufacturing a nitride semiconductor laser device, wherein the other point-like portion adjacent to the rear portion is disposed to face the rear end side.
  2.  前記第1分割ガイド溝に従って、前記点状部の前記先端側から当該点状部に隣接する他の前記点状部の前記後端側に向けて前記ウェハ基板を劈開し、前記共振器端面となる面を形成する工程をさらに含むことを特徴とする請求項1に記載の窒化物半導体レーザ素子の製造方法。 According to the first divided guide groove, the wafer substrate is cleaved from the tip end side of the point-like portion toward the rear end side of the other point-like portion adjacent to the point-like portion, and the resonator end surface The method for manufacturing a nitride semiconductor laser device according to claim 1, further comprising a step of forming a surface to be formed.
  3.  前記点状部は、前記第2方向の幅に関して、前記後端側から前記先端側に向かって漸次幅狭となる形状を有することを特徴とする請求項1または2に記載の窒化物半導体レーザ素子の製造方法。 3. The nitride semiconductor laser according to claim 1, wherein the point-like portion has a shape that gradually becomes narrower from the rear end side toward the tip end side with respect to the width in the second direction. 4. Device manufacturing method.
  4.  前記点状部は、前記先端側が鋭利な形状を有することを特徴とする請求項1から3のいずれか1項に記載の窒化物半導体レーザ素子の製造方法。 4. The method for manufacturing a nitride semiconductor laser element according to claim 1, wherein the point-like portion has a sharp shape on the tip side.
  5.  前記点状部は、前記第1方向および前記第2方向に直交する方向の深さに関して、前記後端側から前記先端側に向かって漸次浅くなる形状を少なくとも一部に有することを特徴とする請求項1から4のいずれか1項に記載の窒化物半導体レーザ素子の製造方法。 The point-like portion has, at least in part, a shape that gradually becomes shallower from the rear end side toward the front end side with respect to a depth in a direction orthogonal to the first direction and the second direction. The method for manufacturing a nitride semiconductor laser element according to claim 1.
  6.  前記第1分割ガイド溝を形成する工程では、
     レーザ加工により前記第1分割ガイド溝を形成することを特徴とする請求項1から5のいずれか1項に記載の窒化物半導体レーザ素子の製造方法。
    In the step of forming the first divided guide groove,
    6. The method for manufacturing a nitride semiconductor laser element according to claim 1, wherein the first divided guide groove is formed by laser processing.
  7.  前記第1分割ガイド溝を形成する工程では、
     ドライエッチングにより前記第1分割ガイド溝を形成することを特徴とする請求項1から5のいずれか1項に記載の窒化物半導体レーザ素子の製造方法。
    In the step of forming the first divided guide groove,
    6. The method of manufacturing a nitride semiconductor laser element according to claim 1, wherein the first divided guide groove is formed by dry etching.
  8.  前記第1分割ガイド溝を形成する工程では、
     前記共振器を構成する光導波路の上方を除いた箇所に前記第1分割ガイド溝の前記点状部を形成することを特徴とする請求項1から7のいずれか1項に記載の窒化物半導体レーザ素子の製造方法。
    In the step of forming the first divided guide groove,
    The nitride semiconductor according to any one of claims 1 to 7, wherein the point-like portion of the first divided guide groove is formed at a location excluding an upper portion of the optical waveguide constituting the resonator. A method for manufacturing a laser element.
  9.  前記窒化物半導体層に対し、前記第1方向に互いに隣接して配置される複数の光導波路を形成する工程を有し、
     前記第1分割ガイド溝を形成する工程では、
     前記第1方向に互いに隣接する前記点状部の離間距離が、前記第1方向に互いに隣接する前記光導波路の離間距離以下となるように、前記第1分割ガイド溝の前記点状部を形成することを特徴とする請求項8に記載の窒化物半導体レーザ素子の製造方法。
    Forming a plurality of optical waveguides arranged adjacent to each other in the first direction with respect to the nitride semiconductor layer;
    In the step of forming the first divided guide groove,
    The point-like portions of the first divided guide grooves are formed such that the distance between the point-like portions adjacent to each other in the first direction is equal to or less than the distance between the optical waveguides adjacent to each other in the first direction. A method for manufacturing a nitride semiconductor laser device according to claim 8.
  10.  前記窒化物半導体層上に、前記第2方向に沿って第2分割ガイド溝を形成する工程と、
     前記第2分割ガイド溝に従って前記ウェハ基板を分割する工程と、をさらに含むことを特徴とする請求項1から9のいずれか1項に記載の窒化物半導体レーザ素子の製造方法。
    Forming a second divided guide groove along the second direction on the nitride semiconductor layer;
    The method for manufacturing a nitride semiconductor laser device according to claim 1, further comprising a step of dividing the wafer substrate according to the second division guide groove.
  11.  窒化物半導体基板上に、劈開により形成された第1方向に延在する共振器端面を備えた発光層を含む窒化物半導体層が積層されてなる窒化物半導体レーザ素子であって、
     前記窒化物半導体層の前記第1方向に延在する辺の一部に、前記第1方向に直交する第2方向の幅が前記第1方向の一端側と他端側とで異なる凹部が形成されていることを特徴とする窒化物半導体レーザ素子。
    A nitride semiconductor laser element in which a nitride semiconductor layer including a light emitting layer having a resonator end face extending in a first direction formed by cleavage is laminated on a nitride semiconductor substrate,
    A recess having different widths in the second direction perpendicular to the first direction is formed on a part of the side extending in the first direction of the nitride semiconductor layer on one end side and the other end side in the first direction. A nitride semiconductor laser device, wherein:
  12.  窒化物半導体基板上に、発光層を含む窒化物半導体層が積層されてなるウェハ基板であって、
     前記ウェハ基板の前記窒化物半導体層上に、劈開後に共振器端面となる面が延在する第1方向に沿って離散的に配置された複数の点状部を含む第1分割ガイド溝が形成され、
     前記複数の点状部は、それぞれ前記第1方向に直交する第2方向の幅に関して、先端側が後端側よりも狭い形状を有し、且つ、前記点状部の前記先端側が当該点状部に隣接する他の前記点状部の前記後端側に対向して配置されていることを特徴とするウェハ基板。
     
    A wafer substrate in which a nitride semiconductor layer including a light emitting layer is laminated on a nitride semiconductor substrate,
    Formed on the nitride semiconductor layer of the wafer substrate is a first divided guide groove including a plurality of dot-like portions discretely arranged along a first direction in which a surface that becomes a resonator end surface extends after cleavage. And
    The plurality of point-like portions each have a shape in which the front end side is narrower than the rear end side with respect to the width in the second direction orthogonal to the first direction, and the tip side of the point-like portion is the point-like portion. A wafer substrate, wherein the wafer substrate is disposed opposite to the rear end side of the other point-like portion adjacent to the substrate.
PCT/JP2017/045314 2017-01-17 2017-12-18 Nitride semiconductor laser element and method for manufacturing same WO2018135207A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017005944A JP2018117015A (en) 2017-01-17 2017-01-17 Nitride semiconductor laser element and manufacturing method of the same
JP2017-005944 2017-01-17

Publications (1)

Publication Number Publication Date
WO2018135207A1 true WO2018135207A1 (en) 2018-07-26

Family

ID=62907895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045314 WO2018135207A1 (en) 2017-01-17 2017-12-18 Nitride semiconductor laser element and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP2018117015A (en)
TW (1) TW201835989A (en)
WO (1) WO2018135207A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145763A1 (en) * 2022-01-27 2023-08-03 京セラ株式会社 Method and apparatus for manufacturing laser element, laser element, and electronic device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220059994A1 (en) * 2018-12-13 2022-02-24 Sony Group Corporation Semiconductor apparatus and method for manufacturing semiconductor apparatus
JP7206962B2 (en) * 2019-01-31 2023-01-18 三菱電機株式会社 Semiconductor substrate separation method and separation jig
TWI703784B (en) * 2019-12-31 2020-09-01 華星光通科技股份有限公司 Method for manufacturing a semiconductor laser device with discontinuous ridge structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002064236A (en) * 2000-08-17 2002-02-28 Nippon Telegr & Teleph Corp <Ntt> Cleaving method of crystalline substrate
WO2007074688A1 (en) * 2005-12-26 2007-07-05 Matsushita Electric Industrial Co., Ltd. Nitride compound semiconductor element and method for manufacturing same
US20080258269A1 (en) * 2007-04-09 2008-10-23 Lg Electronics Inc. Semiconductor wafer and method for cutting the same
JP2011211244A (en) * 2011-07-27 2011-10-20 Sumitomo Electric Ind Ltd Group iii nitride semiconductor laser element, and method of fabricating group iii nitride semiconductor laser element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002064236A (en) * 2000-08-17 2002-02-28 Nippon Telegr & Teleph Corp <Ntt> Cleaving method of crystalline substrate
WO2007074688A1 (en) * 2005-12-26 2007-07-05 Matsushita Electric Industrial Co., Ltd. Nitride compound semiconductor element and method for manufacturing same
US20080258269A1 (en) * 2007-04-09 2008-10-23 Lg Electronics Inc. Semiconductor wafer and method for cutting the same
JP2011211244A (en) * 2011-07-27 2011-10-20 Sumitomo Electric Ind Ltd Group iii nitride semiconductor laser element, and method of fabricating group iii nitride semiconductor laser element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145763A1 (en) * 2022-01-27 2023-08-03 京セラ株式会社 Method and apparatus for manufacturing laser element, laser element, and electronic device

Also Published As

Publication number Publication date
TW201835989A (en) 2018-10-01
JP2018117015A (en) 2018-07-26

Similar Documents

Publication Publication Date Title
WO2018135207A1 (en) Nitride semiconductor laser element and method for manufacturing same
JP3822976B2 (en) Semiconductor device and manufacturing method thereof
JP5121461B2 (en) Nitride compound semiconductor device
JP4305554B2 (en) Manufacturing method of semiconductor laser
JP5471256B2 (en) Semiconductor device, semiconductor wafer, semiconductor wafer manufacturing method, semiconductor device manufacturing method
US9236710B2 (en) Semiconductor laser element and method of manufacturing the same
JP2009081336A (en) Nitride-based semiconductor laser element and its manufacturing method
JP2008160070A (en) Nitride-based semiconductor element, and method for manufacturing same
JP6450842B2 (en) Optoelectronic component and method of manufacturing optoelectronic component
JP2011249556A (en) Semiconductor laser device and manufacturing method of the same
US8889445B2 (en) Method for manufacturing semiconductor optical device and semiconductor optical device
JP5273459B2 (en) Manufacturing method of semiconductor laser
JP2008053476A (en) Semiconductor chip and manufacturing method thereof
JP7468361B2 (en) Semiconductor device and method for manufacturing the same
JP7297875B2 (en) Gain-guided semiconductor laser and manufacturing method thereof
JP2004241515A (en) Nitride semiconductor laser device and its manufacturing method
US10164409B2 (en) Semiconductor light-emitting device and method for manufacturing the same
JPS603182A (en) Manufacture of semiconductor laser element
JP2017055068A (en) Semiconductor laser element manufacturing method
JP2008311547A (en) Semiconductor laser element, and manufacturing method
US20240136790A1 (en) Semiconductor laser and method of manufacturing semiconductor laser
US20240235154A9 (en) Semiconductor laser and method of manufacturing semiconductor laser
JP2012124274A (en) Semiconductor laser element and method of manufacturing the same
JP5610032B2 (en) Manufacturing method of semiconductor laser
JP2000106470A (en) Semiconductor laser element and fabrication thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892741

Country of ref document: EP

Kind code of ref document: A1