WO2018134467A1 - Hidrogeles para administración de fármacos inhibidores de aldosa reductasa - Google Patents

Hidrogeles para administración de fármacos inhibidores de aldosa reductasa Download PDF

Info

Publication number
WO2018134467A1
WO2018134467A1 PCT/ES2018/070051 ES2018070051W WO2018134467A1 WO 2018134467 A1 WO2018134467 A1 WO 2018134467A1 ES 2018070051 W ES2018070051 W ES 2018070051W WO 2018134467 A1 WO2018134467 A1 WO 2018134467A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
hydrogel
dimethacrylate
diacrylate
methacrylate
Prior art date
Application number
PCT/ES2018/070051
Other languages
English (en)
French (fr)
Inventor
Fernando ALVAREZ RIVERA
Angel Concheiro Nine
Carmen Alvarez Lorenzo
Original Assignee
Universidade De Santiago De Compostela
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade De Santiago De Compostela filed Critical Universidade De Santiago De Compostela
Publication of WO2018134467A1 publication Critical patent/WO2018134467A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes

Definitions

  • the invention relates to a hydrogel suitable for incorporation into optical devices. More specifically, it refers to a hydrogel that allows the controlled release of drugs at the ocular level. More particularly, the drug is an aldose reductase inhibitor.
  • the invention also relates to the process of preparing the hydrogels, and their use.
  • diabetes mellitus Approximately 415 million people worldwide suffer from diabetes mellitus and this number is expected to increase in the coming years. Lack of glycemic control can also lead to a variety of complications in the anterior segment of the eye, including diabetic keratopathy, dry eye syndrome, glaucoma and cataracts. It is known that aldose reductase inhibitors are useful for the prevention or treatment of diabetic eye complications. Most treatments of diabetes over the eye consist of oral and intravitreal administration.
  • hydrogel for the controlled administration of drugs.
  • said hydrogel comprises functional groups that can interact with an aldose reductase inhibitor. More particularly, the interaction between the hydrogel functional groups and the aldose reductase inhibitor is reversible.
  • the hydrogels of the invention act as platforms for the controlled transfer of said substances.
  • the load of the aldose reductase inhibitors can be modulated according to the formulation of the hydrogels of the invention, and a high incorporation thereof is achieved.
  • assignment profiles were sustained for a week and at concentrations suitable for therapeutic application.
  • hydrogels of the invention have suitable characteristics for preparing contact lenses, eye inserts, intraocular lenses and ocular bandages.
  • the hydrogels of the invention are useful for the treatment or prevention of ocular pathologies, especially those that are related to diabetes.
  • the invention relates to a hydrogel comprising a methacrylic monomer, a dimethacrylic monomer and a silane monomer of formula I
  • Rl, R2, R3 and R4 can be the same or different and are Cl-C4-al,
  • R5 can be hydrogen or hydroxyl
  • n has the value 1, 2 or 3,
  • the hydrogel further comprises an aldose reductase inhibitor.
  • the aldose reductase inhibitor is selected from epalrestat, alrestatin, ponalrestat, tolrestat, zenarestat, zopolrestat, fidarestat, imirestat, lidorestat, minalrestat, ranirestat, sorbinil and salfedrin BU.
  • the hydrogel further comprises a monomer with at least one amino group.
  • the invention relates to a process for obtaining the hydrogel described above comprising the polymerization of a mixture of monomers, said mixture of monomers comprises a methacrylic monomer, a dimethacrylic monomer and a silane monomer of formula I
  • Rl, R2, R3 and R4 can be the same or different and are Cl-C4-al,
  • R5 can be hydrogen or hydroxyl
  • n has the value 1, 2 or 3,
  • m has a value between 1 and 10
  • an aldose reductase inhibitor may be present.
  • the hydrogels of the invention are suitable for the preparation of contact lenses, eye inserts, intraocular lenses or ocular bandages.
  • the invention relates to a contact lens, ocular insert, intraocular lens or ocular bandage comprising a hydrogel as described above.
  • the invention relates to the use of the hydrogel, of the contact lens, of the eye insert, of the intraocular lens or of the bandage for the preparation of a medicament.
  • the medicament is used for the treatment of ocular pathologies related to diabetes.
  • the eye diseases related to diabetes are selected from keratopathy, dry eye syndrome, glaucoma, cataracts, retinopathy.
  • FIG. 1 FIET-CAM test photos showing the choriolantoic membranes after 5 minutes of incubation with an aqueous solution of epalrestat (6.36 ⁇ g / mL) or hydrogel disks (swollen in 0.9% NaCl). The effects of negative (C-; 0.9% NaCl) and positive (C +; 0.1N NaOH) controls are also shown.
  • FIG. 4 Loading of epalrestat in hydrogels a) imprinted with APMA, b) prepared in the absence of epalrestat ⁇ non-imprinted) with APMA, c) non-imprinted without APMA d) imprinted without APMA immersed in 50 mL of active ingredient solution 5.43 ⁇ g / mL.
  • Figure 5. Epalrestat ceded in 0.9% NaCl (50 mL) from (a) hydrogels loaded with non-imprinted epalrestat and (b) hydrogels loaded with imprinted epalrestat. All hydrogels comprise APMA.
  • the hydrogels of the invention allow the loading and controlled transfer of aldose reductase inhibitors. Said load and transfer can be modulated by varying the composition of the hydrogels.
  • the invention relates to a hydrogel comprising a methacrylic monomer, a dimethacrylic monomer, a silane monomer of formula I and an aldose reductase inhibitor.
  • the invention relates to a hydrogel comprising a methacrylic monomer, a dimethacrylic monomer, a silane monomer of formula I and a monomer with at least one amino group.
  • the invention relates to a hydrogel comprising a methacrylic monomer, a dimethacrylic monomer, a silane monomer of formula I, a monomer with at least one amino group and an aldose reductase inhibitor.
  • the monomers of which the hydrogels of the present invention are composed play a fundamental role in their functionality.
  • the monomers that compose them must be selected so that after polymerization the product has acceptable physicochemical and optical characteristics.
  • methacrylic monomers and silane monomers of formula I are used as structural monomers of the hydrogels of the invention.
  • the methacrylic monomer is a monomer commonly used in contact lenses.
  • the methacrylic monomer is selected from 2-hydroxyethyl methacrylate, 2- hydroxypropyl methacrylate, l- (tristrimethylsiloxysilylpropyl) methacrylate, methyl methacrylate, methacrylic acid, aminopropyl methacrylate, cyclohexyl methacrylate, butyl methacrylate, butyl methacrylate, butyl methacrylate, butyl methacrylate methacrylate, butyl methacrylate methacrylate
  • the methacrylic monomer is 2-hydroxyethyl methacrylate.
  • the methacrylic monomer is in a proportion of between 5 and 95% in the hydrogel. In another particular embodiment, the methacrylic monomer is in a proportion of between 50 and 95% in the hydrogel. In another particular embodiment, the methacrylic monomer is in a proportion of between 60 and 95% in the hydrogel.
  • the silane of formula I is a third generation silicone that allows to reach a level of oxygen permeability higher than that achieved with other materials.
  • Oxygen permeability is a fundamental parameter in contact lenses and prevents corneal hypoxia.
  • silane of formula I can form hydrophobic interactions with the active ingredient aldose reductase inhibitor.
  • R 1, R 2, R 3 and R 4 are the same and are selected from methyl and ethyl.
  • silane of formula I corresponds to the following formula
  • the silane monomer is in a proportion of between 5 and 95% in the hydrogel. In another particular embodiment, the silane monomer is in a proportion of between 50 and 95% in the hydrogel. In another particular embodiment, the silane monomer is in a proportion of between 5 and 50% in the hydrogel.
  • the hydrogel is composed of dimethacrylic monomers that act as crosslinkers.
  • the dimethacrylic monomer is selected from ethylene glycol dimethacrylate, 1,3-butanediol diacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, ethylene glycol diacrylate, fluorescein ⁇ , ⁇ '-diacrylate, glycerol 1 , 3- diglycerol diacrylate, pentaerythritol diacrylate monostearate, 1,6-hexanediol ethoxylate diacrylate, 3-hydroxy-2,2-dimethylpropyl 3-hydroxy-2,2-dimethylpropionate diacrylate, bisphenol A ethoxylate diacrylate, di (ethylene glycol) diacrylate, Neopentyl glycol diacrylate, poly (ethylene glycol) diacrylate, poly (propylene glycol) diacrylate, propylene
  • the dimethacrylic monomer is in a proportion of 0.01 and 5% in the hydrogel.
  • a monomer with at least one amino group can be employed in the hydrogels of the present invention.
  • the hydrogels of the invention when the aldose reductase inhibitor contains a carboxylic group, the hydrogels of the invention further comprise a monomer with at least one amino group. The amino group allows ionic interactions to be established with a carboxylic acid group present in the aldose reductase inhibitor.
  • the monomer with an amino group is selected from N- (3-aminopropyl) methacrylamide, N- (2- aminoethyl) methacrylamide, 2- aminoethyl methacrylate, methacrylamidopropyltrimethylammonium chloride, 3- dimethylaminoneopentyl acrylate, ⁇ , ⁇ -dietylaminoethyl acrylate, N, N-diethylaminoethyl methacrylate, ⁇ , ⁇ -diethylaminomethyl acrylate, ⁇ , ⁇ -diethylaminomethyl methacrylate, N, N-diethylaminopropyl acrylate, ⁇ , ⁇ -diethylaminopropyl methacrylate, N, N-dimethylacrylate
  • the monomer with at least one amino group is N- (3-aminopropyl) methacrylamide.
  • hydrogels of the invention comprising N- (3- aminopropyl) methacrylamide are capable of loading a greater amount of active ingredient than when said monomer is not present. This could be because said monomer in addition to establishing ionic interactions with the aldose reductase inhibitor, forms a cavity that mimics the binding cavity to the aldose reductase inhibitor.
  • the monomer with at least one amino group is in a proportion of between 0.1 and 10% in the hydrogel.
  • the aldose reductase inhibitor is selected from epalrestat, alrestatin, ponalrestat, tolrestat, zenarestat, zopolrestat, fidarestat, imirestat, lidorestat, minalrestat, ranirestat, sorbinyl and salfedrin B 11.
  • the aldose reductase inhibitors containing a carboxyl group are selected in the present invention.
  • Said carboxyl group can establish ionic interactions with the monomer with at least one amino group.
  • the aldose reductase inhibitor is selected from epalrestat, alrestatin, ponalrestat, tolrestat and zenarestat.
  • the hydrogel of the invention comprises a methacrylic monomer, a dimethacrylic monomer, a silane monomer of formula I as described above, and a monomer with at least one amino group.
  • the hydrogel of the invention comprises a methacrylic monomer, a dimethacrylic monomer, a silane monomer of formula I as described above, a monomer with at least one amino group and an aldose reductase inhibitor selected from epalrestat , alrestatin, ponalrestat, tolrestat and zenarestat.
  • the hydrogels are prepared by a polymerization process of the selected monomers. During the polymerization the active ingredient aldose reductase inhibitor may be present.
  • the invention is directed to a process for obtaining the hydrogels described above, which comprises the polymerization of a mixture of monomers, said mixture of monomers comprises a methacrylic monomer, a dimethacrylic monomer and a silane monomer of formula I as described above, and optionally an aldose reductase inhibitor may be present.
  • the volume ratio of methacrylic monomer is between 5 and 95%.
  • the volume ratio of the dimethacrylic monomer is between 0.01 and 5%.
  • the volume ratio of the silane monomer is between 5 and 95%.
  • the monomer mixture further comprises a monomer with at least one amino group.
  • the polymerization is carried out by heating the mixture or by exposing it to ultraviolet-visible radiation.
  • the process for obtaining the hydrogels of the invention comprises the polymerization of a mixture of monomers, said mixture of monomers comprises a methacrylic monomer, a dimethacrylic monomer and a silane monomer of formula I, and an inhibitor of Aldose reductase is present during polymerization.
  • the process for obtaining the hydrogels of the invention comprises the polymerization of a mixture of monomers, said mixture of monomers comprises a methacrylic monomer, a dimethacrylic monomer, a silane monomer of formula I and a monomer with at least one amino group, and an aldose reductase inhibitor is present during polymerization.
  • Example 1 Process for obtaining hydrogels with hydroxyethyl methacrylate, ethylene glycol dimethacrylate and monomethacryloxypropyl-sim-polydimethylsiloxane hydroxypropyl terminated.
  • Hydrogels were prepared by mixing hydroxyethyl methacrylate (HEMA), ethylene glycol dimethacrylate (EGDMA) and finished monomethacryloxypropyl-sim-polydimethylsiloxane hydroxypropyl (MCS-MC12) by mixing the monomers in the proportions indicated in Table 1, also incorporating azoisobutyronitrile initiator , and optionally N- (3-aminopropyl) methacrylamide hydrochloride (APMA) and / or epalrestat, injecting the mixture into molds consisting of glass plates previously treated with dichlorodimethylsilane and separated by a 0.5 mm thick silicone frame, and heating to 50 ° C for 12 hours and 70 ° C for another 24 hours.
  • HEMA hydroxyethyl methacrylate
  • EGDMA ethylene glycol dimethacrylate
  • MCS-MC12 finished monomethacryloxypropyl-sim-polydimethylsiloxane hydroxyprop
  • Hydrogel sheets were immersed in boiling water for 15 minutes to remove non-reactive monomers and facilitate cutting of 10 mm diameter discs.
  • Hydrogels with higher silicone monomer content showed a lower degree of swelling.
  • Example 2 Evaluation of the optical transparency and ocular compatibility of the hydrogels prepared according to the composition shown in Table 1.
  • the ocular compatibility was evaluated in a subrogated model that uses fertilized chicken chorioallantoid membrane (HET-CAM). Discs of each hydrogel prepared according to the composition shown in Table 1 were hydrated in 0.9% NaCl medium and then placed on the chorioallantoid membrane. For five minutes the possible changes in the membrane vasculature were observed, recording lysis, bleeding and coagulation times. The 0.9% NaCl solution was used as a negative control and a 0.1N NaOH solution as a positive control. Photographs of chorioallantoid membranes with a disc of each hydrogel formulation are shown in Figure 2. All discs passed the compatibility test, not causing lysis, bleeding or coagulation.
  • Example 3 Method of obtaining hydrogels with hydroxyethyl methacrylate, ethylene glycol dimethacrylate and monomethacryloxypropyl-sim-polydimethylsiloxane hydroxypropyl terminated incorporating epalrestat during synthesis and yielding the drug in a sustained manner.
  • Hydrogels were prepared by mixing hydroxyethyl methacrylate (FLEMA), ethylene glycol dimethacrylate (EGDMA) and finished monomethacryloxypropyl-sim-polydimethylsiloxane hydroxypropyl (MCS-MC12) by mixing the monomers in the proportions indicated in Table 1, also incorporating azoisobutyronitrile initiator , N- (3-aminopropyl) methacrylamide hydrochloride (APMA) and epalrestat (codes ending in letter i), injecting the mixture into molds consisting of glass plates previously treated with dichlorodimethylsilane and separated by a 0.5 mm thick silicone frame, and heating at 50 ° C for 12 hours and at 70 ° C for another 24 hours.
  • FLEMA hydroxyethyl methacrylate
  • EGDMA ethylene glycol dimethacrylate
  • MCS-MC12 finished monomethacryloxypropyl-sim-polydimethylsiloxane
  • the hydrogel sheets were immersed in boiling water for 15 minutes to remove the non-reactive monomers and facilitate the cutting of 10 mm diameter discs.
  • the discs were transferred separately to vials containing 0.9% NaCl (45 mL) and kept under magnetic stirring at 200 rpm at room temperature and protected from light. At pre-set times, samples of 3 mL of medium were removed and the absorbance at 400 nm was measured. After measurement, the samples were immediately returned to the corresponding vial. The results obtained are shown in Figure 3.
  • Example 4 Procedure for incorporating epalrestat in hydrogels with hydroxyethyl methacrylate, ethylene glycol dimethacrylate and monomethacryloxypropyl-sim-polydimethylsiloxane hydroxypropyl terminated.
  • Hydrogels prepared according to the composition shown in Table 1 were immersed in boiling water for 15 minutes to remove non-reactive monomers and facilitate cutting of 10 mm diameter discs. Then, they underwent a thorough washing process by immersion in ethanol: water (10:90 v / v, 100 mL) for 48 h, replacing the medium every 24 h. Washing continued in 0.9% NaCl medium for 24 h, 24 h artificial tear fluid, 72 h water, 24 h artificial tear fluid, 48 h water, 0.9% NaCl 8 days, and finally water 3 more days, under magnetic stirring (200 rpm) at room temperature and protected from light. During washing, the removal of epalrestat used during the synthesis was monitored spectrophotometrically at 400 nm. Finally the discs were dried at constant weight.
  • the dried discs were placed individually in 50 mL of epalrestat aqueous solution (6.14 micrograms / mL) protected from light (in triplicate) and kept under magnetic stirring at room temperature. At pre-established time periods, the absorbance of the loading solutions was measured spectrophotometrically at 400 nm and the amount of drug loaded was estimated from the difference between the initial and final amount of drug in the solution.
  • epalrestat aqueous solution 6.14 micrograms / mL protected from light (in triplicate) and kept under magnetic stirring at room temperature.
  • the absorbance of the loading solutions was measured spectrophotometrically at 400 nm and the amount of drug loaded was estimated from the difference between the initial and final amount of drug in the solution.
  • the incorporation profiles of epalrestat are shown in Figure 4.
  • Vs is the volume of water absorbed by the hydrogel
  • Vp the volume of dry polymer
  • Wp the weight of dry hydrogel
  • Co the concentration of epalrestat in the loading solution.
  • K N / w The values of K N / w, which are shown in Table 1, show that hydrogels containing the APMA monomer have a very high affinity for the drug, approximately two orders of magnitude higher than hydrogels prepared without APMA.
  • the hydrogels loaded with the drug by the described procedure were taken to 50 mL of 0.9% NaCl to assess their ability to regulate the transfer of epalrestat.
  • the profiles obtained, which are shown in Figure 5, show that the hydrogels sustain the assignment for several days.
  • Example 5 Corneal permeability test of epalrestat assigned from hydrogels with hydroxyethyl methacrylate, ethylene glycol dimethacrylate and finished hydroxypropyl monomethacryloxypropyl-sim-polydimethylsiloxane.
  • a corneal permeability test was carried out using bovine eyes from a municipal slaughterhouse. The corneas were placed in diffusion cells, separating the receptor compartment (carbonate buffer pH 7.2; 6.5 mL) from the donor compartment. In each donor compartment a disc loaded with epalrestat (6Ani and 3Ani formulations; Codes as in Table 1) or an epalrestat control solution was placed. At pre-established times, samples were taken from the receiving medium and the amount of epalrestat was quantified. Each experiment was carried out in triplicate. After 6 hours of the test, the corneas were removed and the amount accumulated in them was quantified by extracting with ethanol: water 50; 50 v / v for 12 hours and assessing the epalrestat content by FIPLC.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Hidrogeles para administración de fármacos. La invención se refiere a un hidrogel adecuado para ser incorporado a dispositivos ópticos. Más concretamente, se refiere a una lente de contacto blanda que permite la liberación controlada de fármacos a nivel ocular. Más en particular, el fármaco es un inhibidor de aldosa reductasa. La invención también se refiere al proceso de preparación de los hidrogeles, y de los sistemas de liberación incorporando un principio activo inhibidor de aldosa reductasa.

Description

Hidrogeles para administración de fármacos inhibidores de aldosa reductasa Sector de la técnica
La invención se refiere a un hidrogel adecuado para ser incorporado a dispositivos ópticos. Más concretamente, se refiere a un hidrogel que permite la liberación controlada de fármacos a nivel ocular. Más en particular, el fármaco es un inhibidor de aldosa reductasa. La invención también se refiere al proceso de preparación de los hidrogeles, y a su uso.
Antecedentes
Aproximadamente 415 millones de personas en todo el mundo sufren diabetes mellitus y se espera que este número se incremente en los próximos años. La falta de control de glucemia puede conducir también a una variedad de complicaciones en el segmento anterior del ojo, incluyendo queratopatía diabética, síndrome de ojo seco, glaucoma y cataratas. Es conocido que para la prevención o tratamiento de complicaciones del ojo diabético son útiles los inhibidores de aldosa reductasa. La mayoría de los tratamientos de la diabetes sobre el ojo consisten en administración oral e intravítrea.
Por otro lado, en el campo de la oftalmología se ha propuesto el uso de lentes de contacto como vehículo para cesión sostenida de fármacos, que dé lugar a una permanencia prolongada del fármaco en el fluido lacrimal post-lente y, por lo tanto, sobre la córnea, de manera que se favorezca la absorción ocular y disminuyan los efectos secundarios. Aunque esta aproximación se ha investigado durante décadas, aún hay dificultades en la técnica para ponerla en práctica de modo eficiente debido a la baja afinidad de los componentes de las lentes de contacto por una gran mayoría de fármacos, lo que da lugar a la incorporación de dosis subterapéuticas y a un deficiente control de la cesión (C. Gonzalez-Chomón, A. Concheiro, C. Alvarez-Lorenzo. Soft contact lenses for controlled ocular delivery: 50 years in the making. Therapeutic Delivery 4: 1141-1161, 2013).
Hasta la fecha, no existe una lente de contacto que actúe como plataforma para la liberación de inhibidores de aldosa reductasa.
Así hay todavía una demanda de formas de dosificación ocular de inhibidores de aldosa reductasa que se puedan aplicar cómodamente, por ejemplo, desde lentes de contacto.
Descripción de la invención Los autores de la presente invención han desarrollado un hidrogel para la administración controlada de fármacos. En particular, dicho hidrogel comprende grupos funcionales que pueden interaccionar con un inhibidor de aldosa reductasa. Más particularmente, la interacción entre los grupos funcionales del hidrogel y el inhibidor de aldosa reductasa es reversible. De este modo, los hidrogeles de la invención actúan como plataformas para la cesión controlada de dichas sustancias. La carga de los inhibidores de aldosa reductasa puede modularse según la formulación de los hidrogeles de la invención, y se logra una elevada incorporación a los mismos. Además, los perfiles de cesión fueron sostenidos durante una semana y en concentraciones adecuadas para su aplicación terapéutica.
Además, los hidrogeles de la invención presentan características adecuadas para preparar lentes de contacto, insertos oculares, lentes intraoculares y vendajes oculares. Los hidrogeles de la invención son útiles para el tratamiento o prevención de patologías oculares, en especial aquéllas que están relacionadas con la diabetes.
En un aspecto, la invención se refiere a un hidrogel que comprende un monómero metacrílico, un monómero dimetacrílico y un monómero silano de fórmula I
Figure imgf000003_0001
I
donde Rl, R2, R3 y R4 pueden ser iguales o diferentes y son Cl-C4-al quilo,
R5 puede ser hidrógeno o hidroxilo,
n tiene el valor 1, 2 o 3,
m tiene un valor de entre 1 y 10. En una realización particular, el hidrogel comprende además un inhibidor de aldosa reductasa.
En una realización particular, el inhibidor de aldosa reductasa se selecciona de entre epalrestat, alrestatin, ponalrestat, tolrestat, zenarestat, zopolrestat, fidarestat, imirestat, lidorestat, minalrestat, ranirestat, sorbinil y salfedrin BU .
En una realización particular, el hidrogel comprende además un monómero con al menos un grupo amino.
En otro aspecto la invención se refiere a un procedimiento de obtención del hidrogel descrito anteriormente que comprende la polimerización de una mezcla de monómeros, dicha mezcla de monómeros comprende un monómero metacrílico, un monómero dimetacrílico y un monómero silano de fórmula I
Figure imgf000004_0001
I
donde Rl, R2, R3 y R4 pueden ser iguales o diferentes y son Cl-C4-al quilo,
R5 puede ser hidrógeno o hidroxilo,
n tiene el valor 1, 2 o 3,
m tiene un valor de entre 1 y 10,
y opcionalmente un inhibidor de aldosa reductasa puede estar presente.
Los hidrogeles de la invención son adecuados para la preparación de lentes de contacto, insertos oculares, lentes intraoculares o vendajes oculares. Así, en otro aspecto la invención se refiere a una lente de contacto, inserto ocular, lente intraocular o vendaje ocular que comprende un hidrogel como el descrito anteriormente. En otro aspecto la invención se refiere al uso del hidrogel, de la lente de contacto, del inserto ocular, de la lente intraocular o del vendaje para la preparación de un medicamento. En una realización particular, el medicamento se emplea para el tratamiento de patologías oculares relacionadas con la diabetes. En una realización particular, las patologías oculares relacionadas con la diabetes se seleccionan de entre queratopatía, síndrome de ojo seco, glaucoma, cataratas, retinopatía.
Descripción de las figuras
Figura 1. Transmisión de la luz (%) de hidrogeles preparados en ausencia (5ni) y presencia (5Ai) de epalrestat después lavado en agua en ebullición e hinchamiento en SLF.
Figura 2. Fotos de test FIET-CAM mostrando las membranas coriolantoicas después de 5 minutos de incubación con una disolución acuosa de epalrestat (6.36 μg/mL) o discos de hidrogel (hinchados en 0.9% NaCl). También se muestran los efectos de controles negativos (C-; 0.9% NaCl) y positivos (C+; 0.1N NaOH).
Figura 3. Perfiles de liberación de epalrestat desde discos preparados en presencia de epalrestat (imprinted) a) sin APMA y b) con APMA en 0.9% NaCl (45 mL, agitación magnética 200 rpm, temperatura ambiente, protegido de la luz). Los discos evaluados se hirvieron en agua (15 min) después de la polimerización y entonces se secaron a peso constante.
Figura 4. Carga de epalrestat en hidrogeles a) imprinted con APMA, b) preparados en ausencia de epalrestat {non-imprinted) con APMA, c) non-imprinted sin APMA d) imprinted sin APMA inmerso en 50 mL de disolución de principio activo 5.43μg/mL. Figura 5. Epalrestat cedido en 0.9% NaCl (50 mL) desde (a) hidrogeles cargados con epalrestat non-imprinted y (b) hidrogeles cargados con epalrestat imprinted. Todos los hidrogeles comprenden APMA.
Figura 6. Cantidades de epalrestat en la cédula donadora y acumulado en cornea después de 6 horas de contacto con una disolución de epalrestat o discos de epalrestat cargado 3Ani y 6Ani. El experimento se llevó a cabo a 35 °C usando un tampón de carbonato a pH 7.2 como medio receptor. Descripción detallada de la invención
Los hidrogeles de la invención permiten la carga y la cesión controlada de inhibidores de aldosa reductasa. Dicha carga y cesión pueden modularse variando la composición de los hidrogeles.
En una realización particular, la invención se refiere a un hidrogel que comprende un monómero metacrílico, un monómero dimetacrílico, un monómero silano de fórmula I y un inhibidor de aldosa reductasa.
En una realización particular, la invención se refiere a un hidrogel que comprende un monómero metacrílico, un monómero dimetacrílico, un monómero silano de fórmula I y un monómero con al menos un grupo amino.
En una realización más particular, la invención se refiere a un hidrogel que comprende un monómero metacrílico, un monómero dimetacrílico, un monómero silano de fórmula I, un monómero con al menos un grupo amino y un inhibidor de aldosa reductasa.
Monómeros
Los monómeros de los que se componen los hidrogeles de la presente invención juegan un papel fundamental en la funcionalidad de los mismos. Con el objetivo de que estos hidrogeles sean adecuados para preparar lentes de contacto, inserto ocular, lente intraocular o vendaje ocular se deben de seleccionar los monómeros que los componen para que tras la polimerización el producto tenga unas características físico-químicas y ópticas aceptables.
Así, como monómeros estructurales de los hidrogeles de la invención se emplean monómeros metacrílicos y monómeros silano de fórmula I. El monómero metacrílico es un monómero comúnmente empleado en las lentes de contacto. En una realización particular, el monómero metacrílico se selecciona de entre 2-hidroxietil metacrilato, 2- hidroxipropil metacrilato, l-(tristrimetilsiloxisililpropil)-metacrilato, metilmetacrilato, ácido metacrílico, aminopropil metacrilato, ciclohexil metacrilato, butil metacrilato, glicerol metacrilato y 2-aminoetil metacrilato. En una realización más particular, el monómero metacrílico es 2-hidroxietil metacrilato.
En otra realización particular, el monómero metacrílico está en una proporción de entre 5 y 95 % en el hidrogel. En otra realización particular, el monómero metacrílico está en una proporción de entre 50 y 95 % en el hidrogel. En otra realización particular, el monómero metacrílico está en una proporción de entre 60 y 95 % en el hidrogel.
El silano de fórmula I es una silicona de tercera generación que permite alcanzar un nivel de permeabilidad al oxígeno superior al que se alcanzan con otros materiales. La permeabilidad al oxígeno es un parámetro fundamental en las lentes de contacto y previene la hipoxia corneal.
Además, el silano de fórmula I puede formar interacciones hidrofóbicas con el principio activo inhibidor de aldosa reductasa.
En una realización particular, en el monómero silano de fórmula I, Rl, R2, R3 y R4 son iguales y se seleccionan de entre metilo y etilo.
En una realización preferida, el silano de fórmula I corresponde a la siguiente fórmula
Figure imgf000007_0001
En otra realización particular, el monómero silano está en una proporción de entre 5 y 95% en el hidrogel. En otra realización particular, el monómero silano está en una proporción de entre 50 y 95% en el hidrogel. En otra realización particular, el monómero silano está en una proporción de entre 5 y 50% en el hidrogel.
Además, el hidrogel se compone de monómeros dimetacrílicos que actúan como reticulantes. En una realización particular, el monómero dimetacrílico se selecciona de entre etilenglicol dimetacrilato, 1,3-butanodiol diacrilato, 1,4-butanodiol diacrilato, 1,6- hexanodiol diacrilato, etilen glicol diacrilato, fluorescein Ο,Ο'-diacrilato, glicerol 1,3- diglicerolato diacrilato, pentaeritritol diacrilato monoestearato, 1,6-hexanodiol etoxilato diacrilato, 3-hidroxi-2,2-dimetilpropil 3-hidroxi-2,2-dimetilpropionato diacrilato, bisfenol A etoxilato diacrilato, di(etilen glicol) diacrilato, neopentil glicol diacrilato, poli(etilen glicol) diacrilato, poli(propilen glicol) diacrilato, propilen glicol glicerolato diacrilato, tetra(etilen glicol) diacrilato, 1,3-butanediol dimetacrilato, 1,4-butanediol dimetacrilato, 1,6-hexanediol dimetacrilato, bisfenol A dimetacrilato, diuretano dimetacrilato, etilen glicol dimetacrilato, fluorescein Ο,Ο'-dimetacrilato, glicerol dimetacrilato, bisfenol A etoxilato dimetacrilato, bisfenol A glicerolato dimetacrilato, di(etilen glicol) dimetacrilato, poli(etilen glycol) dimetacrilato, poli(propilen glicol) dimetacrilato, tetraetilen glycol dimetacrilato, tri(etilen glicol) dimetacrilato, trietilen glicol dimetacrilato, poli(lauril metacrilato-co-etilen glicol dimetacrilato) y poli(metil metacrilato-co-etilen glicol dimetacrilato). En una realización más particular, el monómero dimetacrílico es etilenglicol dimetacrilato.
En otra realización particular, el monómero dimetacrílico está en una proporción de 0.01 y 5 % en el hidrogel.
Opcionalmente, un monómero con al menos un grupo amino puede ser empleado en los hidrogeles de la presente invención. En una realización preferida, cuando el inhibidor de aldosa reductasa contiene un grupo carboxílico, los hidrogeles de la invención comprenden además un monómero con al menos un grupo amino. El grupo amino permite establecer interacciones iónicas con un grupo ácido carboxílico presente en el inhibidor de aldosa reductasa. En una realización particular, el monómero con un grupo amino se selecciona de entre N-(3-aminopropil)metacrilamida, N- (2- aminoetil) metacrilamida, 2- aminoetil metacrilato, cloruro de metacrilamidopropiltrimetilamonio, 3- dimetilaminoneopentil acrilato, Ν,Ν-dietilaminoetil acrilato, N,N-dietilaminoetil metacrilato, Ν,Ν-dietilaminometil acrilato, Ν,Ν-dietilaminometil metacrilato, N,N- dietilaminopropil acrilato, Ν,Ν-dietilaminopropilmetacrilato, N,N- dimetilaminopropilacrilamida. En una realización preferida, el monómero con al menos un grupo amino es N-(3-aminopropil)metacrilamida.
Se ha observado que los hidrogeles de la invención que comprenden N-(3- aminopropil)metacrilamida son capaces de cargar una mayor cantidad de principio activo que cuando dicho monómero no está presente. Esto podría ser debido a que dicho monómero además de establecer interacciones iónicas con el inhibidor de aldosa reductasa, forma una cavidad que imita la cavidad de unión al inhibidor de aldosa reductasa.
En otra realización particular, el monómero con al menos un grupo amino está en una proporción de entre 0.1 y 10% en el hidrogel. Inhibidor de aldosa reductasa
En una realización particular, el inhibidor de aldosa reductasa se selecciona de entre epalrestat, alrestatin, ponalrestat, tolrestat, zenarestat, zopolrestat, fidarestat, imirestat, lidorestat, minalrestat, ranirestat, sorbinil y salfedrin B 11.
De forma preferida, en la presente invención se seleccionan los inhibidores de aldosa reductasa que contienen un grupo carboxilo. Dicho grupo carboxilo puede establecer interacciones iónicas con el monómero con al menos un grupo amino. En una realización preferida el inhibidor de aldosa reductasa se selecciona de entre epalrestat, alrestatin, ponalrestat, tolrestat y zenarestat.
En una realización particular, el hidrogel de la invención comprende un monómero metacrílico, un monómero dimetacrílico, un monómero silano de fórmula I como se ha descrito anteriormente, y un monómero con al menos un grupo amino. En una realización más particular, el hidrogel de la invención comprende un monómero metacrílico, un monómero dimetacrílico, un monómero silano de fórmula I como se ha descrito anteriormente, un monómero con al menos un grupo amino y un inhibidor de aldosa reductasa seleccionado de entre epalrestat, alrestatin, ponalrestat, tolrestat y zenarestat.
Procedimiento de preparación
Los hidrogeles se preparan mediante un proceso de polimerización de los monómeros seleccionados. Durante la polimerización puede estar presente el principio activo inhibidor de aldosa reductasa.
En un aspecto, la invención se dirige a un procedimiento de obtención de los hidrogeles descritos anteriormente, que comprende la polimerización de una mezcla de monómeros, dicha mezcla de monómeros comprende un monómero metacrílico, un monómero dimetacrílico y un monómero silano de fórmula I como se ha descrito anteriormente, y opcionalmente un inhibidor de aldosa reductasa puede estar presente.
En una realización particular, la proporción en volumen de monómero metacrílico está comprendida entre 5 y 95%.
En otra realización particular, la proporción en volumen del monómero dimetacrílico está comprendida entre 0.01 y 5%.
En otra realización particular, la proporción en volumen del monómero silano está comprendida entre 5 y 95%. En una realización particular, la mezcla de monómeros comprende además un monómero con al menos un grupo amino.
En una realización particular, la polimerización se lleva a cabo mediante la calefacción de la mezcla o por exposición de ésta a radiación ultravioleta-visible.
En una realización particular, el procedimiento para la obtención de los hidrogeles de la invención, comprende la polimerización de una mezcla de monómeros, dicha mezcla de monómeros comprende un monómero metacrílico, un monómero dimetacrílico y un monómero silano de fórmula I, y un inhibidor de aldosa reductasa está presente durante la polimerización.
En una realización más particular, el procedimiento para la obtención de los hidrogeles de la invención, comprende la polimerización de una mezcla de monómeros, dicha mezcla de monómeros comprende un monómero metacrílico, un monómero dimetacrílico, un monómero silano de fórmula I y un monómero con al menos un grupo amino, y un inhibidor de aldosa reductasa está presente durante la polimerización.
A continuación se recogen ejemplos que ilustran la invención y no deben de considerarse como una limitación de la misma.
Ejemplos
Ejemplo 1. Procedimiento de obtención de hidrogeles con hidroxietil metacrilato, etilenglicol dimetacrilato y monometacriloxipropil-sim-polidimetilsiloxano hidroxipropil terminado.
Se prepararon hidrogeles mezclando hidroxietil metacrilato (HEMA), etilenglicol dimetacrilato (EGDMA) y monometacriloxipropil-sim-polidimetilsiloxano hidroxipropil terminado (MCS-MC12) mezclando los monómeros en las proporciones que se indica en la Tabla 1, incorporando además azoisobutironitrilo (AIBN, iniciador), y opcionalmente N-(3-aminopropyl) metacrilamida hidrocloruro (APMA) y/o epalrestat, inyectando la mezcla en moldes constituidos por placas de vidrio previamente tratadas con diclorodimetilsilano y separadas por un marco de silicona de 0.5 mm de espesor, y calentando a 50°C durante 12 horas y a 70°C durante 24 horas más. Las láminas de hidrogel se sumergieron en agua hirviendo durante 15 minutos para eliminar los monómeros no reaccionantes y facilitar el corte de discos de 10 mm de diámetro. Los discos se secaron en estufa de 70°C y se evaluó el grado de hinchamiento, por duplicado, a temperatura ambiente por inmersión e agua aplicando la ecuación: Grado de hinchamiento (%) = Wt W° x 100
En la que Wo representa el peso inicial del disco seco y Wt el peso después de alcanzar el equilibrio de hinchamiento.
Los hidrogeles con mayor contenido en monómero de silicona presentaron un menor grado de hinchamiento.
Tabla 1. Composición de las mezclas de monómeros utilizadas para sintetizar los hidrogeles, grado de hinchamiento de los hidrogeles en agua y coeficiente de reparto del epalrestat entre el hidrogel y el agua (KN/w)-
MCS- Hincha-
HEMA MC12 EGDMA AIBN APMA Epalrestat miento (%)
Código (mL) (mL) (μί) (mg) (mg) (mg)
lni 0 3 45.2 4.93 0 0 1.3 (1.0) 66 (28) li 0 3 45.2 4.93 0 19.2 0.9 (0.7) 37 (23)
2ni 0.5 2.5 45.2 4.93 0 0 3.8 (1.1) 80 (2)
2i 0.5 2.5 45.2 4.93 0 19.2 1.7 (0.8) 27 (36)
2Ani 0.5 2.5 45.2 4.93 21.45 0 2.6 (0.5) 188 (12)
2Ai 0.5 2.5 45.2 4.93 21.45 19.2 3.5 (1.5) 141 (18)
3ni 1.5 1.5 45.2 4.93 0 0 14.2 (0.7) 62 (3)
3i 1.5 1.5 45.2 4.93 0 19.2 13.9 (1.1) 12 (10)
3Ani 1.5 1.5 45.2 4.93 21.45 0 15.7 (0.6) 982 (17)
3Ai 1.5 1.5 45.2 4.93 21.45 19.2 14.4 (0.7) 966 (24)
4ni 2.5 0.5 45.2 4.93 0 0 32.3 (0.8) 39 (2)
4i 2.5 0.5 45.2 4.93 0 19.2 34.2 (1.6) 10 (6)
4Ani 2.5 0.5 45.2 4.93 21.45 0 37.2 (0.1) 1031 (23)
4Ai 2.5 0.5 45.2 4.93 21.45 19.2 37.5 (0.4) 1020 (18)
5ni 2.75 0.25 45.2 4.93 0 0 41.5 (3.8) 36 (2)
5i 2.75 0.25 45.2 4.93 0 19.2 41.7 (0.5) 29 (34)
5Ani 2.75 0.25 45.2 4.93 21.45 0 44.5 (1.0) 1070 (28)
5Ai 2.75 0.25 45.2 4.93 21.45 19.2 45.2 (0.5) 1083 (32)
6ni 3 0 45.2 4.93 0 0 49.8 (2.5) 42 (12)
6i 3 0 45.2 4.93 0 19.2 48.3 (0.5) 28 (20)
6Ani 3 0 45.2 4.93 21.45 0 56.0 (0.9) 1071 (24)
6Ai 3 0 45.2 4.93 21.45 19.2 52.5 (0.3) 1105 (43) Ejemplo 2. Evaluación de la transparencia óptica y la compatibilidad ocular de los hidrogeles preparados según la composición recogida en la Tabla 1.
Se registró la transmitancia entre 190 y 700 nm de discos de hidrogel previamente hidratados en fluido lacrimal artificial. Los resultados correspondientes a los discos 5ni y 5 Ai se recogen en la Figura 1. Todos los hidrogeles presentaron una transmitancia superior al 90% a una longitud de onda de 600 nm.
La compatibilidad ocular se evaluó en un modelo subrogado que utiliza membrana corioalantoidea de huevo de gallina fecundado (HET-CAM). Discos de cada hidrogel preparados según la composición recogida en la Tabla 1 se hidrataron en medio 0.9% NaCl y a continuación se colocaron sobre la membrana corioalantoidea. Durante cinco minutos se observaron los posibles cambios en la vasculatura de la membrana, registrando tiempos de lisis, hemorragia y coagulación. Como control negativo se utilizó la disolución de 0.9% NaCl y como control positivo una disolución 0.1N NaOH. Las fotografías de las membranas corioalantoideas con un disco de cada formulación de hidrogel se muestran en la Figura 2. Todos los discos superaron el ensayo de compatibilidad, no originando lisis, hemorragia ni coagulación.
Ejemplo 3. Procedimiento de obtención de hidrogeles con hidroxietil metacrilato, etilenglicol dimetacrilato y monometacriloxipropil-sim-polidimetilsiloxano hidroxipropil terminado que incorporan epalrestat durante la síntesis y ceden el fármaco de forma sostenida.
Se prepararon hidrogeles mezclando hidroxietil metacrilato (FLEMA), etilenglicol dimetacrilato (EGDMA) y monometacriloxipropil-sim-polidimetilsiloxano hidroxipropil terminado (MCS-MC12) mezclando los monómeros en las proporciones que se indican en la Tabla 1, incorporando además azoisobutironitrilo (AIBN, iniciador), N-(3-aminopropyl) metacrilamida hidrocloruro (APMA) y epalrestat (códigos terminados en letra i), inyectando la mezcla en moldes constituidos por placas de vidrio previamente tratadas con diclorodimetilsilano y separadas por un marco de silicona de 0.5 mm de espesor, y calentando a 50°C durante 12 horas y a 70°C durante 24 horas más. Las láminas de hidrogel se sumergieron en agua hirviendo durante 15 minutos para eliminar los monómeros no reaccionantes y facilitar el corte de discos de 10 mm de diámetro. Los discos se transfirieron por separado a viales conteniendo 0.9% NaCl (45 mL) y se mantuvieron bajo agitación magnética a 200 rpm a temperatura ambiente y protegidos de la luz. A tiempos preestablecidos, se retiraron muestras de 3 mL de medio y se midió la absorbancia a 400 nm. Después de la medida, las muestras se volvieron inmediatamente al vial correspondiente. En la Figura 3 se muestran los resultados obtenidos.
Todos los hidrogeles proporcionaron perfiles de cesión sostenida durante una semana.
Ejemplo 4. Procedimiento de incorporación de epalrestat en hidrogeles con hidroxietil metacrilato, etilenglicol dimetacrilato y monometacriloxipropil-sim-polidimetilsiloxano hidroxipropil terminado.
Los hidrogeles preparados según la composición recogida en la Tabla 1 se sumergieron en agua hirviendo durante 15 minutos para eliminar los monómeros no reaccionantes y facilitar el corte de discos de 10 mm de diámetro. A continuación, se sometieron a un proceso de lavado exhaustivo por inmersión en etanol:agua (10:90 v/v, 100 mL) durante 48 h, reemplazando el medio cada 24 h. El lavado continuó en medio 0.9% NaCl durante 24 h, fluido lacrimal artificial 24 h, agua 72 h, fluido lacrimal artificial 24 h, agua 48 h, 0.9% NaCl 8 días, y finalmente agua 3 días más, bajo agitación magnética (200 rpm) a temperatura ambiente y protegidos de la luz. Durante el lavado, la eliminación del epalrestat usado durante la síntesis se monitorizó espectrofotométricamente a 400 nm. Finalmente los discos se secaron a peso constante.
Los discos secos se colocaron, individualmente, en 50 mL de disolución acuosa de epalrestat (6.14 microgramos/mL) protegidos de la luz (por triplicado) y mantenidos bajo agitación magnética a temperatura ambiente. A periodos de tiempo preestablecidos, la absorbancia de las disoluciones de carga se midió espectrofotométricamente a 400 nm y se estimó la cantidad de fármaco cargado a partir de la diferencia entre la cantidad inicial y final de fármaco en la disolución. En la Figura 4 se muestran los perfiles de incorporación de epalrestat.
El coeficiente de reparto de epalrestat entre el hidrogel y el medio acuoso, KN WJ se calculó utilizando la siguiente ecuación:
Fármaco incorporado =[(Vs+
Figure imgf000013_0001
} )) M f-C,, En esta ecuación, Vs es el volumen de agua sorbida por el hidrogel, Vp el volumen de polímero seco, Wp el peso de hidrogel seco y Co la concentración de epalrestat en la disolución de carga.
Los valores de KN/w, que se recogen en la Tabla 1, ponen de manifiesto que los hidrogeles que contienen el monómero APMA presentan una afinidad muy elevada por el fármaco, aproximadamente dos órdenes de magnitud más alta que los hidrogeles preparados sin APMA.
Los hidrogeles cargados con el fármaco por el procedimiento descrito se llevaron a 50 mL de NaCl al 0.9% para evaluar su capacidad para regular la cesión de epalrestat. Los perfiles obtenidos, que se recogen en la Figura 5, muestran que los hidrogeles sostienen la cesión durante varios días.
Ejemplo 5. Ensayo de permeabilidad corneal de epalrestat cedido a partir de los hidrogeles con hidroxietil metacrilato, etilenglicol dimetacrilato y monometacriloxipropil-sim- polidimetilsiloxano hidroxipropil terminado.
Se llevó a cabo un ensayo de permeabilidad corneal utilizando ojos bovinos procedentes de un matadero municipal. Las córneas se colocaron en células de difusión, separando el compartimento receptor (tampón carbonato pH 7.2; 6.5 mL) del compartimento dador. En cada compartimento dador se colocó un disco cargado con epalrestat (formulaciones 6Ani y 3Ani; Códigos como en Tabla 1) o una disolución control de epalrestat. A tiempos preestablecidos se tomaron muestras del medio receptor y se cuantificó la cantidad de epalrestat. Cada experimento se llevó a cabo por triplicado. Transcurridas 6 horas del ensayo, las córneas se retiraron y se cuantificó la cantidad acumulada en ellas haciendo una extracción con etanol:agua 50;50 v/v durante 12 horas y valorando el contenido en epalrestat por FIPLC.
En la Figura 6 se muestran las cantidades de epalrestat remanentes en el compartimento dador y las acumuladas en córnea. Los hidrogeles transfirieron a las córneas cantidades de epalrestat en el intervalo que da lugar a efectos terapéuticos.

Claims

Reivindicaciones
1.- Hidrogel que comprende un monómero metacrílico, un monómero dimetacrílico y un monómero silano de fórmula I
Figure imgf000015_0001
donde Rl, R2, R3 y R4 pueden ser iguales o diferentes y son Cl-C4-al quilo,
R5 puede ser hidrógeno o hidroxilo,
n tiene el valor 1, 2 o 3,
m tiene el valor de entre 1 y 10.
2. - Hidrogel, según la reivindicación 1 que comprende además un inhibidor de aldosa reductasa.
3. - Hidrogel, según la reivindicación 2, donde el inhibidor de aldosa reductasa se selecciona de entre epalrestat, alrestatin, ponalrestat, tolrestat, zenarestat, zopolrestat, fidarestat, imirestat, lidorestat, minalrestat, ranirestat, sorbinil y salfedrin BU .
4. - Hidrogel, según la reivindicación 3, donde el inhibidor de aldosa reductasa es epalrestat.
5 - Hidrogel, según cualquiera de las reivindicaciones anteriores que comprende además un monómero con al menos un grupo amino.
6.- Hidrogel, según cualquiera de las reivindicaciones anteriores donde el monómero metacrílico se selecciona de entre 2-hidroxietil metacnlato, 2-hidroxipropil metacrilato, 1- (tristrimetilsiloxisililpropil)-metacrilato, metilmetacrilato, ácido metacrílico, aminopropil metacrilato, ciclohexil metacrilato, butil metacrilato, glicerol metacrilato y 2-aminoetil metacrilato.
7. - Hidrogel, según cualquiera de las reivindicaciones anteriores donde Rl, R2, R3 y R4 en el monómero silano de fórmula I son iguales y se seleccionan de entre metilo y etilo.
8. - Hidrogel, según cualquiera de las reivindicaciones anteriores donde el monómero silano e
Figure imgf000016_0001
9. - Hidrogel, según cualquiera de las reivindicaciones anteriores donde el monómero dimetacrílico se selecciona de entre etilenglicol dimetacrilato, 1,3-butanodiol diacrilato, 1,4-butanodiol diacrilato, 1,6-hexanodiol diacrilato, etilen glicol diacrilato, fluorescein Ο,Ο'-diacrilato, glicerol 1,3-diglicerolato diacrilato, pentaeritritol diacrilato monoestearato, 1,6-hexanodiol etoxilato diacrilato, 3-hidroxi-2,2-dimetilpropil 3-hidroxi- 2,2-dimetilpropionato diacrilato, bisfenol A etoxilato diacrilato, di(etilen glicol) diacrilato, neopentil glicol diacrilato, poli(etilen glicol) diacrilato, poli(propilen glicol) diacrilato, propilen glicol glicerolato diacrilato, tetra(etilen glicol) diacrilato, 1,3-butanediol dimetacrilato, 1,4-butanediol dimetacrilato, 1,6-hexanediol dimetacrilato, bisfenol A dimetacrilato, diuretano dimetacrilato, etilen glicol dimetacrilato, fluorescein Ο,Ο'- dimetacrilato, glicerol dimetacrilato, bisfenol A etoxilato dimetacrilato, bisfenol A glicerolato dimetacrilato, di(etilen glicol) dimetacrilato, poli(etilen glycol) dimetacrilato, poli(propilen glicol) dimetacrilato, tetraetilen glycol dimetacrilato, tri(etilen glicol) dimetacrilato, trietilen glicol dimetacrilato, poli(lauril metacrilato-co-etilen glicol dimetacrilato) y poli(metil metacrilato-co-etilen glicol dimetacrilato).
10. - Hidrogel, según cualquiera de las reivindicaciones de 5 a 9, donde el monómero con un grupo amino se selecciona de entre N-(3-aminopropil)metacrilamida, N- (2- aminoetil) metacrilamida, 2-aminoetil metacrilato, cloruro de metacrilamidopropiltrimetilamonio, 3- dimetilaminoneopentil acrilato, Ν,Ν-dietilaminoetil acrilato, N,N-dietilaminoetil metacrilato, Ν,Ν-dietilaminometil acrilato, Ν,Ν-dietilaminometil metacrilato, N,N- dietilaminopropil acrilato, Ν,Ν-dietilaminopropilmetacrilato, N,N- dimetilaminopropilacrilamida.
11. - Hidrogel según cualquiera de las reivindicaciones anteriores que comprende un monómero metacrílico, un monómero dimetacrílico, un monómero silano de fórmula I como se ha descrito en la reivindicación 1, y un monómero con al menos un grupo amino.
12. Hidrogel según cualquiera de las reivindicaciones anteriores que comprende un monómero metacrílico, un monómero dimetacrílico, un monómero silano de fórmula I como se ha descrito en la reivindicación 1, un monómero con al menos un grupo amino y un inhibidor de aldosa reductasa seleccionado de entre epalrestat, alrestatin, ponalrestat, tolrestat y zenarestat.
13. - Lente de contacto, inserto ocular, lente intraocular o vendaje ocular que comprende un hidrogel según cualquiera de las reivindicaciones 1-12.
14. - Procedimiento de obtención del hidrogel según cualquiera de las reivindicaciones 1-
12, que comprende la polimerización de una mezcla de monómeros, dicha mezcla de monómeros comprende un monómero metacrílico, un monómero dimetacrílico y un monómero silano de fórmula I como se ha descrito en la reivindicación 1, y opcionalmente un inhibidor de aldosa reductasa puede estar presente.
15. - Uso del hidrogel según cualquiera de las reivindicaciones 1-12, de la lente de contacto, del inserto ocular, de la lente intraocular o del vendaje según la reivindicación 13, para la preparación de un medicamento.
16. - Uso del hidrogel según cualquiera de las reivindicaciones 1-12, de la lente de contacto, del inserto ocular, de la lente intraocular o del vendaje según la reivindicación
13, para la preparación de un medicamento para el tratamiento de patologías oculares relacionadas con la diabetes.
17.- Uso del hidrogel según la reivindicación 16, donde las patologías oculares relacionadas con la diabetes se seleccionan de entre queratopatía, síndrome de ojo seco, glaucoma, cataratas y retinopatía.
PCT/ES2018/070051 2017-01-23 2018-01-23 Hidrogeles para administración de fármacos inhibidores de aldosa reductasa WO2018134467A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201730074 2017-01-23
ES201730074A ES2604196B2 (es) 2017-01-23 2017-01-23 Hidrogeles para administración de fármacos inhibidores de aldosa reductasa

Publications (1)

Publication Number Publication Date
WO2018134467A1 true WO2018134467A1 (es) 2018-07-26

Family

ID=58109591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2018/070051 WO2018134467A1 (es) 2017-01-23 2018-01-23 Hidrogeles para administración de fármacos inhibidores de aldosa reductasa

Country Status (2)

Country Link
ES (1) ES2604196B2 (es)
WO (1) WO2018134467A1 (es)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0231572A2 (en) * 1986-02-06 1987-08-12 Progressive Optical Research Ltd. Silicone-sulfone and silicone-fluorocarbon-sulfone gas permeable contact lenses and compositions thereof
WO2011005839A1 (en) * 2009-07-07 2011-01-13 Convatec Technologies Inc. Pressure sensitive silicone adhesives with amphiphilic copolymers
WO2011037893A2 (en) * 2009-09-22 2011-03-31 Coopervision International Holding Company, Lp Wettable hydrogel materials for use in ophthalmic applications and methods
WO2013033553A1 (en) * 2011-09-01 2013-03-07 Vertellus Specialties Inc. Methods for producing biocompatible materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0231572A2 (en) * 1986-02-06 1987-08-12 Progressive Optical Research Ltd. Silicone-sulfone and silicone-fluorocarbon-sulfone gas permeable contact lenses and compositions thereof
WO2011005839A1 (en) * 2009-07-07 2011-01-13 Convatec Technologies Inc. Pressure sensitive silicone adhesives with amphiphilic copolymers
WO2011037893A2 (en) * 2009-09-22 2011-03-31 Coopervision International Holding Company, Lp Wettable hydrogel materials for use in ophthalmic applications and methods
WO2013033553A1 (en) * 2011-09-01 2013-03-07 Vertellus Specialties Inc. Methods for producing biocompatible materials

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALVAREZ-RIVERA FERNANDO ET AL.: "Epalrestat-loaded silicone hydrogels as contact lenses to address diabetic-eye complications", EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, vol. 122, 31 December 2017 (2017-12-31), pages 126 - 136, XP085322668, ISSN: 0939-6411 *
MELENDEZ-ORTIZ, H. I. ET AL.: "Grafting of N-vinyl caprolactam and methacrylic acid onto silicone rubber films for drug-eluting products", JOURNAL APPLIED POLYMER SCIENCE, vol. 132, no. 17, 2015, pages 1 - 11, XP055505569 *
TASHAKORI-SABZEVAR FAEZEH ET AL.: "Development of ocular drug delivery systems using molecularly imprinted soft contact lenses", DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY, vol. 41, no. 5, 2015, pages 703 - 713, XP055505565, ISSN: 1520-5762 *

Also Published As

Publication number Publication date
ES2604196B2 (es) 2017-09-11
ES2604196A1 (es) 2017-03-03

Similar Documents

Publication Publication Date Title
TWI476022B (zh) 隱形眼鏡、其製法及其使用方法
Maulvi et al. Design and optimization of a novel implantation technology in contact lenses for the treatment of dry eye syndrome: In vitro and in vivo evaluation
US4709996A (en) Fluid lens
US4466705A (en) Fluid lens
ES2675878T3 (es) Polímeros y copolímeros biocompatibles que comprenden aminoácidos en la cadena lateral
US10617559B2 (en) High-precision drug delivery by dual-domain ocular device
US20190125662A1 (en) Medical devices including medicaments and methods of making and using same including enhancing comfort, enhancing drug penetration, and treatment of myopia
JP2008214640A (ja) 薬剤の取り込み量が多い、薬剤徐放可能なヒドロゲル材料の製造方法
Alvarez-Rivera et al. Hydrogels for diabetic eyes: Naltrexone loading, release profiles and cornea penetration
US20200054555A1 (en) Contact lens with functional components and products thereof
JP2016501931A (ja) 酸化的損傷を減じるための組成物および方法
KR19980703301A (ko) 안약으로 적용가능한 멸균 안과용 젤 조제 및 생성과정
US4275183A (en) Hydrophilic polymers and contact lenses therefrom
US20220079877A1 (en) Devices and methods for reducing cystine crystals in vivo
EP0120937A1 (en) Osmotic device for various physiological applications
CN111419851B (zh) 缓控释给药的布林佐胺印迹水凝胶隐形眼镜的制备方法
ES2604196B2 (es) Hidrogeles para administración de fármacos inhibidores de aldosa reductasa
CN113527581A (zh) 水胶组成物及水胶镜片
TW201000288A (en) Methods and systems for processing silicone hydrogel ophthalmic lenses
Khan et al. Ocular inserts-a novel approach in ocular drug delivery
US4328148A (en) Compositions comprising water and hydrophilic polymers and contact lenses therefrom
JP2005507866A (ja) 管理治療のための薬物放出システム
US4465794A (en) Hydrophilic polymers and contact lenses therefrom
CN104368006A (zh) 含聚合物胶束的水凝胶眼药载体及其制备方法
US20200166671A1 (en) Lipoic acid hydrogels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18741220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18741220

Country of ref document: EP

Kind code of ref document: A1