WO2018133724A1 - 一种亚重力场强化多级蒸发系统 - Google Patents

一种亚重力场强化多级蒸发系统 Download PDF

Info

Publication number
WO2018133724A1
WO2018133724A1 PCT/CN2018/072185 CN2018072185W WO2018133724A1 WO 2018133724 A1 WO2018133724 A1 WO 2018133724A1 CN 2018072185 W CN2018072185 W CN 2018072185W WO 2018133724 A1 WO2018133724 A1 WO 2018133724A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporation
air
circulating
solution
condensing
Prior art date
Application number
PCT/CN2018/072185
Other languages
English (en)
French (fr)
Inventor
凌祥
刘威宏
李洋
黄鑫
柯廷芬
Original Assignee
南京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京工业大学 filed Critical 南京工业大学
Priority to US16/474,557 priority Critical patent/US10773182B2/en
Priority to GB1909267.5A priority patent/GB2571887B/en
Priority to JP2019516981A priority patent/JP2020500690A/ja
Publication of WO2018133724A1 publication Critical patent/WO2018133724A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0082Regulation; Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/14Evaporating with heated gases or vapours or liquids in contact with the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/16Evaporating by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/16Evaporating by spraying
    • B01D1/20Sprayers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/22Evaporating by bringing a thin layer of the liquid into contact with a heated surface
    • B01D1/222In rotating vessels; vessels with movable parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/26Multiple-effect evaporating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/007Energy recuperation; Heat pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/08Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in rotating vessels; Atomisation on rotating discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • B01D3/146Multiple effect distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • B01D3/343Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances the substance being a gas
    • B01D3/346Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances the substance being a gas the gas being used for removing vapours, e.g. transport gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/42Regulation; Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation

Definitions

  • the invention belongs to the field of evaporation treatment, and in particular relates to a sub-gravity field enhanced multi-stage evaporation system.
  • the evaporation process is a common and major process in industrial processes such as chemical, light industry, food, pharmaceutical, and sewage treatment.
  • the evaporation process consumes a lot of steam and is a high energy process. Since the evaporation process is extensive in the process industry, it is of great significance to improve the energy utilization rate in the evaporation process for energy-saving and efficiency enhancement of process industries such as petrochemicals and metallurgy, and to enhance industrial competitiveness.
  • Multi-effect evaporation is to use the secondary steam generated by the former first-stage evaporator as the heat source to heat the primary evaporator.
  • the multiple evaporators are operated in series to reduce the steam usage.
  • the mechanical vapor recompression technology is the evaporation from the evaporation.
  • the secondary steam produced by the device is recompressed to increase its thermal quality and re-introduced as heated steam into the evaporator to supplement or even completely replace the raw steam.
  • the present invention provides a sub-gravity field enhanced multi-stage evaporation system, which utilizes the air-carrying capacity to take away the pure water in the solution, thereby achieving the evaporation purpose.
  • the principle of realizing evaporation is to use the characteristic that the air carrying capacity of the air increases with the increase of temperature.
  • the hot solution and the air are directly contacted with the heat and mass transfer, and the air after the temperature absorption and absorption absorbs into the regenerator and the solution exchanges heat. Rational use.
  • the multi-stage evaporation structure type is adopted to reduce the air volume and reduce the energy consumption of the fan; the sub-gravity field is formed by the low-speed rotation of the filler, the solution is evenly distributed on the filler, the heat and mass transfer effect is enhanced, and the solution is formed in the filler along the radial direction. Trends around the perimeter to prevent fouling.
  • the present invention adopts the following technical solutions:
  • a sub-gravity field enhanced multi-stage evaporation system characterized by comprising: a liquid storage tank, a preheater, a primary evaporation structure, a secondary evaporation structure, a tertiary evaporation structure, a fan, a feed pump, a circulation pump and a circulation a liquid tank, the primary evaporation structure, the secondary evaporation structure and the tertiary evaporation structure each comprise an evaporation chamber, a condensing regenerator and a condensing dehumidifier; a raw material solution in the liquid storage tank and a concentrated solution in the circulating liquid tank
  • the mixture is mixed under the action of the feed pump and the circulation pump respectively, and the mixed liquid is divided into three condensing regenerators respectively entering the evaporation structures of the respective stages, and the mixed liquid absorbs the residual heat of the humid air and merges into the preheater, after being heated by steam, The average flow is divided into three evaporation chambers respectively
  • a sub-gravity field enhanced multi-stage evaporation system comprising: a liquid storage tank, a feed pump, a circulation pump, a primary evaporation structure, a secondary evaporation structure, a tertiary evaporation structure, a fan and a circulating liquid tank,
  • the primary evaporation structure, the secondary evaporation structure and the tertiary evaporation structure each include an evaporation chamber, a condensing regenerator, a condensing dehumidifier and a preheater; a raw material solution in the liquid storage tank and a concentrated solution in the circulating liquid tank
  • the mixture is mixed under the action of the feed pump and the circulation pump respectively, and the mixed liquid sequentially enters the tertiary evaporation structure, the secondary evaporation structure and the first-stage evaporation structure, and is heated by the condensing regenerator and the preheater in the evaporation structures of the respective stages.
  • a sub-gravity field enhanced multi-stage evaporation system comprising: a liquid storage tank, a feed pump, a circulation pump, a primary evaporation structure, a secondary evaporation structure, a tertiary evaporation structure, a dust remover, a fan and a circulating fluid a tank, the primary evaporation structure, the secondary evaporation structure and the tertiary evaporation structure each comprise an evaporation chamber, a condensing regenerator and a preheater; respectively, the raw material solution in the liquid storage tank and the concentrated solution in the circulating liquid tank respectively.
  • the mixture is mixed under the action of the feed pump and the circulating pump, and the mixed liquid sequentially enters the tertiary evaporation structure, the secondary evaporation structure and the first-stage evaporation structure, and is heated by the condensing regenerator and the preheater in each evaporation structure respectively.
  • the evaporation chamber is in direct contact with the air in the evaporation chamber for heat and mass transfer, and flows into the circulating liquid tank from the bottom of the evaporation chamber; the air enters the primary evaporation structure, the secondary evaporation structure and the third stage respectively under the action of the dust collector and the fan Evaporate the structure and eventually vent.
  • the mixed liquid is controlled by the valve to have the same flow rate of the condensing regenerator entering the evaporating structure of each stage; when the mixed liquid flows through the preheater, it is divided into three evaporating chambers which enter the evaporating structure of each level by the valve control.
  • the fan blows circulating air from the bottom of the evaporation chamber, and the circulating air is heated by the mixed liquid to take away the moisture in the mixed liquid, and exchange heat with the mixed liquid in the condensing regenerator to recover the residual heat of the circulating air, and then dehumidify by condensation.
  • the heat exchange heat with the cooling water returns the circulating air to the state before entering the evaporation chamber, and then enters the next-stage evaporation structure for closed circulation.
  • the condensing dehumidifier cools the circulating air by circulating cooling water, and the circulating cooling water absorbs the heat of the circulating air and then cools through the cool water tower, and the circulation pump again enters the condensing dehumidifier to circulate the operation.
  • the upper part of the evaporation chamber is provided with a solution inlet pipe, the solution inlet pipe is connected with the preheater for the entry of the mixed liquid; the bottom of the evaporation chamber is provided with a solution outlet pipe, and the solution outlet pipe is connected with the circulating liquid tank for the outflow of the concentrated solution.
  • the lower part of the evaporation chamber is further provided with an air inlet pipe, and the air inlet pipe is connected with the fan for the entry of circulating air; the top of the evaporation chamber is also provided with an air outlet pipe, and the air outlet pipe is connected with the condensing regenerator for circulating air outflow Recycling waste heat from circulating air.
  • the upper part of the evaporation chamber is provided with a solution inlet pipe, the solution inlet pipe is connected with the preheater for the entry of the mixed liquid; the bottom of the evaporation chamber is provided with a solution outlet pipe, and the solution outlet pipe is connected with the circulating liquid tank for the outflow of the concentrated solution.
  • the lower part of the evaporation chamber is also provided with an air inlet pipe, which is connected with a fan and a dust collector for the entry of air; an air outlet pipe is also arranged at the top of the evaporation chamber, and the air outlet pipe is connected with the condensing regenerator, and the air is condensed.
  • the regenerator is vented.
  • the evaporation chamber adopts a spray type structure, and a plurality of nozzles are arranged at the top, and the mixed liquid sprayed by each nozzle falls conically at a certain angle, and the solution inlet tube opens into the evaporation chamber to form a circular bracket on the top of the evaporation chamber, the nozzle Uniformly placed on the stand.
  • the evaporation chamber adopts a sub-gravity field rotating structure, and has a cylindrical packing layer fixed on the rotating shaft.
  • the hot solution is first sprayed onto the packing through the top nozzle of the evaporation chamber, and the motor drives the rotating shaft through the belt, and the packing is driven by the rotating shaft.
  • Rotating at a low speed forms a sub-gravity field, and the solution is evenly distributed in the filler, resulting in a tendency to move radially from the middle to the periphery of the filler.
  • the beneficial effects of the present invention are that different series and parallel type evaporation systems can be employed depending on the processing amount, concentration, processing requirements, and operating environment differences of the desired processing solution.
  • the solution series type should be adopted, and the solution is gradually concentrated by the multi-stage evaporation chamber in series operation.
  • the solution parallel type is preferable to use the solution parallel type and operate in parallel through the multi-stage evaporation chamber, thereby increasing the solution treatment without improving the performance of the fan.
  • the air parallel type can be adopted.
  • the humidified air can be taken directly from the outside atmosphere without adding condensing and dehumidifying equipment; when the ambient temperature fluctuation range is higher than Large, or when the control accuracy is high, the air series type should be adopted.
  • the humid air is closed loop, which is independent of the external environment and is convenient for system control.
  • FIG. 1 is a schematic view showing the operation of a first embodiment (air series solution in parallel) of the present invention.
  • Figure 2 is a schematic view showing the operation of the second embodiment of the present invention (air series solution in series).
  • Figure 3 is a schematic view showing the operation of a third embodiment (air parallel solution in series) of the present invention.
  • Figure 4 is a schematic illustration of the operation of the circulating cooling system of the first and second embodiments of the present invention.
  • the reference numerals are as follows: liquid storage tanks 11, 21, 31; circulating liquid tanks 19, 27, 37; feed pumps 171, 221, 321; circulating pumps 172, 222, 322; primary evaporation structures 13, 23, 33; Secondary evaporation structure 14, 24, 34; tertiary evaporation structure 15, 25, 35; fans 161, 162, 163, 261, 262, 263, 361, 362, 363; dust collectors 333, 343, 353; 182, 183, 184, 185, 186; condensing regenerators 132, 142, 152, 232, 242, 252, 332, 342, 352; condensing dehumidifiers 133, 143, 153, 233, 243, 253; preheater 12, 234, 244, 254, 334, 344, 354; solution inlet pipe 1311, 1411, 1511, 2311, 2411, 2511, 3311, 3411, 3511; solution outlet pipe 1312, 1412, 1512, 2312, 2412, 2512, 33
  • the sub-gravity field enhanced multi-stage evaporation system in parallel with the air series solution shown in FIG. 1 includes a liquid storage tank 11, a preheater 12, a primary evaporation structure 13, a secondary evaporation structure 14, a tertiary evaporation structure 15, and a fan.
  • primary evaporation structure 13, secondary evaporation structure 14 and tertiary evaporation structure 15 each include evaporation chambers 131, 141, 151, condensation and heat recovery
  • the units 132, 142, 152 and the condensing dehumidifiers 133, 143, 153 are examples of the condensing dehumidifiers.
  • the upper portions of the evaporation chambers 131, 141, and 151 are provided with solution inlet tubes 1311, 1411, and 1511, and the solution inlet tubes 1311, 1411, and 1511 are connected to the preheater 12 for the entry of the mixed liquid, and the evaporation chambers 131, 141, and 151 are provided at the bottom.
  • the solution outlet tubes 1312, 1412, 1512, the solution outlet tubes 1312, 1412, 1512 are connected to the circulating liquid tank 19 for the outflow of the concentrated solution, and the lower portions of the evaporation chambers 131, 141, 151 are also provided with air inlet tubes 1313, 1413, 1513.
  • the air inlet pipes 1313, 1413, and 1513 are connected to the fans 161, 162, and 163 for the entry of circulating air.
  • the tops of the evaporation chambers 131, 141, and 151 are also provided with air outlet pipes 1314, 1414, and 1514, and the air outlet pipes 1314 and 1414.
  • And 1514 is connected to the condensing regenerators 132, 142, and 152 for circulating the circulating air to recover the residual heat of the circulating air.
  • the evaporation chambers 131, 141, and 151 adopt a spray type structure, and a plurality of nozzles are arranged at the top, and the solution sprayed from each nozzle falls conically at a certain angle, and the solution inlet tubes 1311, 1411, and 1511 extend into the evaporation chambers 131, 141.
  • a circular bracket is formed on the top of the evaporation chambers 131, 141, and 151, and the nozzles are evenly distributed thereon to facilitate uniform spraying of the droplets.
  • the lower part of the nozzle is provided with a cylindrical packing fixed on the rotating shaft, and the motor drives the rotating shaft through the belt, so that the packing rotates at a low speed to form a sub-gravity field, and the hot solution sprayed on the packing acts by weak centrifugal force to form a movement diverging from the middle to the periphery.
  • the trend is evenly distributed in the filler, the air enters the filler from bottom to top, and the heat and mass transfer with the solution in reverse flow contact.
  • the structure has low requirements on the strength, rigidity and dynamic sealing of the rotating shaft, and is easy to realize.
  • the rotating shaft is fixed to the cylindrical packing frame, passes through the bottom of the evaporation chambers 131, 141, and 151, and is in dynamic contact with the bottom portion of the evaporation chambers 131, 141, and 151.
  • the liquid storage tank 11 is connected to the circulating liquid tank 19 and connected to the condensing regenerators 132, 142, 152, and the condensing regenerators 132, 142, 152 of the stages are connected to the evaporation chambers 131, 141, 151 through the preheater 12, respectively.
  • the evaporation chambers 131, 141, and 151 of the respective stages are connected to the circulating liquid tank 19.
  • the duct fans 161, 162, 163 are sequentially connected to the circulating air inlet pipes 1313, 1413, 1513 of the evaporation chambers 131, 141, 151, the circulating air outlet pipes 1314, 1414, 1514 and the condensing regenerators 132, 142, 152 and The condensing dehumidifiers 133, 143, and 153 of the stages are connected.
  • the system process is: mixing the solution in the liquid storage tank 11 and the circulating liquid tank 19 by the feed pump 171 and the circulation pump 172 and driving into the condensation regenerators 132, 142, 152 to exchange heat with the circulating air.
  • the middle pipe of the circulating liquid tank 19 is directly connected to the bottom of the circulating liquid tank 19, and the solution outlet is arranged at the upper side of the circulating liquid tank 19 to ensure solid crystals and sediments are retained at the bottom of the circulating liquid tank 19, and the solution for circulation is the upper supernatant.
  • Part of the supernatant liquid is mixed with the raw material solution and recycled again.
  • the bottom part of the circulating liquid tank 19 is taken out for crystallization treatment, and solid-liquid separation.
  • the circulating air is driven into the evaporation chamber 131 by the duct fan 161 to directly contact the hot solution to perform temperature rising and absorbing, and after condensing and heat exchange by the condensing regenerator 132, the circulating air is initially cooled, the condensed water is discharged, and then enters the condensing dehumidifier 133.
  • the cooling water heat exchange after further cooling, the circulating air regains moisture absorption capacity, and enters the secondary evaporation structure 14 and the tertiary evaporation structure 15 again.
  • the moisture absorption and dehumidification mechanism is the same as that of the primary evaporation structure 13, and the air continuously flows in the evaporation structure at all levels. Cycling.
  • the flow rate of the material valve and the circulating valve are controlled by the liquid level in the circulating liquid tank 19, and the flow rates of the solution from the liquid storage tank 11 and the circulating liquid tank 19 are respectively controlled, and controlled to the respective stages through the valves 181, 182, and 183.
  • the flow rates of the solutions of the condensing regenerators 132, 142, and 152 are the same so that the evaporative condensation heat exchange conditions of the respective stages are the same.
  • the mixed liquid flows through the preheater 12, it is controlled by valves 184, 185, and 186, and is equally divided into three evaporation chambers 131, 141, and 151 which enter the evaporation structures of the respective stages.
  • the mixed liquid is heated to a specified temperature
  • air is selected as the moisture absorbing carrier
  • the circulating air enters the evaporation chambers 131, 141, 151 under the action of the fans 161, 162, 163, and the mixed liquid is in the evaporation chambers 131, 141.
  • the air temperature rises, part of the pure water in the mixed liquid is vaporized, the air carries the part of the water vapor, and enters the condensation regenerators 132, 142, 152 and the solution.
  • the heat exchange is carried out, the preliminary condensation is carried out, the residual heat of the air is recovered, and part of the water vapor in the air is condensed and precipitated, and then, after the initial cooling, the circulating air is again introduced into the condensing dehumidifiers 133, 143, 153, and is restored after heat exchange with the circulating cooling water.
  • the circulating air is circulated in the pipeline, the evaporation chambers 131, 141, 151, the condensing regenerators 132, 142, 152, and the condensing dehumidifiers 133, 143, 153;
  • the solution After flowing through the condensing regenerators and preheaters of the various stages, the solution reaches a specified temperature, and the solution inlet tubes 1311, 1411, and 1511 extend into the tops of the evaporation chambers 131, 141, and 151, and enter the respective tubes through the top liquid distributor.
  • a plurality of nozzles are evenly distributed on the branch pipe, and the solution is sprayed by the nozzle to fall down in a cone shape, and is evenly distributed in the filler after the weak centrifugal force of the subgravity field, and the air is passed through the fan 161, 162, 163 from the air inlet pipe 1313 at the bottom of the evaporation chamber.
  • 1413, 1513 are blown into the evaporation chambers 131, 141, 151, and the air and the solution are directly contacted with the heat and mass transfer in a countercurrent flow, and the concentrated liquid flows into the circulating liquid tank 19 from the solution outlet tubes 1312, 1412, and 1512 at the bottom of the evaporation chamber, and the humid air is carried.
  • top air outlet pipes 1314, 1414, and 1514 from the evaporation chambers 131, 141, and 151 are introduced into the condensing regenerators 132, 142, and 152 to exchange heat with the solution to recover heat, thereby saving heating steam consumption.
  • the driving heat source can be provided by low-grade heat energy in the industrial production process, can be jointly produced with other industrial processes, recycling industrial waste heat, reducing energy consumption, and the temperature of the solution after being heated by the condensing regenerators 132, 142, 152 and the preheater 12 The processing conditions are reached.
  • the evaporation process is divided into two phases: the driving phase and the stable operation phase.
  • the driving phase the feed liquid is only the mother liquor.
  • the concentration of the first evaporation solution has not reached the treatment requirement.
  • the mother liquor is stopped, the solution is forcedly circulated in the system, and the treatment concentration is reached after multiple evaporation;
  • the stable operation phase the solution of the treatment concentration is reached, and a part of the extraction system is subjected to the lower crystallization process, and the remaining part is mixed with the mother liquor according to a certain ratio, so that the concentration of the mixed solution can reach the treatment requirement after one evaporation operation, thereby achieving continuous evaporation.
  • the purpose of the operation the purpose of the operation.
  • the mother liquor is evaporated and concentrated in the evaporation structures 13, 14, 15 respectively, the raw material valve is closed, the mother liquid is no longer passed, and the concentrated liquid is forcedly circulated inside the evaporation structures until reaching After the treatment request is sent to the circulating liquid tank 19; in the steady operation phase, the flow rate of the mother liquid from the liquid storage tank 11 and the flow rate of the concentrated liquid from the circulating liquid tank 19 are respectively controlled by the raw material valve and the circulation valve to start the continuous stable evaporation operation.
  • the solution parallel type is suitable for the case where the solution processing amount is large, and the multi-stage evaporation chamber is operated in parallel, thereby increasing the solution processing amount and improving the processing efficiency without improving the performance of the fan;
  • the air series is suitable for When the ambient temperature fluctuation range is large or the control accuracy requirement is high, the humid air is closed cycle at this time, and has nothing to do with the external environment. Under stable operating conditions, the air in the system is circulated, and the air absorbing moisture from the evaporation chamber is condensed. After the regenerator and the condensing dehumidifier are cooled and dehumidified, they have the ability to carry moisture again, and enter the evaporation chamber again for moisture absorption. The system runs stably and is easy to control.
  • the system includes a liquid storage tank 21, a feed pump 221, a circulation pump 222, a primary evaporation structure 23, a secondary evaporation structure 24, a tertiary evaporation structure 25, fans 261, 262, 263 and a circulating liquid tank 27, and a primary evaporation structure 23.
  • the secondary evaporation structure 24 and the tertiary evaporation structure 25 each include an evaporation chamber 231, 241, 251, condensing regenerators 232, 242, 252, condensing dehumidifiers 233, 243, 253, and preheaters 234, 244, 254.
  • the raw material solution in the liquid storage tank 21 and the concentrated solution in the circulating liquid tank 27 are respectively mixed by the feed pump 221 and the circulation pump 222, and the mixed liquid sequentially enters the tertiary evaporation structure 25, the secondary evaporation structure 24, and a
  • the stage evaporation structure 23 is heated in the evaporation structures of the stages through the condensing regenerators 252, 242, 232 and the preheaters 254, 244, 234, respectively, and enters the evaporation chambers 251, 241, 231, in the evaporation chambers 251, 241, 231.
  • the medium and the circulating air are directly in contact with the heat and mass transfer, and flow into the circulating liquid tank 27 from the bottom of the evaporation chambers 251, 241, and 231; the circulating air is subjected to the action of the fans 261, 262, and 263, and sequentially passes through the first-stage evaporation structure 23 and the second-stage evaporation.
  • the structure 24 and the tertiary evaporation structure 25 are continuously circulated.
  • the mother liquor is evaporated and concentrated by the evaporation structure 25, and then introduced into the evaporation structures 24 and 23 in sequence, and the mother liquor after multi-stage evaporation and concentration has not yet reached the compounding concentration.
  • the valve is closed, the mother liquid is no longer passed, and the concentrated liquid is reintroduced into the evaporation structure 25 for forced circulation evaporation.
  • the concentration of the solution is continuously increased, and after being reached, the solution is sent to the circulating liquid tank 27; in the stable operation stage, through the raw material valve and The circulation valve controls the flow rate of the mother liquid from the liquid storage tank 21 to be proportional to the flow rate from the circulating liquid tank 27, respectively, and starts a continuous stable evaporation operation.
  • the second embodiment is different in that the solution serial type is adopted, and is suitable for when the initial concentration of the required treatment solution is low and the treatment concentration requirement is high, in order to meet the specified treatment requirements, it is necessary to perform multiple times. Cycling operation, through a multi-stage evaporation chamber in series operation, gradually concentrate the solution to the specified processing requirements.
  • the circulating cooling system shown in FIG. 4 is applicable to the first and second embodiments.
  • the circulating cooling water is used as a cooling medium in the condensing dehumidifier, and the circulating water pump is used to circulate the cooling water, and the circulating cooling water absorbs heat and is driven into the cooling tower.
  • the hot water is sprayed down from the top of the tower into a drop or water film.
  • the cooling tower is cooled by a suction type. Under the action of the fan, the air flows from the bottom to the top to form a countercurrent to the cooling water.
  • the cooling water and the surrounding air have a temperature.
  • the difference between the difference and the humidity forms two forms of heat transfer: evaporative heat transfer and contact heat transfer.
  • the evaporative heat transfer is the latent heat transfer of the cooling water from the liquid phase to the gas phase in the cooling tower, which is the main part of the heat transfer.
  • Heat transfer is the direct heat exchange between cooling water and air, and the sensible heat reflected by the increase in air temperature, which accounts for a small amount of heat transfer.
  • the sub-gravity field enhanced multi-stage evaporation system in which the air parallel solution is connected in series as shown in FIG. 3 has the same solution circulation structure and principle as the second embodiment, and is in a series form, and the structural functions of the components in the third embodiment are
  • the first and second embodiments are the same, and therefore will not be described again.
  • the difference lies in the connection mode and the working principle. Only the different points will be explained below.
  • the system includes a liquid storage tank 31, a feed pump 321, a circulation pump 322, a primary evaporation structure 33, a secondary evaporation structure 34, a tertiary evaporation structure 35, a dust remover 333, 343, 353, fans 361, 362, 363, and a circulation.
  • the liquid tank 37, the primary evaporation structure 33, the secondary evaporation structure 34 and the tertiary evaporation structure 35 each include an evaporation chamber 331, 341, 351, condensing regenerators 332, 342, 352 and preheaters 334, 344, 354;
  • the raw material solution in the liquid storage tank 31 and the concentrated solution in the circulating liquid tank 37 are respectively mixed by the feed pump 321 and the circulation pump 322, and the mixed liquid sequentially enters the tertiary evaporation structure 35, the secondary evaporation structure 34, and the first stage.
  • the evaporation structure 33 is heated in the evaporation structures of the stages through the condensing regenerators 352, 342, 332 and the preheaters 354, 344, 334, respectively, and enters the evaporation chambers 351, 341, 331 in the evaporation chambers 351, 341, 331 Directly in contact with the air, heat and mass transfer, and from the bottom of the evaporation chambers 351, 341, 331 into the circulating liquid tank 37; under the action of the fans 361, 362, 363, the air is removed by the dust remover 333, 343, 353, respectively Entering the primary evaporation structure 33, the secondary evaporation structure 34, and the tertiary evaporation structure 35, Wet line carrier operation.
  • the air inlet pipes 3313, 3413, 3513 are sequentially connected with the fans 361, 362, 363 and the dust collectors 333, 343, 353 for the entry of air, the air outlet pipes 3314, 3414, 3514 and the condensing regenerators 332, 342, 352. Connected and vented from the condensing regenerators 332, 342, 352.
  • the third embodiment adopts the air parallel type, and is suitable for when the ambient temperature is suitable, the fluctuation range is small, and the control precision is not high, and the humid air can be directly taken from the outside. Atmosphere, there is no need to add condensing and dehumidifying equipment.
  • the energy consumption calculation of the system is performed for the first embodiment.
  • Treatment target The evaporation of the treated industrial wastewater is set at 500t/d, and the raw material wastewater is a magnesium sulfate solution with a concentration of 20%. After evaporation, the concentration reaches 40%, and then the system is discharged for crystallization and solid-liquid separation treatment.
  • the wastewater is heated to 95 °C by the condensing regenerator and preheater.
  • the saturated humid air at 35 °C enters from the bottom of the evaporation chamber, and directly contacts the wastewater entering the top of the evaporation chamber for heat and mass transfer.
  • the wastewater is reduced to 40 ° C, it is discharged from the bottom of the evaporation chamber, the air is heated to absorb moisture and reaches 90 ° C, the relative humidity is 95%, and is discharged from the top of the evaporation chamber; the wastewater is heated to 85 ° C by a condensing regenerator and heated by a preheater.
  • the steam provides 2,691.79 kW of heat
  • the evaporation of one ton of water requires 0.21 t of steam, and the cost is 42 yuan.
  • the invention is widely applicable to industries such as printing and dyeing, chemical industry, papermaking, medicine, pesticide, food, seawater desalination, fine chemical industry, etc., and can realize evaporation operation under different temperature requirements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

一种亚重力场强化多级蒸发系统,由多级蒸发结构组成,有三种不同操作模式,分别为空气串联溶液并联、空气串联溶液串联和空气并联溶液串联。在蒸发室中,溶液与空气通过直接接触传热传质,溶液喷洒于旋转填料上,在亚重力场作用下使其均匀分布,强化传热传质。溶液通过吸收自身热量气化,同时空气通过溶液加热升温后能够携带更多的水蒸气,带走已经气化的溶液,从而实现蒸发。

Description

一种亚重力场强化多级蒸发系统 技术领域
本发明属于蒸发处理领域,具体涉及一种亚重力场强化多级蒸发系统。
背景技术
蒸发过程是化工、轻工、食品、制药、污水处理等工业过程中的常见和主要过程。蒸发过程需要消耗大量蒸汽,是一个高能耗过程。由于蒸发过程在流程工业中面广量大,因此提高蒸发过程中的能量利用率对石化、冶金等流程工业节能增效、提升产业竞争力具有重要的意义。
当前,利用蒸发法进行溶液浓缩的技术主要是多效蒸发技术以及机械蒸汽再压缩技术。多效蒸发是利用前一级蒸发器产生的二次蒸汽作为热源加热后一级蒸发器,多个蒸发器串联起来进行操作,使得蒸汽使用量大为降低;机械蒸汽再压缩技术是对从蒸发器产生的二次蒸汽进行再压缩,使其热力品质提升,重新作为加热蒸汽进入蒸发器中,以补充甚至完全替代生蒸汽。
多效蒸发技术虽然节省了部分生蒸汽,但第一效仍需不断供应蒸汽,末效产生的二次蒸汽基本直接冷凝而未进行利用,且效数越多,设备体积愈发庞大,设备投资较大;机械蒸汽再压缩技术克服了多效蒸发末效剩余二次蒸汽直接冷凝排放而造成的浪费现象,其运行成本主要为蒸汽压缩机的电能消耗,但其核心设备蒸汽压缩机的防腐防锈保护以及在长期运行工况下的安全可靠性是一个有待解决的难题。
发明内容
本发明的针对现有技术中的不足,提供一种亚重力场强化多级蒸发系统,利用空气载湿能力来带走溶液中的纯水,进而达到蒸发目的的方法。实现蒸发的原理是利用空气的载湿能力随温度升高而增大的特点,通过热溶液与空气进行直接接触传热传质,升温吸湿后的空气进入回热器与溶液进行换热,能量合理利用。采用多级蒸发结构型式,达到减少风量,降低风机能耗的目的;通过填料低速旋转,形成亚重力场,溶液均匀分布于填料上,强化传热传质效果,溶液在填料中形成沿径向向四周运动趋势,防止产生结垢现象。
为实现上述目的,本发明采用以下技术方案:
一种亚重力场强化多级蒸发系统,其特征在于,包括:储液罐、预热器、一级蒸发结构、二级蒸发结构、三级蒸发结构、风机、进料泵、循环泵和循环液罐,所述一级蒸发结构、二级蒸发结构和三级蒸发结构均包括蒸发室、冷凝回热器和冷凝除湿器;所述储液罐中的原料 溶液和循环液罐中的浓缩溶液分别在进料泵和循环泵的作用下混合,混合液平均分为三股分别进入各级蒸发结构的冷凝回热器中,混合液吸收湿空气余热后汇合进入预热器,通过蒸汽加热后,再次平均分流为三股分别进入各级蒸发结构的蒸发室,在蒸发室中与循环空气直接接触传热传质,并自蒸发室底部流入循环液罐;所述循环空气在风机的作用下依次经过一级蒸发结构、二级蒸发结构和三级蒸发结构,不断循环。
一种亚重力场强化多级蒸发系统,其特征在于,包括:储液罐、进料泵、循环泵、一级蒸发结构、二级蒸发结构、三级蒸发结构、风机和循环液罐,所述一级蒸发结构、二级蒸发结构和三级蒸发结构均包括蒸发室、冷凝回热器、冷凝除湿器和预热器;所述储液罐中的原料溶液和循环液罐中的浓缩溶液分别在进料泵和循环泵的作用下混合,混合液依次进入三级蒸发结构、二级蒸发结构和一级蒸发结构,在各级蒸发结构中分别经冷凝回热器和预热器加热后进入蒸发室,在蒸发室中与循环空气直接接触传热传质,并自蒸发室底部流入循环液罐;所述循环空气在风机作用下,依次经过一级蒸发结构、二级蒸发结构和三级蒸发结构,不断循环。
一种亚重力场强化多级蒸发系统,其特征在于,包括:储液罐、进料泵、循环泵、一级蒸发结构、二级蒸发结构、三级蒸发结构、除尘器、风机和循环液罐,所述一级蒸发结构、二级蒸发结构和三级蒸发结构均包括蒸发室、冷凝回热器和预热器;所述储液罐中的原料溶液和循环液罐中的浓缩溶液分别在进料泵和循环泵的作用下混合,混合液依次进入三级蒸发结构、二级蒸发结构和一级蒸发结构,在各级蒸发结构中分别经冷凝回热器和预热器加热后进入蒸发室,在蒸发室中与空气直接接触传热传质,并自蒸发室底部流入循环液罐;空气在除尘器和风机的作用下,分别进入一级蒸发结构、二级蒸发结构和三级蒸发结构并最终放空。
为优化上述技术方案,采取的具体措施还包括:
所述混合液通过阀门控制进入各级蒸发结构的冷凝回热器的流量相同;混合液流经预热器时,通过阀门控制,平均分为三股进入各级蒸发结构的蒸发室中。
所述风机将循环空气从蒸发室底部吹入,循环空气被混合液加热后带走混合液中的水分,并在冷凝回热器中与混合液换热,回收循环空气余热,再经冷凝除湿器与冷却水换热,使循环空气恢复到进入蒸发室之前的状态,之后进入下一级蒸发结构,进行闭式循环。
所述冷凝除湿器通过循环冷却水为循环空气降温,循环冷却水吸收循环空气热量后通过凉水塔进行降温,由循环泵再次打入冷凝除湿器循环操作。
所述蒸发室上部设有溶液进口管,溶液进口管与预热器相连用于混合液的进入;蒸发室底部设有溶液出口管,溶液出口管与循环液罐相连,用于浓缩溶液的流出;蒸发室下部还设 有空气进口管,空气进口管与风机相连用于循环空气的进入;蒸发室顶部还设有空气出口管,空气出口管与冷凝回热器相连,用于循环空气的流出,回收利用循环空气余热。
所述蒸发室上部设有溶液进口管,溶液进口管与预热器相连用于混合液的进入;蒸发室底部设有溶液出口管,溶液出口管与循环液罐相连,用于浓缩溶液的流出;蒸发室下部还设有空气进口管,空气进口管与风机、除尘器相连,用于空气的进入;蒸发室顶部还设有空气出口管,空气出口管与冷凝回热器相连,空气从冷凝回热器放空。
所述蒸发室采用喷淋式结构,顶部设有多个喷头,各喷头喷出的混合液以一定角度呈锥形下落,溶液进口管通入蒸发室后在蒸发室顶部形成圆形支架,喷头均匀地布置在支架上。
所述蒸发室采用亚重力场旋转结构,具有固定于转轴之上的圆柱形填料层,热溶液首先通过蒸发室顶部喷头喷淋至填料上,电机通过皮带带动转轴旋转,填料在转轴带动下进行低速旋转,形成亚重力场,溶液均匀分布于填料中,产生沿径向从中间到填料四周的运动趋势。
本发明的有益效果是:根据所需处理溶液的处理量、浓度、处理要求不同,以及操作环境的差异,可采用不同串并联型式的蒸发系统。当所需处理溶液初始浓度较低时,而处理浓度要求较高时,为达到指定处理要求,需进行多次循环操作,此时宜采用溶液串联型式,通过多级蒸发室串联操作,逐步浓缩溶液至指定处理要求;当所需处理溶液的处理量较大时,为提高处理效率,此时宜采用溶液并联型式,通过多级蒸发室并联操作,从而在无需提高风机性能的条件下增大溶液处理量;当环境温度适宜,波动范围较小,且控制精度要求不高时,可采用空气并联型式,此时载湿空气可直接取自外界大气,无需增设冷凝除湿设备;当环境温度波动范围较大,或控制精度要求较高时,应采用空气串联型式,此时载湿空气为闭式循环,与外界环境无关,便于进行系统控制。
附图说明
图1是本发明第一实施例(空气串联溶液并联)的工作示意图。
图2是本发明第二实施例(空气串联溶液串联)的工作示意图。
图3是本发明第三实施例(空气并联溶液串联)的工作示意图。
图4是本发明第一、第二实施例中循环冷却系统工作的示意图。
附图标记如下:储液罐11、21、31;循环液罐19、27、37;进料泵171、221、321;循环泵172、222、322;一级蒸发结构13、23、33;二级蒸发结构14、24、34;三级蒸发结构15、25、35;风机161、162、163、261、262、263、361、362、363;除尘器333、343、353;阀门181、182、183、184、185、186;冷凝回热器132、142、152、232、242、252、332、342、352;冷凝除湿器133、143、153、233、243、253;预热器12、234、244、254、334、 344、354;溶液进口管1311、1411、1511、2311、2411、2511、3311、3411、3511;溶液出口管1312、1412、1512、2312、2412、2512、3312、3412、3512;空气进口管1313、1413、1513、2313、2413、2513、3313、3413、3513;空气出口管1314、1414、1514、2314、2414、2514、3314、3414、3514。
具体实施方式
现在结合附图对本发明作进一步详细的说明。
第一实施例
如图1所示的空气串联溶液并联的亚重力场强化多级蒸发系统,包括储液罐11、预热器12、一级蒸发结构13、二级蒸发结构14、三级蒸发结构15、风机161、162、163、进料泵171、循环泵172和循环液罐19,一级蒸发结构13、二级蒸发结构14和三级蒸发结构15均包括蒸发室131、141、151、冷凝回热器132、142、152和冷凝除湿器133、143、153。
蒸发室131、141、151上部设有溶液进口管1311、1411、1511,溶液进口管1311、1411、1511与预热器12相连用于混合液的进入,蒸发室131、141、151底部设有溶液出口管1312、1412、1512,溶液出口管1312、1412、1512与循环液罐19相连,用于浓缩溶液的流出,蒸发室131、141、151下部还设有空气进口管1313、1413、1513,空气进口管1313、1413、1513与风机161、162、163相连用于循环空气的进入,蒸发室131、141、151顶部还设有空气出口管1314、1414、1514,空气出口管1314、1414、1514与冷凝回热器132、142、152相连,用于循环空气的流出,回收利用循环空气余热。蒸发室131、141、151采用喷淋式结构,在顶部设有多个喷头,各喷头喷出的溶液以一定角度呈锥形下落,溶液进口管1311、1411、1511伸入蒸发室131、141、151后在蒸发室131、141、151顶部形成圆形支架,喷头均布于其上,便于液滴喷洒均匀。喷头下部设置圆柱形填料固定于转轴之上,电机通过皮带带动转轴,从而使填料低速旋转形成亚重力场,喷淋在填料上的热溶液经较弱离心力作用,形成从中间向四周发散的运动趋势,均匀分布于填料中,空气自下而上进入填料,与溶液逆流接触传热传质,该结构对于转轴强度、刚度及动密封要求较低,易于实现。转轴与圆柱形填料架固定,从蒸发室131、141、151底部穿出,与蒸发室131、141、151底部接触处采用动密封。
储液罐11和循环液罐19相连,并连接至冷凝回热器132、142、152,各级冷凝回热器132、142、152通过预热器12分别连接至蒸发室131、141、151,各级蒸发室131、141、151与循环液罐19相连。管道风机161、162、163依次与蒸发室131、141、151的循环空气进口管1313、1413、1513相连,循环空气出口管1314、1414、1514与各级冷凝回热器132、142、152和各级冷凝除湿器133、143、153相连。
系统工艺流程为:通过进料泵171和循环泵172将储液罐11及循环液罐19中的溶液混合并打入到冷凝回热器132、142、152中,与循环空气进行换热,之后进入预热器12与蒸汽换热后分别进入到蒸发室131、141、151中,与循环空气进行直接接触传热传质,浓缩后的混合液(浓缩溶液)进入循环液罐19中,通过循环液罐19中部管道直接通入循环液罐19底部,溶液出口设于循环液罐19侧面上部,保证固体结晶、沉淀物滞留于循环液罐19底部,用于循环的溶液为上部清液,部分上部清液与原料溶液混合再次循环,循环液罐19底部部分溶液被引出进行结晶处理,固液分离。利用管道风机161将循环空气打入蒸发室131与热溶液直接接触,进行升温吸湿,经冷凝回热器132冷凝换热后,循环空气初步降温,冷凝水排出,再进入冷凝除湿器133中与冷却水换热,进一步降温后循环空气重新具有吸湿能力,再次打入二级蒸发结构14和三级蒸发结构15,其吸湿除湿机理与一级蒸发结构13相同,空气在各级蒸发结构中不断循环作用。其中,通过循环液罐19内液位高度,控制原料阀与循环阀开度,分别控制来自储液罐11和循环液罐19的溶液流量,并通过阀门181、182、183控制进入到各级冷凝回热器132、142、152的溶液流量相同,以使各级蒸发冷凝换热工况相同。混合液流经预热器12时,通过阀门184、185、186控制,平均分为三股进入各级蒸发结构的蒸发室131、141、151中。
其中,利用蒸汽作为热源,将混合液加热到指定温度,选用空气作为吸湿载体,循环空气在风机161、162、163的作用下进入蒸发室131、141、151,混合液在蒸发室131、141、151中与空气进行直接接触传热传质,空气温度升高,混合液中的部分纯水气化,空气携带走这部分水蒸气,并进入冷凝回热器132、142、152中与溶液换热,进行初步冷凝,回收利用空气余热,同时空气中的部分水蒸气冷凝析出,之后,初步降温后循环空气再次通入冷凝除湿器133、143、153中,与循环冷却水换热后恢复到进入蒸发室131、141、151之前状态,并且引入到下级蒸发室,进行循环载湿除湿;采用多级蒸发结构串联,达到节约空气用量,降低风机能耗的目的。
系统运行时,在风机161、162、163作用下,循环空气在管道、蒸发室131、141、151、冷凝回热器132、142、152、冷凝除湿器133、143、153内进行循环流动;溶液在流经各级冷凝回热器和预热器后,达到指定温度,通过溶液进口管1311、1411、1511伸入蒸发室131、141、151顶部,通过顶部液体分布器进入各支管中,支管上均匀分布多个喷头,溶液经喷头喷出后以锥形下落,经亚重力场弱离心力作用后均匀分布于填料中,空气经风机161、162、163自蒸发室底部空气进口管1313、1413、1513鼓入蒸发室131、141、151中,空气与溶液进行逆流直接接触传热传质,浓缩液自蒸发室底部溶液出口管1312、1412、1512流入循环液 罐19中,载湿空气自蒸发室131、141、151顶部空气出口管1314、1414、1514引入冷凝回热器132、142、152,与溶液进行换热,回收热量,节约加热蒸汽消耗量。
驱动热源可由工业生产过程中的低品位热能提供,可与其它工业过程进行联合生产,回收利用工业废热,降低能源消耗,溶液经冷凝回热器132、142、152和预热器12加热后温度达到处理条件。
实际操作中,蒸发工艺分为两个阶段:开车阶段和稳定运行阶段。开车阶段时,进料液仅为母液,母液通入系统后,经首次蒸发溶液浓度尚未达到处理要求,此时停止通入母液,溶液在系统中进行强制循环,多次蒸发后达到处理浓度;稳定运行阶段,达到处理浓度的溶液,一部分引出系统进行下级结晶工艺操作,剩余部分将于母液按照一定比例进行混合,使之能够在经过一次蒸发操作后混合液浓度达到处理要求,从而实现连续蒸发操作的目的。更为具体地,开车阶段,母液分别在蒸发结构13、14、15中进行蒸发浓缩,将原料阀关闭,不再通入母液,并将浓缩液在各蒸发结构内部进行强制循环蒸发,直至达到处理要求后送入循环液罐19;稳定运行阶段,通过原料阀与循环阀分别控制来自储液罐11的母液流量与来自循环液罐19的浓缩液流量进行配比,开始连续稳定蒸发操作。
该实施例中,溶液并联式适用于溶液处理量较大的情况,通过多级蒸发室并联操作,从而在无需提高风机性能的条件下增大溶液处理量,提高处理效率;空气串联式适用于环境温度波动范围较大或控制精度要求较高时,此时载湿空气为闭式循环,与外界环境无关,稳定操作条件下,系统中空气进行循环操作,从蒸发室吸湿后的空气经冷凝回热器及冷凝除湿器降温除湿后,重新具有载湿能力,再次进入蒸发室进行吸湿,系统运行稳定,易于进行控制。
第二实施例
如图2所示的空气串联溶液串联的亚重力场强化多级蒸发系统,其循环空气结构和原理与第一实施例相同,均为闭式结构,并且第二实施例中各部件的结构功能与第一实施例中相同,因此不再赘述,不同之处在于连接方式和工作原理,以下仅对不同点进行阐述。
系统包括储液罐21、进料泵221、循环泵222、一级蒸发结构23、二级蒸发结构24、三级蒸发结构25、风机261、262、263和循环液罐27,一级蒸发结构23、二级蒸发结构24和三级蒸发结构25均包括蒸发室231、241、251、冷凝回热器232、242、252、冷凝除湿器233、243、253和预热器234、244、254;储液罐21中的原料溶液和循环液罐27中的浓缩溶液分别在进料泵221和循环泵222的作用下混合,混合液依次进入三级蒸发结构25、二级蒸发结构24和一级蒸发结构23,在各级蒸发结构中分别经冷凝回热器252、242、232和预热器254、244、234加热后进入蒸发室251、241、231,在蒸发室251、241、231中与循环空气直接接 触传热传质,并自蒸发室251、241、231底部流入循环液罐27;循环空气在风机261、262、263作用下,依次经过一级蒸发结构23、二级蒸发结构24和三级蒸发结构25,不断循环。
对于溶液串联型式的蒸发系统,开车阶段,母液经蒸发结构25进行蒸发浓缩后,再依次引入到蒸发结构24、23中,经多级蒸发浓缩后的母液尚未达到配比浓度,此时将原料阀关闭,不再通入母液,浓缩液重新引入蒸发结构25中进行强制循环蒸发,多次循环后,溶液浓度不断提高,达到要求后送入循环液罐27;稳定运行阶段,通过原料阀与循环阀分别控制来自储液罐21的母液流量与来自循环液罐27的流量进行配比,开始连续稳定蒸发操作。
第二实施例相比于第一实施例,不同之处在于采用了溶液串联式,适用于所需处理溶液初始浓度较低而处理浓度要求较高时,为达到指定处理要求,需进行多次循环操作,通过多级蒸发室串联操作,逐步浓缩溶液至指定处理要求。
图4所示的循环冷却系统适用于第一、第二实施例,循环冷却水作为冷凝除湿器中的冷却介质,利用循环泵将冷却水打循环,循环冷却水吸热后打入冷却塔进行降温,热水由塔顶向下喷淋成水滴状或水膜状,冷却塔选用抽风式冷却搭,在风机作用下,空气由下向上流动与冷却水形成逆流,冷却水与周围空气存在温度差和湿度差,形成蒸发传热与接触传热两种传热形式,其中蒸发传热是冷却水在冷却塔中气化从液相中传递至气相的潜热,占热量传递的主要部分,接触传热是冷却水与空气直接换热,由空气温度升高体现的显热,占热量传递的少量部分。
第三实施例
如图3所示的空气并联溶液串联的亚重力场强化多级蒸发系统,其溶液循环结构和原理与第二实施例相同,均为串联形式,并且第三实施例中各部件的结构功能与第一、第二实施例相同,因此不再赘述,不同之处在于连接方式和工作原理,以下仅对不同点进行阐述。
系统包括储液罐31、进料泵321、循环泵322、一级蒸发结构33、二级蒸发结构34、三级蒸发结构35、除尘器333、343、353、风机361、362、363和循环液罐37,一级蒸发结构33、二级蒸发结构34和三级蒸发结构35均包括蒸发室331、341、351、冷凝回热器332、342、352和预热器334、344、354;储液罐31中的原料溶液和循环液罐37中的浓缩溶液分别在进料泵321和循环泵322的作用下混合,混合液依次进入三级蒸发结构35、二级蒸发结构34和一级蒸发结构33,在各级蒸发结构中分别经冷凝回热器352、342、332和预热器354、344、334加热后进入蒸发室351、341、331,在蒸发室351、341、331中与空气直接接触传热传质,并自蒸发室351、341、331底部流入循环液罐37;空气在风机361、362、363的作用下,经除尘器333、343、353除去微小颗粒后分别进入一级蒸发结构33、二级蒸发结构34和三级 蒸发结构35,进行载湿操作。空气进口管3313、3413、3513与风机361、362、363、除尘器333、343、353依次相连,用于空气的进入,空气出口管3314、3414、3514与冷凝回热器332、342、352相连,并从冷凝回热器332、342、352放空。
第三实施例相比于第二实施例,不同之处在于采用了空气并联式,适用于环境温度适宜、波动范围较小且控制精度要求不高时,此时载湿空气可直接取自外界大气,无需增设冷凝除湿设备。
下面以废水处理为例,针对第一实施例进行系统的能耗计算。
处理目标:所处理工业废水的蒸发量定为500t/d,原料废水是浓度为20%的硫酸镁溶液,通过蒸发处理后浓度达到40%,之后排出系统进行结晶及固液分离处理。
系统能耗计算:废水经冷凝回热器和预热器加热升温至95℃,35℃的饱和湿空气自蒸发室底部进入,与自蒸发室顶部进入的废水进行直接接触传热传质,浓缩后废水降至40℃,从蒸发室底部排出,空气升温吸湿后达到90℃,相对湿度95%,从蒸发室顶部排出;废水经冷凝回热器加热至85℃,又经预热器加热至95℃,蒸汽提供热量为2691.79kW,蒸发一吨水需消耗蒸汽0.21t,费用为42元。
本发明广泛适用于印染、化工、造纸、医药、农药、食品、海水淡化、精细化工等行业,能够实现不同温度要求下的蒸发操作。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。

Claims (10)

  1. 一种亚重力场强化多级蒸发系统,其特征在于,包括:储液罐(11)、预热器(12)、一级蒸发结构(13)、二级蒸发结构(14)、三级蒸发结构(15)、风机(161、162、163)、进料泵(171)、循环泵(172)和循环液罐(19),所述一级蒸发结构(13)、二级蒸发结构(14)和三级蒸发结构(15)均包括蒸发室(131、141、151)、冷凝回热器(132、142、152)和冷凝除湿器(133、143、153);所述储液罐(11)中的原料溶液和循环液罐(19)中的浓缩溶液分别在进料泵(171)和循环泵(172)的作用下混合,混合液平均分为三股分别进入各级蒸发结构的冷凝回热器(132、142、152)中,混合液吸收湿空气余热后汇合进入预热器(12),通过蒸汽加热后,再次平均分流为三股分别进入各级蒸发结构的蒸发室(131、141、151),在蒸发室(131、141、151)中与循环空气直接接触传热传质,并自蒸发室(131、141、151)底部流入循环液罐(19);所述循环空气在风机(161、162、163)的作用下依次经过一级蒸发结构(13)、二级蒸发结构(14)和三级蒸发结构(15),不断循环。
  2. 一种亚重力场强化多级蒸发系统,其特征在于,包括:储液罐(21)、进料泵(221)、循环泵(222)、一级蒸发结构(23)、二级蒸发结构(24)、三级蒸发结构(25)、风机(261、262、263)和循环液罐(27),所述一级蒸发结构(23)、二级蒸发结构(24)和三级蒸发结构(25)均包括蒸发室(231、241、251)、冷凝回热器(232、242、252)、冷凝除湿器(233、243、253)和预热器(234、244、254);所述储液罐(21)中的原料溶液和循环液罐(27)中的浓缩溶液分别在进料泵(221)和循环泵(222)的作用下混合,混合液依次进入三级蒸发结构(25)、二级蒸发结构(24)和一级蒸发结构(23),在各级蒸发结构中分别经冷凝回热器(252、242、232)和预热器(254、244、234)加热后进入蒸发室(251、241、231),在蒸发室(251、241、231)中与循环空气直接接触传热传质,并自蒸发室(251、241、231)底部流入循环液罐(27);所述循环空气在风机(261、262、263)作用下,依次经过一级蒸发结构(23)、二级蒸发结构(24)和三级蒸发结构(25),不断循环。
  3. 一种亚重力场强化多级蒸发系统,其特征在于,包括:储液罐(31)、进料泵(321)、循环泵(322)、一级蒸发结构(33)、二级蒸发结构(34)、三级蒸发结构(35)、除尘器(333、343、353)、风机(361、362、363)和循环液罐(37),所述一级蒸发结构(33)、二级蒸发结构(34)和三级蒸发结构(35)均包括蒸发室(331、341、351)、冷凝回热器(332、342、352)和预热器(334、344、354);所述储液罐(31)中的原料溶液和循环液罐(37)中的浓缩溶液分别在进料泵(321)和循环泵(322)的作用下混合,混合液依次进入三级蒸发结构(35)、二级蒸发结构(34)和一级蒸发结构(33),在各级蒸发结构中分别经冷凝回热器(352、342、332)和预热器(354、344、334)加热后进入蒸发室(351、341、331),在蒸发室(351、 341、331)中与空气直接接触传热传质,并自蒸发室(351、341、331)底部流入循环液罐(37);空气在除尘器(333、343、353)和风机(361、362、363)的作用下,分别进入一级蒸发结构(33)、二级蒸发结构(34)和三级蒸发结构(35)并最终放空。
  4. 如权利要求1所述的一种亚重力场强化多级蒸发系统,其特征在于:所述混合液通过阀门(181、182、183)控制进入各级蒸发结构的冷凝回热器(132、142、152)的流量相同;混合液流经预热器(12)时,通过阀门(184、185、186)控制,平均分为三股进入各级蒸发结构的蒸发室(131、141、151)中。
  5. 如权利要求1或2所述的一种亚重力场强化多级蒸发系统,其特征在于:所述风机(161、162、163、261、262、263)将循环空气从蒸发室(131、141、151、231、241、251)底部吹入,循环空气被混合液加热后带走混合液中的水分,并在冷凝回热器(132、142、152、232、242、252)中与混合液换热,回收循环空气余热,再经冷凝除湿器(133、143、153、233、243、253)与冷却水换热,使循环空气恢复到进入蒸发室(131、141、151、231、241、251)之前的状态,之后进入下一级蒸发结构,进行闭式循环。
  6. 如权利要求5所述的一种亚重力场强化多级蒸发系统,其特征在于:所述冷凝除湿器(133、143、153、233、243、253)通过循环冷却水为循环空气降温,循环冷却水吸收循环空气热量后通过凉水塔进行降温,由循环泵再次打入冷凝除湿器(133、143、153、233、243、253)循环操作。
  7. 如权利要求1或2所述的一种亚重力场强化多级蒸发系统,其特征在于:所述蒸发室(131、141、151、231、241、251)上部设有溶液进口管(1311、1411、1511、2311、2411、2511),溶液进口管(1311、1411、1511、2311、2411、2511)与预热器(12、234、244、254)相连用于混合液的进入;蒸发室(131、141、151、231、241、251)底部设有溶液出口管(1312、1412、1512、2312、2412、2512),溶液出口管(1312、1412、1512、2312、2412、2512)与循环液罐(19、27)相连,用于浓缩溶液的流出;蒸发室(131、141、151、231、241、251)下部还设有空气进口管(1313、1413、1513、2313、2413、2513),空气进口管(1313、1413、1513、2313、2413、2513)与风机(161、162、163、261、262、263)相连用于循环空气的进入;蒸发室(131、141、151、231、241、251)顶部还设有空气出口管(1314、1414、1514、2314、2414、2514),空气出口管(1314、1414、1514、2314、2414、2514)与冷凝回热器(132、142、152、232、242、252)相连,用于循环空气的流出,回收利用循环空气余热。
  8. 如权利要求3所述的一种亚重力场强化多级蒸发系统,其特征在于:所述蒸发室(331、341、351)上部设有溶液进口管(3311、3411、3511),溶液进口管(3311、3411、3511)与 预热器(334、344、354)相连用于混合液的进入;蒸发室(331、341、351)底部设有溶液出口管(3312、3412、3512),溶液出口管(3312、3412、3512)与循环液罐(37)相连,用于浓缩溶液的流出;蒸发室(331、341、351)下部还设有空气进口管(3313、3413、3513),空气进口管(3313、3413、3513)与风机(361、362、363)、除尘器(333、343、353)相连,用于空气的进入;蒸发室(331、341、351)顶部还设有空气出口管(3314、3414、3514),空气出口管(3314、3414、3514)与冷凝回热器(332、342、352)相连,空气从冷凝回热器(332、342、352)放空。
  9. 如权利要求1或2或3所述的一种亚重力场强化多级蒸发系统,其特征在于:所述蒸发室(131、141、151、231、241、251、331、341、351)采用喷淋式结构,顶部设有多个喷头,各喷头喷出的混合液以一定角度呈锥形下落,溶液进口管(1311、1411、1511、2311、2411、2511、3311、3411、3511)通入蒸发室(131、141、151、231、241、251、331、341、351)后在蒸发室(131、141、151、231、241、251、331、341、351)顶部形成圆形支架,喷头均匀地布置在支架上。
  10. 如权利要求9所述的一种亚重力场强化多级蒸发系统,其特征在于:所述蒸发室(131、141、151、231、241、251、331、341、351)采用亚重力场旋转结构,具有固定于转轴之上的圆柱形填料层,热溶液通过蒸发室顶部喷头喷淋至填料上,电机通过皮带带动转轴旋转,填料在转轴带动下进行低速旋转,形成亚重力场,溶液均匀分布于填料中,产生沿径向从中间到填料四周的运动趋势。
PCT/CN2018/072185 2017-01-17 2018-01-11 一种亚重力场强化多级蒸发系统 WO2018133724A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/474,557 US10773182B2 (en) 2017-01-17 2018-01-11 Multi-stage evaporation system enhanced by a gravity-reduced field
GB1909267.5A GB2571887B (en) 2017-01-17 2018-01-11 Multi-stage evaporation system enhanced by a gravity-reduced field
JP2019516981A JP2020500690A (ja) 2017-01-17 2018-01-11 低重力場により強化される多段蒸発システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710029809.0 2017-01-17
CN201710029809.0A CN107042022A (zh) 2017-01-17 2017-01-17 一种亚重力场强化多级蒸发系统

Publications (1)

Publication Number Publication Date
WO2018133724A1 true WO2018133724A1 (zh) 2018-07-26

Family

ID=59543985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072185 WO2018133724A1 (zh) 2017-01-17 2018-01-11 一种亚重力场强化多级蒸发系统

Country Status (5)

Country Link
US (1) US10773182B2 (zh)
JP (1) JP2020500690A (zh)
CN (1) CN107042022A (zh)
GB (1) GB2571887B (zh)
WO (1) WO2018133724A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109432809A (zh) * 2018-12-28 2019-03-08 深圳市鼎深科技有限公司 一种低温高效蒸发系统
CN112316450A (zh) * 2020-09-22 2021-02-05 蓝旺节能科技(浙江)有限公司 一种中药加工高效循环蒸发系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107042022A (zh) * 2017-01-17 2017-08-15 南京工业大学 一种亚重力场强化多级蒸发系统
KR102265403B1 (ko) * 2019-08-20 2021-06-16 한국해양과학기술원 다중효용증발장치를 이용한 흡착식 해수담수화 시스템
CN111569450B (zh) * 2020-05-22 2023-12-26 浙江省天正设计工程有限公司 一种甲基膦醛反应液连续蒸发浓缩装置及浓缩工艺
CN111895554B (zh) * 2020-08-03 2021-05-11 南京工程学院 一种基于多级蒸发冷凝的热源塔溶液浓度控制装置及方法
CN114307206A (zh) * 2022-01-26 2022-04-12 河北乐恒节能设备有限公司 一种蒸发浓缩装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1205984A (zh) * 1998-08-08 1999-01-27 张新年 废水无垢蒸发浓缩工艺
CN104707350A (zh) * 2015-03-17 2015-06-17 南京工业大学 一种蒸汽驱动的超重力场强化蒸发系统
CN105536276A (zh) * 2016-02-05 2016-05-04 兰州节能环保工程有限责任公司 一种mvr多级蒸发装置
CN107042022A (zh) * 2017-01-17 2017-08-15 南京工业大学 一种亚重力场强化多级蒸发系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3654092A (en) * 1970-11-20 1972-04-04 John C St Clair Multiple-stage evaporator
US3783108A (en) * 1971-01-18 1974-01-01 R Saari Method and apparatus for distilling freshwater from seawater
US4282832A (en) * 1980-02-21 1981-08-11 United Technologies Corporation Process for vaporizing a liquid hydrocarbon fuel
US5601688A (en) * 1990-02-14 1997-02-11 Ormat Industries Ltd. Method of and means for spraying droplets
US6695951B1 (en) * 2000-07-18 2004-02-24 Jack G. Bitterly Saline/sewage water reclamation system
US6684648B2 (en) * 2000-07-26 2004-02-03 Fakieh Research & Development Center Apparatus for the production of freshwater from extremely hot and humid air
US7799178B2 (en) * 2005-01-07 2010-09-21 Black & Veatch Holding Company Distillation process
US7357849B2 (en) * 2005-09-01 2008-04-15 Watervap, Llc Method and system for separating solids from liquids
CN101831348B (zh) * 2010-05-20 2013-01-09 佛山汉维机电科技有限公司 从废润滑油中分离回收成品油的方法及其装置
US9259667B2 (en) * 2012-04-25 2016-02-16 Saltworks Technologies Inc. Modular humidification-dehumidification apparatus for concentrating solutions
CN203170033U (zh) * 2013-04-13 2013-09-04 郭朝军 一种利用空气对含盐水进行蒸发处理的多级蒸发塔
CN104118918B (zh) * 2014-08-15 2016-01-06 南京工业大学 一种利用太阳能的废水蒸发系统
CN104567462B (zh) * 2014-12-31 2017-06-13 魏永阳 一种超重力热交换工艺
CN104689584B (zh) * 2015-03-17 2017-03-01 南京工业大学 一种热泵驱动的超重力场强化蒸发系统
CN205709996U (zh) * 2016-04-15 2016-11-23 宁波浙铁江宁化工有限公司 一种除盐水浓水回收装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1205984A (zh) * 1998-08-08 1999-01-27 张新年 废水无垢蒸发浓缩工艺
CN104707350A (zh) * 2015-03-17 2015-06-17 南京工业大学 一种蒸汽驱动的超重力场强化蒸发系统
CN105536276A (zh) * 2016-02-05 2016-05-04 兰州节能环保工程有限责任公司 一种mvr多级蒸发装置
CN107042022A (zh) * 2017-01-17 2017-08-15 南京工业大学 一种亚重力场强化多级蒸发系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109432809A (zh) * 2018-12-28 2019-03-08 深圳市鼎深科技有限公司 一种低温高效蒸发系统
CN109432809B (zh) * 2018-12-28 2024-02-27 深圳市鼎深科技有限公司 一种低温高效蒸发系统
CN112316450A (zh) * 2020-09-22 2021-02-05 蓝旺节能科技(浙江)有限公司 一种中药加工高效循环蒸发系统
CN112316450B (zh) * 2020-09-22 2022-07-15 蓝旺节能科技(浙江)有限公司 一种中药加工高效循环蒸发系统

Also Published As

Publication number Publication date
US20190336881A1 (en) 2019-11-07
GB2571887B (en) 2022-03-23
GB201909267D0 (en) 2019-08-14
GB2571887A (en) 2019-09-11
JP2020500690A (ja) 2020-01-16
CN107042022A (zh) 2017-08-15
US10773182B2 (en) 2020-09-15

Similar Documents

Publication Publication Date Title
WO2018133724A1 (zh) 一种亚重力场强化多级蒸发系统
CN103466736B (zh) 一种高浓度含盐废水的循环处理系统及工艺
CN106986486B (zh) 一种高含盐有机废水处理装置
CN104689584B (zh) 一种热泵驱动的超重力场强化蒸发系统
US4963231A (en) Method for evaporation of liquids
CN112209551B (zh) 含盐废水浓缩系统及盐水浓缩方法
CN109020031B (zh) 一种基于热力压缩的蒸发浓缩系统
CN113686051A (zh) 一种高温高湿气体中水热回收的开式压缩吸收式热泵系统
CN211226744U (zh) 一种高盐、高cod废水低温蒸发浓缩装置
CN107537167A (zh) 蒸发浓缩结晶系统及蒸发处理方法
CN113686052B (zh) 一种智能控制的水、余热回收的开式压缩吸收式热泵系统
CN207270730U (zh) 蒸发浓缩结晶系统
CN212356911U (zh) 一种含盐废水浓缩系统
CN110498462A (zh) 一种基于载气萃取低温传质的工业废液处理系统及方法
CN108483542A (zh) 空气循环能量回收废水蒸发分盐系统及废水处理方法
CN108609786B (zh) 低质余热驱动高盐废水盐水分离全回收的蒸发冷凝循环设备和方法
CN110590633A (zh) 复合式nmp回收系统
CN207805082U (zh) 一种高效降膜蒸发器设备
CN203545715U (zh) 一种高浓度含盐废水的循环处理系统
CN204656023U (zh) 一种热泵驱动的超重力场强化蒸发系统
CN206152367U (zh) 低温蒸发装置
CN213790052U (zh) 一种高盐水浓缩结晶系统
CN209161538U (zh) 空气循环能量回收废水蒸发分盐系统
CN208856938U (zh) 一种脱硫废水浓缩结构
CN112337114A (zh) 一种载热气驱动的超重力强化蒸发的装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18741345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019516981

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201909267

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20180111

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18741345

Country of ref document: EP

Kind code of ref document: A1